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Abstract 

Principles of Tactile Stimulus Integration in the Rodent Whisker Somatosensory Cortex 

By 

Keven J. Laboy-Juárez 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Daniel E. Feldman, Chair 

 

Understanding how cortical circuits process sensory information and support perception is a 

fundamental problem in neuroscience. Rodents, being tactile experts, actively use their 

whiskers to sense complex tactile features like surface texture, object shape and location. In 

this dissertation I address how cortical neurons integrate sensory information from individual 

whiskers to support accurate and precise representations of complex tactile features. 

Natural whisking during tactile exploration generates complex spatiotemporal sequences of 

whisker stimulation.  Objects with different textures and shapes result in different patterns of 

whisker stimulation, sequentially stimulating different combinations of whiskers across time. I 

thus hypothesized that individual neurons in primary whisker somatosensory cortex (S1) are 

sensitive to specific features of tactile sequences. Chapter 2 describes the timescales at which 

S1 neurons integrated sensory input while rats discriminated between whisker impulse 

sequences that varied in single-impulse kinematics. While discrimination performance was 

consistent with integration at a relatively slow timescale (approximately 150ms), most S1 

neurons integrated whisker input at a fast timescale (<20ms), generating a precise code for 

vibrotactile sequences in S1. Neurons with slower integration windows (>60ms) did not 

accurately represent the stimulus but were instead related to the rat’s behavioral choice. These 

findings show that S1 neurons encode whisker input at a fast timescale and suggest that areas 

downstream of S1 temporally integrate this information to guide perceptual discrimination.   

Given the precise representations of tactile sequences in S1, Chapter 3 explores the elementary 

computations underlying tactile stimulus integration by S1 neurons. Tactile sequences vary in 

spatial identity of stimulated whiskers and inter-whisker-deflection-intervals (Δt). Dense 

stimulation of local whisker pairs over a physiological range of Δt revealed a somatopically 

organized rate code for whisker combinations that was precise in space and coarser in time. 

Sublinear suppression for suboptimal combinations sharpened tuning relative to that expected 

from linear integration alone; analogous to the computation of motion direction selectivity in 

many visual circuits thus suggesting a common computation for spatiotemporal feature 

extraction. Taken together, this dissertation shows that S1 neurons integrate sensory input in 

space and time to generate robust tuning for spatiotemporal features of tactile scenes.  
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Chapter 1 

 

Introduction 
A key aspect of sensation is the ability of individual neurons to integrate information across 

many specialized sensory receptors. Generally, however, how this process constructs tuning to 

complex sensory features remains poorly understood. In the rodent whisker somatosensory 

cortex (S1) whiskers form a discrete array of tactile sensors that are represented by functional 

columns called barrels1. Within each barrel, neurons have a whisker receptive field-measured 

via isolated deflections of individual whiskers-peaked at one ‘best’ whisker, with most cells 

tuned to the anatomically correct columnar whisker (CW)2,3. This topographical and functional 

organization makes S1 uniquely suited for studying how single neurons integrate localized 

sensory input across peripheral sensors like whiskers. Nevertheless, the computations 

underlying sensory integration and representations of complex multi-whisker stimuli remain 

poorly understood4.  

The topographical organization of S1 suggests a labeled-line coding scheme, where individual 

whiskers are represented in parallel by different barrels, generating a strong code for stimulus 

location in space. This single-whisker tuning model, however, has problems. Many S1 neurons 

respond weakly to single-whisker stimuli; even in awake, actively whisking rats, S1 neurons 

show temporally precise, low probability spiking that results in weak tuning5. Also, single-

whisker stimuli rarely occur during natural whisker-based sensation6–8. Many S1 neurons, 

especially in non-granular layers, have broad receptive fields spanning multiple whiskers9,10 and 

some even have their strongest response to surround whiskers (SWs) rather than the CW11,12. 

Although it’s possible that these SW-tuned neurons are simply misplaced in the barrel map (i.e. 

located in the wrong barrel column), it’s been a longstanding hypothesis that these neurons 

integrate sensory input to construct tuning for complex patterns of multi-whisker stimulation. 

Indeed, recent studies have shown that S1 neurons can be tuned to different multi-whisker 

features like global motion13,14, correlation levels across whiskers15 and specific spatiotemporal 

patterns of whisker stimulation generated via sparse noise16. Nevertheless, whether neurons 

with different whisker receptive fields systematically differ in their multi-whisker tuning 

remains to be assessed. Thus, currently, the whisker receptive field, the primary tool for 

characterizing sensory tuning in S1, has no known function in coding for ethologically relevant 

multi-whisker stimuli4.     

This problem is due to a relatively poor understanding of multi-whisker integration in single 

neurons which, in turn, arises from a highly nonlinear mapping between single-whisker and 

multi-whisker responses. Linear, sublinear and supralinear responses have all been recorded in 
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S1 and show a complex dependence on the identity of the whiskers being deflected17–21, 

whisker kinematics22, number of whiskers21,23, inter-whisker-deflection-intervals17–19 and level 

of sensory adaptation16,17. A particularly important type of inter-whisker nonlinearity is the 

second-order or pairwise interactions between sequential whisker deflections. Single neuron 

responses to periodic vibrotactile sequences involving two whiskers have been found to be 

almost entirely determined by the corresponding combination of second-order nonlinearities20. 

Pairwise nonlinearities also predict neuronal tuning to whisker features that involve the whole 

whisker array like global motion13. These studies, and the fact that any spatiotemporal pattern 

of whisker deflections is built from a set of elementary 2-whisker sequences imply that second-

order computations powerfully shape S1 representations of tactile scenes. Despite this, the 

systematic structure of these elementary inter-whisker nonlinearities and whether/how they 

support spatiotemporal feature extraction remains poorly understood.  

Nonlinearities are essential in the visual system, where spatially asymmetric sublinear 

suppression or supralinear facilitation yield tuning to the direction of moving objects24–26. It’s 

possible that elementary cross-whisker interactions are organized in a similar way, supporting 

tuning to complex features of tactile scenes and suggesting generalized and evolutionary 

conserved neural computations for spatiotemporal feature extraction. Nevertheless the 

complexity and diversity of 2-whisker interactions has prevented this hypothesis from being 

formally tested.  

Neurons in primary sensory cortex generate tuning to spatiotemporal features generally 

integrate across sensory space and time to generate tuning for local spatiotemporal features27–

29. Thus, this dissertation explores the computations underlying tactile stimulus integration by 

S1 neurons in both space and time. Tactile sequences vary in spatial identity of stimulated 

whiskers (space) and inter-whisker-deflection-intervals (time). Accordingly, Chapter 2 describes 

how S1 neurons integrate tactile input from specific whiskers in time while rats discriminated 

between vibrotactile sequences of whisker stimulation. Chapter 3 explores the elementary 

computations underlying tactile stimulus integration through temporally dense stimulation of 

local whisker pairs over the physiologically relevant range of inter-whisker-deflection-intervals. 

Overall, this dissertation makes substantial advances on the computations involving 

spatiotemporal feature extraction and complex tactile feature representation in S1.   
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Chapter 2 

 

Short Time-Scale Sensory Coding in S1 during 
Discrimination of Whisker Vibrotactile Sequences 
 

Leah M. McGuire☯, Gregory Telian☯, Keven J. Laboy-Juárez☯, Toshio 
Miyashita, Daniel J. Lee, Katherine A. Smith, Daniel E. Feldman 
 

☯ These authors contributed equally to this work. 

This chapter, in full, is a republication of the material as it appears in McGuire LM, Telian G, 
Laboy-Juárez KJ, Miyashita T, Lee DJ, Smith KA, et al. (2016) Short Time-Scale Sensory Coding in 
S1 during Discrimination of Whisker Vibrotactile Sequences. PLoS Biol 14(8): e1002549. 
doi:10.1371/journal. pbio.1002549  
 

 
2.1 Summary 
 

Rodent whisker input consists of dense microvibration sequences that are often temporally 

integrated for perceptual discrimination.  Whether primary somatosensory cortex (S1) 

participates in temporal integration is unknown.  We trained rats to discriminate whisker 

impulse sequences that varied in single-impulse kinematics (5–20 ms time scale) and mean 

speed (150 ms time scale).  Rats appeared to use the integrated feature, mean speed, to guide 

discrimination in this task, consistent with similar prior studies.  Despite this, 52% of S1 units, 

including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5–

10 ms), accurately reflecting single impulse kinematics.  17% of units, mostly in L5, showed 

weaker impulse responses and a slow firing rate increase during sequences.  However, these 

units did not effectively integrate whisker impulses, but instead combined weak impulse 

responses with a distinct, slow signal correlated to behavioral choice.  A neural decoder could 

identify sequences from fast unit spike trains and behavioral choice from slow units.  Thus, S1 

encoded fast time scale whisker input without substantial temporal integration across whisker 

impulses.  
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2.2 Introduction 

Natural sensory input comprises dense temporal series of discrete events, which animals often 

temporally integrate to guide perceptual decisions.  The temporal integration process has been 

studied in primate somatosensation and vision1,2, but less in rodents, in which modern tools 

could reveal the underlying circuit mechanisms.  In the whisker tactile system, active whisking 

generates dense streams of stick-slip events on surfaces (5–10 ms duration, ~60 ms interval)3,4 

and contact events on object edges5,6.  These temporal series constitute the whisker 

vibrotactile signal.  While animals can perceive individual brief whisker impulses alone or within 

trains7-11, behavioral discrimination of vibrotactile sequences is often based on a time-averaged 

composite feature, mean whisker speed, rather than the kinematics or precise pattern of 

individual deflections12,13.  This suggests that the brain generates both short time-scale 

(individual impulse) and temporally integrated, long time-scale (mean speed or intensity) 

representations of whisker input.  How these time scales are represented in the cortex is 

unknown. 

 

We tested which time scale(s) of information are represented in S1 in awake behaving rats 

discriminating rapid whisker sequences.  Under anesthesia, most S1 neurons spike phasically to 

whisker deflections, and responses adapt strongly during stimulus trains.  This suggests that S1 

does not temporally integrate across impulses (we use “integration” to mean temporal 

summation or averaging)14-18.  Most S1 neurons also spike phasically to whisker deflection in 

basic detection tasks7-10,19 or when rats must detect kinematically distinct impulses within 

ongoing stimulus trains8.  However, these tasks do not require stimulus integration for 

behavioral performance7-10.  Whether temporal integration occurs in S1 during tasks in which 

animals behaviorally integrate whisker information is unknown.  A subset of S1 neurons exhibit 

sustained responses to stimulus sequences in awake mice20, but whether these contribute to 

perceptual integration is unclear.   

 

We trained rats to discriminate rapid sequences of three brief whisker impulses with an ~60 ms 

interpulse interval.  This interval matches the median interval between stick-slip events during 

texture palpation21.  S1 is required for passive vibrotactile discrimination13,22,23.  Stimuli differed 

in both rapid temporal structure (kinematics and order of individual impulses) and time-

integrated information (mean speed of the entire sequence).  Rats could use either for 

discrimination.  Behavioral choice correlated with mean speed, suggesting that rats temporally 

integrated whisker impulse sequences, as shown explicitly in similar prior studies in which both 

rapid kinematic and slow intensity cues were available12,13.  In tetrode recordings during 

behavior, most S1 units accurately encoded single-impulse kinematics on a rapid (≤20 ms) time 

scale with modest adaptation.  A minority of units responded weakly to individual impulses but 
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exhibited slowly increasing or decreasing spiking during the stimulus period.  However, these 

units did not effectively integrate across impulses and instead combined transient impulse 

responses with a distinct, slow signal correlated to behavioral choice.  Thus, S1 appears to 

represent only short time-scale information about whisker impulse trains during vibrotactile 

discrimination.  This suggests that temporal integration may occur downstream of S1.  

 

2.3 Results 

Behavioral Discrimination of FFF, FMS, SMF, and SSS Sequences 

We developed a novel whisker vibrotactile discrimination task in which rats initiated trials by 

entering a nose poke with their right whiskers resting on a wall panel coupled to a hidden 

piezoelectric actuator (Fig 1).  The panel delivered a rapid sequence of three up-down impulses.  

Each impulse was 16–26 ms long and had Fast (F), Medium (M), or Slow (S) rise/fall velocity.  

Sequences had FFF, FMS, SMF, or SSS pulse order (34 ms interval from end of a pulse to 

beginning of next pulse; 120–148 ms sequence duration).  Sequences were constructed so that 

mean speed was greatest for FFF, lowest for SSS, and equal and intermediate for FMS and SMF 

sequences (Fig 1; Table 1; S1 Fig).  One sequence was delivered per trial, beginning 75–100 ms 

after nose poke entry.  Rats had to maintain nose poke for 250 ms to ensure delivery of the 

entire sequence and then discriminate by selecting a right or left drink port for water reward.  

FFF and FMS sequences were rewarded right, and SMF and SSS were rewarded left.  Training 

was conducted under infrared light, and sound cues from the piezo were masked.  In a subset 

of trials (43 trials, 4 rats), we verified with high-speed video that whiskers remained on the 

panel throughout the stimulus period and that rats did not whisk while in the nose poke, as 

shown previously22.  Head movement averaged 0.8 mm in right-left position and 1.0 mm in 

rostrocaudal position during the stimulus period.  Rats initially trained on FFF versus SSS 

discrimination and then FMS and SMF stimuli were added (see Materials and Methods). 

 These sequences differed in both rapid stimulus features, like identity of individual 

impulses, and slow features, like mean speed of the entire sequence.  We designed the task so 

that fully correct discrimination is only possible if rats attend to fine time-scale information, like 

precise internal structure of the train (FFF or FMS indicates choose right, SMF or SSS indicates 

choose left), or identity of the first impulse (F indicates choose right, S indicates choose left).  In 

contrast, if behavior is guided by mean speed (or duration) of the entire sequence, then rats 

should respond to FFF and SSS correctly but make mistakes in which they treat SMF and FMS 

identically and intermediate to FFF or SSS.   Using a similar task design in which both rapid and 

slow, integrated cues were available, two prior studies found that rats choose to guide 

vibrotactile discrimination by the integrated variable, mean speed or intensity12,13.   
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 After 14.2 ± 4.4 (standard deviation [s.d.]) (range: 8–22) d of training on FFF-FMS-SMF-

SSS discrimination, all eight rats successfully discriminated FFF from SSS stimuli, but failed to 

respond appropriately to FMS and SMF stimuli, instead treating them as equivalent and 

intermediate between FFF and SSS (Fig 2A and 2B).   Seven out of eight rats failed to 

differentiate at all between FMS from SMF stimuli (proportion test, Bonferroni-adjusted p-

value >0.00625).  One rat (62SC) showed modest but significant discrimination, with more right-

side choices to FMS than SMF stimuli (p = 0.0039).  Behavior was stable, on average, across the 

training period (S2 Fig).  Thus, seven out of eight rats showed behavior consistent with guiding 

decisions by time-integrated whisker information.  To examine this further, we plotted the 

mean behavioral performance of each rat versus the mean speed of panel movement across 

the entire sequence (150 ms).  Behavioral performance was computed as (fraction of right drink 

port choices for each stimulus) – (mean fraction of right drink port choices for all stimuli), to 

account for right-left choice bias by some rats (Fig 2B).   Right drink port choice was strongly 

related to mean sequence speed for all rats (Fig 2C).  

  To confirm that rats guided behavior by panel movement, we ran a “fixed panel” control 

in six rats, immediately after the final normal training session.  The panel was fixed in place, 

while the piezo behind it moved normally.  Panel fixation strongly impaired behavioral 

discrimination in all but one rat (example rat, Fig 2A; population data using d-prime analysis, Fig 

2D; population data using a simpler non-parametric analysis, S2B Fig).  Some residual 

discrimination did persist and may have been mediated by inadequately masked piezo sound 

cues.  Further analysis showed that three rats treated the average fixed-panel stimulus similarly 

to SSS stimuli; one rat responded by choosing right or left randomly; and one rat stopped 

completing trials in the fixed-panel condition (S2C Fig).   Thus, different rats had different 

strategies for handling the unfamiliar fixed panel trials. 

