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Abstract

A comprehensive review of zonal flow phenomena in plasmas is presented.  While the

emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as

well.  The review presents the status of theory, numerical simulation and experiments

relevant to zonal flows.  The emphasis is on developing an integrated understanding of

the dynamics of drift wave - zonal flow turbulence by combining detailed studies of the

generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift

waves, and the various feedback loops by which the system regulates and organizes

itself.  The implications of zonal flow phenomena for confinement in, and the

phenomena of fusion devices are discussed.  Special attention is given to the

comparison of experiment with theory and to identifying directions for progress in

future research.
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1. Introduction

Zonal flows, by which we mean azimuthally symmetric band-like shear flows,

are a ubiquitous phenomena in nature and the laboratory.  The well-known examples of

the Jovian belts and zones, and the terrestrial atmospheric jet stream are familiar to

nearly everyone - the latter especially to travelers enduring long, bumpy airplane rides

against strong head winds.  Zonal flows are also present in the Venusian atmosphere

(which rotates faster than the planet does!) and occur in the solar tachocline, where they

play a role in the solar dynamo mechanism.  In the laboratory, the importance of

sheared    E! B  flows to the development of L-mode confinement, the L-to-H transition

and internal transport barriers (ITBs) is now well and widely appreciated.

While many mechanism can act to trigger and stimulate the growth of sheared

electric fields (i.e. profile evolution and transport bifurcation, neoclassical effects,

external momentum injection, etc.) certainly one possibility is via the self-generation

and amplification of    E! B  flows by turbulent stresses (i.e. the turbulent transport of

momentum).  Of course, this is the same mechanism as that responsible for zonal flow

generation.   It should be emphasized that it is now widely recognized and accepted that

zonal flows are a key constituent in nearly all cases and regimes of drift wave

turbulence - indeed, so much so that this classic problem is now frequently referred to

as "drift wave-zonal flow turbulence".  This paradigm shift occurred on account of the

realization that zonal flows are ubiquitous in dynamical models used for describing

fusion plasmas (i.e. ITG, TEM, ETG, resistive ballooning, and interchange, etc.) in all

geometries and regimes (i.e. core, edge, etc.), and because of the realization that zonal

flows are a critical agent of self-regulation for drift wave transport and turbulence.  Both

theoretical work and numerical simulation made important contributions to this

paradigm shift.  Indeed, for the case of low collisionality plasmas, a significant portion

of the available free energy is ultimately deposited in the zonal flows.  Figure 1.1

presents energy flow charts which illustrate the classic paradigm of drift wave

turbulence and the new paradigm of drift wave - zonal flow turbulence.  The study of

zonal flow has had a profound impact on fusion research.  For instance, the proper
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treatment of the zonal flow physics has resolved some of the confusion [1.1] concerning

the prospect of burning plasma as has been discussed by Rosenbluth and collaborators

in conjunction with the design of the International Thermonuclear Experimental Reactor

(ITER).  At the same time, the understanding of the turbulence-zonal flow system has

advanced the understanding of self-organization process in nature.

We note here that, while zonal flows have a strong influence on the formation of

transport barriers, the dynamics of barriers and transitions involve evolutions of both the

mean    E! B  flow as well as the zonal    E! B  flow.  The topics of mean  Er  dynamics,

transport barriers, and confinement regime transitions are beyond the scope of this

review.

In the context of tokamak plasmas, zonal flows are   n = 0 electrostatic potential

fluctuations with finite radial wave number.  Zonal flows are elongated, asymmetric

vortex modes, and thus have zero frequency.  They are predominantly poloidally

symmetric as well, though some coupling to low-  m sideband modes may occur.  On

account of their symmetry, zonal flows cannot access expansion free energy stored in

temperature, density gradients, etc., and are not subject to Landau damping.  These

zonal flows are driven exclusively by nonlinear interactions, which transfer energy from

the finite-  n drift waves to the   n = 0 flow.  Usually, such nonlinear interactions are

three-wave triad couplings between two high  k  drift waves and  one low    q = qrr  zonal

flow excitation.  In position space, this energy transfer process is simply one whereby

Reynolds work is performed on the flow by the wave stresses.  Two important

consequences of this process of generation follow directly.  First, since zonal flow

production is exclusively via nonlinear transfer from drift waves, zonal flows must

eventually decay and vanish if the underlying drift wave drive is extinguished.  Thus,

zonal flows differ in an important way from mean    E! B  flows, which can be sustained

in the absence of turbulence (and are, in strong H-mode and ITB regimes).  Second,

since zonal flows are generated by nonlinear energy transfer from drift waves, their

generation naturally acts to reduce the intensity and level of transport caused by the

primary drift wave turbulence.  Thus, zonal flows necessarily act to regulate and
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partially suppress drift wave turbulence and transport.  This is clear from numerical

simulations, which universally show that turbulence and transport levels are reduced

when the zonal flow generation is (properly) allowed.  Since zonal flows cannot tap

expansion free energy, are generated by nonlinear coupling from drift waves, and damp

primarily (but not exclusively) by collisional processes, they constitute a significant and

benign (from a confinement viewpoint) reservoir or repository for the available free

energy of the system.

Another route to understanding the effects of zonal flow on drift waves is via the

shearing paradigm.  From this standpoint, zonal flows produce a spatio-temporally

complex shearing pattern, which naturally tends to distort drift wave eddies by

stretching them, and in the process generates large  k r .  Of course, at smaller scales,

coupling to dissipation becomes stronger, resulting in a net stabilizing trend.  The

treatment of zonal flow shearing differs from that for mean flow shearing on account of

the complexity of the flow pattern.  Progress here has been facilitated by the realization

that a statistical analysis is possible.  This follows from the fact that the autocorrelation

time of a drift wave packet propagating in a zonal flow field is usually quite short, and

because the drift wave rays are chaotic.  Hence, significant advances have been made on

calculating the 'back reaction' of zonal flows on the underlying drift wave field within

the framework of random shearing, using wave kinetics and quasilinear theory.

Conservation of energy between drift waves and zonal flows has been proved for the

theory, at the level of a renormalized quasilinear description.  Thus, it is possible to

close the 'feedback loop' of wave-flow interactions, allowing a self-consistent analysis

of the various system states, and enabling an understanding of the mechanisms and

routes for bifurcation between them.

From a more theoretical perspective, the drift wave-zonal flow problem is a

splendid example of two generic types of problems frequently encountered in the

dynamics of complex systems.  These are the problem of nonlinear interaction between

two classes of fluctuations of disparate scale, and the problem of self-organization of

structures in turbulence.  The drift wave-zonal flow problem is clearly a member of the
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first class, since drift waves have high frequency and wavenumber (    k!" i # 1 ,    !k " !* )

in comparison to zonal flows (    qr! i << 1 ,   ! " 0 ). Another member of this group,

familiar to most plasma physicists, is the well known problem of Langmuir turbulence,

which is concerned with the interaction between high frequency plasma waves and low

frequency ion acoustic waves.  As is often the case in such problems, fluctuations on

one class of scales can be treated as "slaved" to the other, thus facilitating progress

through the use of averaging, adiabatic theory and projection operator techniques.  In

the case of the drift wave-zonal flow problem, great simplification has been

demonstrated via the identification of a conserved drift wave population density (i.e.

action-like invariant) which is adiabatically modulated by the sheared flows.  Indeed,

though superficially paradoxical, it seems fair to say that such disparate scale interaction

problems are, in some sense, more tractable than the naively 'simpler' problem of

Kolmogorov turbulence, since the ratio of the typical scales of the two classes of

fluctuations may be used to constitute a small parameter, which is then exploited via

adiabatic methodology.

Of course, it is patently obvious that the zonal flow problem is one of self-

organization of large structure in turbulence.  Examples of other members of this class

include transport barrier and profile formation and dynamics, the origin of the solar

differential rotation, the famous magnetic dynamo problem (relevant, in quite different

limits, to the sun, earth, galaxy, and Reversed Field Pinch), and the formation of profiles

in turbulent and swirling pipe flow.  Table 1.1 summarizes these related structure

formation phenomena, illustrating the objective of this review.  Most of these problems

are attacked at the simplest level by considering the stability of an ensemble or 'gas' of

ambient turbulence to a seed perturbation.  For example, in the dynamo problem, one

starts by considering the stability of some state of MHD turbulence to a seed magnetic

field.  In the zonal flow problem, one correspondingly considers the stability of a gas of

drift waves to a seed shear.  The incidence of instability means that the initial vortex tilt

will be re-enforced, thus amplifying the seed perturbation.  It should be noted that the

zonal flow formation phenomenon is related to, but not quite the same as, the well
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known inverse cascade of energy in a 2D fluid, which leads to large scale vortex

formation.  This is because the inverse cascade proceeds via a local coupling in

wavenumber space, while zonal flow generation occurs via nonlocal transfer of energy

between small and large scales. Indeed, zonal shear amplification is rather like the

familiar  ! -effect from dynamo theory, which describes a nonlocal transfer of magnetic

helicity to large scale.  We also note that the initial stage of pattern formation instability

meets only a part of the challenge to a theoretical description of structure formation, and

that one must subsequently 'close the loop' by understanding the mechanisms of

saturation of the zonal flow instability.  The saturation of zonal flows driven by drift

wave turbulence is now a subject of intensive theoretical and computational

investigation, worldwide.

As a related phenomena,  convective cells have been subject to intensive study

for a long time.  The convective cell is a perturbation which is constant along the

magnetic field line but changes in the direction perpendicular to the magnetic field.

Such a structure is known to be induced by background drift wave turbulence.  The

zonal flow can be considered as a particular example of an anisotropic convective cell.

However, the  convective cells of greatest interest as agents of transport are localized in

the poloidal direction and extended radially, which is the opposite limit of anisotropy

from that of the zonal flow.  Such cells are commonly referred to as streamers.

As the zonal flow problem is a member of a large class of rapidly expanding

research topics, the perspective of this review is composed as follows.  First, we present

detailed explanations of the physical understanding of drift wave-zonal flow turbulence.

Second, we also stress the view that studies on toroidal plasma turbulence enhance our

understanding of turbulent structure formation in nature.  In this sense, this review is a

companion article to recent reviews on the magnetic dynamo problem which, taken

together, present a unified view that addresses the mystery of structure formation in

turbulent media.  Third, the impact of direct nonlinear simulation (DNS) is discussed in

the context of understanding zonal flow physics, although a survey of DNS techniques

themselves is beyond the scope of this review.  It is certainly the case that DNS studies
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have significantly furthered our understanding of drift wave-zonal flow turbulence.  For

these reasons, examples are mainly chosen from the realm of core plasma (i.e. drift

wave) turbulence.  In order to maintain transparency and to be concise, this review is

limited in scope.  Studies of edge turbulence and of general convective cell physics are

not treated in depth here.  While these topics are closely related to the topic of this

review, extensive introductory discussions, which are too lengthy for this paper, are

necessary.  Hence, details of these important areas are left for future reviews.

This article reviews zonal flowdynamics, with special emphasis on the theory of

drift wave-zonal flow turbulence and its role in plasma confinement.  The remainder of

this review article is organized as follows.  Chapter 2 presents a heuristic overview of

the essentials of zonal flow physics, including shearing, generation mechanisms, and

multiple states and bifurcations.  Chapter 2 is aimed at general readers, non-specialists,

and others who want only to read a brief executive summary.  Chapter 3 presents a

detailed description of the theory of drift wave-zonal flow turbulence.  Section 3.1

discusses neoclassical collisional friction damping.  Section 3.2 is concerned with drive

and amplification, from a number of perspectives and approaches.  In particular, both

coherent and broad-band modulational stability calculations are explained in detail, and

extensions to regimes where waves are trapped in the flows are discussed as well.

Section 3.3 describes the feed back of zonal flows on drift waves, while Section 3.4

discusses nonlinear saturation mechanisms.  An emphasis is placed upon unifying the

various limiting models.  Section 3.5 presents a unified, self-consistent description of

the various systems and the bifurcation transitions between them.  Section 3.6 deals

with the effect of the zonal flows on transport.  Chapter 4 gives an overview of what

numerical simulations have elucidated about zonal flow dynamics in magnetized

plasmas.  Chapter 5 gives an introduction to zonal flow phenomena in nature.  Special

emphasis is placed upon the well known and visually compelling example of belt and

band formation in the atmosphere of Jupiter.  Chapter 6 discusses advanced extensions

of the theory, including statistical and probabilistic approaches and non-Markovian

models.  Chapter 7 surveys the state of experimental studies of zonal flow phenomena
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in magnetically confined plasma.  Chapter 8 gives a statement of conclusions, an

assessment of the current state of our understanding and presents suggestions for the

future direction of research.  These structures are illustrated in the roadmap of Fig.1.2.

We note that an extended version of the article may be found in the form of a preprint

[1.2].
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2. Basic Physics of Zonal Flows:  A Heuristic Overview

2.1 Introduction

We present an introduction to the basic physics of zonal flows. This section is

directed toward a general audience, which may include plasma and fusion

experimentalists and other non-specialists, as well as readers who desire only an

'executive summary' of this article. Some of the relevant, pioneering work on zonal

flows can be found in [2.1-2.6].  The emphasis here is on physical reasoning and

intuition, rather than on formalism and rigorous deduction. This section begins with a

discussion of shearing [2.7-2.11] by a spectrum of zonal flows and its effect on the

primary drift wave spectrum. Considerations of energetics, in the quasi-linear

approximation [2.12-2.13], are then used to describe and calculate the rate of

amplification of zonal shears by turbulence. We then discuss some basic features of the

dynamical system of waves and zonal flows, and its various states (Fig.2.1). Using the

example of drift wave turbulence with a spatial scale length of   !i, the basic

characteristics of zonal flows are summarized in Table 2.1.  This table serves as a guide

for the explanations in the following chapters.  In the study of zonal flows, three

principal theoretical approaches have been applied.  These are: (i) wave kinetic and

adiabatic theory, (ii) parametric (modulational) theory, and (iii) envelope formalism.  In

this chapter, an explanation in the spirit of wave kinetics and adiabatic theory is given.

The wave kinetic theory, as well as parametric theory are described in depth in Chapter

3.  The envelope formalism is discussed in Chapter 6.

2.2 Basic dynamics of zonal flows

The zonal flow is a toroidally symmetric electric field perturbation in a toroidal

plasma, which is constant on the magnetic surface but rapidly varies in the radial

direction, as is illustrated in Fig.2.2.  The associated    E! B  flow is in the poloidal

direction, and its sign changes with radius. The zonal flow corresponds to a strongly

asymmetric limit of a convective cell.  The key element in the dynamics of zonal flows
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is the process of shearing of turbulent eddies by flows with a larger scale (i.e., with

shear lengths     L s > !xc , where    !xc  is the eddy scale).  The fact that such shearing acts

to reduce turbulence and transport is what drives the strong current interest in zonal

flows.  In the case of a smooth, mean shear flow, it is well known that shearing tilts

eddies, narrowing their radial extent and elongating them. (Fig.2.3).  In some

simulations, sheared flows are observed to break up the large eddys associated with

extended modes.   At the level of eikonal theory, this implies that the radial

wavenumber of the turbulence increases linearly in time, i.e.

   
k r = kr

0 – k!
"V! r
"r t . (2.1)

As a consequence, the eddies necessarily must increase the strength of their coupling to

small scale dissipation, thus tending to a quench of the driving process. In addition, the

increase in  k r implies a decrease in    !xc , thus reducing the effective step size for

turbulent transport [2.14].

In the case of zonal flows, the physics is closely related, but different in detail,

since zonal flow shears nearly always appear as elements of a spatially complex (and

frequently temporally complex) pattern (Fig.2.4) [2.15-2.17].  This presents a

significant complication to any theoretical description. Fortunately, the problem is

greatly simplified by two observations. First, the drift wave spectrum is quite broad,

encompassing a range of spatial scales from the profile scale !L  to the ion gyro-radius

i! , and a range of time scales from 
!1

BD "
2L( )  to !L sc .  Here BD = s! sc .  In contrast,

the dynamically relevant part of the zonal flow spectrum has quite a low frequency and

large extent, so that a scale separation between the drift waves and zonal flows clearly

exists.  Second, the 'rays' along which the drift waves propagate can easily be

demonstrated to be chaotic, which is not surprising, in view of the highly turbulent state

of the drift wave spectrum.   !k, the width of the drift wave spectrum satisfies    !k"i # 1 .

Thus, the effective lifetime of the instantaneous pattern 'seen' by a propagating drift
wave group packet is

 
   !qrvg

– 1 . Here,  qr is the radial wave number of the zonal flow
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and gv  is the group velocity of the drift waves.  This implies that the effective lifetime
of the instantaneous shearing pattern, as seen by the wave packet, is

 
   !ac " #qrvg

– 1 .

For virtually any relevant parameters, this time scale is shorter than the time scale for

shearing, trapping, etc. of the wave packet. Note that, on account of ray chaos, no

'random phase' assumption for zonal flow shears is necessary [2.18].  Thus, the shearing

process in a zonal flow field can be treated as a random, diffusive process, consisting of

a succession of many short kicks, which correspond to shearing events, so, the mean

square wavenumber increases as

   !k r
2 = Dk t , (2.2a)

   Dk = k !V!, qq 2"q #k, q , (2.2b)

where  ! ! !  represents the average,    V!, q represents the  q-Fourier components of the

poloidal flow velocity and    !k, q is the time of (triad) interaction between the zonal flow

and the drift wave packet.  This diffusion coefficient  Dk  is simply the mean square

shear in the flow_induced Doppler shift of the wave [weighted by the correlation time

of the wave packet element with the zonal flow shear], on the scale of zonal

flowwavenumber q [2.19]. Thus, in contrast to the case of coherent shearing for which

the radial wavenumber increases linearly with time, the rms wavennumber increases

   ! t 1/2. However, the basic trend toward coupling to smaller scales in the drift wave

spectrum persists. Furthermore, this evolution is adiabatic, on account of the separation

in time and space scales between drift waves and zonal flows mentioned above.  The

use of adiabatic approximation methods greatly simplifies the calculations [2.20-2.22].

As noted above, much of the interest in zonal flows is driven by the fact that

they regulate turbulence via shearing.  However, it is certainly true that all low-n modes

in a spectrum of drift wave turbulence will shear and strain the larger-n, smaller-scale

fluctuations.  Indeed, non-local shearing-straining interactions are characteristic of 2D

turbulence once large scale vortices are established, as argued by Kraichnan and shown
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in simulations by Borue and Orszag.  This, in turn, naturally motivates the questions:

"What is so special about zonal flows (with n = 0 )?" and "Why aren't other low-n

modes given equal consideration as regulators of drift wave turbulence?"  There are at

least three answers to this very relevant and interesting question.  These are discussed

below.

First, zonal flows may be said to be the 'modes of minimal inertia'.  This is

because zonal flows, with n = 0  and ||k = 0 , are not screened by Boltmann electrons, as

are the usual drift-ITG modes.  Hence, the potential vorticity of a zonal flow mode is
simply s

2
r
2q ! q

ˆ " , as opposed to 1 + !
2k s

2"( ) k
ˆ # , so that zonal flows have lower effective

inertia than standard drift waves do. The comparatively low effective inertia of zonal

flows means that large zonal flow velocities develop in response to drift wave drive,

unless damping intervenes.  In this regard, it is also worthwhile to point out that in the

case of ETG turbulence, both zonal flows and ETG modes involve a Boltzmann ion

response iˆ n on = !e ˆ " iT , since !k i" >>1 for ETG.  Hence, it is no surprise that zonal

flow effects are less dramatic for ETG turbulence then for its drift-ITG counterpart,

since for ETG, zonal flows have an effective inertia comparable to other modes.

Second, zonal flows, with n = 0  and ||k = 0 ,are modes of minimal Landau

damping.  This means that the only linear dissipation acting on zonal flows for

asymptotic times (i.e., t! " ) is due to collisions.  In particular, no linear, time-

asymptotic dissipation acts on zonal flows in a collisionless system.

Third, since zonal flows have n = 0 , they are intrinsically incapable of driving

radial E ! B  flow perturbations.  Thus, they cannot tap expansion free energy stored in

radial gradients.  Thus, zonal flows do not cause transport or relaxation, and so

constitute a benign repository for free energy.  In contrast, other low n-modes

necessarily involve a trade-off between shearing (a "plus" for confinement) and

enhanced transport (a "minus").

Having established the physics of shearing, it is illuminating to present a short,

'back-of-an-envelope' type demonstration of zonal flow instability. For other

approaches, see the cited literature [2.23-2.29].  Consider a packet of drift waves
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propagating in an ensemble of quasi-stationary, random zonal flow shear layers, as

shown in Fig. 2.4(b). Take the zonal flows as slowly varying with respect to the drift

waves (i.e.,    ! << "k), i.e., as quasi-stationary. Here,  ! is the rate of the change or

frequency of the zonal flow and   !k  is the characteristic frequency of drift waves.  The

spatially complex shearing flow will result in an increase in   k r
2 , the mean square

radial wave vector (i.e., consider a random walk of  k r, as described above). In turn the

generic drift wave frequency e*! 1 + "
2k s

2#( )  must then decrease.  Here,    !s is the ion

gyroradius at the electron temperature. Since    ! << "k, the drift wave action density

    Nk = E k / !k is conserved, so that drift wave energy must also decrease. As the total

energy of the system of waves and flows is also conserved (i.e.,

  E wave + E flow = const. , as shown in Section 3.2.2), it thus follows that the zonal flow

energy must, in turn, increase.  Hence, the initial perturbation is reinforced, suggestive

of instability.  Note that the simplicity and clarity of this argument support the assertion

that zonal flow generation is a robust and ubiquitous phenomenon.

A slightly larger envelope is required for a 'physical argument' which is also

quantitatively predictive. Consider a drift wave packet propagating in a sheared flow

field, as shown in Fig. 2.5. Take    !k > VE"  and    k > VE!/VE , so that wave action

density is conserved (i.e., N k( ) = 0N ), a constant. [  VE is the    E ! B velocity and   VE!  is

its radial derivative.]  Thus, for constant  N , wave energy density evolves according to:

   d
dt ! k !

2 rk "k s
2#

1 + $
2k s

2#
% 
& 
' ( 

) 
* 

E+ V , k( ) .  (2.3)

Equation (2.3) states that the drift wave packet loses or gains energy due to work on the

mean flow via wave induced Reynolds stress [2.30]. Note that     k rk !E k " VrV! , the

Reynolds stress produced by E ! B  velocity fluctuations.  Note as well that the factor
   k rk !E k VE"  is rather obviously suggestive of the role of triad interactions in

controlling fluctuation-flow energy exchange. For zonal flows, the shear is random and
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broad-band, so that    VE ! VE,    N ! N + N  and    NVE! " N VE! . Hence, Eq.(2.3) may

be rewritten as:

d
dt

! k( ) = " g,rV #k ( E$ ˜ V ˜ N ) . (2.4)

To complete the argument, the correlator    N VE!  must now be calculated. To this end,

we use the wave kinetic equation (WKE)

    ! N
! t + Vg + V "# N – !

! x $ + k %VE "! N
! k

   = !kN – "#k N2 / N0 (2.5)

and the methodology of quasi-linear theory to obtain:

!k E
'V ˜ N = KD

" N
" rk

(2.6a)

KD = !
2k 2q

q
"

2

Eq
'V R k, q( ) (2.6b)

R k,q( ) = !k
2

q g,rV( ) + k
2!( ) . (2.6c)

The term     !"kN 2/N0 represents drift wave non-linear damping via self-interaction of the

drift waves (i.e., inverse cascade by local interaction). Here q  is the radial wavenumber

of the zonal flow, and equilibrium balance in the absence of flow has been used to relate

  !"k to   !k .   !k  is the growth rate of the drift mode. The wave energy then evolves

according to:

d! k( )
dt

=
2 s

2" KD rk
2

1+ s
2

#
2k "( )

$ N
$ rk

. (2.7)
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As the total energy of the stationary wave-flow system is conserved,

d dt ! k( )
k
" +

2
q˜ v 

q
"

# 

$ 
% & 

' 
( = 0 .

The zonal flow generation rate is thus determined to be:

q! = "2 2q s
2c #

2k s
2$

2
1+ s

2
%
2k $( )q

& R k,q( ) rk
' (
' rk

) 
* 
+ , 

- 
(2.8a)

! = 1 + "
2k s

2#( ) $ . (2.8b)

Here  !  is the mean potential enstrophy density of the drift wave turbulence, (i.e.,

! k( ) =
2

1+ s
2

"
2k #( ) 2

k$ ) and may be thought of as the population density of drift wave

vortices.  Note that for toroidally and poloidally symmetric shears, d !k dt = 0 , so that

the conventional wave action density N k( )  and the potential enstrophy density ! k( )  are

identical, up to a constant factor.

 The result given above in Eq. (2.8a), obtained by transparent physical reasoning,

is identical to that derived previously by formal modulational stability arguments. Note

that     ! " /!k r < 0 (a condition which is virtually always satisfied in 2D or drift wave

turbulence) is required for zonal flow growth. In addition, the argument above reveals

that drift wave ray chaos provides the key element of irreversibility, which is crucial to

the wave-flow energy transfer dynamics. Here ray chaos requires overlap of the

! rq = gV  resonances in  Dk , a condition easily satisfied for finite lifetime drift wave

eddies and (nearly) zero frequency zonal flows (i.e.,    !"k >> #) [2.31]. Under these

conditions neighboring drift wave rays diverge exponentially in time, thus validating the

use of stochastic methodology employed here [2.32]. In the case where rays are not

chaotic, envelope perturbation formalism [2.33, 2.34], methods from the theory of
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trapping [2.35-2.37] or parametric instability theory [2.38] must be used to calculate

zonal flow generation.

2.3 Self-consistent solution and multiple states

At this point, we have identified the two principal elements of the physics of the

drift wave - zonal flow system.  These are:

i) The shearing of drift wave eddies by the complex zonal flow field, resulting in

a diffusive increase in   k r
2  and coupling to dissipation, reduction in transport,

etc.,

ii) the amplification of zonal flow shears by modulational instability of the drift 

wave to a 'test' or seed shear.

Note that i) and ii) are, to some extent, different views of the same process of energy

transfer from the short wavelength drift wave spectrum to the long wavelength zonal

flow spectrum.  This process of drift wave energy depletion results in a diffusive

increase in the mean square radial wavenumber of drift waves, and a transfer of drift

wave population density to small scale.  In view of the fact that the drift wave

population density is equivalent to the potential enstrophy density, we see that the

process of zonal flow generation is not unlike the dual cascade phenomenon familiar

from 2D hydrodynamics.  Here, the growth of zonal flow shears corresponds to the

inverse energy cascade, while the increase in RMS of  k r is similar to the forward

enstrophy cascade [2.39].  Unlike the case of 2D hydrodynamics, zonal shear

amplification is a non-local coupling process in wavenumber space.

To proceed, we now examine the coupled evolution for  N , the drift wave

quanta density, and the zonal flow spectrum.  These evolve according to:

   !
!t N – !

!k r
D k

!
!kr

N = "k N – #$k
N0

N 2
, (2.9a)

   !
!t "q

2= # q ! N /!k r "q
2– $d "q

2– $NL "q
2 "q

2
. (2.9b)
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Equation (2.9a) is simply the quasi-linear Boltzmann equation for  N , while Eq. (2.9b)

describes zonal flow potential growth and damping by modulational instability (the first

term - proportional to the drift wave population gradient    ! N /!k r), collisional damping

(the second term - due to the friction between trapped and circulating ions) [2.40, 2.41]

and nonlinear damping of zonal flows (the third term - which schematically represents a

number of different candidate zonal flow saturation processes).  Note here that NL!  is an

unspecified function of zonal flow intensity, and thus can represent nonlinear damping

process such as turbulent viscous damping, etc.  Together, Eqs.(2.9a) and (2.9b)

constitute a simple model of the coupled evolution dynamics.  This 'minimal' model

could be supplemented by transport equations which evolve the profiles used to

calculate   !k, the drift wave growth rate (i.e.,    !k = !k n– 1dn/dr, T – 1dT/dr, " " " ) [2.42].

The minimal system has the generic structure of a 'predator-prey' model, where the drift

waves correspond to the prey population and the zonal flows correspond to the predator

population [2.43-2.47].  As usual, the prey breeds rapidly (i.e.,   !k is fast), and supports

the predator population as the food supply for the latter (i.e.,    !q = !q N ).  The

predators regulate the prey by feeding upon them (i.e.,   !q and  Dk  conserve energy with

each other) and are themselves regulated by predator death (at rate   !d) and predator-

predator competition (    !NL "q
2

).  Taken together, Eqs.(2.9a) and (2.9b) describe a

self-regulating system with multiple states.

The dynamics of the two population system are more easily grasped by

considering a zero-dimensional model for population  N  and   V 2, instead of the one-

dimensional model equations for  N k  and    !q
2
.  The 0-D simplified model is this:

   !
!t N = "N – #V 2N – $% N 2, (2.10a)

   !
!t V 2 = "NV 2 – #dV 2 – #NL V 2 V 2. (2.10b)

The states of the system are set by the fixed points of the model, i.e., when

   !N/!t = !V 2/!t = 0 .  There are (at least) two classes of fixed points for the system.  The
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state with finite fluctuations and transport, but no flow is that with     N = !/"#,   V 2 = 0 .

This corresponds to a state where turbulence saturates by local, nonlinear interactions.

A second state, with flow, is that with

   N =! – 1 "d + "NL V 2 , (2.11a)

2V + !2" #$ NL% 2V( ) = !1" % ! #$ d% !1"( ) . (2.11b)

Note that the general form    !NL V 2  allows limit cycle solutions.  Given the physically

plausible assumption that    !NL V 2 > 0  and increases with 2V  as 2V !" , the

Poincare-Bendixon theorem implies that limit cycle solutions to (2.10a,b) can be

identified by the appearance of unstable centers as fixed points of those equations.  In

general, the appearance of such limit cycle attractors is due to the effects of time delays

in the dynamical system of zonal flows and drift waves. For the especially simple case

where    !NL V 2 " #2V 2, the solution reduces to:

   
N =

!d + "2!"– 1

" + #$"2"– 1 (2.12a)

2V =
! " #$ d! "1%
% + 2% #$ "1%
& 
' ( 

) 
* + . (2.12b)

Even this highly over-simplified model contains a wealth of interesting physics.

The properties of the two states are summarized in Table 2.2, which we now discuss.

Access to the state of no flow requires only primary linear instability, i.e.,   ! > 0, while

access to states with finite flow requires   ! > "#!d/$, so that the excitation of the

underlying drift waves is sufficient to amplify the flow shear against collisional

damping. In the no flow state,    N ! "/#$, consistent with the traditional picture of

saturation of turbulence and transport via the balance of linear growth with nonlinear

damping.  With the presence of flow,    N ! "d#– 1, which directly ties the turbulence level
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to the flow damping [2.48].  This follows the fact that in the finite flow state, the

turbulence level is regulated by the shear flow, which is, in turn, itself controlled by the

flow damping.  Thus, the fluctuation level is ultimately set by the flow damping!  This

prediction has been confirmed by several numerical simulations [2.49].  In the finite

flow state,   V 2 is set by the difference between the wave growth and flow damping.

Thus, the branching ratio of the zonal flow to drift wave energy scales as   ! / !d.  In

particular, for   !d " 0 , the dominant ultimate repository of expansion free energy are the

zonal flows, whose energy exceeds that of the drift waves.  Note that the ratio   ! / !d is

the key control parameter for manipulating the fluctuation energy branching ratio.  It is

interesting to note that the rather special 'Dimits shift' regime [2.50], which is a state

very close to marginal stability in an effectively collisionless system, corresponds to the

somewhat ill-defined case where both   ! " 0 and   !d " 0 , i.e., weak flow damping and

drift waves near their marginal point. The Dimits shift was discovered by direct

nonlinear simulation of ion-temperature-gradient (ITG) mode-driven turbulence in the

collisionless limit.  In the Dimits shift regime, the drift wave fluctuations are just above

the linear stability threshold and nearly quenched by zonal flow effects which are large,

on account of weak flow damping at low collisionality.  The Dimits shift regime is

characterized by a large imbalance between the energy in zonal flows and in n ! 0

fluctuations  (with zonal flow energy much larger), which gives the appearance of a

'shift' (i.e., increase) in the effective threshold for ITG turbulence and transport.  Thus, it

is not surprising that the Dimits shift regime merits special attention.  Detailed

discussion of the Dimits shift regime is given in Chapter 3.

It is especially interesting to comment on the effects of nonlinear zonal flow

damping, for which   ! 2 " 0 .  The details of this process are a subject of intense ongoing

research, and will be discussed extensively later in this review.  Candidate mechanisms

include Kelvin-Helmholtz-like instabilities of the zonal flows (which could produce a

turbulent viscosity, resulting in flow damping) [2.51-2.53], drift wave trapping, etc.

Whatever the details, the effect of nonlinear flow damping is to limit the intensity of the

zonal flow spectrum.  Since energy is conserved between drift waves and zonal flows
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(within the time scales of the evolution of zonal flow), this is equivalent to enhancing

the fluctuation levels, in comparison to the case where   ! 2 = 0.  This is, indeed, the case

in the RHS column of Table 2.2, where we see the effect of finite   ! 2 is to enhance  N

and reduce   V 2 in comparison to the case where   ! 2 = 0.  Thus, nonlinear flow damping

may be viewed as a "return" of expansion free energy to the drift wave 'channel', which

thus lowers the branching ratio   V 2 / N .

2.4 General Comments

It should be clear that the drift wave- zonal flow problem is a particular example

of the more general problem of describing the nonlinear interaction between, and

turbulence in, two classes of phenomena of disparate-scale, and of understanding

structure formation and self-organization in such systems.  Such problems are

ubiquitous, and notable examples in plasma physics are Langmuir turbulence and

caviton formation, magnetic field generation and the dynamo problem, and the

formation of ionospheric structures, just to name a few.  It is interesting to note that the

separation in spatio-temporal scales often facilitates progress on such problems, via the

use of adiabatic invariants, or systematic elimination of degrees of freedom using the

methodology of Zwanzig-Mori theory, etc.  Thus, such nominally "more complex"

problems are often easier than the so-called classic "simple" problems, such as

homogeneous turbulence.  The general theory of turbulence in systems with multiple

bands of interacting disparate scales is reviewed in ref. [2.54].  The Langmuir

turbulence and collapse problems are reviewed in [2.55].  The theory of the dynamo

problem is discussed in great detail in [2.56-2.61].

Chapter 3 Theory of Zonal Flow Dynamics

In this chapter, the theory of zonal flow dynamics is discussed in detail.  As

shown in the heuristic discussion of Chapter 2, the essence of the drift wave - zonal
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flow system dynamics is that several mechanisms are at work simultaneously.  The

synergy of these mechanisms results in the (self) organization of the self-regulating

state.  Here, we present a step-by-step discussion of the theory of the basic elements,

which are:

 (i) linear damping (especially collisional) of the zonal flow

(ii) mechanisms for the excitation of zonal flows by background turbulence

(iii) mechanisms by which the spectrum of zonal flow shears limits and reacts

back upon the underlying drift wave turbulence

(iv) nonlinear damping and saturation mechanisms for zonal flow, especially in

collisionless or very low collisionality regimes

(v) the type of self-organized states which are realized from the interaction of

elements (i)-(iv)

(vi) the effect of zonal flows on turbulent transport.

Elements (i)-(vi) are discussed below.  Related illustrations, tests and analyses utilizing

numerical simulation are presented in Chapter 4.

The remainder of Chapter 3 is organized as follows.  Section 3.1 presents the

theory of linear collisional damping of zonal flows - scale independent collisional

damping is a key energy sink.  Special emphasis is placed upon the key, pioneering

work of Rosenbluth and collaborators.  Section 3.2 presents the theory of zonal flow

generation by modulational instability of the ambient drift wave spectrum.  The theory

is developed for both the coherent (i.e., parametric modulational) and broadband,

turbulent (i.e., wave kinetic) limits.  Critical time scales which quantitatively identify

these regimes are identified and discussed.  The relations and connections (vis-a-vis

energetics) between modulational instability and shearing,  k -space diffusion, etc., are

discussed and a unifying framework is presented.  Emphasis here is an electrostatic

turbulence and zonal flows, but related discussions of electromagnetic turbulence, zonal

flows and GAMs (Geodesic Acoustic Modes) are also included.  The relationship

between zonal magnetic field dynamics and the classical dynamo problem is discussed.

In section 3.3, the theory of shearing and its effects on turbulence are discussed, for
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both mean field and random (i.e. zonal flow) shearing.  This discussion is important in

its own right (as an element in system self-regulation) and as a foundation for

understanding the impact of zonal flows on turbulent transport, etc.  In section 3.4,

zonal flow saturation is discussed, with special emphasis placed upon collisionless or

low collisionality regimes.  As with generation, several different applicable models are

discussed, each in the context of its regime of relevance as defined by time scales,

degrees of freedom, etc.  In particular, tertiary instability, nonlinear wave packet

scattering, wave trapping and other mechanisms are discussed.  After explaining the

elementary processes, a unifying classification of various possible system states is

suggested in terms of the Chirikov parameter and Kubo number, which characterize the

turbulent state.  This classification scheme gives a global perspective on the nonlinear

theory of zonal flows.  In section 3.5, the system dynamics of zonal flows and

turbulence are presented.  In the final section 3.6, the effects of zonal flows on turbulent

transport are discussed.  Special attention is given to zonal-flow-induced modification

of the cross phase and upon the scaling of the turbulent transport flux with zonal flow

parameters, such as shear strength, flow correlation time, etc.

3.1 Linear Dynamics of Zonal Flow Modes

Zonal flows are, first and foremost, plasma eigenmodes, albeit modes which are

linearly stable.  In this subsection, we discuss the linear response of the plasma to a low

frequency electric field perturbation which is constant on a magnetic surface.  This

corresponds to the   m = n = 0  component, where  m  and  n  are the poloidal and toroidal

mode numbers, respectively.  Two relevant regimes are explained.  One is that of the

slowly varying response, for which     !/!t << "t # vTi/qR , where   ! t  is the ion transit

frequency and   vTi  is the thermal velocity of ions,    vTi = Ti/mi .  In this case, the

perturbation is called a zonal flow.  The plasma response is incompressible, and the

poloidal    E! B  velocity is associated with a toroidal return flow.  The other is a fast-

varying regime, where    !/!t " #t .  In this case, poloidal asymmetry leads to plasma
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compression, so as to induce an oscillation in the range of   ! " ! t .  This oscillation is

called the geodesic acoustic mode (GAM).  We first describe the zonal flow and then

explain the geodesic acoustic mode.  The damping of these modes by collisions and ion

Landau damping is explained.  In this section (and throughout the review), we use the

word 'damping' for the linear response mechanisms (e.g., collisional damping or

collisionless damping, like Landau damping).  The nonlinear mechanisms that induce

the decay of regulate the flow are called 'saturation mechanisms' or, if necessary for

clarity, 'nonlinear damping mechanisms'.)

3.1.1 Zonal flow eigenmode

In drift-ITG mode (ion temperature gradient turbulence [3.1]), zonal flows have

an electrostatic potential  !  which is constant on a magnetic surface, and so have

  m = n = 0 ,   k || = 0 .  Because of the vanishing   k || , the electron response is no longer a

Boltzmann response, so that the relation    n/n ! e"/T  no longer holds.  The density

perturbation is usually a small correction, in comparison with the potential perturbation.

Certain CTEM (collisionless trapped electron mode) regimes may be an exception to

this.  Thus, zonal flows correspond to a highly anisotropic limit of the more general

"convective cell mode" [2.3, 3.2].  As discussed in Chapter 2, zonal flows (but not

GAMs) can be thought of as convective cells of minimum inertia, minimum Landau

damping and minimum transport [3.3].

The spatial structure of the zonal flow is described here.  The electrostatic

perturbation is constant on each magnetic surface.  Each  qr  (  qr  r: radial wavenumber)

component has the linear dispersion relation [2.3, 3.2]

  ! = 0 . (3.1.1)

The vanishing real frequency is easily understood.  The electrostatic perturbation with

  m = n = 0  does not cause acceleration along the magnetic surface.  The linear

polarization drift disappears, consistent with the ordering of   ! << ! t .
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The plasma produces an    E! B  flow,    VE! B = – Er/B .  This flow is directed

mainly in the poloidal direction.  Because of toroidicity, this flow component induces

the compression of plasma.  To maintain incompressibility, this compression is

compensated by a return flow along the field line, so:

    
V = – Er

B

0
1

– 2q cos!
(3.1.2)

to leading order in inverse aspect ratio    ! = r / R [2.46].  This flow pattern is illustrated

in Fig.2.2.  On account of the secondary flow along the magnetic field line, the zonal

flow in a toroidal plasma is subject to a stronger damping then those in slab plasmas.

The density perturbation remains to small correction.  For the range of scales

comparable to the ion gyroradius, it can be given as:

   ni
n ! qr

2" i
2 e#

T . (3.1.3)

3.1.2 Geodesic acoustic mode (GAM)

Toroidal effects have been studied in conjunction with the neoclassical transport

theory [3.4-3.12], as reviewed in [3.13-3.15].   When one constructs an eigenmode in

the regime of fast variation,    !/!t " #t , one finds the geodesic acoustic mode (GAM)

[3.5].  The GAM is a perturbation for which the   m = n = 0  electrostatic potential is

linearly coupled (by toroidal effects) to the m=1, n=0 sideband density perturbation.

