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ABSTRACT: This work introduces a generalized framework for automatically tuning stencil computations to achieve
superior performance on a broad range of multicore architectures. Stencil (nearest-neighbor) based kernels constitute
the core of many important scientific applications involving block-structured grids. Auto-tuning systems search over
optimization strategies to find the combination of tunable parameters that maximizes computational efficiency for a
given algorithmic kernel. Although the auto-tuning strategy has been successfully applied to libraries, generalized stencil
kernels are not amenable to packaging as libraries. Studied kernels in this work include both memory-bound kernels as
well as a computation-bound bilateral filtering kernel. We introduce a generalized stencil auto-tuning framework that
takes a straightforward Fortran expression of a stencil kernel and automatically generates tuned implementations of the
kernel in C or Fortran to achieve performance portability across diverse computer architectures.

KEYWORDS: Multicore, XT4, Auto-tuning, Auto-parallelization

1 Introduction

As we enter the era of billion transistor chips, the com-
puting industry has moved away from exponential scaling
of clock frequency towards chip multiprocessors (CMPs)
in order to better manage trade-offs among performance,
energy efficiency, and reliability; however, The immatu-
rity of the CMP approach has resulted in an ever-changing
landscape of architectural features and memory hierar-
chy designs. Thus performance programmers are faced
with enormous challenges in productively designing ap-
plications that effectively leverage the underlying com-
putational resources, while still allowing for performance
portability across the myriad of current and future CMP
instantiations. Scientific progress will be substantially
slowed without advanced programming models and tools
that allow programmers to utilize massive on-chip concur-
rency.

The challenge of this decade for scientific computing
is to create new programming models and tools that enable
concise expression of fine-grained, explicit parallelism that
is portable across a diversity of chip multiprocessor (CMP)
instantiations. In this work, we present a novel approach
to address these conflicting requirements for stencil-based
computations using a generalized auto-tuning framework.
Our framework takes a straightforward Fortran 95 stencil
expression and automatically generates tuned implemen-
tations of the stencil in C or Fortran (we use the former

in this work). This approach provides performance porta-
bility across diverse computer architectures and enables a
viable migration path from existing application codes to
codes that provide scalable intra-socket parallelism across
a diversity of emerging chip multiprocessors – preserving
portability and allowing for productive code design and
evolution.

To demonstrate the flexibility and generality of our
framework, we examine several stencil computations with
a variety of different computational characteristics, aris-
ing from PDE solvers in climate science, image process-
ing, and structural mechanics. Auto-parallelized and auto-
tuned performance is then shown on three leading multi-
core platforms – the AMD Budapest processor in the form
of the Cray XT4, an AMD Barcelona (a reasonable proxy
for the XT5), and the Intel Xeon (Nehalem). Results show
that our generalized methodology can deliver significant
performance gains of up to 22× speedup compared with
the default serial version, while allowing portability across
diverse architectural technologies. Furthermore, while our
framework only required a few minutes of human effort to
instrument each stencil code, the resulting code achieved
performance comparable to previous hand-optimized auto-
tuned code that required several months of tedious work to
produce.

Overall we demonstrate that such domain-specific auto-
tuners hold enormous promise for architectural efficiency,
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programmer productivity, performance portability, and al-
gorithmic adaptability on existing and emerging multicore
systems.

2 Stencil Computations

This study presents an autotuning framework for sten-
cil computations on regular grids, which often arise from
iterative finite-difference techniques sweeping over a spa-
tial grid. At each point, a nearest-neighbor computation (a
stencil) is performed: the point is updated with weighted
contributions from a subset of points nearby in both time
and space. Applications which use stencil computations
include PDE solvers and adaptive mesh refinement [1].

The grid data structures are typically much larger than
the data caches of current-generation microprocessors,
and, along with the fact that many stencil computations
use a relatively small number of neighbors at each point,
such computations often produce large amounts of mem-
ory traffic and relatively little computation. As a result,
performance is often bound by memory traffic. Previous
work has investigated tiling optimizations [2, 10, 13, 14]
which attempt to reorganize stencil calculations to exploit
locality and reduce capacity misses; such optimizations are
effective when the problem size is larger than the cache’s
ability to exploit temporal locality. Multicore stencil op-
timizations using hand-written kernel-specific tuners has
shown the potential for tuning stencil calculations on mod-
ern microprocessors [3].