 These results suggests that, as in prior studies12,13, rats used slow, integrated 

information (mean speed or intensity) to guide discrimination, rather than rapid information 

(first or last impulse identity or impulse order).  This may reflect either a predisposition for 

intensity cues, or task factors such as our use of strong intensity cues in initial training or the 

nose poke time requirement, which may have promoted an integration-based strategy.  Rats 

are known to sense fast kinematic cues during ongoing sequences7-11, and they can utilize these 

cues for discrimination in some cases8.  We did not apply additional stimuli to further dissociate 

slow from rapid information (as was done in12,13), and thus we cannot independently rule out 

the possibility that rats guided behavior from a hidden fast cue (e.g., second impulse identity) 

that correlated with mean speed.    
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Discrimination of FSFS versus SFFS Sequences 

To test whether failure to discriminate FMS versus SMF reflected insufficient training on these 

sequences or the presence of easier FFF and SSS stimuli on 50% of trials, we trained two rats on 

a modified task.  This used a very simple task structure with only two stimuli:  an FSFS sequence 

(rewarded at the right drink port) and an SFFS sequence (rewarded at the left drink port).  F and 

S impulses had 216 and 120 mm/s peak velocity and 1.2 and 0.7 mm amplitude, respectively.  

Both trains had 34 ms interpulse interval and 188 ms total duration (Fig 3A).  We constructed 

two sets of stimuli:  a “same-intensity” version in which FSFS and SFFS trains had nearly 

identical mean speed (25.7 and 26.4 mm/s, calculated across the full sequence), and a 

“different-intensity” version in which FSFS and SFFS stimuli were scaled in amplitude so that 

mean speed was 27.8 and 8.7 mm/s, respectively. 

Two rats (58B and 60W) were initially trained to discriminate the different-intensity 

sequences (>65% correct over 3 d).  Then, we replaced these stimuli with the same-intensity 

FSFS and SFFS sequences, so that discrimination could only occur by detecting differences in 

fine temporal structure, not mean speed.  Performance dropped to chance and did not improve 

over 5 d of training (Fig 3B).  We then alternated weekly training on different- and same-

intensity sequences.  Both rats consistently discriminated FSFS from SFFS when they had 

different mean speed (58B: 70 ± 1.5% correct, 60W: 69.2 ± 1.6%), but not when they had the 

same mean speed, even after >20 cumulative days of training (58B: 52 ± 0.8% correct; 60W: 53 

± 0.8% correct).  This was evident in the d-prime measure of discrimination between FSFS and 

SFSF stimuli, which was 1.02 for different-intensity stimuli and 0.12 for same-intensity stimuli 

(Fig 3C).  Thus, behavior correlated with the presence of a slow, integrated cue.    

S1 Recordings during Behavioral Discrimination 

To study S1 coding of whisker sequences during vibrotactile discrimination, we recorded S1 

spiking during the FFF-FMS-SMF-SSS behavioral task using chronic multi-tetrode microdrives.  

Four tetrodes (~350 um lateral spacing) were driven as a group, enabling simultaneous 

recording of many neurons in several whisker-related columns (Fig 4A). Tetrodes were initially 

implanted into mid-L2/3 and advanced by ~140 μm every one to two recording sessions, 

sampling neurons from L3 to L6 over 12–22 d of recording.  Spike sorting yielded 3.8 (range: 0–

11) well-separated single units per recording session (Fig 4B).  Additional units showed clear 

separation from noise but failed the interspike interval criterion for single units and were 

classified as multi-units.  We obtained 306 single units and 167 multi-unit clusters (total: 473 

units) across 80 recording sessions in five rats (18FB, 18Ri, 18Ro, 62BS, 107St), spanning across 

L3 to L6 (Fig 4C).  Fast-spike (FS) and regular-spike (RS) units were well separated by spike 

width.  Recordings were localized to C1-4, D2-4, and E3 columns based on receptive field 

mapping under light isoflurane anesthesia and recovery of marking lesions.  These whiskers 
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were visually confirmed to contact the panel, as in a prior study using this behavioral 

apparatus22.   

Mean firing rate during a 25-ms prestimulus baseline period in the nose poke was 6–10 Hz 

across layers for RS units, 8–32 Hz for FS units, and higher for multi-unit clusters (Table S1).  

Lowest firing rates were observed in L2/3, L4, and L6.  Firing rate distributions were positively 

skewed (S3A Fig).  Firing rates for RS units were higher than in prior studies using cell-attached 

or whole-cell recording in rodents whisking mostly in air6,24,25.  This likely reflects recording bias 

for more active units and the fact that whiskers contacted the stimulus panel through the entire 

nose poke duration, including the baseline period. 

We first identified units whose average firing rate was significantly temporally modulated with 

any dynamics during the nose poke period (p < 0.05, temporal modulation permutation test, 

see Materials and Methods).  Three hundred five out of 473 units (63.5%) showed significant 

temporal modulation.  Temporally modulated units were distributed uniformly across whisker 

columns and layers (Fig 4C) and had higher baseline firing rates than non-modulated units (S3B 

Fig).  Subsequent analysis focused only on these temporally modulated (i.e., task-involved) 

units.  Single- and multi-units showed similar response properties and were combined for 

analysis unless indicated. 

The average population response, compiled across all temporally responsive units in each layer, 

was dominated by a brief, phasic increase in firing rate following each panel impulse (Fig 4D).   

This was greatest in L2/3, L4, and L5b, and weakest in L5a and L6.  The mean impulse-evoked 

firing rate modulation (in Hz above pre-impulse baseline) was 14.2 ± 2.3 in L2/3, 15.2 ± 1.9 in 

L4, 6.3 ± 1.2 in L5a, 14.4 ± 2.3 in L5b, and 7.0 ± 1.5 in L6 (n = 28–82 units per layer).  Among 

units with significant impulse responses, peak response latency was shortest in L4, L5a, and L5b 

(9.8, 10.3, and 12.0 ms) and longest in L2/3 and L6 (13.8 and 16.1 ms).  Superimposed on these 

phasic responses to individual impulses was a gradual decrease in average firing rate during the 

nose poke period, observed in all layers except L5a (Fig 4D).   

Individual units most commonly showed phasic responses to individual impulses (examples, Fig 

5A and 5B).  However, some units instead showed cumulatively increasing firing rate during the 

stimulus period (Fig 5C and 5D) or decreasing firing rate (not shown).  These were intermixed in 

the same columns and recording sites. 

 

Regression Analysis to Identify Fast- and Slow-Time Scale Units 

To quantify the time scales of stimulus representation in S1, we performed a multiple 

regression analysis for each temporally modulated unit (n = 305), whose goal was to identify 



CHAPTER 2: FAST CODING IN S1                                                                                                                            11 
 

the time window of stimulus integration that best predicted the neuron’s firing rate (Fig 6).  The 

dependent variable was firing rate, in 5 ms bins, calculated over all trials for each stimulus 

sequence.  The regressors were integrated speed of panel movement over a variety of temporal 

integration windows (5, 10, 15, … 180 ms, for a total of 36 regressions).  Firing rate in each 5 ms 

bin was predicted from the integrated panel speed in the preceding bin.  Two hundred four 

units showed a significant regression for at least one stimulus integration window (α = 0.05/36 

= 0.0014, using Bonferroni correction for the multiple regressions).  For each unit, we defined 

the best fit integration window as the stimulus integration window with the highest R2 value. 

 

 Most units had a short best fit integration window (5–20 ms), indicating that firing rate 

was best predicted by stimulus speed on a short time scale (examples, Fig 6A and 6B).  

However, some units exhibited slowly increasing or decreasing firing that was correlated with 

integrated speed over long timescales, most often the whole stimulus period (example, Fig 6C).   

Individual cells had high R2 values for either short or long integration windows but rarely both 

(Fig 6D).  Most units showed a positive regression slope for the best integration window, 

indicating that firing rate increased with integrated stimulus speed, while ~20% showed a 

negative slope (Fig 6D and 6E).  Empirically, units with 5–20 ms best integration windows (Fast 

units; n = 158) had positive slopes.  Units with 25–55 ms integration windows were rarer 

(Medium units; n = 52) and had largely negative slopes.  Units with slow (55–180 ms) 

integration windows had either positive regression slope (Slow Positive units; n = 51) or 

negative regression slope (Slow Negative units; n = 44).   

 Fast units were 73% of temporally modulated units in L2/3 and L4, 50% in L5, and 23% in 

L6.  Overall, 52% of temporally modulated units were Fast units.  Both Fast and Medium units 

were most prevalent in L2/3, L4, and L5b.  In contrast, both Slow Positive and Slow Negative 

units were located primarily in L5 and L6 (Fig 6F and 6G).  Overall, slow units were 13% of 

temporally responsive units in L2/3 and L4, 31% in L5 and 56% in L6.  Fast, Medium, Slow 

Positive, and Slow Negative categories each contained both single- and multi-units and both RS 

and FS units. 

Fast and Medium Time Scale Units 

Fast time scale units showed temporally precise coding of individual panel impulses and 

sequences (Fig 7A–7C).  Population PSTHs for the fastest units (5 ms best integration window) 

showed responses to F impulses (16 ms duration) that lasted just ~20 ms and responses to S 

impulses that tracked impulse onset and offset separately.  Units with 10 ms and 15–20 ms best 

integration windows had somewhat slower responses, as expected, but still tracked individual 

impulses.  Adaptation within each train was quantified as mean firing rate to pulse N/pulse 1 

and was modest in FFF trains (2/1: 0.80 ± 0.11, 3/1: 0.70 ± 0.14, p < 0.05 by t test, n = 61 single 
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RS units with significant response to F impulses) and statistically absent in SSS trains (2/1: 1.09 ± 

0.26, 3/1: 0.86 ± 0.35, all mean ± SEM) (Figs 7A and S4).  This is less adaptation than reported 

for non-whisking, non-task-engaged rats16,26 and is similar to passive whisker detection10. 

 To determine whether Fast units accurately discriminate impulse velocity, we calculated 

the average response to all individual F, M, or S impulses (compiled across all sequences).  The 

firing rate of Fast units (n = 158) in a brief window after each impulse was greater for F versus S 

impulses, and intermediate for M impulses (Fig 7C, left).  Mean firing rate measured over the 

entire duration of a sequence (0–150 ms after sequence onset) varied closely with mean speed 

of the sequence, being highest for FFF, lowest for SSS, and intermediate and equal for FMS and 

SMF (Fig 7C, right).  Thus, population average firing rate of Fast units over the entire sequence 

closely matched the mean behavioral performance of the animals (Fig 2C).   

 In addition to coding pulse velocity, Fast unit coding was also influenced by pulse order 

because of adaptation.  Fast RS single units (n = 61) showed greater adaptation during FFF than 

SSS sequences.  Consistent with this, the middle M pulse in FMS sequences appeared weaker 

than in SMF sequences, though this did not achieve statistical significance (p = 0.08, paired t 

test, n = 61 units) (S4A Fig).  Thus, Fast units represent impulse velocity, but with some history 

dependence due to adaptation, and no sign of positive temporal integration across impulses. 

 In contrast, medium time scale units responded to impulses with a modest decrease in 

firing rate, rather than an increase, consistent with the negative regression slope for most of 

these cells (Figs 6E and 7D).  In firing rate analysis, these cells were inhibited by F, M, and S 

impulses and did not distinguish either individual impulse identity or whole sequence identity 

(Fig 7D and 7E).  Thus, medium time scale units do not represent stimulus information useful 

for this discrimination task. 

 

Slow Positive and Slow Negative Units 

Slow positive units (n = 51) also showed a time-locked increase in firing rate after panel 

impulses, on average, but mostly to the second and third impulses in the sequence.  Responses 

were small and sustained (unlike the large, transient responses by Fast units) and were evident 

for F and M impulses but not S impulses (Fig 8A).  However, mean firing was not different for 

FFF, FMS, SMF, or SSS trains, suggesting that these neurons do not appreciably integrate 

impulse information for sequence discrimination (Fig 8A).  Slow negative units did not respond 

to impulses at all, and firing rate steadily declined over time, not locked to panel impulses (Fig 

8B). 
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 Unexpectedly, firing of Slow Positive units correlated with the animal’s behavioral 

choice on each trial.  Fig 8C shows population PSTHs for Slow Positive units in L5a and L5b, 

divided into trials in which the rat chose the right- or left-side drink port.  Slow Positive units 

fired more on trials when the rat chose right (contralateral to the S1 recording).  This was true 

for both FFF and FMS stimuli, for which right was the correct response, and SMF and SSS 

stimuli, for which right was the incorrect response.  We quantified right-choice bias as the firing 

rate difference on right versus left trials, measured 5–50 ms after the start of the final impulse.  

Right-choice bias was significant for Slow Positive units in L5a and L5b, but not other layers (Fig 

8D).  Firing rate began to diverge on right versus left choice trials after the second impulse and 

was consistently significant by 125 ms, which is during the third impulse (p < 0.05, sliding paired 

t test) (Fig 8E).  This preceded the earliest withdrawals (150 ms) and mean withdrawal time 

(190 ms).  Choice-related activity was absent in fast time scale units in L4 (Fig 8E).  

 Thus, L5 Slow Positive units exhibited weak impulse-evoked spiking and strong choice-

related spiking (Fig 8).  We tested for stimulus integration in these units by comparing firing 

rate during each impulse of FFF, FMS, SMF, and SSS sequences on right- and left-choice trials 

separately, which removes choice as a factor (S5 Fig).  Evoked firing was minimal for pulses 1 

and 2 and was not correlated with pulse velocity.  Pulse 3 firing rate was higher but was 

essentially identical for FFF, FMS, SMF, and SSS sequences and did not correlate with mean 

speed of the entire sequence or of the last two impulses.  Thus, these units did not effectively 

summate stimulus information across impulses.   

 We asked whether choice-related firing could reflect a feed-forward sensory reafferent 

signal generated by decision-related movements in the nose poke.  Reafference from fast 

whisker deflections is unlikely, because L4 Fast units did not exhibit choice-related firing (Fig 8).  

However, a distinct slow reafferent signal is possible.  We tested for choice-related postural 

movements by analyzing high-speed videos in 43 trials (22 left choice, 21 right choice) from four 

rats.  In each trial, we tracked head position, head angle, and whisker tip position with ~100 µm 

precision at 8.4-ms intervals from 0 to 150 ms after stimulus onset.  Head angle and whisker tip 

trajectories were invariant between right- and left-choice trials.  Head position differed 

modestly between right- and left-choice trials beginning at 100 ms, with a 0.6 mm difference at 

125 ms (S6 Fig).  Thus, slow head movements are a potential reafferent driver of choice-related 

firing in L5.      

 

RS and FS Single Units 

Fast, Medium, Slow Positive, and Slow Negative response classes all included RS, FS, and multi-

unit clusters, although few FS cells were found in the Slow classes (S7 Fig).  Among Fast units, all 
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three unit types had similar sequence-related PSTHs.  Among L5 Slow Positive units, both RS 

units and multi-unit clusters had similar choice-related firing, and no FS units existed in this 

category (S7 Fig).  Thus, all response classes involved RS units.    

 

Neural Decoding of Stimulus Identity and Behavioral Choice 

S1 neurons spike sparsely, with individual whisker deflections eliciting mostly zero spikes, 

occasionally one spike, and, very infrequently, two spikes on a single trial21,27,28.  We also 

observed this highly variable, sparse single-trial spiking behavior (Fig 5).  To test whether S1 

accurately encodes whisker sequences on single trials, we constructed a neural population 

decoder that predicted stimulus identity from single-trial spike trains.  In the model, each 

recorded neuron was represented by a separate, independent one-vs-all (OVA) classifier that 

predicted the probability of each sequence (FFF, FMS, SMF, or SSS) given one spike train, 

chosen randomly from that neuron’s recorded spike trains in vivo, and binned in discrete time 

bins.  Each OVA classifier was trained by logistic regression from a randomly chosen subset of 

spike trains for that unit.  The output of each classifier was the probability of each stimulus type 

versus all others, based on the presented spike train.  To create a population prediction, 

stimulus probabilities were summed across units, and the sequence with highest summed 

probability was taken as the population stimulus prediction (Fig 9A).  This model assumes 

independence between neurons and allows stimulus prediction by both firing rate and 

temporal information within spike trains.   