Working in the framework of standard fluid equations, one begins with, as

governing equations, the continuity equation and the equation of motion

    !
!t n + "#nV$ + "||nV || = S – "#% , (3.1.4)

    nmi
!
!t V + V"#V = – # p+ J$ B + SmiV , (3.1.5)
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together with the charge neutrality condition    !" J= 0  and Ohm's law

   E+ V! B= 0 . (3.1.6)

  p= nT  is the pressure, and the temperature gradient is neglected for simplicity.  The

source terms  S  and  !  represent the (equilibrium) particle source and flux, respectively.

These can induce acceleration of the zonal flow if they are not homogeneous on a

magnetic surface. The so-called Stringer spin-up [3.6] is such an acceleration

phenomenon.   In this subsection, we do not describe the response to  S  and  ! , but

restrict ourselves to the dynamics of GAM eigenmode.

The key mechanism for generating the GAM is seen in Eq.(3.1.5) [3.5, 3.16].  If

one takes the poloidal component of Eq. (3.1.5), one obtains
     ds R2 !" – 1 B p# nmi dV/ dt + T!n = 0 .  This relation is trivial in a cylindrical

plasma.  However, in toroidal plasmas, toroidicity induces coupling between the

  m = n = 0  component of the electrostatic potential and the   m = 1, n = 0  component of

the density perturbation.  The dispersion relation given as:

   
!2 – 2cs

2

R2 – q ||
2cs = 0 . (3.1.7)

The resulting mode is the geodesic acoustic mode, the frequency of which is higher than

the ion acoustic wave, and is given by:

   !GAM
2 " 2cs

2R– 2 1 + q– 2/2 . (3.1.8)

The density perturbation can be rewritten as

   n
n0

= – 2 qr! s
e"
Te

sin # . (3.1.9)
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The dispersion relation Eq. (3.1.7) was derived for general toroidal magnetic

configurations in [3.5].  The second term was given as the product of an integral of the

geodesic curvature multiplied by a relative perturbation amplitude.  This is the reason

that this mode is called the geodesic acoustic mode or GAM.

3.1.3 Collisional damping process

The mechanism of collisional damping of zonal flows is now explained.  In a

slab plasma, the damping rate of the zonal flow is given by    µ iqr
2 , i.e., in proportion to

the ion viscosity iµ = iiv i
2! .  However, in toroidal plasmas, the damping rate is

independent of scale. (See, e.g., for a review, [3.13-3.15].)  Progress in the theory of the

H-mode, [2.30, 3.17, 3.18] has stimulated a revival of detailed calculation [2.30, 2.40,

3.17-3.29] of neoclassical damping rates.  In this subsection, we first describe stationary

flow which is realized by the balance of collisional drag with pressure gradient drive.

Relaxation processes are then discussed.  The case with     !/!t << "t # vThi/qR  is

discussed first.  The case of rapidly varying response (GAM),    !/!t " #t , is explained

next.

(i) Stationary flow driven by pressure gradient

The fluid velocity in an inhomogeneous toroidal flow, projected on the poloidal

cross-section is expressed as

   V! = "
q V || + VE # B + Vd + VdT (3.1.10)

Here    VE ! B  is the    E ! B  drift velocity,   Vd  is the diamagnetic drift velocity,   VdT  is the

ion- tempera ture-gradient  dr i f t  ve loci ty ,  so  tha t    Vd = T /eBLn
,   VdT = T /eBLT

,

  Ln
– 1 = – d ln n /dr  and   LT

– 1 = – d ln Ti /dr , and   V ||  is the average of   V ||  on a magnetic

surface.  In the absence of torques (e.g., orbit loss, external momentum injection, etc.),

   !q– 1 V ||  is an    O !2  correction with respect to    VE ! B .  (See, e.g., [3.29].)  The



28

equilibrium velocity is obtained as    V! = CH VdT where   CH  is a numerical coefficient,

shown by Hazeltine to be [3.10]    CH ! 1.17  (banana),    CH ! – 0.5  (plateau),    CH ! – 2.1

(Pfirsch-Schluter).  Thus, the    E ! B  drift velocity is given as

   VE ! B = CH – 1 VdT – Vd , (3.1.11)

if there is no other force to drive plasma poloidal rotation.  The velocity scales with the

(density and temperature) diamagnetic drift velocity.  The radial electric field is easily

deduced from this relation, and is given by:

  Er = CH – 1 T
e LT

– T
eLn

(3.1.12)

The radial electric field is of the order of ion temperature gradient divided by the

electron charge, if the stationary state is governed by collisional transport processes.

(ii) Damping rate

The deviation of the radial electric field from the result given by Eq. (3.1.12) is

determined by the balance between damping and driving torques.  Here we survey the

theories of collisional damping.

Collisional damping of zonal flows is controlled by ion-ion collision processes.

When a small element of phase space fluid originally on the low field side moves to the

high field side, it is 'stretched' in the direction of the perpendicular velocity,   v! , since

  v!  increases due to the conservation of magnetic moment.  On account of ion-ion

collisions, the deformed distribution tends to recover isotropy, which is shown by a

thick solid line.  In this relaxation process, thermalization of ordered poloidal motion

occurs, and so the poloidal velocity is damped.  From this argument, it is clear that this

damping rate is independent of the radial structure of the flow.  This is not diffusive

damping.

In the Pfirsch-Schluter regime, the damping rate is given as
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   !damp = "t
2#ii

– 1 . (3.1.13)

The mean free length in the poloidal direction, which is determined by ion collisions, is

inversely proportional to   !ii .  Note that here    !damp = D||/ qR 2 = "t
2/#ii  is simply the

time for parallel diffusion of one connection length.

In the banana regime, stronger damping occurs due to collisions between

transiting ions and banana ions, because magnetically trapped particles do not circulate

freely in the poloidal direction. Reference [3.20] found, by using an improved

evaluation of eigenfunctions, that the damping rate increases as the toroidicity  !

becomes small.  A fitting formula was proposed as,      !damp " 1.5 #ii
D v / $, where

   !ii
D v  is the energy-dependent pitch-angle scattering coefficient.  In [3.22], an

evaluation of the damping rate showed that the  !-dependence is much.  (The numerical

solution in [3.22] can be fit by    !damp/"ii # $– % with   ! " 0.85  for   0.2 < ! < 0.8 .)   An

alternative fit

    !damp " #ii
D v /$ (3.1.14)

was also proposed.  Direct numerical solution of the drift kinetic equation [3.29] has

supported the conclusion that   !damp  is a decreasing function of  !. It has also been

pointed out that collisional damping induces a real part of the total oscillation frequency

for the zonal flow, so that    ! = !r + i" damp ,    !r " #ii .  [3.22]

In the plateau regime, the dissipation rate is controlled by the transit frequency

  !t  and

   !damp " #t h $ (3.1.15)
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where   h !  is weakly dependent on toroidicity.  Direct numerical calculation  has

shown that    h ! " !# , and a small positive parameter is observed in the range of

  ! " 1/3  [3.29].

Collisionless damping, if it exists, would influence poloidal rotation in high

temperature plasmas.  The damping rate vanishes in the limit of    !ii " 0 , in quiescent

plasmas [2.40].  The drive by turbulence (zonal flow drive) and other torque (e.g., orbit

loss, external force, etc.) could balance collisional damping.  Figure 3.1.1 summarizes

the scaling trends of the collisional damping rate.

The question of what the collisional damping rate is in the limit of high poloidal

velocity has attracted attention.  It was noted that the damping rate   !damp  can depend

on the poloidal velocity, if   V!  becomes of the order of     ! v Thi/q .  The damping rate

then becomes a decreasing function of   V!  [3.18, 3.31].  This is a possible origin of a

bifurcation of the radial electric field.  (Examples include [3.32].)  This mechanism, and

the consequences of it, are explained in [2.46].

(iii) Geodesic acoustic mode (GAM)

The geodesic acoustic mode (GAM) is also subject to collisional damping.

After solving the drift kinetic equation with the ordering of    !/!t " #t , the dispersion

relation has been obtained in [3.29] as

   
!2 – 7

8
cs

2

R2 + i"ii
!

cs
2

R2 = 0 . (3.1.16)

(As compared to Eq. (3.1.7), the GAM frequency is evaluated with a slightly different

numerical coefficient.  This arises because the velocity moment is taken after the drift

kinetic equation is solved.  The damping rate of the GAM is estimated from Eq. (3.1.16)

to be
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   !damp
GAM " 4

7 #ii . (3.1.17)

The banana ions do not explicitly play a role in GAM damping, because the GAM

frequency is much faster than the bounce frequency of banana ions.

3.1.4. Rosenbluth-Hinton Undamped Component of Zonal Flows in Collsionless

Plasmas

An accurate treatment of the damping of self-generated zonal flows is an

outstanding issue in predicting confinement. Rosenbluth and Hintons' analytic

calculation has shown that linear collisionless kinetic mechanisms do not damp the

zonal flows completely [2.40]. This prediction was later verified by various gyrokinetic

codes [2.50, 3.33-3.35], while gyrofluid models [3.36, 3.37] incorrectly predicted a total

collisionless decay of poloidal rotation. A modification of the gyrofluid approximation

was attempted later, but only a part of RH undamped flow has been recovered to date

[3.38].

As discussed at the beginning of this chapter, zonal flow can be viewed as a

superposition of GAMs with a characteristic real frequency on the order of    !r " VThi/ R

and with a corresponding ion Landau damping rate    !r exp – q2/2 , and a zero

frequency component to which the RH calculation applies. (The damping occurs due to

the transit time magnetic pumping [3.9]. One can identify the oscillation and decay of

GAMs as well as the non-zero asymptotic level of zonal flows predicted by RH.)

The RH calculation, which is based on the gyrokinetic equation, consists of

following the long time evolution of the zonal flow with an assigned finite initial value.

Concentrating on the long term behavior    t >> !b, i
– 1 , RH calculates the bounce-averaged

gyrokinetic response to an initial perturbation. The nonlinear gyrokinetic Vlasov

equation for zonal flow component with   q = qr, 0, 0 , i.e.,   n = m = 0  can be written as

     !
!t + v ||b + v d " # – Cii fi, q + e

TF0 v ||b " # + vd " # $q = Si, q ,      (3.1.18)
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where   !q  is the electrostatic potential of the zonal flow;    fi, q  and   F0  are the perturbed

and unperturbed distribution functions of ions, respectively; and nonlinear interactions

of ITGs with  k  ,   k!  are considered as a noise source     Si, q  for zonal flows.  Of course,

Eq. (3.1.18) should include a response renormalization, as well as noise.  The

corresponding gyrokinetic Poisson's equation (i.e., the quasi-neutrality condition

expressed in terms of the guiding center density    ni, q  and polarization density) is

    – n0
e
Ti

!i
2qr

2"q +ni, q = ne, q , where    ne, q = 0 ,  for the adiabatic electron response with

zonal flows, and the long wavelength approximation for zonal flow    ! i
2qr

2 << 1  have

been used.

In RH, a bounce-average of Eq. (3.1.18) has been performed for a high aspect

ratio, circular tokamak geometry with    ! i
2qr

2 << !", i
2 qr

2 << 1 .  (    !", i  is the ion

gyroradius at the poloidal magnetic field.)  The detailed calculation is not repeated here.

The main result is that an initial zonal flow potential    !q 0  will be reduced to a level

   !q t  as   t ! " , due to the neoclassical enhancement of polarization shielding:

    !q t
!q 0

= 1
1 + 1.6" – 1/2q2 .  (3.1.19)

In physical terms, the usual polarization shielding associated with finite Larmor radius

effect in a short term (after a few gyro-periods)    ! " i
2qr

2  is replaced by the neoclassical

polarization shielding associated with the finite banana width of trapped ions at long

time (after a few bounce periods),    ! " 1/2#b, i
2 qr

2 ! " – 1/2#$, i
2 qr

2 .  (    !b, i  is the banana

width of ions.)  An accurate calculation of the coefficient 1.6 requires a kinetic

calculation which includes the contribution from passing particles, but the correct

scaling can be deduced from considering trapped ions only.

The result in Eq. (3.1.19) has been useful in benchmarking various gyrokinetic

codes.  After a such test, which is explained in Chapter 4, the RH result has turned out

to be highly relevant, as indicated by numerous nonlinear simulations.
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3.1.5 Further Details of Collisional Damping of Zonal Flows

A frequently-asked question about zonal flow in toroidal geometry is: "why isn't

the radial electric field  Er  associated with zonal flow balanced by the toroidal flow,

eventually satisfying the radial force balance    Er = V!Bt  ?"

To elucidate the relation between the RH result and this question, one should

consider the ion-ion collisional effect for the longer-term behavior of zonal flows

[2.41].  HR identified several temporal-asymptotic phases of zonal flow response to an

initial zonal flow potential     !q 0 , which consist of:

i) For times longer than a few ion bounce-times, the zonal flow potential reduces to a

non-zero residual value given by Eq. (3.1.19) due to a collisionless kinetic process

which includes the ion Landau damping of GAMs, transit time magnetic pumping, and

neoclassical enhancement of polarization shielding.

ii) For times of the order of   !"ii , where   !ii  is the ion-ion collisional time, the potential

and poloidal flow decay due to pitch-angle scattering in a trapped-passing boundary

layer. Most of collisional poloidal flow decay occurs in this phase (as confirmed by

simulation [2.48]), and zonal flow is mostly in the poloidal direction, up to this phase.

iii) For times comparable to    !1/2"ii , the potential approaches a non-zero steady state

value      !q t = !q 0 B p
2Bt

–2 , consistent with     Er = V!Bt , and the poloidal flows decays

approximately exponentially.

iv) For times longer than    !ii , damping of poloidal flow is due to energetic ions with

small collisional rates, resulting in a slow non-exponential decay due to ion drag.  Note

that the collisional damping of the toroidal flow is a higher order process.

The main conclusion is that the most of collisional decay occurs on the time

scale in phase ii). Thus one can define the net effective collisional decay time of zonal

flow as    1.5 !"ii , following HR .

As illustrated in Appendix C, there exists a near isomorphism between ITG

turbulence and ETG turbulence. One crucial difference is that, while the adiabatic

electron density response due to electron thermalization along the magnetic field is zero
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for ITG zonal flows, the adiabatic ion density response due to demagnetization is non-

zero for ETG zonal flows. Interesting consequences for ETG zonal flow damping,

related to this difference, have been investigated in Ref. [3.39].

3.2 Generation mechanism

The zonal flow is driven by nonlinear processes in the fluctuation spectrum or

ensemble of wave packets in the range of the drift wave frequency.  In this subsection,

several elementary processes for generation of zonal flow are presented.  The

mechanism for zonal flow generation includes both parametric instability of a single

drift wave and modulational instability of a spectrum of drift waves.  The modulational

instability can be calculated via both eikonal theory and wave kinetics, and by envelope

formalism.

3.2.1 Generation by parametric instability

A single drift wave (plane wave) is shown to be unstable to parametric

perturbations [2.3, 3.40].  Via parametric instability, the drift wave can generate

convective cells for which the parallel wavenumber vanishes,   k || = 0 .  The zonal flow is

a special example, corresponding to extreme anisotropy of a convective cell with

   qr >>q! " q ||" 0 .  Note that the parametric instability process is the usual one, familiar

from weak turbulence theory, with the feature that one of the 'daughter waves' has zero

frequency.  In this subsection, parametric instability of a simple drift wave
    ! x, t = !d0 exp ik d0"x – i#d0t + c.c.  is discussed.

(i) Zonal flow in slab plasma

Two possible parametric instabilities occur for a plane drift wave.  In the study

of parametric instability in slab plasmas, we use the coordinates   x, y, z  where  x  is in

the direction of the radius and  z  is in the direction of magnetic field.  One is the

parametric decay instability [2.3, 3.40].  The primary drift wave, denoted by the
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wavenumber   kd0  and frequency   !d0 , where the suffix d stands the drift wave, can

induce a pairing of a convective cell (wavenumber  q  and frequency  ! ) and a

secondary drift wave (wavenumber   kd1  and frequency   !d1  ).  This process occurs if

conditions   kd1 + q = kd0 ,   !d1 + " = !d0 and   k d0
2 > k d1

2  are satisfied.  The growth rate

of parametric decay instability is easily shown to be:

    
!di = cs"s k d0 # q Te

Ti

k d0
2 – k d1

2

q2
e$d0
T e

, (3.2.1)

where   !d0  is the amplitude of the electrostatic potential perturbation associated with the

primary drift wave.  The parametric decay instability is not effective for generating

zonal flow.  The beat condition requires   q x = 2 k d0, x  and   k d1, x = – kd0, x .  However, for

this combination of wave vectors, the relation   k d0
2 = k d1

2  is forced, so the growth rate of

parametric decay vanishes.  Thus, the zonal flow is not driven by the parametric decay

instability.

The other possible parametric process is the modulational instability [2.23, 3.41-

3.45].  In this case, the primary drift wave (denoted by   kd0  and   !d0 ) couples to the

(modulating) zonal flow (  q  and  ! ) and so induces two secondary drift waves.  The two

induced drift waves are denoted by d+ and d-, and have wavenumbers

  kd+ = kd0 + q ,and    kd– = q – kd0 . (3.2.2)

The modulational instability means that the radial structure of the wave function

primary drift wave is modified when the zonal flow is excited.  We employ the potential

vorticity conservation equation (i.e. the Charney-Hasegawa-Mima equation)

   !
!t n – "#$ + $, n – "#$ + !

!y $ = 0 (3.2.3)
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where    !, g " b # $%! &$g  (  b : unit vector in the direction of the magnetic field)

represents the advective nonlinear term, and the normalizations of space in unit of   !s

and time in units of   Lncs
– 1 , together with    n! Ln/" s n/n0 ,    !" Ln/#s e!/Te  are

employed for simplicity.  In the case of co-existing drift waves and zonal flows,

  ! = !d + !ZF  and   n = nd + nZF , (3.2.4)

Eq.(3.2.3) is then separated into the vorticity equation for drift waves and the zonal

flows.  The density response is given by the Boltzmann relation for drift waves    nd = !d .

For zonal flows, the continuity equation holds, so that    !nZF/!t + ", n = 0 .  That is,

  nZF = 0 (3.2.5)

so long as   ! " 0 .  Thus the vorticity equation for the zonal flow reduces to the Euler

equation for a 2D fluid.  The parametric modulational dispersion relation is obtained as

  !d0 – !d+ +" !d0 + !d– – " =
    kd0! " q 2

q2 1 + k d0!
2 – q2 2 kd+ !

2 – k d0!
2

1 + kd+ !
2 + k d– !

2 – k d0!
2

1 + k d– !
2 #d0

2
.    (3.2.6)

where    !d + = k d0, y 1 + k d +
2 – 1

,  and    !d – = k d0, y 1 + k d –
2 – 1

.  In the limit of a long

wavelength of the zonal flow,     q << kd! , the condition for the instability to exist can

be simplified to

    
!d0 >

k d0, y q2

2 k d0" # q
. (3.2.7)

The growth rate of the secondary perturbation is given from Eq.(3.2.6) and is expressed

in the long wavelength limit as
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!ZF = 2 k d0" # q $d0

2 –
k d0, y

2 q4

2 kd0" # q 2 . (3.2.8)

In the case that the drift wave is propagating nearly in the poloidal direction,    k d, x ! 0 ,

Eq.(3.2.8) is simplified to

   !ZF " k d0# q x 2 $d0
2 – q x

2 . (3.2.9)

The maximum growth rate is given as    !ZF " k d0# $d0
2  for    q ! "d0 .  Figure 3.2.1 shows

a plot of the growth rate of the modulational instability as a function of the wavenumber

of the zonal flow.  It is unstable in the long wavelength region.  If the growth rate of the

parametric instability is larger than the collisional damping, growth of the zonal flow

can occur.

(ii) Tokamak plasma

In tokamak plasma, a single drift wave eigenmode is not a plane wave, but is

given by a ballooning eigenfunction.  Ballooning modes are similar to Bloch

wavefunctions, familiar from condensed matter physics.  A ballooning mode has a

single n-value (toroidal mode number - the 'good' quantum number in the direction of

symmetry), and consists of a set of coupled poloidal harmonics, vibrating together with

a fixed phase relation, which defines the radial wave number.  A similar analysis has

been developed, and toroidal effects influence the coupling coefficients [2.23].  The

pump wave is expressed as [3.46]

    !0 r, t = exp – in" – i#0t $0 m – nq%m exp im& + c.c. (3.2.10)

where  m  and  n  are the poloidal and toroidal mode numbers, respectively, and

   !0 m – nq  represents the poloidal harmonic wavefunction.  As in the case of slab
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plasma, a single toroidal mode number  n  is kept.  The zonal flow   !ZF  and two

nonlinear side bands of the toroidal drift waves (   !+  and   !– ) may occur by modulational

instability.   They are given as

    !ZF r, t = exp iqrr – i"t #ZF + c.c. (3.2.11a)

    !+ r, t = exp – in" – i#0t + iqrr – i$t %+ m – nq&m exp im' + c.c.

(3.2.11b)

    !– r, t = exp in" + i#0t + iqrr – i$t %– m – nq&m exp im' + c.c.

(3.2.11c)

This form is physically equivalent to the corresponding one in subsection (i), but the

toroidicity-induced coupling affects the structure of the eigenfunction.  (The suffix "d"

denoting drift waves is dropped in order to reduce the complexity of notation.)

The modulational instability is analyzed by a procedure similar to that for the

slab plasma.  One obtains a dispersion relation for the modulational instability, namely

  !0 – !+ +" !0 – !– – " = #mod
2 (3.2.12)

where

   
!mod

2 =
2 + " i

1.6# 3 / 2
B$

2

B%
2 k $

2 qr
2cs

2&s
2 '0

2 , (3.2.13)

   !0
2 = "0

2#m  is the amplitude of the primary drift wave, and the difference of the

eigenfrequencies is second order in the wavenumber of the zonal flow  qr , i.e.,

   !0 – !± " !0qr
2# s

2 .  The factor of    B!
2/ 1.6"3 / 2 B#

2  in Eq.(3.2.13) is a consequence of
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the structure of the dielectric constant of the plasma in toroidal geometry.  If
  ! mod

2 > "0 – "+
2

 holds, one obtains the growth rate

   ! = i " mod
2 – #0 – #+

2
, (3.2.14)

using    !+ = !– .  The growth rate of the zonal flow has a similar dependence on  qr  as is

illustrated in Fig.3.2.1.  An estimate of the wavenumber at which the growth rate has

maximum is estimated to be    qr ! k "s , where  s  is the shear parameter.  Finally, on

account of the confluence of nonlinear beat-induced coupling with linear, toroidicity-

induced coupling, interaction with neighbouring poloidal harmonics is possible, and has

no slab counter-part.  For this reason, parametric modulational instability in a tokamak

has sometimes been referred to as "four-wave coupling".  This name is slightly

confusing, and the reader should keep in mind that, really, only three independent n

modes are involved, as in the case of parametric modulational instability in a slab.

As is the case for the slab plasmas, the zonal flow is expected to be amplified if

the growth rate Eq.(3.2.14) is larger than the collisional damping, as explained in §

3.1.3,   ! mod
2 – "0 – "+

2 > ! damp .

3.2.2 Zonal Flow Generation by a Spectrum of Drift Wave Turbulence

While the simplified, truncated-degree-of-freedom models discussed in Chapter

2 can elucidate and encapsulate some aspects of the physics of zonal flow generation,

the physically relevant problem requires an understanding of the answer to the question:

"Under what conditions is a spectrum of drift wave turbulence unstable to a test zonal

shear?".  Note that in this respect, the zonal flow generation problem resembles the

well-known magnetic dynamo problem, which seeks to answer the question of: "When

is a spectrum of MHD turbulence unstable to a 'test'  magnetic field?"  In the (relevant)

case of generation by a spectrum of drift waves, the test zonal flow might interact with a

broad spectrum of primary drift wave fluctuations, each of which has a finite self-
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correlation time.  Thus, a statistical, RPA-type theory is necessary.  The essence of such

a theory is to derive the zonal flow growth rate by:

a.) first averaging the zonal flow evolution equation (i.e. mean field evolution

equation) over an ensemble of drift wave realizations to relate ! ZF" !t  to
  !DW
2 , thus obtaining an equation for mean field evolution in the presence of

wave (i.e. pondermotive) pressures and stresses,

b.) then computing the response of the drift wave spectrum to the test zonal flow

shear, thus 'closing the feedback loop'.

This procedure, which is typical of that followed in the course of modulational stability

calculations, ultimately rests upon:

a.) the separation in time scales between the low-frequency zonal flow and the

higher frequency drift waves (i.e. ZF! << k" ).  This time scale separation

enables the use of adiabatic theory (i.e. eikonal theory and wave kinetics) to

compute the response of the primary drift wave spectrum to the test shear, and

justifies the neglect of drift wave diffraction.  Note that the parametric instability

calculation, discussed in Section 3.2, also rests upon such an assumption of time

scale separation.

b.) the assumption of quasi-Gaussian distribution of drift wave phases.

It is worthwhile to note that the weak turbulence theory of zonal flow growth is quite

closely related to the classic problem of weak Langmuir turbulence [3.47].  In Langmuir

turbulence, low frequency test phonons (i.e. ion acoustic waves) grow by depleting the

energy of a bath of ambient plasmons (i.e. plasma waves).  Since pe! >> q sc , the zonal

flow is the analogue of the ion-acoustic wave, while the drift waves are the analogue of

the plasma wave.  Table 3.2.1 presents a detailed comparison and contrast of the weak

Langmuir turbulence and zonal flow problems.  We will return to Table 3.2.1 later, after

discussing the theory of zonal flow growth.

i) Zonal flow growth
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As previously noted, the basic dynamics of zonal flows are governed by the 2D

Navier-Stokes equation, since the density perturbation associated with the zonal flow is

negligibly small.  Alternatively, the zonal flow structure is essentially two dimensional,

as is a convective cell.  Thus, in de-dimensionalized units, the zonal flow potential

evolves according to a 2D fluid equation:

!
!t r

2
" ZF# =

$!
!r dr˜ v 2" d

˜ # $ d
%

r
2

" ZF# . (3.2.15)

Here d
!  is a generic damping operator, which may be a scalar coefficient or an integro-

differential operator.  Physically, Eq. (3.2.15) tells us that zonal flow vorticity evolves

due to the spatial flux of drift wave vorticity u! = dr˜ v 2" d
˜ # .  This observation is

important, as it establishes there is no net flow generation or momentum increase, up to

boundary through put terms.  Rather, zonal 'flow generation' is really a process of flow

shear amplification.  Zonal flow evolution (i.e., velocity profile evolution) is

transparently a process driven by vorticity transport , just as temperature and density

profile evolution are driven by thermal and particle fluxes.  Eq. (3.2.15) may be re-

written as:

!
!t r

2
" ZF

˜ # =
1
B

2!
! 2r

2d k rk $k
2

k
d#% ! d

"
r
2

# ZF
˜ $ ( ) . (3.2.16)

Equation (3.2.16) directly relates the evolution of zonal flow potential to the

slow variation of the drift wave intensity envelope.  By "slow variation" we refer to the

fact that 
2

k
d!  varies on a scale larger than upon which k

d!  does, i.e.

� 

rk > 1
2

k
d!

" 
# 
$ 

% 
& 
' (

2

k
d! (r .  Also, it is now clear that the scale of the drift wave intensity

envelope is what sets the scale of the zonal flow.

Since wave population density (alternatively the "density of waves") is

conserved along wave ray trajectories, tracking the evolution of N, the density of waves,

is particularly useful in evaluating the response of the drift wave spectrum to



42

modulation by a test shear.  The convenience of    N k, r, t  follows, of course, from the

fact that N obeys a Boltzmann equation, with characteristic equations given by the

eikonal equations for a drift wave.  In most cases,    N k, r, t  is the wave action density

N = ! k" , where !  is the wave energy density.  In the case of drift wave turbulence,

this question is complicated by the fact that drift wave turbulence supports two

quadratic conserved quantities, namely the energy density ! =
2

1+ "
2k s

2#( ) 2

k
d$  and the

potential enstrophy density    Z = 1 + k!
2 " s

2 2
#k

d 2
.  Thus, one can count either the local

'wave' density, given by the action density    N = 1 + k!2" s
2 2

#k
d 2/$k ,  or the local

'vortex density' (i.e. 'roton' number), given by    Nr = 1 + k!2 "s
2 2

#k
d 2

.  However, for

zonal flow shears (which have !q = 0 ), !k  is unchanged by flow shearing, since

d yk dt = !" #k ZFV x( )( ) "y = 0 .   The act ion densi ty then becomes

N =
2

1+ !
2k s

2"( ) 2

k
d# *e$  where *e!  is an irrelevant constant multiplier, thus rendering

both counts of exciton density the same!  Hence, we can rewrite the zonal flow

evolution equation Eq.(3.2.16) as [2.13, 2.17, 3.48]:

   
!
!t VZF

" = 1
B2

!2

!r 2 d 2k k rk #

1 + $ s
2k%2

2
&N
&VZF

"
k, r, t VZF

" – ' damp VZF
" ,  (3.2.17)

where 
ZF

˜ ! V = " ZF˜ V "r , and, at the level of coherent response theory for the modulation

of N by ZF˜ V ,  N  is given by     N k, r, t = !N/!VZF VZF
" .  Note that Eq. (3.2.17) relates

shear amplification to the extent to which the modulation, induced in the drift wave

population N by 
ZF

˜ ! V , tends to drive a Reynolds stress, which re-enforces the initial

perturbation.  An affirmative answer to this question establishes that the drift wave

spectrum is unstable to the growth of a seed zonal velocity shear.

The modulational response !N !
ZF

˜ " V may now be calculated by linearizing the

wave kinetic equation for N, which can formally be written as (by taking a model of

nonlinear damping as    !NLN = "#kN2/N0  ) :
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!N
!t

+ gv + ZF
˜ V ( ) " #N $

!
! x

% + k " ZF
˜ V ( ) " !N

!k
= k& N $

' k%
0N

2N , (3.2.18)

with characteristic equations for x  and k  evolution given by:      dx/dt = vg + VZF ,

    dk/dt = – d ! + k " VZF /d x.  For an ansatzed reference equilibrium spectrum 0N (k) ,

one has k! = " k# , so that the linearized form of the wave kinetic equation for zonal

flow shears becomes:

! ˜ N 
!t

+ gv ! ˜ N 
!r

+ k" ˜ N = !
!x #k ZF˜ V ( ) ! N

! rk
. (3.2.19)

Here N  is the equilibrium value of the wave spectrum.  Note that the + k! ˜ N  damping

term arises from a partial cancellation between k! ˜ N  and ! 2" k# N ˜ N 0N , after using

the approximate relations ! k" ~ k#  and 0N = N .  It follows then that the modulation

q,!˜ N  induced by ZF˜ V  is given by: q,!˜ N =
"q #k ZF˜ V 

! " q gv + i k$( )
% N
% rk

, so the modulational

instability eigenfrequency is given by:

! =
2+q
2B

2d k "
2k

!# q gv + i k$( )% rk
& N & rk

2
1+ '

2k s
2(( )

# i d$ . (3.2.20)

This finally implies that the zonal flow growth rate is given by:

� 

q! = " 2q
2B

2dk# $
2k

2
1+ %

2k s
2p( )

k&
2

'"q gv( ) + k
2&

rk ( N ( rk( ) " d& . (3.2.21)

Several aspects of the structure of the zonal flow growth are apparent from Eq.

(3.2.21) .  First, note that growth requires ! N ! rk < 0 !  This condition is satisfied for

virtually any realistic equilibrium spectral density  for drift wave turbulence.  In contrast

to the well-known case of Langmuir turbulence, a population inversion (i.e.

! N ! rk > 0 ) is not required for growth of zonal flows by RPA modulational instability.
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This is a consequence of the fact that k!  decreases with increasing rk  for drift waves,

while k!  increases with increasing k for Langmuir waves (i.e., see Section 2).  Thus,

induced diffusion of rk  will deplete the drift wave population and drive zonal flows for

d N d rk < 0 , while induced diffusion of rk  will deplete the plasmon population for

d N dk > 0 .

It is also interesting to note that the leading behavior of the zonal flow growth

has the form of negative viscosity or negative diffusion, i.e.

   !q " q2D q , (3.2.22)

where

D q( ) ! "1
2B

2d k# $
2k k%

2
1+ &

2k s
2'( )

     rk
2

("q gv( ) + k
2%
) N ) rk . (3.2.23)

This is, of course, consistent with expectations based upon the well-known inverse

cascade of energy in 2D, although we emphasize that zonal flow growth is non-local in

wave number, and strongly anisotropic, in contrast to the inverse cascade.  An order-of-

magnitude estimate of Eq. (3.2.22) is given with the help of Eq. (3.2.23).  Assuming

that !
2k s

2" < 1  and that k! > q gv , integration by parts yields

D q( )~ !
2k
2B

2

d
˜ " = s

2c s
2#

drift$ !
2k

2e
d

˜ " 
T

. (3.2.24)

This value is of the same order of magnitude in comparison to other transport

coefficients driven by turbulent drift waves.  However, it should be noted that zonal

flow growth occurs over a region of size !1q , while conventional transport coefficients

quantify the rate of diffusion across a profile scale length.  Thus, zonal flow dynamics
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are mesoscopic phenomena, occurring on spatial scales between those of the turbulence

correlation length and characteristic scale lengths of the profiles.

(ii) Energy Conservation property

It is appropriate to demonstrate here that the RPA theory of zonal flow growth,

presented above, manifestly conserves energy.  Eqs. (3.2.22) and (3.2.23) give

d
dt

2
ZF˜ V = q2!

q
"

2

Z qF
˜ V 

 

=
!2
2B

2d k"
q
#

2q
2

$k Z qF
!V

2
1+ %

2k s
2&( )

R q,'( )( N
( rk

.   (3.2.25)

    R q, ! = " k
! – qVg

2 + "k
2

. (3.2.26)

The corresponding rate of change of the mean drift wave energy is

d
dt
! =

d
dt

2d k"
1

1+ #
2k s

2$( )
d
dt

N k,t( ) . (3.2.27)

Since a spectrum of sheared zonal flows induces diffusion of the drift wave population

in radial wave number, one can write:

d N
dt

=
!
!r K,KD

! N
!r

. (3.2.28)

K,KD =
1

2Bq
! "

2k
2

ZF˜ V 2q R q,#( ) . (3.2.29)

Proceeding to integrate by parts, we obtain

d !
dt

= 2d k"
2 rk

1+ #
2k s

2$( ) K ,KD
% N
% rk

, (3.2.30)
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It is thus abundantly clear that d
2

ZF˜ V + !( ) dt = 0 , so the theory conserves energy.

Having thus rigorously established energy conservation, we will make use of this

actively in the future to simplify calculations.

3.2.3 Relation between the RPA and single mode description

It is appropriate, at this point, to establish some connection or correspondence

between the coherent modulation instability calculation discussed in Section 3.2.1 and

the RPA calculation discussed here in Subsection 3.2.2.  To this end, it is interesting to

note that the zonal flow growth rate Eq.(3.2.20) may be re-expressed as a frequency, i.e.

! = " 2d k# coh
2$ q, k( )

!" q gv + i k$( ) , (3.2.31)

where coh
2! q,k( ) = "

2k 2q rk
22B 1+ #

2k s
2$( )

% N % rk .  Here the effect of    ! / !k r  on

!2
1+ "

2k s
2#( ) !2

1+ "
2k s

2#( )  and R has been neglected.  In this limit, then Eq.(3.2.31) can

be rewritten as

! ! " q gv( ) = " mod
2# , (3.2.32)

where    !mod
2 = k "

2qr
2 N 1 + k#

2$s
2 – 2

. 

  

This form is essentially the same as those

obtained from the parametric analyses of modulational instability, and gives the zonal

flow growth rate as ZF
2! = mod

2! "
2

q gv( ) , which is equivalent to Eq. (3.2.9).  The result

in the case of the plane drift wave corresponds to the limiting case where the lifetime of

the primary drift waves,  drift
!1" , is much longer than the growth rate of the zonal flow.

We emphasize, however, that the validity of the coherent calculation not only requires

that mod! > k! , but also mod! > q d gv
dk

"k .  Here 
!1

q d gv dk( )"k( ) is the autocorrelation

of a dispersive drift wave packet in the zonal flow strain field.  It measures the time for
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a packet of width !k  to disperse as it propagates radially across a zonal flow of scale
!1q .  Thus, validity of the coherent modulational theory requires both proximity to

marginal stability of the primary drift wave spectrum (so mod! > k! ), and a narrow

spectrum (so that mod! > q d grv dk( )"k ).

Building upon these considerations, one may construct an interpolation formula:

! ! " q #$
# rk

+ i drift%
& 
' 

( 
) = " mod

2% , (3.2.33)

Noticing that the coefficient   Dk r, k r
 defined by Eq. (3.2.29) satisfies the relation

   Dk r, k r
! qr

– 2 "mod
2 "drift

– 1 , within the approximation of Eq. (3.2.32).  Equation (3.2.33)

covers various ranges.  In the limit of plane wave, drift! < mod! , the reactive instability

Eq.(3.2.9) or (3.2.14) is recovered, where    !ZF " !mod # qr  holds.  In the opposite limit,

drift! > mod! , diffusive growth (    !ZF " !mod
2 # qr

2 ) results.

It might be useful here to note the cut-off of the zonal flow growth at large  qr .

It is explained in the case of plane drift wave (parametric modulational instability) by

Eq. (3.2.9) or Fig.3.2.1.  A similar expression is obtained in the limit of RPA.  In the

expression of the zonal flow growth rate in the RPA limit, e.g., Eq.(3.2.26), the

response function is evaluated by     R q, ! " 1/#k .  The lowest order correction of the

wave dispersion is written as      R q, ! " #k
– 1 1 –qr

2v gr
2 #k

– 2 + $ $ $ .  Thus one has an

expression of   !ZF ,    !ZF = D qr = 0 qr
2 1 – qr

2qr0
– 2 , where      qr0

2 = v gr
– 2!k

2   represents

the effect of the dispersion of the drift waves.  This is an expansion of Eq.(3.2.22) with

respect to   qr
2qr0

– 2 .

3.2.4 Zonal Flow Drive by Poloidal Asymmetry

The particle flux driven by drift-wave fluctuations could be poloidally

asymmetric.  If such an asymmetry exists in the background drift waves, a poloidal flow

is induced in tokamak plasmas.  This mechanism was first noted by Stringer [3.6] and is

called the Stringer spin-up.  We briefly explain it here.
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The continuity equation (3.1.4) describes the flow on the magnetic surface if

there is poloidal asymmetry in the net source term    S – !"# .  Poloidal asymmetry of

   S – !"#  appears, if the particle flux is not uniform in  ! .  We write

   S – !"# = S – !"# + S – !"# aF $ (3.2.34)

where  ! ! !  is a poloidal average, and   F !  is a function describing the poloidally-

inhomogeneous part, so    F ! = 0 .  The magnitude of poloidal asymmetry,

   S – !"# a , and the shape of   F !  are taken as prescribed here.  In steady state, this

inhomogeneity induces a secondary flow on the magnetic surface   Va, || .  The

asymmetric flow   Va, ||  is given by: 
   Va, || = qRn0

– 1 S – !"#
a

d$ F $
0

$

.  

In the presence of this flow, the parallel component of Eq.(3.1.5) is affected, in

that the    r – 1V!"V ||/"!  term  in   V!"V  does not vanish.  As a result, one has the

dispersion relation

   
!3 –"GAM

2 ! = – i 2cs
2

R r #as , (3.2.35)

where   !as  is the net particle "production" rate of the asymmetric source, i.e.,

   
!as = 1

n0
S – "#$ a

d%
2& cos % F %

0

2&

. (3.2.36)

This result shows that instability is possible if   F !  has an in-out asymmetry, like

   F ! " cos ! .

Equation (3.2.36) predicts two possible types of instabilities.  One is growth of

the zero frequency zonal flow with   ! << "GAM .  In this case, Eq.(3.2.36) reduces to

   
! " i 1

#GAM
2

2cs
2

R r $as " i R
r $as , (3.2.37)
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which shows that poloidally-symmetric flow spins up if   !as > 0 .  The other case

corresponds to the excitation of the geodesic acoustic mode (GAM).  For the branch

with   ! "#GAM , Eq.(3.2.35) gives an approximate solution

   
! "#GAM – i 1

#GAM
2

cs
2

R r $as " #GAM – i R
2r $as . (3.2.38)

The geodesic acoustic mode is destabilized if   !as < 0 .  We note that the growth rate of

the axisymmetric flow, Eq.(3.2.37) or (3.2.38) does not depend on the radial extent of

the flow, i.e.,    !as " qr
0

. where  qr  is the radial wavenumber of the zonal flow.  Hence,

the Stringer spin-up mechanism can be important for the case of small  qr .  The

collisional damping rate in §3.1.3 is also independent of  qr .  Comparing Eqs. (3.1.14)

with (3.1.17), the excitation of a GAM with long radial wavelength is expected to occur

if    !as < "ii .  It has recently been pointed out that the shearing of the background

turbulence by GAM induces poloidal asymmetry of the particle flux  !  and that this

mechanism can cause the GAM instability.