Although these recent studies have successfully shown
auto-tuning’s ability to achieve performance portability
across the breadth of existing multicore processors, they
have been constrained to a single stencil instantiation, thus
failing to provide broad applicability to general stencil ker-
nels due to the immense effort required to hand-write auto-
tuners. In this work, we rectify this limitation by evolving
the auto-tuning methodology into a generalized code gen-
eration framework, allowing significant flexibility com-
pared to previous approaches that use prepackaged sets of
limited functionality library routines. Our approach com-
plements existing compiler technology. The framework
leverages domain-specific knowledge of the application to
enable both code and memory layout transformations that
would otherwise be difficult to implement in a compiler.
Compilers have a difficult time analyzing code to prove
that code transformations are safe, and even more difficulty
transforming data layout in memory. The framework side-
steps the complex task of analysis and presents a very sim-
ple, uniform, and familiar interface for expressing stencil
kernels as a conventional Fortran expression.

2.1 Benchmark Kernels
To show the broad utility of our framework, we se-

lect three conceptually easy-to-understand, yet deceptively

difficult to optimize stencil kernels arising from the ap-
plication of the finite difference method to the Lapla-
cian (unext ← ∇2u), Divergence (u ← ∇ · F), Gra-
dient (F ← ∇u), In addition, we include a bilateral fil-
tering algorithm with a stencil structure that is similar
to other stencils where weights must be computed per-
neighbor. The first three operators are implemented us-
ing the nearest-neighbor central-difference method on a 3D
rectahedral block-structured grid using Jacobi’s method
(out-of-place), and benchmarked on a 256×256×256 grid.
The bilateral filtering operator has a variable radius opera-
tor that ranges from 1–11 grid points and is benchmarked
on a 256 × 256 × 192 grid, representing 192 slices of 2D
imaging data. Note that although the code generator has no
restrictions on data structure, for brevity, we only explore
the use of the structure of arrays form for vector fields.
Except for the bilateral filter, the kernels studied here have
such low arithmetic intensity that they are expected to be
memory-bandwidth bound, and thus deliver performance
approximately equal to the product of their arithmetic in-
tensity (AI) with the system stream bandwidth. The bi-
lateral filter kernel exhibits AI that increases as stencil’s
radius increases.

Laplacian: The Laplacian stencil (unext ← ∇2u) reads
7 values from one scalar array, performs an 8-flop linear
combination, and writes the result to another scalar ar-
ray. With sufficient cache capacity, each subsequent sten-
cil requires only a single element to be read from DRAM,
due to reuse. Each stencil also requires a single write; if
there is insufficient cache capacity, the kernel can benefit
from cache blocking to eliminate capacity misses. A prop-
erly blocked kernel will incur 24 bytes of memory traffic,
while capacity misses can increase the traffic to 40 bytes.
Therefore, tuning block sizes can increase Laplacian per-
formance by 66%.

Divergence: The Divergence stencil (u← ∇·F), is dra-
matically different as it must read only two elements from
each of three different components of the vector field, per-
form an 8-flop linear combination, and write the result to
a scalar grid. There is little reuse of data. Moreover, only
accesses to the z-component will be challenged by capac-
ity misses. As such, we expect the 48 read bytes requested
from the cache to be easily reduced to 32 bytes, and with
the appropriate cache blocking, as few as 24. As with the
Laplacian, 16 bytes of traffic will be generated per stencil
to update the destination array. Thus we expect auto-tuning
to provide a 20% boost on machines with caches too small
to fit the entire problem.