  We first constructed a decoder from all Fast and Medium units, using 10 ms time bins.  

This model predicted sequence identity, using one single-trial spike train per model unit, with 

83% overall accuracy (range: 74% for FMS to 88% for FFF spike trains).  Chance performance is 

25% (Fig 9B).  The individual neurons with best stimulus prediction were those with 5–10 ms 

best integration windows (Fig 9C).  Remarkably, this model identified SMF and FMS sequences 

with 78% accuracy, even though rats could not.  A second decoder constructed of all Slow units, 

also using 10 ms bins, predicted sequence identity at near chance levels (32% correct, not 

significantly different from chance, p = 0.47) (Fig 9B).   Decoding from mean firing rate in a 

single 150-ms bin substantially reduced Fast/Medium decoder accuracy (43% correct) and did 

not improve Slow decoder accuracy (Fig 9D).   

 To test whether the Fast/Medium model recognized sequences by mean firing rate or 

temporal spike pattern, we rate-normalized the spike train data (preserving temporal 

information across the 10-ms bins) or time-scrambled spike trains within trials (preserving firing 

rate information).  Fast/Medium decoders trained on rate-normalized data performed well 

(80% correct), but time-scrambling spikes abolished performance (Fig 9E).  Thus, the 
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Fast/Medium decoder primarily identified stimuli by temporal spike patterns, which varied 

between FFF, FMS, SMF, and SSS sequences (Fig 7).  Thus, sequence identity was primarily 

encoded in short time-scale spiking information, carried by Fast units. 

 We constructed a similar decoder to predict behavioral choice.  This was trained on 

spike data from all four sequences and was tested for prediction of right versus left drink port 

choice separately for FFF, FMS, SMF, and SSS trials.  A choice decoder based on Fast/Medium 

units was unable to predict drink port choice, either using 10 ms bins (not shown), mean firing 

rate in a single 150-ms bin, or mean firing rate in the last 100 ms prior to nose poke withdrawal 

(Fig 9F).  A choice decoder based on Slow units successfully predicted drink port choice using a 

single 150-ms bin, or mean firing rate in the last 100 ms before nose poke withdrawal (65% 

correct for both models) (Fig 9F).  Post-hoc analysis showed that units with best choice 

prediction were Slow Positive units located primarily in L5b (Fig 9G).   Thus, spiking of Slow 

Positive units was sufficient to decode behavioral choice but not sequence identity.  

 

2.4 Discussion 

Behavioral Integration of Stimulus Sequences 

Cortical sensory systems temporally integrate sensory signals for many types of perceptual 

decision-making2.  Where and how integration is performed is unclear.  In fingertip vibrotactile 

discrimination by primates, S1 neurons spike to each rapid skin deflection, and this information 

is temporally integrated downstream of S1 to guide behavioral discrimination1,29.   In the rodent 

whisker system, passive vibrotactile discrimination is often based on slow, time-integrated 

input12,13, although rats are also capable of discrimination based on rapid kinematics8.  

Integration is also implicated in discrimination of surface texture (roughness), in which surface 

whisking generates temporally dense sequences of stick-slip whisker micromotions, whose 

mean statistics, including mean whisker speed, correlate with roughness3,4,21,30-33.  S1 neurons 

spike phasically to stick/slip events and other features such as dynamic changes in whisker 

bend3,21,34, and behavioral judgments of surface roughness correlate with mean firing rate and 

rate of synchronous spiking across S1 neurons21,35,36.  Thus, roughness discrimination likely 

involves temporal integration of stick/slip events and S1 spike trains.  Integration is useful 

because it reduces the complexity of the vibrotactile signal to a single scalar quantity of 

stimulus intensity.  Intensity-based discrimination is common across modalities and is a defining 

feature of texture discrimination in people and non-human primates37.  Integration is also 

evident in whisker-based object localization, in which S1 spikes are time-locked to object 

contact, but mice judge object location by behaviorally integrating spike counts over ~50 ms, 

rather than using precise timing19.   
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In our task, rats were able to distinguish FFF versus SSS sequences that differed in mean speed, 

but not FMS versus SMF sequences that had the same mean speed, and choice behavior was 

strongly related to mean speed across the sequence (Fig 2).  Similar performance was observed 

in the SFSF versus FSSF task (Fig 3).  Task performance was relatively low (d-prime for FFF 

versus SSS: 0.5–1.5), as in a prior study13, indicating the difficulty of these tasks.  The results 

suggest that rats utilized slow, time-integrated information for task performance, even though 

simple, short time-scale cues (e.g., identity of the first impulse) would have led to more 

rewards.  This hypothesis is consistent with two prior vibrotactile discrimination studies using a 

similar design, in which rapid kinematics and slow intensity cues were manipulated separately 

to prove that rats guided discrimination by slow, time-integrated cues12,13.   We did not test this 

causally in our study, so we cannot rule out that rats may have solved our task using a hidden 

short time scale cue.   

 

Integration is not required for simpler detection tasks7,9,10 or detection-of-change tasks8, and 

rodents can perceive single brief whisker impulses within ongoing deflection trains7-11,38.  This 

suggests that rats generate neural codes for both rapid and integrated features that guide 

different aspects of sensory-guided behavior.  Rats may differentially use these codes 

depending on task demands and training strategies.  In our task, initial training involved strong 

intensity cues, which may have promoted adoption of an integration-based strategy.  An 

intensity-like feature of vibrotactile stimuli is encoded in primate dorsolateral prefrontal cortex 

during a working memory task39, but no explicit intensity representation is known yet in the 

rodent whisker system. 

 

Stimulus Encoding in S1 Occurs at Fast (5–20 ms) Time Scales 

We tested for stimulus integration in S1 during task performance but found that S1 encoded 

whisker sequences almost exclusively at very rapid time scales.  Forty-four percent and 52% of 

temporally responsive units showed very fast (5–10 ms) and fast (5–20 ms) stimulus 

integration, respectively (Fig 6E).  These units spiked to individual whisker impulses, with firing 

rate encoding impulse velocity, and mean firing rate correlated with mean whisker speed across 

the sequence (Fig 7A–7C).  Seventeen percent of units showed firing rate modulations on 

medium (25–55 ms) time scales, but these were inhibited by whisker impulses and did not 

discriminate different impulses or sequences (Fig 7D and 7E).  Sequence identity could be 

decoded accurately from Fast units but not Medium units, and stimulus information was 

abolished by scrambling spike times across 10-ms bins.  Thus, Fast units encode sequence 

identity by representing the velocity and timing of individual impulses.  Fast units accurately 

distinguished FMS from SMF sequences, even though rats could not (Fig 9B).  Thus, accurate 

short time-scale representation of vibrotactile sequences exists in S1 but does not appear to be 
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used efficiently to guide behavior in our task.  This is identical to primate S1, in which precise 

spike timing discriminates vibrotactile flutter more accurately than the animal40.   

 Fast units had phasic whisker responses similar to classic anesthetized studies14,41 and 

S1 units recorded during detection tasks7,8,11.  Responses were weak in L5a and L6 (Fig 4), which 

may reflect involvement of this layer in active whisking, which was absent in our task42.  

Adaptation was minimal: ~25% for FFF trains and absent for SSS trains (Fig 7A–7C).  This level of 

adaptation is less than occurs under anesthesia15,18 or in quiescent, non-task engaged rats16,26  

and is similar to that during active exploration16,26 or in a whisker detection task10.  While 

adaptation generates history dependence and thus carries information about prior 

impulses43,44, Fast units showed no evidence of positive integration across impulses. 

  

Slow Units Do Not Integrate Stimuli but Reflect Behavioral Choice  

Seventeen percent of units, primarily in deep layers, were Slow Positive units with small, 

sustained responses to individual whisker impulses and progressively increasing firing rate 

during the stimulus period.  However, these units did not accurately encode or integrate 

whisker impulses.  Responses were generally absent to the first impulse of sequences, and 

firing rate did not differ between FFF, FMS, SMF, and SSS sequences or correlate with mean 

speed (Figs 8A and S5).  Thus, Slow Positive units do not appear to carry integrated stimulus 

information for sequence discrimination.  Slow Negative units had slowly decreasing firing rate 

and no stimulus-related firing modulation at all (Fig 8).  Consistent with these observations, 

sequence identity could not be decoded from Slow unit spike trains (Fig 9B).  Slow whisker-

evoked spiking occurs in some L2/3 units in mice [20] but was not evident in our dataset in rats.   

 Instead, firing of Slow Positive units in L5 was strongly related to drink port choice.  

Choice-related spiking45 occurs in many cortical areas, including primary visual cortex46, S1 of 

primates and rodents11,47-49, and even subcortically49,50.  In rodent S1, many L2/3 neurons 

exhibit choice-related spiking in near-threshold detection tasks11,49.  Choice-related firing 

emerged significantly after the second impulse of the sequence and was consistent during the 

third impulse, 65 ms before the average nose poke withdrawal (Fig 8E).  A neural decoder built 

from Slow unit spike trains predicted behavioral choice from mean firing rate in the stimulus 

period and in the 100 ms prior to nose poke withdrawal (Fig 9).  Choice-related firing was 

absent in L4 Fast units, suggesting it did not represent reafference from fast whisker sensory 

signals (Fig 8E).  Choice-related spiking could reflect reafference from slow head movements 

prior to nose poke withdrawal, potentially mediated by POm afferents to L551 or an internal 

decision or motor preparatory signal.  Its onset after the second impulse could reflect an early 

behavioral decision based on first and second impulse stimulus information or an early 

stimulus-independent “guess” that biased subsequent stimulus-dependent drink port choice.  

Thus, Slow Positive units do not appear to integrate across whisker impulses but combine weak 

impulse responses with a distinct, slow signal related to behavioral choice.      
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Where in the Brain Does Temporal Integration Occur? 

We found that during vibrotactile discrimination, most S1 neurons represent the velocity and 

timing of individual whisker impulses at rapid, 5–20 ms time scales.  While there was some 

history dependence of whisker responses due to modest adaptation, we did not observe 

evidence of positive integration across whisker impulses in S1 firing rates.  Thus, temporal 

integration for discrimination is likely to occur downstream of S1, in higher sensory or premotor 

regions.  These may include S2, prefrontal cortex, and premotor cortex, as in primate 

vibrotactile discrimination1.   We cannot rule out that S1 could learn to temporally integrate 

under conditions in which rats were more reliant on slow cues for behavioral discrimination.  

For whisker texture perception, our finding of short time scale coding in S1 suggests that S1 

primarily encodes low-level kinematics of individual stick/slips and bends6,21, which are 

integrated downstream to represent texture or other surface features.  

2.5 Conclusion 

We recorded neural activity in primary somatosensory cortex as rats discriminated rapid 

vibrotactile sequences and found that neurons in the primary somatosensory cortex encoded 

whisker sensory information at very fast time scales (<20 ms), without evidence for substantial 

temporal integration.  A subset of neurons encoded relatively little stimulus information but 

strongly encoded the rat’s behavioral choice on each trial.  Thus, primary sensory cortex 

represents immediate sensory input, suggesting that temporal integration occurs in 

downstream brain areas. 

 

 

 

2.6 Methods 
 

Female Long-Evans rats were >3 mo of age.  All procedures were approved by the UC Berkeley 

Animal Care and Use Committee (protocol R309-0516BC) and comply with NIH guidelines. 

 

FFF-SMF-FMS-SSS Discrimination Task 

The computer-automated chamber contained a nose poke, flanked by a wall-mounted whisker 

stimulus panel (2 x 2 cm) that was carried on a hidden piezoelectric actuator (Piezo Systems PSI-

5H4E).   Whiskers were trimmed to 15 mm in length.  The right-side C, D, and E row whisker tips 

rested against the panel while the rat was in the nose poke (Fig 1A).  Nearby right and left drink 
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ports contained infrared-LED beam sensors to detect nose entry and delivered calibrated water 

rewards.  Trials were monitored by infrared video.   

 Each trial was self-initiated by entry into the nose poke.  After a variable delay (75–100 

ms), a sequence of three rapid whisker deflections was delivered via the panel.  The rat was 

required to remain in the nose poke for 250 ms to ensure full sequence delivery.  The rat then 

withdrew from the nose poke and was rewarded (0.05–0.1 mL water) for choosing the drink 

port that was associated with the presented stimulus.  Incorrect drink port choice or premature 

nose poke withdrawal triggered a time-out tone (4–6 s) and no reward.  In a subset of sessions, 

high-speed video (119 Hz) was recorded. 

 

Whisker sequences 

Each whisker deflection sequence consisted of three up-down ramp-return deflections (pulses).  

Each pulse had either slow (S), medium (M), or fast (F) rise-fall velocity.  These pulses differed in 

rise-fall time and therefore had different pulse durations but similar amplitude (Fig 1B and 1C; 

Table 1).  Sequences had either FFF, FMS, SMF, or SSS pulse order, with 34 ms between the end 

of one pulse and the beginning of the next, yielding 50–62 ms interval between pulse onsets.  

Total train duration (from beginning of the first pulse to end of the last pulse) was 120–146 ms.  

Mean speed, calculated over the entire train, was highest for FFF, intermediate and equal for 

FMS and SMF, and lowest for SSS sequences (Fig 1D; Table 1; S1 Fig).  One sequence was 

presented per trial, with random order across trials.  Training was in the dark, and acoustic cues 

were obscured using masking noise composed of white noise densely intermixed with sampled 

piezo sounds.  To further mask any unintended auditory cues, an additional “dummy” piezo was 

hidden behind the stimulus panel and actuated on each trial in a manner uncorrelated with 

panel movement. 

 

 

Table 1.  Knematiics of FFF-FMS-SMF-SSS whisker sequences   

Impulse 
Rise/Fall Time 

(ms) 
Peak Velocity 

(mm/s) Duration* (ms) 
Peak Amplitude 

(mm) 

Fast (F) 8 220 16 1.03 
Medium (M) 11 170 22 1.15 
Slow (S) 14 110 28 1.14 
     

Sequence 
Interpulse 

Interval (ms) 
Peak Velocity 

(mm/s) Duration* (ms) 
Peak amplitude 

(mm) 

FFF 34 120 65.7 Right 
FMS 34 132 54.4 Right 
SMF 34 132 54.7 Left 
SSS 34 148 44.6 Left 

* Duration measured as time from initial deflection to return to baseline position. 
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Training stages and reward contingency 

First, rats were trained to nose poke for >150 ms and to drink from the drink ports.  Next, rats 

were presented in the nose poke with exaggerated amplitude and velocity versions of FFF and 

SSS stimuli and were trained to choose the right drink port for FFF stimuli and the left drink port 

for SSS.  When each rat achieved >60% correct, stimulus amplitude was stepped closer to the 

final amplitude, and the nose poke time requirement was incrementally increased. This was 

iterated until the final stimulus amplitude and 250 ms nose poke time requirement were 

reached.  Rats then performed FFF versus SSS discrimination using final-amplitude stimuli for 1–

4 wk.  At this point, the chronic recording drive was implanted, rats rested for 1 week of 

recovery, and then training was re-initiated until performance regained pre-surgical levels, 

usually about a week.  Finally, FMS and SMF stimuli were added (rewarded right and left, 

respectively).   All behavioral and neural data reported in the study were collected during this 

final stage. 