   Im ! = s q2 RLn
– 1 k"0

2 #s
2 D – µ ||

qr
2

2 1 + 2q2
 .  (3.2.39)

In this case, the growth rate is proportional to   qr
2 . [3.49]

3.2.5 Influence of turbulent momentum transport on the secondary flow

As is shown in §3.1.1, the zonal flow is associated with a secondary flow along

the magnetic field line that cancels the divergence of the perpendicular flow.  The

viscous damping of this secondary flow due to toroidicity acts as a damping rate of the

zonal flow, in addition to the collisional damping.  This damping rate is rewritten as

[2.46]

   !damp = µ|| 1 + 2q2 qr
2 (3.2.40)
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where   µ ||  is the turbulent shear viscosity for the flow along the field line, and  q  is the

safety factor.  Of cause,   µ ||  is a function of the drift wave intensity, and thus can be

suppressed in the regime of strong zonal flows, such as the Dimits shift.  The Pfirsch-

Schlüter coefficient   1 + 2q2   is replaced by    1 + 1.6q2/ !  in the collisionless limit.  This

damping term has dependencies on the wavenumber  qr  and the intensity of the primary

drift wave turbulence, which are similar to those of the growth rate, given in subsection

3.2.3.  The dependence on geometrical factors differs from   !ZF .  Therefore the safety

factor  q  (and thus the   B! r  profile!) can play an important role in determining the

domain of zonal flow growth.

3.2.6 Electromagnetic effects

The discussion in the previous subsections is cast in the framework of the

electrostatic limit, in the interest of transparency of argument.  Plasma turbulence

supports magnetic perturbations, and electromagnetic effects also have important roles

in the physics of zonal flows.  One of the effects is known as the 'finite-  !  effect' on

drift waves [3.50], where  !  is the ratio of the plasma pressure to the magnetic field

pressure,    ! = 2µ 0B– 2 p .  Frequently, the magnetic stress tends to compete against the

Reynolds stress, thus reducing zonal flow growth.  The other is the generation of the

(poloidally symmetric) magnetic field bands by plasma turbulence.  The generation of

the magnetic field that has a symmetry (on a larger scale than that of the background

turbulence) has been known as the mean field dynamo.  This dynamo is more akin to a

'mesoscale dynamo' then to a mean field or small scale dynamo.  Since the magnetic

fields so generated have zonal symmetry and structure, we refer to them as zonal fields.

The study of zonal fields is a new direction from which to approach the dynamo

problem [2.58, 2.60, 2.61].

In the broad context of the zonal flows, two directions of research are explained

here.  One is finite-  !  effects on drift waves and the zonal flow generation by them.

This is discussed in the context of parametric decay instability.  The other is the
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magnetic field generation by drift-Alfven waves.  The zonal field calculation is

approached using the methods of statistical theory.  Here, two examples are arranged as

follows:

-------------------------------------------------------------------------------------
subject mechanisms for zonal flow growth
-------------------------------------------------------------------------------------
zonal flow generation modulational instability of
by finite-  !  drift waves a plane drift Alfven wave
-------------------------------------------------------------------------------------
zonal magnetic Random Alfven wave refraction
field generation of Alfven wave turbulence
-------------------------------------------------------------------------------------

(i) finite-  !  effect on the drift waves

In the finite-  !  plasmas, coupling between the drift wave and shear Alfven wave

occurs so as to form a drift-Alfven mode.  The dispersion relation of this mode has been

given as

   
1 + k y

2! s
2 – "*

" –
" " – "*

k ||
2VA

2 = 0 , (3.2.41)

where   VA  is Alfven wave velocity.

The plane drift Alfven mode is also unstable to modulations.  The method

explained in §3.2.1 has been applied to the finite-  !  case [3.51, 3.52].  Introducing the

vector potential perturbation  !  (the component of the vector potential in the direction

of  main magnet ic  f ie ld) ,  one wri tes  the plane wave as
   !, " 0 = !0, "0 exp ik yy + ik ||z – i#0t , where the suffix  0  stands for the primary

wave with real frequency   !0  given by (3.2.41).  The modulational perturbation thus

follows

   !
"

m
=

!ZF
"ZF

exp iq xx – i #t
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+

!+
"+

exp iq xx + ik yy + ik ||z – i#+t
   

+
!–
"–

exp iq xx – ik yy – ik ||z – i#–t

(3.2.42)

where   !ZF  is the electrostatic potential perturbation that induces zonal flow,   !ZF

generates the zonal magnetic field,  !  is the frequency of the zonal flow and field, and

  !+, " +  and   !–, "–  are the upper and lower drift-Alfven mode sidebands.

As was explained in §3.2.1, nonlinearity induces the coupling between the

primary wave and the modulations.  In the electromagnetic case, the primary

nonlinearities consist of the convective nonlinearity   V! "#  in the Lagrange time

derivative, and the nonlinearity in   ! || , due to the bending of magnetic field lines [3.54,

3.55].  A set of bilinear equations for the variables   !0, "0 ,   !ZF, "ZF ,   !+, " + , and

  !–, "–  was derived.  By using the estimate of    k || ! 1/qR , the growth rate of the zonal

flow together with the zonal field   ! ZF = Im"  is given by

   
!ZF = q xk y"s

2#ci $0 MA 1 – #0
2 k y

2" s
2% + MB#0

2q x
2k y

2"s
4% – q x

2" s
4#0

2

2Ln
2 $0

2

1/2

(3.2.43)

w i t h  c o e f f i c i e n t s
   

M A = C – 1 1 – !0 2!0 – 1 k y
2" s

2# + q x
2 – k y

2 k$
– 2 1 – !0

– 1 – k y
2"s

2 ,

   MB = – 2k y
2 C – 1 k!–2 1 – "0

– 1 + k y
2# s

2 ,     C =1 + k y
2! s

2 – "0 3"0 – 2 k y
2! s

2# , where

   !0 = e!0/T ,   !0 =!0/!* , and     ! = ! qR/ Ln
2/2  are used for convenience to elucidate

finite-  !  effects.  The coefficient  !  represents the ratio of the frequency to the shear-

Alfven wave frequency, i.e.,    !*/k ||VA
2
" k y

2#s
2$ .

This set of equations are cast in terms of the parameters we now list: the

amplitude of the pump wave    !0 = e!0/T ; the wavenumber of the pump wave    k y!s ;

the wave number of the zonal flow    q x!s ; and the normalized pressure,  ! .  The fourth

parameter appears as a result of finite  ! .  In the limit of   !" 0 , the result of §3.2.2 are

recovered.  In the limit of small  ! , Eq.(3.2.43) tells that the growth rate of the zonal
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flow decreases as  !  increases.  This has also been discussed in terms of 'Alfvenization'

of the zonal flow drive [3.56].  In addition to the Reynolds stress, the divergence of the

Maxwell stress is known to induce a force on plasmas.  The signs of the divergences of

the Reynolds stress and Maxwell stress are opposite for the drift-Alfven waves.  For the

shear-Alfven wave, the relation    v ! B  holds.  This implies a cancellation of the

Reynolds stress and Maxwell stress, and the consequent quenching of the zonal flow

drive.  Thus, the finite-  !  effect, which introduces a coupling between the shear-Alfven

wave and drift wave, causes magnetic field perturbations that reduce the drive of the

zonal flow for fixed value of    !0 = e!0/T .  Equation (3.2.43) includes terms

quadratic in  ! , which exceeds the linear term on  ! , as  !  increases.  In [3.52], it has

been shown that the zonal flow growth rate starts to increase if  !  exceeds a critical

value,   ! > ! c ,    ! c " 2k y
– 2# s

– 2 .  The origin of the reduction of turbulent transport at high

beta value that has been observed in direct numerical simulations [3.52] is attributed to

this.  An analogous effect in the theory of differential rotation in stars is referred to as

"omega Ω quenching."

Another application of this type of analyses has been given for the Alfven ITG

mode [3.57].  The same structure of modulational instability (3.2.9) was found [3.51] in

that case.

(ii) Zonal Magnetic Field Generation

The amplitude of the zonal magnetic field   !ZF  is shown to 'seed' the growth of

modulational instability [3.51].  This effect is important for zonal field growth.  In the

problem of the dynamo in space and astrophysical objects, the electric resistance by

collisions along the field line is weak enough that zonal magnetic field generation can

have substantial impact.  The regime of low resistivity is also relevant to toroidal

plasmas.  In addition, nonlinear MHD instability, like the neoclassical tearing mode

[3.58], which illustrates the critical role of the current profile in turbulent plasmas, can

be 'seeded' by zonal field.  Thus, the study of zonal magnetic field that is associated

with, and similar to, the zonal flow has attracted attention.
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An analysis of zonal field modulational instability is briefly illustrated here, and

provides an introduction to further study of dynamo and field amplification problems.

The equation for the "mean field" is here considered to be that for vector potential

component in the direction of the strong (toroidal) magnetic field [3.59].  The equation

is given by the   V ||  moment of the electron drift kinetic equation, which is:

   1 – !e
2"#

2 $
$t%ZF – E ||

n
n + $

$r & J, r = ' ||"#
2%ZF (3.2.44)

Here   !e  is the collisionless electron skin depth,    c/!pe ,   E ||n/n  gives the average

parallel acceleration,    ! J, r  stands for the turbulent flux of current in the  x direction, and

  ! ||  is the collisional resistivity.     ! J, r  is closely related to the mean magnetic helicity

flux.  By using quasilinear theory as applied to the drift-kinetic equation, the terms

  E ||n/n  and    ! J, r , which contribute to the generation of the mean magnetic field, are

easily shown to be

   
E ||

n
n = – !Tee

2k"
2 # s

2

2 + k"2 # s2
k ||
k ||

$k
2 f0 $k/k || Nk%

k
, (3.2.45)

   
!J, r = "Te

#
2k$

2 %s
2

2 + k$
2 % s2

k y&k
3

k || k ||
f0 &k/k || Nk'

k
, (3.2.46)

where  !  is the time derivative of the zonal field,    !
!t"ZF = – i#"ZF ,    f0 !k/k ||  is the

unperturbed distribution function of plasma particles at the resonant phase velocity,

   v || = !k/k || , and  Nk  is the action density of the kinetic shear-Alfven wave (i.e., the ratio

of the wave energy density divided by the wave frequency) given by;

   
Nk = 2 + k!

2" s
2

2#k
k!

2" s
2 e$k

Te

2
. (3.2.47)
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Note that    !J, r" 0  as    k!" # 0  (i.e., in the ideal MHD limit).  This is a consequence

of the fact that, on resonance,    !J, r" E ||
2 , which vanishes for ideal Alfven waves.

Thus, zonal field dynamics are explicitly dependent on   E ||  of the underlying waves.  As

usual,  N  may be thought of as a wave population density.  The sensitivity of the

weighting factor to finite-gyroradius effects is due to the influence of the dispersion

relation    !k
2 = k ||

2vA
2 1 + k"2# s

2  on the phase relation   !/"  for kinetic shear Alfven

waves.  The modulation of the action density  Nk  resulting to the imposition of a seed

zonal magnetic field is calculated by the same procedure of §3.2.2.  The wave packet

evolves according to the wave kinetic equation

   !
!t Nk + vg "

!N
! x – !

! x#k "
!N
!k x

= C N , (3.2.48)

where  C N  stands for wave damping.  The dispersion relation for the kinetic Alfven

wave satisfies Eq.(3.2.41), and the group velocity is given as    vg, r = k ||
2vA

2!k
– 1 k x" s

2 .

(The kinetic shear Alfven wave is a forward-going wave.)  Therefore the perturbation in

the wave frequency caused by the imposition of the zonal magnetic field   !B x is given

by    !"k "k
– 1 = k y k ||

– 1B0
– 1 !B x, i.e., a simple modulation of Alfven speed, where   B0

stands for the unperturbed magnetic field and the relation    !k || = k y !BxB0
– 1  is used.  By

use of this frequency modulation, the modulation of the wave action density   !Nk  is

easily shown to be

   
!Nk = i"k

# – q xvg, x + i$KSAW

k y
k ||

q x2 !% ZF
B0

&Nk
&k x

, (3.2.49)

where damping rate   ! KSAW  is introduced as    C N = – ! KSAW N  in Eq.(3.2.81).

Substitution of Eq.(3.2.49) into Eqs.(3.2.45) and (3.2.46) gives the response of   E ||n/n

and    ! J, r , to the imposition of   !ZF , i.e.,    ! E ||n/n  and    !" J, r .  If the forms of    ! E ||n/n

and    !" J, r  are substituted into Eq.(3.2.44), a closed equation for   !ZF  follows.  This

equation determines the eigenvalue  ! , by which Eq.(3.2.44) is rewritten as
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   !
!t"ZF = – i # "ZF – qr

2 $ ||
1 +qr

2% e
2 "ZF . (3.2.50)

The growth rate   Im !  can be re-expressed as  [3.59];

       

   
Im ! = 4"cs

2# e
2qr

2

vth, e 1 + qr2#e
2

1 + k$
2 % s

2 5/2

2 + k$
2 % s

2
k$2 k y

2

k ||

&2

&k x
2

'k Nk
1 + k$

2 %s
2

f0(
k

(3.2.51)

This result has a similar structure to the case of zonal flow generation, Eqs. (3.2.22) and

(3.2.23) in its dependence on   qr
2 , and on the wave population spectrum (i.e. the  k x-

derivative of  Nk ).  It shows that zonal magnetic field instability is driven by a negative

slope of    !k Nk / 1 + k"
2# s

2 .  This condition is usually satisfied, without inversion of

populations for Alfvenic MHD.

As was the case for zonal flow drive by drift waves, the drive of zonal magnetic

field is also subject to damping by the collisional resistivity.  If the growth rate

  ! ZF = Im "  Eq.(3.2.50) exceeds the resistive damping rate, i.e.    !ZF > qr
2 " ||/ 1 +qr

2#e
2

,

the zonal magnetic field grows.  This driving mechanism of mesoscale magnetic

perturbation by microscopic turbulence can have an impact on global MHD instabilities

in toroidal plasmas by secondary perturbations, such as neoclassical tearing modes.

3.2.7 Comparison with MHD mean field dynamo theory

It is instructive to compare the results for zonal field growth with those of

dynamo theory, in MHD, which is another outstanding problem in structure formation

in an axial vector field due to turbulence.

In the mean field MHD dynamo theory, the mean magnetic field  B  and

vorticity  !  evolve (for incompressible turbulence) according to: [2.58, 2.60, 2.61]
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    d B
dt =! " V " B + # ||!

2 B (3.2.52)

     d !
dt =" # B $"B

4%nimi
– V $"V , (3.2.53)

where  !  is a molecular viscosity. The essence of the mean field electrodynamic theory

is to approximate the averages of the nonlinear terms, quadratic in fluctuation

amplitude, by some effective transport coefficient times a mean field quantity.  In many

ways this procedure for a closure approximation is quite similar to the familiar case of

quasilinear theory, which is a closure of the Vlasov hierarchy.  While relatively minor,

technical variations abound, most mean field dynamo theories predict

    d B
dt =! " # B – $ J + % ||!

2 B (3.2.54)

   d !
dt = " eff#

2 ! + " #2 ! . (3.2.55)

Here alpha (  ! ) is the familiar pseudo-scalar, proportional to turbulent helicity, and  !

and   !T  are turbulent resistivity and viscosity, respectively.  Note that  !  is positive but

  !eff  is not positive definite, since it is clear from Eq.(3.2.53) that turbulence effects on

 !  must vanish if      V = B/ 4!nimi , i.e., a state of maximal cross helicity.  This is

identical to the cancellation of the Reynolds and Maxwell stresses which occurs for

zonal flow generation by Alfven waves.  Additional contributions to    V ! B  and

     B !"B / 4#nimi – V !"V  may enter.  These correspond to mean vorticity effects on

 B  and mean magnetic field effects on  ! , respectively.

An important, relatively recent development in the theory of mean field

electrodynamics was motivated by questions of self-consistency and conservation of

magnetic helicity.  These considerations together suggest that  !  should be quenched, as

compared to its kinematic value, and that the quench should be proportional to the
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magnetic Reynolds number   RM .  While this question is still controversial, both theory

and computation suggest that

   ! = !kin

1 + RM
" V A

2/ V 2
(3.2.56)

where   !kin  is the kinematic alpha coefficient     !kin " V # $ %c ,   !c  is the correlation

time and   ! " 1 .  It is useful to note that Eq.(3.2.56) may be rewritten as
   ! =! kin " ||/ " || + #c V A

2
.  This expression emphasizes that mean field growth is

ultimately tied to collisional resistivity, as it is only the latter which breaks the freezing-

in of field and fluid in MHD.

(i) Correspondence of driving terms

Comparing the results of Eq.(3.2.51) with Eq.(3.2.54), one finds that the physics

of zonal field generation in part-(ii) of subsection 3.2.6 has a deep connection to the

physics of mean field dynamos.  In order to clarify the relation of zonal magnetic field

generation, Eqs.(3.2.51) and (3.2.51), to the MHD dynamo problem, Eqs.(3.2.50) and

(3.2.51) may be rewritten by the use of    B! = d"ZF/dr , so

   !
!t B" = – #ZF $2B" , (3.2.57)

where

   
!ZF = – 4"cs

2#e
2

vth, e 1 + qr2#e
2

1 + k$
2 % s

2 5/2

2 + k$2 % s
2

k$2 k y
2

k ||

&2

&k x
2

'kNk
1 + k$2 %s

2
f0(

k

(3.2.58)

Here, the collisional resistivity   ! ||  is dropped and the   qr
2  in Eq.(3.2.51) is rewritten as

  – !2 , noting that the generated field depends only on the radius  r .  The sign of   !ZF
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(i.e., corresponding to a negative resistivity) is positive for 'normal', i.e., one with
   !2/!k x

2 "k Nk / 1 + k#2 $s
2 < 0 , but becomes negative (corresponding to positive

dissipation) if 
   !2/!k x

2 "k Nk / 1 + k#2 $s
2 > 0 , as for a population inversion.  If one

considers the    ! J   term in Eq.(3.2.54), the induction equation can be written as

    d B/dt
!–dynamo

= ! "2 B . (3.2.59)

Comparing Eqs. (3.2.57) and (3.2.59), one finds that the electromotive force for zonal

field generation corresponds to the    ! J -term in the mean field induction equation.  The

driving takes the form of a negative coefficient   !ZF  of turbulent resistivity.  What is

interesting is that the sign of the turbulent resistivity varies with the spectrum slope.

Thus, the zonal field 'dynamo' is really a process of flux or current coalescence,

somewhat akin to the inverse cascade of mean-square magnetic flux predicted for 2D

and 3D reduced MHD.  This process conserves total magnetic flux, unlike an alpha

dynamo, which amplifies magnetic flux via the stretch-twist-fold cycle.  Note that there

is a clear correspondence between zonal flow and zonal field generation.  Zonal field

generation is, simply put, related to the inverse transfer of magnetic flux while zonal

flow generation is related to the inverse transfer of fluid energy.

The relationship to the drive of zonal flow vorticity is also discussed.  The

growth of the zonal flow vorticity, e.g., Eqs. (3.2.22) and (3.2.23).  Comparing Eqs.

(3.2.22) with (3.2.55), we see that the drive of zonal flow vorticity by drift waves

corresponds to a turbulent viscosity in mean field MHD (the first term in RHS of Eq.

(3.2.55).  As in the case of the magnetic field, the viscosity-like term (    Drr !
2Uq ) in Eq.

(3.2.22) has the opposite sign to the usual turbulent viscosity, ala Prandtl.  The MHD

dynamo theory has also shown that the zonal flow can be driven by the curvature of

plasma current, and its possible role in the ITB formation has been discussed [3.60].  A

corresponding term in the zonal flow problem will be obtained by retaining the   !ZF -
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term in Eq.(3.2.42) in calculating the evolution of   !ZF .  This is a subject for future

research.

(ii) Other contrasts

Meso-scale character: The zonal magnetic field and zonal flow both have

a meso-scale character.  That is, while they can have a coherence length on a mesoscale,

i.e. one which is equal to the system size, in the poloidal and toroidal directions along

the magnetic field, the radial wave length can be as short as that of the microscopic

fluctuations.  In MHD dynamo theory, research has concentrated on the large scale

dynamo (having a characteristic scale length of the system size) or on the small scale

dynamo, which has a microscopic scale length usually set by the dissipation scale.  The

problem of the zonal field and zonal flow generation sits in an intermediate regime that

connects both of large- and small-scales.  However, zonal structures are highly

anisotropic.

In addition, the symmetry of the generated field also influences the turbulent

driving terms.  For instance, the generated zonal magnetic field in §3.2.6 is dependent

on only one radial dimension, and the toroidal magnetic field is unchanged.  Under such

constraints of symmetry, Cowling's theorem guarantees that an  ! -dynamo term cannot

appear.

Collisionless dynamo:Both zonal magnetic field and zonal flow couple to

collisionless dissipation.  In the case of zonal fields, collisionless dissipation (i.e., in

particular, Landau damping) regulates both magnetic helicity and current transport.

This first, genuinely 'collisionless dynamo' theory is notable since Landau resonance is

a natural alternative to resistive diffusion for decoupling the magnetic field and plasma,

in low-collisionality regimes.  Of course, one should also recognize that Landau

damping is not a panacea for the problems confronting dynamo theory.  For example,

here zonal magnetic field growth occurs via the product of the   E ||
2  spectrum and

Landau damping, i.e.,    !ZF " E ||
2# $ – k ||V ||% .  As a consequence, zonal field

growth is limited by the size of   E ||  (which vanishes in ideal MHD), since coupling of
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fields to particles enters via the latter.  Thus in progressing from MHD to kinetics, one

in a sense exchanges the 'freezing-in law' difficulty for the    E || ! 0  difficulty.

Tertiary instability: As is discussed in Section 3.5, one possible route to zonal

flow saturation is via generalized Kelvin-Helmholtz instability of the flow.  Such an

instability is an example of a tertiary instability, i.e., parasitic instability driven by a

secondary instability.  We may speculate that the tertiary instability of the zonal field is

similar to a 'micro-tearing mode', and is driven by relaxation of the current and

temperature profile of the zonal field.  Of course, given the narrow radial extent of the

zonal field, such tertiary micro-tearing modes are almost certainly temperature gradient

driven.  Note that such instabilities will also produce zonal current filamentation, which

may contribute to the seeding of neoclassical tearing modes, as well.  More generally,

tertiary micro tearing instabilities offer another possible route to dynamo saturation.  Of

course, just as magnetic shear severely inhibits the generalized Kelvin-Helmholtz

instability of zonal flows, it also can be expected to restrict the viability of tertiary

micro-tearing.  Detailed research on tertiary micro-tearing is necessary to quantitatively

address the speculations presented here.

Role of global parameters in turbulent coefficients:One of the goals of the

study of structure formation in turbulent media is to relate the turbulent driving

coefficients (e. g.,   !, ", # eff  in MHD turbulence theory, or   !ZF  and   !turb  in the

problem of zonal flow and drift wave turbulence) to relevant dimensionless parameters

characteristic of the system, such as ,    !i/a , Rayleigh number, Taylor number, etc.  In

this direction of research, explicit analytic formulae have been obtained for the problem

of zonal flow and drift wave turbulence.  This is a significant achievement of the

cumulative research effort on turbulence theory.  In addition, in this area of research,

one can find cross-disciplinary similarities, such as transport suppression by the

inhomogenous    E ! B  flow and '  ! -suppression' in MHD dynamo theory.

The noticeable difference in the sign of corresponding terms in the zonal flow

problem and the dynamo problem may be viewed as originating from the differences in

the nature of the turbulence.  In the MHD dynamo, turbulent dynamo coefficients are
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evaluated based on three-dimensional turbulence, since the theory is constructed for a

weak magnetic field.  On the other hand, the turbulence which is analyzed for the source

of zonal flow is quasi-two-dimensional, on account of the strong toroidal field, which is

externally imposed.  The unification of the dynamo problem and the zonal flow problem

is an outstanding key future challenge for turbulence theory.

3.3 Shearing and back reaction of flows on turbulence

In magnetized plasmas, if flow shear exists together with a pressure gradient (a

source of turbulence) the flow shear may suppress the turbulence driven by pressure-

gradient relaxation.  The back reaction, by both externally-generated and self-generated

shear flow, on pressure-gradient-driven turbulence, is a key mechanism that governs the

turbulent state and the transport.  Of course, flow shear itself may be a source of

instability, such as the familiar Kelvin-Helmholtz instability.  However, magnetic shear

tends to mitigate or quench velocity-shear-driven instabilities, so they are not of too

great a concern to confinement systems.

3.3.1 Effect of flow shear on linear stability

The first step in analyzing the back interaction of sheared flow on turbulence is

linear stability theory.  The linear effect of sheared flow on the pressure-gradient-driven

instability has been exhaustively surveyed in literature [2.14].  Indeed, the Richardson

problem of shear flow and buoyancy, which leads to the definition of the Richardson

number    Ri ! g/Ln dV y/dx – 2 , is a classic example of the competition between

processes (i.e., density or potential temperature-gradient-driven buoyancy and

shearing).  (Here the gravity  g  is in the direction of density gradient, x-direction.)

Readers are recommended to refer to [2.14] for details of the various linear

mechanisms.  Some key elementary processes are explained here.
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One characteristic mechanism for shear suppression is via a deformation of the

eigenfunction.  In the presence of velocity shear, the eigenfunctions are deformed, so

that the wave length in the direction of the gradient becomes smaller.  As a result of

this, the linear growth rate decreases.  (In other words, the fundamental mode, which

has the largest growth rate, is forced to couple to higher modes, which are much more

stable than the fundamental.)  Consideration of the symmetry explains how the

stabilizing effect usually appears at second order in velocity shear, i.e.,    ! dV y/dx 2 , so

the stabilizing trend does not depend on the sign of   dV y/dx .  This mechanism works for

the Rayleigh-Benard instability in neutral fluids [3.61-3.63] and for plasma instabilities

driven by pressure, density and temperature inhomogeneities [3.64-3.73].  For non-

resonant or hydrodynamic process, stabilization is possible, if the heuristic condition

   VE ! B
" # $L0   (3.3.1)

is satisfied, where    !L0  is the linear growth rate in the limit of    VE ! B
" = 0 .  It is very

important to realize that this is only an approximate criterion.  This order-of-magnitude

estimate is consistent with the results of simulations of linear-dynamics with sheared

flow [2.17, 3.74].

In collisionless plasmas, another type of stabilization mechanism occurs via

wave-particle resonance.  The ion orbit can be modified by an inhomogeneous electric

field, so Landau damping may be enhanced, and very strong ion Landau resonance

takes place if the electric field shear is large enough [3.75].  For instance, ion Landau

damping, which is usually a stabilizing effect, enters via the wave-particle resonant

denominator     i/ ! –k ||v || , so that wave-ion resonance occurs at    xi =! /vTh ik ||
"

(    k ||
! = "k ||/"x ).  In the presence of sheared    E! B  flow, the shear flow Doppler shift

renders the resonance equal to    i/ ! –k ||v|| – k "x#V"/#x .  Then, with velocity shear, the

ion Landau resonance point is shifted to 
   xi =! / vTh ik ||

" + k #$V#/$x , so that the

resonance is stronger.  Thus, electric field shear can significantly enhance the effect of
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ion Landau damping.  Drift reversal of trapped particles due to an inhomogeneous

electric field also influences stability.  The toroidal drift velocity of trapped ions is

modified by a factor   1 + 2ug , where     ug = !p ivth, i
– 1 B p

– 1 dE r/dr .  If the condition

  ug < – 1/2  is satisfied, trapped particles drift as if the magnetic curvature were

favourable.   The trapped-ion mode is thus stabilized by drift reversal in the range of

  ug < – 1  .  Note that this stabilization mechanism is asymmetric with respect to the sign

of   Er
!  [3.76].

If flow shear becomes too strong, KH type instability may occur  [3.63].  The

evolution from drift instability to K-H instability has been confirmed for drift wave -

zonal flow and other plasma systems [3.68].

3.3.2  Effect on turbulence amplitude

In the model equation for a passive scalar advected by background fluctuations,

the effects of rapidly-changing fluctuations are included in the turbulent transport

coefficient, which is a measure of turbulent mixing.  The equation of the test field  X  in

the presence of the sheared flow thus has the form

   !
!t X + Vy x !

!y X – D"2 X = Sext (3.3.2)

where  V y x  is the sheared flow in Fig.2.4(a),  D  is the diffusion coefficient due to the

small scale fluctuations, and   Sext  represents the source.  The stretching of contours of

constant test perturbations occurs, and the turbulence level (i.e.,  X ), the cross phase,

and the flux are suppressed by    !V y/!x  (i.e.,   Er
!  in magnetized plasmas).  The mean

velocity is in the y-direction (poloidal direction), and is sheared in the x-direction

(radial direction). The sheared velocity is expressed as

   V y = Sv x  (3.3.3)
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in local coordinates.  The flow shear is interpreted as    Sv = r d Er/ Br /dr  in cylindrical

geometry.  The expression for toroidal plasmas has been derived [2.9] and is
   

Sv = r
q

d
dr

q E r
r B .

(i)  Mean-flow - constant stretching and decorrelation rate

We first consider the case where the mean flow shear   Sv  varies much more

slowly than the autocorrelation time of turbulent fluctuations, and varies smoothly in

space (i.e., on scales longer than that of the turbulence correlation function).  In this

case,   Sv  may be taken as constant.  The influence of the convection term    V y x !/! y in

(3.3.2) is treated by using shearing coordinates [3.77].  The Lagrangian time derivative

in Eq.(3.3.2) is given as     !/!t + V y x !/! y"!/!t + Sv x!/! y.  Shearing coordinates

annihilate the operator     !/!t + Sv x!/!y  via the transformation

    k x! k x
0 + k ySv t (3.3.4)

where   k x
0  is defined at   t = 0 .  Note that shearing coordinates are quite analogous to

Roberts and Taylor twisted slicing coordinates, which annihilate the operator    B ! " .

The increase in the perpendicular wave number is also observed in the

laboratory frame.  After time  t , a circular element is stretched to an , the minor axis of

which is given by      L! = L/ 1 + Sv
2t2 .  The reduction in   L!  is equivalent to the growth

of the perpendicular wave number, so that the characteristic perpendicular wave number

for the test field  X  is effectively enhanced by a factor    1 + Sv
2t2  [2.7, 3.78-3.80],

    k!eff
2 = k!

2 1 + Sv
2t 2 .  (3.3.5)

Again, this is quite analogous to the familiar expression for    k!2  of ballooning modes,

i.e., 
   k!

2 = k "2 1 + s2 " – " 0
2 .  Time-asymptotically, then
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    k!eff " k!Sv t . (3.3.6)

The change of the wave number is linear in time, i.e., ballistic.

The diffusivity  D  implies a random walk due to the background fluctuations.

The influence of the shear flow on diffusivity will be discussed in §3.6.  One simple,

direct method to determine the relevant time scales is to analyze the random motion in

shearing coordinates.  The correlation time   !cor  in the presence of random motion but

in the absence of shear is    !cor
– 1 = k"2 D , the wavenumber increases in time so that the

correlation time becomes shorter in the presence of the shear flow, since   k!  is

stretched, as shown in Eq.(3.3.9).  Equation (3.3.6) holds for long times, if     k!Sv t > 1 .

Then the effective correlation time is just

    1
!cor, eff

= Dk"0
2 1 + Sv2 !cor, eff

2 (3.3.7)

Thus, if     Sv !cor, eff > 1 ,

    1
!cor, eff

= k"0
2/3D1/3 Sv2/3 (3.3.8)

which is the enhanced decorrelation rate, resulting from the coupling of shearing and

turbulent decorrelation.  This result is similar to those of Dupree 1966 and Hirshman-

Molvig 1979 [3.81], all of which involve decorrelation via scattering of action coupled

to differentially rotating phase space flow.  If     Sv !cor, eff < 1 ,

    1
!cor, eff

= k"
0 2

D 1 + Sv2 !cor
0 2 + # # # , (3.3.9)

which recovers the shear-free result.  Note that the hybrid decorrelation due to the shear

flow is effective if   Sv  reaches the level    Dk!0
2 .  For a constant  D , the relation
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    Sv ! Dk"0
2  (3.3.10)

indicates when decorrelation by shear flow is more effective than decorrelation by

turbulent diffusion, alone.

The reduction of the correlation length leads to suppression of the fluctuation

amplitude of the test field  X , as

     X2 ! 1
1 + Sv

2"cor
2 X2

ref = 1
1 + Sv

2"cor
2 "cor

0 lim
# 0

Sext (3.3.11)

assuming that the magnitude of the source term     lim
! 0

Sext  is unaffected.

(ii)  Random stretching and decorrelation rate

In the presence of zonal flows or the GAMs, the shearing velocity is not constant

in time.  Moreover, even a slowly-varying ensemble of zonal flow modes can result in

drift-wave-ray chaos due to overlap of     ! = qrv g  resonances, thus validating the

assumption of stochastic dynamics.  As an analytic idealization then, we take   Sv  as a

stochastic variable,    Sv = 0 , where   Sv  is a long-time average of   Sv ,

   ! ! ! = lim
t "#

t – 1 dt ! ! !
0

t

.  (See Fig.3.3.1.)  We write

    Sv = !v "ac w t , (3.3.12)

where   !v  denotes the instantaneous magnitude of the zonal flow shear,   w t  is the

temporal coherence function and   !ac  is the autocorrelation time of the (random) zonal

flow.  Obviously   w t  is constant for    t < !ac  and fluctuates drastically for    t > !ac .

The stretching of an eddy in the y-direction is now a stochastic process. The

statistical average is given by     Ll
2 ! L2 + L2" v2 #ac t , or

   k!
2 = k!

0 2 + D K t , where     D K = k!0
2
"v2 #ac . (3.3.13)
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A similar argument as in the previous subsection applies to this diffusive

shearing case.  We have an equation for the decorrelation rate in the presence of the

stochastic shear flow as

    1
!cor

= D k"0
2 1 + #v2 !ac t , (3.3.14)

and     !cor
– 1 " D k#0

2
$ v2 !ac t  for long times.  Thus, if    !cor > "v– 2 !ac

– 1 , we have

    1
!cor

" Dk#
0 2

$v2 !ac

1/2
. (3.3.15)

Note that this is a 'doubly-diffusive' hybrid decorrelation rate, combining a random walk

in radius with one in  k r .  If, on the other hand,    !cor < "v– 2 !ac
– 1 ,    !cor

– 1 " D k#
0 2

 as

usual.  It is important to note here that   !ac , the autocorrelation time of the pattern of

zonal flow shears that a drift wave packet actually sees, is given by
    min !", !qrv g k .  Thus, the strength of zonal flow induced shear decorrelation is

sensitive to the structure of the zonal flow spectrum and zonal flow pattern.

(iii) Stochastic Doppler shift

There might be a case for which the radial wave length of the GAM is much

longer than the wave length of the test mode, while the flow changes in time very

rapidly.  In such a case, in addition to the flow shear (as is discussed in (ii), in this

subsection), the stochastic Doppler shift is also effective in reducing the turbulence

level [2.14, 3.82, 3.83].

In the forced stochastic oscillator equation (3.3.1), the Doppler shift term is

given by the random Doppler shift,

   !
!t Xk + i"k Xk – Dk#

2Xk = Sk
ext . (3.3.16)
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The impact of stochastic frequency shift is characterized by the parameter

   ! l = "ac, l #k
2 (3.3.17)

where    !ac, l  is the autocorrelation time of the longer wavelength fluctuations   vl .

In the limit of rapidly changing background fluctuations,    !ac, l << !cor , one

obtains that the decorrelation of the test field occurs with the rate of    !cor
– 1 + "l .  One

then finds that the fluctuation level is suppressed by the stochastic Doppler shift due to

the longer wavelength fluctuations.  The suppression factor is:

   1
1 + !D" l

= 1
1 + !D !ac, l #k

2 (for    !ac, l << !D ) (3.3.18)

assuming that the source     lim
! 0

Sext  is unchanged.

In the large amplitude limit of random oscillation (or long correlation time

   !ac, l ),    !ac, l
2 "k

2 > 1 , one has

    I ! "
2

1
#k

2
lim
$ 0

Sext (3.3.19)

A reduction by the factor    1 / !cor "k
2  is obtained.

3.3.3 Symmetry between zonal flow drive and turbulence suppression

After overviewing the back-interaction of flows on turbulence, we now visit the

issue of symmetry between zonal flow drive and turbulence suppression.

When the drift waves are stochastic in time, the random stretching induces

diffusion of drift wave fluctuations in  k r  space.  As is discussed in §3.2.2, one then has

   !
!t Wdrift

ZF
= – !

!t WZF
drift

(3.3.20)
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for the drift wave energy,    Wdrift = !k Nk"
k

, and the kinetic energy of the zonal flow

   WZF = VZF, q x
2!

qx

.

From these considerations, we see that the symmetry between the coefficient  !

in Eqs.(2.10a) and (2.10b) comes from the conservation of energy in the coupling

between the drift wave fluctuations and zonal flow.  The suppression of drift wave

fluctuations by the shear associated with the zonal flow can be alternatively described

as an energy transfer from drift wave fluctuations to zonal flow fluctuations.  This

relation holds for the case where the quasilinear theory for  N  is applicable.

3.3.4 Poloidal Asymmetry

While we focus almost exclusively on zonal flows which are symmetric in both

the toroidal and poloidal directions in this review article, sometimes it is necessary to

take into account a weak poloidal variation of zonal flows, or a poloidally-varying

large-scale convective cell, when we study the shearing of smaller turbulence eddies by

larger coherent structures.  The examples include:

(i) Strong-toroidal-rotation-induced centrifugal force can introduce the poloidal-

angle dependence of the electrostatic potential associated with the mean    E! B

flow. [3.85, 3.86]

(ii) Shearing of smaller-scale eddies by larger-scale convective cells

(    n ! m ! O 1 ) including a side band of the zonal flow, such as    !n = 0, m = 1 , etc.

(iii) Shearing of smaller scale turbulence (originating from high-  k  instabilities)

by larger scale turbulence (originating from low-  k  instabilities); for instance,

shearing of ETG or CDBM turbulence by ITG-TIM (trapped ion mode)

turbulence.  (A more detailed discussion is made in §3.4.6.)

(iv) Poloidally inhomogeneous toroidal flow induced by pressure anisotropy.

[3.87]
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Rapid poloidal variation (rather than radial) is associated with streamers, which are

beyond the scope of this review, but briefly discussed in §6.  For these situations, one

could construct a model problem of shearing by considering an electrostatic potential

   ! r, "  which varies in both radius and poloidal angle.  The relevant  quantities are:

   !E, rr = – "2

"r 2 # r, $ ,
   !E, "r = – 1

r
#2

#" #r $ r, " (3.3.21a)

   !E, r"= – #2
#r qr #" $ r, " ,

   !E, "" = – 1
qr2

#2

#"2 $ r, " (3.3.21b)

where  q  is the safety factor.  These illustrate the "tensor" nature of the shearing   !E  by

convective cells.  From these generalizations, the standard theories of shearing,

addressing the reduction of the radial correlation length, can be extended to study the

deformations of eddies in every direction [3.88] including the change in the correlation

length in the direction parallel to the magnetic field.[3.87]

Following the procedure in [2.7], the two-point correlation evolution equation

has been derived in general toroidal geometry [3.88]

   !
!t C12 +

   
!–"E, !! + # –"E, $!

%
%&–

+ !–"E, !$+ # –"E, $$
%

%! –
– Deff

%2

%&–
2 C12

  = S2 (3.3.22)

Here,    C12 = !H 1 !H 2  the correlation function of the fluctuating quantity   !H ,

and  Deff  is the ambient turbulence-induced relative diffusion of two nearby points:

  ! 1, " 1, #1  and   ! 2, " 2, #2  in flux coordinates.  Other notations follow those of

[3.88].  In contrast to the usual case of a flux function   ! r , where only the radial shear

of the    E! B  angular frequency (itself mainly in the poloidal direction),

   !E, "" = – # 2$/#" 2     = ! Er/RB" /!#  appears in the two point correlation evolution,

Eq. (3.3.22) and describes the "tensor" character of the shearing process when  !  is a
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function of both  !  and  ! .    !E, "#  with subscripts  !  and  !  for   !, "  is a natural flux

coordinate generalization of Eq.(3.3.21).  By taking the moments and following the

standard procedure of calculating the exponentiation rate of two nearby points, one can

derive that the shape of turbulent eddies are distorted due to the various components of

the shear tensor in the following way [3.88]:

   
!r2 = !r0

2 1 + "E
2

!"k !"k +"E, #$

– 1

and

   

!"2 = !" 0
2 1 +

!" 0
!# 0

2
$E ,%&

2

!$k !$k +$E, &%

– 1

(3.3.23)

where   !"k  is the decorrelation rate of ambient turbulence and

   !E = – "#0/"$0 % 2&/%# 2  is the    E! Bshearing rate in general toroidal geometry.