Gradient: In many ways, the Gradient stencil (F ←
∇u) is the opposite of the Divergence stencil. It reads 6
values from a scalar array, and performs three 2-flop sten-
cils, writing those results to the three components of the
output vector grid. Thus, naively one expects 24 bytes
of read memory traffic (capacity misses), and another 48
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System Cray XT4 Sun x2200 Xeon X5550
Chip Architecture AMD Budapest AMD Barcelona Intel Nehalem

superscalar superscalar superscalarType
out-of-order out-of-order out-of-order

Clock (GHz) 2.3 2.3 2.66
DP GFlop/s per Core 9.2 9.2 10.66

Sockets per SMP node 1 2 2
Cores per Socket 4 4 4

Threads per Socket 4 4 8
DRAM Capacity 8GB 16GB 12GB

DRAM Pin Bandwidth (GB/s) 12.8 21.33 51.2
DP GFlop/s 36.8 73.6 85.33

DP Flop:Byte Ratio 2.88 3.45 1.66
Compiler gcc 4.3.2 gcc 4.2.1 gcc 4.3.2

Table 1. Architectural summary of evaluated platforms.

bytes of write traffic — an arithmetic intensity of 0.083.
Cache blocking should asymptotically reduce the read traf-
fic down to 8 bytes, but will do nothing for for the traffic
resulting from writes. As such, auto-tuning can only im-
prove the arithmetic intensity to 0.107.

Bilateral Filtering: Bilateral filtering, as defined by
Tomasi [16], aims to perform anisotropic image smooth-
ing using a low-cost, non-iterative formulation. The idea
is to smooth images by computing the influence of nearby
points in a way that removes noise “within regions,” and
that does not have the undesirable property of smooth-
ing edge features. This formulation uses a straightfor-
ward, tunable estimate for region boundaries: a Gaussian-
weighted difference in signal, or photometric space. The
idea is that where a sharp edge exists, there will be a large
difference in signal. That estimate is combined with a tra-
ditional Gaussian-weighted distance function to lessen the
contribution from pixels distant in both geometric and sig-
nal space. In the bilateral filtering kernel, the output at
each image pixel d(i) is the weighted average of the in-
fluence of nearby image pixels ī from the source image s
at location i. The “influence” is computed as the product
of a geometric spatial component g(i, ī) and signal differ-
ence c(i, ī). While it is possible to precompute the por-
tions of k(i) contributed by g(i, ī), which depend only on
the 3D Gaussian probability distribution function, the set
of contributions from c(i, ī) are not known a priori as they
depend upon the actual set of photometric differences ob-
served across the neighborhood of c(i, ī) and will vary de-
pending upon the source image contents and target location
i. Arithmetic intensity varies based on filter size; for larger
filters, the code becomes more and more computationally-
bound. Note that because this filter is in 3D because it
operates on a series of image, each representing data from
a different layer (as is often found in MRI scans). The filter
stencil operates across layers, allowing for better diagnos-
tic imaging in medical applications.

3 Experimental Platforms

To evaluate our stencil auto-tuning framework, we
examine a range of leading multicore designs: Cray
XT4/AMD Budapest, a Sun X2200 M2/AMD Barcelona,
and a Supermicro Xeon X5550 (Nehalem). A summary of
key architectural features of the evaluated systems appears
in Table 1.

Cray XT4 The core building block of the Cray XT4 sys-
tem is the single-socket AMD Opteron (Budapest) multi-
core SMP. Each Opteron core on the XT4 runs at 2.3 GHz
and contains a 64KB L1 cache and a 512KB L2 vic-
tim cache. In addition, each chip instantiates a 2MB L3
quasi-victim cache shared among all four cores. All core
prefetched data is placed in the L1 cache of the request-
ing core, whereas all DRAM prefetched data is placed into
a dedicated buffer. The Opteron includes two DDR2-800
memory controllers delivering up to 12.8 GB/s of DRAM
bandwidth.

Sun X2200 M2 The Opteron 2356 (Barcelona) is
AMD’s flagship quad-core processor offering. Unlike Bu-
dapest, one can build multi-socket SMPs from Barcelona.
Aside from the multisocket support (an additional Hyper-
Transport link providing cache coherency and NUMA ac-
cess to a second socket’s DRAM) the Opteron cores are
identical to those in the XT4. Each Barcelona socket in this
X2200 machine is connected to its own bank of DDR2-
667 DIMMs. The lower DIMM speed only delivers up to
10.66GB/s per socket, or an aggregate 21.33GB/s for the
dual-socket system. Our dual-socket X2200 machine func-
tions as a proxy for the XT5 system.