 

FSFS-SFFS Discrimination Task   

In this task, each whisker sequence consisted of four pulses.  Two pulses were low-amplitude, 

slow pulses (S) that were 0.7 mm amplitude, 120 mm/sec peak velocity, 12.5 ms rise and fall 

time, and 25 ms total duration.  Two were higher-amplitude, fast pulses (F) that were 1.2 mm 

amplitude, 216 mm/sec peak velocity, 9 ms rise and fall time, and 18 ms total duration.  Trains 

of F-S-F-S or F-S-S-F pulses were presented (34 ms inter-pulse interval, total train duration 188 

ms).  In the “same-intensity” stimulus set, both FSFS and SFFS trains had identical pulse 

amplitude and, therefore, mean speed (mean speed 25.7 mm/sec for FSFS, and 26.4 mm/sec 

for SFFS).  In the “different intensity” stimulus set, FSFS stimulus amplitude (and velocity) was 

increased to achieve a mean speed of 27.8 mm/sec, and SFFS stimulus amplitude (and velocity) 

was decreased to achieve a mean speed of 8.7 mm/sec.  Training was performed in identical 

steps as above, using the “different-intensity” stimuli at the second training stage.  No 

recordings were performed. 

  

Neural Recordings 

Recordings were made with an array of four tetrodes carried in a custom 3D-printed chronic 

microdrive.  Tetrodes (12.5 μm nichrome wire, gold plated to 0.2–0.3 MΩ impedance) were 

spaced 0.35 mm apart in a square configuration and moved together as a single bundle along a 

radial penetration.  The tetrode drive was mounted in a surgical procedure under initial 

ketamine-xylazine anesthesia (90 mg/kg and 10 mg/kg), maintained by transition to 0.5%–3% 

isoflurane.  A 4-mm craniotomy was opened over S1 (5.5 mm lateral, 2.5 mm caudal to 

bregma), the dura was removed, and the microdrive was positioned over the durotomy.  The 

tetrodes were lowered into L2 of S1 and the microdrive was mounted with dental cement, 
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sealing the craniotomy.  Reference and ground electrodes were mounted in the skull.  

Postoperative analgesia was provided with Buprenorphine (0.05 mg/kg every 8 h) for 1–2 d 

post-surgery.  Animals recovered 5–10 d prior to behavioral and recording sessions. 

 Recordings were made during one to two behavioral sessions per day for each rat.  

Tetrode signals were amplified and filtered (Plexon, 100x gain, 0.3–8 kHz bandpass filter) and 

digitized at 32 kHz, using methods as in21.  Neural data was acquired continuously.  Tetrodes 

were advanced a half-turn (140 μm) every one to two recording sessions, at least 30 min before 

recording started.  A new set of units was sampled in every session.  If new units appeared 

spontaneously overnight, the tetrode was not advanced.  Recording ended when the tetrode 

entered the white matter, as judged by absence of spiking activity when advancing the drive.  

Twelve to 22 d of recording were performed per animal.   

 Recordings were made in C1–4, D2–4, and E3 whisker columns, as determined by hand 

mapping under isoflurane anesthesia prior to the recording sessions.  An electrolytic lesion was 

made at the final recording location to determine recording depth.  Lesions were recovered in 

cytochrome oxidase-stained histological sections (100 μm thick) cut in the “across-row” plane, 

45o coronal to the midsagittal plane52,53.  This allowed the whisker row identity (A–E) of the 

recorded column and laminar identity of recording sites to be confirmed.  Laminar boundaries 

were determined by aligning lesions with layer-specific CO staining boundaries, and were as 

follows:  L2/3:  200–650 μm, L4: 650–975 μm; L5A: 975–1285 μm; L5B: 1285–1575 μm; L6: 

1575–2200 μm. 

 Single units were isolated offline using Wave_clus in Matlab54. After an initial automated 

clustering step, manual evaluation of all clusters was performed and manual changes to the 

clustering were carried out as needed.  Single units were required to meet an interspike interval 

criterion (<0.5% of intervals less than 1.5 ms) and a signal-to-noise (STN) criterion for spike 

height (STN>2, with STN defined as the difference from trough to peak in the mean waveform 

divided by the average standard deviation across all samples in the waveform).  Fast-spiking 

and regular-spiking units were classified by spike width, which was bimodally distributed.  Fast 

spiking units had width <0.375 ms trough-peak delay. 

 

Neural Data Analysis 

Neural data were analyzed for five rats, including one rat for whom the fixed-panel control task 

showed substantial task performance in the absence of panel movement (filled circles in Fig 

2D).  This rat’s data were included because panel-evoked responses, stimulus decoding, and 

choice decoding did not differ from other rats (not shown).  

Temporal response modulation: We identified units whose firing rate was significantly 

temporally modulated during the stimulus presentation period (0–180 ms after NP entry) using 

a permutation test [55].  Measured firing rate was compared in 10-ms bins with randomly time-
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permuted spikes (10,000 permutations).  Units with significant difference from permuted data 

(p < 0.05) were considered temporally modulated and were included in further analysis. 

Stimulus-evoked responses:  PSTHs were calculated with 1 ms time bins, aligned to onset of 

the first impulse.  Unit PSTHs were smoothed (10 ms boxcar) for display only (Fig 4).  Stimulus-

evoked firing modulation quantifies the peak evoked response in a 40-ms window post-

stimulus.  It was calculated as the difference between mean baseline firing rate (0–10 ms prior 

to pulse onset) and maximum or minimum firing rate anywhere in a 40 ms window after 

stimulus onset (with 10 ms smoothing).   Peak response latency was defined as the time of this 

maximum response.   Mean impulse-evoked firing rate was quantified in a 5–35 ms window 

after impulse onset.  Impulse-responsive units were defined as those neurons whose mean 

impulse-evoked firing rate was significantly greater than baseline firing rate (0–10 ms before 

impulse onset) by t test.   

Stimulus regression:  We performed a multiple regression to determine the optimal stimulus 

integration window for each unit.  The neural responses from 0 to 180 ms relative to stimulus 

onset were binned into 5 ms windows and used as the dependent variable in this regression. 

The independent variables (regressors) were the integrated speed of the panel over a series of 

fixed integration windows, from 5 to 180 ms in 5-ms steps.  Each speed bin (e.g., from -20 to 0 

ms in the 20 ms integration window regression) was used to predict firing rate in the 

subsequent 5-ms bin (from 0 to 5 ms in this example).  For cells that had significant regressions 

in at least one stimulus integration window (p < 0.05/36 = 0.0014, Bonferroni correction for 36 

integration windows tested), the best fit integration window was taken as the stimulus 

integration window with the highest R2 value.  Regression was performed in Matlab.  

Integration window is not independent from latency in this analysis; however, inspection of 

PSTHs shows that units identified by the regression as having progressively longer best 

integration windows exhibited progressively slower whisker-evoked responses, not just longer 

latencies (Figs 7A, 7B, 8A, and 8B).   

 

Neural Decoders 

A neural decoder was constructed to predict stimulus identity (FFF, FMS, SMF, SSS) from single-

trial spike trains of the recorded units.  Each unit was represented by a one-versus-all (OVA) 

classifier that was trained by logistic regression to report the probability of each stimulus given 

a single-trial spike train (0–150 ms after stimulus onset, binned using either 10 ms bins or a 

single fixed time bin), selected randomly from recorded spike trains for that unit.  Each classifier 

comprised four logistic functions, one for each stimulus.  Logistic functions were fit using 

logistic regression and k-fold cross-validation and were specified by coefficients (one for each 

time bin, plus a bias term) that relate spike rate in each time bin to the probability of stimulus s 

being delivered.  Model fitting was performed using a randomly chosen subset of the recorded 

trials (70%), and decoder performance was assessed on the remaining trials.  The output of 
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each unit classifier was normalized so that each unit had the same weight in population 

decoding.  The population stimulus prediction sp was calculated by summing the probabilities of 

each stimulus over all units and selecting the stimulus with the maximal summed probability.  

Model fitting and population decoding were repeated 300 times, and average performance is 

reported.  This framework is equivalent to determining sp as the stimulus that maximizes the 

conditional probability of the four stimuli given the neural population response, assuming that 

all single units are independent and the prior distribution of s is uniform.   Rate-normalized and 

time-scrambled spike trains were generated by dividing each spike train by its -Euclidean norm 

and shuffling spike times within trials, respectively.  

 A separate behavioral choice decoder was constructed similarly and was used for 

predicting right or left drink port choice on a given trial.  Since this is a binary decision, a single 

logistic function was fit for each unit.  The model was fit using spike train and behavioral choice 

data from all four stimuli.  Decoder performance was assessed separately for FFF, FMS, SMF, or 

SSS stimulus trials in order to dissociate stimulus identity from the rat’s behavioral choice.  The 

population choice prediction cp was selected as the choice with maximal summed probability 

across all units, given single-trial spike trains from trials with the chosen stimulus type.  Model 

fitting and decoding procedures were the same as above.  All decoding analysis was performed 

using Python and the scikit-learn machine learning toolbox [56]. 
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Fig 1.  Whisker stimuli and behavioral apparatus.  (A) Schematic of training apparatus, showing the rat’s 

right whiskers resting on the moveable stimulus panel.  (B) Panel kinematics for fast, medium, and slow 

impulses.  Circles indicate maximum velocity.  (C) Panel kinematics for FFF, FMS, SMF, and SSS 

sequences.  Data for this panel are in S1 Data. (D) Mean speed, total duration, and first pulse peak 

velocity for the four sequences.  SMF and FMS sequences had similar mean speed and duration (dashed 

lines). 
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Fig 2.  Behavioral performance on FFF-FMS-SMF-SSS discrimination task. (A)  Discrimination 

performance for one example rat, across 13 d of training (44–50 trials for each stimulus per day).  FMS 

and SMF stimuli were first introduced on Day 0.   The rat reliably discriminated FFF from SSS stimuli but 

treated FMS and SMF stimuli identically and at chance.  The rat responded similarly to all stimuli when 

the panel was fixed, and thus was not discriminating based on piezo auditory cues.  (B) Mean 

performance (± SEM) for all rats across all behavior sessions.  (C) Relative right drink port choice as a 

function of mean panel speed over the entire 150-ms sequence.  Each symbol is a different rat (n = 8).  

(D) D-prime analysis of FFF versus SSS discrimination in fixed-panel control experiments versus normal 

sessions.  Solitary points show rats not tested on the fixed-panel control.  Data for this figure are in S1 

Data. 
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Fig 3.  Behavioral performance on FSFS-SFFS discrimination task. (A) Panel kinematics for SFFS and FSFS 

sequences, showing both different-intensity and same-intensity versions.   (B) Behavioral performance 

across all behavioral sessions, for the two rats trained on this task.  Open symbols: sessions using the 

different-intensity version of the stimuli.  Filled symbols: the same-intensity version.  Both rats could 

discriminate the different-intensity version but not the same-intensity version.  (C) D-prime analysis of 

discrimination performance for the same two rats (circles: 60W, squares: 58B), across all behavioral 

sessions.  Symbols are mean ± SEM across sessions.  Data for this figure are in S1 Data.  
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Fig 4.  S1 recordings during discrimination behavior. (A) Schematic of multi-tetrode chronic microdrive.  

(B) Cluster separation for one recording site (top) with mean spike waveforms for three simultaneously 

recorded single units (bottom left).  Bottom right, mean spike waveform for all fast-spike (FS) and 

regular-spike (RS) single units.   (C)  Laminar distribution of recorded units.  (D) Population peri-stimulus 

time histogram (PSTH) for all temporally modulated units by layer and stimulus type.  Different 

sequences have different onset times for impulses 2 and 3 (colored ticks).  Data for this figure are at 

crcns.org repository (accession ssc-4). 
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Fig 5.  Sequence responses for example units. (A and B) L4 multi-unit and L5b RS single unit with phasic 

response to each impulse.  (C and D) L6 multi-unit and L5b RS single unit with increasing firing rate 

during the stimulus period.  Each panel shows the spike raster and PSTH across trials, for one stimulus 

sequence.  Vertical lines: onset of each impulse.  Data for this figure are at crcns.org repository 

(accession ssc-4). 
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Fig 6.  Classification of S1 units by stimulus regression. (A–C) Stimulus regression for three example 

units.  Top, PSTH in 5 ms time bins.  Bottom, stimulus panel speed integrated over 5, 15, or 180 ms, 

which was the best fit stimulus integration window for each unit.  Right, regression of firing rate on 

integrated stimulus speed.   (D) Coefficient of determination (R2) for all stimulus integration windows 

with a significant regression, for each unit with a significant regression to at least one window.  Black: 

Fast and Medium time scale units (best integration window <55 ms).  Blue: Slow units.  Cells are sorted 

by peak R2 and by sign of the regression slope for the best integration window.  (E) Number of units with 

each best integration window and positive or negative regression slope.  (F,G) Laminar distribution of 

units by best integration window.  Data for this figure are in S1 Data. 
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Fig 7.  Stimulus coding by fast time scale units. (A) Population PSTH (mean ± SEM) for Fast units with 5, 

10, and 15–20 ms best integration windows.  (B) Population PSTH for all individual F, M, or S impulses, 

irrespective of sequence membership, for all Fast units.   Dashed line: pre-impulse firing rate.  (C) Left: 

net evoked rate for individual impulses, calculated as post-impulse rate – pre-impulse rate.  Right: mean 

rate across the entire sequence above pre-stimulus baseline, as a function of mean panel speed.  

Symbols show mean ± SEM across units.  Line: regression.  (D) Population PSTH for Medium units for 

FFF, FMS, SMF, and SSS sequences.  (E) Net evoked rate for individual impulses and mean rate across the 

sequence for Medium units.  Conventions as in C.  Firing rate was suppressed by all impulses and 

sequences.  Data for this figure are at crcns.org repository (accession ssc-4). 
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Fig 8.  Choice coding by slow time scale units. (A)  Top: population PSTH (mean ± SEM) for Slow Positive 

units across all layers.   Responses were indistinguishable between FFF, FMS, SMF and SSS trains.  

Bottom: population PSTH for individual F, M, and S impulses, irrespective of sequence membership.  (B) 

Population PSTH for slow negative units, showing lack of any impulse-evoked firing rate modulation. (C) 

Population PSTH for slow positive units in L5a and L5b, separated by stimulus type and drink port choice.  

Slow Positive units fired more on right-choice trials for all stimuli.  (D) Difference in evoked rate between 

right- and left-choice trials, measured 5–50 ms after start of the final impulse, for all Slow Positive units 

(left) or Fast and Medium units (right).  Number of units in each layer is shown at bottom.  Open 

symbols, baseline rate before sequence onset for the same trials.  * p = 0.022; ** p = 9.5e-4; *** p = 7.5e-

5, paired t test comparing rate on right versus left choice trials.  (E) Population PSTH averaged across all 

four sequences, for right- versus left-choice trials, for Slow Positive units in L5 (top), and for Fast units in 

L4 (bottom).  Bar shows times when rate is significantly different between right- and left-choice trials by 

sliding t test (p < 0.05).  The distribution of nose poke withdrawal times is shown for the same trials.  

Data for this figure are at crcns.org repository (accession ssc-4). 
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Fig 9.  Population decoding of sequence identity and behavioral choice.  (A) Decoder architecture for 

stimulus decoding.  Each neuron was represented by a one-versus-all (OVA) classifier, trained by logistic 

regression to calculate the probability of each stimulus given a single-trial spike train (blue trial).  The 

stimulus with the highest summed probability across neurons was taken as the population prediction.  

(B) Average performance of stimulus decoder with 10 ms time bins, constructed from all Fast and 

Medium units or all Slow units.  The title reports average percent correct classification across all four 

stimuli.  Entries along the diagonal are percent correct, and rows sum to 1.0.  (C) Percent correct 

performance for each unit in the Fast/Medium model in (B), separated by best integration window.  

Vertical line, chance prediction of 25%.  (D) Average performance of stimulus decoder with a single 150 

ms time bin.  (E) Average performance of a Fast/Medium stimulus decoder with 10-ms bins, using rate-

normalized or time-scrambled spike trains.  (F) Performance of behavioral choice decoders, built from 

Fast and Medium units or Slow units, using two different bin sizes.  Chance performance is 50%.  (G) 

Choice prediction for each unit in the Slow model, using a single 100-ms bin prior to nose poke 

withdrawal.  Units are separated by depth and response type.  Best choice prediction was by Slow 

Positive units in L5b.   Data for B–E are in S1 Data. 
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S1 Table.  Firing rates by layer and unit type. These data include both temporally modulated and non-
modulated units. 