Note that Eq.(3.3.48b) shows the reduction in parallel correlation length due to poloidal

asymmetry which has been found independently in [3.87].  The tensor character of the

shearing process has been also recognized in the problem of the shearing of small ETG

eddies by larger ITG eddies, which is discussed in §3.4.6.

Unlike decorrelation via the shear in    E! B  zonal flow, it can be shown from

the symmetry of the two point-correlation function that there is no net decorrelation

mechanism due to the flow curvature associated with the second radial derivative of the

zonal flow [3.89].

3.4 Nonlinear Damping and Saturation: Low Collisionality Regimes

In this section, nonlinear mechanisms which limit or saturate the growth of zonal

flows are described.  Research in this direction has been particularly stimulated by the

challenge of understanding how zonal flow growth is controlled in low or zero

collisionality regimes, for which the energy density of zonal flows can substantially
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exceed the energy density of drift waves, i.e.,    VZF
2 >> !kNk dk .  Several

possibilities exist, including:

a) tertiary instability - i.e., a secondary instability of the zonal flow (itself a product of

the secondary instability), rather like the familiar Kelvin-Helmholtz (KH) instability of

a sheared flow.  Such a tertiary KH instability will return energy to the    m ! 0

fluctuations, thus limiting zonal flow growth.

b) nonlinear wave packet scattering - i .e., a process by which a drift wave packet

undergoes multiple nonlinear interactions with the zonal flow, thereby exchanging

energy with, and regulating the growth of, the zonal flows.  Such scattering processes

are quite similar to nonlinear wave-particle interaction, familiar from weak turbulence

theory.  This process also returns energy to    m ! 0  fluctuations.

c) nonlinear wave packet trapping - i.e., the process by which modulational instability is

saturated due to deflection of drift wave trajectories by finite amplitude zonal flows.

This process is analogous to the trapping of particles by a finite amplitude waves in a

Vlasov plasma, and acts to nonlinearly quench the zonal flow growth process by

terminating the input of energy to the zonal flow.

d) adjustment of system dynamics - i.e., an 'umbrella label' under which the various

routes by which the system evolves toward a stationary state via adjustment of the

global dynamics may be collectively described.  Examples include the possibility of

either multi-dimensional (i.e., repetitive bursts or limit cycle) or strange (i.e., chaotic)

attractors, in contrast to the naively expected fixed point.  Another possibility is

adjustment (via predator-prey competition) to exploit available, albeit weak, dissipation.

Generally, mechanisms in (d) work in synergy with mechanisms in (a)-(c).

______________________________________________________________________
sub- key Degrees of correlation coherent next sub-
section concept freedom time structure   section
______________________________________________________________________

drift zonal drift zonal
wave flow wave  flow

______________________________________________________________________
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3.4.1   tertiary inst.    -   1 long long      -   -
______________________________________________________________________
3.4.2 dithering small   1 long long dynamics 3.5.2
______________________________________________________________________
3.4.4 diffusion model large large short short no 3.5.3
3.4.5 predator-prey 

model 3.5.1
______________________________________________________________________
3.4.6 wave trapping large large long long yes 3.5.4
______________________________________________________________________
3.4.7 collisionless satu. large large short long yes 3.5.5
______________________________________________________________________

3.4.1 Tertiary instability

One mechanism for nonlinear saturation of zonal flows is turbulent viscous

damping of the flow, originating either from background drift wave turbulence, or from

instability of the zonal flow.  As the zonal flow is itself the product of a 'secondary'

instability in the ensemble of 'primary' drift waves, instability of the zonal flow is called

tertiary instability [3.90].  These tertiary instabilities of the flow may be thought of as

generalized Kelvin-Helmholtz (GKH) instabilities, which relax the profile of

generalized potential vorticity and so mix and transport zonal flow momentum, thus

damping the flow.  Interest in GKH instabilities was sparked by consideration of the so-

called Dimits shift regime, where the overwhelming preponderance of available free

energy is channeled into zonal flows (i.e.,    EZF/EDW ! "L/"damp ), in turn naturally

raising the question of what sort of consideration of stability will ultimately limit zonal

flow shears.  Of course, proximity to, or excedence of, the GKH stability boundary

results in the onset of momentum transport and turbulent viscosity.

The actual GKH is driven by both    E! B  velocity and ion temperature

gradients, since both enter the total potential vorticity    !2 " + #Ti/2  (where    != Te/Ti ).

However, it is instructive to first consider the simpler limit of   !" 0 .  In that case,

flute-like (    k || ! 0 ) modes with low but finite  m  (i.e.,    m ! 0 ) evolve according to
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   !
!t + VZF " # #2$KH + VKH " ## 2$ZF = ! 2

!x2 – !2

!y2 VxV y + 1
2

!2
!x!y V y

2 – V x
2

(3.4.1)

Here the LHS describes the linear growth of the KH instabilities and the RHS represents

drive by drift wave stresses.  Equation (3.4.1) thus states that    m ! 0  GKH fluctuations

(which transport and mix zonal flow momentum) can be excited either by instability of

the zonal flow or by drift wave Reynolds stress.  This suggests that, in contrast to the

hierarchical scenario (Fig.3.4.1(a)) of primary  !  secondary  !  tertiary instability

described above, the process for generation of    m ! 0  modes may be non-hierarchical

(Fig.3.4.1(b)) , whereby low but non-zero  m  modes are generated both by KH

instability of the zonal flow and by modulational instability of the drift wave spectrum.

The direct drive by drift waves is briefly discussed in Chap.6.  The relative importance

of the hierarchical and non-hierarchical scenarios is a topic of on-going research.  An

existing result indicates that the modulational drive of    m ! 0  modes results in

momentum transport significantly in excess of the KH driven transport, but further

research into this question is necessary before reaching a definitive conclusion.

Regarding KH instabilities, it is instructive to start by considering a simple case

with zonal potential    !ZF = ! cos q xx , perturbed by a KH perturbation,

   !KH = !n cos nq xx + q yy"n , (  q x  is the wave number of the zonal flow, and  q y  is the

poloidal wavenumber of the KH instability.)  The perturbation is easily shown to grow

at the rate

   
!KH

2 = " 2 q x
2 q y

2
q x

2 – q y
2

q x
2 + q y

2 . (3.4.2)

Thus,   !KH > 0  requires   q x
2 > q y

2 , i.e., the poloidal wavelength of the KH mode must

exceed the radial scale of the zonal flow.   This of course favors long-wavelength
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ins tab i l i ty .   For    q y
2 << q x

2 ,  n o t e  t h a t    !KH  r e d u c e s  t o     !KH " q yVZF .  Note that

  !KH  scales with   VZF , not with   dVZF/dx . [3.41, 3.91]

Of course, the example discussed above is over-simplified, as it omits magnetic

shear, electron dissipation, and many other effects.  In particular, magnetic shear is quite

strongly stabilizing, as it works against the interchange of vorticities at an inflection

point, which is the basic mechanism of the KH and the elementary process which

underlies the well-known Rayleigh inflection-point criterion.  The strong sensitivity of

the KH to magnetic shear is nicely illustrated later in Chapter 4.  (The figure 4.17 of

Chap.4 shows the disruption of the zonal flow pattern in the regimes of weak magnetic

shear and its persistence in regions of strong magnetic shear [2.52].)  In order to

examine the effect of shear on tertiary KH modes, the energy transfer budget and zonal

flow pattern of a shearless and sheared system were compared in [3.92].  In the shear-

free system, transfers of energy from zonal flows to drift waves occurred, and disruption

of the zonal flow pattern was evident in the flow visualizations.  In the sheared system,

no back-transfer of energy occurred and the flow pattern persisted.

In the plasma of interest,   !" 0 , so the generalized potential vorticity is   !2 " ,

where    ! " # + $Ti/2 .  The system is described by the equations

   !
!t "

2# + #, "2# = $2
4 T , "2T (3.4.3a)

   !
!t T + ", T = 0 (3.4.3b)

Here   g, h  is the Poission bracket.  Note that, to the lowest order in  ! , this system

corresponds to a statement of conservation of potential vorticity in flows with

generalized velocity     V = !" # z .  Here, the temperature gradient, as well as    E! B

shear, can drive instability.  A similar analysis as before gives

   
!KH

2 = 1
2 " + #

2 T 2 q x
2 qy

2
q x

2 – q y
2

q x
2 + q y

2 . (3.4.4)
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Note that the phase between the zonal potential and zonal temperature is crucial to the

result.  This phase is determined by several factors, including the zonal flow generation

mechanism (i.e., which sets the ratio of growth for  !  and  T ) and the Rosenbluth-

Hinton damping mechanism (i.e., which suggests that certain values of phase damp

more rapidly than others).  While one study suggests a good correlation between the

stability boundary for GKH and the termination of the Dimits shift regime  (see, e.g.,

Fig.4.15 in Chapter 4 [3.93]), the parameter space for this problem has not been

systematically explored, and so the "bottom line" remains controversial.  Moreover,

other linear stability studies which retain ion Landau damping suggest that even for

steep    !T /!x , tertiary instability growth is very weak and the scale of mixing is quite

small. [3.94]  Thus, tertiary instability and its effect on zonal flow saturation remain

open problems, where further study is needed.

With these as-yet-inconclusive findings in mind, it is interesting to note that

another, related, route to exciting momentum transport and the back-transfer of energy

from zonal flows to waves exists and has not been explored.  This mechanism exploits

the situation that GKH modes, while not strongly unstable, are neither heavily damped,

and the fact that noise emission from primary drift waves is abundant.  Thus, one has a

situation where noise is emitted into slow modes, sitting close to criticality, so that large

transport can occur without linear instability.  Moreover, the effective noise bath will be

enhanced by self-consistent inclusion of GKH effects.  Finally, noise emission can also

produce localized defects in the flow, which in turn drive small scale relaxation and

momentum transport.

3.4.2 Model of small plane waves

As is explained in §3.2.2, dynamics of a plane drift wave explain the zonal flow

growth if the decorrelation rate of drift waves   !drift  is very small.  Within this

framework, one can construct a model composed of three drift waves and one zonal

flow.  The example of toroidal drift waves of §3.2.2 is explained.
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The quasi-linear effects of the secondary waves on the primary drift wave are

given by [2.23].  Replacing variables from a set of [   !0 " ,   !ZF ,   !+ "  and   !– " ] to

[  P ,  Z ,  S  and  ! ] which are defined as 
   P = e!0/T 2 ,    Z = !ZF  and

   !+ " /!0 " = S exp i#  with suitable normalizations, a closed set of equations results

are given as:

   dP
d! = P – 2 Z S cos " (3.4.5a)

   dZ
d! = –

"damp
"L

Z + 2 P S cos # (3.4.5b)

   dS
d! = – " side

"L
S + Z P cos # (3.4.5c)

   d!
d" =

#0 – $+
%L

– Z P
S sin ! (3.4.5d)

where the normalized time is    != "Lt ,   !L  is the linear growth rate of the primary mode,

  !damp  is the collisional damping rate of the zonal flow,   ! side  is the side-band damping

rate, and   !0 – "+  is the frequency mismatch of the side-band and primary mode.

Equations (3.4.5b)-(3.4.5d) describe the parametric excitation for a fixed pump

amplitude.  The coupling to the primary wave, Eq.(3.4.5a), describes the nonlinear

stabilizing effect of the driven zonal flow on the growth rate of the zonal flow   !ZF .

Reference [3.95] describes the fully nonlinear evolusiton of this type of system.

3.4.3 Nonlinear coupled equation for a large number of drift waves

If the number of excited drift wave modes are very small, so that the drift wave

can be treated as a monochromatic pump, a simple model like §3.4.2 applies.  In real

plasmas, however, the primary fluctuations (drift waves) have a large number of

degrees of freedom, and an analysis treating the drift wave spectrum is necessary.
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Equations (3.2.16) and (3.2.18) describe the coupled dynamics of the drift wave

action and the vorticity of the zonal flow,    Nk = 1 + k!
2"s

2 2
#k

2
 and     U ! dVZF/dr ,

respectively.  Taking into account of the collisional damping of zonal flow (§3.1.3), the

dynamical equation for the zonal flow vorticity

   
!
!t + " damp U = !2

!r 2
c 2

B2 d2k k #k r

1 + k$
2% s2

2 Nk (3.4.6)

and that of the drift wave spectral density

     !
!t Nk + vg "

!Nk
!x – !#k0

!x "
!Nk
!k – $driftNk = k%

!Nk
!k r

U (3.4.7)

are derived as before, where      vg ! "#k/"k  is the group velocity of the drift wave, and

  !drift  represents the linear instability and the nonlinear damping rate that causes

saturation of the drift wave (in the absence of zonal flow).

In the following subsections, the evolution of drift waves and zonal flow is

explained in several limiting cases.

3.4.4 Diffusion limit

We first discuss the case where the autocorrelation time of the drift wave   !ac, d

and that of the zonal flow   !ac, ZF  are much shorter than the time scale determined by

  !ZF
– 1 , where   !ZF

– 1  is the characteristic time scale of the linear zonal flow instability.  It is

very important to keep in mind that we also use this ordering as a tractable model of the

case where the zonal flow spectrum is slowly varying, but spatially complex.  Thus, this

limit is of broader interest than one may initially think.  Note that the validity of the

equivalence between spatial complexity and short autocorrelation time follows from the

fact that it is the net dispersion in     ! – qrvgr  which is of interest.  Thus, even if  !"  is

small, the existence of fine scale zonal flows can guarantee that ! q grv( )  is large, so
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that the zonal flow-drift wave autocorrelation time is correspondingly short.  The

autocorrelation time of the drift wave,   !ac, d " #drift
– 1 , is determined by the drift wave

self-nonlinearlity, and is taken as prescribed in this review.  The time scale orderings

are written as

  !drift >> ! ZF ,   !ac, ZF
– 1 >> " ZF (3.4.8)

In this case, the phase of each mode composing the drift wave fluctuation is considered

to be random and the spectral density or modal number distribution function  Nk  is

calculated (i.e. no phase information).  Fourier components of the zonal flow,  Uqr
,

induce random Doppler shifts in the drift waves, because the autocorrelation time of

 Uqr
 is short.  The coefficient   k !U  in the right hand side of Eq.(3.4.7) can be

considered as a random frequency modulation.

The term    k !U "Nk/"k r  in Eq.(3.4.7) changes rapidly in time and is

approximated as random.  The average within the 'long time scale',   !ZF
– 1 , is evaluated

according to the analysis of §3.3.2.  By employing a quasi-linear treatment for random

stretching from §3.3.2(ii), one has [3.48] 
   

k !U
"Nk
"kr

# "
"kr

Dkk
"Nk
"kr

, where  Dkk  is

given by Eq.(3.2.29).  For further simplification, the response of drift waves on the left

hand side of Eq.(3.4.7) can be rewritten, in terms of the linear growth term and

nonlinear self-interaction term, as      !Nk
!t + v g "

!Nk
!x – !#k0

!x "
!Nk
!k = $LNk – $NLNk ,

where   !L  is the linear growth rate and   !NL  is the nonlinear damping rate.  With this

formal expression, Eq.(3.4.7) reduces to the diffusion equation for the drift wave

spectrum

   !
!t – "L + "NL Nk – !

!k r
DK

!Nk
!k r

= 0 . (3.4.9)

The evolution of the zonal flow is given by negative diffusion and collisional damping

(as is explained in §3.2.2), as
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   !
!t + " damp Uqr

2 = !2
!r2 Dq

!
!k r

Nk Uqr

2#
k

(3.4.10)

where the coefficient   Dq  i s  ca lcula ted  in  §3.2 .2  to  be
   Dq = B– 2 k !2k r 1 + k"2 #s

2 – 2
R qr, k .

3.4.5 Predator-prey model

The system of Eqs.(3.4.9) and (3.4.10) describes the interaction between the

drift-wave and zonal flow.  This is an example of a two-component, self-regulating

system.  As the 'primary' fluctuation, the drift wave grows by its own instability

mechanism.  The drift wave fluctuation energy is transformed into the energy of the

zonal flow via the secondary instability process.  In this sense, a correspondence of the

form:

drift wave fluctuation    N = Nk!
k  ! prey

(3.4.11)

zonal flow energy    U2 = Uqr

2!qr
 ! predator

holds.

A low-degree of freedom model can be deduced from Eqs.(3.4.9) and (3.4.10).

In integrating Eqs.(3.4.9) and (3.4.10) in wavenumber space, a Krook approximation is

used to write:
 

   !/!k r Dkk !Nk/!k r"
k

# – $ U 2 N .  With this simplification, and by

use of the energy concervation relation in §3.3.3, Eqs. (3.4.6) (3.4.7) can be modelled as

   !
!t – "L + "NL N = – # U 2 N , (3.4.12)

   !
!t + "damp U 2 =# U 2 N . (3.4.13)
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where L!  and NL!  are typical numbers for the linear and nonlinear rates.  As is

explained, the collisional damping rate   !damp  does not depend on the scale  qr , as it is a

drag, not a viscosity.

The evolution of the wave-zonal flow system critically depends on the nonlinear

damping of drift waves.  The simplest form of the nonlinear damping rate of the drift

wave may be chosen as NL! N = 2!
2N .  By these simplifications, one has a two-

dimensional predator-prey model of the form

   !
!t N = "L N – "2 N 2 – # U 2 N , (3.4.14)

   !
!t U 2 = – "damp U 2 +# U 2 N . (3.4.15)

A tractable model with a small number of degrees of freedom can be constructed in the

diffusion limit, as well.

3.4.6 Coherent Nonlinear Drift Wave- Zonal Flow Interactions (1) - Wave

Trapping

The growth of the zonal flow is influenced by the finite amplitude zonal flow on

the drift waves, even if tertiary instability is not induced.  The presence of the zonal

flow induces higher order deformation of the drift wave spectra, which causes the

modification of the growth rate of the zonal flow.  This is, of course, analogous to the

modification of the distribution function structure due to nonlinear resonant particle

dynamics in Vlasov plasma problems. An analogy holds, and may be summarized by:

Drift wave -zonal flow problem 1D Vlasov problem

    Nk ! f v
    k r ! v (3.4.16)

   k !U x " eE x
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where  U  is the vorticity of the zonal flow,    U = !VZF / !x .  A more thorough

comparison is summarized in Table 3.4,1.

As in the case of particle trapping in a wave field, the trapping of drift wave

packet in the zonal flow field can take place. This phenomena thus has an influence on

the evolution of zonal flow.  Bounce motion of drift wave rays occurs, as is explained in

Appendix A.  In this subsection, we review the nonlinear process that is relevant when

the lifetime of the drift wave and that of zonal flow are long compared to both   ! ZF  and

the bounce frequency   !bounce  (the explicit form of which is given in Appendix A), i.e.,

when

  ! drift << ! ZF,"bounce ,   !ac, ZF
– 1 << " ZF, #bounce . (3.4.17)

This is the opposite limit to §3.4.4, where waves and zonal flows are assumed to be

randomized rapidly during their mutual interaction, as in the quasilinear problem.

Another limit is that the life time of drift waves is much shorter than the trapping time,

but the coherence time of the zonal flow is longer than   !ZF
– 1 .  This limit is discussed in

the next subsection. (§3.4.7).

The coupled dynamical equations for the drift-wave fluctuations and the zonal

flow component are given following the argument of Eqs. (3.4.6) and (3.4.7).  The

vorticity equation that relates the zonal flow to the wave population, (3.4.6) and the

wave kinetic equation, together form a nonlinear dynamical system

   
!
!t + "damp U = !2

!r2
1
B2 d2k k #k r

1 + k$
2% s

2 2 Nk , (3.4.18a)

     !
!t Nk + vg "

!Nk
!x = k #

!Nk
!k r

1 + k$2%i
2 U , (3.4.18b)
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where the 'screening' effect of a finite gyroradius is retained,    U = U + ! s
2 d2U/dr2 .  In

comparison with Eq.(3.4.7), the linear growth and nonlinear damping of drift waves are

dropped, because the case of coherent waves is studied here.

This set of equations (3.4.18a) and (3.4.18b) has a similar structure to the Vlasov

equation that describes wave-particle interactions (such as plasma waves, etc.).  The

term   k !U x  in Eq.(3.4.18b) is the counterpart of acceleration in the phase space.  That

is, Eq.(3.4.18b) has a similar structure to the one-dimensional Vlasov equation, and

Eq.(3.4.18b) is the analogue of the Poisson equation.  With this analogy in mind, one

can study a BGK-like solution with finite-amplitude zonal flow.

Consideration of drift wave ray dynamics (details are given in [2.36]) leads us to

conclude that the drift wave-packet can be labeled by the two invariants of motion    !k0

and   k y0 , i.e.,    !k – u k x – k y VZF " !k0  and   k y = k y0 , where  u  is a uniform velocity

   !/!t " – u !/! x.  Note that the wavefrequency   !k  and the wavenumber  k x  are

modified along the path of the drift wave-packet according to the relation which is

simply the dispersion relation

   !k = k y0 1 + k y0
2 + k x

2 – 1
. (3.4.19)

By use of these two integrals of motion, (    !k0  and   k y0 ), an exact solution for the

distribution function is given in the form:

   N x, k x, k y = N !k0 x, k x , k y0 . (3.4.20)

The trapping of the drift wave-packet occurs in the trough of the zonal flow, as

is explained in [2.37].  Figure 3.4.2 illustrates the rays of drift wave-packets in phase

space for the case in which the screened velocity   VZF  has a sinusoidal dependence in

the  x -direction.  The trapped region is determined by the difference    !V ZF  between the

maximum and minimum of   VZF .  The wavenumber on the separatrix at the minimum of
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  VZF  is given as 
   

k x0, sep
2 = !V ZF 1 + k y0

2 2
1 – !V ZF 1 + k y0

2
– 1

 for a simple case of

stationary zonal flow structure.  Wave packets which satisfy   k x0
2 < k x0,sep

2  are trapped

in the inhomogeneous zonal flow.  The bounce frequency at the bottom of the trough is

seen to be

   
!bounce =

2"s2k yqr

1 + " s
2k y

2 !k0
dVZF

dr
. (3.4.21)

As is the case for the trapping of resonant particles by waves in collisionless plasmas,

the bounce frequency of quasi-particles (wave-packets) has a dependence like

   !bounce " VZF .  The bounce frequency becomes lower as the trajectory approaches

the separatrix.  The assumption in this line of thought, Eq.(3.4.17), means that

  !drift < "bounce is necessary in order that wave-packet trapping is relevant.  Thus,

trapping of wave packets is particularly important near marginal stability of the drift

waves.

If the trapping of the wave-packet is effective, the growth of the zonal flow

stops.  On a trapped trajectory, the distribution function tends to approach the same

value.  The distribution function  Nk  finally recovers a symmetry with respect to  k r ,

and the RHS of Eq.(3.4.18a) vanishes.  The trapping of the drift wave tends to terminate

the growth of the zonal flow.

3.4.7 Coherent Nonlinear Drift Wave- Zonal Flow Interactions (2) - zonal flow

quenching

If the zonal flow has a long life time, it is possible to form a coherent spatial

structure through a strongly nonlinear deformation of the drift wave population density.

However, the condition of Eq.(3.4.17) does not always hold.  That is, the

autocorrelation time of drift waves can be shorter than the life time of zonal flow

structures while the zonal flows maintain their coherence, i.e.,
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  !drift > !ZF, "bounce ,   !ac, ZF
– 1 << "ZF . (3.4.22)

In this subsection, we study the case where the turbulent drift wave spectrum forms a

spatially coherent zonal flow structure.

The wave kinetic equations as in §3.4.4, Eq. (3.4.18a) and Eq. (3.4.18b), are

employed.  An asymmetric part of  Nk  with respect to  k x ,  Nk , contributes to the time

evolution of  U  through Eq. (3.4.18a).  Solving Eq. (3.4.18b) and expressing  Nk  in the

form of a perturbation expansion

   Nk = Nk
1 U + Nk

2 U 2 + Nk
3 U 3 + ! ! ! , (3.4.23)

and substituting it into Eq.(3.4.18a), a nonlinear equation of the zonal flow vorticity  U

is obtained.  The linear response has been obtained, as is explained in §3.2.1, i.e.,
   Nk
(1) = !

!r k"Vc R qr, #
!Nk
!k r

, where     R qr, ! = i/ ! – qrvg + i"drift  is the response

function.  Equation (3.4.23) is based on a formal expansion in the parameter

   U R qr, ! " U/#drift , which is ordered as small.  Thus, all resonance functions, both

    R qr, ! = i/ ! – qrvg + i"drift , and those corresponding to higher resonances, reduce

to the simple form    R qr, ! " 1/#drift . Note that this approximation clearly fails, close

to marginal stability of the primary drift waves, where   !drift " 0 .  For

    !drift < " # – qrvg , resonance structure becomes important, and the analogue of

phase-space density granulations form in  N .

For a wide spectrum of fluctuations, one has    R qr, ! " 1/#drift  and obtains the

leading diffusion term of Eq.(3.2.23) of §3.2.2.  The contribution from the second-order

term is small (from the considerations of symmetry), so the first contributing order is

the third-order term:

   
Nk

(3) ! U3 R qr, "
3k #

3 $3Nk
$k r

3 . (3.4.24)
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Note that this is equivalent to the contribution which gives nonlinear Landau damping

in the Vlasov problem.  Recall that nonlinear Landau damping is also third order in the

perturbation amplitude, involves contributions at beat wave resonances where

    ! + !" = k + k" v , and thus may be obtained from 'higher-order quasilinear theory'.

Substituting Eq.(3.4.24) into Eq.(3.4.18a), one obtains a nonlinear equation for the drift

wave vorticity [3.96]

   !
!t U = – Drr

!2
!r2 U + D3

!2
!r2 U3 – "damp U . (3.4.25)

with 
   D3 = – B– 2 d2k R qr, !

3k "4k r 1 + k#2 $s
2 – 2

%3 Nk/%k r
3 .  As the spectral

function is peaked near    k r ! 0 , the sign in the definition of   D3  is chosen such that   D3

is positive when  Drr  is positive.

The quenching of the drive of the zonal flow is a characteristic mechanism in the

problem of generation of the axial-vector field through turbulent transport of energy

(such as dynamo problems).  In the case of magnetic field generation via a dynamo, the

 ! -suppression problem has been investigated [3.97].  Equation (3.4.25) is an explicit

expression for the quench of the driving force of the axial vector field.

Equation (3.4.25) governs the dynamics of the (coherent) structure of the zonal

flow.  Further exploration of this result follows below.  As is derived in §3.2, the zonal

flow growth rate   !ZF  (the first term in the RHS of Eq.(3.4.25)) behaves like:

   !ZF = Drrqr
2 1 – qr

2/qr0
2 .  Damping is induced by collisional processes (§3.1.3) and by

the turbulent diffusion of a secondary parallel flow (§3.2.6), via
   !damp = !dampcoll + µ || 1 + 2q2 qr

2 , where   !damp
coll  is the collisional damping explained in

§3.1.3,   µ ||  is the turbulent shear viscosity for the flow along the field line, and  q  is the

safety factor.  (The coefficient   1 + 2q2  can take a slightly different form, depending on

the plasma parameters.)  Thus, Eq. (3.4.25) can be written in the explicit form
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   !

!t U + Drr
!2
!r2 U + qr0

– 2 !4
!r4 U – D3

!2
!r2U3 – µ || 1 + 2q 2 !2

!r2 U + "dampcoll U = 0

(3.4.26)

Equation (3.4.26) states that the zonal flow is generated by the background turbulence

and is stabilized by collisional damping, higher-order dispersion and by the

nonlinearity.

Section 3.4.8 A Unifying Framework - Shearing and Wave Kinetics

Building upon the studies of particular nonlinear mechanisms in various limiting

cases, which are explained individually in the preceding subsections, we now propose a

unifying framework for understanding the zonal flow problem.  This framework is one

of shearing and wave kinetics.

We now discuss the physics of stochastic shearing of primary drift waves by a

spatio-temporally complex spectrum of zonal flows, in particular, and also survey the

wave kinetics of drift waves in a slowly evolving spectrum of zonal flows, in general.

Extensive use is made of an instructive and far-reaching analogy between the wave

kinetics of a drift wave packet in a zonal flow field and the kinetics of a particle in a

Langmuir wave field in a one-dimensional Vlasov plasma.  On account of the particular

symmetry of the zonal flow field, both the drift wave - zonal flow and 1D Vlasov

problem can be reduced to 2D phase space dynamics, for  x,  V  and  x,  k r , respectively.

In each case, the effective frequency of the motion   ! J  is a function of the action

variable  J , so that the dynamics are non-degenerate, and differentially rotating flow in

phase space results.  The analogy enables a unification of many analyses of shearing

effects, both in the stochastic and coherent regimes.  Of cause, shearing dynamics are of

great interest, as they constitute the mechanism by which the zonal flows regulate

transport and turbulence levels, and thus merit detailed attention.

The analogy between zonal flow and Vlasov plasma is motivated by the

observation of the obvious similarities between the wave-kinetic equation for    N k, x, t
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in the presence of a zonal flow spectrum   Vq
2

 and the Boltzmann equation for

   f V , x, t  in the presence of a Langmuir wave spectrum    Ek , !
2

.  These equations are

   !
!t N + vg "

!N
! x – !

! x k yV "
!N
!k x

= C N = #drift N , (3.4.27a)

and

  
   !

!t f + V "
! f
!x – !

!x
e
m # "

! f
!v = C f , (3.4.27b)

where    Ek, ! = – "#L/" x for Langmuir wave turbulence.  (The suffix L stands for the

Langmuir waves.)  The analogy is summarized in Table 3.4.1, which we now discuss.

Rather clearly, the analogue of the 'particle' with velocity  v  in the Vlasov case is the

drift wave packet with group velocity   vg k , which is sheared by the zonal flow field

 V , itself the analogue of the Langmuir wave field.  The analogue of the Boltzmann

collision integral   C f , which maintains a near-Maxwellian average distribution

function is the wave kinetic collision integral  C N , taken to have the form

   ! drift N = ! k N – "#k N2 N0
– 1  in some cases which require an equilibrium spectrum of

turbulence in the absence of zonal flows.

Aspects of the dynamics can be elucidated by consideration of resonances and

time scales.  The analogue of the well known wave-particle resonance    !/k = V  is that

for which the phase velocity of the shearing flows equals the wave packet group

velocity     vg k = !/q x ..  Just as in the particle case, chaos occurs when the zonal flow -

wave group resonances overlap, resulting in stochastic drift-wave-ray dynamics.

Stochasticity of ray trajectories provides the crucial element of irreversibility in the drift

wave - zonal flow interactions.  Note that since zonal flow energy is concentrated at

very low frequency, while the dispersion in   vg k  is large, overlap of     vg k = !/q x

resonances occurs at quite modest zonal flow amplitudes.  Such a state of ray chaos
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naturally necessitates a stochastic description.  At least four time scales govern both the

wave - particle and zonal shear - wave group dynamics.  These are:

i) The spectral autocorrelation times   !ac .  In the case of the Vlasov plasma,
   

!ac = min k " #/k
– 1

, V"k .  These times correspond to the lifetimes of the

instantaneous electric field pattern 'seen' or traversed by a particle.  For the zonal shear,

    
!ac = min "# – 1, " q xv g

– 1
.  (3.4.28)

Here,   !" – 1
 gives the flow pattern lifetime, which is usually quite long, since   ! " 0 .

However, the dispersion in the Doppler frequency shift of the wave in a propagating

packet (i.e.,    ! q xv g ) is usually quite large, resulting in short auto-correlation time, and

suggests that a stochastic analysis is relevant.  It is important to again stress the fact that

no a priori postulate of randomness or noise in the zonal flow spectrum is required,

since the origin of stochasticity lies in the overlap of mode-flow resonance, and not in

any random phase assumption.

ii) the nonlinear orbit times, which correspond to the vortex circulation times in phase

or eikonal space.  These correspond to the particle bounce or trapping time    e!L/m – 1

in the case of the Vlasov plasma, and the shearing rate of a fluid element in a zonal

flow,

   !" = q xVZF
– 1

   (3.4.29)

or the bounce time (   !bounce
– 1 ) of a trapped wave packet, Eq.(3.4.21), whichever shorter.

In the event that resonances do not overlap, and that the nonlinear orbit time is shorter

than the autocorrelation time, a coherent interaction analysis of the dynamics is

required.

iii) the nonlinear decorrelation time, which quantifies the scattering time for an

individual trajectory of coherence time for a resonant triad.  For the Vlasov plasma,
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   !c = k 2DV
– 1/3

, the well-known result first obtained by Dupree.  Here  DV  is the quasi-

linear diffusivity in velocity space.  For the zonal amplification problem,

    
!c = min "k

– 1, k 2/Dk, q x
2Dk dvg/dk 2 – 1 / 3

. (3.4.30)

Here   ! k  controls the triad coherence time.  Note that   ! k  appears in place of a nonlinear

self-decorrelation rate   !"k  via the requirement that   C N = 0 , to determine  N  in the

absence of zonal flow.    Dkk –2  is the rate of diffusive scattering (i.e., random refraction)

and 
   

q x
2Dk dvg/dk 2 1 / 3

 is the analogue of the Dupree decorrelation rate   k2 DV
1/3

for a ray in a dispersive medium.  [Note that  Dk  has the dimension of  m– 2s – 1 .]  This

arises as a consequence of coupling between scattering in  k x  (due to  Dk ) and the

propagation at the wave group speed   vg k .

iv) the time scale for evolution of the average population density, i.e., the macroscopic

relaxation time.  For the Vlasov plasma, this is     !relax = "v2Dv
– 1 , where   !v  is the

extent of phase velocities excited, and  Dv  is the quasi-linear velocity space diffusion

coefficient.  Similarly, for the zonal flow problem,

   !relax = "k2/Dk . (3.4.31)

The possible dynamical states of the system are classified by the ordering of the

various time scales, and by whether or not the trajectories are  chaotic or not.  The four

basic time scales can nearly always be ordered as

  min !ac, !" < max !ac, !" # !c < !relax . (3.4.32)

Thus, the possible system states can be classified by:

i) the Chirikov overlap parameter
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     S =
!vg

! "/qr
. (3.4.33)

Here,    !vg  is the width of the wave group - zonal shear resonance, and    ! "/q r  is the

spacing between resonances.

ii) the effective Kubo number

   K = !ac/!" , (3.4.34)

the ratio of the autocorrelation time   !ac  to the zonal flow shearing time  !" .

These ratios immediately divide the system states into three categories, which

are analyzed in Table 3.4.2.   For   S > 1 , and   K << 1 , the dynamics are stochastic, with

stochastic rays, and random shearing and refraction of drift waves by zonal flows

constituting the principal effect of zonal flows on the turbulence.  This regime may be

treated by using the method of quasi-linear theory, yielding a picture of diffusive

refraction (Section 3.5.4).  Extensions to higher order expansions in population density

perturbations  N  have been implemented, and are analogous to induced scattering (i.e.,

nonlinear Landau damping), familiar from weak turbulence theory for the Vlasov

plasma.   (Section 3.5.7 discusses such an extension.)  For   S << 1  and   K > 1 , the

dynamics are coherent, with strongly deflected rays tracing vorticities in the   x, k x

space.  In this regime, the wave population density evolution will exhibit oscillations

due to the 'bouncing' of trapped rays, and will asymptote to the formation of wave

packets corresponding to BGK solutions of the wave kinetic equation.  In this regime,

zonal flow shear and wave packets adjust to form a self-trapping state.  (Section 3.5.6.

Some extensions are discussed in Chapter 6.)  A third regime is that with   S > 1  and

   K ! 1 , which corresponds to the regime of turbulent trapping.  The dynamics here

resembles those of the stochastic regime, except that consistent with    K ! 1 , closely

separated wave packets remain correlated for times    t > !c .  These correlated, small-
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scale packets are analogous to clumps in the 1D Vlasov plasma, and result in

granulation of the wave packet population density  N .  Such granulations necessitate the

calculation of a Fokker-Planck drag, as well as diffusion, for describing the evolution of

 N , i.e., the long time average.  (This issue is discussed in Chapter 6.)  Likewise, self-

trapped wave packets correspond to holes or cavitons in the Vlasov plasma.  Figure

3.4.3 illustrates the parameter domain and various theoretical approaches.

Having outlined the general structure of the dynamics of shearing in wave

kinetics, we now proceed to discuss the regime of stochastic ray dynamics in some

detail.  Here, we are primarily concerned with the evolution of the mean drift wave

population   N k, t  in the presence of the zonal flow spectrum.  The salient features of

the stochastic dynamics regime are given in Table 3.4.3, along with their analogies for

the 1D Vlasov turbulence problem.  Averaging the wave kinetic equation yields the

mean field equation for  N

   !
!t N – !

!k r
!
! x k "V N = C N (3.4.35)

where the mean refraction-induced flux of  N  in  k r  is given by

   !k r
= "

"x k#V N = – i q xk #V– q Nq$q x
 . (3.4.36)

Proceeding in the spirit of quasi-linear theory, the expression for
   !k r

= "
"x k#V N = – i q xk #V– q Nq$q x

 may be calculated by iteratively substituting

the response of  N  to  V ,    !N /!V .  Proceeding as in Section 3.2,
   Nq = q xk !Vq " – q xvg + i# drift

– 1
$ N /$k x, so that the wave number space flux

is

   
!k r

= – Dk r

" N
"k x

(3.4.37)
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with the  k -space diffusion coefficient

   Dk r
= q x

2k!
2 Vq

2"q x
R k, q x (3.4.38)

and resonance function 
   

R k, q x = ! drift " – q xvg
2 + ! drift

2
– 1

.   As noted above,

the resonance in question is that between the drift wave packet with group speed   vg k

and the phase speed of the zonal shear    !/q x .  It is interesting to observe that this

resonance appears as a limiting case of the well known 3-wave resonance denominator

    Rk, q, k + q = i
!k +!q – !k + q + i "!k + "!q – "!k + q

. (3.4.39)

Expanding for   q < k  and replacing the broadenings by   ! drift  then yields

     Rk, q, k + q = i !q – q " #!k / #k + i$ drift
– 1

.  Finally, specializing to the case     q = q x x

and rewriting    !q ="  then finally gives 
     Rk, q, k + q = i ! – q xvg + i"drift

– 1
= R k, q x .

The diffusion equation for  N  may also be straightforwardly derived by a Fokker-

Planck calculation.  Here, one should recall that, in the absence of additional physics,

the analogue of Liouvilles theorem for a stochastic Hamiltonian system implies a partial

cancellation between diffusion and drag terms, leaving a result equivalent to the quasi-

linear equation derived above.

In the stochastic regime, the evolution of the drift wave spectrum is simple.  The

 k r  spectrum spreads diffusively, with    !k r
2 = Dkt .  The random walk to larger  k r  just

reflects the random shearing at work on waves.  The self-consistent dynamics of the

drift-wave - zonal flow system are then described by the mean field equation for

 N (rewriting Eq. (3.4.35))

   !
!t N – !

!k r
Dk

!
!k r

N = C N (3.4.40)
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with Eq. (3.4.38) and equations for the zonal flow intensity evolution.

3.5 The Drift Wave - Zonal Flow System: Self-Consistent State

In previous subsections, elementary processes for zonal flow dynamics were

explained.  These included the linear damping process, the bi-linear growth process, the

back-reaction of zonal flows on drift waves, the nonlinear saturation mechanism and

electromagnetic effects.  Combining these elementary processes as building blocks,

self-consistent states of the system are now discussed.  As in the description in §3.4,

explanations here are given which note the differences in the number of degrees of

freedom and in the correlation times of drift waves and zonal flows.  Useful modelling

of self-consistent states depends on these key factors, and the correspondence is listed in

Table 3.5.1.

First, models with few degrees-of-freedom are explained by focusing on two

examples.  One is the quite generic predator-prey model (§3.4.5), which is valid for the

case where many drift wave modes and zonal flow components are randomly excited,

and their correlation times are much shorter than the characteristic time of evolution of

the system.  This basic model is explained in §3.5.1.  The other is the opposite case

where only one drift wave is unstable (with side-band modes linearly stable).  The

coupled modes are thus assumed to have long coherence times (§3.4.2), as in simple

dynamical systems such as the Lorenz model.  This case is explained in §3.5.2

Next, more detailed descriptions follow.  The spectral shape is of considerable

importance (as discussed in §3.4.3 and §3.4.4), and is explained within the scope of the

induced diffusion model in §3.5.3.  Coherent spatial structure is discussed in §3.5.4 and

§3.5.5.  These discussions correspond to the nonlinear mechanisms in §3.4.6 and §3.4.7,

respectively.

3.5.1 Predator-Prey model
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Drift waves excite zonal flows, while  zonal flows suppress drift waves.  The

degree of excitation or suppression depends upon the amplitudes of the drift wave and

zonal flow.  These interactions are modelled as a predator-prey dynamical system, for

zonal flow mean square shear    U2 = Uqr

2!qr
 and drift wave population density

   N = Nk!
k

.  (See Eq.(3.4.9) and (3.4.10).)