Intel Nehalem: The recently released Nehalem is the
successor to the Intel “Core” architecture and represents
a dramatic departure from Intel’s previous multiprocessor
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designs. Whereas the Clovertown and prior architectures
used a shared frontside bus (FSB) to connect all proces-
sors to a common northbridge chip which in turn provided
access to memory or other peripherals, the Nehalem adopts
a modern multisocket architecture similar to the Opteron:
memory controllers have been integrated on-chip, requir-
ing an inter-chip network. The resultant QuickPath Inter-
connect (QPI) is similar to HyperTransport in that it must
handle access to remote memory controllers, coherency,
and access to I/O.

Two other architectural innovations were incorpo-
rated into Nehalem: two-way simultaneous multithread-
ing (SMT), and TurboMode, which allows a single core to
operate faster than the set clock rate under certain work-
loads. On our machine, TurboMode is disable due to its
inconsistent timing behavior. The system in this study is a
dual socket 2.66 GHz Xeon X5550 (Gainestown) with two
thread contexts per core and four cores per socket; a to-
tal of 16 hardware thread contexts in this dual-socket ma-
chine. Each socket integrates three DDR3 memory con-
trollers operating at 1066MHz providing up to 25.6GB/s
of DRAM bandwidth to each socket.

4 Transformation Framework Overview

Stencil applications use a wide variety of data structures
in their implementations, representing grids of multiple di-
mensionalities and topologies. Furthermore, the details of
the underlying stencil applications call for a myriad of nu-
merical kernel operations. Thus, building a static auto-
tuning library in the spirit of ATLAS [19] or OSKI [18]
(dense and sparse matrix algebra) to implement the many
different stencil kernels is infeasible; as it would require
a unique auto-tuner for each stencil instantiation. Al-
though previous work [3, 9] has shown the effectiveness
of auto-tuning for stencil operations, the tuning systems
themselves were rather primitive, consisting of simple Perl
scripts that generate optimized versions for a single ker-
nel. Additionally, the scripts are unable to test all combi-
nations of possible optimizations due to their lack of se-
mantic stencil knowledge.

This work presents a proof-of-concept of a generalized
auto-tuning approach, which uses a domain-specific trans-
formation and code-generation framework combined with
a fully-automated search to replace stencil kernels with
their optimized versions. The interaction with the appli-
cation program begins with simple annotation of the loops
targeted for optimization. The search system then extracts
each designated loop and builds a test harness for that par-
ticular kernel instantiation. Next, the search system uses
the transformation and generation framework to apply our
suite of auto-tuning optimizations, running the test harness
for each candidate implementation to determine its optimal
performance. After the search is complete, the optimized

implementation is built into an application-specific library
that is called in place of the original.

4.1 Parsing
The front-end to the tranformation engine parses a de-

scription of the stencil in a domain-specific language. For
simplicity, we use a subset of Fortran 95, since many sten-
cil applications are already written in some flavor of For-
tran. Due to the modularity of the transformation engine,
a variety of front-end implementations are possible. The
result of parsing in our preliminary implementation is an
Abstract Syntax Tree (AST) representation of the stencil,
on which subsequent transformations are performed.

Currently, several restrictions exist in the domain of
parsable and auto-tunable kernels handled by our frame-
work. In particular, the system requires Jacobi kernels (no
overwriting in-place) with perfectly-nested loops in a rect-
angular domain. In addition, array indexing is fairly sim-
ple: only additive (or subtractive) offsets are currently al-
lowed. As the auto-tuning framework matures, we plan on
relaxing these restrictions. However, many important ex-
isting stencil computations require little or no modification
to meet our current requirements.

4.2 Transformation and Code Generation
Overview

The largest component of the auto-tuning framework is
the transformation engine and the backend code genera-
tion engine. The transformation engine operates on the
AST, transforming the abstract structure of the program
while preserving the original intent of the programmer. Se-
rial backend targets generate portable C and Fortran code,
while parallel targets include pthreads C code designed
to run on a variety of cache-based multicore processor
SMPs.

Once the intermediate form is created from the front-
end description, it is manipulated by the transformation
engine across our spectrum of auto-tuned optimizations.
The intermediate form and transformations are expressed
in portable Lisp code using the portable and lightweight
ECL compiler [4], making it simple to interface with the
parsing front-ends (written in Flex and YACC) and pre-
serving portability across a wide variety of architectures.