  Baseline Firing Rate (Hz) Average Firing Rate (Hz)  

Layer Type Mean ± SEM Median  Mean ± SEM Median  N units 

L23 RS 6.0 ± 1.5 4.9  7.6 ± 1.2 8.1  9 

L23 FS 7.9 ± 2.4 5.7  9.0 ± 1.6 10.4  5 

L23 MU 15.9 ± 3.1 14.5  17.8 ± 3.3 17.3  23 

         

L4 RS 7.8 ± 0.8 5.7  7.4 ± 0.8 5.1  52 

L4 FS 9.8 ± 2.7 3.9  10.9 ± 2.8 6.9  15 

L4 MU 25.3 ± 2.9 20.9  25.8 ± 2.8 18.8  51 

         

L5a RS 10.8 ± 0.9 9.6  11.0 ± 1.0 9.0  68 

L5a FS 10.7 ± 4.8 10.9  12.6 ± 5.6 7.6  6 

L5a MU 26.6 ± 3.1 25.8  25.6 ± 2.9 23.9  30 

         

L5b RS 9.0 ± 1.0 7.0  10.0 ± 1.1 8.4  62 

L5b FS 31.6 ± 9.1 15.2  34.0 ± 8.9 15.8  15 

L5b MU 23.3 ± 2.9 20.7  23.1 ± 2.3 20.2  31 

         

L6 RS 7.7 ± 2.1 2.4  7.2 ± 1.6 3.3  45 

L6 FS 21.6 ± 4.1 13.8  22.0 ± 4.3 14.8  29 

L6 MU 25.2 ± 4.4 15.5  22.9 ± 3.7 14.9  32 
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S1 Fig.  Speed profile of each stimulus.  Position and speed profiles for FFF, FMS, SMF, and SSS stimuli.  

Data are in S2 Data. 
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S2 Fig.  Additional analysis of FFF-FMS-SMF-SSS behavior.  A, Behavior performance was stable over 8–

22 d of training.  Left, average performance for five rats that had 8–13 d of training.  Right, three rats 

that had 15–22 d of training (2-day bins were used because of low number of animals).  Points are mean 

± SEM.   B, Behavioral effect of fixed panel trials, assessed using a simple alternative to d-prime.  FFF 

versus SSS discrimination was quantified as (fraction of right choices to FFF stimuli – fraction of right 

choices to SSS stimuli).  Discrimination was reduced on fixed panel trials (p = 0.012, two-sided paired t 

test).  One rat (filled) was not significantly impaired, suggesting that he based discrimination on 

inadequately masked auditory cues.  C, Varied responses to fixed-panel trials across rats.  The plot 

shows fraction of right-side choice for FFF and SSS moving panel stimuli, and for the average of all fixed-

panel stimuli.  Only the five rats who showed behavioral impairment in the fixed panel session are 

included.  Three rats treated fixed panel stimuli like SSS; one rat chose right or left nearly at random 

(50% right-side choice); and one rat did not complete trials during fixed-panel blocks. Data are in S2 

Data. 
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S3 Fig.  Firing rate for single units by layer. A, Firing rate distributions for RS single units (left) and FS 

single units (right).  Both temporally modulated and non-modulated units are included.  Open triangles, 

median.  Filled triangle, mean.  Arrowhead, mean for multi-unit clusters, shown for comparison.  Note 

different firing rate scales for RS and FS units.  B, Firing rate (mean ± SEM) for temporally modulated and 

non-modulated RS single units.  Temporally modulated units generally had higher firing rates, even 

during the baseline period.  
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S4 Fig.  Adaptation for Fast units. A, Panel-evoked responses to each individual impulse within FFF, FMS, 

SMF, and SSS trains, measured as firing rate 5–35 ms after impulse onset, above pre-sequence baseline.  

Points are mean ± SEM across all Fast RS units.  Adaptation is evident in FFF but not SSS trains.  B, 

Adaptation quantified by paired pulse ratio during FFF and SSS trains.  For the same units as in (A).  

Paired pulse ratio is defined as panel-evoked firing rate during Pulse N/Pulse 1.  Error bars, SEM. 
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S5 Fig.  Responses to panel impulses by L5 Slow Positive units. A, Mean evoked firing during each 

impulse (defined as in S4 Fig), for all Slow Positive units in L5a and L5b.  Left- and right-choice trials were 

analyzed separately.  Error bars are SEM.  Right-choice trials had higher firing rate than left-choice trials, 

consistent with Fig 8.  Firing during pulse 3 did not differ between FFF, FMS, SMF, and SSS stimuli, for 

either left- or right-choice trials.  B,  Firing during pulse 3 did not correlate with overall mean sequence 

speed or with mean speed of the preceding two pulses.   
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S6 Fig.  High-speed video analysis of head and whisker movements during the stimulus presentation 

period. A, Schematic of a rat in the nose poke with head and whisker position measured during each 

8.4-ms frame of a single trial, from 0 to 150 ms after stimulus onset.  Nose poke entry occurred 50–75 

ms prior to stimulus onset.  Circles show measured positions of two points on the head (which were pins 

on a skull-mounted Omnetics connector) and one whisker tip.  Nose poke center position is shown at 

top.  We calculated head angle, head position relative to its starting position, and whisker tip position 

relative to the head.  B, Mean trajectories of each variable across 22 left-choice and 21 right-choice trials 

(n = 4 rats).  Bars are SEM.  Significant right-choice versus left-choice differences were found for the x 

position (right-left position) of the head, but for no other variable.  Data are in S2 Data. 
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S7 Fig.  Contribution of RS and FS units to response classes. A, Prevalence of RS single units, FS single 

units, and multi-unit clusters within each response class.  B,  Population PSTHs for Fast units that were 

RS single units, FS single units, or multi-unit clusters.  Each color trace is a different sequence (FFF, FMS, 

SMF, SSS).  Conventions as in Fig 4D.  Bars show onset of individual impulses.  C, Population PSTH for 

Slow Positive units in L5 that were RS single units or multi-unit clusters.  There were no FS units in this 

response class.  Traces are mean for all four sequences, shown separately for right- and left-choice trials. 
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Chapter 3 

 

Elementary Motion Sequence Detectors in 
Whisker Somatosensory Cortex 
 

Keven J. Laboy-Juárez, Daniel E Feldman  

 

3.1 Summary 
How somatosensory cortex (S1) encodes complex patterns of touch, as occur during tactile 
exploration, is unknown.  Temporally dense stimulation of local whisker pairs revealed that 
most S1 neurons are not classical single-whisker feature detectors, but instead are strongly 
tuned to sequences involving the columnar whisker (CW) and one, specific surround whisker 
(SW), usually in SW-leading-CW order. This tuning was precise in space and coarser in time, 
generating a rate code for local motion vectors defined by SW-CW combination 
identity. Prominent sublinear suppression for suboptimal combinations and near-linearity for 
preferred combinations sharpened combination tuning relative to linearly predicted tuning. 
This spatially asymmetric suppression is analogous to computation of elementary motion 
direction selectivity in vision. SW-tuned neurons, ‘misplaced’ in the classical whisker map, had 
the strongest combination tuning. Thus, each S1 column contains a rate code for elementary 
local motion sequences, providing a basis for higher-order feature extraction.   

 

3.2 Introduction 
Tactile exploration generates complex spatiotemporal patterns of touch stimuli, whose 
representation in somatosensory cortex (S1) is poorly understood.  Neurons in primary sensory 
cortex classically integrate across sensory space and time to generate tuning for local 
spatiotemporal features1–3.  But in whisker S1, the canonical touch system of rodents, a ‘one-
whisker-one-column’ model dominates, in which each facial whisker maps to one cortical 
column and S1 neurons are considered single-whisker feature detectors for velocity, 
acceleration or bend of the columnar whisker (CW).  Natural whisking generates complex, rapid 
patterns of multi-whisker contact4–6, suggesting that S1 may compute tuning for ethologically 
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relevant multi-whisker patterns.  How multi-whisker features are represented and organized in 
S1 remains unclear7.    

Several findings suggest that multi-whisker tuning may be prevalent in S1.  S1 neurons spike 
weakly to optimal single-whisker stimuli8–10 and have broad subthreshold receptive fields 
suggesting multi-whisker integration11,12. In each column, most neurons are somatotopically 
tuned to the CW13,14, but a surprising fraction prefer a surround whisker (SW) over the CW, and 
are thus ‘misplaced’ in the classic whisker map 15,16. These SW-tuned cells may prefer multi-
whisker features mapped according to an alternative model of S1 columnar organization. Some 
neurons are tuned to highly structured multi-whisker features such as global motion 
wavefronts17,18 and concentric center-surround motion contrast19, but these either engage a 
relatively small fraction of neurons (~25%) or elicit no more spikes than single-whisker stimuli. 
Tuning for spatiotemporally distributed whisker sequences has been observed, but its 
organization and effect on coding remain unclear20.  We hypothesized that S1 neurons may 
encode a more elementary spatiotemporal feature. If this tuning is a dominant feature of S1 
coding, it should be highly prevalent, organized systematically in the S1 map, and constructed 
through a readily identifiable computation that may involve cross-whisker nonlinearities21–26. 

We tested for tuning within an elementary subspace of multi-whisker stimuli, comprising local 
pair-wise whisker combinations and sequences, over a physiological range of deflection 
intervals (Δt).  These represent local motion on the whisker pad, have tractable dimensionality, 
and are the elementary building blocks of all local multi-whisker patterns. We mapped 
responses densely within this space, and found that most S1 neurons are multi-whisker 
sequence detectors.  Sequence tuning was somatotopically organized, with most neurons being 
tuned for a specific CW-SW sequence, usually in SW-leading-CW order.  Tuning was precise for 
whisker combination identity (space) and coarse for Δt (time).  ‘Misplaced’ SW-tuned neurons 
had the strongest sequence tuning.  In each neuron, sequence tuning was generated by 
prominent, spatially asymmetric sublinear suppression for non-preferred sequences, and 
linearity for preferred sequences.  This strongly resembles computation of motion direction 
selectivity in vision27–29, suggesting a conserved sensory computation. Diverse sequence tuning 
created a robust population rate code for local motion in each column.  This reveals a novel 
organization for the S1 map, in which each column encodes a comprehensive set of local 
motion vectors involving the CW.   

 

3.3 Results 
We measured spiking of single units in the D1 or C1 column of S1 in urethane-anesthetized 
mice (P28-45) using multi-site silicon probes.  We independently deflected whiskers in a 3 x 3 
array that was centered on the columnar whisker (CW) and included 8 immediate surround 
whiskers (SWs).  Each whisker was deflected with a 40ms triphasic waveform that optimally 
drives S1 neurons19.  In Experiment 1, we presented single-whisker stimuli and two-whisker 
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stimuli that included all CW-SW and all SW-SW combinations at 7 different inter-whisker-
deflection intervals (Δt = 0, ±10, ±25, ±50 ms) (Fig. 1a). Tuning was analyzed in 142 whisker-
responsive single units (out of 160 single units) in 8 recording sites in 5 mice.  Units were 
distributed across S1 layers (L2/3 = 36, L4 = 48, L5 = 44, L6 = 14 units).  

Single-whisker receptive fields in each S1 column  

Classical whisker receptive fields, measured from the single-whisker deflections, showed 
expected properties.  On average across units, the CW evoked the most spikes, followed by 
within-row SWs, consistent with standard S1 somatotopy14 (Fig. 1b, top). But tuning was 
diverse at the single unit level, even within the same penetration (Fig. S1).  61% of units were 
driven most strongly by the CW (CW-tuned units, n = 89), and 39% by an SW (SW-tuned units, n 
= 53).  Some SW-tuned units showed nearly equivalent responses to the CW, but others 
strongly preferred the SW (Fig. 1b, bottom). SW tuning was found in all layers, and did not 
simply reflect broad tuning or weaker responsiveness, because CW- and SW-tuned neurons 
showed similar tuning sharpness to secondary whiskers in rank-ordered receptive fields (Fig. 
S1).  CW- and SW-tuned units also had similar spontaneous activity (0.16±0.03 vs. 0.26±0.05 
spikes/sham) and maximal evoked response (0.60±0.06 vs. 0.57±0.08 spikes/stimulus).  Thus, a 
single column contains mostly CW-tuned neurons, but also a substantial fraction of SW-tuned 
neurons, as in prior reports15,16,30. 

S1 preferentially encodes local motion involving CW-SW sequences  

Tuning for whisker combinations was analyzed from the CW-SW and SW-SW stimuli, initially 
independent of Δt.  Fig. 1c shows two example single units in the D1 column.  Black bars show 
the response to each whisker deflected singly; colored bars show the response to each whisker 
combination at whichever Δt (0, 10, 25, 50 ms) drove the strongest response to that 
combination.  Responses are spike counts in a broad, 125-ms window that includes all spikes 
evoked by both whiskers in the combination.  Each unit spiked more to a specific 2-whisker 
combination than to other stimuli.  Note that both units differed in their single-whisker tuning 
(CW-tuned vs. SW-tuned) but both preferred a combination that contained D1 (the CW).  
Nearly all units spiked more to the best whisker combination than the best single whisker (slope 
= 1.26, Fig. 1d).  For 70% of units, the best combination included the CW (this was 85% for CW-
tuned units and 47% for SW-tuned units), which is greater than chance (2/9 = 22%) (Fig. 1e).  
Correspondingly, the best CW-SW sequence evoked more spikes than the best SW-SW 
sequence (Fig. 2f). Thus S1 spiking is focused on CW-SW combinations, rather than SW-SW 
combinations or single-whisker stimuli. 

Whisker combinations are also sequences with a specific Δt.  Neurons showed sharper tuning 
selectivity among CW-SW than SW-SW sequences (Fig. 1g).  Selectivity was measured as 
lifetime sparseness31,32 across sequences varying in both spatial whisker combination and Δt, 
and thus represents spatiotemporal selectivity.  SW-tuned neurons had particularly sharp 
tuning for CW-SW sequences (Fig. S2). Thus, neurons in each S1 column are preferentially 
tuned for, and discriminate, CW-SW sequences. 
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Dense spatiotemporal mapping of CW-SW sequence tuning in S1 

We studied CW-SW sequence tuning more comprehensively and with greater Δt resolution in 
Experiment 2, which used a reverse correlation method. Stimuli included all CW-SW 
combinations with Δt uniformly distributed between ±50 ms at 1 ms intervals.  Because some 
S1 neurons are sensitive to CW-SW motion contrast19, we presented both same- and opposite-
direction CW-SW deflections (termed correlated and anti-correlated stimuli).  Single whisker 
stimuli and a subset of SW-SW sequences were also applied (Fig. 2a).  A total of 247 single-units 
were isolated in 12 mice, of which 224 (227) were responsive to correlated (anti-correlated) 
stimuli.  These were distributed across layers (L2/3: 54, 54 units [correlated, anti-correlated]; 
L4: 78, 79 units; L5: 71, 70 units; L6: 21, 24 units). The average whisker deflection rate was 3 Hz.   

For each single unit, we applied a model-based smoothing method on evoked spike counts to 
calculate a Δt tuning function for each whisker combination (see Methods) (Fig. 2b). We then 
plotted a spatiotemporal response function (cwSTRF) that summarizes the mean response to 
each CW-SW combination at each Δt, after Δt smoothing (Fig. 2c).  The ‘best whisker 
combination’ and ‘best Δt’ were defined as those that jointly evoked the maximum response.  
We calculated a combination selectivity index (CSI) at each Δt as lifetime sparseness across the 
8 CW-SW combinations at that Δt. Correlated and anti-correlated stimuli were analyzed 
separately for each single-unit, therefore we refer to each cwSTRF as a unit. A unit was 
considered combination selective if the CSI trace across Δt’s was significantly different than for 
spike count data shuffled across stimuli and trials (see Methods).  All p-values are adjusted for 
multiple comparisons across units.   

