
UC Irvine
UC Irvine Previously Published Works

Title
Secure GDoF of the Z-channel with Finite Precision CSIT: How Robust are Structured Codes?

Permalink
https://escholarship.org/uc/item/6rj6s7wj

ISBN
9781728164328

Authors
Chan, Yao-Chia
Jafar, Syed Ali

Publication Date
2020-06-26

DOI
10.1109/isit44484.2020.9174149

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rj6s7wj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:2

01
1.

12
94

7v
1 

 [
cs

.I
T

] 
 2

5 
N

ov
 2

02
0

Secure GDoF of the Z-channel with Finite Precision CSIT:

How Robust are Structured Codes?
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University of California Irvine, Irvine, CA 92697

Email: {yaochic, syed}@uci.edu

Abstract

Under the assumption of perfect channel state information at the transmitters (CSIT), it
is known that structured codes offer significant advantages for secure communication in an
interference network, e.g., structured jamming signals based on lattice codes may allow a receiver
to decode the sum of the jamming signal and the signal being jammed, even though they cannot
be separately resolved due to secrecy constraints, subtract the aggregate jammed signal, and
then proceed to decode desired codewords at lower power levels. To what extent are such
benefits of structured codes fundamentally limited by uncertainty in CSIT? To answer this
question, we explore what is perhaps the simplest setting where the question presents itself — a
Z interference channel with secure communication. Using sum-set inequalities based on Aligned
Images bounds we prove that the GDoF benefits of structured codes are lost completely under
finite precision CSIT. The secure GDoF region of the Z interference channel is obtained as a
byproduct of the analysis.

This work is supported by NSF grants CCF-1617504 and CNS-1731384, ARO grant W911NF-19-1-0344 and
ONR grant N00014-18-1-2057. It was presented in part at the 2020 IEEE International Symposium on Information
Theory [1].

1

http://arxiv.org/abs/2011.12947v1


1 Introduction

The capacity of wireless networks, as evident from recent Degrees of Freedom (DoF) [2] and Gen-
eralized Degrees of Freedom (GDoF) [3] studies, depends rather strongly on the underlying as-
sumptions about the availability of channel state information at the transmitter(s) (CSIT). Zero
forcing [4, 5], interference alignment [6–9] — structured codes [10, 11] in general — are powerful
ideas; nevertheless their benefits can quickly disappear under even moderate amounts of channel
uncertainty. Robustness is paramount, and it is enforced in GDoF studies by limiting CSIT to
finite precision [12,13]. This leads naturally to a crucial question: how robust are structured codes?
Specifically, to what extent does finite precision CSIT fundamentally limit the benefits of structured
coding schemes? The question is important from both practical and theoretical perspectives. The
emphasis on finite precision CSIT brings theory closer to practice, which is a worthy goal in itself.
In addition, even if we set practical concerns aside, there is another motivation for the emphasis on
robustness — if the benefits of structured codes are indeed lost under finite precision CSIT, then
perhaps this removes some of the obstacles that have made progress difficult in network informa-
tion theory, and thus opens the door to a comprehensive and robust network information theory of
wireless networks, based on optimality of random codes that are much better understood.

Under perfect CSIT the challenge in GDoF studies is the crafting of powerful achievable schemes.
Finite precision CSIT shifts the challenge to outer bounds. Indeed, optimal schemes under finite
precision CSIT tend to be classical random coding schemes that are well understood. What is
difficult is to prove that these schemes are optimal, e.g., that alignment is not possible, that nothing
more powerful exists (in the GDoF sense) under finite precision CSIT. Another motivation for the
focus on GDoF outer bounds is that unlike inner bounds that are inherently cumbersome as they
depend on numerous design choices, e.g., number of layers of rate-splitting for each user, the rates
and power levels assigned to each layer, and various choices of spatial and temporal beamforming,
GDoF outer bounds tend to be much more compact, depending only on the channel parameters.

Accounting for arbitrary structure is essential because, unlike random noise, interference can
be arbitrarily structured. It is the structure of the codes that decides how the signals align with
each other, how many signal dimensions they occupy together, whether they add constructively
or destructively, whether they can be collectively or individually decoded [14–26]. Accounting
for structure, even from the coarse GDoF perspective, turns out to be difficult, perhaps because
structured codes are inherently combinatorial objects. This is especially the case for robust GDoF
studies (e.g., with CSIT limited to finite precision), where it is increasingly evident that classical
information theoretic tools are lacking. With the exception of ‘Aligned Images (AI)’ bounds [13],
there are no alternatives, to our knowledge, that have been found to be capable of bounding the
benefits of structure under non-trivial channel uncertainty. For example, aside from the combina-
torial approach of AI bounds, there still is no other argument to prove that the K user interference
channel has any less than a total of K/2 DoF under finite precision CSIT. Note that Aligned
Images bounds can prove something much stronger — that it has only a total of 1 DoF [13]. In
fact even if all the transmitters cooperate fully the resulting K user MISO BC still has only 1
DoF (thus resolving a conjecture by Lapidoth, Shamai and Wigger [12]). AI bounds have been
similarly essential to robust GDoF characterizations of various interference and broadcast settings,
such as the symmetric K user IC [27], the 2-user MIMO IC with arbitrary levels of CSIT [28], the
3 user MISO BC [29], and the 2-user MIMO BC with arbitrary levels of CSIT, [30, 31]. Robust
GDoF characterizations have also been found using AI bounds for various intermediate levels of
transmitter cooperation in [32–34].

Aligned Images bounds are so called because they are based on counting the expected number of
codewords that can cast ‘aligned images’ at one receiver while casting resolvable images at another.
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Figure 1: A toy example. On the left is the ADT deterministic model CSIT which shows that under perfect
CSIT the Secure GDoF tuple (1/2, 1/2) is achievable (needs lattice alignment between structured codes B2

and A1). On the right is the corresponding channel model under finite precision CSIT, for which we prove
in this work that the GDoF tuple (δ, 1/2) is not achievable for any δ > 0. This can be seen from Theorem
1 by substituting β = 3/2, d2 = 3/2 in Case 2, which yields d1 ≤ 0. Some of the notations are defined in
Section 5.

Because of their essentially combinatorial character, derivations of AI bounds can be somewhat
tedious. Yet, the lack of alternatives thus far makes these bounds indispensable to the goal of
developing a robust understanding of the capacity limits of wireless networks. In order to make
further progress in this direction, it is important to explore and expand the scope of AI bounds.
Notably, the class of AI bounds was recently expanded significantly into a broad class of sum-set
inequalities in [35]. Exploring applications of these increasingly sophisticated sumset inequalities
is another motivation for our work in this paper.

With the aid of sumset inequalities we wish to explore the robustness of structured codes for
secure communication [16,18–20,24,26,36–40]. In particular, one powerful idea that is made possible
by structured codes is the aggregate decoding and cancellation1 of jammed signals [16,24,26,38–40].
Lattice coded jamming signals are sometimes used to guarantee the secrecy of a message that is
itself encoded with a compatible lattice code. A key advantage of structured codes in such settings
is that even though neither the jamming noise nor the message is individually decodable, their sum
can still be ‘decoded’ and cancelled. Intuitively, this is because the sum of lattice points is still
a valid lattice point. The ability to decode and cancel jammed signals in aggregate is important
because it then allows a receiver to successively decode [41] desired signals at lower power levels.
However, this ability may not be robust to channel uncertainty, which is especially a concern for
secure communication applications where robustness is paramount. The question is fundamental
and therefore broadly relevant, but in order to minimize distractions we study what is perhaps
the simplest scenario where the question presents itself — a Z interference channel with secrecy
constraints [42–46].

As a motivating example, consider the toy setting of a Z channel illustrated in Figure 1 where
the two transmitters wish to send independent secret messages to their respective receivers, and
only Receiver 1 experiences interference. The desired links of each user by themselves are capable of
carrying 1 GDoF, while the cross-link has 3/2 GDoF. Intuitively, if we think of Cij as representing

1‘Aggregate decoding and cancellation’ is used loosely here to refer to any means by which the interference from
jammed signals at higher power levels to the desired signals at lower power levels can be mitigated. The focus is on
mitigating the residual interference to lower power levels, and not on the aggregate decoding of higher levels per se.
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the capacity of the point to point Gaussian channel between Transmitter j and Receiver i, then
we have C11 : C12 : C22 = 2 : 3 : 2 for this toy example. Note that the ratios of link capacities
correspond to the αij values in the GDoF model, and that only the relative values of αij matter2 for
the GDoF metric. Throughout this paper we will normalize α22 to unity. In the figure3 we see both
the ADT deterministic model [47] (on the left), which implies perfect CSIT, as well as the more
general deterministic4 model (on the right) that allows us to study finite precision CSIT. Similar
to the normalization, α22 = 1, all channel capacities are normalized by the capacity of the channel
between Transmitter 2 and Receiver 2 in the ADT model. The ADT model shows, intuitively,
how it is possible with perfect CSIT to achieve the GDoF tuple (1/2, 1/2). Since communication
must be secure and the top signal level B1 is fully exposed to the undesired receiver, while the
bottom signal level B3 cannot be heard by the desired receiver (below the noise floor) this leaves
Transmitter 2 only B2 to achieve its 1/2 GDoF. Transmitter 1 sends a jamming signal A1 to secure
B2 from Receiver 1. The most important aspect of this toy example is the alignment that takes
place between A1 and B2, both of which are structured (lattice) codes, so that the sum A1 + B2

also has a lattice structure. This allows Receiver 1 to ‘decode’ the sum A1 + B2 (without being
able to decode A1 or B2 separately, which would violate secrecy), subtract it from the received
signal and then decode its desired signal A2 in order to simultaneously achieve 1/2 GDoF. Now
consider the same problem under finite precision CSIT, which poses obstacles for lattice alignment.
If lattice alignment is restricted then so is the ability of Receiver 1 to ‘decode’ the linear combination
of signals A1 and B2, which in turn limits the potential for decoding the desired signal A2 that
appears at a lower power level. But how strong are these restrictions? Is it still possible to
partially mitigate interference from aligned signals at higher power levels to allow decoding of
desired signals at lower power levels? Are these restrictions fundamental — could there be other
structured coding schemes, yet to be discovered, that could overcome such limitations? These are
the fundamental questions that motivate this work. What we find, using Aligned Images bounds
and sum-set inequalities [35], is that indeed the limitations imposed on structured codes by finite
precision CSIT, are both strong and fundamental. In the specific context of this toy example, we
prove that the GDoF tuple (δ, 1/2) is not achievable for any δ > 0. Thus, the GDoF benefits
of lattice alignment, aggregate decoding and cancellation are all lost under finite precision CSIT,
underscoring their fragile nature. Moreover, because the bound is information theoretic, no better
alternative can exist. Beyond the toy example, the general proof formalizes the intuition that under
finite precision CSIT, lower layers cannot be decoded without decoding higher layers, and higher
layers cannot be decoded in aggregate if they cannot be decoded separately. As a byproduct of
this analysis, we fully characterize the secure GDoF region of the Z channel under finite precision
CSIT.

Since the Z-interference channel is a canonical setting that has been extensively studied under a
variety of assumptions, let us note that there are three essential distinguishing aspects of our work:
1) robustness, 2) information theoretic optimality in the GDoF sense, and 3) security. It is the
combination of these 3 aspects that makes our setting uniquely challenging and allows us to explore
the limitations of aggregate decoding for structured jamming under channel uncertainty. In fact it
is arguably the simplest problem that allows us to do so. For example, if we relax any of these three
constraints then there would be no need for AI bounds. If we relax the robustness constraint by

2It follows from the definition of GDoF that if all αij values are scaled by the same constant then the GDoF value
is scaled by that constant as well.