(i) Stationary states

This system of Eqs.(3.4.14) and (3.4.15) has two types of steady-state solution.

One is the solution without zonal flow    N = ! L/! 2 ,   U2 = 0 , which results in the case

of strong damping of the zonal flow,   ! damp > " ! L/! 2 .  The other is the state with zonal

flow,    N = !damp/" ,    U 2 =! – 1 "L – "2 "damp!– 1  which is relevant when the

damping rate of the zonal flow is weak,

  
0 < ! damp < "

! 2
! L . (3.5.1)

(The case of   !damp = 0  needs special consideration, as is explained later.)

This system is controlled by two important parameters, i.e., the linear growth

rate of the drift wave   !L  and the damping rate of the zonal flow   !damp .  In the region

of low zonal flow damping rate (as for Eq.(3.5.1)), the zonal flow coexists with the drift

wave.  The other important result is the role of (   !L ,   !damp ) in determining the partition

of the energy.  In the region of low collisionality, where the zonal flow is excited, the

drift wave amplitude is independent of the linear growth rate   !L , but is controlled by

the zonal flow damping rate   !damp .  The magnitude of the zonal flow increases if   !L

increases.  The dependence on   !L  illustrates the importance of the self-nonlinearity

effect of the zonal flow, which is discussed in Eq. (2.11).  By use of a generic form
   ! NL U 2 " #2U 2 , the partition of energy between the waves and zonal flows appears in

Eq. (2.12).  The dependencies are shown, in Fig.3.5.1 for the case of fixed   !L , when the

self-nonlinearity effect is present.  The predator-prey model thus explains the most
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prominent features of the role of zonal flows in determining system behaviour.  The

possible shift of the boundary for the appearance of turbulence from   !L = 0  to

  !L = !excite > 0  (so called Dimits shift for ITG turbulence) is discussed later.

(ii) Dynamical behaviour

Equations (3.4.14) and (3.4.15) also describe the characteristic dynamics of the

system.  The fixed points Eq.(2.12) are stable for a wide range of parameters.  In some

particular circumstances, different types of dynamics appear, as is categorized in [3.98].

Stable fixed point:  At first, the stability of fixed points is explained.  In cases

where all of the coefficients (i.e.,   !L ,   !damp ,  ! ,   !2 ) are non-negative values,   !L " 0 ,

  !damp " 0 ,   ! " 0 ,   !2 " 0 , the fixed points are stable.  For instance, the perturbation near

the stationary state,    ! N , ! U 2 " exp i#t , shows a damped oscillation with the

frequency

   
! =

– i "damp"2 + i "damp
2 "2

2 – 4"damp"L #2 – #
2#

. (3.5.2)

The imaginary part of  !  is negative.  Equation (3.5.2) predicts a stable fixed point.

Depending on the initial conditions, transient oscillations of drift wave and zonal flow

can occur.  However, they decay in time and the system converges to a stationary

solution.

Repetitive bursts: When the nonlinear self-stabilization effect of the drift

waves is absent, i.e.,   !2 = 0 , periodic bursts of the wave and flow occur.  In this case,

Eqs.(3.4.14) and (3.4.15) have an integral of the motion; namely

   N –
! damp
! L

ln N + U2 – ln U 2 = const. (3.5.3)

[3.99, 3.100].  A phase portrait for the system is given in Fig.3.5.2(a).  Periodic bursts

appear.  The burst of the drift wave spectrum is followed by one of the zonal flow shear.



98

However, this is unphysical for real drift wave turbulence, since the nonlinear self-

interaction effects are essential to the turbulence dynamics.

Single burst and quenching of waves:  When collisional damping of the zonal

flow is absent, i.e.,   !damp = 0 , a particular care is required, because the relation   N = 0

satisfies the RHS of Eq.(3.4.14).  As is pointed out in [3.98, 3.48], the problem is a

transient one, and the final, steady state depends on the initial condition.  The trajectory
  N , U 2  satisfies    d N /d U2 = ! L – ! 2 N /" U2 – 1 ,  which is solved to

yield

   N = !L
!2

– "
!2 +" U 2 – c0 U 2 –!2 /" . (3.5.4)

Here   c0  is a constant which is determined by the value of   N , U 2  at   t = 0 .  The

trajectory   N , U 2  is shown in Fig.3.5.2(b) for various values of the initial

condition.  The drift wave amplitude increases at first.  Then energy is transferred to the

mean square flow shear, and the wave energy is finally quenched, at a constant value of

the amplitude of the flow.  The state is related to the complete quench of wave energy

near marginal stability, i.e., the so-called Dimits shift [2.50].  It may be viewed as the

continuation of the trend    N/ U 2 ! "damp/"L  to the limit where   !damp " 0 .

These features are also seen in the nonlinear coupling of different modes, having

been studied in connection with L-H transition problems (e.g., [2.44, 3.101-3.112]).

The phase portraits show differences in the underlying dynamics.

3.5.2 Single instability model

When only one drift wave is unstable, the primary drift wave and side-bands

maintain a long coherence time.  This is the opposite limit from the case (i), for which a

reduced variable model applies.  This case is explained in §3.4.2.  A closed set of

equations is derived for the amplitude of only one unstable mode,  P , the amplitude of

zonal flow,  Z , the relative amplitude of side-band drift wave  S  and the frequency
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mismatch  !  as Eq.(3.4.5).  This type of coherent interaction of model amplitudes

appears in the Lorenz model, and other dynamical systems.

Equations (3.4.5a)-(3.4.5d) describe the parametric excitation for a fixed pump

amplitude  P , and give the zonal flow growth rate   !ZF .  The coupling to the primary

wave, Eq.(3.4.5a) accounts for the stabilizing effect of (nonlinearly driven) zonal flow

on the primary drift wave.  This system of equations has been analyzed for the problem

of three-wave coupling [3.113].  The fixed point is given [2.23] by

   P* = ! damp! L
– 1 Z* ,  

   
Z* = !0 – "+

2 + # side
2 /2# L # side ,

   S* = ! damp/2! side Z* , and   sin !* = "0 – #+ / "0 – #+
2 + $ side

2 .

For a fixed value of   !L  (   !L  is used as a normalizing parameter for obtaining

Eqs.(3.4.5a)-(3.4.5d)), the dependence of the saturation amplitude on the damping rate

of zonal flow is explained by the stationary solution. The amplitude of the primary

unstable drift wave increases as   !damp  according to:    P ! "damp .  In the small   !damp

limit, the zonal flow amplitude   Z *  remains constant, but the amplitudes of the primary

wave and sidebands,   P*  and   S* , vanish.  These results are qualitatively the same as

those of the model in §3.5.1.  In this model, a forward Hopf bifurcation takes place

when   !damp  exceeds a threshold.  Figure 3.5.3 illustrates the numerical calculation of

the long time behaviour of the solution of Eqs.(3.4.5a)-(3.4.5d).  In the case of small

  !damp , the solution converges to the fixed point in the phase space.  In a limit of large

  !damp , the system exhibits chaos.

3.5.3 Saturation: determining the Drift Wave Spectrum

The wave spectrum contains additional freedom, and can influence the self-

consistent state.  Equations (3.4.9) and (3.4.10) form a set of nonlinear diffusion

equations that determine the spectra of zonal flow and drift wave. [3.48]

The stationary state of the zonal flow is realized, as is seen from Eq.(3.4.10), by

the balance between collisional damping and the bi-linear drive by the drift waves, i.e.
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   qr
2 Dq

!
!k r

Nk"
k

= # damp . (3.5.5)

On the other hand, the stationary state of the drift waves arises, as seen from Eq.(3.4.9),

by the balance between linear drive and damping, nonlinear damping and  k -space

diffusion by the random zonal flows.  Linear instability sits in the region of small  k r .

In the absence of diffusion, the local (in k-space) balance   !L = !NL gives the saturated

state of drift waves.  For a simple case of    !NL = !2Nk .  One has the saturation level

   Nk = ! L/!2 .  In the presence of random shearing by zonal flows, diffusion in the k-

space occurs, and fluctuation energy is transferred to stable regions of k-space.

(i) Constant diffusivity

The case of constant diffusivity illustrates the competition between various

effects.  The simplest case of    !NL = !2Nk  is chosen.  The coefficients (   !2 ,  Dk ) are

independent of  k r .  The linear growth rate is also independent of  k r , in both the stable

region (   k r > k rc ) and unstable region (   k r < k rc ).  In this limit, Eq.(3.4.9) is

modelled by a simple diffusion equation

   
– !L Nk + ! 2 Nk

2 – Dk
d 2Nk
dk r

2 =0 . (3.5.6)

This equation is solved by constructing a Sagdeev potential.  The boundary conditions,

  Nk = 0  at     k = !  (stable region,   k r > k rc ) and   d Nk/dk r = 0  at    k r = 0  (unstable

region,   k r < k rc ), are natural choices.

Multiplying   dNk/dk r  by Eq. (3.5.6) and integrating over  k r , one has

   

dNk Dk

!L Nk
2 + 2 !2

3 Nk
3

N

0

= k r (   k r > k rc ), (3.5.7a)



101

   

dNk Dk

– !L Nk
2 + 2 ! 2

3 Nk
3 + ! LN 0 2 – 2 !2

3 N 0 3

N

N 0

= k r

(   k r < k rc ). (3.5.7b)

Two solutions to Eqs. (3.5.7a) and (3.5.7b) must be connected at   k r = k rc . This

continuity condition determines   N 0  as an eigenvalue.

As an illustration, a case of strong linear stability in the region   k r > k rc  is

described here.  In this case, the connection at   k r = k rc  requires   N k rc = 0 .  That is,

   

dn

1 – n2 +
2 ! 2N 0

3! L
n3 – 1

0

1

= k rc
Dk
!L

(3.5.8)

where   n k r = Nk/N 0  is a normalized function that describes the shape of the

spectrum.  This relation (3.5.8) gives a relation between   N 0 ,   !L  and  Dk  (i.e., the

zonal flow amplitude), as

   
Dk = ! L

k rc
2 LHS of Eq.(3.5.8) 2

. (3.5.9)

Equation (3.5.5) requires

   
qr

2 1
B2

k!2k r

1 + k"2#s
2 2 R qr, k $

$k r
n k%k N 0 = &damp . (3.5.10)
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Equations (3.5.8) or (3.5.9) and (3.5.10) describes the self-consistent solution.

Although the coefficient in the square bracket in Eq. (3.5.10) depends on   !damp

through the spectral shape function  N k r , Eq. (3.5.10) tells us that   N 0  increases

nearly linearly with respect to   !damp , in the limit of small   !damp .

Figure 3.5.4 illustrates the solution of Eqs. (3.5.8) or (3.5.9) and (3.5.10).  The

gradual change of the drift wave spectrum with collisional damping is demonstrated.

The features in Eqs.(3.5.8) - (3.5.10) are the ones clarified by the low-dimensional

model in §3.5.1.  Direct calculation of diffusion equation gives a smooth continuation

from the collisionless regime to the regime of strong collisionality.

(ii) Numerical solution

In more realistic examples, for which   !L  and  Dk  depend upon the wave-number

 k r , a numerical solution of Eq.(3.5.9) is required.  The solution of the full diffusion

equation recovers the basic trends of the low-degrees-of-freedom model.  The drift

wave amplitude goes to zero if   !damp  approaches to zero.  However, there is a

quantitative difference between the two models.  The result of solution for the spectrum

gives an empirical fit as [3.98]

   N ! "damp
0.75 . (3.5.11)

This dependence is slightly weaker than that predicted by the predator-prey model, and

than the analytical result in (i).  This may be due to the fact that the change in spectrum

shape due to finite   !damp  leads to the modification of the effective coupling coefficient

 !  which is averaged over the drift wave spectrum.

Temporal evolution is also investigated by the numerical solution for  N

distribution function.  In this case, the coupling coefficient  !  is not constant in time, on

account of the change of the spectral shape, and the result in §3.5.1 must be re-
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examined.  By solution of the diffusion equation, the qualitative conclusion of the low-

dimensional model is confirmed.  Specifically:

(a) the steady state is a stable fixed point, and the temporal solution converges 

after transient oscillations [   !L " 0 ,   !damp " 0 ,   !2 " 0 ];

(b)  periodic bursts appear  for   !L " 0 ,   !damp " 0 ,   !2 = 0 , corresponding to a

limit cycle attractor;

(c)  a single transient burst of drift waves is quenched by zonal flow for   !L " 0 , 

  !damp = 0 ,   !2 " 0 , and corresponds to the Dimits shift regime.

The results are demonstrated in Fig. 3.5.5.  Figures 3.5.5(b) and (c) correspond to the

trajectories in Figs. 3.5.2(a) and 3.5.2(b), respectively.  They confirm the understanding

which is obtained by use of a simple model in §3.5.1.  Study of the transient phenomena

by simulation [3.114, 3.115] is explained in Chapter 4.

3.5.4 Wave trapping and BGK solution

When the coherence time of the zonal flow and drift waves is much longer than

the time scale of drift wave spectral evolution, trapping of drift waves by the zonal flow

may occur [2.36, 3.116-3.118].  For this, the relations   !drift << "bounce  and

  !ac, ZF
– 1 << "bounce  apply.  In this case, the drift wave-packets have constants of the

motions    k y0, !k0  as is shown in Appendix A.  Note that in this regime, the drift wave

ray dynamics resemble those of a particle trapped in a single, large-amplitude plasma

wave.  Time asymptotically, then, the solution for  N  corresponds to a BGK solution,

i.e., a time-independent solution parameterized by a finite set of constants of the motion

of the ray trajectory.  As with all BGK solutions, there is no guarantee a particular

solution is stable or is physically accessible.  Additional physical considerations must be

introduced or addressed to determine stability.

In this system, there are infinite number of constants of motion, because the

wave kinetic equation (for  RHS = 0 ), like the Vlasov equation, is time reversible.  Just

as irreversibility enters the collisionless Vlasov problem when phase mixing of

undamped Case-Van Kampen modes leads to Landau damping of (macroscopic - i.e.,
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velocity integrated) Langmuir wave perturbations, irreversibility enters here due to

phase mixing when N  is integrated over the spectral in rk .  The BGK solution

corresponds, in principle, to the finite amplitude, time-asymptotic state of such

solutions.  The distribution function can thus be written in terms of the constants of

motion as Eq. (3.4.20).  Noting that the trajectories are classified into untrapped and

trapped orbits, Eq. (3.4.20) can be rewritten as

   N x, k x, k y = NU !k0 x, k x , k y0 + NT !k0 x, k x , k y0 (3.5.12)

where the suffixes  U  and  T  denote the untrapped and trapped wave-packets.

The self-consistent solution is given by Eqs.(3.4.19) and (3.5.12).  One has

   
u d

dx – !damp VZF = – d
dx dk y k y

– "

"

dw J NU
wm

"

+ dw J NT
wmin

w m

   (3.5.13)

where    w = – !k0 /k y0 ,  J  is the Jacobian of the transformation of variables,   wm  is the

value of  w  at the separatrix, and   wmin  is  w  at   k x = 0  [2.36].

The distribution functions  NU  and  NT  have infinite degrees of freedom, and

flattening (i.e., plateau formation) might take place (and likely does ) in
   NT !k0 x, k x , k y0 .  Choosing a particular class of the functions    NU !k0 x, k x , k y0

and     NT !k0 x, k x , k y0 , a self-consistent solution   VZF  has been obtained from Eq.

(3.5.13).

The accessibility and stability of a particular distribution function require future

research.

3.5.5 Zonal flow quenching and coherent structure

If wave trapping is not complete, a coherently structured of the zonal flow is

formed by the drift wave turbulence.  This is the case for   !drift > !ZF, "bounce ,and
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  !ac, ZF
– 1 << "ZF .  The case where the turbulent drift wave spectrum forms such a

spatially coherent zonal flow structure is discussed in this section.

If the asymmetric deformation of the distribution function  N k x  is calculated to

higher order in the zonal flow vorticity  U , the correction of order   U 3  tends to reduce

asymmetry.  This is reasonable, since the third order contribution is stabilizing.  For the

case of   U > 0 , modification of   !N  is positive for   k x > 0 , so as to increase  U .  The

third order term has the opposite sign, so as to suppress the growth of the zonal flow.

[3.96, 3.119]

Taking into account the modification of the growth rate of the zonal flow, the

dynamical equation for the zonal flow is written in an explicit form as Eq.(3.4.26).  By

use of normalized variables   x= r/L ,    != t/tZ  and   U = U/U 0 , where    L– 2 = qr0
2 1 – µ ,

   t Z = Drr
– 1 qr0

– 2 1 – µ – 2
 and    U 0

2 = Drr D3
– 1 1 – µ , Eq. (3.4.26) is rewritten in the

collisionless limit as

   !
!" U + !2

!x2 U – !2

!x2 U 3 + !4

!x4 U = 0 . (3.5.14)

The case that the flow is generated from a state with low noise level, where no

net flow momentum  exists, (   dx U = 0 ), is studied.  Here the flow evolves satisfying

the condition   dx U = 0 .  A stationary solution of Eq.(3.5.14) in the domain   0 < x < d ,

for the periodic boundary condition, is given by an elliptic integral as

   
1 – 2u2 + u4 – ! 2 – 1/2

du
U

= ± x
2 , (3.5.15)

where  !  is an integral constant (   0 ! " < 1 ) given by the periodicity constraint
   

1 – 2u2 + u4 – ! 2 – 1/2
du

– u c

u c

= d/2 2 n   (    n = 1, 2, 3, ! ! ! . The integer  n  is the one

which is closest to    d/n = 4 2! .)  Numerical solution of Eq.(3.5.14) has shown that the

solution (3.5.15) is stable and is an attractor.  Figure 3.5.6 illustrates the stable

stationary state.  Compared to a simple sinusoidal function (eigenfunction of the linear
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operator), the result in Fig.3.5.6 has much weaker curvature at the peak, and is closer to

a piecewise constant function.

The normalized function  u x  is of the order of unity, so that the characteristic

values of vorticity and scale length  l  are given as    U 0 = Drr
1/2 D3

– 1/2 1 – µ
1/2

, and

   l = qr0
– 1 1 – µ – 1/2

.  The ratio   D3/ Drr  is characterized by    D3 ! k "
2l2#$k

– 2 Drr .  One

has an estimate

    V0 = vz 1 – µ
1/2

. (3.5.16)

where     vz = !"kk #
– 1

.  This result gives an expression for the zonal flow in terms of the

decorrelation rates of drift waves.  Combining this with the dynamical equation which

dictates the drift wave fluctuations, e.g., Eq.(3.5.6), the amplitude of the self-consistent

state may be derived.  Further research is necessary to understand the significance of

these results..

3.5.6 Shift of the boundary for drift wave excitation

When coupling with zonal flow is taken into account, the boundary in the

parameter space for the excitation of turbulent transport is modified.  The shift of the

excitation boundary is one aspect of characteristic nonlinear interactions.  The shift is

noticed in the context of subcritical excitation of turbulence (see, e.g., [3.120-3.122] and

a review [3.123]).  The shift also appears for supercritical excitation [3.124-3.129].  The

case of ITG coupled with zonal flow also belongs to this class of stability boundary

shifts.

The mutual interaction of fluctuations with different scale lengths has been

studied [3.124].  The component with longer wave length is called 'intermediate scale'

and that with shorter wave length is called 'micro'.  In the presence of mutual

interaction, the phase diagram is illustrated in Fig.3.5.7.  The boundary for the

excitation of the micro mode is no longer   !L
micro = 0 , but shifted to a positive value of

  !L
micro .  In the absence of the intermediate scale mode, the micro mode is excited for
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  !L
micro > 0  .  However, when the intermediate scale mode is excited   Dintermediate > 0 ,

the micro mode is quenched in the vicinity of the stability boundary   !L
micro " 0 , and is

excited at finite level only if the growth rate exceeds a substantially larger value,

  !crit
micro .  This constitutes an upshift of the boundary for excitation of the turbulence.  An

analysis of the coupling between ITG and current diffusive ballooning mode is reported

in [3.127] and the case of the ITG and ETG is given in [3.129]. These examples also

exhibit stability boundary upshifts. (See also the simulation study [3.130, 3.131].)

In the case of drift waves coupled to zonal flow, the 'micro' fluctuation is the

drift wave, and the zonal flow plays the role of the 'intermediate scale' fluctuation.  For

transparency of argument, we take here the limit of vanishing collisional damping of

zonal flow, i.e.,   !damp = 0 .  The shift of the boundary for the excitation of the drift

waves from   !L
DW = 0  occurs if the zonal flow has finite amplitude for very small

amplitude of the drift wave [3.132], i.e.,     U2 ! 0   at   N = 0 .  In the other limit of

large growth rate, the increase of the drift wave amplitude  N  by the increase of

  !L
DW  requires self-stabilization of the zonal flow.  Examples of such self-nonlinear

effects are the    !NL V 2  term in Eq.(2.10b) or the   U3  term in Eq.(3.5.14).

Summarizing these, the stability boundary for the zonal flow in the   U2, N  plane

should have the form as is illustrated in Fig.3.5.8(a).  That is, the boundary for the

marginal stability condition   dUZF/dt = 0  (solid line in Fig.3.5.8(a)) intersects the

boundary   N = 0  at a finite value of the zonal flow amplitude (denoted by   U crit ).

This allows a finite amplitude of zonal flow at a very low level of drift wave fluctuation.

In this circumstance, the boundary for the drift wave excitation shifts from   !L
DW = 0

to   !L
DW = !crit > 0 .  The dotted line in Fig.3.5.8(a) illustrates the boundary of the

marginality condition for the growth of drift waves from the case of   !L
DW = !crit .

Below the critical value of the growth rate, a steady-state solution is allowed for

  N = 0 .  Figure 3.5.8(b) illustrates the partition of the energy between drift waves and

zonal flow as a function of the growth rate of the drift waves.  The waves are not

sustained in steady-state below the critical value   !L
DW < !crit .  After the transient

growth of waves, the zonal flow can be sustained at a finite value, and this level is
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dependent on the initial condition.  If the critical growth rate is exceeded, i.e.,

  !L
DW > !crit , both waves and flows are excited.  The estimate of the drift wave

amplitude for the case when the excitation of zonal flow is ignored, is denoted by a thin

dotted line.

Noting the presence of critical value of zonal flow vorticity   U crit , a phase

diagram in the    !L, !damp  plane is shown schematically in Fig.3.5.9 [3.132].

The mechanism that gives the finite values of the critical vorticity of the zonal

flow has been discussed in [3.132].  The key is the determination of the self-nonlinear

damping term for the zonal flow growth, e.g.,    !NL UZF
2 , N , as in Eq.(2.10b).  The

marginal condition for the zonal flow growth is thus expressed as

   !NL UZF
2 , N = " N . (3.5.17)

3.6  Suppression of turbulent transport

Mean shear flow and zonal flow can reduce or quench transport by altering

either the turbulent fluctuations amplitude or the wave-particle correlation time, which

determines the 'cross-phase' between, say  Vr  and  n , in the particle flux    !r = n Vr .

Up till now, we have been primarily concerned with effects on the fluctuation intensity.

However, both zonal and mean shears can alter the correlation times and thus fluxes,

even at fixed fluctuation amplitude.  In this section 3.6, we examine shear flow effects

on transport.  We begin by considering the effect of sheared mean and zonal flows on

transport of a passive scalar by an otherwise fixed or prescribed ensemble of turbulence.

3.6.1 Passive scalar transport: sheared mean flow

The average cross field flux is given in terms of cross correlations between

various fluctuation fields.  For instance, the radial particle flux is given by:
   !r = 1

B n E" .  This flux, an averaged quantity, is determined by the amplitudes of
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density and electric field, and by the phase between them.  In the case of electrostatic

fluctuations,   !r  can be written as:

   !r = 1
B n E" sin # (3.6.1)

where  !  is the phase difference between the density and potential fluctuations.   !  is

determined by the wave-particle correlation time and by the response function.

Obviously, shifting alpha can reduce (or increase) the flux.

Here, we investigate the effect of mean shear on transport by analyzing the

response of a passive, phase-space field  f (i.e., a distribution function) to a given

ensemble of turbulence.  A model equation for the passive advection of f  in the

presence of prescribed fluctuating  v  (i.e. advecting velocity field) is:

      ! f
!t + v ||b"# f + V "# f + v "# f – Dc#

2 f = 0 . (3.6.2)

Here    V =V y x y  is the mean sheared    E ! B  flow,   v||  is the parallel phase-space

velocity and  Dc  is the collisional diffusion coefficient.  We focus on strong turbulence,

and consider the asymptotic limit where    Dc ! 0   [3.133, 3.134].

A formal solution for the cross field flux,     ! f" f* vx , is then given by

     
! f= Re

i v x, k, "
2

" – k ||v|| – k yxSv + i #ck
– 1

d
dx f0$

k, "
. (3.6.3)

Note that Eq. (3.6.3) contains many time scales for irreversible dynamics, which

must be considered.  These are:

a)   !"k  - the mode self-correlation decay rate, or inverse life time, due to

nonlinear scrambling;

b) Doppler spread (autocorrelation) rates:
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k! " k( ) - the spectral self-spreading (autocorrelation) rate, i.e., the inverse; 

lifetime of the spectral pattern (reflects the effect of dispersion - linear process);
    k ||v||!x  - the parallel Doppler spread (autocorrelation) rate, i.e., the rate at

which parallel Doppler shift    k ||v||  changes with radius;

    k y Sv! x  - the shearing Doppler spread (autocorrelation) rate, i.e., the rate at 

which the sheared    E ! B  flow- induced Doppler shift    k yVE ! B  changes with 

radius;

c) Decorrelation rates

  k x
2 Dx  - particle decorrelation rate for radial scattering;

1/3
y2k xD v2S( ) - particle decorrelation rate for hybrid of radial scattering in

sheared flow, i.e., due to random walk in shearing coordinates;
    k ||
! 2v||

2 Dx
1/3

 - particle decorrelation rate for radial scattering in a sheared 

magnetic field.

Here   !x  is the radial spectral width,  Dx  is the radial test diffusion coefficient,

   k ||
! = k ||/Ls  and   Ls  is the shear length.  Hereafter, parallel dynamics are ignored.

Shearing becomes important when

    k y Sv! x " k x
2 Dx #

Dx
!x 2 ,     k y Sv! x " !#k . (3.6.4)

In this case, the relevant decorrelation rate is set by

     1/!ck = k y
2DySv

2 1/3
. (3.6.5)

For     k ySv!x >> k ||v|| , but    k ySv!x  or    !k d"k/dk  greater than   !"k  and    !ck
– 1 ,   ! f can

be simplified to      ! f" –# v x, k
2 $ %k – k ySv x d f0/d x&

k, %
.  (An analytic expression

    Im ! – k yxSv + i k y
2 Dy

– 1
" – #$ ! – k yxSv  is used.)  The cross-field flux then

reduces to:
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! f" – # dm d$ R

k y
Ls

vx, k
2

k ySv

d
dx f 0 . (3.6.6)

Note that the flux depends on the spectral intensity at the resonance point     xr =!/k ySv .

The assumption that this point falls within the spectral envelope is valid if    xr < !x  or

equivalently,     ! < k xSv" x .  Since we are concerned with the regimes of strong shear,

this is almost always the case.  In such strong shear regimes, then,   ! f scales inversely

with   Sv , i.e.,

    ! f" Sv
– 1 , (3.6.7)

A detailed analysis in [3.134] established that the passive scalar amplitude perturbation

scales as 
    f/ f2

! Sv
– 5/6 , so that

    sin ! " Sv
– 1/6 . (3.6.8)

Note that the effect of even strong shear on the flux is modest (     ! Sv
– 1 ) and its impact

on the cross-phase is quite weak (     ! Sv
– 1/6 ).  Thus, the theory predicts that suppression

of the cross phase is weaker than reduction in turbulence intensity.

It is interesting to examine the scaling of  Dx  in the strong turbulence regime, for

weak and strong shear.  Noting that    ! f= – Dx
d
dx f0 , we have already established that

    Dx ! Sv
– 1  for strong shear and weak turbulence.  In the case of strong shear and strong

turbulence,     !ck
– 1 > k ySv"x ,  so   ! f is given by (from Eq. (3.6.3)):

     ! f= – Re "ck vx, k, #
2 d

dx f 0$
k, #

, i.e.,     Dx = !ck v2 .  Taking Eq.(3.6.5) with

   Dx ! D y  then gives

    
Dx !

v2 3/4

k ySv
1/2 (3.6.9)
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which is consistent with the expected scaling    Dx ! "b # xT
2

 where   !b  is the particle

bounce time in a poloidal wavelength, and   !xT  is the resonance width in radii.

Next, for the strong turbulence, weak shear case    1/!ck = k x
2 Dx , so

    D x! v 2 1/2 k x
2 – 1/2

, which is the familiar scaling for transport in strong 2D

turbulence, first derived by Taylor and McNamara.  Finally, we also note that the

regime of strong shear (i.e.,     k ySv!x > "ck
– 1, !#k, # ) but with non-resonant response

has also been investigated [3.133].  The predictions are     ! f" Sv
– 2  and     sin ! " Sv

– 2 .

The importance of this regime is dubious, though, since strong shear naturally favours a

large shearing Doppler spread which in turn suggests the applicability of standard

quasilinear theory and the occurrence of a resonant interaction.

3.6.2 Passive scalar transport: zonal flows

In the previous subsection, we considered the effect of a mean shear flow on

passive scalar flux and cross phase.  While understanding the case of a mean shear is

necessary, it is certainly not sufficient for an understanding of the effects of a spectrum

of zonal flows upon transport.  Two additional features must be considered in the case

of zonal flows.  These are:

(a) the flow pattern has a finite lifetime or self-correlation time,    !c, ZF ;

(b) shearing occurs as a spectrum of scales, each corresponding to a radial zonal 

flow wavenumber  qr .  The shearing pattern may be spatially complex.

The implication of differences (a) and (b) are that the effectiveness of shearing will be

reduced (relative to that for equal strength mean flow) for short    !c, ZF , and that one

should expect to find     Sv, rms  (the root mean square value) replacing   Sv  in the

quasilinear predictions given above, when    !c, ZF"# .  The details of these calculations

have quite recently appeared in the literature [3.135].

3.6.3 Reduction of turbulent transport

The results in § 3.6.1 and 3.6.2 imply that the scaling of transport in a shear flow

is not universal, and turbulent transport must be computed by specifying a relaxation
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mechanism.  In addition, the amplitude of the fluctuating velocity field and

characteristic correlation length must be determined simultaneously by considering the

effects of  Er  and   dEr/dr , and their spectra.  Some representative analyses of the

calculation of turbulent transport are reported here.

Several analyses have been performed for ITG modes, e.g., [3.136-3.136].  An

expression for the turbulent transport coefficient has been proposed [3.136]:

   
!turb "

#L – $E1 – #*1
1/2
#d

1/2

k y
2 (3.6.10)

where   ! L  is the linear growth rate in the absence of flow shear,    !E1  is the    E ! B  flow

shear frequency, 
   

!E1 = r
q

d
dr

q Er
r B ,   ! *1  is the shear of the diamagnetic flow,   ! d  is the

damping rate of a representative zonal flow mode.  The latter is approximated in [3.132]

as    ! d " 0.3 Ti/Te #M  (   !M  is the toroidal magnetic drift frequency), and  k y  is the

poloidal wavenumber of the most unstable mode.  The dependence of   !turb  on    !E1  is

adjusted to the results of nonlinear simulation, i.e., the expression represents a fit to

data.

In the case of self-sustaining CDIM turbulence, the thermal diffusivity has been

predicted to be [3.87, 3.139]

    
!turb ~ 1

1 + 0.5G 0
– 1"E12

G0
3/2

s 2
c
" p

2vAp
a , (3.6.11)

where    !E1 = k "# A"Er
$/B ,    G0  is normalized pressure gradient and

   k!2 " 1 + 0.5G0
– 1#E1

2 G0
– 1 .  As the gradient of radial electric field becomes larger,

the correlation length becomes shorter.  In toroidal geometry (i.e. for the case of CDBM

turbulence), the normalized parameter    !E1 = " A# dEr/dr /srB  controls the turbulence

level and turbulent transport [3.79].  The effects of    E ! B  flow shear and magnetic
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shear complement each other.  The same shear dependence is also found for the case of

ITG modes.

The electron temperature gradient (ETG) mode has a shorter characteristic wave

length.  This fact suggests that the    E ! B  flow shear has a weaker effect.  However,

extended streamers could be affected by    E ! B  shear, and the transport by ETG modes

could then also be affected.  Current research indicates that some transfer mechanism of

ETG energy to longer scale (either, say, by streamer formation or by inverse cascade to

   c/!pe ) is necessary for ETG turbulence to be of practical interest to tokamak

confinement.  The electron gyro-Bohm thermal diffusivity, i.e.,    ! e, GB = "e
2VTh,e/LTe

   = me / m i !i, GB , is too small to be relevant.  Further study is required to understand

the relation of transport by shorter wavelength turbulence to electric field shear [3.124,

3.129, 3.140, 3.141].

In addition to the inhomogeneity of flow across the magnetic surfaces, the

inhomogeneity on the magnetic surface is also effective in suppression of turbulence.

The toroidal flow in tokamaks varies in the poloidal direction if a hot ion component

exists.  This poloidal dependence suppresses turbulence [3.87].

The dependence of   !turb  on    !E1  has also been explained experimentally.  The

expression

   !turb "
1

1 + #E1/$ h (3.6.12)

has been derived analytically with an index  h  (  !  is the decorrelation rate or  instability

growth rate in the absence of    E ! B  shear).  The index is given as   h = 2  in the models

[3.78-3.80] and as   h = 2/3  in the strong shear limit in [2.7].  A nonlinear simulation has

suggested a dependence similar to that in equation (3.6.8) for the case of ITG mode

turbulence.  Further elaboration of theory is required in order to derive a formula which

is relevant in a wide parameter region.  A comparison of the index  h  with experimental

observations has been reported [3.142] for when the electric field bifurcation is
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controlled by an external bias current.  The result is in the range of    h ! 2  [3.142], but

the comparison is not yet conclusive [3.143-3.145].

3.6.4 Self-regulated state

The final solution of the turbulent transport problem requires a self-consistent

solution for the turbulent heat flux and the zonal flow.  The level of the turbulence-

generated    E ! B  shearing rate in formula in §3.6.3, e.g., Eq. (3.6.12), must be

determined self-consistently from the dynamics of the drift wave - zonal flow.  Here

research in this direction is discussed.

Let us illustrate the problem by the model of two scalar variables from the

discussion of § 2 and §3.4.  An example is given as Eq.(2.10).

(i) Collisional damping limit

The simplest case is that for which the quasilinear drive of zonal flow by

turbulence is balanced by collisional damping.   In this case, Eq.(2.12a) gives

   Wdrift = ! damp/" .  The physics of this result is simple - the fluctuation level adjusts so

that the zonal flow is marginally stable.  That is, the saturated level of turbulence is

independent of the magnitude of the drive of linear instabilities, but is controlled by the

damping rate of the zonal flow.   Alternatively put, the zonal flow regulates the

fluctuation level and the flow damping regulates the flow, so the flow damping thus

regulates fluctuations and transport.  In this case, an analytic result is easily derived, and

one obtains a stationary state in a dimensional form

   e!
Te

"
#damp
$*

% s
Ln

(3.6.13)

where  !  is the amplitude of fluctuations in the range of drift wave frequency and   !damp

is the damping rate of the zonal flow.  The right hand side is reduced by a factor

  !damp /"* , as compared to the mixing length levels, due to zonal flow effects.
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Numerical simulations have confirmed the essential weak turbulence limit, i.e.,
   e!/Te

2
" # damp/$* , not    e!/Te rms " #damp/$* .  The damping rate of the zonal flow

(   !damp ) is proportional to the ion-ion collision frequency in the high temperature limit

(see §3.1.3).  As a result, the level of fluctuations that induces transport is controlled by

ion collisions, although the fluctuation spectrum itself is composed of 'collisionless'

waves.  The transport coefficient follows as

   !i "
#damp
$*

% s
Ln

T
eB "

& ii
$*

% s
Ln

T
eB . (3.6.14)

This scales as a gyro-reduced Bohm thermal diffusivity, 'screened' by the factor of

  !damp /"* .  Of course, retaining non-adiabatic electron effects complicates the question

of collisionality scaling.

(ii) Nonlinear saturation mechanism

In high temperature plasmas, where    !ii/"* # 0  holds, the saturation of the

zonal flow is influenced by nonlinear processes.  These processes are discussed in §3.4.

Possible nonlinear saturation processes include the trapping of drift waves in zonal

flows, excitation of tertiary instabilities, quenching of zonal flow drive by drift wave

spectrum modification, and others.  The formal solution of Eq.(2.12) can be rewritten

   WZF = ! !2
– 1 Wdrift , and 

   Wdrift = 1 + !2!2
– 1"#– 1 – 1

$ L /"# .  Because of the

production of zonal flow, the usual fluctuation saturation level is 'screened' by the factor

of   1 + !2!2
– 1"#– 1 – 1

 as compared to the level   ! L/"# .  Thus, the nonlinear

stabilization of turbulence may be dominated by the zonal flows shearing channel,

instead of the usual mixing process, , i.e.,   !2!2
– 1"#– 1 > 1 .  In this case, the turbulent

transport coefficient is reduced by the factor of   !– 2!2"# .

   
! i = "2#$

"2 ! i, 0 . (3.6.15)
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where    !i, 0  is the predicted thermal conductivity in the absence of the zonal flow.

Obtaining an explicit formula for the nonlinear suppression mechanism (the term   !2 ) is

a topic of current research, and a final answer has not yet been determined.  However, if

one employs one example from the model of nonlinear reduction of zonal flow drive,

one has

    
!i = 1

1 + "c
2 vz

2qr
2 !i, 0 (3.6.16)

where     vz ! Vd  is the saturation velocity of the zonal flow,  qr  is the wave number of

zonal flow, and   !c  is the correlation time of turbulence.  In the vicinity of the stability

boundary, where the correlation time of turbulence is expected to be very long, the

reduction of turbulent transport is quite strong.  If the drive of turbulent transport

becomes stronger (i.e., going further from marginality) and     !c vzqr " 1  holds, then the

parameter dependence of   !i  becomes similar to that of    !i, 0 .

(iii) Role of GAM

When the damping of zonal flow is strong,   ! damp > !L"/#2 , the zonal flow

may not be excited, but the GAM is still driven.  As is discussed in §3.3.2, the

fluctuation levels are suppressed by a factor of 
   

1 + !c ! c, GAM k "
2VGAM

2
– 1

, where

  VGAM  is the    E ! B  velocity associated with the GAM, and   !c, GAM  is the

autocorrelation time of the GAM.  In the large-amplitude limit, the suppression factor is

given by Eq.(3.3.19).

This suppression factor is derived for the condition that the source of turbulence

is unchanged.  As discussed in §3.1.3, the GAM is subject to collisional damping.  The

saturation mechanism and saturation level of the GAM have not yet been determined.

Links between the driven GAM and poloidally-asymmetric cross-field transport have

been suggested [3.146].  The accumulation of fluctuation energy in a finite poloidal
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region, which is coupled to zonal flow dynamics, has also been discussed [3.147].  The

calculation of turbulent transport which is regulated by GAM is left for future research.

Chapter 4. Numerical Simulations of Zonal Flow Dynamics

4.1. Introduction

Direct nonlinear simulation (DNS) studies have played a crucial role in the

development of research on zonal flows.  The perceived synergy between the theory and

DNS has been a key promoter of interest in the physics of the zonal flows.  Although

the technical details of direct numerical simulation techniques are beyond the scope of

this review, the physical results of nonlinear simulations are reviewed here, in order to

illustrate the elementary dynamics, of and processes, in the drift wave –zonal flow

system.

There are several steps in reviewing the understanding which has been

facilitated by DNS.  These should be addressed in sequence.  The first is modeling, i.e.,

reduction to basic equations appropriate for relevant geometry.  Although the rate of

developement of computational power has been tremendous, the direct computational

solution of the primitive nonlinear plasma equations (such as the Klimontovich or

Vlasov equations in real geometry and for actual size devices) is still far beyond the

computational capability of even the foreseeable future.  Thus, reduced modelling has

been employed to simplify the basic dynamical equations.  The main representative

models and hierarchical relations among them are explained in Appendix B.  (Keywords

for various reduced equations are explained in this appendix.)  The second is the

selection of important elementary processes in zonal flow and drift wave systems.  We

here focus on the following issues: i) Generation of zonal flow by turbulence, ii)

Shearing of turbulence by zonal flow, iii) Co-existence of zonal flow and drift waves,

iv) Nonlinear states, v) Collisional damping, vi) Dependence on global plasma

parameters, vii) Nonlinear phenomena.  For these elementary processes, the results of
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DNS are explained below.  Third, several important features of zonal flows have been

discovered by DNS studies.  Therefore, the historical development is also described,

though the discussion is bounded by considerations of brevity.

The observation of zonal flow by DNS has been reported in the last two decades

for various types of plasma turbulence.  Figure 4.1 is one early example [2.6], in which

the formation of a quasi-symmetric isopotential contour, loosely resembling that of a

magnetic surface, is demonstrated.  These contour structures indicate the presence of a

banded poloidal    E! B  flow, called a zonal flow.