Combination tuning is strong and prevalent in S1 

52% of S1 units (n=129) were significantly combination-selective, based on either correlated or 
anti-correlated stimuli.  Four example units are shown in Fig. 2d.  The polar plots show the 
measured spiking response to different CW-SW combinations at the best Δt, relative to CW 
response alone and to the linear sum of single CW and SW deflections.  The latter is used as a 
null hypothesis for default tuning.  All 4 units preferred a specific CW-SW sequence (asterisk) 
which evoked more spikes than the CW alone.  Tuning for CW-SW sequences was consistently 
sharper than the linear prediction. Many S1 units showed sharp combination tuning (Fig. S3). 

Across all responsive units, there was a broad range of CSI at the best Δt (Fig. 2e).  For 
combination-selective units, the average spatial tuning for CW-SW sequences was very sharp, 
as shown by aligning combination tuning curves to their peak (by rotating the polar plots). This 
tuning was not due to stimulus-independent response variability or undersampling, because 
shuffling spike count data across stimuli and trials abolished tuning structure (Fig. 2f). The 
highest CSI units, which are mostly combination-selective, had very strong mean tuning, while 
the lowest CSI units, which are mostly non-selective, had nearly uniform responses that 
resembled shuffled data (Fig. 2f).  Thus, S1 contains a broad gradient of combination selectivity, 
including both combination-selective units that represent spatiotemporal sequences, and non-
selective units which may primarily encode single-whisker features.   
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Preferred CW-SW combinations sampled most SWs, but overrepresented SWs that were rostral 
in the same row as the CW, or ventral to CW (Fig. 2g).  This bias is evident in mean 
somatotopically aligned tuning (Fig. S4), and may represent ethologically relevant axes of local 
motion.      

Nonlinearities enhance rate coding of whisker combinations 

For the great majority of units, CW-SW combination tuning was sharper than predicted from 
the linear sum of single-whisker responses (p=1e-50, paired t-test) (Fig. 3a).  This was true for 
both combination-selective and non-selective units (Fig. 3b).  This was readily apparent in single 
example cells (Fig. 2d, Fig. S3), and in average aligned combination tuning curves, which 
showed strong sublinearity for non-optimal combinations, and near-linearity for the optimal 
combination (Fig. 3c).  Combination selectivity existed in all layers, but was stronger in L2-4 
than L5-6 (1-factor ANOVA, p=.0025) (Fig. S5).  Thus, tuning for CW-SW combinations is 
powerfully sculpted from broader tuning predicted by single-whisker input. 

The prevalence and diversity of combination tuning suggests a population rate code for whisker 
combinations in each column.  We tested whether a neural population decoder could 
discriminate CW-SW combination identity using spike count data from single trials. Each neuron 
in Experiment 2 was modeled as a one-vs-all classifier, using 10-fold cross-validation and logistic 
regression, to predict the probability of each CW-SW combination from single-trial spike count 
data (see Methods).  Training and testing data were from combinations with Δt ≤ ±5 ms from 
the unit’s best Δt.  No Δt smoothing was applied, and neurons were modeled independently. An 
ensemble of N neurons was sampled with replacement from all combination-selective units.  
The CW-SW combination with the highest summed probability across neurons was taken as the 
population prediction.  

The average single-trial accuracy (computed across all 8 CW-SW combinations) increased with 
N, reaching 42% for N = 187.  Chance performance is 12.5% (1/8) (Fig. 3d).  Accuracy was 
highest for the CW-SW combination involving the rostral within-row SW (82%, computed for 
N=187), and was worst for the 3 dorsal-row SWs (23-28%) (Fig. 3e), which matches the 
somatotopic bias of combination tuning (Figs. 2g and S4).  In contrast, training and testing the 
decoder on linearly predicted spike counts resulted in significantly weaker discrimination (Fig. 
3d-e).  Thus, the neural ensemble in a single S1 column accurately encodes CW-SW 
combinations on single trials and nonlinearities enhance the efficiency and accuracy of this rate 
code. 

SW-tuning enhances rate coding of whisker combinations 

We next examined how SW-tuned units, whose single-whisker tuning ‘misplaces’ them in the 
classical whisker map, encoded whisker combinations.  SW-tuned units showed sharper 
combination tuning for CW-SW sequences than did CW-tuned units (p=3.4e-4, t-test) (Fig. 4a), 
consistent with Experiment 1 (Fig. S2).  This was achieved by sublinear sculpting of linearly 
predicted tuning, as for other units (Fig. 4b). To determine how SW-tuned units contribute to 
population coding, we constructed 2 separate neural decoders, one based on CW-tuned units, 



CHAPTER 3: ELEMENTARY MOTION DETECTORS IN S1  50 
 

and the other on SW-tuned units. Decoding of whisker combination identify from CW-tuned 
units was well above chance, but decoding with SW-tuned units was far more accurate and 
efficient (Fig. 4c-d). Thus, SW-tuned units are sharply tuned for CW-SW combinations (Fig. S2), 
and enhance population coding of CW-containing sequences.   

Spatiotemporally specific linear integration enhances combination tuning in S1 

Combination tuning curves show that CW-SW tuning is sculpted from broader, linearly 
predicted tuning (Fig. 3c). These curves also show that the linearly predicted tuning, which 
reflects asymmetry in the single-whisker receptive field, was biased toward the best CW-SW 
combination (Fig. 3c). Both these processes—non-uniform sublinear sharpening and the bias in 
predicted linear tuning—appeared weaker, on average, in the least-selective units (Fig. 3c).  We 
analyzed how these two processes contribute to combination tuning. 

To characterize the sharpening process, we quantified linearity of responses to CW-SW 
combinations at the best Δt. Across all stimuli and all units, combination responses were 
strongly predicted by a 64% scaling of the linear sum of single-whisker responses (R2=0.90).  
Within this average relationship however, non-optimal combinations evoked strongly sublinear 
responses, while each unit’s best combination evoked a near-linear response (Fig. 5a).  Best 
combinations were nearly linear (linearity index of 0.95±0.02, defined as measured response / 
linear prediction), and non-optimal combinations were sublinear (0.63±0.003, p=1.3e-147, 2 
sample t-test) (Fig. 5b-c).  This difference is not the trivial result of best combinations evoking 
stronger responses relative to the population linear fit in Fig. 5a.  This was shown by a shuffling 
procedure in which pseudo-units were constructed by sampling 8 random points from Fig. 5a. 
The strongest responses of these pseudo-units (‘best combinations’) and the remaining, weaker 
responses (‘non-optimal combinations’) had very similar linearity (0.71 vs. 0.67) (Fig. 5c). 
Sublinearity for non-optimal combinations was not found just at the unit’s best Δt, but also at 
the peak Δt for these whisker combinations (Fig. 5c).  Thus, near-linear integration is 
spatiotemporally confined to the best combination and best Δt. This boosts best CW-SW 
combination responses over a global sublinear scaling, resulting in spatially asymmetric 
suppression across whisker combinations.   

Combination-specific nonlinearities depend on single-whisker tuning  

To quantify the contribution of linear and nonlinear components to combination selectivity, we 
separated them mathematically.  We modeled combination-tuning as resulting from two 
sequential operations: i) a global scaling to 0.64 of linearly predicted responses, analogous to 
linear summation with divisive normalization;  and ii) a combination-specific nonlinear 
facilitation or suppression process, quantified as the residual between the measured response 
and the 0.64x scaling. This model (Fig. 6a) decouples linear and nonlinear components of 
combination tuning, independent of how they are implemented physiologically.  

To examine model performance, we ranked each CW-SW stimulus by its measured response in 
each unit, and calculated the mean ranked combination tuning curve across units. Mean tuning 
was sharper than the 0.64-scaled sublinear predicted tuning predicted from single-whisker 
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deflections (Fig. 6b).  The best combination response was greater than the 0.64-scaled 
sublinear model (p=7e-7, 2-tailed 2-sample t-test, Bonferroni corrected) and the worst 
combination was weaker (p=6.5e-3). Uniform subtractive inhibition does not account for this 
sharpening, because it simply shifts the linear prediction along the y-axis (Fig. 6b). Hence, 
sharpening of combination tuning involves combination-specific nonlinearities.   

The magnitude of combination-specific nonlinearities was similar between combination-
selective and non-selective units: in both cases, there was strong facilitation for the best CW-
SW combination, and modest suppression for the 2-3 weakest CW-SW combinations (Fig. 6c, 
top). The magnitude of facilitation did not differ between groups (p=0.24, t-test) and 77% of 
both selective and non-selective units exhibited maximal facilitation to the best CW-SW 
combination. There was slightly more suppression for the 2 weakest CW-SW sequences in 
combination-selective than non-selective units (p=0.001 and p=0.002, 2 sample t-test, 2 tailed 
Bonferroni correction). Thus, spatially asymmetric suppression is a general computation shared 
across S1 units, but modestly stronger suppression enhances tuning in combination-selective 
units.  

Combination-selective units differed in the asymmetry of their single-whisker receptive field, 
and in how linearly predicted responses recruited the nonlinear boosting process.  The linearly 
predicted receptive field was sharper in combination-selective cells than non-selective units 
(Fig. 3b; Fig. 6c).  The linear prediction correlated with the relative strength (rank) of 
combination-evoked responses in combination-selective units (p=1e-4, 1-factor ANOVA), but 
not in non-selective units (p=0.51) (Fig. 6c).   As a result, the strongest single SW predicted the 
best CW-SW combination in 60% of combination-selective units, but only in 31% of non-
selective units. Strikingly, combination-selective units nonlinearly facilitated the CW-SW 
combination that had the greatest linear prediction (p=1.2e-8, 1-factor ANOVA), while non-
selective units showed a weaker, opposite trend (p=0.03). The probability distributions of these 
measurements are shown in Fig. S6. Hence, combination-selective units achieve sharp 
combination tuning by having sharper linearly predicted tuning (i.e., spatially asymmetric 
single-whisker tuning) (Fig. 3c) and boosting responses to combinations involving the strongest 
SW.  

Tuning for Δt reveals space-time inseparability  

Finally, we characterized how S1 neurons are tuned for Δt.  For best CW-SW combinations, 
combination-selective units had sharp Δt tuning, with an average half-width of ~10 ms around 
the best Δt.  In contrast, suboptimal combinations evoked weaker responses, on average, with 
much weaker, broader Δt tuning around the units’ best Δt (Fig. 7a). Thus, S1 cells are not tuned 
for a specific Δt independent of combination identity. Next, we examined mean Δt tuning 
across combination-selective units, calculated after standard Δt smoothing (Fig. 7b).  On 
average, the minimum response occurred at -10 ms Δt, consistent with previous studies using 
arbitrarily chosen 2-whisker sequences. Strong tuning structure was evident by comparing 
preferred and non-preferred combination stimuli: for best combinations, maximal responses 
were evoked at -30 to -50 ms Δt (SW leads CW, corresponding to inbound motion toward the 
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CW). For suboptimal combinations, this time range evoked much weaker responses, and 
maximal responses were observed at +30 to +50 ms Δt (outbound motion).  Thus, combination-
selective units have inseparable spatial and temporal tuning and are joint spatiotemporal 
feature detectors.  Non-selective units lacked this structure, and preferred outbound Δt order 
for both best and suboptimal stimuli (data not shown).   

Order selectivity dominates Δt tuning 

To understand the diversity of Δt tuning we performed principal components (PC) analysis on 
all significantly modulated Δt tuning curves (n= 357 tuning curves representing 79% of best 
combinations, and 1247 tuning curves representing 40% of suboptimal combinations, see 
Methods).  Tuning curves were z-scored before analysis.  Three PCs captured 75% of variance in 
Δt tuning (Fig. 7c).  PC1 and PC2 resembled filters for tactile sequence order and speed, 
respectively, while PC3 was a sharper, bimodal filter (Fig. 7d).  Best- and suboptimal 
combinations differed strongly in PC1 weighting in combination-selective cells (p=5.7e-16, t-
test), but less so in non-selective cells (Fig. 7e).  This is consistent with inbound order 
preference for best combinations in selective units.  Weighting of PC2 and PC3 did not differ 
across cell or stimulus types (Fig. 7e). Thus, the feature of Δt tuning that is most related to 
combination-selectivity is the unique inbound order preference for best combination stimuli in 
selective units.  

To test whether CW-SW order was accurately represented by S1 firing rates on single trials, we 
trained a neural decoder (constructed as in Fig. 4) to report order. After training, the decoder 
predicted CW-SW deflection order above chance (50%), with performance of ~65% on hold-out 
trials for N=100 units (Fig. S7). S1 units tuned to different spatial CW-SW combinations 
provided equally accurate order decoding (Fig. S7).   

Order tuning and spatial tuning were related.  Combination-selective units that preferred 
inbound order (best Δt < 0) were more sharply spatially tuned than those that preferred 
outbound order (p=0.03, t-test) (Fig. 7f, left).  Inbound-preferring units also had better 
alignment between nonlinear and linear components of combination tuning (p=0.01, t-test), 
which may explain their sharper tuning (Fig. 7f, right). When the spatial combination decoder 
(Fig. 4) was retrained and retested using stimuli within specific Δt ranges, spatial combination 
decoding was better for inbound order stimuli than outbound order stimuli (Fig. 7g).  Thus, the 
inseparability of temporal and spatial tuning yields improved spatial discrimination for inbound 
stimuli, suggesting that S1 preferentially encodes local spatial features of inbound motion to 
each column. 
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3.4 Discussion 
 

Coding for space and time in multi-whisker stimuli 

52% of S1 units were significantly tuned for CW-SW combinations, with most units having a 
single, sharp peak for one specific combination (Figs. 2 and S3).  Optimal combinations elicited 
more spikes than the single best whisker.  70% of combination-tuned units preferred a CW-
containing sequence, with a strong preference for SW-leading-CW order.  Tuning for Δt was 
coarse (~20ms resolution), with order being represented more strongly than a specific Δt. 
Spatial and temporal tuning were inseparable for combination-selective neurons.  Thus, most 
S1 neurons act as spatiotemporal feature detectors, which provide a more efficient, compact 
representation of complex multi-whisker stimuli than do classical single-whisker detectors.  S1 
neurons exhibited a range of combination selectivity (Fig. 2) and thus collectively represent 
both single-whisker and local spatiotemporal features.   

Neurons in each column represented diverse CW-containing sequences, enabling accurate 
decoding of local motion sequences by firing rate in small neural populations (<50 units).   
Biases in preferred spatial and temporal features match those expected from natural whisker 
use:  Sharper tuning in space, relative to time, is consistent with head movements during tactile 
exploration, which make inter-whisker contact intervals highly irregular6.  Preferences for 
rostral and ventral SWs match the prevalence of rostrocaudal contact sequences during natural 
whisking onto frontal objects6, and the ventral tilt of forward whisking33.  The strong bias for 
inbound (SW leading CW) motion sequences is appropriate to reduce redundancy between 
cortical columns in representing multi-whisker motion stimuli. 

Tuning for motion sequences is also highly prevalent in primate S134.  In whisker S1, prior 
studies reported nonlinear responses to 2-whisker stimuli, including prominent cross-whisker 
suppression and occasional facilitation, and sensitivity to Δt 22,23,35, but did not determine the 
role of these interactions in generating tuning for specific multi-whisker stimuli.  Here, by fully 
mapping these interactions across all local whiskers, we discovered that they generate sharp 
tuning for 2-whisker sequences that represent elementary local motion across the whisker pad.  
2-whisker interactions are building blocks of more complex multi-whisker features, and are 
predictive of tuning for global motion across the whisker pad17.  Pairwise nonlinearities strongly 
predict higher order interactions for vibrotactile sequences of pairs of whiskers35, and 
responses to optimal higher-dimensional (3+ whisker) sequences are no stronger than to 2-
whisker sequences20.  While responses to optimal 2-whisker sequences are stronger than to the 
single best whisker, those to global motion are not17.  Together, this strongly suggests that 
tuning for 2-whisker combinations is a fundamental aspect of S1 sensory coding that may 
underlie tuning for more complex, higher-order features.  