3Intuitively, X1, X2 are non-negative integers that can be (approximately) expressed in ⌊
√
P 1/2⌋-ary symbols as

X1 = A1A2 and X2 = B1B2B3.
4The model is not fully deterministic in a strict sense, because the channel coefficients are not perfectly known to

the transmitters. The nomenclature comes from the fact that the Gaussian noise is removed in this model.
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Figure 2: The Gaussian Z Interference Channel (ZIC).

allowing perfect CSIT, then the problem has been studied in [42,43], and since channel uncertainty
is not a concern, ADT models can be used to construct powerful lattice alignment solutions as
shown in Figure 1. If we do not insist on information theoretic optimality then achievable schemes
are easily developed, say from [48]. If we stop short of GDoF, e.g., only ask for DoF (degrees
of freedom) by restricting α = β = 1, then the problem becomes trivial because the DoF region
is the simplex bounded by d1 + d2 ≤ 1 even with perfect CSIT, which is also achievable with
finite precision CSIT. If we relax the security constraint, then there is no need for structured
codes (e.g., lattice alignment) and the capacity has been characterized within a gap of a constant
number of bits in [49]. Furthermore, the 2 user Z interference channel with secrecy constraint
is especially appealing because it has very few channel parameters, which allows us to seek a
comprehensive GDoF characterization for the entire parameter space without any assumptions of
symmetry, and at the same time the secrecy constraint ensures that the problem is non-trivial and
allows room to explore sophisticated applications of the new sumset inequalities [35]. Remarkably,
despite its simplicity, the 2-user Z-channel is not far from exhausting the scope of known sum-set
inequalities. It is noted recently in [50] that even if we introduce just one more user, which changes
the 2-user Z channel into a 3-to-1 interference channel (only Receiver 1 experiences interference),
then the problem of characterizing the secure GDoF region under robust CSIT assumptions may
be beyond the reach of known sum-set inequalities. Finally, let us note that the Z-interference
channel has also been explored under other assumptions that are not so closely related to this
work, e.g., deterministic encoders [44], cooperation between transmitters [45], cooperation between
receivers [51], binary alphabet [46], and lack of coordination/trust between transmitters [52].

The rest of this paper is organized as follows. The system model is presented in the next section.
The main result, i.e., the secure GDoF region is presented in Section 3. The achievability proof of
the main result appears in Section 4, and the conserve proof follows in Section 5 along with a brief
review of AI bounds. In Section 6 we present the conclusion.

Notation: For a positive integer n, denote [n] = {1, 2, · · · , n}. The set {X(t) : t ∈ [n]} is
denoted asX. For two functions f(x) and g(x), denote f(x) = o(g(x)) if lim supx→∞ f(x)/g(x) = 0,
and f(x) = O(g(x)) if lim supx→∞ f(x)/g(x) = c for some constant c > 0. For random variables
X,Y and Z, and a set G, define HG(X|Y ) = H(X|Y,G), and IG(X;Y |Z) = I(X;Y |Z,G). All
logarithms are to the base 2.

2 System Model

2.1 The Gaussian Z Interference Channel (ZIC)

We consider the two user Gaussian Z Interference Channel depicted in Figure 2, which consists of
two transmitters and two receivers, each equipped with a single antenna. As shown in the figure, the
network has a Z-topology, so both transmitters are heard by Receiver 1, while only Transmitter 2 is
heard by Receiver 2. There are two independent messages W1 andW2, that originate at Transmitter
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Figure 3: The Gaussian Z Broadcast Channel (ZBC).

1 and Transmitter 2 and are desired by Receiver 1 and Receiver 2, respectively. Message Wi is
uniformly distributed over the set Wi. The messages are encoded into codewords X1,X2, where
Xi =

(
Xi(t)

)

t∈[n]
∈ Rn is a codeword spanning n channel uses that is sent from Transmitter i,

and satisfies a unit transmit power constraint, 1
n

∑

t∈[n] E[|Xi(t)|2] ≤ 1, i = 1, 2. The messages
are encoded separately and there is no common randomness shared between transmitters; i.e.,
Xi = fi,n(Wi, θi), where fi,n(.), i = 1, 2 are encoding functions, θi is private randomness available
only to Transmitter i, and I(θ1,W1; θ2,W2) = 0.

2.2 The Gaussian Z Broadcast Channel (ZBC)

While our focus is primarily on the ZIC, as a useful point of reference let us also define the
corresponding Gaussian Z Broadcast Channel (ZBC), shown in Figure 3, which is identical to the
ZIC in every regard except that in the ZBC the transmitters are allowed to cooperate fully to jointly
encode the messages; i.e., (X1,X2) = f0,n(W1,W2, θ1, θ2), where f0,n is the encoding function.

2.3 The GDoF Framework

Within the GDoF framework, the received signals in the t-th channel use are described as

Y1(t) = G11(t)
√
Pα11X1(t) +G12(t)

√
Pα12X2(t) + Z1(t), (1)

Y2(t) = G22(t)
√
Pα22X2(t) + Z2(t), (2)

where P is a nominal variable (referred to as power) whose asymptotic limit, i.e., P → ∞, will
be used to define the GDoF metric. Zi(t), i = 1, 2, are the zero-mean unit-variance additive white
Gaussian noise terms. Xi(t), i = 1, 2, are the signals sent from the two transmitters, each of
which is subject to a unit transmit power constraint. All symbols are real-valued. Without loss of
generality,5 let us normalize the αij parameters so that α22 = 1, α12 = β and α11 = α.

Let us briefly recall the motivation behind the GDoF framework. The channel strength param-
eters αij correspond (approximately) to the capacity of the corresponding point to point Gaussian
channel between Transmitter j and Receiver i. Specifically, note that the links under the GDoF

framework in (1) and (2) have approximate point-to-point capacities αij

(
1
2 log(P )

)

. Here 1
2 log(P )

may be viewed as a nominal scaling factor that is applied to proportionately scale the capacity of
every link. The intuition behind this scaling is that as the capacity of every link is scaled by the
same factor, the network capacity should scale by approximately the same factor as well. Therefore,
normalizing all rates by 1

2 log(P ) yields an approximation to the capacity of the network. Letting
P approach infinity makes the problem amenable to asymptotic analysis, which indeed gives us the
definition of GDoF (See equation (5)). It is noteworthy that the deterministic models of [47], which

5There is no loss of generality in this assumption because from the definition of GDoF in (5) it is obvious that
any normalization of αij parameters results in simply the same normalization factor appearing in the GDoF value.
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have been the key to numerous capacity approximations over the last decade, are specializations
of the GDoF framework under perfect CSIT. For robust GDoF studies, however, we need to limit
CSIT to finite precision.

2.4 Finite Precision CSIT

Following in the footsteps of [13], let us define G as a set of random variables that satisfy the
bounded density assumption of [13] (replicated as Definition 3 in Section 5.1.1 of this paper).
Elements of G may be viewed as random perturbation factors that are introduced into the model
primarily to limit CSIT to finite precision, thus their realizations are assumed to be known perfectly
to the receivers but not to the transmitters. Formally,

I(W1,W2, θ1, θ2,X1,X2;G) = 0. (3)

Specifically, the channel coefficients Gij(t) are distinct elements of G for all t ∈ [n], i = 1, 2.

2.5 Perfect CSIT

While our focus in this work is primarily on finite precision CSIT, as a useful point of reference
let us also introduce the perfect CSIT assumption, which implies that the channel coefficients
Gij(t) are perfectly known not only to both receivers but to both transmitters as well. The
constraint (3) does not hold under perfect CSIT, and the coding functions may depend on the
channel realizations. Thus, X i = fi,n(Wi, θi,G), i = 1, 2 for the ZIC under perfect CSIT, and
(X1,X2) = f0,n(W1,W2, θ1, θ2,G) for the ZBC under perfect CSIT.

2.6 Achievable Rates under Secrecy Constraint

A rate tuple (R1, R2) is achievable subject to the secrecy constraint if, for all ǫ > 0, there exist n-
length codes for some n > 0 such that (i) the size of each message set |Wi| ≥ 2nRi ; (ii) the decoding
error probabilities at both users are no larger than ǫ; and (iii) the following secrecy constraint is
satisfied

1

n
I(Wj ;Y i | G) ≤ ǫ ∀i, j ∈ {1, 2}, i 6= j. (4)

The secure capacity region CP is the closure of the set of all achievable secure rate tuples.

2.7 Secure GDoF Region

The secure GDoF region D is defined as

D ,

{

(d1, d2)

∣
∣
∣
∣
∣

∀i ∈ {1, 2}
∃(R1(P ), R2(P )) ∈ CP , di = lim

P→∞

Ri(P )
1
2 logP

}

. (5)

We will use subscripts to distinguish ZIC from ZBC, and superscripts to distinguish finite precision
CSIT from perfect CSIT, so for example, Df.p.

IC symbolizes the GDoF region for the ZIC under finite
precision CSIT, and Dp

BC is the GDoF region for the ZBC under perfect CSIT.
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3 Results

In order to answer our titular question about the robustness of structured codes, we will compare
the GDoF region of the ZIC under perfect CSIT with the GDoF region of the ZIC under finite
precision CSIT, i.e., Dp

IC versus Df.p.
IC . These are characterized below in Lemma 1 and Theorem 1,

respectively.

3.1 Secure GDoF of the ZIC with Perfect CSIT

Lemma 1. The secure GDoF region of the ZIC under perfect CSIT is characterized as

Dp
IC =






(d1, d2) ∈ R2

+

∣
∣
∣
∣
∣
∣

d1 ≤ α
d2 ≤ min{1, (1 + α− β)+}
d1 + d2 ≤ α+ (1− β)+






. (6)

While a direct statement of Lemma 1 does not appear in prior literature to our knowledge, the
lemma essentially follows from known results and arguments. For the sake of completeness, these
arguments are summarized in Appendix A.

3.2 Secure GDoF of the ZIC with Finite Precision CSIT

Theorem 1. The secure GDoF region of the ZIC under finite precision CSIT is characterized as,

1. Regime 1: 1 < β < α

Df.p.
IC =

{

(d1, d2) ∈ R2
+

∣
∣
∣
∣

d2 ≤ 1,
d1 + βd2 ≤ α

}

. (7)

2. Regime 2: 1 < β and β − 1 < α ≤ β

Df.p.
IC =

{

(d1, d2) ∈ R2
+

∣
∣
∣
∣

d1
α

+
d2

1 + α− β
≤ 1

}

. (8)

3. Regime 3: 1 < β and α ≤ β − 1

Df.p.
IC =

{
(d1, d2) ∈ R2

+

∣
∣ d1 ≤ α, d2 = 0

}
. (9)

4. Regime 4: 0 ≤ β ≤ 1

Df.p.
IC =

{

(d1, d2) ∈ R2
+

∣
∣
∣
∣

d1 ≤ α, d2 ≤ 1
d1 + d2 ≤ 1 + α− β

}

. (10)

The proof of Theorem 1 appears in Section 4 and 5. The main contribution of this work is the
proof of Theorem 1 for Regimes 1 and 2. Indeed, Regime 3 is trivial and Regime 4 already follows
from [53]. The converse proofs for Regimes 1 and 2 rely on various sum-set inequalities of [35], and
are central to the thesis of this work, that the benefits of structured jamming are not robust to
finite precision CSIT in the GDoF sense.

8
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Figure 4: The parameter regimes corresponding to the four cases in Theorem 1.

3.3 How Robust are Structured Codes?

With the help of Lemma 1 and Theorem 1, we are ready to explore the robustness of the GDoF
gains from structured codes through the following observations.

1. There are 4 parameter regimes identified in Theorem 1. These regimes are shown in Figure 4.
Our first observation is that in regimes 3 and 4, we have Dp

IC = Df.p.
IC , i.e., there is no loss of

GDoF from limiting CSIT to finite precision. However, this is not because structured codes
are robust to finite precision CSIT. Upon inspection of the achievable scheme, it is evident that
these are the regimes where structured codes are not needed even with perfect CSIT. In Regime
3 we only need to switch off Transmitter 2, thus allowing User 1 to achieve α GDoF. It is not
possible for User 2 to achieve any positive GDoF value in Regime 3 without violating the secrecy
constraint because the signal from Transmitter 2 appears at Receiver 1 with so much strength
(β ≥ α+1), that even if Transmitter 1 uses all its power to only transmit noise, thus maximally
elevating the noise floor at Receiver 1, the interfering signal that appears above the noise floor
at Receiver 1 still reveals everything that is visible to Receiver 2. In Regime 4 (see [53]) all
we need is for Transmitter 1 to transmit enough noise (jamming) to elevate the noise floor at
Receiver 1 to the level of the interfering signal, and then send its desired message above the new
noise floor. The jamming guarantees security, and the desired signal is decoded by Receiver 1
simply by treating everything else as noise. Thus, there is no need for structured codes to allow
alignment or aggregate decoding of signals.