Because optimizations are expressed as transformations
on the AST, it is possible to combine them in ways that
would otherwise be difficult using simple string substitu-
tion. For example, it is straightforward to apply register
blocking either before or after cache-blocking the loop,
allowing for a comprehensive exploration of optimization
configurations.

In the rest of this section, we discuss serial trans-
formations and code generation; auto-parallelization and
parallel-specific transformations and generators are ex-
plored in Section 5.
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Optimization
Category Parameter Name Parameter Tuning Range

Data Allocation NUMA Aware X
CX NX

Core Block Size CY {8...NY}
CZ {128...NZ}

Domain TX CX
Decomposition Thread Block Size TY CY

TZ CZ

Chunk Size {1... NX×NY×NZ
CX×CY×CZ×NThreads}

Array Indexing X
Low RX {1...8}
Level Register Block Size RY {1...2}

RZ {1...2}

Table 2. Attempted optimizations and the associated parameter spaces explored by the auto-tuner for a 2563 stencil
problem (NX, NY, NZ = 256). All numbers are in terms of doubles.

4.3 General Optimization
Transformations

Several common optimizations have been implemented
in the framework as AST transformations, including loop
unrolling/register blocking (to improve innermost loop
efficiency), cache blocking (to expose temporal local-
ity and increase cache reuse), and arithmetic simplifica-
tion/constant propagation. These optimizations are imple-
mented to take advantage of the specific domain of interest:
Jacobi-like stencil kernels of arbitrary dimensionality. Fu-
ture transformations will include those shown in previous
work [3]. In particular, we will strive for better utilization
of SIMD instructions and common subexpression elimina-
tion (to improve arithmetic efficiency), use of cache bypass
(to eliminate unnecessary cache fills), and use of explicit
software prefetching (to reduce wasted cache bandwidth).
Additionally, future work will support aggressive memory
and code structure transformations.

Although the current set of optimizations may over-
lap existing compiler optimizations, future speedup ap-
proaches such as memory structure transformations will
be beyond the scope of compilers — since they are spe-
cific to stencil-based computations. Additionally, the fact
that our framework’s transformations yield code that out-
performs compiler-only optimized versions highlights that
compiler algorithms cannot always prove that these (safe)
optimizations are allowed; the domain-specific knowledge
embodied in the auto-tuner can apply these optimizations
without needing to understand general (non-stencil) code.

5 Parallelization and Auto-Tuning
Given the stencil transformation framework, we now

present parallelization code generation and our auto-tuning
methodology. The shared-memory parallel code genera-
tors leverage the serial code generation routines to produce
the version run by each individual thread. Because the
mechanisms for parallelization are specific to each archi-
tecture, both the strategy engines and the code generators
must be tailored to the desired targets. For the cache-based
architectures, we chose pthreads for lightweight paral-
lelization.

Note that for serial programs, a separate code genera-
tion phase logically follows immediately after loop trans-
formations have been applied to the AST. For parallel pro-
grams, these conceptually disparate steps become an in-
tegrated process. Since the parallelization strategy influ-
ences code structure, the AST must be modified to reflect
the chosen strategy. Additionally, since the valid parameter
space of many serial optimizations depends on platform-
specific parallelization parameters, it is necessary to search
both spaces of optimizations simultaneously rather than se-
quentially.

5.1 Auto-Tuning Strategy Engines
The auto-tuning framework examines the set of valid in-

dependent transformations and measures the performance
of each potential optimization combination within a de-
fined platform-specific search space. The explored param-
eter space is enumerated by platform specific strategy en-
gines, which are designed to examine the region of the full
auto-tuning search space that best utilizes the underlying
architecture’s cache capacity. For example, cache block-
ing in the unit stride dimension might be practical on some
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Figure 1. Four-level problem decomposition: In (a), a node block (the full grid) is broken into smaller chunks. All the
core blocks in a chunk are processed by the same subset of threads. One core block from the chunk in (a) is magnified
in (b). A properly sized core block can avoid capacity misses in the last level cache. A single thread block from the core
block is magnified in (c). A thread block should exploit common resources among threads. Finally, the magnified thread
block in (c) is decomposed into register blocks, which exploit data level parallelism.

architectures, but on AMD’s Opteron or Intel’s Nehalem,
the reliance on hardware prefetchers makes such a transfor-
mation detrimental [2]. Table 2 shows the attempted opti-
mizations and associated parameter search space explored
by our auto-tuner for each of the platform targets. Fu-
ture work will include more intelligent search mechanisms
such as hill-climbing or machine learning techniques [6].