A revised functional role for the S1 column 
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These findings suggest a novel functional role for the S1 column: rather than representing 
single-whisker features of the CW, each column also represents the set of all elementary, 
inbound local motion sequences that involve the CW.  This CW-centered, multi-whisker view of 
the column explains the somatotopic breadth of subthreshold input received by each cell, and 
is consistent with tuning to concentric motion coherence or motion contrast relative to the CW 
in S119. It also provides an explanation for the presence of SW-tuned neurons, which do not fit 
classic somatotopy defined by single-whisker tuning.  Half of SW-tuned units preferred a CW-
containing sequence, and thus contribute to representation of local motion involving the CW. 
Both SW-tuned neurons and CW-tuned neurons with strong SW responses and asymmetric 
single-whisker receptive fields had particularly strong combination tuning, and were essential 
for accurate population coding of local motion sequences (Fig. 4). Since SW responses are 
strongest at column edges15, we predict that combination selectivity will be greatest at column 
edges, where a ring of multi-whisker selectivity has been found to exist18.  The dominance of 
SW-leading-CW order selectivity further predicts sharp functional boundaries between 
neighboring columns based on opposite order tuning. 

Sublinear sculpting of local motion tuning 

S1 cells used asymmetric, sublinear sculpting to sharpen 2-whisker tuning relative to linearly 
predicted tuning.  Prior studies of 2-whisker integration mostly studied a single arbitrarily 
chosen CW-SW pair, and reported largely sublinear suppression21–23,25,35,36. In some conditions 
more linear or supralinear integration was observed24,26, particularly with temporally dense 
stimulation20,22.  By mapping all CW-SW combinations we discovered that individual neurons 
suppress most CW-SW combinations, but fail to suppress (and in ~25% of units, supralinearly 
facilitate) a single best CW-SW combination.  Thus, sublinear suppression and near-linear or 
supralinear summation work together to construct sharp combination tuning.   

Combination tuning was modeled as resulting from a global sublinear integration process, 
analogous to divisive normalization37, plus combination-specific nonlinearities, including 
facilitation for the best combination.  Importantly, for combination-selective units the strongest 
nonlinear facilitation was elicited by the combination with the strongest linearly predicted 
response (Fig. 6). This suggests a simple neuronal implementation for sharpening of 
combination tuning.  Sublinear integration likely reflects a combination of cross-whisker 
inhibition, dissipation of excitatory driving force, and low-threshold K conductances that all 
strongly promote sublinear integration of EPSPs in pyramidal cell dendrites38.  Most cortical 
neurons strongly express NMDA conductances that boost EPSPs nonlinearly, including 
generation of “NMDA-spikes” that strongly increase dendritic signal propagation for convergent 
excitatory inputs39.  We propose that inputs representing the preferred CW-SW sequence 
synapse nearby each other on dendrites, and thus preferentially recruit nonlinear boosting by 
NMDA receptors.  This same mechanism generates angular tuning in S140 . Combination tuning 
could be partially synthesized subcortically, but global motion tuning41 and inter-whisker 
nonlinearities are generally weaker in thalamus 21,42,  and short-latency cortical responses are 
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mostly linear17,25, suggesting that cortical circuits are a major site of computation (but see Ref. 
43). 

A shared computation for local visual and tactile motion 

The sculpting of whisker combination tuning by spatially asymmetric suppression strongly 
resembles the computation of visual motion direction selectivity (DS) in mammalian retina. 
Barlow-Levick motion detectors synthesize DS by prominent inhibitory suppression of neural 
responses to the null direction of visual motion while the preferred direction lacks inhibition27–

29. DS can also involve selective facilitation for the preferred direction44 or a combination of 
suppressive and facilitatory mechanisms45,46.  We found sublinear integration for non-optimal 
CW-SW combinations and near-linear integration for the preferred combination, analogous to 
the Barlow-Levick model. 25% of units did show supralinear facilitation for best sequences (Fig. 
5).  Thus, spatiotemporal tuning in both visual and whisker systems involves suppression of 
non-preferred motion directions, coupled with linear responses or facilitation to preferred 
motion directions.  Thus, there is a common computational basis for spatiotemporal feature 
extraction, although the underlying circuit mechanisms are likely to be distinct. 

 

3.5 Conclusion 
These findings reveal highly prevalent tuning for elementary local motion sequences in S1, 
which generates a rate code for local motion in each S1 column.  This tuning was highly 
organized, with each column representing inbound local motion towards the CW. Non-linear 
integration sculpted linearly predicted tuning through spatially asymmetric suppression.  SW-
tuned neurons, which appear ‘misplaced’ in the classical whisker map, have the strongest CW-
SW combination tuning, and thus play a key role in columnar representation of local motion. 

 

3.6 Methods 

Surgical preparation and in vivo electrode placement 

All procedures were approved by the UC Berkeley Animal Care and Use Committee and meet 
NIH guidelines. Male C57BL/6 mice (age: P28-45) used.  Experiments 1 and 2 (Fig.1) and 2 
(remaining figures) followed the same surgical and data acquisition protocols. Mice were 
anaesthetized with urethane and chlorproxithene (1.3 g/kg and 0.02 mg in 10 mL saline). Body 
temperature was maintained at 36.5C using a feedback-controlled heating pad (FHC, 40-90-8D). 
Anesthetic depth was assessed via toe pinch and supplemental urethane (10% of initial dose) 
was provided as needed. The skull was exposed, cleaned and a stainless steel head-post was 
implanted. A 2 mm craniotomy was made over S1 (coordinates: 1.5 mm rostral, 3.3 mm lateral 
of bregma). The target column (C1 or D1) was localized using receptive field mapping of multi-
unit activity in L4, recorded with a tungsten microelectrode.   
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A silicon laminar probe (NeuroNexus, 32 channel, 1 shank, poly2 or poly3 channel geometries 
(A1x32-Poly2-5mm-50s-177-A16 and A1x32-Poly3-6mm-50-177-A32) was then inserted radially 
into the target column via a small durotomy. The probe was slowly advanced until the deepest 
recording pad was in L4.  Simultaneous L2/3 and L4 recordings were made at this depth.  
Subsequently, in a subset of animals, the probe tip was further advanced to L6, and 
simultaneous L6 and L5a/b recordings were made at this position.  L2/3, L4, L5 and L6 were 
defined by microdrive depths as 100-417, 418-587, 588-889 and 890-1154 µm below the pia47.  

For all recording penetrations, we confirmed post-hoc that silicon probe multi-unit activity in L4 
was tuned to C1 or D1, based on single-whisker deflections.  In a subset of cases, recording 
location was confirmed by coating the recording electrode with DiI, perfusing the mouse, and 
recovering DiI staining in cytochrome oxidase stained flattened tangential sections, which show 
the L4 barrels.  

Whisker stimulation 

Calibrated deflections were applied independently to a 3 x 3 grid of whiskers, centered on the 
columnar whisker for the recorded column (either C1 or D1).  Stimuli were controlled using 
custom software in Igor Pro (Wavemetrics).  Each whisker was trimmed to 8 mm length, and 
inserted into a glass tube carried on a piezoelectric bender actuator.  The piezo was positioned 
to deflect the whisker at 5 mm distance from the face. Each whisker was deflected 
rostrocaudally with triphasic waveform that was shown previously to optimally drive S1 
neurons and captured most of the evoked response variance in S1 (first common filter)19 (Fig. 
1a). The waveform was 40 ms duration, 300 μm peak amplitude, and had a mean frequency 
content of 53Hz. The waveform resembles a linear combination of position and velocity filters, 
which are two kinematic features that are strongly represented across the whisker-to-barrel 
system19,48,49.  

Experiments 1 and 2 differed in the stimulus set that was applied.  Experiment 1 had a total of 
261 unique stimuli; 9 single-whisker deflections and 252 2-whisker sequences (that is, 9 choose 
2 spatial combinations, each of which was delivered at 7 Δt’s: 0, ±10, ±25 and ± 50ms) (Fig. 1a). 
Each single-whisker stimulus was delivered 125-175 times (136.67 ± 14) and each 2-whisker 
sequence 40-150 times (82.76 ± 35).  Thus, Experiment 1 sampled all possible 2-whisker 
combinations within the 3x3 grid at a subset of Δt’s.  All stimuli were randomly interleaved at 
0.6 s inter-stimulus interval, yielding an overall average deflection rate for any whisker of 3 Hz. 
Each recording was 3.5-4.5 hours.   

Experiment 2 had a total of 3000 unique stimuli; 18 single-whisker deflections (9 whiskers with 
peak deflection amplitude in either the rostral or caudal direction), 1600 CW-SW sequences (8 
correlated and 8 anti-correlated CW-SW combinations at 100 Δt’s within ± 50 ms range) and 
1400 SW-SW sequences (7 correlated and 7 anti-correlated SW-SW combinations at 100 Δt’s 
within ± 50 ms range).  Only SW-SW combinations that involved the SW located rostral and 
within the same row as the CW were presented.  Thus, for D1 column recordings, all SW-SW 
combinations involving D2 were presented, but no other SW-SW combinations were presented.  
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This was necessary to achieve a tractable number of unique stimuli for this experiment.  Each 
single-whisker stimulus was delivered 140-300 times (222.52 ± 44.72) and each unique 2-
whisker sequence 0-50 times (8.42 ± 4.2).  Thus, Experiment 2 sampled all possible CW-SW 
combinations, plus a subset of SW-SW combinations focused on one chosen SW, with denser 
and uniform sampling compared to Experiment 1.  All stimuli were randomly interleaved at 0.6 s 
inter-stimulus interval, yielding an overall average deflection rate for any whisker of 3 Hz.  Each 
recording was 4.5-6 hours in duration.  In both experiments, Sham stimuli (blank trials in which 
no whisker was deflected) were also interleaved to quantify spontaneous spiking.  

Data acquisition, preprocessing and spike sorting 

Recordings were amplified and bandpass filtered (Plexon Instruments PBX2/16sp-G50, × 1,000 
amplification, 0.3-8 kHz bandpass) and digitized at 31.25 kHz.  Noise was reduced by common 
average referencing50. Poly 2 electrode sites were divided into groups of 4 spatially adjacent 
channels (tetrodes; adjacent sites were 50μm apart). Poly 3 electrode sites were divided into 
groups of 4 channels, selecting channels the maximal signal-to-noise ratios located within a 
50μm depth range. Negative-going spikes were detected using an amplitude threshold (2.8-
3.2s.d. of noise floor), with a shadow period of 0.66ms after each threshold-crossing.  Detected 
spikes were clipped (1.5-ms waveforms) for spike sorting.  

Spike sorting used UltraMegaSort200051, implemented in Matlab. Clusters were excluded if 
they had < 1000 spikes, >0.8% refractory period violations (defined as inter-spike interval < 
1.5ms), or > 30% estimated missed spikes (based on Gaussian fit of detected spike amplitudes 
relative to the detection threshold). For each recording site, this initial spike sorting process 
was used to identify the mean spike waveforms of all detectable, sortable units.  Then, to 
improve efficiency of detecting spikes, we re-performed the spike detection process using a 
template-matching based spike detection method, in which the mean waveforms of the 
previously identified clusters were used to identify spikes from the raw voltage recordings, 
rather than a defined amplitude threshold.  This method successfully re-detected the great 
majority of the spikes that were detected via the initial threshold-based method, but also 
detected a significant number of spikes that had been suppressed by the shadow period.  All 
spikes detected by the template method were then clipped and spike-sorted using the same 
process as described above.  

Analysis of neuronal data 

Spiking responses for single-whisker stimuli were quantified as the average number of spikes 
that occurred within 125ms following whisker deflection onset.  Responses to 2-whisker 
sequences used the same window, following deflection of the first whisker in the sequence.  
This broad window captures essentially all spikes evoked by both whiskers. Units that showed 
statistically significant responses relative to baseline to any of the 9 stimulated whiskers were 
classified as whisker responsive. Statistical significance was assessed via likelihood ratio test 
that assumed Poisson statistics across the 9 whisker and sham stimulation. This test is 
analogous to performing a one-way analysis of variance (ANOVA) across the 10 stimulus classes 
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but assumes that spiking responses follow a Poisson rather than Gaussian-distribution. Thus, 
the test outputs the probability that spiking is equal across the 10 classes assuming Poisson 
statistics. Neurons were classified as responsive if the p-value < .05. 

Δt smoothing: 2-whisker sequence responses were quantified as the number of spikes that 
occurred within a 125ms time window after the deflection of the first whisker involved in the 
sequence. The large number of stimulus repetitions in Experiment 1 allowed us to compute 
mean sequence responses by simply averaging across stimulus repetitions (mean: 82 per Δt). 
Experiment 2 had a significantly lower number of stimulus repetitions (mean: 8.4 per Δt) 
preventing a simple averaging procedure to accurately capture neural responses. To address 
this we adapted a model based smoothing method originally used to smooth post-stimulus-
time-histograms (PSTHs)52. This method assumes that 2-whisker combination responses follow 
an inhomogeneous Poisson process whose firing rate varied as a function of Δt.  

Tuning curves were first calculated at a 1ms resolution by averaging single-trial spiking 
responses at each Δt. This was done in 90% of the total observations (training set) and the log 
Poisson likelihood of the rest of the data (test set) was calculated based on this initial, un-
smoothed tuning curve. Afterwards the tuning curve was smoothed by convolving it with a 
Gaussian kernel with a standard deviation that ranged from 0.5 to 30ms at 0.2ms resolution. 
The training and test sets were selected via 10-fold cross-validation, repeated 50 times. Finally, 
the Gaussian kernel with a standard deviation that maximized the cross-validated log-likelihood 
was used to smooth the 1ms resolution tuning curve calculated on all the data. This process 
effectively low-pass filters the Δt tuning curve with a cutoff frequency chosen via maximum 
likelihood and cross-validation.  

Tuning curves whose likelihood monotonically increased across all smoothing (likelihood 
function had no maximum) were classified as not significantly Δt modulated, and the Δt  tuning 
curve was assumed to be constant and equal to the mean response across all Δt’s. 33% of Δt 
tuning curves had monotonically increasing likelihoods. Tuning curves whose non-smoothed 
likelihood exceeded the likelihood of all smoothed tuning curves were classified non-modulated 
as well. These tuning curves would imply that S1 units are sensitive to Δt at a 1ms resolution, 
which is not physiologically likely in S1, and a likelihood ratio test revealed that none of these 
tuning curves had a statistically significant fit to the data. This happened in 23% of tuning 
curves, hence 56% (a total of 2004 out of 3608 tuning curves) were assumed to be constant 
across Δt.  

Combination-selectivity: For each single-unit, the 8 CW-SW smoothed Δt tuning curves in 
either correlated or anti-correlated directions were grouped to build two separate columnar 
whisker spatiotemporal receptive field (cwSTRF) that described spiking responses as a function 
of Δt and CW-SW combination identity. The cwSTRF’s in correlated and anti-correlated 
directions were analyzed separately and labeled as a unit. A combination selectivity index (CSI) 
for each Δt was calculated via the lifetime sparseness equation31,32: 
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where r is the spiking response to each combination, E denotes the mean across combinations 
and n the number of combinations which was 8 CW-SW combinations for all units. To establish 
statistically significant selectivity we shuffled single-trial spiking data across combinations 5000 
times for each Δt, computed a non-smoothed Δt tuning curve at a 1 ms resolution and then 
convolved each Δt tuning curve with its corresponding Gaussian kernel for smoothing (the 
standard deviations were derived from non-shuffled, measured data as described in the 
previous section). We then built a cwSTRF from the smoothed shuffled data and computed the 
CSI across combination responses for each Δt. We then computed a distribution of expected CSI 
traces expected from shuffled data by computing the Mahalanobis distance of the 5000 CSI 
traces to the mean CSI trace of the shuffled data. With this distribution we computed the p-
value for the Mahalanobis distance of the measured CSI trace (example shown in fig. 2c) from 
the shuffled data. The threshold for statistical significance was 0.05 and controlling for multiple 
comparisons across units via false discovery rate control53. 