2. In regimes 1 and 2 a gap appears between Dp
IC and Df.p.

IC . Indeed, these regimes are central to
this work, as they reveal the fragility of structured codes. First let us consider Regime 1. The
GDoF regions, Dp

IC and Df.p.
IC for this regime are illustrated in Figure 5(a). Let d∗2 denote the

maximal value of d2. According to Figure 5(a), d∗2 = 1. Conditioned on d2 = d∗2, let d
∗∗
1 denote

the maximum value of d1. We note that under perfect CSIT we have (d∗∗1 , d∗2) = (α − 1, 1) but
under finite precision CSIT we only have (d∗∗1 , d∗2) = (α − β, 1). This loss of GDoF reveals the
fragility of aggregate decoding of structured codes. For an intuitive explanation, consider Figure
5(b) which shows how (d∗∗1 , d∗2) = (α− 1, 1) is achieved under perfect CSIT, by lattice alignment
between the dotted portions of signals seen at Receiver 1. This lattice alignment ensures the
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and cancellation of lattice-aligned signals (blue and red dotted portions) is required, which is only possible
under perfect CSIT. Signal levels shown in plain white are empty.

O
d1

d2

1 + α− β

α

α

β − 1

(a)

α

1

β

X1 Y 1

X2 Y 2

α

β − 1

β
α

1 + α− β

β − 1

β

1

(b)

Figure 6: (a) Dp
IC (in red) and Df.p.

IC (in grey) are shown for Regime 2 (where 1 < β and β−1 < α ≤ β). (b)
The achievability of (d∗∗1 , d∗2) = (β − 1, 1+α− β) under perfect CSIT is illustrated. In particular, aggregate
decoding of lattice-aligned signals (blue and red dotted portions) is required, which is only possible under
perfect CSIT. Signal levels shown in plain white are empty.

secrecy of W2 from Receiver 1, while simultaneously allowing Receiver 1 to decode the sum of
lattice points as a valid codeword. Indeed, while the top α − β GDoF (shown in light red) of
desired message can be decoded by Receiver 1 without any need for alignment, it is the aggregate
decoding of aligned signals that allows Receiver 1 to decode the additional bottom β − 1 GDoF
(shown in dark red) of desired message, thus achieving a total of d∗∗1 = (α−β)+ (β− 1) = α− 1
GDoF. Intuitively, under finite precision CSIT, aggregate decoding and cancellation are not
possible, thus Receiver 1 is only able to decode the top α − β GDoF of desired message, i.e.,
d∗∗1 = α − β. The main technical challenge in this work is to prove this intuition, i.e., to show
that aggregate decoding or any other structured jamming scheme that even partially retains
the GDoF benefits of aggregate decoding and cancellation, is not possible under finite precision
CSIT.

3. Now let us consider Regime 2, for which the GDoF regions Dp
IC and Df.p.

IC are illustrated in Figure
6(a). In this case the loss of GDoF is even more severe as we have (d∗∗1 , d∗2) = (β − 1, 1 + α− β)

10
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1

21

2

(2, 1, 1)
(1, 2, 1)

α

β

d∗∗1

O
1

21

2

(2, 1, 1)

(2, 2, 1)

(1, 2, 1)

Figure 7: d∗∗1 under finite precision CSIT (blue) and perfect CSIT (red) in the parameter regimes 1, 2, 3.
Regime 4 is omitted. Peak vertices are labeled as (α, β, d∗∗

1
) tuples.

under perfect CSIT, and only (d∗∗1 , d∗2) = (0, 1 + α− β) under finite precision CSIT. The loss of
GDoF is once again attributable to the fragility of aggregate decoding, as illustrated in Figure
6(b). Aggregate decoding and cancellation of lattice-aligned signals allows Receiver 1 to decode
the bottom β − 1 GDoF of desired message under perfect CSIT, thus achieving d∗∗1 = β − 1.
Intuitively, under finite precision CSIT, Receiver 1 is no longer able to decode the aggregate
signal, indeed d∗∗1 = 0. Once again, the challenge is to formalize and prove this intuition, for
which we will rely on sum-set inequalities of [35].

4. The loss of GDoF in terms of d∗∗1 values is illustrated for the entirety of Regimes 1, 2, 3 in Figure
7. As noted, there is no loss in Regime 3, and Regime 4 is omitted to avoid clutter. Regime 2
is particularly striking because d∗∗1 = 0 under finite precision CSIT. The discontinuity between
Regime 2 and Regime 3 is interesting, because it shows the tremendous cost for securing W2

that is incurred in Regime 2 where d∗2 > 0. Note that this cost disappears in Regime 3 where
d∗2 = 0.

5. While the previous observations emphasized the loss of GDoF, let us now provide a counterpoint
to show that the loss is bounded. As another measure of the loss of GDoF, consider an arbitrary
weighted sum of GDoF values, say d(w1, w2) = w1d1+w2d2. Let us denote the maximal value of

d(w1, w2) for the ZIC under finite precision CSIT as df.p.IC (w1, w2) = max
(d1,d2)∈D

f.p.
IC

w1d1+w2d2.

Similarly, for perfect CSIT we have dpIC(w1, w2) = max(d1,d2)∈Dp
IC
w1d1+w2d2. Based on Lemma

1 and Theorem 1, it is not difficult to verify that the extremal value,

inf
(α,β)∈R+

2

inf
(w1,w2)∈R

+
2

df.p.IC (w1, w2)

dpIC(w1, w2)
=

1

2
. (11)

In other words, looking out from the origin, the GDoF region Df.p.
IC is at least half as large in

every direction as the GDoF region Dp
IC. It is also easy to see that the bound is asymptotically

tight because, e.g., in Figure 5(a), if we let β → α from below and α → ∞, then Dp
IC approaches

an almost-rectangular shape (with vertices (0, 0), (α, 0), (α − 1, 1), (0, 1)) and Df.p.
IC approaches

the lower left half triangle created by a diagonal-wise partitioning of the rectangle (with vertices
(0, 0), (α, 0), (0, 1)). Looking out along the other diagonal (the ray that passes through the origin

and (α − 1, 1)) we note that Df.p.
IC is (asymptotically) only half as large as Dp

IC. Note that this
corresponds to (w1, w2) = (α− 1, 1).
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3.4 Secure GDoF of the ZBC with Perfect and Finite Precision CSIT

The ZBC setting is less of our focus because even under perfect CSIT, the ZBC does not require
lattice codes or aggregate decoding and cancellation of jammed signals for secure communication.
Instead, it achieves secure communication through zero-forcing, which is conceptually much more
straightforward. Nevertheless, it is also not robust under channel uncertainty. Moreover, the loss
of GDoF in the ZBC under finite precision CSIT is also implied, as a byproduct of our analysis of
the ZIC. This is because, remarkably, our converse proofs for Regimes 1, 2 in Theorem 1 hold even
if we allow full cooperation among transmitters. Therefore, as our final result let us present the
GDoF characterization of the ZBC under both perfect and finite precision CSIT.

Theorem 2. The secure GDoF region of the ZBC under perfect CSIT, Dp
BC and under finite

precision CSIT, Df.p.
BC , are characterized as

Dp
BC =

{
(d1, d2, ) ∈ R2

+

∣
∣d1 ≤ max{α, β − 1}, d2 ≤ (1− (β − α)+)+

}
, (12)

Df.p.
BC =

{{
(d1, d2) ∈ R2

+

∣
∣d1 ≤ β − 1, d2 = 0

}
if 1 < β and α ≤ β − 1,

Df.p.
IC otherwise.

(13)

The proof of Theorem 2 is presented in Appendix B.

4 Proof of Theorem 1: Achievability

As noted previously, Regime 3 in Theorem 1 is trivial and Regime 4 already follows from [53]. Thus
we only need the proof for Regimes 1 and 2. In this section we provide the proof of achievability
which is quite straightforward.

For Regimes 1 and 2 it suffices to find schemes for the respective corner points and complete the
regions by time-sharing. The tuple (d1, d2) = (α, 0) is one of the corner points for both cases, and is
trivial. For Regime 1 it remains to find an achievable scheme for the other corner point, (α−β, 1).
This is easily seen by modifying the scheme of Figure 5(b), such that Transmitter 1 sends his desired
message only in the top α− β levels, i.e., and only a jamming signal (Gaussian noise) below that.
Thus the noise floor at Receiver 1 is elevated to strength β, i.e., as high as the interfering signal,
which guarantees security. Meanwhile, we let Transmitter 2 transmit at full power. This creates
a point-to-point channel for Transmitter 1 where the desired link to Receiver 1 has α − β GDoF,
and creates a wiretap channel for Transmitter 2 where the desired link to Receiver 2 has 1 GDoF
and the eavesdropper link to Receiver 1 has 0 GDoF. Employing a Gaussian codebook in the first
point-to-point channel and a wiretap codebook in the second, we achieve α− β SGDoF for User 1
and 1 SGDoF for User 2.

For Regime 2 the other corner point is (0, 1−α+ β). This is also easily achieved by modifying
the scheme of Figure 6(b), such that Transmitter 1 sends only a jamming signal (Gaussian noise)
with its full power. This raises the noise floor at Receiver 1 to power level α. As in Figure 6(b),
we reduce the transmit power at Transmitter 2 so that the top β −α levels are empty, i.e., instead
of the unit power constraint, Transmitter 2 only transmits with power P−(β−α). This creates a
wiretap channel for Transmitter 2, where the desired link to Receiver 2 has 1 + α − β GDoF, and
the eavesdropper link to Receiver 1 has 0 GDoF. A wiretap codebook achieves 1 + α − β SGDoF
for User 2 and 0 for User 1.

12



5 Proof of Theorem 1: Converse

The single user bound, d2 ≤ 1, in Regime 1 is trivial. Before presenting the proof of the weighted
sum bounds, as preliminary background we need to introduce some definitions, sum-set inequalities,
and a deterministic model, all of which originate in prior works on Aligned Images bounds.

5.1 Preliminaries from Prior Work

The following definitions are inherited from [13,35].

5.1.1 Definitions

Definition 1 (Power levels). For λ, P > 0, define P̄ λ ,

⌊√
P

λ
⌋

, and a set Xλ as

Xλ =
{

0, 1, 2, · · · , P̄ λ − 1
}

, (14)

We refer to P as power, and λ as power level of X ∈ Xλ. For simplicity, we denote P̄ 1 = P̄ .

Definition 2. For non-negative real numbers X, λ1 and λ2, where λ2 ≥ λ1 ≥ 0, we define a
sub-section of X corresponding to interval (λ1, λ2), (X)λ2

λ1
, as

(X)λ2

λ1
,





X − P̄ λ2

⌊
X
P̄λ2

⌋

P̄ λ1




 . (15)

We say that the (X)λ2

λ1
is a section of X that sits at level λ1, denoted as ℓ

(

(X)λ2

λ1

)

= λ1, and has

height λ2 − λ1, denoted as T
(

(X)λ2

λ1

)

= λ2 − λ1. Sub-sections (X)λ2

λ1
and (X)

λ′
2

λ′
1

of X ∈ Xλ are

disjoint if intervals (λ1, λ2) and (λ′
1, λ

′
2) are disjoint.

Figure 8 illustrates this partitioning of X into various sub-sections. Similarly, for a set of
non-negative real numbers X = {X(t) : t ∈ [n]}, we define a sub-section (X)λ2

λ1
as

(X)λ2

λ1
, {(X(t))λ2

λ1
: t ∈ [n]}. (16)

Note that the same partitioning is applied to every element in the set. Levels and heights are

similarly defined; i.e., ℓ
(

(X)λ2

λ1

)

= λ1, and T
(

(X)λ2

λ1

)

= λ2 − λ1. Sub-section sets (X)λ2

λ1
and

(X)
λ′
2

λ′
1

are disjoint if intervals (λ1, λ2) and (λ′
1, λ

′
2) are disjoint.