It should be stressed again that the objective of the explanation here is an

illustration of elementary physical processes of zonal flows.  The examples are chosen

primarily from the DNS of core turbulence, i.e., ‘Gyro-Bohm’ drift-ITG turbulence.  It

is well known that the progress in the DNS studies for plasma turbulence and zonal

flows is not limited to this class of examples.  Readers are suggested to refer to related

reviews on DNS of the subject (for instance, see [4.1]).  In the following subsections,

the progress in DNS of drift-ITG turbulence with zonal flow is reviewed  together with

the specification of simulation methods.

4.2. Ion Temperature Gradient Driven Turbulence

4.2.1 Models and geometry

Research on zonal flows in plasma physics simulation community has exploded

in the 90's and still continues so, to date. This happened as it becomes more obvious

that, independent of simulation method, simulation domain, and boundary conditions,

zonal flows play a dominant role in regulating ion temperature gradient (ITG) driven

turbulence, which is a prime candidate for the anomalous ion heat transport ubiquitously

observed in most plasmas in tokamaks[2.16].  This progress also paralleled the

advances in both gyrokinetic and gyrofluid simulation methods for various geometries.

We summarize the highlights of this story in a roughly chronological order.
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Exploiting the governing equations of plasma microturbulence, gyrokinetic

simulations are based on the nonlinear gyrokinetic description of plasmas, in which the

full charged particle kinetic dynamics in a strong magnetic field is simplified, using the

disparity between the spatio-temporal scales of the phenomena of interest, and the scale

of the magnetic field inhomogeneity and the gyro-period as leverage.  As a

consequence, the gyro-center distribution function is defined in a five-dimensional

phase space, after decoupling and elimination of the gyro-motion.  The perpendicular

velocity enters parametrically.  The wavelengths of instabilities can be comparable to

the size of an ion gyroradius. Some DNS approaches use the particle-in-cell simulation

method, which is Lagrangian in character (i.e., particles are pushed) while others use the

continuum Vlasov approach which is Eulerian in character (i.e., the gyrokinetic

equation is solved as a partial differential equation). While, to date, most simulations in

toroidal geometry have used the conventional nonlinear gyrokinetic equation[4.2],

which ignores the parallel acceleration nonlinearity which is formally weaker, some

simulations[4.3] have used a fully nonlinear energy-conserving form of the nonlinear

gyrokinetic equation[4.4]. Gyrofluid models are then derived from the gyrokinetic

equations by taking moments[4.5]. Some kinetic effects, such as linear Landau damping

and a limited form of nonlinear Landau damping, have been included in gyrofluid

models while others have not.  Most notably, gyrofluid models do not accurately treat

nonlinear wave-particle interaction.

Regarding simulation geometry, global simulations typically use a domain

which spans a macroscopic fraction of the tokamak volume.  Annular domains are

sometimes used as an option. Radial variation of gradient quantities, such as

temperature gradient and magnetic shear, is allowed in global simulations. Of course,

questions concerning mean profile evolution persist.  Flux-tube simulations are

restricted to a local domain of a few turbulence correlation lengths and assume the

existence of a scale separation between the turbulence and equilibrium profiles, and so

do not accurately represent mesoscale dynamics. Typically, radially periodic boundary
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conditions are used and the gradient quantities are treated as constant within a

simulation domain.

4.2.2. Adiabatic electrons and conventional collisionless gyrokinetic ions

We start from the simplest case of the collisionless limit in order to explain

some of key elements of zonal flow DNS.  In this subsection, illustrations are given on

the issues of i) generation of zonal flow by turbulence, ii) shearing of turbulence by

zonal flows, iii) coexistence of zonal flow and drift waves, and some aspects of iv)

dependence of dynamics on global parameters.

Historical overview: While zonal flows with large radial scales (the system size

- so as to render them indistinguishable from mean flows) were observed in ITG

simulations in a simple geometry in early 80's[4.8], it was in early gyrofluid[4.9] and

gyrokinetic[4.10] simulations of toroidal ITG turbulence, where fluctuating sheared

   E! B  flows driven by turbulence with a radial characteristic length comparable to that

of ambient turbulence (several ion gyro-radii), began to appear and attract attention.

These simulations were either quasi-local in the flux-tube domain [2.15, 2.17, 3.36,

4.7], or in a sheared slab geometry[3.93].  On the other hand, early global gyrokinetic

simulations of ITG turbulence either did not address[4.8, 4.9] nor find the effects of

fluctuating    E! B  flows[4.10] on turbulence to be significant.   The reason for this is as

follows.  Early global gyrokinetic simulations [4.9, 4.10] had relatively small system

size (in ion gyro-radius units), and consequently had rather sharp radial variations of

pressure gradient.  Zonal flows with scale lengths of the system size have been the

dominant feature in these simulations [4.10].  In other words, the simulation domain

was so small that it was effectively impossible to distinguish between zonal and mean

flows.  Even as more codes were independently developed, this qualitative difference

between global simulations [4.3, 4.11] and flux-tube simulations [3.36, 4.7] continued,

and fomented lingering doubts as to the proper treatment and possible existence of such

fluctuating flows.  However, as computing power became sufficient to handle larger

system size, the finer scale flows began to appear in global gyrokinetic simulations
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[4.3], although its effect on steady state transport was not observed to be as significant

as that seen in the flux tube simulations.

The importance of these small scale zonal flows in regulating turbulence in the

tokamak has begun to be widely appreciated, as gyrokinetic simulations[2.16] in both

full torus and annulus geometry (with various boundary conditions), for which radial

variations of the pressure gradient are mild, have produced results which demonstrate

the importance of the fluctuating flows with qualitatively similar characteristics as those

in flux-tube simulations[2.17, 2.50, 3.36].  Inclusion of zonal flows in gyrokinetic

simulations[2.16] significantly reduces the steady state ion thermal transport, as

reported earlier[3.36, 2.50].  Figure 4.2 illustrates some of characteristic results for the

effects of zonal flows on ITG turbulence.  Isodensity contours are shown.  Fluctuations

in the presence of zonal flow, Fig. 4.2(a), have shorter correlation length and lower

saturation level, in comparison to the case where zonal flows are suppressed, Fig.

4.2(b).  A similar illustration for noncircular plasma is reproduced as Fig. 4.2(c).

The dynamics of coupling between drift waves and zonal flow has been

explicitly analyzed by DNS.  This simulation has directly tested the physics of

modulational instability process, as well.  Figure 4.3 illustrates the generation of zonal

flow by turbulence and the back reaction of zonal flow shear onto that turbulence.  In

this study, the ITG turbulence freely grows to a saturation, with zonal flows suppressed.

This generates a stationary spectrum or ‘gas’ of ITG modes. (Thick solid line, being

followed by thin solid line (c).)  In the second run, the turbulence first develops to

saturation without zonal flow, but then flow evolution is restored to the system (after

   t ! 40 Ln/c s  in this simulation).  The zonal flow then starts to grow exponentially (thin

solid line (a) plotted on a logarithmic scale), and reaches a new stationary state.  As the

amplitude of the zonal flow increases, the turbulence level decreases.  (Thick solid line

(b).)  Note that the new stationary level is much smaller than the reference case.   The

modulational instability of a zonal flow spectrum to a test shear is thus established by

the observed exponential growth.  The reduction in turbulence level confirms the

expectation that the zonal flow shearing will reduce turbulence levels.
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The shearing of turbulence by zonal flow is also clear.  The key mechanism of

the turbulence suppression is as explained in §3.  One new significant finding from this

simulation is a broadening of the  k r  spectrum of turbulence due to self-consistently

generated zonal flows, as shown in Fig. 4.4. It is in agreement with the expectation that

an eddy's radial size will be reduced as shown by the contours of density fluctuations in

Fig. 4.2.  These also agree (qualitatively) with theoretical expectations of the reduction

of radial correlation length due to the shearing by    E! B  flow [2.7, 2.8].   The

quantitative analysis of the turbulence shearing rate is explained below.

The zonal flows observed in simulations[2.16, 3.36, 4.12]contained significant

energy in    k – !  bands, with radial scales and frequencies comparable to those of the

turbulence. It was therefore of vital importance to extend the nonlinear theory of

turbulence decorrelation by the mean    E! B  flow shear[2.7, 2.8] to address the effect

of rapid-time-varying    E! B  flow shear in regulating turbulence. This was needed for a

better quantitative understanding of the nonlinear simulation results.  An analysis of the

nonlinear gyrofluid simulation results indicated that the instantaneous    E! B  shearing

rate associated with self-generated zonal flows exceeds the maximum linear growth rate

by an order of magnitude, while the turbulence fluctuation amplitude definitely

remained above the thermal noise level, and the ion thermal transport remained

significantly anomalous[4.12].  This was somewhat puzzling since in the cases with

mean    E! B  shear flows, which are now either measured or calculated from data in

existing toroidal devices, many leading experimental teams observed that their plasmas

made transitions to enhanced confinement regimes[3.143, 4.13] when the    E! B

shearing rate in general toroidal geometry[4.14] exceeded the linear growth rate of

microinstabilities in the absence of the    E! B  shear.  This puzzle can be resolved by

considering the following points.

One thread of thought is to look at fine space-time scales of zonal flow shearing

rate.  Fluctuating sheared    E! B  flows play an important role in saturating the

turbulence[2.15,2.17, 3.36, 3.93, 4.7].  These flows are typically of radial size

   k r!i " 0.1 , but contain of a broad  k r  spectrum of shears. Since the    E! B  shearing
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rate is proportional to    k r
2! , the high  k r  component of  ! , although small in magnitude,

can contribute significantly to the    E! B  shearing rate.  Indeed, for    !k
2 " k – #  , the

shear spectrum actually increases with  k  (until FLR effects, etc., kick in), i.e.,

   Vk
2! k4 – " , unless   ! > 4 , which is unlikely.  The instantaneous    E! B  shearing

rate, which varies in radius and time, can be much higher than the maximum linear

growth rate for a significant portion of the simulation domain. An example is shown in

Ref. [3.82].   Of course, shearing effects depend on the lifetime of the shearing pattern,

as well as on the shear strength, as discussed in section 3.6.

Specifically, using gyrofluid-simulation zonal flow spectra and time-history data

to calculate the correlation time of zonal flows, the effective shearing rate in Ref. [4.12],

which reflects the fact that fast-varying components of the zonal flow shear are

relatively ineffective in shearing turbulence eddies, has been evaluated for each  k r .  It

has a broad peak at low to intermediate  k r , and becomes smaller at high  k r , as shown in

Fig. 3 of Ref[4.12].  Higher k components of the shear flows, while strong, have short

correlation time.  Overall, this rate is comparable to the linear growth rate. This seems

qualitatively consistent with considerable reduction, but not the complete suppression,

of turbulence (as observed in simulations). The expression for the effective shearing rate

is presented in Sec.4.5. where we discuss the role of Geodesic Acoustic Modes (GAM)

[3.5]. The instantaneous    E! B  shearing rate from global gyrokinetic particle

simulations is also dominated by high  k r  components, and varies roughly on the

turbulence time scales as reported in Ref. [4.12]. It is much larger than the maximum

linear growth rate for a significant portion of the simulation domain.

The other thread of thought is to reconsider the heuristic rule-of-thumb estimate

for turbulence quenching,    ! E " B # ! L  [2.17].  Though handy and dandy, this formula

has several limitations.  First, the nonlinear theory [2.7, 2.8, 2.9] tells that    ! E " B  should

be compared to the turbulent decorrelation rate,   ! NL , not to   ! L .  It should be noted that

it is much easier to calculate   ! L than   ! NL , so that this is one reason why many

experimental results were ‘analyzed’ in this simplified context.  While   ! L  can be used
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as a rough measure of strength of ambient turbulence when an estimation of   ! NL  is not

available,  the limitation of this approximation is obvious.

The dependence on global parameters in the collisionless limit is discussed here.

One finding of DNS is the complete suppression of the ITG mode near the linear

stability boundary.  In the regime of a weak linear growth rate, the initial value problem

of DNS showed that the ITG turbulence can first grow but is then quenched by the

induced zonal flow.  This zonal flow can be strong enough to reduce the ion thermal

transport to a value which is nearly zero, within the resolution[2.50] of the simulation.

Such transient evolution, and later quench of turbulence have been confirmed by DNS.

This is the so-called "Dimits shift", indicating a nonlinear upshift of the threshold for an

ITG-driven thermal fluxes. In essence, the Dimits shift regime is one where expansion

free energy is transferred to the zonal flows, with relatively little remaining in the drift

waves.  As a result, the heat flux vs. gradient curve is ‘upshifted’ – hence the name.

The Dimits shift regime is, to a large extent, a consequence of the approximation of zero

or very low collisionality.  A well known example is from a simplified set of

equilibrium parameters from the case of DIII-D H-mode plasma [4.15]. For this

particular set of parameters, the critical value of the ion temperature gradient has been

effectively increased from   R/LTi = 4  to   R/LTi = 6  due to the undamped component of

zonal flows. Note that both linear and the up-shifted thresholds are, in general, functions

of   s/q ,   Te/Ti , and   R/Ln .   Figure 4.5 illustrates the turbulent transport coefficient in a

stationary state as a function of the ion temperature gradient ratio.  In collisionless

simulations, turbulence is completely quenched slightly above the linear stability

threshold.  The up-shift of the threshold for the onset of turbulence is observed.  When

the driving source of turbulence (temperature gradient in this case) becomes larger, the

turbulence level starts to increase, as summarized in Fig.4.5.

It has been emphasized that low frequency turbulence in confined plasmas

should be considered as a self-regulating, two-component system consisting of the usual

drift wave spectrum and the zonal flows [2.13]. One of the early indications for the

coexistence of the zonal flow and turbulence is shown in Fig.4.6.  In this simulation, the
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co-existence of drift waves (with finite   k ! , and frequencies comparable to the

diamagnetic frequency) with the poloidally-symmetric (   k y = 0 ) short-scale-length zonal

flow perturbations (called radial modes, here) is clearly demonstrated.

The partition of the excited energy between the turbulence and flows is

explained in §3.  The partition has also been examined in the DNS.  While the

gyrokinetic approach is desirable for quantitative studies of this issue, as demonstrated

in Ref. [4.15], a simpler model can illustrate the main trend. One of the examples from a

fluid simulation of toroidal ITG turbulence is presented in Fig.4.7 [4.16]. Near the linear

stability boundary, nearly all of the energy is carried by the flow.  When the temperature

gradient (and consequently the linear growth rate   !L ) increases, both the turbulence

energy and flow energy increase.  As is explained in §3.5, the rate of increment of the

turbulence energy and that of flow energy are dependent on the nonlinear saturation

mechanism for the zonal flow.  Theoretical analysis is in qualitative agreement in this

issue of energy partition, but has yet to provide a satisfactory quantitative answer.  In

particular, the branching ratio between zonal flow and drift wave turbulence is set by

the ratio of wave growth to flow damping (collisional and otherwise).  For modest

collisionality, near threshold,    Eflow/Ewave ! " L/"damp .

An approach to the total quench of turbulence in the Dimits shift regime has also

been studied in DNS.  Transient bursts of turbulence energy have been observed in

direct simulations with various level of modelling.  The evolution was studied in the

context of various models, e.g., in the convection problem [3.114] and a detailed Vlasov

model of 1D ITG turbulence (near the stability boundary) [3.115].  Figure 4.8 illustrates

an example of the results of the Vlasov model study.

Before closing this subsection, a distinction caused by models is noted.  Global

gyrokinetic particle simulations and flux tube gyrofluid simulations display many

common features of the physics of zonal flows, despite differences in simulation

methods, simulation domains, and boundary conditions. However, the following

quantitative difference between them exists. Short wavelength components of zonal

flows are more prominent in flux-tube gyrofluid simulations, as compared to



127

gyrokinetic simulations.  However, according to estimation from nonlinear gyrofluid

simulation, most of the shearing is done by the low to intermediate  k r  part of the zonal

flow spectrum. Since the long wavelength  components of zonal flows are more

prominent in global gyrokinetic simulations, as compared to the flux-tube gyrofluid

simulations, one can speculate that the higher value of steady state ion thermal

diffusivity typically observed in gyrofluid simulation (in comparison to that seen in

gyrokinetic simulation) is partially due to an underestimation of the low  k r  component

of the zonal flows.  These components of zonal flows which are undamped by

collisionless neoclassical process [2.40] were inaccurately treated as completely

damped in the original gyrofluid closure[3.36]. This undamped component of the zonal

flows (the Rosenbluth-Hinton zonal flow) is of practical importance because it can

upshift the threshold value of the ion temperature gradient for ITG instability.

4.2.3. Simulations with additional effects: neoclassical damping of zonal flows,

nonadiabatic electrons, and velocity space nonlinearity

Other fundamental issues of the zonal flow are its neoclassical (both collisional

and collisionless) damping, nonadiabatic electron effects, and phase space dynamics.

We now discuss these effects.

The aforementioned example of the Rosenbluth-Hinton (RH) zonal flow [2.40]

illustrates the importance of a correct treatment of zonal flow damping in predicting the

levels of turbulence and transport. This motivated further research on the neoclassical

damping of zonal flows and its effect on turbulence.  When    E! B  flow is initialized in

a toroidal plasma and allowed to relax in the absence of turbulence and collisions, its

poloidal component is damped due to the variation of B in the poloidal direction. The

damping occurs due to the “transit-time magnetic pumping” [3.9], and in the long term

it evolves to a finite RH residual flow level.

 The collisionless neoclassical process (transit-time magnetic pumping) induces

decay of the flow.  The evolution of the flow could be viewed as a superposition of the

RH zonal flow of zero frequency and the GAM oscillation, which decays via transit-
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time magnetic pumping.  In Fig.4.9, the evolution of the electrostatic potential

(averaged over the magnetic surface) is illustrated, where the initial condition is chosen

as a high amplitude zonal flow.  A simple adiabatic electron model and the one which

includes electron effects and electromagnetic effects are compared in DNS [3.34].  The

simple model of adiabatic electrons captures an essential part of the physics, as zonal

flows in this system are mostly governed by ion dynamics, more specifically the

neoclassical polarization shielding [2.40] and geodesic curvature coupling.  In the long

term, the flow converges to a level predicted by neoclassical theory [2.40].

In the banana collisionality regime, this short (transit) timescale, collisionless

damping accompanied by GAM oscillation is followed by a slower collisional damping.

A decay of zonal flows due to ion-ion collisions occurs via a number of different

asymptotic phases [2.41], but most of the damping occurs on a time scale    !ii " #/$ii ., as

summarized in Sec. 3.1.5.

The important role of collisional damping of zonal flows in regulating transport

has been nicely demonstrated by gyrokinetic particle simulations[2.49].  Even a very

low ion-ion collisionality, which is typical of core plasmas in present day tokamaks,

was enough to enhance turbulence level by the reducing the amplitude of zonal flows.

The changes in the linear growth rates of ITG modes were negligible. Near and beyond

the ITG linear threshold, collisional damping of zonal flows was responsible for a non-

zero level of ion thermal transport, and thereby effectively softened the nonlinear

upshift of the ITG threshold.  Equivalently stated, the presence of collisional damping

eliminated the Dimits shift regime.  Figure 4.10 shows the turbulent transport

coefficient as a function of the ion collisionality for the parameters of   R/LT = 5.3 .  This

parameter is in the "Dimits shift" regime (i.e., practically no turbulent transport,

although the ITG is linearly unstable) for    !ii = 0 .  As the ion collision frequency

increases, the level of zonal flow is reduced, and the turbulent transport increases

concomitantly, as predicted by theoretical models.  The theory of collisional damping of

the zonal flow explains this parameter dependence well.  Note again that the linear

growth rate   !L  is essentially not influenced by the ion collision frequency, for this set



129

of parameters.  The change of the turbulence transport is not caused by a change in   !L ,

but by the damping rate of the zonal flow.  It is worth emphasizing here that the

turbulent transport coefficient often has very different dependence on global parameters,

in comparison to those of   !L .  This is a simple consequence of self-regulation – flows

damp the drift waves and collisions damp the flows, so collisions (more generally, zonal

flow damping) ultimately regulate the turbulence.  A schematic drawing of the self-

regulation is illustrated in Fig. 4.11.

It should be noted that system states are not always fixed points.  Near the

threshold, the two component system consisting of zonal flows and ambient turbulence

has exhibited a bursty cyclic behavior, with a period proportional to the zonal flow

decay time    ! "ii ! #/$ ii . It is interesting to note that this is a well-known feature of a

predator-prey type dynamical system which has been widely used in transport barrier

formation models[4.17, 4.18].  More details on the effect of collisional zonal flow

damping on ITG turbulence and transport from gyrofluid simulation with flux boundary

conditions were recently reported [4.19].  In this study, the authors reported that the

increase in the zonal flow    E! B  shearing rate is responsible for the increase in the

energy confinement as one decreases the collisionality. It is worthwhile to note that this

simulation confirms that the transport reduction occurred via the reduction in fluctuation

amplitude, via the shearing mechanism we discussed in detail in Sec (3.6).

We note that a theory [3.133] suggesting that most transport reduction due to

   E! B  shear flow comes from the change in phase relation between  the fluctuating

radial velocity (transporter) and the quantity which is transported (transportee) has been

proposed.  Significant theoretical disagreements have emerged concerning this claim

[3.134, 4.20]. Indeed, simulations in Ref. [4.19] show that the change in the cross-phase

was negligible while transport varied significantly.  An example is quoted in Fig. 4.12.

The same conclusion can also be drawn [4.21] from the proportionality between

transport and fluctuation intensity during the bursting phase observed in Ref. [2.49].

Thus, indications at present favour amplitude reduction as the primary mechanism for

transport quenching.
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Nonadiabatic electron response (which depends on collisionality) can also

change the linear drive of ITG instability.  Thus, it is of practical interest to address how

the electron-ion collisions can modify transport near marginality i.e., in the Dimits-shift

regime via their effect on electrons.  From continuum gyrokinetic simulations in flux-

tube geometry [4.22], results indicated that the nonlinear upshift of the ITG threshold

decreases as the electron-ion collsionality decreases, and the nonadiabatic electron

contribution to the linear drive increases. At higher collsionality, nonadiabatic electron

effects get weaker, and a significant nonlinear up-shift occurs, as predicted by ITG

simulation with adiabatic electron response.  The concomitant increase in turbulence

and zonal flow amplitudes due to growth enhancement from trapped electrons can be

sufficient to drive the zonal flows into a strongly nonlinear regime, where collisionless

(nonlinear) flow damping significantly exceeds the now familiar collisional damping,

thus breaking the scaling of fluctuation intensity with collisionality.  Indeed, some hints

of a robust nonlinear saturation process for zonal flow were observed in a recent global

PIC simulation of collisionless trapped electron mode (CTEM) turbulence [4.23].  The

influence of non-adiabatic response of electrons is also illustrated in Fig. 4.13.  Two

cases, without and with, are compared.  The two-dimensional power spectrum of the

flux-surface-averaged  electrostatic potential for electrostatic adiabatic electron

turbulence is shown. The zonal flow spectrum is narrowly peaked about   ! " 0 , together

with the peak at the GAM frequency.  The spectrum for electromagnetic kinetic electron

turbulence shows a more turbulent zonal flow spectrum.  In the presence of

nonadiabatic response of electrons, the power spectrum of the zonal flow component

becomes wider [4.23].  Thus, seemingly paradoxically, collisionless electron effects can

alter the collisionality scaling of drift wave turbulence.  Of course, for larger   !ee , the

nonadiabatic electron response decreases, thus restoring collisionality dependence via

the zonal flow damping.

Some global simulations have suggested there is an interesting link between

zonal flows and ‘non-locality’ phenomena in drift or ITG turbulence.  ‘Non-local

phenomena’ is a catch-all which generically includes mesoscale dynamics associated
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with avalanches, turbulence spreading, etc.  Of particular note here is turbulence

spreading [4.24, 4.25], and the mesoscale patterns which form in drift-zonal flow

systems.  Figure 4.14 shows a spatially inhomogeneous, and in fact highly corrugated

and structured, pattern of turbulence level intensity and zonal flow radial electric field.

Simply put, the turbulence level is large in the  Er  trough and relatively small in regions

of strong  Er  shear.  Such a pattern quite likely was formed by a process where by: i)  a

finite region of instability produced growing fluctuations, ii) these fluctuations naturally

drove zonal flow (with preferred radial wave length) growth, implying a concomitant

decrease in their intensity levels, and the formation of fluctuation intensity gradients,

iii) the steepened intensity gradient in turn stimulated turbulence spreading via the

spatial scattering associated with nonlinear mode coupling, iv)  the subsequent growth

of the zonal flows, following the spreading turbulence.  The corrugated fluctuation

intensity profile may be thought of as a “turbulence suppression wave”, which is at first

propagating, and later standing.  Of course, some additional physics is necessary to

explain the apparent quenching of turbulence at  Er  maxima.   For this, zonal flow

curvature effects on turbulence (which is explained in §3.4.6) are likely candidates .

Flow curvature can squeeze or dilate fluctuation wave structures, and thus has an effect

which is sign-dependent.

Tertiary instabilities have been discussed in DNS results by a number of authors.

For instance, the growth rate of the tertiary instability for an observed zonal flow

structure has been reported in [2.51] and is reproduced in Fig.4.15.  The simulation has

suggested the possibility that the growth of the zonal flow is quenched by the onset of

the tertiary instability.  (A similar argument was advanced by [4.27] in the case of

ETG.)

Most simulations mentioned above have used the conventional nonlinear

gyrokinetic equation [4.2], which ignores the velocity space nonlinearity.  The latter is

formally smaller than the    E! B  nonlinearity. It is commonly believed that this

omission of velocity space nonlinearity does not cause a serious problem, if one focuses

on practically oriented issues, such as the comparisons of the linear growth rates,
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turbulence and transport levels in the post nonlinear saturation phase, etc. However, the

conventional nonlinear gyrokinetic equation fails to obey the fundamental conservation

laws, such as energy (of particles and fluctuation fields), and phase space volume, at a

non-trivial order.  For longer times, well after the initial nonlinear saturation of

turbulence, even very small errors in the governing equation can accumulate in time,

regardless of computational method, and muddy the physics predictions. A recent

simulation [4.26] in cylindrical geometry used a fully nonlinear energy conserving and

phase space conserving form of the nonlinear gyrokinetic equation [4.4]. The

importance of using governing equations with proper conservation laws is demonstrated

in this series of simulations, with and without velocity space nonlinearity.  The authors

reported that neglecting velocity space nonlinearity in an ITG simulation resulted in

undesirable consequences. The energy was no longer conserved between particles and

fluctuating fields, and a precious indicator of the quality of numerical integration was

lost. The zonal flow pattern and the radial heat transport pattern were affected as well.
It is worthwhile to note that velocity space nonlinearity of electrons has been considered in the context of the electron
drift kinetic equation for the drift wave problem in a sheared slab geometry [4.28].  See also
extended description in [1.2] on velocity space nonlinearities and related phenomena [4.28-4.38].  In this regard, it
should be appreciated that, it is not computationally straightforward to reproduce the collisionless limit by the present
simulation schemes.  In the case of large ion temperature gradient, strong turbulent transport is predicted even in the
collisionless limit, as is illustrated in Fig.4.5.  Under this condition, Vlasov plasma simulation is performed with a
sufficient, and an asymptotic limit is shown to reproduce the collisionless limit, as is demonstrated in Fig.4.16.

4.3. Electron Temperature Gradient Driven Turbulence

Electron temperature gradient driven (ETG) turbulence is considered to be one

the candidates for causing anomalous electron thermal transport. Since it produces little

ion thermal transport and particle transport, its possible existence cannot be easily ruled

out by a variety of experimental observations on different transport channels.

Fluctuations with wavelengths and frequencies as predicted by ETG theory have not

been fully observed to date (except that the observed short-wave length fluctuations on

TFTR by Wong et al.[4.34, 4.35] has a possibility of being the ETG or current-diffusive

ballooning mode [3.79]).  There are plans to measure such short-wave-length

fluctuations in NSTX [4.36], DIII-D [4.37], and C-Mod [4.38].  ETG is almost

isomorphic to ITG in the electrostatic limit, with the role of electrons and ions reversed.
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If this isomorphism were perfect, ETG turbulence at electron gyroradius (    ! " e ) scale

would produce electron thermal transport    ! e
ETG " me/mi ! i

ITG  which is too small to

be relevant to tokamak plasma experiment. Here,    ! i
ITG  is ion thermal transport

expected from the electrostatic ITG at the ion gyroradius scale.  A more detailed

explanation for the isomorphism between ITG and ETG is given in the Appendix C.

This isomorphism is broken if one considers zonal flows in the nonlinear regime or

Debye shielding effects [2.52]. As stated in the preceding section, for ITG turbulence, a

proper electron response with    !ne/n 0 = e " – " /Te , was essential to obtaining an

enhanced zonal flow amplitude[4.13]. On the other hand, for ETG turbulence, the ion

dynamics asymptotes to a pure adiabatic response    !ni/n0 = – e"/Ti , as it is

unmagnetized for    k!" i >> 1 .  Equivalently, both ETG mode and ETG-driven zonal

flows have adiabatic ions.  For this pure adiabatic ion response, the role of the zonal

flow in regulating turbulence was expected to be weaker than that for ITG turbulence.

This is a consequence of the fact that the adiabatic ion response effectively increases

the zonal flow inertia.  For this case, flux-tube gyrokinetic continuum simulations

suggest that radially elongated streamers can be generated and might enhance electron

thermal transport significantly [4.39].  At present, there exists significant qualitative

differences in ETG simulation results regarding the level of transport produced by ETG

turbulence [4.40-4.42].

It has been reported [4.39] that transport is reduced significantly for negative

or small magnetic shear and large Shafranov shift. See also [4.43-4.45].  Global

gyrokinetic particle [2.52] and global gyrofluid [4.41] simulations in a sheared slab

geometry near   qmin , found that transport is substantially reduced in finite magnetic

shear regions regardless of its sign, as compared to the region near the   qmin  surface.

This result is in semi-quantitative agreement with the fact that a state with zonal flows

can become unstable to KH instability, but only in the absence of the strong stabilizing

influence of magnetic shear [2.7].

An illustration of the zonal flow is reproduced here in Fig.4.17.  This case treats

the ETG turbulence in the vicinity of the radius where the magnetic shear vanishes  (i.e.,
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the 'q-minimum' surface).  It is noticeable that the zonal flows are reduced in the

vicinity of the minimum-q surface.  Away from the minimum-q surface, the zonal flow

is strongly excited.  It has also been noted [2.52] that for some tokamak plasma

parameters, the electron Debye length    !De  can be larger than the electron gyroradius

  ! e , and thus can make a quantitative difference in ETG turbulence driven zonal flows.

It is noteworthy that a gyrofluid simulation of ETG turbulence, which

completely neglecting ETG zonal flows [4.40], obtained a transport level only a factor

of 2 or 3 higher than the insignificant value expected from naive mixing-length

estimation based on ETG turbulence at the electron gyroradius scale    ! e, ML
ETG  (i.e.,

'electron gyro-Bohm scaling'). We note that in Ref. [4.39], the radial size of streamers is

comparable to the size of simulation domain, invalidating the assumptions of spatial

scale separation for flux-tube simulations, and that in Ref. [4.40], unrealistically small

system size was assumed.  More recent global gyrokinetic particle simulations, with

system size comparable to an actual experiment, show that the transport level is quite

modest (similar to the result of Ref. [4.40]) even in the presence of radially elongated

streamers [4.41].

Despite recent theoretical progress on electron zonal flow damping [3.39],

which is the electron counter-part of the ion zonal flow damping [2.40, 2.41], it appears

that understanding of zonal flow physics in ETG turbulence has not matured to the level

of understanding of that for zonal flows in ITG turbulence.

4.4. Fluid Simulations with Zonal Flows

Zonal flows have been widely studied in the geophysical and planetary fluid

mechanics community, as recently summarized in [4.46].  Zonal flow generation due to

inverse cascade has been theoretically predicted [2.2] for the Hasegawa-Mima (HM)

system [4.47] which is isomorphic to the quasi-geostrophic or Rossby wave equation

first derived by Charney [4.48, 4.49].  Zonal flow generation observed in simulations of

the HM-Rossby system as a consequence of inverse cascade is combined with the

crossover at the Rhines scale [4.50] from a dispersive-wave-dominated, weak
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turbulence regime at large scales to a strong turbulence regime at small scales[4.51].

The Rhines scale is that scale at which the fluid particle circulation frequency (i.e.,

turbulent decorrelation rate) equals the three-Rossby-wave frequency mis-match.  Thus,

the Rhines scale,   lRhines , is set by a competition between nonlinearity and dispersion

(due to polarization drift).  The Rossby dispersion relation,    ! = – "Rk yk#
– 2  (where   !R

is a coefficient to show the gradient of Coriolis force and  k y  is the wave number in the

longitudinal direction (see §5.2 for more detailed explanation), implies that for scales

longer than the Rhines scale, non-zero triad couplings require one component to have

  k y = 0 , meaning it is a zonal flow.  Thus, for   l > lRhines , the dynamically preferred

mechanism of nonlinear interaction is seen to involve zonal flow generation.  The

crucial role of the polarization nonlinearity in zonal flow generation was also

confirmed.

Following the pioneering work on the zonal flow self-generation in the

Hasegawa-Wakatani (HW) system [2.6], turbulence driven zonal flows have also been

observed in the nonlinear simulations of various fluid turbulence models [4.52-4.57].

Their radial scales were typically of the order of a fraction of the simulation domain. In

the multi-helicity case, both flows and energy transfer between flows and ambient

turbulence oscillate in radius and turbulence suppression by zonal flow was weaker.

Large coherent vortices around low-order rational surfaces were found to participate in

the generation of zonal flows [4.58].

A new issue in zonal flow physics was pointed out by Wakatani in conjunction

with the control of resistive wall mode (RWM) [4.59].  RWM stability is strongly

dependent on plasma rotation. Wakatani showed that the perturbation-driven torque

(divergence of the Reynolds-Maxwell stress) tends to decelerate the flow velocity at the

rational surface. This would be an origin of the nonlinear instability.  That is, when the

plasma rotation frequency decreases, RWM becomes more unstable because the lower

real frequency enhances the Ohmic dissipation in the resistive wall.

4.5. Edge Turbulence
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4.5.1. Outstanding Issues

While zonal flow physics is well developed in the context of drift-ITG

turbulence, appropriate to the core, a consistent quantitative picture of even the

simulation results remains elusive for the case of edge.  Several groups are currently

working on this important problem, and have published mutually exclusive results and

interpretations.  A review of this sub-topic would be premature.  (One can nevethless

mention that at edge, the relative importance of the GAM and sidebands become higher.

Figure 4.13 illustrates the co-existence of the dominant zero-frequency zonal flow and

the weak GAM oscillation of the flow intensity spectrum in a core  A different set of

edge turbulence simulation results, shown in Fig.4.18, indicates a) that the zonal

electrostatic  potential spectrum is more continuous and connects directly to the GAM

portion of the spectrum, b)  the flow spectrum in which the GAM component is almost

invisible, even on a log scale, and c) the side band (m=1) pressure perturbation, which is

showen dominant over the zero frequency component.)    Hence, we simply refer the

reader to the more detailed description in [1.2] and to the current literature [4.60-4.66].

4.6 Short summary of the correspondence between theoretical issues and

numerical results

4.6.1 Survey of correspondence

As is stressed throughout this article, the explanation of simulation studies in

this chapter does not aim for an exhaustive review of the simulation of zonal flow, but

rather strive to illuminate the understanding of zonal flow which has emerged together

with theory, and to identify to what extent the theoretical understanding has been

verified by DNS.  For this reason, the emphasis is on the ITG-ZF cases, and the

example figures are limited.  It would be useful, after listing some DNS results, to

summarize the correspondence between theoretical modelling and DNS.  Table 4.1

illustrates key issues, sections of this review, and corresponding figures from DNS.  It is

clear that the theory and simulation has cooperated to advance the understanding of drift
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wave -zonal flow systems.  Further research can be expected to improve understanding

considerably.

4.6.2 On transport coefficients

The results of global transport studies may attract broader interest, in particular

from experimentalists.  A short note is added here.

The ITG mode has been studied most intensively.  Simulation observations

include:

(a) Upshift of the critical temperature gradient for the onset of turbulent

transport [4.67-4.69]   ! c, DNS > ! c, lin  where   ! c, DNS  is the critical temperature gradient

above which turbulent transport occurs and   ! c, lin  is the linear stability boundary.  In

between two critical values,    ! c, DNS > ! i > !c, lin , turbulent transport remains very

close to zero but the zonal flow energy dominates, for weak zonal flow damping.  The

determination of the critical gradient at the onset of turbulence is a subject of current

research, and is explained in §3.5.6.

(b) Recovery of mixing levels of   !i  at higher gradient:    ! i " # i – # c, DNS
1 $ 2

as   ! i  exceeds   ! c, DNS  [4.16, 4.67-4.69], and    !i " # i – # c, DNS
0

  as    ! i >> ! c, DNS

[4.67-4.69].

A major gap in the findings from numerical simulations of the physics of drift-

ITG - zonal flow turbulence is a systematic exploration of at least the two-dimensional

parameter space of zonal flow damping (   ! damp ) and deviation from marginal stability

(i.e.,    !" i# " i – " c, lin ).  A possible 'third axis' would measure the strength of non-

adiabatic electron effects.  Even for the pure ITG case, a systematic exploration of the
   ! damp, "# i  parameter space has not been undertaken.  Such a study could help

answer many questions, such as: (i) finding the cross-over point between collisional and

collisionless saturation; (ii) understanding and elucidating the relevance of various

nonlinear saturation mechanisms for zonal flow, such as trapping, nonlinear scattering,

tertiary instability and the role of the phase between the zonal potential and zonal
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temperature [4.69]; (iii) understanding the effect of nonlinear drift wave noise on zonal

flow saturation.  The thorough completion of such a study should be a high priority for

future DNS investigations.

5. Zonal Flows in Planetary Atmospheres

This chapter presents a survey of zonal flow phenomena elsewhere in nature.

Special emphasis is placed upon the origin and dynamics of belts and zones in the

Jovian atmosphere. The physics of the Venusian super-rotation, is discussed as well.

The relationship between zonal flow generation and the magnetic dynamo problem was

already discussed in Section 3.2.6.  These considerations enter here, as well.

5.1 Waves in a Rotating Atmosphere

5.1.1 Rossby waves and drift waves

The large scale dynamics of planetary atmospheres are those of thin layers of

rapidly rotating fluids.  The close similarity between drift wave dynamics and the

dynamics of rapidly rotating fluids at low Rossby number (where the Rossby number,

 Ro , is the ratio of the vorticity or eddy turnover rate of the motion to the rotation

frequency   !F ), called geostrophic fluids, has long been appreciated [2.2].  The

interested reader is referred to [1.2] for an extended description of the analogy, and also

to [5.1, 5.2] for further discussion.  In such a regime, the fluid stream function  !

evolves according to the quasi-geostrophic equation (in the coordinates in Fig.5.1.1):

   D
Dt !"

2# –
$F, z

2

g Hm
# – 2

%$F, z
%x

%#
%y = 0 , (5.1.1)

Here, the analogue of the diamagnetic frequency is the gradient of the Coriolis

frequency    2!"F, z/! x and the analogue of the gyroradius is the Rossby radius of
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deformation    !R = g Hm /"F, z .  Hm refers to the thickness of an atmospheric

scale hight.  Rescaling according to    2 ! R "#F, z/" x – 1 t $ t ,    x/! R" x,    y/! R" y,

and    2 !"F, z/! x
– 1
#R

– 3 $ % $ , Eq. (5.1.1) then takes the form

   !
!t "#

2$ – $ + $, "#
2$ – !$

!y = 0 , (5.1.2)

where    f, g = ! f"!g # z ,

which is identical to the Hasegawa-Mima equation [2.2, 4.47, 4.49].  Since Hasegawa-

Mima systems are known to support zonal flows, it is not surprising that zonal flows are

ubiquitous in planetary atmospheres.

5.1.2  Zonal flows and the Rhines scale

Because of the similarity of the normalized equation (5.1.17) to the Hasegawa-

Mima equation in plasma dynamics, the understanding of the zonal flow generation,

Rossby wave soliton and the suppression of Rossby wave by zonal flow is readily

extended using the methods in Chapter 3.