5.2 Multicore Parallelization for
Cache-Based Systems

Following the effective blocking strategy presented in
previous studies [3], we decompose the problem space into
core blocks. The size of these core blocks is then tuned
to avoid capacity misses in the last level cache. Each core
block is further divided into thread blocks such that threads
that share a common cache can cooperate on a core block.
Though our code generator is capable of utilizing variable
thread blocks, we set the size of the thread blocks equal
to the size of the core blocks to help reduce the size of the
auto-tuning search space. The threads of a thread block are
then assigned chunks of contiguous core blocks in a round
robin fashion until the entire problem space has been ac-
counted for. Finally each thread’s stencil loop is register
blocked to best utilize registers and functional units. The
auto-tuner tunes core block size, thread block size, chunk
size, and register block size. Further, NUMA-aware mem-
ory allocation is implemented by pinning threads to the
hardware and taking advantage of first-touch page map-
ping policy during data initialization. A visualization of
the stencil domain decomposition reproduced from [3] is
shown in Figure 1 .

6 Performance Evaluation

In this section, we examine the performance quality of
our auto-parallelizing and auto-tuning framework across
the four evaluated architectural platforms. We begin by
examining the impact of our framework on each of the
three differential operator kernels in Figures 2–5, show-
ing performance of: the original serial kernel (gray), auto-
parallelization (blue), auto-parallelization with NUMA-
aware initialization (purple), and auto-tuning (red). Over-
all, results are ordered such that threads first exploit multi-
threading within a core (e.g. Nehalem), then multiple cores
on a socket, and finally multiple sockets (e.g. Barcelona
and Nehalem).

We next quantify the impact of our auto-parallelization
by comparing results with straightforward OpenMP instru-
mentation of the baseline stencil kernels (shown as yel-
low diamonds in Figures 2–4). Finally, Figure 6 presents
a cross-architectural comparison in terms of raw perfor-
mance.

6.1 Laplacian Performance
Laplacian kernel performance results are shown in Fig-

ure 2. Auto-parallelization (blue) has differing impact de-
pending on the underlying hardware’s characteristics. Al-
though the AMD Budapest (XT4) sees modest benefits
from auto-parallelization, the AMD Barcelona sees little
benefit, likely due to the fact that a single core can nearly
saturate an entire socket’s available bandwidth — it has
the same computational capability per socket as the XT4,
but 17% less bandwidth. On dual-socket SMPs such as the
Nehalem and the Sun X2200 (and by extension the Cray
XT5), NUMA optimization (purple) is essential for effec-
tively utilizing both sockets, achieving roughly a doubling
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Figure 2. Laplacian performance as a function of auto-parallelization and auto-tuning. For comparison, the yellow
diamond shows performance achieved using the original stencil kernel with OpenMP pragmas and NUMA-aware initial-
ization.
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Figure 3. Divergence performance as a function of auto-parallelization and auto-tuning. For comparison, the yellow
diamond shows performance achieved using the original stencil kernel with OpenMP pragmas and NUMA-aware initial-
ization.

in performance. For the XT4, NUMA optimization yields
no benefit, since there is a single socket.

Examining the impact of auto-tuning (red) on the Lapla-
cian kernel shows little improvement on the serial ver-
sion, as a single core may have full use of the socket’s
cache and DRAM bandwidth resources. However, after
auto-parallelization, auto-tuning becomes a critical com-
ponent that can substantially reduce capacity misses and
thereby dramatically improve arithmetic intensity. Thus,
the XT4 and Barcelona systems delivered 1.3× and 1.7×
improvement respectively at the highest concurrency. The
Nehalem machine also demonstrates a 1.7× performance
improvement.

Overall for the Laplacian computation, auto-
parallelization coupled with auto-tuning improves

performance by 2.4× for the XT4, 3.8× for Barcelona,
and 22× for Nehalem.