For X ∈ Xλ and λ ≥ λ2 ≥ λ1 ≥ 0, sub-section (X)λ2

λ1
can be loosely interpreted in terms of the

P̄ -ary expansion of X. The P̄ -ary expansion of X is represented as X = xλxλ−1 · · · x2x1, which is
equivalent to a string of length λ in which each symbol xi ∈ {0, 1, · · · , P̄ − 1}. In this sense, what
(X)λ2

λ1
retrieves from X is a sub-string xλ2

xλ2−1 · · · xλ1+1 in the middle of X. A case that appears

frequently in this work is λ2 = λ and λ1 = λ− µ. The corresponding sub-section (X)λλ−µ, denoted
as (X)µ and referred to as top-µ sub-section of X, retrieves from X the leftmost length-µ sub-string
xλxλ−1 · · · xλ−µ+1 comprised of the first µ most significant symbols in X. Similar to (16), for a set
of non-negative real numbers X with each element in Xλ, we define (X)µ = {(X)µ : X ∈ X}.

While this interpretation is helpful, the coarse understanding is an oversimplification, as indeed
all λ, λ1 and λ2 can take arbitrary non-negative real values. Such partitioning is essentially a
generalization of the original symbol partitioning with binary representations that appeared in the
ADT model in [47]. The generalization is needed because of our focus on finite precision CSIT.
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λ

µ

λ1

λ2

λ3

X

A1

A2

A3

Figure 8: An illustration of Definition 2. Sub-section A1 = (X)λλ−µ has level ℓ(A1) = λ − µ and height

T (A1) = µ. Sub-section A2 = (X)λ2

λ1
has level ℓ(A2) = λ1 and height T (A2) = λ2 − λ1. Sub-section

A3 = (X)λ3

0
has level ℓ(A3) = 0 and height T (A3) = λ3. Note that A1 and A3 are disjoint when λ−µ ≥ λ3.

Definition 3 (Bounded density assumption). We define G as a set of real-valued random variables
that satisfies the following conditions (collectively referred to as the bounded density assumption),

1. The magnitudes of all random variables in G are bounded away from infinity and zero; i.e.,
there exists a constant ∆ > 1 such that |g| ∈

(
1
∆ ,∆

)
for all g ∈ G.

2. There exists a finite constant fmax > 0, such that for all finite disjoint subsets G1, G2 of G, the
joint probability density function of the random variables in G1, conditioned on the random

variables in G2, exists and is bounded above by f
|G1|
max.

Definition 4 (Finite-precision linear combination). For X1 ∈ Xη1 and X2 ∈ Xη2 , define X1 ⊞G X2

as

X1 ⊞G X2 , ⌊G1X1⌋+ ⌊G2X2⌋ , (17)

where Gi are distinct random variables in G satisfying the bounded density assumption. For two
sets of random variables of the same cardinality, X1 = {X1(t) ∈ Xη1 : t ∈ [n]} and X2 = {X2(t) ∈
Xη2 : t ∈ [n]} , we define X1 ⊞G X2 as

X1 ⊞G X2 , {⌊G1(t)X1(t)⌋+ ⌊G2(t)X2(t)⌋ : t ∈ [n]} , (18)

where Gi(t) are distinct random variables in G satisfying the bounded density assumption. The
subscript G of operator ⊞ may be omitted if no ambiguity arises.

5.1.2 Key Sumset Inequalities

Our proof leans heavily on the sum-set inequalities based on Aligned Image sets from [35, Theorem
4]. While [35] presents these sum-set inequalities in generalized forms, the following simplified
forms of those inequalities, taken from [34, Lemma 1], will be useful for our purpose.

Lemma 2. Let µ, ν > 0, T (t) ∈ Xµ, U(t) ∈ Xν for t ∈ [n], and T = {T (t) : t ∈ [n]},U = {U(t) :
t ∈ [n]}. Let ST and SU be sets of finitely many disjoint sub-sections respectively of T and U , and
let {A1,A2, · · · ,AM} be a subset of ST ∪ SU . Let V = T ⊞G U . Then

HG (V |W) ≥ HG (A1,A2, · · · ,AM |W) + no(log P̄ ), (19)

where W is a set of random variables satisfying I(W,T ,U ;G) = 0, and the following constraints
on the levels and heights of Ai hold for i = 2, 3, · · · ,M :

ℓ(Ai) ≥ T (A1) + T (A2) + · · ·+ T (Ai−1). (20)
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A2
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A4
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V = T ⊞ U

µ
ν

Figure 9: An illustration of the box-stacking interpretation of Lemma 2. The bounds HG(V |W) ≥
HG(A1, A2, A4, A5|W) and HG(V |W) ≥ HG(A1, A5, A6|W) are implied by Lemma 2 in the GDoF sense
because the boxes appearing in these inequalities can be stacked without elevating any of them above their
original levels in T or U , as illustrated in the two stacks marked with a ". On the other hand, Lemma 2
implies neither the bound HG(V |W) ≥ HG(A2, A3, A6|W) nor HG(V |W) ≥ HG(A4, A6|W), because there is
no way to stack the boxes appearing in these inequalities without elevating some of them above their original
level in T or U , as shown in the two stacks marked with %.

Constraint (20) in Lemma 2 has the following box-stacking interpretation. Let’s consider the
tth channel use only and drop the index for simplicity. We can imagine these random variable
sub-sections as boxes with labels A1, A2, · · · , AM ; box Ai has height T (Ai) and originally sits
on level ℓ(Ai) in either T or U . Then we stack the boxes in the index order of A1, A2, · · · , AM

from the ground. Now in this stack box Ai sits above boxes A1, A2, · · · , Ai−1, therefore it sits
at level ℓ̃(Ai) = T (A1) + T (A2) + · · · + T (Ai−1). Constraint (20) says that the new level ℓ̃(Ai)
cannot be higher than the level at which box Ai originally sits in T or U , which is ℓ(Ai). In other
words, constraint (20) is satisfied if, during retrieving these boxes in T or U and stacking them up
from ground, there is no need to elevate any of them above their original level. Note that while
constraints (20) seem to fix the stacking order according to the indices of the sub-sections, on the
right-hand-side of (19) the entropy of the sub-sections does not depend on the index ordering. So
one can arbitrarily rearrange the indices of the sub-sections and test the constraints in (20) with
the the permuted ordering. In other words, if there exists a stacking order of these boxes with no
need to lift up any of them during stacking, then the sum-set inequality (19) holds. Figure 9 and
10 illustrate some ways to stack the boxes (sub-sections) which satisfy or violate constraints (20).

5.1.3 Deterministic Model

To facilitate the use of Aligned Images bounds, we define a deterministic model as in [13]. In this
deterministic model, the inputs are

A(t) =
⌊
P̄αX1(t)

⌋
mod P̄α, (21)

B(t) =
⌊

P̄max{1,β}X2(t)
⌋

mod P̄max{1,β}, (22)

and the outputs are

Y 1(t) = ⌊G11(t)A(t)⌋+
⌊

G12(t)P̄
−(1−β)+B(t)

⌋

, (23)

Y 2(t) =
⌊

G22(t)P̄
−(β−1)+B(t)

⌋

. (24)

15



Note that A(t) ∈ Xα and B(t) ∈ Xmax{1,β}. Let A = {A(t) : t ∈ [n]}, and B = {B(t) : t ∈ [n]},
and Y i = {Y i(t) : t ∈ [n]} for i = 1, 2. It can be shown that the GDoF of the Gaussian model are
bounded above by the GDoF of the deterministic model, accounting for both decoding and secrecy
constraints, as described by the following lemma.

Lemma 3.

IG(Wi;Y i) ≤ IG(Wi;Y i) + no(log P ) ∀i = 1, 2, (25)

IG(Wj ;Y i) ≤ IG(Wj ;Y i) + no(logP ) ∀i, j = 1, 2, i 6= j. (26)

The proof of Lemma 3 is identical to that of Lemma 5.1 in [53].

5.2 Useful Lemmas

With the preliminaries in place, we now proceed to the task of proving the converse for Theorem
1, starting with the following lemmas. The first lemma is a straightforward consequence of the
secrecy constraint (26).

Lemma 4. Let µ = (β − α)+ and µ = (α− β)+. Then we have,

IG(W2;Y 1,W1) = no(log P̄ ), (27)

IG(Y 1;W2|W1, (A)µ, (B)µ) = no(log P̄ ), (28)

IG(W2;W1, (A)µ, (B)µ) = no(log P̄ ). (29)

Proof.

IG(W2;Y 1,W1) = IG(W2;Y 1) + IG(W2;W1|Y 1) (30)

≤ IG(W2;Y 1) +HG(W1|Y 1) (31)

≤ IG(W2;Y 1) +HG(W1|Y 1) + no(log P̄ ) (32)

= no(log P̄ ). (33)

We apply the chain rule to get (30), and the definition of mutual information to obtain (31). Next,
we obtain (32) by applying (25) and (26). Finally, we apply the secrecy constraint (4) and Fano’s
inequality to obtain (33).

To show equality (28) and (29), we note that from Y 1 one can obtain (A)µ and (B)µ, and then
apply the chain rule; more specifically,

no(log P̄ ) = IG(W2;Y 1,W1) (34)

= IG(W2;Y 1,W1, (A)µ, (B)µ) (35)

= IG(W2;W1, (A)µ, (B)µ) + IG(W2;Y 1|W1, (A)µ, (B)µ). (36)

Equality (28) and (29) thus hold as mutual information is non-negative.

The following lemma bounds from above the entropy difference, in the GDoF sense, of finite-
precision linear combinations of random variables in terms of their power levels. It is adapted from
Lemma 1 of [28] and hence its proof is omitted.
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Lemma 5. Let µ = maxi=1,2{µi} and ν = maxi=1,2{νi}, where µi, νi > 0, i = 1, 2. Let T (t) ∈ Xν

and U(t) ∈ Xµ for t ∈ [n]; T = {T (t) : t ∈ [n]} and U = {U(t) : t ∈ [n]}. Let V i =
(T )µi ⊞Gi (U )νi, where i = 1, 2, and G = G1∪G2 is a set of random variables satisfying the bounded
density assumption. Then

HG(V 1|W)−HG(V 2|W) ≤ max{µ1 − µ2, ν1 − ν2}+ logP + no(log P̄ ), (37)

where W is a set of random variables satisfying I(W,T ,U ;G) = 0.

An important issue that arises in applications of Aligned Images bounds is that of translating
between ‘linear combinations of sub-sections’ on one hand, and ‘sub-sections of linear combinations’
on the other. Sum-set inequalities are formulated in [35] in terms of linear combinations of various
sub-sections of input signals, but converse arguments often involve sub-sections of output signals,
i.e., sub-sections of linear combinations of input signals. Understanding the extent to which these
two notions can be related remains an open problem in general [50]. For our present purpose,
however, because we only need the ‘top’ sub-sections, such a relationship is obtained in the following
lemma.

Lemma 6. Let λ, µ, ν be real numbers satisfying λ ≥ µ > 0 and ν ≥ 0. Let T ∈ Xν+λ and
U ∈ Xν+µ. Then

HG((T ⊞ U)λ) = HG((T )
λ ⊞ (U)µ) +O(1), (38)

where G is a set of random variables satisfying the bounded density assumption.

The proof of Lemma 6 is relegated to Appendix C.
The next lemma provides an important lower bound on the entropy of a finite-precision linear

combination of random variables based on Lemma 2 and the submodularity of entropy.

Lemma 7. Let P, µ, ν ≥ 0, and let p, q > 0 satisfy 1
2 ≤ p

q ≤ 1 and p
q ∈ Q. Let T (t) ∈ Xq+µ and

U(t) ∈ Xq+ν for t ∈ [n]; T = {T (t) : t ∈ [n]} and U = {U(t) : t ∈ [n]}. Let V = T ⊞G U , where G
is a set of random variables satisfying the bounded density assumption. Then

2pHG(V |W, (T )µ, (U )ν) ≥ qHG((T )p+µ, (U )p+ν |W, (T )µ, (U )ν) + no(log P̄ ), (39)

where W is a set of random variables satisfying I(W,T ,U ;G) = 0.