There arises a critical wavenumber   k c , above which the nonlinear enstrophy

cascade gives a power law spectrum as    ! k
2" k – 4 . with 

   k c = !R/4 L "
1/3

, where

  k c  is normalized,  L  is the horizontal gradient scale length of    !F, z  (in the direction of

latitude) and  !  is the normalized stream function [2.2].  Below this critical

wavenumber, global structure such as zonal flow appears.  This scale, known as the

Rhines scale [4.50], may be estimated by comparing the three-wave frequency

mismatch for Rossby wave interaction with the eddy turnover rate for 2-D turbulence,

i.e. by comparing    !"MM = "k – "k# – "k##  with  kVk .  Note that for scales smaller than

  k c
– 1 , wave dynamics are effectively irrelevant, as the eddy decorrelation rate exceeds

the wave frequency.  For scales longer than the Rhines scale, the turbulence is weak, so

that the three-wave resonance condition must be satisfied.  Since    k!
2"R

2  is finite,
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dispersion makes this difficult.  Thus, three wave resonance is most easily achieved if

one mode has   k y = 0 , so that it is a zonal flow.  Note that this picture suggests, then,

that:(a) zonal flows are the ultimate repository of large scale energy of the 2D inverse

cascade in a geostrophic system, (b) geostrophic turbulence is a three component

system, composed of eddies, Rossby waves and zonal flows.  The significance of the

Rhines length for determining the scale of zonal flow excitation is nicely illustrated in

[4.51].  Application to the giant planets, Jupiter and Saturn, has been discussed by

Hasegawa [5.3] and many other authors.

The nonlinearity becomes important if the normalized amplitude of vorticity

  !2"  becomes unity.  This is the case if the flow velocity reaches the level (in the case

of the earth, where
 

   V ! " R
2 #$F, z/# x ! 50 m sec– 1

 
for the horizontal scale length

   k y! "R
– 1 ! 10– 6 m– 1 .  The azimuthal mode number (i.e., corresponding to the

poloidal mode number) is then in the range of a few to ten.

5.2 Zonal Belts of Jupiter

One cannot have heard about or contemplate the topic of zonal flows without the

vivid image of the belts of Jupiter coming to mind, at least for an instant. While several

of the giant planets exhibit zonal flows in their atmospheres, we focus the discussion on

the case of Jupiter, in the interests of brevity.

The planet Jupiter consists primarily of a fluid molecular hydrogen, with a solid

core of metallic hydrogen. It is enormous, with an equatorial radius of   7.14! 104km

and rotates quite rapidly, so that 1 Jovian day lasts only 9.9 hours. The core of the

planet is also very hot, so that the gas envelope is convectively unstable. Thus, the

atmosphere is quite dynamic and turbulent.  The rich variety of visible structures we

normally tend to associate with the Jovian atmosphere, such as zonal belts, the Great

Red Spot vortex, Kelvin-Helmholtz billows, etc., all live in the weather layer, a thin

two-dimensional (spherical) surface layer which is stably stratified, and thus acts as a

'rigid lid' on the convectively unstable interior. Thus, the phenomena of the weather

layer are the visible projections of the dynamics of the cloud tops, in turn driven by the
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convective dynamics of the planetary interior, which are hidden from view. In this

respect, the situation resembles that of solar physics before the advent of

helioseismology, when researchers were forced to deduce aspects of the convection

zone dynamics by watching their photospheric manifestations, or that in radar

surveillance of ocean dynamics, where one attempts to uncover the structure of ocean

internal waves and currents by studying their modulations of the surface wave field.

The turbulence of Jupiter is driven by thermal buoyancy, and is strongly affected

by rotation, so that the Rossby number  Ro  is exceedingly low (i.e.,    Ro! "/"F << 1 ,

where   !F  is the planetary rotation rote and  !  is the vorticity of the fluid motion).

Thus, the Taylor-Proudman theorem applies. This theorem  states that in the presence of

strong rotation, fluid flow tends to form columnar cells (i.e. "Proudman Pillars") aligned

with the axis of rotation, so as to minimize the energy expended on the bending of

vortex lines. In case of Jupiter, the cells in the interior are Taylor columns aligned with

the axis of rotation of the planet. As shown in Figure 5.2.1, the lower boundary

condition on the columnar motion is the no-slip condition, applied at the surface of the

metallic hydrogen core. This, of course, implies an Ekman layer must connect the rigid

surface to the rotating columns. The upper boundary condition is   vz = 0 .at the weather

layer, consistent with the 'rigid lid' imposed by the stable stratification there. (Figure

5.2.1)  The basic characteristics and turbulence physics of the Jovian atmosphere are

summarized in Table 5.2.1.

The dominant role of rotation in the dynamics of the Jovian atmosphere,

together with the rigid lid and no-slip boundary conditions, imply that the evolution

may be described using a two-dimensional thermal Rossby wave model, which evolves

the fluid potential vorticity and the potential temperature along trajectories determined

by geostrophic velocities. In this model, which is structurally similar to the curvature-

driven ITG turbulence model, the free energy source is the temperature gradient,

released by buoyancy drive. A critical value of the Rayleigh number    Ra, crit ! O 104

[4.46] must be achieved for instability. Finite frequency, which enters via the

diamagnetic frequency in the case of plasmas, appears here via  !-effect, i.e. the gradient
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in the Coriolis frequency. For significant deviations from the critical Rayleigh number

a,critR , large transport will result.  The Jovian atmosphere is quite strongly turbulent

and the effective Reynolds number of the weather layer is high.  This is in sharp

contrast to the case of a tokamak plasma, where the effective Reynolds number is low,

i.e.,    Re ! 10 – 100 , at most, and the turbulence is more akin to wave turbulence than

strong hydrodynamic turbulence.

Given this situation where the essential core dynamics are obscured by cloud

cover, it is not surprising that (at least) two schools of thought on the origin of zonal

belts have arisen. These are

i) a secondary bifurcation approach (coherent), developed by Busse and his

collaborators [4.46] and extended by several other authors [5.5-5.13]. This scenario

accounts for the appearance of zones via the coherent modulational instability of an

array of convection cells.

ii) the inverse cascade scenario (turbulent) , developed by Hasegawa [5.3] and

by Marcus and collaborators [5.4], which builds, in part, on the ideas of Rhines. This

approach seeks to explain the appearance of zonal belts via an inverse energy 

cascade in  ! -plane turbulence, which is forced stochastically by the planetary

atmosphere.  Thus, 2D turbulence is forced by rising plumes, which randomly impinge

on the weather layer, thus energizing its motions.

Here, we briefly discuss the essential features of both approaches. The

assumptions and logic of the two scenarios are summarized in Fig. 5.2.2. The key

elements of Jovian zonal flow physics are listed in Table 5.2.2, which includes a

comparison to corresponding aspects of tokamak zonal flow physics.

Figure 5.2.1 encapsulates the quasi-coherent, secondary bifurcation scenario.

The idea here is that a modulational (or 'tilting') instability occurs in the array of Taylor

columnar vortices. The tilting instability is an extension of that originally analyzed by

Howard and Krishnamurti, and subsequently studied by many others.  As a

consequence, the cellular 'footprints' of these columns on the weather layer also undergo

tilting instability, thus tending to amplify zonal shears and cause the development of
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belts. In this scenario, the number of zones is determined by the number of unstable

columnar cells which 'fit' into the fluid interior region of the atmosphere. At high

latitudes, near the polar regions, granules rather than belts are expected, since the

columnar cells sense both the no-slip lower boundary condition at the surface of the

metallic hydrogen layer, as well as the rigid lid boundary condition at the weather layer.

Thus, belts are limited to lower latitudes, where both 'ends' of the Proudman pillar

pierce the weather layer. This is consistent with observations of the Jovian atmosphere.

It is interesting to note that, as  Ra  is increased, the bifurcation sequence closely

resembles that familiar from the formation of the transport barrier. As shown in Figure

5.2.3, starting from   Ra, crit , thermal transport (as quantified by the Nusselt number  Nu )

increases with  Ra . At a second critical Rayleigh number called   Ra, bif , generation of

secondary flows begins.  This generation is accompanied by an alteration of the

convection pattern structure, in that cells are tilted, sheared and distorted by the zonal

flows. As  Ra  increases beyond   Ra, bif , the Nusselt number decreases with increasing

 Ra , while the zonal flow energy increases, symptomatic of heat transport suppression

and the increased channeling of free energy into zonal flows, rather than convection

cells.   At higher values of  Ra , tertiary bifurcations, vacillations, cyclic phenomena, etc.

are predicted to appear, as well [4.46, 5.5, 5.6, 5.7]. This is shown in Figure 5.2.3. Not

surprisingly for this scenario, the mean zonal flow pattern exhibits north-south

symmetry, modulo some correction for the effects of the great Red Spot, which appears

in the southern hemisphere.  In the Busse scenario, the scale of zonal bands is set by the

eigenvalue for secondary bifurcation, implying a band scale which is set by some

fraction of the box size.

The second scenario is that of an inverse cascade on a  ! -plane, as proposed by

Marcus, building upon the ideas of Rhines. In this scenario, rising plumes from the

convection zone constitute a source of forcing for the 2D inverse cascade on a  ! -plane.

The forcing term is proportional to    !F"Vz/"z , where    !Vz/!z  is necessarily large in the

weather layer, on account of the stable stratification there. On forcing scales, the

nonlinearity is strong, so an inverse cascade develops toward large scales, with
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Kolmogorov spectrum    E k ! k– 5/3 . Anisotropy develops as a consequence of  ! , via

an extension of the mechanism of Rhines. The Rhines mechanism is based on the

observation that on a   ! -plane the eddies have a finite frequency, corresponding to the

Rossby wave frequency    ! ="k xk#
– 2 .  At low  k , such waves are strongly dispersive, so

that triad interaction is severally inhibited, expect for domains with   k x= 0 . The

preference of nonlinear interaction for such states of high symmetry explains the

tendency to form zonal bands.  Note that the Rhines length effectively defines the scale

size on which enstrophy enters.  The onset of such band formation occurs at large scales

when the eddy turn over rate drops to the level of the wave frequency, i.e.    kV=!k xk"
– 2 ,

so that the 'Rhines scale', which demarks the onset of zonal structure, is    V/! 1/2
.  The

inverse cascade is, in turn, damped by scale independent Rayleigh friction, associated

with Ekman damping, etc. Not surprisingly, the frictional damping plays a crucial role

in the model, as the Rosenbluth-Hinton scale-independent friction term does in the

plasma zonal flow problem. Marcus, et al. emphasize that three conditions are necessary

for zonal flow formation, in addition to rapid rotation, convective instability and large

   !Vz/!z  in the weather layer, which we have already established.  These are that the size

of the vorticity advection nonlinearity must

(a) exceed the frictional damping on the forcing scale. Otherwise, energy cannot couple

to the Rhines scale and thus anisotropy cannot develop.

(b) exceed the strength of the  ! -effect, i.e.,    k y!"F/!x  on forcing scales.  Otherwise,

energy will be coupled to Rossby waves, rather than zonal flows.  Of course, a spectrum

of Rossby waves can be unstable too, and thus amplify zonal perturbations, as discussed

in this article.  The implications of this secondary mechanism have not been addressed

by Marcus, et al.

(c) exceed the viscous damping.  Otherwise, energy will be dissipated so that structure

formation will not be possible.

In the Marcus scenario, the number of bands is determined via energy balance

by the system parameters, such as the forcing strength (related to the heat flux), the

frictional damping, etc.  In addition, tertiary Kelvin-Helmholtz instability may enter the
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determination of the band structure by limiting the strength of zonal vorticity.  While

Marcus and collaborators have assembled good computational arguments that large

scale structure formation will occur if criteria (a)-(c) (above) are satisfied, further

research is necessary to clarify the issues related to the details of pattern selection, such

as band scale, number of bands, etc.

Predictably, work subsequent (i.e. [5.9, 5.10, 5.11]) to the initial efforts of

Busse, et al. and Marcus, et al. paints a picture of zonal flow phenomena which

combines aspects of both outlooks.  Of particular note is a recent paper by Jones, et al.

[5.9], which builds upon and extends earlier studies by Brummell and Hart [5.10] and

Christensen [5.11].  In particular, Jones, et al. emphasize the importance of scale-

independent frictional drag, which is isomorphic in structure to Rosenbluth-Hinton

collisional damping but originates in the friction between the Proudman pillars and the

weather layer and inner core.  Such friction appears to play a key role in setting the

number of zonal bands in the system, for a given set of parameters.  The width of an

individual band, however, is close that of the Rhines scale, and exhibits a similar

parameter scaling.  This is somewhat interesting in that the other results of Jones, et al.

appear consistent with the secondary bifurcation scenario of Busse, yet the band scale

size is set by the competition between nonlinearity and dispersion, as predicted by

Rhines and Marcus.  In Busse's scenario, the zone scale is set by the box size.  Finally,

Jones, et al. report the appearance of cycles or "bursty phenomena", which are very

similar to the corresponding cyclic system states discussed in Chapter 3.  As before,

here the cycles consists of alternating intervals of instability growth followed by

quenching by the shearing action of the zonal flows.  The scale-independent damping

sets the duration of the interval between the maximum of the zonal flow shear and the

return of buoyance-driven turbulence, as does the Rosenbluth-Hinton friction in the case

of ITG-turbulence.

A related line of work in the geophysical fluid dynamics community is

concerned with 3D studies of convection driven dynamos in systems bounded by

rapidly rotating spheres (i.e. for example [5.12, 5.13]).  In this case, several interesting
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phenomena appear.  First, zonal magnetic fields, as discussed in Chapter 3, can be

generated and are observed.  Second, both mean field    J ! B  forces and turbulent

magnetic stresses can react back on the fluid flow, causing a quench or termination of

the shear amplification process.  This reduction in shearing effects in turn leads to an

increase in heat transport and, in some cases, an increase in dynamo activity.  The latter

occurs when the 'gain' due to enhanced convective turbulence levels outweighs the 'loss'

of the Ω-effect (i.e. shear amplification of magnetic fields).  Moreover, cyclic dynamo

and zonal field evolution are observed.  Ongoing work here is focused on the

exploration of extremes of the possible regimes of Prandtl and magnetic Prandtl

number.

5.3 Superrotation of the Venusian Atmosphere

Another interesting mystery in the dynamics of planetary atmosphere is the

superrotation of Venus [5.14, 5.15].  By "superrotation", we mean a fast zonal flow with

an azimuthal speed in excess of the rotation velocity of the planet itself!  Indeed,

Venusian winds can reach 100 m/sec at altitudes of 60-70 km, which is about 60 times

faster than the speed of the planet.  This remarkable observation naturally suggests that

the planetary wind results from some processes of self-organization of thermally driven

convective flow in the Venusian atmosphere, which is similar to the mechanism of

zonal flow generation.

The key questions pertinent to the generation of zonal flows in the atmosphere

of the Venus are:(a) What is the mechanism of symmetry breaking which seeds zonal

flow generation ?  (b) What are the implications of 3D geometry?  In this regard, note

that the Venusian atmosphere is not thin.

Regarding (a), the conventional wisdom is that superrotation results from a

tilting instability, the initial symmetry breaking for which results from the motion of the

solar heating.  This is called the "moving flame mechanism".  Another possibility for

symmetry breaking is convection driven flows between day and night sides of the planet

(i.e. thermal winds [5.16].  Other mechanisms involve thermal tidal pumping [5.8] and
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Hadley circulation pumping mechanism [5.17], which involves a horizontal eddy

viscosity.  Regarding (b), recent results [5.18] indicate that the moving flame

mechanism is viable in 2D (though the cell-temperature perturbation is a critical

element of the dynamics, contrary to initial expectations), but fails in 3D, since the basic

flow is stable in spherical geometry [5.6].  Thus, attention is shifting to the tidal

pumping and Hadley mechanisms.  Clearly, much further research is necessary in order

to understand the superrotation of the Venusian atmosphere.

6.  Extensions of Theoretical Models

To supplement the theory of zonal flows explained in Chapter 3, some advanced

extensions are described in this chapter.  The first topic is the streamer, which has a lot

of similarity to the zonal flow but can have a quite different influence on the drift wave

turbulence and transport.  The second issue is the statistical nature of the zonal flow.

While the mean field instability growth associated with the negative viscosity effect,

explained in Chapter 3, is essential to the dynamics of zonal flow, noise can be

important, as well.  Thus, the PDF for the dynamical quantities in the system of drift

wave-zonal flow can have non-Gaussian properties, and the noise can have great

influence on some global parameters of interest (e.g., heat flux, transition boundary,

etc.). The third is the non-Markovian nature of the system dynamics.  These issues

belong in the realm of advanced research on the zonal flow, and are discussed briefly in

this chapter.  Finally, a method of theoretical analysis of the zonal flow (based on

reductive perturbation theory), which is complementary to the one explained in Chapter

3, is briefly addressed.  An extended description on related development (including

streamers [6.1-6.8]) is given in [1.2].

6.1 Noise Effects and Probabilistic Formulations

Background turbulence that induces zonal flow has a short correlation time, so

that the driving force for zonal flow has a component that rapidly changes in time.  The
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driving force by turbulence, on the average, acts to cause the growth of the zonal flow

as is explained in Chapter 3.  In addition to the 'negative viscosity effect', which drives

zonal flow growth, there is noise excitation of zonal flow scales due to incoherent

emission from drift waves [2.11, 2.40, 2.41, 2.46, 6.10].

A systematic description of the statistical average and the noise has been given

in the literature [2.46, 6.10].  A calculation using the eddy-damped-quasi-normal-

Markovian (EDQNM) approach has been discussed in detail in [6.10].  By use of the

action of drift waves  Nk  and the enstrophy of zonal flows  Zq , a set of balance

equations for the system dynamics has been derived.  Detailed calculation is left to the

references, but the noise term is explained here.  For long wavelength evolution, one

finds

   !
!t Zq = 2 " qZq + Zq

noise (6.1.1)

where   ! q  is the growth rate of the zonal flow.  Note that a stationary solution is

possible only when    !q < 0 , which requires confrontation of the problem of nonlinear

saturation of zonal flows.  Here   Zq
noise  is the long time average magnitude of the mean

square of the noise term, i.e.,

   
Zq

noise = q4 k y
2k x

2

1 + k!
2 4 Re "q, k, – k Nk

2#q . (6.1.2)

where    !k, – k , q  is the triad interaction time of three waves [2.11, 6.10].   In this

expression,   ! q  must include the effect of nonlinear stabilization, so that   ! q  may be

negative at finite amplitude, which is necessary for any (meaningful) stationary state.

By use of such a balance equation, the role of noise pumping has been analyzed [2.46].

The possibility of bifurcation has been pointed out.  Obtaining and understanding such a

  ! q  is a subject for on-going research, and the full solution of this problem is left to

future studies.
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6.2 Statistical properties

It is well known that a statistical approach is needed to treat the probability

density function .  [2.14, 6.11, 6.12]  In order to clarify the implications of statistical

theory on the understanding of the relevant phenomena, it is useful to consider models

which discuss low dimensional systems.  One may write a Langevin equation to study

the statistical property of the quantity  X  which is the subject of interest:

    !
!" X + # 0 X + # 1 X w 1 " X = w 0 " g . (6.2.1)

In this equation  !  is the (nonlinear) damping rate, which can be nonlinear and which

can contain multiplicative noise    w 1 ! ,  g  is the magnitude of the noise source and

   w 0 !  represents the noise.  [It is not necessary to specify the RHS of Eq.(6.2.1) as

Gaussian white noise.  What is necessary is that the autocorrelation time of the noise

must be much shorter than the relevant time scale   !– 1 .]

Non-Gaussianity of the probability density function (PDF) is caused either by

the nonlinearity in the damping rate  ! , or by the dependence of the noise source  g  on

the quantity  X , or by multiplicative noise entering via the damping rate.  An example of

a problem involving multiplicative noise is zonal flow growth in the presence of

avalanches.  This scenario is a simple example, then, of multiplicative noise.  Note that

multiplicative noise necessarily changes the structure of the Fokker-Planck equation, so

that the PDF is, in general, non-Gaussian.

There have been some basic studies of the effect of noise on bifurcation

transitions and transport barrier formation [2.4], but in general, the theory of zonal flow

and transport barrier dynamics with noise remains terra nova.  Note that the interplay of

avalanches with zonal flows and barriers gives another perspective on the problem of

interplay of zonal flows and streamers, discussed previously.
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6.2.1 Instantons

It has been known that the large amplitude drift wave takes a form of 'modon'.

[6.13, 6.14]   Modon solutions can be used a basis for a theory of instantons in drift

wave turbulence.  Instantons are temporally localized solutions which correspond to

trajectories of least action.  Instanton solutions are those of steepest descent, and so

dominate the time-asymptotic PDF.  They thus serve as tractable models of

intermittency phenomena.

Schematically speaking, nonlinear drift waves have an 'anti-shielding effect',

which corresponds to vortex coalescence.  (An explicit illustration by direct numerical

simulation is seen in [4.50].)  A longer life-time is expected for a larger-amplitude

modon, so that a stretched, non-Gaussian PDF is obtained [2.53, 6.15, 6.16].  The PDF

of the local Reynolds stress  R  was then obtained from the fluctuation PDF.  The

Reynolds stress PDF   P R  was found to be of the form:

    P R ! exp – C
" R 3/2 (6.2.2)

where  !  is the mean-square noise forcing, and  C  stands for a normalization coefficient

that includes the effect of the spatial shape of the modon.  In this case, an exponential

tail is obtained.  In addition, as the external forcing becomes larger, the tail extends to

larger value of  R . The divergence of  R  is the torque that drives plasma flow. This

result suggests that the noise source for the zonal flow, which has been discussed in

previous sections, is given by a non-Gaussian distribution.  Further research in this

direction is needed.

6.2.2 Nonlinearity in noise

In the renormalization model for drift waves, the noise related to  g  is a function

of the amplitude of the turbulence [2.14, 3.125, 3.126, 6.5, 6.12, 6.17-6.19].  This gives

small but finite power-law tails in the study of multiple-scale turbulence and

bifurcation.  The presence of non-Gaussian tails suggests that large-scale but rare events
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could play a dominant role in determining the average.  A detailed calculation of the

turbulent noise has been developed in [6.20] and has been applied to the case of zonal

flow excitation[2.47, 6.10].

The role of turbulent noise is particularly important when one studies subcritical

bifurcation.  A dynamical model for a relevant, reduced degree of freedom has been

developed for the L-H transition [6.21].  A Langevin equation for the radial electric

field in the plasma edge    X = e!pEr/T  is derived.  The damping term in (6.2.1) is given

as     ! X = 1 + 2q2 – 1 qR/"secsni Jr, where  Jr  is the normalized current.  As has been

discussed in a model of the L-H transition, the deterministic equation for steady state

thus becomes    !X = 0  with multiple solutions for  X .  The noise amplitude  g  is

dependent on  X , so we have a case of nonlinear noise.  The stationary solution for the

PDF of  X ,   Peq X , may be expressed as    Peq X ! g– 1 exp – S X  by use of the

nonlinear potential 
   S X = 4! X " g X" – 2

X " d X"
X

.  The minimum of  S X  (apart

from a correction of order   ln g ) predicts the most probable state of X.  The phase

boundary is

   S XH = S XL + 1
2 ln ! L/!H . (6.2.3)

where    ! L, H = 2 X"! X/"X  at    X = XL, H .  This is an extension of the Maxwell

construction rule in the thermodynamics.  The statistical average of the gradient-flux

relation   Qr p!  is derived.  The transition rate from one metastable state to a more

stable state is calculated by use of the nonlinear potential [6.22], in a manner similar to

the Kramers barrier transition calculation [6.23].  Statistical averages determine the

boundary of the phase [6.24].

Related topics include Self-Organized Criticality (SOC) models [6.25-6.34] and

observations of avalanche phenomena in DNS [3.98, 6.35-6.38], for which ref.[1.2]

provides supplementary explanations.
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6.3 Non-Markovian Theory

The nonlinear analysis explained in §3 was presented in simplified limits.  One

is the limit where the turbulent decorrelation of drift waves is absent, that is, a drift

wavepacket has two integrals of motion.  As a consequence, drift wavepackets are

considered to move on a surface in phase space set by the initial conditions.  These

BGK-type solutions are addressed.  The other is the limit in which the turbulent

decorrelation of drift waves is so fast that the Markovian approximation is used to

model nonlinear interactions.  In general, the nonlinear decorrelation time of drift waves

is not zero, even though it may be short.  Non-Markovian theory is necessary to treat the

intermediate cases [6.38].  Recent advances in this direction are discussed in this

section.

6.3.1 Hamiltonian structure of the dynamics

The conservation property of drift waves in the presence of zonal flow is

expressed by the invariance of the action along rays, e.g., Eq.(3.4.7).

The action concervation equation is a Hamiltonian equation for the wavepacket

density.  In order to consider this statistical dynamics property, the response of

wavepackets in the presence of the zonal flow described is reduced perturbatively.  One

writes     N x; k , t = N x; k, t + N x; k, t , where    N x; k, t  is an average over

temporal variations with respect to zonal flows, and    N x; k , t  denotes the deviation.

The dynamical equation for    N x; k, t  is an example of a Zwanzig-Mori equation.

For a intermediate scale zonal flow,   k >> Kr >> Ln
– 1 , a non-Markovian phase-space

kinetic equation of the form is obtained:

     !
!t N x; k, t – Lw, 0 N x; k, t =

     
dt! "

"x # D XX t – t! # "
"x + "

"x #D XK t – t! # "
"k N x; k, t!

0

t

+

     
dt! "

"k #DKX t – t! # "
"x + "

"k #D KK t – t! # "
"k N x; k, t!

0

t

,    (6.3.1)
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where   D XX ,   D XK ,   DKX  and   DKK  are 2x2 tensors, given by

     D i, j
X X t – t! = VZF, i x, t VZF, j x t|t! , t! , (6.3.12a)

     
D i, j

XK t – t! = VZF, i x, t WZF, j x t|t! , k t|t! , t! , (6.3.12b)

where   DKX  and   DKK  are given by replacing   VZF  and   WZF accordingly,

   WZF = – !
!x k " VZF , and   i, j stand for the  x  and  y  directions.  (The tensor form is

necessary if one considers poloidal inhomogeneity, as is discussed in §3.3.4 or §6.1.)  If

the Markovian approximation is now employed, one finds 
    D i, j
!" = dt# D i, j

!" t – t#
t

,

where   !, "  vary over   X, K .  The two quantities   Dx,x
XX  and   Dy,y

KK  reduce to what has

been previously obtained in the limit of short life time of the drift waves.

Equation (6.3.1) describes the evolution of drift waves in the presence of a

statistical ensemble zonal flows.  First, it is a non-Markovian equation, and includes the

finite memory time.  Second, this equation includes cross interaction between the

wavenumber space and the real space.  Note that the cross-interaction terms are also

derived in the diffusion approximation.  As a noticeable consequence of the non-

Markovian effect, [6.38] illustrated super-diffusion and sub-diffusion phenomena in the

transient response.  (The cross-interaction term is small for the pure zonal flow case.)

The Kubo number  K  may be defined as the ratio of the decorrelation time of

drift waves to the bounce frequency of wavepackets in the trough of the zonal flow,

   K =!bounce/" drift .  The analyses in §3.5.4, 3.5.5, and 3.5.7 are developed for   K < 1 ,

while that in §3.5.6 is given for the limit    K ! " .  (For the details of the bounce

frequency, see §3.5.6.)  Equation (6.3.1) allows a study that covers a wide range of the

Kubo number.  Evaluations of the Lagrangian correlations in the RHS of Eq.(6.3.2)

have been studied by using of the method of decorrelation trajectories [6.39-6.41].

Analysis of these effects has begun [3.118].  One important fact is that the poloidal
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wavenumber of drift waves  k y  is no longer constant when the    E! B  flow exhibits the

poloidal asymmetry.  This is in contrast to the case of stationary and purely   m = 0  zonal

flow.  The transparency of the analysis which was brought by the introduction of the

wave kinetic equation could be maintained by introducing Casimir invariants for the

Hamiltonian dynamics with multiple fields [6.42].  New insights will be given by future

research.

6.4 Envelope Formalism

            The zonal flow problem belongs to the class of problems concerned with

understanding interactions in multi-component systems, with each component having its

own range of characteristic space-time scales.  So far, we have discussed two

approaches to the multi-scale interaction problem.  The first uses parametric

(modulational) theory, and is based on a modal interaction expansion.  The second is

wave kinetics and adiabatic theory, and is based on a description employing rays and

eikonal theory.  A third multi-scale expansion approach exists, and is commonly

referred to as the envelope formalism.  This section is devoted to describing the

envelope formalism approach to the zonal flow problem.

The envelope formalism uses reductive perturbation theory to develop a

description in terms of the dispersion relation of a rapidly varying carrier wave

(associated with the primary perturbation) and the amplitude of a slowly varying

intensity envelope, associated with the mean field.  The envelope evolves slowly in

space and time, as compared to the carrier.  The envelope formalism complements the

parametric and wave kinetic approach in that:

(a) it is not restricted by the structure inherent to a modal expansion, and thus

can represent a wider and richer class of nonlinear phenomena (i.e., solitons, collapse,

etc.) than simple parametric theory can.

(b) it is not restricted to an eikonal description, and so can capture the physics

of the competition between diffraction and nonlinearity, unlike wave kinetics.
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Anticipated by Landau, the rigorous envelope formalism was pioneered by

Newell and Whitehead [2.33] in 1969, with the aim of describing secondary pattern

formation slightly above marginality in Rayleigh-Benard convection.  The most notable

application of the envelope formalism in plasma physics is to the classic problem of

Langmuir turbulence and Langmuir collapse, as studied by Zakharov in 1972 [3.47].  It

is worth mentioning here that the Zakharov equations are the coupled envelope

equations for the amplitudes of the electric field  E  and density perturbation  n  in

Langmuir turbulence, i.e.,

    – 2i!pe
"
"t E = n E – #vThe

2 $2E , (6.4.1a)

   !2

!t 2 n – c s
2"2n ="2 E 2 . (6.4.1b)

Depending on dimensionality, initial conditions, and the number of degrees of freedom,

many different nonlinear phenomena, including soliton formation, collapse, secondary

radiation etc., can be described using this simple model.  The simplicity and flexibility

of the Zakharov equations has greatly stimulated interest in both Langmuir turbulence

and in the application of the envelope formalism to other multi-scale nonlinear

problems.  The first application of the envelope formalism to convective cell dynamics

(and thus zonal flows) was by Taniuti and collaborators in 1979 [6.43], and an

extension of Sagdeev et al. [2.3] was given using the full systematology of reductive

perturbation methods in ref. [6.44].

Here, we discuss only an especially simple application of the envelope

formalism [6.45, 6.46] to the problem of zonal flow generation in drift wave turbulence.

We consider a plasmas in 2D geometry with   Ti = 0 , but with a mean    E! B  flow.  To

implement the envelope formalism, we write     e!/Te = N exp i k " x – #t + c.c. and

assume the drift wave envelope    N X, T  varies slowly in space and time.  The fast

variation obeys the usual dispersion relation    ! = k "Vd 1 + k#
2 $s

2 – 1
.  Here, for the
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slowly varying parameters, the ordering    T = !t ,     X = !x, !y  expresses the scale

separation.  (In this section,  !  is a small parameter, not the inverse aspect ratio.)  Note

that nonlinearities associated with like-scale interactions are ignored.  Now, expanding

in  !  throughout yields the equations for the envelope  N  and the mean fields  n  and

 ! , which are

   
i !N
!" + 1

2
!2#k
!k x

2
! 2

!X 2 + !2#k
!k y

2
!2

!Y 2 + 2 !2#k
!k x!k y

!2
!X!Y N

   
+ !s

2"ci k # $
e %
Te

& z N – ! s
2"ci

1 +k'
2! s

2
k # $ n & z N = 0 , (6.4.2a)

    
! "
"# – vg $ %

"2

"X2 + " 2

"Y 2
e &
Te

   
+ 2 ! s

2"ci k xk y
#2

#Y 2 – #2

#X 2 + k x
2 – k y

2 #2
#X#Y N 2 = 0 ,

(6.4.2b)

    
! "
"# – vg $ % n + Vd

"
"Y

e &
Te

= 0 . (6.4.2c)

Note that Eq.(6.4.2b) shows that the structure of the secondary flow is determined, in

part, by the anisotropy of the underlying turbulence - i.e., via terms    ! k x
2 – k y

2 , etc.

The system of Eqs.(6.4.2a) - (6.4.2c) constitutes the set of envelope equations for the

drift wave - zonal flow system, including the more general case of drift wave -

convective cell systems. [6.47-6.52]

For the particular case of zonal flow,    !/!Y " 0 , and collisional damping of the

zonal flow   !damp  is important, the envelope equation is a cubic nonlinear Schrödinger

equation
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i !N
!"

+
1
2

2! k#
! x

2k

2!
! 2X

N +
2 s

4$ ci
2# y

2k xk
! k# ! xk

%

&'
(

)*
2

N N = 0 .  (6.4.3)

Straightforward analysis then predicts modulational instability for drift wave numbers

such that    1 + ! s
2k y

2 – !s
2k x

2 > 0 .  The most unstable zonal flow wavenumber is

   q x,max = !ci
2 1 + " s

2k#2
5
Vd

–2 1 + "s
2k y

2 – " s
2k x

2 – 1
N0  where   N0  is the maximum drift

wave amplitude.  The domains of zonal flow and streamer instability are shown in [1.2].

A similar analysis for the collisional case has been performed as well.  The results are

given in [2.27].

From the expression for   q x,max , weakly collisional zonal flow will have radial

scale 
    

!r " # s
2

Ln
n
n0

– 1
FZF # sk$ . Here     FZF !sk "  is determined by the    ! sk" -

dependence of   q x,max .  Note that the scale is amplitude dependent.  For    n/n0 ! "s/L n ,

    !r " # s FZF # sk $ , so a wide range of zonal flow scales may be excited.  Finally, note

that zonal flows will be strongly localized near caustics, where    !"k
2/!k i

2 # 0 .  Strongly

anisotropic collapse, to localized, singular shear layers, is possible at caustics.

There is considerable work on the envelope formalism beyond the simple

analysis described above.  Weiland and collaborators have explored the effect of finite

 Ti  and ion temperature perturbations [6.53].  More recent extension includes the study

of electromagnetic perturbations [6.54].  Spineanu and Vald have studied the structure

of zonal flow and have analyzed possible poloidal dependence [3.147, 6.55].  Gurcan, et

al. have examined zonal flow and streamer formation in ETG turbulence, which is

isomorphic to quasi-geostrophic turbulence, since both waves and flows have

Boltzmann ions [6.56-6.58].  They determined the criterion for collapse to singular

shear layers and addressed the problem of pattern competition between streamers and

zonal flows using techniques from the Langmuir problem.

7. Laboratory Experiments on Zonal Flows Physics
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In this chapter, we discuss laboratory experiments relevant to zonal flows.

Experimental studies of zonal flows in plasmas are few and far between. Thus, this

chapter is written with two aims in mind, namely, both to review existing work and also

to outline possible future directions for studies of zonal flows, in the hope that more

experimental work will be stimulated.

This chapter is organized as follows. Sec 7.1 presents experimental results on

determining zonal flow characteristics. Sec 7.2 discusses zonal flow dynamics and their

interaction with ambient turbulence.  We present our suggestions for future

experimental research, including possibilities for basic experiments designed for zonal

flow measurements, in Sec 7.3.

7.1 Characteristics of Zonal Flows

The characteristics of zonal flows are described in Chapters 2, 3 and 4, and are

summarized in Table 2.1. Here, we reiterate some of those which are most relevant to

experimental measurements and tests  [3.82].

7.1.1 Spatial Structure:

In confined plasmas, the equilibrium profile is usually treated as a smooth

function of radius, the characteristic scale length of which is less than or equal to the

minor radius (excluding the case of transport barriers) or of the barrier thickness (for

barriers).  In the presence of turbulence, the flux-surface-averaged flow velocity can

vary radially for two reasons.  One is the    E! B  zonal flow structure, which is

discussed in this review.  The other possible origin is the corrugation of flux-surface-

averaged pressure.   This latter type of localized diamagnetic flow, which is nothing but

a symptom of flux surface-averaged pressure corrugation, must be carefully

distinguished from true zonal flows in experiments. Such pressure corrugations may be

induced by avalanches, streamers, and other transport events.

Turbulence-driven zonal flows are radially localized, with a broad spectrum of

radial scales ranging from the microscale  (i.e., turbulence eddy sizes of    !r " several ion
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gyro-radii) through meso-scales (i.e., a fraction of minor radius).  Gyrokinetic

simulations of ITG turbulence show that the component of the zonal flow has

   qr!i " 0.1  [3.82], for typical tokamak core plasma parameters, though the sensitivity of

this value to variable system parameters is unclear.  The associated electrostatic

potential   !ZF is poloidally symmetric (    q! = 0).

We note that the magnitude of zonal flow velocity, as predicted from tokamak

core turbulence simulations, is typically small (i.e., 
   VZF = 10– 2v th, i ), but the

associated    E! B  shearing rate is significant enough to regulate turbulence and

transport [3.82, 7.1].  Obviously, this indicates that the zonal flow shear spectrum peaks

at a higher   qr! i , than the zonal flow velocity and potential spectra.  This is apparent

from the results of gyrofluid simulations, as shown in Fig. 3 of Ref. [7.1].  This suggests

that the difficulties in measuring zonal flows in the experiments come mainly from the

fact that it is neccesary to simultaneously ensure sensing long correlation lengths in the

toroidal direction (n=0) and poloidal direction (m=0) along with fast radial variation

(on the scale of several ion gyro-radii).  Finally, achieving the goals of detecting the

variability of the portion of the zonal flow spectrum responsible for transport regulation

and identifying a causal link between flows and turbulence are further complicated by

the fact that the 'relevant' shearing scales are determined by their autocorrelation times,

as well as their shear strength.  Features of the zonal flows contrasting the zero

frequency zonal flows from GAM components are listed below in Table 7.1.

7.1.2. Temporal behavior:

The frequency spectra of zonal flows and GAMs depend on plasma conditions,

and for this reason edge turbulence deserves a later, separate discussion. In the core, the

zonal flow frequency spectrum at a fixed  qr  has a broad peak at   ! = 0 , and a width

indicating a finite lifetime,   !ac, ZF = "#ZF
– 1

. Zonal flows thus have frequency

components which significantly outlive the ambient turbulence (   !"ZF < !"drift, or

equivalently   !ac, ZF > ! ac, drift). Their lifetime   !ac,ZF  is determined either by collisions,
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turbulent transfer processes (as are explained in Chapter 3), by external noise (explained

in Chapter 6), or by the instability of the zonal flow pattern.

In general, the question of the nature of zonal flow damping boils down to a

comparison between the strength of collisional and nonlinear processes.

7.1.3. Toroidal Geometry and GAMs

In toroidal geometry, the poloidal direction is no longer an ignorable coordinate,

and there exists an inevitable poloidal angle dependency of many key quantities (for

instance, B depends on the poloidal angle). While the flux-surface-average of    E! B

flows are mainly in the poloidal direction [2.7, 2.8], the toroidal return flow has a   sin !

dependence.  In general toroidal geometry, the zonal flow magnitude

   VZF = – Er/B = B– 1!"ZF/!r, i.e.,    RB!B – 1 "#ZF/"$ (  ! being the magnetic flux

function) has a slight in-out asymmetry due to a flux-expansion factor "   RB!" [2.9]. Due

to the presence of geodesic curvature in various toroidal devices, the zonal flow

contains a linearly damped oscillation called a Geodesic Acoustic Mode (GAM) [3.5],

as discussed in Sec 3.1.2 and Sec 4.5.2., in detail. Since GAM pressure fluctuation has

dominant mode numbers n=0, m=1 (due to toroidal coupling), it has   k || = 1/qR , so that

   !GAM = Gvth, i/R . Here G is a coefficient of the order of 1, and ion Landau damping for

GAMs scales like    ! exp – " 2/2k ||
2vth, i

2     ! exp – G2q2/2 . Thus, one would expect a

“GAM peak” to be clearly visible in the frequency spectrum when GAM energy is

appreciable.  In conclusion, some key features of the GAM are not only a well-defined

linear oscillation frequency,    !GAM = Gvth, i/R , but also the existence of side-band

pressure fluctuations with n=0 and m=1. Properly distinguishing between oscillatory

GAM’s and classical zonal flows (which are quasi-stationary) is a major challenge to

experimentalists interested in zonal flow physics.  This issue is particularly relevant

since the finite characteristic frequency of GAMs renders them easier to detect

experimentally than the zero-frequency zonal flows are.

 Finally, we briefly comment on stellarators (helical systems).  Turbulence-

driven zonal flow properties in stellarators have not been discussed widely to date, but
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have recently begun to be addressed in print [7.2].  The questions of the effective

damping and inertia of zonal flows in systems for which axisymmetry is absent, are

particularly acute.  In particular, new or enhanced damping mechanisms may be present,

and the continued status of zonal flows as “modes of minimal inertia’ is not certain.  For

these, experiments on future stellarators with quasi-axisymmetry such as the National

Compact Stellarator Experiment (NCSX) [7.4] and CHS-qa [7.5] would be illuminating.