Neural decoders:  A neural decoder was constructed to predict CW-SW combination identity, or 
order (-Δt vs. +Δt) from single-trial spike counts. Each unit was represented by a one-versus-all 
(ova) classifier that was trained by logistic regression to report the probability of each 
combination based on the number of spikes counted within the evoked time window on one 
trial (0–125 ms after the deflection onset of the first whisker in the sequence), selected 
randomly from recorded spike counts for that unit. Linearly predicted spike counts for each 
CW-SW combination were generated by sampling individual spike counts evoked by single-
whisker deflections of the corresponding CW and SW and then adding them together. Each 
classifier comprised eight logistic functions (or just one in order decoding), one for each 
combination. Logistic functions were fit using logistic regression and 10-fold cross-validation. 
Model fitting was performed using a randomly chosen subset of the recorded trials (90%), and 
decoder performance was assessed on the remaining trials. The population stimulus prediction 
was calculated by summing the probabilities of each stimulus over all units and selecting the 
stimulus with the maximal summed probability. Model fitting was repeated 1000 times and 
population decoding 2500 times across different ensemble sizes that were built by randomly 
sampling the population of model units (or ova classifiers) with replacement. This framework 
models the population as if all single units are independent.  
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Figure 1. S1 neurons preferentially encode CW-SW sequences (a) Whisker deflections applied within a 3x3 
array of whiskers, while recording from the S1 column corresponding to the central whisker (here, D1).  
Bottom: Single-whisker and pairwise whisker stimuli that were interleaved in Experiment 1. (b) Top, Mean 
single-whisker tuning across all units in L2/3, L4 and L5. Bottom, Spiking response (z-scored within each 
unit) to individual deflection of the CW vs. the best SW for each unit.  Histogram shows distribution of 
CW-tuned and SW-tuned units. (c) Tuning curves for single and pairwise sequences of 2 example units. 
Blue and yellow bars are arranged in a 9x9 grid and denote the unit’s response to CW-SW or SW-SW 
combinations respectively; bars in the upper and lower triangular regions show the unit’s peak response 
at negative (Δt<0) or positive Δt’s respectively. Black bars show mean single-whisker responses. (d) 
Response of each unit to its best pairwise whisker sequence vs. best single whisker.  Linear regression 
slope was 1.26.  (e)  Fraction of units whose best sequence contained the CW. (f) Spiking response (z-
scored within each unit) to best CW-SW sequence vs. best SW-SW sequence for each unit. (g)  Tuning 
sharpness, quantified as lifetime sparseness, among different sets of pairwise whisker sequences.  Within 
each set, sequences were ranked from strongest to weakest spiking response, and lifetime sparseness 
was calculated for increasing number of sequences ranked.  Thus, tuning sharpness can be compared 
between the N best CW-SW sequences and the N best SW-SW sequences (at X=N on the x-axis). 
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Figure 2. Dense spatiotemporal mapping of CW-SW sequences reveals combination tuning in S1 (a) Multi-
whisker stimulus protocol: all possible pairwise whisker combinations involving the CW (yellow) or an SW 
(blue lines) were delivered at a Δt range of ±50ms at a 1ms resolution. All sequences were delivered in a 
correlated and anti-correlated fashion. Top right plot shows the stimulus waveforms for a CW-SW 
combination at +10ms Δt (b) Example unit for which we quantified spiking responses for each correlated 
CW-SW combination as a function of Δt (Δt tuning curve). Each raster plot shows spiking across all Δt’s for 
each combination. Δt tuning curves were calculated by averaging spikes in the spike count window for 
each Δt and smoothing via a model-based method (see Methods). (c) Columnar-whisker spatiotemporal 
receptive field (cwSTRF) of the example unit shown in b. Spiking responses were normalized by the unit’s 
maximum response and combination selectivity was quantified by the lifetime sparseness across 
combinations for each Δt. (d) Combination tuning curves for correlated CW-SW combinations of 4 
combination-selective example single-units in polar coordinates. Spiking responses were averaged across 
± 5ms relative to each unit’s best Δt. PSTH’s and rasters are built from trials that lie within that Δt range. 
The single-unit in the top left is the same as (b) and (c). (e) Distributions of the log10 combination selectivity 
index for significantly combination selective and non-selective units. Left and right dashed lines show the 
first and last quartiles of the distribution. (f) Average polar tuning curves for all combination selective 
units and the 25% most and least selective units as determined by ranking the CSI values. All tuning curves 
were aligned by rotating their peak response to 0 degrees. Dashed gray lines show tuning after spike 
counts were shuffled across combinations. (g) Angle histogram of best CW- SW combination identities 
across units. Best combination identity was not uniformly distributed (Rayleigh test, p=4e-19). The angular 
axis denotes the identity of the CW-SW combination. 
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Figure 3. Nonlinear sharpening of combination tuning enhances rate coding for whisker combinations in 
S1. (a) Comparison of measured and linearly predicted CSI at best Δt. (b) Probability distributions of 
measured and linearly predicted CSI between combination-selective and non-selective units. Inset show 
mean CSI (c) Average polar tuning curves for all combination selective units and the 25% most and least 
selective units as determined by ranking the CSI values. As in fig. 2f all tuning curves were aligned to 
their peak response. Includes the linearly predicted responses (aligned to each unit’s best combination) 
and single-whisker response to the CW. (d) Average performance of a neural population decoder that 
predicts CW-SW combination identity based on single-trial spiking activity of combination selective 
units. Spiking responses were drawn from ± 5ms relative to each unit’s best Δt or from single-whisker 
responses to generate a linear prediction. Units were randomly sampled (with replacement) 1000 times 
for each ensemble size; shaded regions are the standard deviations across same-size ensembles. (e) 
Mean confusion matrix of neural decoder with 187 combination-selective units. Entries along the 
diagonal are percent correct classifications for each CW-SW combination and rows sum to 1. Orange and 
gray bars are % correct classification for measured and linear responses respectively. 
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Figure 4. Strong SW responses enhance rate coding for whisker combinations in S1. (a) Probability 

distributions of combination-selectivity indices for CW and SW-tuned units. Insets show mean CSI (b) 

Mean, normalized CW-SW combination tuning for CW and SW-tuned units. Tuning curves were aligned 

at the best combination. (c) As fig. 3d decoders predicted CW-SW combination identity but were 

separately trained on spike counts from either CW or SW-tuned units only. (d) Same as fig. 3e but the 

confusion matrix is for the decoder trained on SW-tuned units only. Red and blue bars denote SW and 

CW-tuned units respectively.    
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Figure 5. Best combination responses at best Δt are boosted relative to a global sublinear scaling (a) 

Comparison of measured and linearly predicted combination responses at each unit’s best Δt. Black line 

is the line of best fit with the y-intercept set to 0. (b) Left, comparison between linearity (measured 

response divided by the linear prediction) and z-scored CW-SW combination response. Right, 

distribution of linearity indices for best and suboptimal combinations. Dashed lines are the mean 

linearity indices. (c) Average linearity indices (measured response divided by the linear prediction) for 

best and suboptimal combinations at best Δt for measured and shuffled data. The peak linearity index 

across all Δt’s is also shown for suboptimal stimuli.   
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Figure 6. Organization of linear and nonlinear computations for combination tuning (a) Schematic of 
model that describes how combination responses are constructed from single-whisker responses. The 
model has 2 stages after linear summation: a multiplicative scaling that conserves combination tuning 
from linear summation (normalization) and a combination-specific facilitation process that can change 
combination tuning relative to the linear expectation. Amplifiers and attenuators represent facilitation 
and suppression relative to the linear response. The polar tuning curve of an example combination-
selective unit provides a graphical representation of these steps (linear summation->scaling-
>combination-specific facilitation ->measured response). (b) Comparison of the average linear, 
normalized and measured spiking responses across CW-SW combinations ranked by response 
magnitude (color legend is the same as (a)). Top, combination-specific facilitation across ranks (c) 
Comparison of the average nonlinear, linear, and measured responses across CW-SW combination rank 
for combination-selective and non-selective units. (d) Comparison of combination-specific facilitation 
across CW-combinations ranked by their linear prediction. Upper and lower plots are for combination-
selective and non-selective units respectively. 
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Figure 7. S1 preferentially encodes tactile sequences inbound to the CW. (a) Mean Δt tuning curves 

aligned at best Δt. All Δt tuning curves were normalized by each unit’s peak response. (b) Mean z-scored 

Δt tuning curves. Z-scoring was done separately for each unit. (c) Cumulative fractional variance 

explained by the principal components (PCs) of z-scored Δt tuning curves. (d) First three PCs. (e) 

Distribution of weights (or score) for PC 1 across different combination types: best and suboptimal 

combinations for combination-selective and non-selective units. Bottom 2 plots are the same for PC 2 

and 3 but suboptimal stimuli were not separated by unit type. (f) CSI and alignment indices for 

combination-selective units that had a negative or positive best Δt. Open circles are individual units, red 

line is mean and shaded region is its standard error. The alignment index was the Pearson correlation 

coefficient between linearly predicted combination responses and combination-specific facilitation 

(measured – 64% of the linearly predicted response); see Fig. 6. (g) Decoding of combination identity (as 

in Fig. 4) across different ranges of Δt.    
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Figure S1 Diverse single-whisker tuning in within the S1 column. (a) Average PSTH response to single 
whisker deflections across all units. (b) Top, single-whisker tuning curves of 6 example units that were 
recorded in the same penetration of the D1 column. Bottom, multiunit activity across layers, multiunit 
activity was the number of voltage transients that exceeded 3 standard deviations of baseline. (c) 
Fraction of units that had their peak single-whisker response to CW deflections (CW-tuned units) across 
layers.  (d) Average single-whisker receptive fields of CW and SW-tuned units. Responses were 
normalized to each unit’s maximum spiking response and surround whiskers were ranked by response 
strength. 
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Figure S2. SW-tuned units have the sharpest CW-SW sequence tuning.  Tuning sharpness, quantified as 
lifetime sparseness, among different sets of pairwise whisker sequences.  Within each set, sequences 
were ranked from strongest to weakest spiking response, and lifetime sparseness was calculated for 
increasing number of sequences ranked.  Thus, tuning sharpness can be compared between the N best 
CW-SW sequences and the N best SW-SW sequences (at X=N on the x-axis).  
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Figure S3. Diversity of combination tuning in S1. Combination tuning curves of 30 combination-selective 
units, chosen to be representative of the population. Asterisks denote peak responses. Best Δt’s are 
shown in the top left of each unit.  
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Figure S4. Somatotopic bias of combination tuning in S1. (a) Average, rate normalized, combination 
tuning curves for combination-selective and non-selective units. (b) Average combination selectivity 
across combination-selective units that prefer a specific CW-SW combination. Each point at each angle is 
the average CSI of units that prefer the corresponding CW-SW combination. 
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Figure S5 Properties of combination tuning across layers. (a)  Log10 CSI across layers for combination-
selective units. Open circles are individual units, red line is the mean and shaded region is the 95% 
confidence interval. Asterisks denote statistically significant differences. (b) Fraction of combination-
selective units across layers. (c) Average polar tuning curves aligned to the best stimulus for each layer. 
Axes are in spikes per stimulus and are the same across all plots.  
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Figure S6. 
Distributions of linear and nonlinear components of combination tuning. Combination-specific 
facilitation, measured and linear response are defined as in Fig. 6. For all panels left and right plots are 
for combination-selective and non-selective units respectively. (a) Combination-specific facilitation as a 
function of CW-SW combination rank. Open circles are individual units, red line is mean and shaded 
region is 95% confidence intervals. (b) and (c) Same as (a) but for measured response and linear 
prediction respectively. (d) Combination-specific facilitation as a function of the linear prediction rank. 
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Figure S7. Rate coding for CW-SW sequence order in S1 (a) Average performance of a neural population 
decoder that predicts sequence order (inbound  -Δt vs. outbound + Δt)  based on, single-trial spiking 
activity. –Δt and + Δt responses were defined as spike counts evoked by a combination with a Δt within 
[-50ms,-10ms] and [10ms, 50ms] range. Only combination responses for best combinations were used in 
this analysis. (b) Decoding performance across different combination identities. The order of each CW-
SW combination was decoded from units that had that combination as their best combination. 
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Chapter 4 

 

Conclusion 
Chapter 2 showed that S1 neurons in layers 2/3 and 4 code for whisker kinematic features at a 

very fast timescale, while neurons in layer 5 coded for non-sensory features (i.e. behavioral 

choice). This was consistent with the results of Chapter 3, where the sharpest 2-whisker 

combination tuning was found in layers 2/3 and 4 with significantly weaker sensory tuning in 

layers 5 and 6 (Fig. S5 of Chapter 3; page 76). These results show that S1 can have remarkably 

precise tuning to different tactile features and reveal novel functional differences across 

cortical layers. 

A canonical computation for spatiotemporal feature extraction in whisker sensation and 

vision? 

Chapter 3 describes a novel and prevalent nonlinear computation that enhances sensory tuning 

in whisker S1.  This computation consisted of near-linear integration to best whisker 

combinations and prominent sublinear suppression to suboptimal whisker combinations; 

largely consistent with the spatially asymmetric suppression that yields motion direction 

selectivity in many areas of the visual system. In the Barlow-Levick motion detection model, a 

classical model of motion direction selectivity in vision, direction selectivity is constructed via 

suppression of neural responses to motion along null or non-preferred axes of motion and a 

lack of suppression to preferred directions1,2. This is seen in direction selective retinal ganglion 

cells of the mammalian retina3 and a similar phenomenon was recently described in the fly T4 

cells where sublinear summation of sequential photoreceptor activation along the null but not 

in the preferred direction, enhanced direction selectivity beyond that expected from linear 

integration alone4.  

Motion direction selectivity is also common in primary sensory cortex.  Our results show that 

most S1 neurons prefer multi- over single-whisker stimuli (Fig. 1d of Chapter 3; page 64), are 

tuned to specific 2-whisker combinations (Fig. 2 and S3 of Chapter 3; pages 65 and 74) and 

sharpen 2-whisker tuning with a stereotyped nonlinearity (Fig. 5 of Chapter 3; page 68). This 

implies that local motion in the whisker pad (consisting of sequential deflections of individual 

whiskers) is a fundamental aspect of sensory coding in S1. Most V1 neurons respond more 

strongly to moving over static stimuli (e.g. drifting gratings over oriented edges)5. Both simple 

and complex cells exhibit strong motion direction selectivity6. Simple cells, although linear in 

how they compute orientation tuning, sharpen motion direction selectivity nonlinearly. Studies 

comparing neural responses to stimuli consisting of individual spots of light vs. sequences 

showed that responses of V1 simple cells to the preferred direction of motion often match the 
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linear prediction but responses to non-preferred directions are suppressed relative to the linear 

prediction7; sharpening motion direction selectivity in a way that is analogous to what we 

described in Chapter 3 (Fig. 5 and 6; page 68 and 69). Moreover, this direction selectivity is 

critically dependent on spatiotemporally inseparable receptive fields with cells having 

spatiotemporally separable receptive fields exhibiting no motion direction selectivity8. Complex 

cells also exhibit this tuning and modeling complex cell spiking as arising from a weighted sum 

of spatiotemporally inseparable subunits accurately predict motion direction preference8. This 

need for spatiotemporally inseparable receptive fields in the visual system is analogous to how 

S1 neurons sharpen whisker combination tuning with space-time inseparable multi-whisker 

receptive fields (Fig. 7b of Chapter 3; page 70). Thus, S1 cells with 2-whisker sequence tuning 

show important analogies with both simple and complex cells in V1.  This suggests that classical 

models for visual direction selectivity provide a powerful and intuitive tool to understand multi-

whisker tuning and suggests generalized and evolutionary conserved nonlinear operations for 

spatiotemporal feature extraction.  
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