Proof. Since p
q ∈ Q, there exists ℓ ∈ R and p̃, q̃ ∈ N, such that p = p̃ℓ and q = q̃ℓ. For all t ∈ [n],

define sub-sections of T (t) and U(t) as

Ai(t) =

{

(T (t))
q−(i−1)ℓ
q−iℓ if 1 ≤ i ≤ p̃

(U(t))
q−(i−p̃−1)ℓ
q−(i−p̃)ℓ if p̃+ 1 ≤ i ≤ 2p̃

, (40)

and Ai = {Ai(t) : t ∈ [n]} for i ∈ [2p̃]. Then by Lemma 2, for i ∈ [2p̃] the following holds:

HG(V |W, (T )µ, (U )ν) ≥ HG(Ai,Ai+1, · · · ,Ai+q−1|W, (T )µ, (U )ν) + no(log P̄ ), (41)

where we implicitly use modulo-2p̃ arithmetic in the indices; e.g., i0 = i2p̃. Lemma 2 is applied
in the following way. After removing top-µ sub-section of T and top-ν sub-section of U , we take
the top-p sub-section of the remaining T and U , and evenly slice them into p̃ boxes, each of which
has height ℓ. The boxes in T are then indexed from top to bottom with 1 to p̃, and those in U

are indexed likewise with p̃ + 1 to 2p̃. Conditioned on the top-µ sub-section of T and the top-ν
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Figure 10: An illustration of how the sum-set inequality in Lemma 2 is applied to the proof of Lemma 7. In
this case, µ = ν = 0, p = 2, and q = 3, which implies that ℓ = 1, p̃ = 2 and q̃ = 3. The left most consecutive
bars shows V = T ⊞GU and some sub-sections of T and U taken by (40). The right four bars list all possible
sub-section index sets obtained by a circular sliding window of size q = 3. Seeing that all sub-sections in each
index set satisfy the box-stacking interpretation (All boxes can be stacked without elevating any above their
original levels), Lemma 2 implies that HG(V |W) ≥ HG(AI |W), where I is one of the sub-section index sets,
and AI = {Ai : i ∈ I}. Summing up these inequalities and applying the submodularity of entropy, one can
obtain (39).

sub-section of U , Lemma 2 implies that the entropy of T ⊞G U is no less than the joint entropy of
the boxes whose indices are within a circular sliding window of size q̃. This can be verified with the
box-stacking interpretation of Lemma 2. See Figure 10 for an illustration of the procedure above.

Adding up (41) for all i ∈ [2p̃], we have

2pHG(V |W, (T )µ, (U )ν)

= ℓ2p̃HG(V |W, (T )µ, (U )ν) (42)

≥ ℓ

2p̃
∑

i=1

HG(Ai,Ai+1, · · · ,Ai+q̃−1|W, (T )µ, (U )ν) + no(log P̄ ) (43)

≥ ℓq̃HG(A1,A2, · · · ,A2p̃|W, (T )µ, (U )ν) + no(log P̄ ) (44)

≥ qHG((T )p+µ, (U )p+ν |W, (T )µ, (U )ν) + no(log P̄ ). (45)

Step (42) holds since p = p̃ℓ. Step (44) follows from the sub-modularity 6 of entropy, and (45) holds
because q = q̃ℓ, and one can recover (T )µ+p and (U )ν+p from {Ai : i ∈ [2p̃]}, (T )µ, (U )ν , and G
within bounded distortion.

5.3 The Weighted-Sum Bounds in Regime 1 and 2

We break down the proof into the following three lemmas. Throughout this section, we define
µ = β − α, µ = (µ)+, µ = (−µ)+, and W = {W1, (A)µ, (B)µ}. Note that in both Regime 1 and 2,
we have µ ≤ 1.

6Let {X1, X2 · · · , Xn} be a set of random variables, then for 1 ≤ k ≤ n, the submodularity of entropy implies:

n
∑

i=1

H(Xi, Xi+1, · · · , Xi+k−1) ≥ kH(X1, X2, · · · , Xn), (46)

where modulo-n arithmetic is implicitly used in the inidices, e.g., i0 = in.
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Lemma 8. For λ ≥ 1− µ and µ ≤ 1, we have

HG((Y 1)
λ|W) ≥ nR2 +HG((Y 1)

λ−(1−µ)|W) + no(log P̄ ). (47)

Proof.

HG((Y 1)
λ|W) = HG((A)λ−µ ⊞ (B)λ−µ|W) + no(log P̄ ) (48)

≥ HG((A)λ−1 ⊞ (B)λ−µ|W) + no(log P̄ ) (49)

= HG(W2|W) +HG((A)λ−1 ⊞ (B)λ−µ)|W,W2)

−HG(W2|W, (A)λ−1 ⊞ (B)λ−µ) + no(log P̄ ) (50)

= H(W2) +HG((A)λ−1 ⊞ (B)λ−µ|W,W2) + no(log P̄ ) (51)

≥ nR2 +HG((A)λ−1 ⊞ (B)λ−1+µ|W,W2) + no(log P̄ ) (52)

= nR2 +HG((Y 1)
λ−(1−µ)|W,W2) + no(log P̄ ) (53)

= nR2 +HG((Y 1)
λ−(1−µ)|W) + no(log P̄ ). (54)

First, equality (48) holds because by Lemma 6 one can recover (A)λ−µ⊞(B)λ−µ from (Y 1)
λ within

bounded distortion. Then we apply Lemma 5 to obtain (49), and apply the chain rule to obtain
(50). Equality (51) holds for the following reasons: (a) equality (29) implies the first entropy term;
(b) the last entropy term is of no(log P̄ ) is because, from (A)µ and (A)λ−1 ⊞ (B)λ−µ, by Lemma
6 one can recover (B)1 within bounded distortion, which one can decode for W2. Then we apply
nR2 = H(W2) and Lemma 5 to obtain (52). Note that Lemma 5 is applicable because in Regimes
1 and 2, 1−µ = 1+α− β ≥ (α− β)+ = µ. Equality (53) holds because by Lemma 6, (Y 1)

λ−(1−µ)

can be recovered from (A)λ−1 ⊞ (B)λ−1+µ within bounded distortion. Finally, we arrive at (54)
due to (28).

In the next lemma, we show that the part of codeword A corresponding to the same power
levels as the part of B carrying W2 has entropy no less than H(W2) = nR2. Intuitively, this must
be so because W2 needs to be hidden from Receiver 1, and for this the ‘jamming signal’ must be
at least as big as W2.

Lemma 9.

HG((A)1−µ|W, (B)1) ≥ nR2 + no(log P̄ ). (55)

Proof.

HG((B)1|W) ≤ HG((Y 1)
1+µ|W) + no(log P̄ ) (56)

= HG((Y 1)
1+µ|W,W2) + no(log P̄ ) (57)

≤ HG((A)1−µ, (B)1|W,W2) + no(log P̄ ) (58)

= HG((B)1|W,W2) +HG((A)1−µ|W,W2, (B)1) + no(log P̄ ) (59)

≤ HG((B)1|W,W2) +HG((A)1−µ|W, (B)1) + no(log P̄ ). (60)

First, we apply Lemma 5 to obtain inequality (56). Note that (Y 1)
1+µ is well-defined because

β > 1 in Regime 1 and 2, and implies that max{α, β} > 1 + µ. Equality (57) holds due to (28).

Inequality (58) is true because µ = β−α < 1 in Regime 1 and 2, and (Y 1)
1+µ can be recovered by

Lemma 6 within bounded distortion from (A)1−µ ⊞ (B)1, which is a function of (A)1−µ and (B)1.
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Then we apply the chain rule to obtain (59), and apply the fact that conditioning reduces entropy
to obtain (60).

By swapping terms in (60), we have

HG((A)1−µ|W, (B)1) ≥ HG((B)1|W)−HG((B)1|W,W2) + no(log P̄ ) (61)

= IG((B)1;W2|W) + no(log P̄ ) (62)

= IG((B)1,W;W2)− I(W;W2) + no(log P̄ ) (63)

= IG((B)1,W;W2) + no(log P̄ ) (64)

≥ IG((B)1;W2) + no(log P̄ ) (65)

≥ IG(Y 2;W2) + no(log P̄ ) (66)

= nR2 + no(log P̄ ). (67)

We apply the definition of mutual information to obtain (62), the chain rule to obtain (63), and
(29) to obtain (64). Then we remove W to obtain (65). Finally, we apply data processing inequality
to obtain (66), and Fano’s inequality to obtain (67).

The third lemma is a lower bound for the entropy HG(Y 1|W).

Lemma 10. For µ ≤ 1, we have

HG(Y 1|W) ≥ min{β, α}
1− µ

nR2 + no(log P̄ ). (68)

Proof. Let min{β, α} = k(1−µ)+ γ, where k is a non-negative integer, and γ satisfies either γ = 0
or 1− µ < γ < 2(1 − µ) 7. As an intermediate result, we claim that

HG((Y 1)
γ+|µ||W) ≥ γ

1− µ
nR2 + no(log P̄ ). (69)

The inequality is trivial when γ = 0. If γ 6= 0, we can find a non-decreasing sequence {ri} with
ri ∈ Q and limi→∞ ri = γ, and a non-increasing sequence {mi} with mi ∈ Q and limi→∞mi = 1−µ.
8 Let N = min

{

i
∣
∣
∣
mi
ri

< 1
}

. Such N exists, because as i → ∞, we have ri → γ, mi → 1 − µ, and

1
2 < 1−µ

γ < 1.
For i ≥ N , we have

HG((Y 1)
γ+|µ||W) (70)

≥ HG((Y 1)
ri+|µ||W) + no(log P̄ ) (71)

=
1

2mi

(

2miHG((Y 1)
ri+|µ||W)

)

+ no(log P̄ ) (72)

≥ ri
2mi

HG((A)mi+µ, (B)mi+µ|W) + no(log P̄ ) (73)

7The existence of such k and γ can be shown as follows. In Regime 1, since β > 1, we can find k, γ, where either
γ = 0 or 1 < γ < 2, such that β = k+ γ. On the other hand, in Regime 2, since α > 1+α− β, we can find k, γ such
that α = k(1 + α− β) + γ with either γ = 0 or 1 + α− β < γ < 2(1 + α− β).

8Such a non-increasing sequence {mi} and a non-increasing sequence {ri} can be constructed by the decimal
representation of 1 − µ and γ, respectively. For example, let 0.µ1µ2 · · ·µi be the i−decimal of 1 − µ, where µj ∈
{0, 1, · · · , 9} for j ∈ [i]. We may let mi = 0.µ1µ2 · · ·µi + 10−i =

(⌊

(1− µ)× 10i
⌋

+ 1
)

× 10−i, which is a rational
number no less than 1 − µ. On the other hand, let 0.γ1γ2 · · · γi be the i−decimal of γ, where γj ∈ {0, 1, · · · , 9} for
j ∈ [i]. We may let ri = 0.γ1γ2 · · · γi =

⌊

γ × 10i
⌋

× 10−i, which is a rational number no greater than γ.
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≥ ri
2mi

HG((A)1−µ, (B)1|W) + no(log P̄ ) (74)

=
ri
2mi

(
HG((B)1|W) +HG((A)1−µ|W, (B)1)

)
+ no(log P̄ ) (75)

≥ ri
2mi

(
HG(W2|W) +HG((B)1|W,W2)−HG(W2|W, (B)1) + nR2

)
+ no(log P̄ ) (76)

≥ ri
mi

nR2 + no(log P̄ ). (77)

Inequality (71) holds because of Lemma 5 and the fact that ri ≤ γ. Then we multiply and divide
the entropy term by 2mi to get (72), and apply9 Lemma 7 to obtain (73). Inequality (74) holds
because of Lemma 5 and the fact that mi+µ ≥ 1−µ+µ = 1−µ, and mi +µ ≥ 1. Next we apply
the chain rule to get (75), and apply the chain rule and Lemma 9 to get (76). Equality (77) follows
from (76) due to the following reasons: (a) we apply (29) and nR2 = H(W2) to the first entropy
term; (b) the second entropy term is non-negative; and (c) W2 can be decoded from (B)1, which
makes the third entropy term no(log P̄ ). Since inequality (77) is valid for all i ≥ N , we have

HG((Y 1)
γ+|µ||W) ≥ lim

i→∞

ri
mi

nR2 + no(log P̄ ) =
γ

1− µ
nR2 + no(log P̄ ). (78)

Next, based on the intermediate result (69), we show the following lower bound.

HG(Y 1|W) ≥ knR2 +HG((Y 1)
|µ|+γ |W) + no(log P̄ ). (79)

This bound is reduced to (69) when k = 0 because of the following identity

max{β, α} = |µ|+min{β, α} = |µ|+ k(1− µ) + γ. (80)

On the other hand, when k ≥ 1, we apply Lemma 8 as follows.