6.2 Divergence Performance

Figure 3 presents Divergence kernel performance. Re-
sults show auto-parallelization and NUMA optimization
benefits similar to the Laplacian results.

Examining the impact of auto-tuning, we see somewhat
lower benefits than in the Laplacian case, with speedups of
1.2× all three systems.

Overall for the Divergence computation, auto-
parallelization coupled with auto-tuning improves
performance by 2.2× on the XT4, 4.1× on the Barcelona,
and 10× on Nehalem.
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Figure 4. Gradient performance as a function of auto-parallelization and auto-tuning. For comparison, the yellow
diamond shows performance achieved using the original stencil kernel with OpenMP pragmas and NUMA-aware initial-
ization.

6.3 Gradient Performance
Figure 4 presents Gradient stencil results. Recall that

of our three differential operator kernels, Gradient has the
most demanding memory bandwidth requirements and sig-
nificant reuse of the read arrays. Note that the caches re-
quire write-allocate with write-back to the memory. As
such, on a write-miss, the entire cache line will be filled.
Subsequently, the cache line will be evicted and written
back to DRAM. Thus, for each write of a component to
the output grid, 16 bytes of memory traffic will be gen-
erated. Future work will explore cache-bypass to elimi-
nate this fill traffic. When examining the benefit of auto-
parallelization, we once again see that the Opteron is heav-
ily memory bound with one core, but still see a substantial
improvement over the baseline due to more efficient use of
the available memory bandwidth.

With respect to auto-tuning, we expect a higher perfor-
mance impact than the Divergence kernel, given Gradient’s
higher reuse pattern. The Gradient kernel presents more
opportunities for data reuse, so auto-tuning is expected to
deliver a more substantial boost than for the Laplacian.
This theory is borne out by the demonstrated improve-
ments of 34% on Barcelona and 32% on Nehalem. In-
terestingly, the XT4 is unable to increase performance go-
ing from 2 to 4 cores, probably due to this kernel’s high
write bandwidth requirements. Auto-tuning increases per-
formance by 31% on the XT4 at 2 cores.

Overall, auto-parallelization coupled with auto-tuning
improves performance of the Gradient kernel by 1.6× on
the XT4, 3.6× on Barcelona, and 8.1× on Nehalem.

6.4 Bilateral Performance
The bilateral filtering stencil is somewhat different than

the previous three kernels, in that it exposes much more

computation relative to memory traffic. Depending on the
value of the filter radius, the kernel is generally compute-
bound. Figure 5 shows the performance of the vis ker-
nel with a radius of 3 (top) and 5 (bottom). Interestingly,
Nehalem delivered lower performance on the higher arith-
metic intensity (radius=5) kernel. This is due to the re-
duced efficacy of register blocking at the higher radius
size, perhaps due to register pressure. We also observe
that the hand-optimized pthreads version delivered per-
formance better than our productive auto-parallelization-
alone performance, but lower than our auto-parallelized
and auto-tuned results. In all cases, performance scaled
well with the number of cores — indicative that bandwidth
did not significantly impede performance.

Interestingly, this kernel does not benefit from NUMA
optimizations. In addition, the scaling is almost perfect,
due to the bottleneck being computation. Auto-tuning
yields large improvements by eliminating capacity misses
as well as ensuring high inner-loop performance through
register blocking. Thus auto-tuning increases performance
2× on the XT4 , 2.23× on the Barcelona and 3.6× on Ne-
halem for a radius of 3, and 2× on the XT4, Barcelona,
and Nehalem for radius 5.

Overall, the bilateral filter kernel at radius 3 is improved
relative to the serial version by 4.8× on the XT4, 14.8×
for Barcelona and 20.7× for Nehalem; for radius 5, the
improvement is 4× for the XT4, 11.6× for Barcelona, and
10.2× for Nehalem.