HG(Y 1|W) ≥ nR2 +HG((Y 1)
max{β,α}−(1−µ)|W) + no(log P̄ ) (81)

≥ 2nR2 +HG((Y 1)
max{β,α}−2(1−µ)|W) + no(log P̄ ) (82)

≥ · · ·
≥ knR2 +HG((Y 1)

max{β,α}−k(1−µ)|W) + no(log P̄ ) (83)

= knR2 +HG((Y 1)
|µ|+γ |W) + no(log P̄ ). (84)

Lemma 8 can be applied to (81) – (83) because in both Regime 1 and 2, we have µ ≤ 1 and
max{α, β} − (k − 1)(1 − µ) ≥ 1− µ 10. Next we apply (80) to obtain (84).

Finally, we plug (69) into (79), and get

HG(Y 1|W) ≥ knR2 +
γ

1− µ
nR2 + no(log P̄ ) (85)

=
min{β, α}

1− µ
nR2 + no(log P̄ ), (86)

where equality (86) holds by applying the identity min{β, α} = k(1− µ) + γ.

9To apply Lemma 7, we define T = (A)ri+µ ∈ Xri+µ,U = (B)ri+µ ∈ Xri+µ, p = mi, and q = ri. This leads to

V = (A)ri+µ ⊞ (B)ri+µ, which by Lemma 6 can be recovered from (Y 1)
ri+|µ| within bounded distortion.

10This can be seen by the following. First by (80) we have max{α, β}− (k−1)(1−µ) = 1−µ+γ+ |µ| = 1+γ+µ.
In Regime 1, we have 1 + γ + µ ≥ 1 + µ = 1− µ, while in Regime 2, we have 1 + γ + µ ≥ 1 ≥ 1− µ.
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To finish the proof of the weighted-sum bound, we start by applying Fano’s inequality as follows.

nR1 ≤ IG(Y 1;W1) + no(log P̄ ) (87)

≤ IG(Y 1, (B)µ;W1) + no(log P̄ ) (88)

= IG(Y 1;W1|(B)µ) + IG((B)µ;W1) + no(log P̄ ) (89)

= IG(Y 1;W1|(B)µ) + IG((Y 2)
µ;W1) + no(log P̄ ) (90)

= IG(Y 1;W1|(B)µ) + no(log P̄ ) (91)

≤ HG(Y 1|(B)µ)−HG(Y 1|W) + no(log P̄ ) (92)

≤ αn log P̄ − min{β, α}
1− µ

nR2 + no(log P̄ ) (93)

Inequality (88) holds because adding (B)µ does not hurt the mutual information. Then we apply
the chain rule to get (89). Since µ ≤ 1 in Regime 1 and 2, (B)µ can be converted into (Y 2)

µ within
bounded distortion by Lemma 6, and as a result we have (90). Equality (91) holds due to (26) and
the secrecy constraint (4), and the fact that µ ≤ 1. Then seeing that {(B)µ} ⊂ W, inequality (92)
is obtained by applying the fact that conditioning reduces entropy. To obtain inequality (93), first
we apply the uniform bound to the first entropy in (92) as follows:

HG(Y 1|(B)µ) ≤ HG((Y 1)
α
0 ) ≤ αn log P + no(log P̄ ). (94)

And then we apply Lemma 10 to the second entropy in (92) . Note that Lemma 10 is applicable
since µ ≤ 1 in Regime 1 and 2.

Finally by applying the definition of GDoF, we get

d1 +
min{β, α}

1− µ
d2 = lim

P→∞

R1 +
min{β,α}

1−µ R2

1
2 log P

≤ α (95)

=⇒
{

d1 + βd2 ≤ α if α > β
d1
α + d2

1+α−β ≤ 1 if β − 1 < α ≤ β
. (96)

Inequalities (96) are the desired weighted-sum bounds for the respective Regime 1 and 2. Thus, we
complete the proof. �

6 Conclusion

Motivated by robustness concerns that are paramount in secure communications, in this work
we study the robust GDoF of secure communication over a 2 user Z interference channel. The
combination of security, robustness and GDoF optimality makes this problem uniquely challenging
relative to prior work, while the Z channel setting limits the number of parameters sufficiently to
allow a GDoF characterization for all parameter regimes. In the process we also explore the scope
of sum-set inequalities based on Aligned Images bounds that were recently introduced in [35], which
involve joint entropies of various sub-sections of input signals. We found that these new sum-set
inequalities, combined with sub-modularity properties of entropy, are sufficient to characterize the
robust secure GDoF region of a Z-interference channel (as well as a further generalization to the
corresponding broadcast channel setting). The result shows that the GDoF benefits of structured
jamming, e.g., aggregate decoding and cancellation of jammed signals, are entirely lost under
finite precision CSIT. The result reaffirms the hypothesis that random codes may be enough for
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approximate capacity characterizations under robust assumptions. Thus, while the fundamental
limits of structured codes under ideal assumptions remain both practically fragile and theoretically
intractable, there remains hope that continued advances in Aligned Images converse bounds may
eventually place within reach a robust network information theory of wireless networks, based on
the understanding of the fundamental limits of random codes.

A Proof of Lemma 1

In this section we present the proof of the SGDoF region Dp
IC . The converse bounds are available

from Lemma 8 of [26] (for single-user bound) and Lemma 2 of [43] (for the sum bound). The

converse bounds are tight in Regime 3 and 4 defined in Theorem 1, as Dp
IC = Df.p.

IC in these
regimes, and the schemes for finite precision CSIT also apply to the case with perfect CSIT. The
remaining part to be shown is the achievability of Dp

IC in Regime 1 and 2.
In the following presentation of the schemes, without loss of generality we work on the simplified

ZIC with all channel gains normalized to be 1; i.e.,

Y1(t) =
√
PαX1(t) +

√
P βX2(t) + Z1(t), (97)

Y2(t) =
√
PX2(t) + Z2(t), (98)

where t ∈ [n], Z1(t), Z2(t) ∼ N (0, 1) and X1(t),X2(t) are subject to unit input power constraint.
This can be done by normalizing the inputs and the outputs of the original model (1) and (2) with
the channel coefficients, which are known at both sides. Also we set the noise variances to unity
since they are inconsequential to the GDoF analysis.

A.1 The Achievability in Regime 1

The corner points of Dp
IC in Regime 1 are (d1, d2) = (α, 1) and (β − 1, 1). The former is trivial,

and time sharing achieves all tuples on the line segment between these two point. So we show the
tuple (β − 1, 1) is achievable with a scheme based on lattice alignment and aggregate decoding.

Let Q ,

⌊√
Pα−ǫ

⌋

, QJ ,

⌊√
Pα−1−ǫ

⌋

, and A = 8
√
P 2ǫ, where ǫ > 0. In the following we

suppress the channel-use index t for brevity. Define X1 = V11 + J1 + V12 and X2 = V2, where
V11, J1, V12, V2 are drawn respectively from the following sets (referred to as lattices):

V11 ∈ Γ11 , A
√
P−β ×

{

0,±Q,±2Q, · · · ,±
⌊√

P β−α−ǫ
⌋

Q
}

, (99)

J1 ∈ ΓJ , A
√
P−β ×

{

0,±QJ ,±2QJ , · · · ,±
(⌊

1
8

√
P 1−ǫ

⌋

− 1
)

QJ

}

, (100)

V12 ∈ Γ12 , A
√
P−β ×

{

0,±1,±2, · · · ,±
(⌊

1
4

√
Pα−1−2ǫ

⌋

− 1
)}

, (101)

V2 ∈ Γ2 , A
√
P−α ×

{

0,±QJ ,±2QJ , · · · ,±
(⌊

1
8

√
P 1−ǫ

⌋

− 1
)

QJ

}

. (102)

where for a real number ξ and a finite set of integers {x1, x2, · · · , xn}, we define their product
ξ × {x1, x2, · · · , xn} , {ξx1, ξx2, · · · , ξxn}. Note that such a choice of A,Q,QJ , along with the
lattices Γ11,ΓJ ,Γ12 and Γ2, satisfies the unit input power constraint.

Let V11, V12, J1 and V2 be independent and uniformly distributed in their respective lattices.
Message W1 is split into two parts, which are respectively encoded into V11 and V12, and message
W2 is encoded into V2, all with wiretap codebooks. The following rates are achievable under secrecy
constraints [18, Theorem 4]:

R1 ≥ I(Y1;V11, V12), (103)
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R2 ≥ I(Y2;V2)− I(Y1;V2|V11, V12). (104)

We follow the argument in [18,54] to bound these rates from below. First we bound I(Y1;V11, V12)
from below as follows.

I(Y1;V11, V12) (105)

= H(V11, V12)−H(V11, V12|Y1) (106)

≥ (log |Γ11|+ log |Γ12|)
(

1− Pr[V̂11 6= V11 or V̂12 6= V12]
)

− 1 (107)

=
(

log
(

2
⌊√

P β−α−ǫ
⌋

+ 1
)

+ log
(

2
⌊
1
4

√
Pα−1−2ǫ

⌋

− 1
))(

1− Pr[V̂11 6= V11 or V̂12 6= V12]
)

− 1

(108)

≥ (β − 1− 3ǫ) log P̄
(

1− Pr[V̂11 6= V11 or V̂12 6= V12]
)

− 3. (109)

In (107), V̂11 and V̂12 follow the nearest-neighbor decoding rule and are respectively defined as

V̂11 , arg min
V11∈Γ11

∣
∣
∣Y1 −

√
P βV11

∣
∣
∣ , (110)

V̂12 , arg min
V12∈Γ12

∣
∣
∣
∣
∣
Ỹ1 −AQJ

[

Ỹ1

AQJ

]

−
√
P βV12

∣
∣
∣
∣
∣
, (111)

where Ỹ1 , Y1 −
√
P βV̂11, and [x] rounds x to its nearest integer for all x ∈ R. Inequality (107)

holds due to Fano’s inequality and the fact that Vi1 is uniformly taken from Γ1i, where i = 1, 2.
Inequality (109) holds for P large enough because for x ≥ 2, we have

log(2 ⌊x⌋ − 1) ≥ log x. (112)

Next we follow steps similar to (106) – (109) to bound I(Y2;V2) from below as follows

I(Y2;V2) = H(V2)−H(V2|Y2) (113)

= (log |Γ2|)
(

1− Pr[V̂2 6= V2]
)

− 1 (114)

= log
(

2
⌊
1
8

√
P 1−ǫ

⌋

− 1
)(

1− Pr[V̂2 6= V2]
)

− 1 (115)

≥ (1− ǫ) log P̄
(

1− Pr[V̂2 6= V2]
)

− 4, (116)

where in (114) V̂2 is defined as

V̂2 , arg min
V2∈Γ2

∣
∣
∣Y2 −

√
PαV2

∣
∣
∣ , (117)

As for the negative term in (104), I(Y1;V2|V11, V12), it is bounded above as follows.

I(Y1;V2|V11, V12) ≤ I(Y1;V2|V11, V12, Z1) (118)

= I(
√
P βJ1 +

√
PαV2;V2) (119)

= H(
√
P βJ1 +

√
PαV2)−H(

√
P βJ1) (120)

≤ log
(

4
⌊
1
8

√
P 1−ǫ

⌋

− 3
)

− log
(

2
⌊
1
8

√
P 1−ǫ

⌋

− 1
)

(121)

≤ 1. (122)
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Ineqaulity (118) holds since Z1 is independent of V2, and (119) follows because (V11, V12, Z1) is
independent of (J1, V2). Inequality (121) is true due to the uniform bound and the fact that√
P βJ1 +

√
PαV2 takes value from the set AQJ × {0,±1,±2, · · · ,±2

(⌊
1
8

√
P 1−ǫ

⌋

− 1
)

}. Finally

(122) holds when P is large enough due to (112).
It remains to find upper bounds of Pr[V̂11 6= V11 or V̂12 6= V̂12] in (109) and Pr[V̂2 6= V2] in (116).

They vanish as P goes to infinity, as stated in the following lemma, whose proof is relegated to
Appendix A.3.

Lemma 11. Given V̂11, V̂12, and V̂2 are respectively defined in (110), (111) and (117), we have

lim
P→∞

Pr[V̂11 6= V11 or V̂12 6= V12] = 0, (123)

lim
P→∞

Pr[V̂2 6= V2] = 0. (124)

Finally, by respectively plugging (109) into (103), and plugging (116) and (122) into (104), we
get

R1 ≥ (β − 1− 3ǫ) 1
2 log P + o(log P̄ ) = (β − 1) 1

2 log P + o(log P̄ ) (125)

R2 ≥ (1− ǫ) 1
2 log P + o(log P̄ ) = 1

2 logP + o(log P̄ ). (126)

We arrive at d1 = limP→∞
R1

1

2
logP

= β − 1, and d2 = limP→∞
R1

1

2
logP

= 1. Thus the secure GDoF

tuple (d1, d2) = (β − 1, 1) is achievable with this scheme based on lattice alignment and aggregate
decoding.

A.2 The Achievability in Regime 2

The corner points of Dp
IC in Regime 1 are (d1, d2) = (α, 0) and (β − 1, 1 + α − β). Following the

same reason for the corner points of Regime 1, it remains to show (β − 1, 1 + α− β) is achievable,
which is done with lattice alignment and aggregate decoding as well.

Let Q ,

⌊√
Pα−1−ǫ

⌋

and A ,
√
P 2ǫ, where ǫ > 0. In the following we suppress the channel-use

index t for brevity. Define X1 = V1 + J1 and X2 = V2, where

V1 ∈ Γ1 , A
√
P−β ×

{

0,±1,±2, · · · ,±
(⌊

1
2

√
Pα−1−2ǫ

⌋

− 1
)}

, (127)

J1 ∈ ΓJ , A
√
P−β ×

{

0,±Q,±2Q, · · · ,±
⌊√

P 1−α+β−ǫ
⌋

Q
}

, (128)

V2 ∈ Γ2 , A
√
P−α ×

{

0,±Q,±2Q, · · · ,±
⌊√

P 1−α+β−ǫ
⌋

Q
}

. (129)

Note that such a choice of A,Q and the lattices Γ1,ΓJ and Γ2 satisfies the unit input power
constraint.

Let V1, J1 and V2 be independent and uniformly distributed in their respective lattices. Message
W1 and W2 are respectively encoded into V1 and V2 with wiretap codebooks of rate R1 and R2.
The following rates are achievable under the secrecy constraints [18, Theorem 4]:

R1 ≥ I(Y1;V1), (130)

R2 ≥ I(Y2;V2)− I(Y1;V2|V1). (131)

To further bound these rates from below, we follow steps similar to (106) – (109) in Appendix A.1,
and get a lower bound of I(Y1;V1) as follows.

I(Y1;V1) ≥ (α− 1− 2ǫ) 1
2 logP

(

1− Pr[V̂1 6= V1]
)

− 2. (132)
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where V̂1 is defined as

V̂1 = arg min
V1∈Γ1

∣
∣
∣
∣
Y1 −AQ

[
Y1

AQ

]

−
√
P βV1

∣
∣
∣
∣
. (133)

To get a lower bound of I(Y2;V2) we follow steps identical to (113) – (116)

I(Y2;V2) ≥ (1− α+ β − ǫ) 1
2 log P

(

1− Pr[V̂2 6= V2]
)

− 2, (134)

where V̂2 is defined as

V̂2 = arg min
V2∈Γ2

∣
∣
∣Y2 −

√
PV2

∣
∣
∣ . (135)

And we can bound I(Y1;V2|V1) from above by following steps similar to (118) – (122)

I(Y1;V2|V1) ≤ 1. (136)

With a similar reasoning to the one in Lemma 11, one can show that for both i = 1, 2, Pr[V̂i 6=
Vi] → 0 as P → ∞. Finally, by plugging (132) into (130), and by plugging (134) and (136) into
(131), we get

R1 ≥ (α− 1− 2ǫ) 1
2 logP + o(log P̄ ) = (α− 1) 1

2 log P + o(log P̄ ), (137)

R2 ≥ (1− α+ β − ǫ) 1
2 logP + o(log P̄ ) = (1− α+ β) 1

2 log P + o(log P̄ ). (138)

By applying the definition of GDoF we get d1 = limP→∞
R1

1

2
logP

= α−1 and d2 = limP→∞
R2

1

2
logP

=

1− α+ β. Hence the GDoF tuple (d1, d2) = (α− 1, 1− α+ β) is achievable with this scheme.

A.3 Proof of Lemma 11

Let event E ,
{
Z1

∣
∣|Z1| ≥ A

2

}
, and its complement denoted as Ec =

{
Z1

∣
∣|Z1| < A

2

}
. Define I1 ,√

P βV12 + Z1 and I2 ,
√
P βJ1 +

√
PαV2 + I1. Note that Y1 =

√
P βV11 + I2 is the sum of a lattice

point
√
P βV11 and an offset I2. The lattice point is taken from the lattice

√
P β × Γ11 with the

minimum spacing AQ, while the offset, I2, takes value from
(

−AQ
2 , AQ

2

)

when Ec happens. So

when Ec occurs, V11 can be correctly decoded by (110), and seeing that Z1 ∼ N (0, 1), we have

Pr[V̂11 6= V11] ≤ Pr{E} ≤ 2 exp

(

−1

8
A2

)

. (139)

Next we move on and argue that V12 can be correctly decoded with (111) when V11 is correctly
decoded and Ec occurs. Suppose V11 is correctly decoded and removed from Y1, resulting in the
remaining Ỹ1 = I2 =

√
P βJ1 +

√
PαV2 + I1. Note that I2 is the sum of offset I1 and a lattice

point
√
P βJ1 +

√
PαV2, which is taken from lattice

√
P β × ΓJ +

√
Pα × Γ2.

11 Such a lattice has

the minimum spacing AQJ . On the other hand, offset I1 takes value from
(

−AQJ
2 , AQJ

2

)

when Ec

happens. As a result, when Ec occurs, Ỹ1 − AQJ

[
Ỹ1

AQJ

]

= I1 =
√
P βV12 + Z1. Note that, once

again, I1 is the sum a lattice point
√
P βV12, which is taken from lattice P̄ β×Γ12 with the minimum

11For two sets Γ1 and Γ2, define Γ1 + Γ2 , {a+ b|a ∈ Γ1, b ∈ Γ2} as the sum set of Γ1 and Γ2.
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spacing A, and an offset Z1, which is in
(
−A

2 ,
A
2

)
if Ec happens. Therefore, V12 can be correctly

decoded by (111) when Ec occurs and V11 is correctly decoded, and

Pr[V̂12 6= V12|V̂11 = V11] ≤ Pr{E} ≤ 2 exp

(

−1

8
A2

)

. (140)

Finally we can bound Pr[V̂11 6= V11 or V̂12 6= V12] as follows.

Pr[V̂11 6= V11 or V̂12 6= V12] (141)

≤ Pr[V̂11 6= V11] + Pr[V̂12 6= V12] (142)

≤ Pr[V̂11 6= V11] + Pr[V̂12 6= V12|V̂11 = V11] Pr[V̂11 = V11]

+ Pr[V̂12 6= V12|V̂11 6= V11] Pr[V̂11 6= V11] (143)

≤ Pr[V̂11 6= V11] + Pr[V̂12 6= V12|V̂11 = V11] + Pr[V̂11 6= V11] (144)

≤ 6 exp

(

−1

8
A2

)

, (145)

where we use the union bound in (142), and the law of total probability in (143). Inequality (145)
holds because of (139) and (140). Since A2 = O(P 2ǫ) and ǫ > 0, we have Pr[V̂11 6= V11 or V̂12 6=
V12] → 0 as P → ∞.

Note that Y2 =
√
P V2 + Z2 is the sum of a lattice point

√
PV2, which is taken from lattice√

P × Γ2 with the minimum spacing A
√
P 1−αQJ , and an offset Z2, which is in

(
−A

2 ,
A
2

)
if Ec

happens. So V2 can be correctly decoded by (117) when E occurs, and

Pr[V̂2 6= V2] ≤ Pr{E} ≤ 2 exp
(
−1

8A
2P 1−αQ2

J

)
. (146)

Note that A2P 1−αQ2
J = O(Pα−1+ǫ) and α ≥ 1 in Regime 1, we have α − 1 + ǫ > 0, and Pr[V̂2 6=

V2] → 0 as P → ∞ as well. Here we conclude the proof.

B Proof of Theorem 2

In this section, we provide the proof of Theorem 2, which characterizes the SGDoF region of the
ZBC with perfect and finite precision CSIT, respectively.

B.1 The SGDoF Region with Perfect CSIT

B.1.1 Converse

To show the converse part, we cast the Gaussian channel model into the deterministic model defined
in Section 5.1.3. Lemma 3 implies that the deterministic model incurs no loss in GDoF. To obtain
the single-user bound for d1, we apply Fano’s inequality as follows.

nR1 ≤ IG(Y 1;W1) + no(log P̄ ) (147)

= IG(Y 1, (Y 1)
min{(β−α)+,1};W1) + no(log P̄ ) (148)

= IG((Y 1)
min{(β−α)+ ,1};W1) + IG(Y 1;W1|(Y 1)

min{(β−α)+,1}) + no(log P̄ ) (149)

≤ IG((Y 2)
min{(β−α)+ ,1};W1) +HG(Y 1|(Y 1)

min{(β−α)+ ,1}) + no(log P̄ ) (150)

≤ n
(
max{α, β} −min{(β − α)+, 1}

)
log P̄ + no(log P̄ ) (151)

= nmax{α, β − 1} log P̄ + no(log P̄ ), (152)
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where Y 1 and B are defined in Section 5.1.3. Equality (148) holds because (Y 1)
min{(β−α)+,1}

is a function of Y 1. Then we apply the chain rule to get (149). Next we note that, since both
(Y 1)

min{(β−α)+,1} and (Y 2)
min{(β−α)+,1} contain top min{(β−α)+, 1} segment of B only, the latter

can be obtained with the former within bounded distortion with G given. Applying this observation,
and by the definition of mutual information, we get inequality (150). The first term in (150) is
no(log P̄ ) due to Lemma 3, and we apply the uniform bound to obtain (151). Equality (152) then
follows. Finally, we arrive at d1 = limP→∞

nR1

n 1

2
logP

≤ max{α, β − 1}.
Next we show the single-user bound for d2 as follows. Starting by Fano’s inequality, we get

nR2 ≤ I(Y 2;W2) + no(log P̄ ) (153)

= IG(Y 2, (Y 2)
min{1,(β−α)+};W2) + no(log P̄ ) (154)

= IG((Y 2)
min{1,(β−α)+};W2) + IG(Y 2;W2|(Y 2)

min{1,(β−α)+}) + no(log P̄ ) (155)

≤ IG((Y 1)
min{1,(β−α)+};W2) +HG(Y 2|(Y 2)

min{1,(β−α)+}) + no(log P̄ ) (156)

≤ n
(
1− (β − α)+

)+
log P̄ + no(log P̄ ), (157)

where Y 2 is defined in (24) in Section 5.1.3. Equality (154) holds because (Y 2)
min{1,(β−α)+} is a

function of Y 2. Then we apply the chain rule to get (155). Note that (Y 1)
min{1,(β−α)+} contains

the top-min{1, (β − α)+} segment of codeword B, so it can be obtained with (Y 2)
min{1,(β−α)+}

and G within bounded distortion. So we apply this observation, together with the definition of
mutual information, to get (156). Finally we arrive at (157) by applying Lemma 3 and the secrecy
constraint (4) to the first term in (156), and the uniform bound to the second term. Thus the
bound d2 = limP→∞

nR2

n 1

2
logP

≤ (1− (β − α)+)
+
.

B.1.2 Achievability

To show the achievability, we present two schemes respectively for the following two regimes: (a)
Regime P1: β − 1 ≤ α, and (b) Regime P2: α < β − 1. For Regime P1, it suffices to achieve the
corner point (d1, d2) = (α, 1 − (β − α)+). It can be achieved by zero-forcing the cross link. More
specifically, we define the input codeword X1(t) and X2(t) for t ∈ [n] as

[
X1(t)
X2(t)

]

= c1(t)

[
1
0

]

U1(t) + c2(t)

[
−G12(t)

√
P β

G11(t)
√
Pα

]

U2(t), (158)

where U1(t) and U2(t) are independent codewords encoded respectively from W1 and W2; c1(t) =
1
2

and

c2(t) =
1

√

2 (|G12(t)|2P β + |G11(t)|2Pα)
(159)

are chosen to satisfy the unit input power constraint. Such choice of c2(t) and the precoding vector
is possible because of the perfect CSIT assumption. Note that the vector for U2(t) is chosen such
that it zero-forces U2(t) at Receiver 1. Now the receivers respectively see cross-link-free channel as
follows.