6.5 Comparison to OpenMP
The auto-parallelization scheme specifies a straightfor-

ward domain decomposition over threads in the least unit-
stride dimension, with no core, thread, or register block-
ing. To examine the quality of the framework’s auto-
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Figure 5. Bilateral filtering performance as a function of auto-parallelization and auto-tuning, for radius 3 (top) and
radius 5 (bottom). For comparison, the yellow diamond shows performance achieved using a handwritten pthreads
filtering implementation with NUMA-aware initialization.

parallelization capabilities, we compare performance with
a parallelized version using OpenMP [5] pragmas, which
ensures proper NUMA memory decomposition via the
first-touch pinning policy. Results, represented as yel-
low diamonds in Figures 2–4, show that performance is
well correlated with our framework’s NUMA-aware auto-
parallelization. However, we note that for the Lapla-
cian kernel on the XT4, our auto-parallelization technique
outperforms OpenMP by 25%. Furthermore, our auto-
tuning approach dramatically improves performance over
the OpenMP-only versions.

6.6 Programmer Productivity Benefits

We now compare our framework’s performance in con-
text of programming productivity. Our previous work [3]
presented the results of Laplacian kernel optimization us-
ing a hand-written auto-tuning code generator, which re-
quired months of Perl script implementation, and was in-
herently limited to a single kernel instantiation. In contrast,
utilizing our framework across a broad range of possible
stencils only requires a few minutes to annotate a given

kernel region, and pass it through our auto-parallelization
and auto-tuning infrastructure; thus tremendously improv-
ing productively as well as kernel extensibility.

Currently our framework does not implement sev-
eral hand-tuned optimizations [3], including SIMDiza-
tion, padding, or the employment of employ cache bypass
(movntpd). However, comparing results over the same set
of optimizations, we find that our framework attains ex-
cellent performance that is comparable to the hand-written
version. We obtain near identical results the evaluated plat-
forms. Future work will continue incorporating additional
optimization schemes into our automated framework.

6.7 Architectural Performance
Comparison

Figure 6 shows a comparative summary of the fully
tuned performance on each architecture for each kernel.
For the three differential operator kernels, we observe that
the 2P Barcelona is slightly less than twice as fast as fast as
the 1P Budapest (XT4). Such a situation on these memory-
intensive kernels likely arises from the 66% difference in
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Figure 6. Performance summary. For the bilateral filter kernel, the chart shows average performance across the two
radius values.

aggregate DRAM bandwidth (12.8GB/s vs. 21.3GB/s).
Clearly, Nehalem is substantially faster than either AMD-
based system — clearly an advantage of 50% more DRAM
channels running at up to 60% higher frequency.

The bilateral filtering kernel shows that the 2P
Barcelona can acheive over twice the performance of the
XT4 on this computation-bound kernel, even though the
computational capabilities are only double. The source of
this discrepancy is under investigation. As expected, Ne-
halem performs quite a bit better than either AMD proces-
sor, due to both its higher bandwidth capabilities as well as
its computational ability.

7 Summary and Conclusions

Modern [erformance programmers are faced with the
enormous challenge of productively designing applica-
tions that leverage the computational resources of leading
multicore designs, while attaining performance portability
across the myriad of current and future CMP instantiations.
In this work, we introduce a generalized framework for
stencil auto-tuning that takes the first steps towards mak-
ing complex chip multiprocessors accessible to domain-
scientists, in a productive and performance portable fash-
ion — demonstrating gains of up to 22× speedup com-
pared with the default serial version.

Overall we make a number of important contributions
that include the (i) introduction of a high performance,
multi-target framework for auto-parallelizing and auto-
tuning multidimensional stencil loops; (ii) presentation of
a novel tool chain based on an abstract syntax tree (AST)
for processing, transforming, and generating stencil loops;
(iii) description of an automated parallelization process
for targeting multidimensional stencil codes; (iv) achieve-
ment of excellent performance on our evaluation suite us-
ing three important stencil access patterns as well as a vi-
sualization kernel that implements bilateral filtering; and

(v) demonstration that automated frameworks such as these
can enable greater programmer productivity by reducing
the need for individual, hand-coded auto-tuners.

The modular architecture of our framework enables
it to be extended through the development of additional
parser, strategy engine, and code generator modules. Fu-
ture work will concentrate on extending the scope of op-
timizations as outlined in Section 6.6, including cache by-
pass, padding, and prefetching. We also plan to expand our
framework to broaden the range of allowable stencil com-
putation classes, including in-place and multigrid methods.
Finally, we plan to demonstrate our framework’s applica-
bility by investigating its impact on realistic, large-scale
scientific applications.
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