Y1(t) =
1

2
G11(t)

√
PαU1(t) + Z1(t), (160)

Y2(t) =
G22(t)

√
P 1+α

√

2 (|G12(t)|2P β + |G11(t)|2Pα)
U2(t) + Z2(t). (161)
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Channel (160) allows GDoF α for W1, and channel (161) allows 1 +α−max{α, β} = 1− (β −α)+

for W2. Note that the secrecy constraint (4) is satisfied, because undesired signals are zero forced
and codewords U1(t) and U2(t) are independent.

On the other hand, for Regime P2, it suffices to achieve (d1, d2) = (β − 1, 0). This can be done
by setting X1(t) = 0 and X2(t) =

√
P−1U1(t), where U1(t) is encoded from W1 with a wiretap

codebook. With such a setting, the channel allows a GDoF β−1 for W1 with the secrecy constraint
(4) satisfied in the mean time. Here we conclude the proof.

B.2 The SGDoF Region with Finite Precision CSIT

To show Df.p.
BC , we continue the definition of the channel regimes in Theorem 1, and further divide

Regime 4 into the following two sub-regimes: (a) Regime 4.1, satisfying β ≤ 1 and β ≤ α; and (b)
Regime 4.2, satisfying β ≤ 1 and α < β. It remains to present the proof for Regime 4.2, as the
proof for the other regimes is implied from the previous results.

More specifically, for Regime 1 and 2, their proofs follow from the proof in Section 5.3 for the
corresponding regimes, which still holds when full transmitter cooperation is allowed. The SGDoF
region of Regime 3 is identical to Dp

BC of the same regime, and the a achievable scheme does not
rely on the perfect CSIT assumption. So the proof in Appendix B.1 holds for finite precision CSIT.
Finally, the proof for Regime 4.1 follows from the results in [53]. As a result, only the SGDoF
region of Regime 4.2, which is {(d1, d2) ∈ R2

+ : d1 ≤ α, d1 + d2 ≤ 1 +α− β}, remains to be shown.
First let us consider the converse proof. The single-user bound d1 ≤ α follows from the proof in

Appendix B.1 in the corresponding channel regime. To show the sum bound, d1 + d2 ≤ 1 + α− β,
we cast the Gaussian ZBC model into the deterministic model defined in Section 5.1.3. Lemma 3
implies that this incurs no GDoF loss. Next we apply Fano’s inequality, and get

nR1 + nR2 ≤ IG(Y 1;W1) + IG(Y 2;W2) + no(log P̄ ) (162)

≤ HG(Y 1)−HG(Y 1|W1) +HG(Y 2)−HG(Y 2|W2) + no(log P̄ ) (163)

= HG(Y 1|W2)−HG(Y 1|W1) +HG(Y 2|W1)−HG(Y 2|W2) + no(log P̄ ) (164)

≤ max{1− β,−α}+n logP +max{β − 1, α}+n log Pno(log P̄ ) (165)

= (1 + α− β)n log P + no(log P̄ ), (166)

where Y 1 and Y 2 are defined respectively in (23) and (24). We apply (26) and the secrecy constraint
(4) to obtain (164). Inequality (165) holds due to Lemma 5. Since β ≤ 1 in this regime, we have
(166), and in the GDoF limit we obtain the sum bound d1 + d2 = limP→∞

R1+R2
1

2
logP

≤ 1 + α− β.

Finally, let us consider the achievability. Since the the SGDoF region of the ZBC in Regime 4.2
is identical to that of the ZIC in the same regime, the same achievable schemes apply. Thus, we
obtain the SGDoF region of the ZBC with finite precision CSIT and conclude the proof.

C Proof of Lemma 6

We assume G1 and G2 are real random variables with |Gi| ∈ ( 1
∆ ,∆) for i = 1, 2. For quick reference,

we define V = T ⊞ U and Z = (T )λ ⊞ (U)µ, and summarize the definition of the top λ sub-section
of the random variables as follows:

(T )λ = (T )λ+ν
ν =

⌊

T − P̄ λ+ν
⌊

T
P̄λ+ν

⌋

P̄ ν

⌋

=

⌊
T

P̄ ν

⌋

, (167)

29



(U)µ = (U)µ+ν
ν =

⌊

U − P̄µ+ν
⌊

U
P̄µ+ν

⌋

P̄ ν

⌋

=

⌊
U

P̄ ν

⌋

, (168)

(V )λ = (T ⊞ U)λ+ν
ν =

⌊

V − P̄ λ+ν
⌊

V
P̄λ+ν

⌋

P̄ ν

⌋

. (169)

Note that the last equality of (167) and (168) holds because
⌊

T
P̄λ+ν

⌋
=

⌊
U

P̄µ+ν

⌋
= 0.

Next we simplify (169) in the way as is done to (167) and (168). Define ηT = G1T − ⌊G1T⌋,
and ηU = G2U − ⌊G2U⌋. Note that ηT , ηU ∈ [0, 1). Let us first estimate the size of the support of
⌊

V
P̄λ+ν

⌋
, which is a term appearing in the denominator of (169).

V

P̄ λ+ν
= G1

T

P̄ λ+ν
+G2

U

P̄ λ+ν
+

ηT + ηU
P̄ λ+ν

(170)

= η̃1 + η̃2 + η̃3, (171)

where η̃i is the ith term in (170). It is obvious that η̃1, η̃2 ∈ [−∆,∆], and η̃3 ∈ [0, 2]. So
⌊

V
P̄λ+ν

⌋
is

a random variable with support {−2∆,−2∆+ 1 · · · , 0, 1, · · · , 2∆+ 2}. Note that for real numbers
x, y, we have ⌊x+ y⌋ = ⌊x⌋+ ⌊y⌋+E, where E ∈ {−1, 0, 1}. With this observation, we can expand
(V )λ defined in (169) further as follows.

(V )λ =

⌊
V

P̄ ν

⌋

+

⌊

−P̄ λ+ν

⌊
V

P̄ λ+ν

⌋⌋

+E

︸ ︷︷ ︸

Ẽ

(172)

=

⌊
V

P̄ ν

⌋

+ Ẽ, (173)

where Ẽ is a random variable with support of size no greater than 3(4∆ + 3).
Finally we relate Z to (V )λ. Define truncation terms δT = T

P̄ ν − (T )λ, δU = U
P̄ ν − (U)λ,

ǫT = G1(T )
λ −

⌊
G1(T )

λ
⌋
, ǫU = G2(U)µ −⌊G2(U)µ⌋, and ǫ = V

P̄ ν −
⌊

V
P̄ ν

⌋
, whose values are in [0, 1).

With these truncation terms, we relate Z with (V )λ as follows.

Z =
⌊

G1(T )
λ
⌋

+ ⌊G2(U)µ⌋ (174)

= G1(T )
λ +G2(U)µ − (ǫT + ǫU ) (175)

= G1
T

P̄ ν
+G2

U

P̄ ν
− (G1δT +G2δU + ǫT + ǫU ) (176)

=
1

P̄ ν
(⌊G1T⌋+ ⌊G2U⌋)−

(
ηT + ηU

P̄ ν
+G1δT +G2δU + ǫT + ǫU

)

(177)

=

⌊
V

P̄ ν

⌋

+ ǫ−
(
ηT + ηU

P̄ ν
+G1δT +G2δU + ǫT + ǫU

)

(178)

= (V )λ − Ẽ −
(
ηT + ηU

P̄ ν
+G1δT +G2δU + ǫT + ǫU − ǫ

)

︸ ︷︷ ︸

E′

(179)

= (V )λ − Ẽ − E′, (180)

where E′ is a random variable taking an integer value from [−2∆− 1, 2∆ + 4] and therefore has a
support of size at most 4∆ + 6. As a result, EΣ = Ẽ + E′ is a random variable with a support of
size at most 3(4∆ + 3)(4∆ + 6), which is a constant with respect to P .
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In summary, one can evaluate Z = (T )λ⊞ (U)λ from (V )λ once EΣ is known, which is a discrete
random variable with a support of constant size invariant of P . By comparing the entropy of Z and
(V )λ, we have H(Z) −H(EΣ) ≤ H(Z|EΣ) ≤ H((V )λ) ≤ H(Z) +H(EΣ), and therefore establish
H((T ⊞ U)λ) = H((T )λ ⊞ (U)λ) +O(1).
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Zürich, 2016.

[45] P. Mohapatra, C. R. Murthy, and J. Lee, “On the secrecy capacity region of the two-user sym-
metric Z interference channel with unidirectional transmitter cooperation,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 3, pp. 572–587, March 2017.

[46] S. Karmakar and A. Ghosh, “Secrecy capacity region of fading binary Z interference channel
with statistical CSIT,” IEEE Transactions on Information Forensics and Security, vol. 14,
no. 4, pp. 848–857, April 2019.

[47] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow: A deterministic
approach,” IEEE Trans. on Inf. Theory, vol. 57, pp. 1872–1905, 2011.

[48] R. Liu, I. Maric, P. Spasojevic, and R. Yates, “Discrete memoryless interference and broadcast
channels with confidential messages: secrecy rate regions,” IEEE Transactions on Information
Theory, vol. 54, no. 6, pp. 2493–2507, June. 2008.

[49] Y. Zhu and D. Guo, “Ergodic fading Z-interference channels without state information at
transmitters,” IEEE Transactions on Information Theory, vol. 57, no. 5, pp. 2627–2647, 2011.

[50] Y.-C. Chan and S. A. Jafar, “Exploring Aligned-Images Bounds: Robust Secure GDoF of
3-to-1 Interference Channel,” Technical Report, https://escholarship.org/uc/item/8nh0m0qm,
October 2020.

[51] A. Fayed, T. Khattab, and L. Lai, “Secret communication on the Z-channel with cooperative
receivers,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, Nov 2016,
pp. 909–914.

[52] Jianwei Xie and S. Ulukus, “Secrecy games on the one-sided interference channel,” in 2011
IEEE International Symposium on Information Theory Proceedings, July 2011, pp. 1245–1249.

[53] Y.-C. Chan, C. Geng, and S. A. Jafar, “Robust optimality of TIN under secrecy constraints,”
Technical Report, https://escholarship.org/uc/item/4242x608, October 2019.

[54] G. Bresler and D. Tse, “The two-user Gaussian interference channel: a deterministic view,”
European Transactions in Telecommunications, vol. 19, no. 4, pp. 333–354, June 2008.

34


	1 Introduction
	2 System Model
	2.1 The Gaussian Z Interference Channel (ZIC)
	2.2 The Gaussian Z Broadcast Channel (ZBC)
	2.3 The GDoF Framework
	2.4 Finite Precision CSIT
	2.5 Perfect CSIT
	2.6 Achievable Rates under Secrecy Constraint
	2.7 Secure GDoF Region

	3 Results
	3.1 Secure GDoF of the ZIC with Perfect CSIT
	3.2 Secure GDoF of the ZIC with Finite Precision CSIT
	3.3 How Robust are Structured Codes?
	3.4 Secure GDoF of the ZBC with Perfect and Finite Precision CSIT

	4 Proof of Theorem 1: Achievability
	5 Proof of Theorem 1: Converse
	5.1 Preliminaries from Prior Work
	5.1.1 Definitions
	5.1.2 Key Sumset Inequalities
	5.1.3 Deterministic Model

	5.2 Useful Lemmas
	5.3 The Weighted-Sum Bounds in Regime 1 and 2

	6 Conclusion
	A Proof of Lemma 1
	A.1 The Achievability in Regime 1
	A.2 The Achievability in Regime 2
	A.3 Proof of Lemma 11 

	B Proof of Theorem 2
	B.1 The SGDoF Region with Perfect CSIT
	B.1.1 Converse
	B.1.2 Achievability

	B.2 The SGDoF Region with Finite Precision CSIT

	C Proof of Lemma 6