7.1.4 Experimental studies of zonal flow structure via potential measurements

Flux-surface average radial electric field

The most direct evidence of zonal flows comes from measurements of the

   E! B  flow   VZF, the associated radial electric field  Er, or the associated electrostatic

potential    !ZF.  As the importance of the flow shear decorrelation mechanism [2.7-2.9]

in enhancing confinement has become widely recognized [3.143, 4.13, 7.6], there have

been significant advances in the diagnostic capabilities for measuring  Er using the

motional Stark effect (MSE) [7.7] or the heavy ion beam probe (HIBP) [7.8, 7.9], and in

measuring the poloidal velocity   V! of carbon impurity ions using charge exchange

recombination spectroscopy (CHERS), and then calculating  Er from the radial force

balance relation [7.10-7.12]. However, an order of magnitude improvement in the

temporal  resolution of these diagnostics is required to distinguish the temporal

evolution of zonal flows from that of the mean    E! B  flow.  The "mean equilibrium"

profile must also be measured with a radial resolution sufficient to distinguish profile

corrugation induced by spatially intermittent turbulent transport from zonal flows.  As

discussed at the beginning of this section, while zonal flows are typically long lived as

compared to turbulence eddies, their auto-correlation rate can reach 5KHz for typical

tokamak core parameters [3.82]

Identification of zonal flow by use of HIBP
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The heavy ion beam probe (HIBP) is capable of measuring the electrostatic

potential   !es, associated the radial electric field. Its relatively fine temporal resolution

has allowed detailed analyses of the edge transport barrier of the H-mode [7.13, 7.14]

and the internal transport barrier (ITB) dynamics in stellarators [7.9, 7.15, 7.16]. By use

of a single HIBP, the radial resolution of which has not been better than 1cm, the mean

 Er was measured.  This is believed to be mainly determined by neoclassical (collisional)

particle transport, rather than by turbulence.  The identification of the core zonal flow

has been achieved very recently by use of a dual-HIBP system, i.e., two HIBP's are set

in different toroidal angles, thus allowing the measurement of the toroidally symmetric

  n =0  component, which is the critical element of the zonal flow measurement.  [7.17,

7.18]  This has made a path to the direct measurement of zonal flows in the plasma core.

Figure 7.1 illustrates the power spectrum of the radial electric field in the core of CHS

plasma, indicating the zonal flow component near   ! " 0  and the peak of the GAM

oscillations.  Measuring  Er at fixed radius   r1  by one HIBP, and  Er at various radii   r2

by the other HIBP, the coherence of the radial electric field at   r1  and   r2  is directly

measured.  The low frequency part (   ! / 2" < 1 kHz ) has high coherence, demonstrating

a long coherence length.  Cross-coherence takes a large positive value at   r1 = r 2 , i.e.,

  n =0 .  As the relative distance   r1 – r2  varies, the cross coherence value between two

measured electric field varies, alternately, between large positive values and large

negative values.  By this measurement, the radial wavelength of the zonal flow was

identified.  In the case of Fig.7.1, the radial wavelength of the zonal flow is about 1-2

cm.  This rapid radial variation is another essential feature of the zonal flow.  The

amplitude of this zonal flow is also observed to be few  100 Vm– 1 , and the    E! B

shearing rate remains smaller than the diamagnetic velocity divided by the plasma size.

The sample volume still remains of the order of the radial wavelength.  This limit of

spatial resolution may be an obstacle for measuring the precise peak height of the zonal

flow.  The decorrelation rate of the zonal flow,   !"ZF, is found to be smaller than (or at

most)   2! " 103 s – 1  in this observation, and is close to the inverse time of the global

energy confinement time.  (The energy confinement time is a few ms in low density
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ECH plasmas.)  The radial scan of the measurement point has revealed that the zonal

flows exist over  a wide region of radii.  To date, this result seems the most direct and

convincing experimental confirmation for the presence of the zonal flow in core

plasmas.

Measurement at edge

Near the edge of tokamak plasmas, Langmuir probes are applied to the study of

long-range electric field fluctuations.  In the study of [7.19], radial electric fields are

measured at different poloidal angles simultaneously, and the low frequency component

is identified.  Although the poloidal angle between two forked probes is limited (the

distance between them in toroidal direction is about of the minor radius), the

observation gives a strong support for the presence of the poloidally symmetric, low

frequency radial electric field perturbations as is shown in Fig.7.2.  The amplitude and

radial wavenumber are evaluated as    VZF/VThi ! 0.5 – 0.9%  and    qr !i " 0.06 – 0.1 .

The half-width at half maximum of the spectrum is not clearly identified.

Edge transport barrier

Another measurement of the electric field by use of the HIBP has been performed on

the JFT-2M tokamak [7.13, 7.14] in conjunction with the L-to-H transition. The

radially-localized response of the electric field structure near the last closed flux surface

is precisely measured.  The jump of the radial electric field and associated change of the

fluctuations have been measured at the onset of the L-H transition.  The high temporal

resolution of the potential measurement has allowed the determination of the rate of

variation of the radial electric field at the onset of the L-H transition.  Results indicate
   !Er/!t Er

– 1 " O 10µs – 1 . This is in the range of theoretical predictions for the rate of

radial electric field bifurcation.  So far, an accurate decomposition of the measured

radial electric field into the zonal flow and the "mean flow “has not been possible, and

remains a significant challenge for future experimental research on zonal flows.
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Observation of potential fluctuations in GAM frequency range

The long range oscillation in the core plasma, which is attributed to the GAM,

has been observed on CHS by use of dual HIBP systems as is illustrated in Fig.7.1.  The

frequency of    !/2" # 17 kHz  is close to the GAM frequency at the observed ion

temperature [7.20].  The half-width at half maximum of the spectral peak is a few kHz.

The measurement of other wave parameters, e.g., the parity of the density perturbation,

the radial wavelength, and others, is ongoing.

The experimental evidence for the presence of GAMs in tokamaks has also

increased.  The measurement of potential fluctuations by use of the HIBP has been

performed on the JIPP-TIIU tokamak [7.14].  Low frequency fluctuations in the range

of  20kHz  have been identified in the vicinity of the plasma edge and core, as well [7.8,

7.20-21].  This was the most advanced measurement of potential fluctuation in the mid

90's. This fluctuation was conjectured to be a GAM oscillation.  Further analysis of the

measured data is ongoing.

Motivated by the recent community-wide interest in measuring zonal flows,

HIBP measurement data obtained from TEXT tokamak plasmas in the early 1990's have

been re-analyzed recently in detail  [7.22]. The measured potential fluctuation has the

following properties.  For a range of minor radius from   r / a = 0.6  to   r / a = 0.95 , the

m=0 component of the potential fluctuation with radial correlation length below 2cm

(smaller than the sample volume size) was found to be oscillating with a well-defined

frequency which matches that predicted for the GAM [3.5].  Outside of this radial

range, no significant m = 0 fluctuation in potential was detected.

It should be noted, however, that conclusive measurements of the long toroidal

correlation length (   n = 0  component) have not yet been completed (except by the dual

HIBP measurement on CHS).  In particular, the pertinence of the measured potential

fluctuations to zonal flows (as opposed to GAMs) is still unclear.  Even the dual HIBP

experiments need future experiments for more conclusive results. It would also be

illuminating to explore, via numerical simulation, whether or not GAMs in that
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particular frequency and parameter regime could play a significant role in regulating

turbulence.

7.2. Zonal Flow Dynamics and Interaction with Ambient Turbulence

As is illustrated in Fig.7.1, the zonal flow amplitude and drift-wave fluctuations

are simultaneously measured on CHS by use of the dual HIBP system.  This provides a

possibility to identify the causal relation between the zonal flow and ambient turbulent

fluctuations.  The detailed measurements and analyses are on-going, and a definitive

conclusion has not yet been obtained.  Therefore, in this section, we discuss indirect

measurements on zonal flows. Such experiments attempt to detect and to elucidate the

physics of zonal flows by indirect means. In some cases, such indirect approaches strike

at the heart of the fundamental physical processes thought to generate zonal flows (i.e.,

triad interactions between two high frequency drift waves and the zonal flow). Thus,

these approaches are motivated by concerns of both physics and expediency.

7.2.1.  Zonal Flow Generation Mechanisms

As discussed in Sec. 3.2, zonal flows in electrostatic turbulence in a simple

geometry are generated by the Reynolds' stress associated with the nonlinear coupling

of higher-k components of the ambient fluctuations [2.30]. In the more general context

of electromagnetic turbulence in toroidal geometry, the evolution of the zonal flow can

be written  in the following schematic way    !
!t VZF =

 
Reynolds’ stress + Maxwell’s

stress + Stringer-Winsor + damping.
  

Most theoretical discussions on zonal flows have

focused on the role of Reynolds’ stress, since it is believed to be relevant regardless of

geometry, values of the plasma beta, and the nature of fluctuations.  However, some

[7.23] argued that, in the transition region between the core and edge of tokamak

plasmas, the Stringer-Winsor (SW) term, can play a major role in generation of the

GAM component of zonal flows. The Stringer-Winsor mechanism is basically a torque

on the plasma pressure column caused by the interaction of pressure inhomogeneity

with the in-out asymmetry in magnetic field strength [7.23]. In the results of Braginskii
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fluid simulation described in Ref. [3.146], it was found that the SW term was greater

than the Reynolds’ stress term for a typical parameter set for the transition core/edge

region. However, more recent related fluid simulations by other teams found that the

SW effect has a different sign from that of the Reynolds’ stress and can make zonal

flow generation weaker  [4.64, 7.24].

 As discussed in Chapter 3, for electromagnetic turbulence, the Maxwell stress

term associated with the    J ! B  nonlinearity can be appreciable. In the ideal MHD limit

of purely Alfvenic turbulence, the Maxwell's stress cancels the Reynolds’ stress exactly,

and the state is called the purely Alfvenic state. This establishes that zonal flow can be

driven only through non-ideal MHD effects.

7.2.2. Experimental Studies on Zonal Flow Dynamics

It is encouraging to note that the Reynolds' stress has been measured using

Langmuir probes on the TJ-2 stellarator [7.25] and the H-1 tokamak [7.26]. One should

note that the dominant nonlinear mode coupling channel for zonal flow generation is the

3 mode coupling involving two high-k fluctuations and the zonal flow, i.e., a nonlocal

(distant) interaction in k. An increase of this nonlinear mode coupling is an indicator ,

albeit indirect, of increased zonal flow generation [7.27] . The strength of interaction

can be quantified by bi-coherence measurements and there have been bi-coherence

analyses of the probe measurements on DIII-D edge [7.28-7.30], which support the

notion that the nonlinear couplings, which are necessary for zonal flow generation,

increases abruptly just prior to the H-mode transition. A relevant experiment has been

performed on H-1 heliac [7.31], confirming the dominance of nonlocal interaction in the

generation of the poloidally extended structures. A related work, to excite convective

cells externally [7.32], was reported.  The role of geodesic curvature coupling (i.e., the

relative importance of Reynolds' stress drive and the Stringer-Winsor drive/damping)

have been further investigated on the Kiel stellarator [7.33].

7.2.3. Experimental Studies on Zonal Flow Interaction with Turbulence
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Given the difficulty in measuring  ! ,  Er , etc., most fluctuation diagnostics

measure density fluctuations. Therefore, there exist many fusion plasma devices in

which zonal-flow-related experiments can be tried via density fluctuation

measurements.  We summarize some experiments along these lines using different

methods.  An experiment and analysis based on line-integrated measurements of density

fluctuations on DIII-D tokamak edge using the phase contrast imaging (PCI) [7.34] was

able to demonstrate that the fluctuation spectrum as a function of  k r and  !,    S k r, !

resembles that obtained from ITG turbulence simulations. However, this line-integrated

measurement could not demonstrate that the observed fluctuations were symmetric in

both poloidal and toroidal directions (i.e., m=0, n=0). The estimated upper bounds on

the mode number was of the order of 30.

 One way of examining zonal flow properties is to estimate the zonal flow

velocity  (which advects  the ambient turbulence) by analyzing the "measured" ambient

turbulence density fluctuation spectra. We note that for this approach, the instantaneous

Doppler-shift of the density fluctuation with wave vector  k  should exceed the

decorrelation rates of both the zonal flows and turbulence, thus allowing the invocation

of Taylor’s hypothesis [7.35]. Significant progress in this approach has been made by

using a 2-dimensional array of beam emission spectroscopy (BES) diagnostics on the

plasma edge. BES measurements and analyses have identified that density fluctuations

are advected by the zonal-flow-like field [7.36]. The estimated flow amplitude was of

the order   10– 2vth, i roughly in the range observed in numerical simulations [3.77]. The

alleged zonal flow also has a well-defined frequency close to that of the GAM [7.37]

(See Fig.7.3).  A signal was readily observed at high q and not observed at low q [7.38],

as expected from the  q -dependence of GAM Landau damping, as discussed in Sec.

7.1.3.  Unfortunately, another important aspect of the GAM oscillation is that the zonal

flow (n=0, m=0) is accompanied by the n=0, m=1 component of density fluctuations.

This prediction could not be confirmed. This shortcoming was partly due to the fact that

the BES arrays were located near the low field midplane side of the tokamak, where

GAM density fluctuations are expected to be very weak. From a simple theory, the
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GAM amplitude, at a given flux surface, is expected to be highest at the top and at the

bottom of the tokamak. The poloidal mode number of density fluctuations

corresponding to the GAM frequency from this experiment was predicted to be on the

order of 10 [7.37].

Another way of estimating the zonal flow velocity, which of course advects the

ambient turbulence, is to measure the Doppler shift of the ambient turbulence density

fluctuation frequency spectra, using Doppler reflectometry [7.39].  An ocsillation at 20-

30 kHz was observed in the core of T-10 tokamak and was attributed to the GAM

[7.40]. From a measurement of the edge plasma of ASDEX-U, a coherent peak in the

spectrum near the GAM frequency has been observed in addition to a stronger and

broader peak at much lower frequency which appears to be “zero frequency” zonal flow

[7.41].  The dependence of the peak frequency on the edge electron temperature is in

broad agreement with GAM frequency for various operation modes of plasmas

including Ohmic, L-mode, and quiescent H(QH)-mode plasmas as reported in Ref

[7.41].

Very recently, the GAM fluctuations at edge are measured by HIBP on JFT-2M,

and the modulation of the amplitude of high frequency fluctuations by the oscillation at

GAM frequency was reported [7.42].

7.2.4. Measurements of Zonal Flow Effects on Confinement

Another indirect way of demonstrating the existence of zonal flow is by

identifying the change in transport and confinement due to zonal flows. These include

the expected changes in turbulence-driven transport onset conditions (for instance, a

change akin to the Dimits shift) and transport scaling with key macroscopic variables

(for instance, ion-ion collisions, which damp zonal flows, or parameters which enter the

neoclassical dielectric function).  Such studies should emerge from systematic

dimensionless parameter scans of plasmas.
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7.3. Suggestions on future experiments and information needed from   simulations

and theory

After a summary (not exhaustive) of the recent experimental  progress in

pursuing the measurements of zonal flows, we discuss some future experimental plans

and possibilities for further progress and list key physics information which future

experiments will need from numerical simulations and theories for the identification of

zonal flows.

We mentioned that an order of magnitude improvement in the temporal

resolution of the present day diagnostics, together with the identification of the   n = 0

component, is required to distinguish zonal flows from the “mean    E! B  flows”.

Regarding HIBP measurements, two HIBP systems are operating on CHS, providing

simultaneous measurements of the electric field perturbation pattern and structure.

Initial data from the dual HIBP system has already yielded the essential direct

observation of the zonal flow. Future progress on CHS experiments are promising, and

will play a central role for the experimental study of zonal flow in core plasmas.

Studies of higher resolution are planned on the National Spherical Torus Experiment

(NSTX) using a new spectroscopic technique with a higher temporal resolution [7.43]

and on the Alcator C-Mod tokamak and NSTX using a 2-D gas puff image (GPI) of

edge turbulence [7.44-45].

Regarding bi-coherence analysis of turbulence spectra, the conclusive result in

this endevour requires the precise measurement of the zonal flow component, together

with the other two 'legs' of the three wave coupling triad that resonate with the

measured zonal flow.  The coherent part of this nonlinear interaction with the zonal

flow of interest must be measured, so as to quantify the acceleration of the zonal flow

by the background turbulence.  This process can be extended to electromagnetic

fluctuations in high  !  plasmas and stellarators [7.46]. Then the incoherent part of the

nonlinear interactions must be measured to quantify the stochastic noise term.  Through

these processes, one has solid understanding of the physical process which governs the

generation of the zonal flow
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For further elucidation of the implications of the experimental results based on

the measurements of density fluctuations, the following information from direct

numerical simulations will be extremely useful. First, for an identification of density

fluctuations which accompany the zonal flows, simulations should quantify the

expected level of density fluctuations not only for the n=0, m=0 mode, but also for the

side bands n=0, m=1, etc. We note that most 'zonal flow characteristics' listed in print to

date [3.82] are based on pure ion temperature gradient (ITG) turbulence, with adiabatic

electron response where   n /n =0  for n=0, m=0 mode. With recent advances in

gyrokinetic simulations including more realistic electron dynamics as described in

Chapter 4, such information should now be available and should be extremely useful for

experiments measuring density fluctuations, such as phase contrast imaging (PCI)

[7.47]. Of course, for detailed comparisons between experiment and simulations, more

comprehensive spectral information than those usually presented (such as  S k r  or   S !

at a fixed  k r, etc) would be desirable, especially    S k r, !  and    S k r, !, k "  for

   m =0, ± 1, ± 2 ! ! ! , etc. Another way to systematically demonstrate the effects of zonal

flows is to scan the plasma parameters and compare the detailed spatio-temporal

behavior of the ambient turbulence measured by comprehensive 2-D microwave

imaging [7.48-49] to results from direct numerical simulations.  This, however, requires

that the simulation code should be validated via comparison to simpler experiments.

Second, for the purpose of identifying zonal flows by the measurement of high-k

density fluctuations which are advected by the flows, the temporal scale separation of

the various physical frequencies required for Taylor’s hypothesis [7.35] should be

established in order to strengthen the validity of the experiments and analyses.  The

relevant frequencies involved are:

    k ! VE,  the instantaneous Doppler-shift of the frequency of ambient turbulence,

due to zonal flows,   !"drift,  the decorrelation rate of the ambient turbulence, and

  !"ZF, the decorrelation rate of the zonal flow itself.
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While the estimate that     !"ZF < !"drift < k # VE [3.82] is often quoted, this was only one

case for a 'typical' set of tokamak core parameters.  Preferably, such information should

be available from direct numerical simulation, for each experiment.

The reason why the measurement of the zonal flow has been so rare in the

experiment of plasma confinement, which has lasted already about five decades, was

explained at the beginning of Chapter 7.  That is, the need of high resolution of the

electric field measurement in radius and time, simultaneous with the capacity to

measure long poloidal and toroidal correlation length, is really demanding.  These

difficulties must be overcome in the future, because the understanding of the drift wave-

zonal flow turbulence is a crucial element of the understanding of anomalous transport.

8.  Summary and Discussion

In this final section, we present the conclusions of this review of zonal flow

physics and briefly discuss directions of, and areas for, future research.  There is no

question that zonal flows exist, are ubiquitous constituents of drift wave turbulence in

confined plasma, and also occur many places in nature.  Research has also demonstrated

that zonal flows are an essential element of the mechanisms of self-regulation of drift

wave turbulence and of the formation of edge and internal transport barriers.  The

development of the understanding of zonal flow phenomena has made a concrete

contribution to controlled fusion research, in general, and to the design of ITER and

other future experiments, in particular.

The theory of zonal flows is now a well-developed subject.  We have shown that

it is convenient and illuminating to classify the diversity of zonal flow dynamics

according to the degree of stochasticity of drift wave ray propagation in the zonal flow

field, and by the ratio of the zonal flow autocorrelation time to the 'bounce time' of a

drift wave packet trapped in a zonal flow field.  A variety of approximation methods

have been utilized to calculate the rate of zonal shear amplification, for both the
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coherent and the stochastic regimes, and for a variety of different geometries.  All of

this wide variety of calculational approaches have the common element of their

foundation in the disparity of time scales between the primary drift waves and

secondary zonal flows.  The back reaction of zonal flows onto the primary drift wave

spectrum via shearing, both coherent and stochastic, is now well understood.  Such

insight has facilitated the construction of simple but self-consistent models which

describe the various states of the drift wave-zonal flow system.  The development of

more advanced theories, such as probabilistic approaches and models, is proceeding in

the research community.

Numerical simulations of zonal flows have identified their generation in a broad

regime of models of low frequency microturbulence.  In addition, some aspects of zonal

flow structure, generation by modulational instability, and saturation scaling trends have

been critically tested by numerical simulation, with a high degree of success.  However,

the further development and application of detailed computational diagnostics to

quantitative tests of zonal flow theory is still quite desirable.  Experimental research on

zonal flow phenomena is still in its youth.  While several experiments have identified

various elements characteristic of zonal flow phenomena, critical tests of basic zonal

flow physics and of the basic theory remain incomplete.

We now discuss some of the frontiers of, and possible future developments in,

the physics of drift wave-zonal flow turbulence.  In the realm of theory, the critical

problem is that of identifying and evaluating zonal flow saturation mechanism in the

collisionless regime.  Further and deeper work on tertiary shear flow instability,

nonlinear wave kinetics, trapped wave packets and turbulent trapping will be valuable

and surely will be forthcoming.  Such works need to confront the reality of realistic

geometry, including that of the stellarator, as well.  The advancement in meeting the

challenge of complex geometry and dynamics will strengthen an already powerful

theoretical basis, which commonly helps to solve the expected mysteries presented by

future space and astronomical observations.  In addition, the role of convective cells

(i.e., alternatively nonlinear streamers ) in the drift wave-zonal flow system must be
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better understood.  General convective cells, which vary in the poloidal direction, can

be induced by drift wave turbulence, and may have a strong impact on the dynamical

evolution of transport in the system.  The structure of such convective cells may be

strongly influenced by magnetic shear.  The partition of excitation energy between drift

waves, zonal flows and convective cells has not been fully addressed, and requires

intensive study in the future.  This issue lies at the heart of the 'pattern selection'

problem, as to which type of secondary structure is the ultimate 'attractor state' for a

given set of system parameters.  More generally, the nonlinear theory of wave kinetics,

particularly the regime near primary wave marginality (i.e.,    !k " 0), remains

unexplored and thus merits further development.  This is a general theme in plasma

theory, and progress on this topic will sow the seeds for future benefits in a number of

problems.  Another area of likely activity is the study of the interaction of zonal flow

with mean    E ! B  sheared flows and other questions pertinent to confinement, such as

turbulence propagation.  Also, further study of electromagnetic effects on zonal flows is

necessary, including, in particular,   A!  effects (   A!  is the vector potential in the

direction perpendicular to the magnetic field), which are critical to high beta plasmas,

such as those found in spherical tori.  The more general questions of the interaction

between zonal flow dynamics and those of magnetic dynamos, etc., remain to be

clarified, as well.  In particular, magnetic stresses tend to grow with increasing ß, and

so compete against Reynolds stresses, thereby reducing the rate of shear amplification.

As a consequence, the suppression of turbulence by velocity shear is weakened, so that

heat transport and dynamo activity increase.  This interesting set of trade-offs and

competitions is made possible by the fact that zonal flows are in general more effective

at quenching transport then are zonal fields.  Finally, since zonal flow shearing is

effectively a process whereby smaller scales are strained by larger scales, it is

fundamentally an intermittency phenomenon.  Future theoretical research must address

such intermittency, in order that predictive capacity be optimized.  In particular, the

astute reader will surely have noted that all discussion of zonal flow shearing, herein

and elsewhere, is, as usual in plasma physics, organized in the either coherent shearing
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models, where    k rVE ! B
" t , or stochastic shearing models, where    !k r " Dkt .  In reality,

nondiffusive Levy-flights on  k r , with    k r ! t"    1/2 < ! < 1 , are surely possible and will

appear as intermittent, strong shearing events.  To describe such phenomena, a

fractional kinetic theory [8.1] will be necessary.  Insights from SOC-type models

[3.117] may be useful, as well.

Future simulation research must progress further from observation and

identification of zonal flow phenomena to quantitative numerical experiments and tests.

More advanced numerical diagnostics must be developed, and more systematic regime

surveys must be implemented.  Though numerical simulation has contributed much to

our understanding of drift wave-zonal flow turbulence, its full potential has not yet been

tapped.  Finally, it must be said that the greatest opportunities for future research on

zonal flows lie in the realm of experiment.  Particular challenges include the

simultaneous study, correlation and synthesis of generation dynamics in real space (i.e.,

via vorticity transport) and  k -space (i.e., via nonlinear mode coupling), and the

development of methods to control zonal flows.  More generally, future experiments

must emphasize challenging the theory and confronting it with stressful quantitative

tests.

Finally, it should be emphasized that the zonal flow dynamics problem

represents one well-defined example of a broad class of bifurcation phenomena in

confined plasmas.  As such, it can and will join with other firm webs of interacting

feedback loops which collectively govern plasma dynamics.  For example, in burning

plasmas, both burning and quenching can be expected to appear as dual, bistable states.

Transitions between them, either periodic or intermittent, could be triggered by

transport events, for which the dynamics of drift wave-zonal flow turbulence in high

temperature D-T plasmas would be of central importance.  Internal transport barriers

formation in burning plasmas is another example of events from this category.  The

predictability of such transition phenomena merits intense theoretical study.  However,

interest in zonal flow physics is not limited to the realm of fusion plasma physics.

Zonal flow generation is an example of a broad class of problems dealing with the
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amplification of an axial vector field with global symmetry by microscopic turbulence

which is driven by the gradient of a scalar field.  This category of problems also

includes the magnetic dynamo (solar, terrestrial and galactic), accretion disk dynamics,

jet formation, the global circulation of the ocean, etc.  Thus, the study of zonal flows is

a splendid opportunity for plasma and fusion science to demonstrate its capability to

make a significant contribution to this now classic lore of problems.
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Appendix A: Near-Isomorphism between ITG and ETG

Here the quasi-isomorphism between ITG and ETG are tabulated in Table A.1.

Key issue ITG ETG
 ni From gyrokinetic

equation
   – e!/Ti : pure adiabaticLinear response in the

electrostatic limit
 ne    e ! – ! /Te : adiabatic

with zonal flow

From gyrokinetic
equation

Disparity in transport channels
caused by particular
turbulence

   ! i " !# > !e, D    ! e " ! J > D, ! i, !#

Zonal flow strength in
nonlinear regime

Typically strong Typically weaker

Radial correlation length of
ambient turbulence at
nonlinear saturation

Several   ! i Uncertain – current
research

Isomorphism breaker Zonal flow - residual magnetization
of ion response

- electromagnetic effect
- Debye shielding

Table A.1 Quasi-isomorphism between ITG and ETG

In this table,  D ,  !"  and   ! J  are diffusivities of particle, momentum and current.  Note
that ETG turbulence will transport current much like ITG turbulence transports
momentum.    ! J  is like a hyper-resistivity.
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 Appendix B: Hierarchy of Nonlinear Governing Equations

In this appendix, the hierarchy of nonlinear governing equations is explained.  The steps

for reduction, and physics lost in the process of reduction are also listed.

Nonlinear equations:
From fundamental,
primitive to reduced,
simplified

Steps for reduction Physics lost due to reduction

Vlasov-Klimontovich
equation [B1] Remove high

frequency terms
(    ! "ci )Gyrokinetic Equation:

Conservative
[4.4, B2-B5]

High frequency phenomena [B6]
Neglect velocity
space
nonlinearityGyrokinetic Equation:

Conventional [4.2]
Conservation of energy between
particles and fields, of phase-space
volume, nonlinear trapping of
particles along  B . (Influence is
illustrated in Fig.B.1.)

Take moments in
velocity space

Gyrofluid Equation
[4.7, B7, B8]

Some nonlinear kinetic effects
including inelastic Compton
scattering [B9], accuracy in
damping rates of zonal flow [2.40,
2.41] and damped mode [B10]

Fluid Equations
[B11-B16]

Expansion in
finite Larmor
radius terms;
Ordering for
collisional
plasmas

Most kinetic effects associated
with long mean free paths and
finite size orbits.

Table B.1  Hierarchy of  governing equations

As is explained in the main text, most simulations mentioned above have used

the conventional nonlinear gyrokinetic equation[4.4], which ignores the velocity space

nonlinearity, which is formally smaller than the    E! B  nonlinearity. The conventional

nonlinear gyrokinetic equation fails to obey the fundamental conservation laws, such as

energy (of particles and fluctuation fields), and phase space volume at a non-trivial

order.  For longer times, well after the initial nonlinear saturation of turbulence, even

very small errors in the governing equation can accumulate (in time, regardless of

computational method) and muddy the physics predictions. A recent simulation [4.48]
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in cylindrical geometry used a fully nonlinear energy conserving and phase space

conserving form of the nonlinear gyrokinetic equation [4.6]. The importance of using

governing equation with proper conservation laws is demonstrated in this series of

simulations, with and without velocity space nonlinearity.  The authors reported that

neglecting velocity space nonlinearity in an ITG simulation resulted in undesirable

consequences. The energy was no longer conserved between particles and fluctuating

fields, and a precious indicator of the quality of numerical integration was lost. The

zonal flow pattern and the radial heat transport pattern were affected as well.  (See an

extended description in [1.2].)
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Figure Captions

Fig. 1.1  New paradigm for the plasma turbulence

Fig.1.2 Road Map for the review

Fig.2.1 Mutual interaction of drift waves and zonal flows

Fig.2.2. Zonal electric field and zonal flow.  The poloidal crosssection of toroidal

plasma is illustrated.  Hached region and dotted region denote the positive and negative

charges, respectively.  (a) The flow perturbation in the poloidal cross-section.  The bird-

eye view of the net flow associated with the zonal perturbation is illustrated in (b).

Fig.2.3 Shearing of the vortex

Fig.2.4  Sheared mean flow (a) and zonal flows (b) are illustrated.

Fig.2.5 Drift wave in sheared flow field.  When a drift wave packet is propagating in the

x-direction in the presence of flow shear,   dVy/dx > 0 , the wave number  k x changes.

Fig. 3.1.1  Schematic drawing of the collisional damping rate for the zonal flow.

Fig.3.2.1  Growth rate of the zonal flow for the parametric modulational instability.  A

case of    e !d0/Te = 0.2 " s/Ln  and   k d, x = 0  is shown.
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Fig.3.3.1  Random shearing flow and stretching.  Shear flow (denoted by blue arrows or

red arrows) is rapidly changing in time.

Fig. 3.4.1 The contrast of the linear view of the GKH modes (a) to a more general case

where GKH modes are generated by both linear and nonlinear modulational instabilities

(b). The linear view is hierarchical in that GKH is generated by the linear instability of

zonal flows (ZF), which are already generated by DW. In general, GKH modes can,

however, be generated directly from DW by modulational instability.

Fig.3.4.2  Trapping of wave-packets in the trough of zonal flow velocity.  The spatial

profile of zonal flow velocity (a) and trajectories in phase space (b).

Fig.3.4.3 Parameter domains for various theoretical approaches

Fig.3.5.1   Amplitude of drift waves  N  and that of zonal flow   U 2  for the case

where the self-nonlinear stabilization effect of zonal flow (e.g., the    !NL V 2  term in

Eq.(2.10b)) exists.  It shows the   !damp -dependence with fixed   !L .

Fig.3.5.2  Phase portrait in the absence of nonlinear stabilization effect of drift waves,

  !2 = 0 , [2.14] (a).  Trajectory in the case of no zonal flow damping   !damp = 0  is shown

in (b).  Depending on the initial conditions, the system reaches different final states, in

which the waves are quenched.
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Fig.3.5.3  Normalized amplitude of zonal flow  Zk  as a function of the normalized

damping rate   !z = !damp/! L .  Quoted from [2.23].

Fig.3.5.4   Amplitude of drift waves (normalized to   2!L/!2 ) in the stationary state as a

function of the collisional damping rate of zonal flow   !damp .  The horizontal axis is

taken   !damp/!L  in the unstable region   k r < k rc .  In this figure,  A  is a parameter that is

in proportion to    Cd! Z/"2 . (quoted from [3.48].)

Fig.3.5.5   Temporal evolution of drift wave energy, zonal flow and the average wave

number.  cases of   !L " 0 ,   !damp " 0 ,   !2 " 0  (a),   !2 = 0  (b) and   !damp=0  (c) are shown.

[3.98].

Fig.3.5.6  Coherent profile of normalized zonal flow vorticity.

Fig.3.5.7  Phase diagram for the case of mutual interactions between intermediate scale

and micro modes.

Fig.3.5.8  Marginal stability boundary for the growth of the zonal flow is shown by the

solid line in the limit of   !damp = 0  (a).  Dotted line indicates the marginal stability

condition for the drift waves (a).  The excited energy of waves and flows as a function

of the growth rate of drift waves, in the limit of   !damp = 0  (b).

Fig.3.5.9  The diagram, indicating the regions of residual drift wave, and zonal flow

turbulence as well as the region where they coexist in the    !L, !damp  plane.
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Fig.4.1  Contour of electrostatic potential from the simulation of [2.6].

Fig. 4.2 Radial size of turbulent eddies shown in colored contour of ambient density

fluctuation gets reduced due to the random shearing by self-generated    E! B   zonal

flows from gyrokinetic particle simulation, (a) and (b) (from [2.16]).  (c) is quoted from

http://fusion.gat.com/comp/parallel/gyro_gallery.html.

Fig.4.3.  Temporal evolution of the amplitude of the zonal flow, on log scale (a), and

turbulence level (b) and (c) on linear scale [2.13].

Fig.4.4  k r  kr spectrum of the ambient density fluctuation from gyrokinetic particle

simulation is broadened due to random shearing of eddies by self-generated    E! B

flows  (dashed lines) [3.82]

Fig.4.5  Dependence of ion thermal conductivity by ITG turbulence on the ion

temperature gradient (collisionless limit).  from [4.15]

Fig. 4.6 Contour of fluctuation spectrum from [2.17].

Fig.4.7  Dependence of the turbulence level (shown by ion thermal conductivity) and

zonal flow amplitude on the ion temperature gradient.  (from [4.16])

Fig.4.8 Transient burst of ITG turbulence and associated transport in the collisionless

limit. [3.115]
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Fig.4.9  Transient evolution of the poloidal flow and approach to the R-H zonal flow.

   K t = ! t /! 0  is the normalized potential and time is normalized to   !ii  .  (from [2.37])

Fig. 4.10 Ion heat conductivity in nonlinear gyrokinetic simulations

with   R/LT = 5.3  vs the ion-ion collision frequency [2.49].

Fig. 4.11  Schematic illustration of the self-regulation.  In the right circle, 'energy return'

indicates the process of energy return to drift waves (being investigated.)

Fig. 4.12  Cross phase evaluated at the radial position where the ZFs are persistently

localized (   r/a = 0.8 ) for all the simulations with   !* = 0.02  versus time.    !pfd , the

poloidal damping rate normalized to   cs/qR , is varied as indicated. [4.19].

Fig.4.13 Frequency spectrum of the zonal flows in collisionless trapped electron mode

(CTEM) turbulence. Note a peak of pure zonal flow near   ! = 0  and that at GAO

frequency    !GAO = vThi/R .  The influence of non-adiabatic response of electrons is

illustrated.  The case without (left) and with (right) are shown.  In the presence of

nonadiabatic response of electrons, the power spectrum of zonal flow component

becomes wider.  [4.23]

Fig.4.14  Snapshots of the zonal    E! B  flow, ITG amplitude, and effective temperature

profile in the nonlinear stage.  [4.26]



209

Fig.4.15 Growth rate of tertiary instability [2.51]

Fig.4.16  Asymptotic convergence of the turbulent transport in the collisionless limit.

from [4.33]

Fig.4.17  Two dimensional contour of the electrostatic potential perturbation of ETG

turbulence near the q-minimum surface   x = 0 .[2.52]

Fig.4.18 Frequency spectrum of the zonal flows from gyrofluid simulation of edge drift-

Alfven turbulence [4.66]. Note a significant intensity spectrum from zero frequency all

the way up to the GAO frequency   !GAO ,  without a distinct single peak.

Fig.5.1.1 Rotating sphere.  Coordinates on a rotating sphere are: The x-axis in the

direction of latitude (from pole to equator), y-axis in the direction of longitude, and z-

axis in the vertical direction.  Propagation of Rossby wave in the westward direction.

Fig.5.2.1 Schematic drawing of convection phenomena in Jovian atmosphere.

Schematic depiction of zonal belt formation in secondary bifurcation scenario is also

shown.  Northern and southern projections of Taylor column onto Weather Layer with

tilting modulation and bifurcation.

Fig.5.2.2 The assumptions and logic of the two scenarios.

Fig.5.2.3 Cartoon of secondary bifurcation scenario, after Fig. 6 of [5.5].
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Fig.7.1 Identification of zonal flow on CHS. Geometry of measurements and fluctuation

spectra. (a) Observation points of dual heavy ion beam probes in CHS. (b) Power

spectra of a electric field, and coherence between electric fields from the HIBPs. In the

frequency range from 0.3 kHz to 1 kHz, the activity to show long range correlation is

found to be zonal flow. A peak at the GAM frequency is shown by an insert.

Fluctuations in the range of tens of kHz are drift-wave turbulence. [7.17]

Fig. 7.2 Spectra measured with the modified forked probe. Peaks of zonal flow and

ambient turbulence (AT) are shown.  (a) Auto power spectrum of    V!1  (    !r = – 0.2 cm ).

(b) Auto power spectrum of    V!2  (    !r = – 1.2 cm ). (c) Cross power spectrum. (d)

Coherency spectrum. (e) Wave number spectrum. (c), (d). and (e) were calculated from

the long distance correlation between     V!1  and    V!2 . [7.19]

Fig.7.3  Frequency of observed oscillations (attributed to GAM) and it dependence on

temperature.  Measurement of D III-D is compared to the calculated GAM frequency

(left) [7.38].
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Table 1.1. Comparison between zonal flow in plasmas, dynamo, electromagnetic (EM)
flow generation and flow structure formation.

-------------------------------------------------------------------------------------------------------------------------------
Main Generated Equations in            Coverage

Name of Name small-scale global Examples fluid limit,            by this
Concept fluctuations structure fundamental drive      review
-------------------------------------------------------------------------------------------------------------------------------
 E ! B  flow EM and pressure Zonal flow MHD eq.   Yes

dynamo fluctuations E ! B  flow in toroidal Plasma response
Electro- (drift waves) plasmas Pressure gradient
magnetic  ----------------------------------------------------------------------------------------------------------------
flow MHD flow EM Magnetized MHD eq.   No
drive dynamo and flow flow Bipolar jets Gravitational force

fluctuations Coriolis force
-------------------------------------------------------------------------------------------------------------------------------

Neutral Small-scale Zonal flow Jobian belt Navier-Stokes eq. Yes
flow thermal Tidal current Thermal convection

Flow dynamo convection Jet stream, etc Coriolis force
gene- ----------------------------------------------------------------------------------------------------------------------
ration Flow Small-scale Structured Swirling flow, Navier-Stokes eq. Partly

structure convection flow Asymmetry Drive of axial flow
formation in pipe flow

-------------------------------------------------------------------------------------------------------------------------------
Dynamo Fluid motion Magnetic Geodynamo MHD eq.   No

(thermal field Solar dynamo Thermal convection
convection) Coriolis force

Magnetic -----------------------------------------------------------------------------------------------------------------
dynamo Magnetic Magnetic Magnetic RFP torus MHD eq.   No

structure fluctuations field External toroidal
formation (kink, tearing) current

-------------------------------------------------------------------------------------------------------------------------------
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Table 2.1.  Characteristics of zonal flow
______________________________________________________________________
Spatio-temporal structures

eigenfunction
electrostatic perturbation is dominant;    ni/n0 ! qr

2" s
2 e#/Te  or    ne/n 0 ! 0

radial wave length   qr
– 1

   a! i > qr
– 2> ! i

2  or    qr ! O 0.1 " i
– 1 , weak poloidal assymmetry

radial coherence length
can be    ! a"i   (See also § 6.4)

real frequency   !ZF
  !ZF " 0

autocorrelation time
   !ii"– 1 , and see § 3.5.1

amplitude
average vorticity is order    !i

– 1Vd  (§3.5)
______________________________________________________________________
Phase diagram for ZF

appearance: See §3.2.1, §3.2.2
significant impact for turbulent transport:    qrVZF > !"k  (See §3.5)

______________________________________________________________________
Microfluctuation that is the origin of ZF

all instability in the range of   !* ;   !i  and   !e

partition between ZF and turbulence: See §3.5.1, §3.5.6
______________________________________________________________________
Impact on turbulence

significant impact if     qrVZF > !"k  (See §3.5)
scattering of drift wave packet in   x, k x  space if    !bounce > "!k  (§3.4.6, §3.4.7)

______________________________________________________________________
Interactions between ZFs

through modifying microfluctuations; no direct condensation/cascade so far
______________________________________________________________________
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Table 2.2: State of Drift Wave - Zonal Flow System
______________________________________________________________________
State No flow Flow (   ! 2 = 0) Flow (   ! 2 " 0)
______________________________________________________________________

 N  (Drift wave   !/"#   !d
"

  !d +"2!"– 1

" + #$" 2"– 1

turbulence level)
---------------------------------------------------------------------------------------------------------

  V 2 (mean square 0   !
" – #$! d

"2
  ! – "#! d$– 1

$ + "#$ 2$– 1

flow)
---------------------------------------------------------------------------------------------------------
Drive/excitation Linear Growth Linear Growth Linear Growth
mechanism Nonlinear Damping of

Flow
---------------------------------------------------------------------------------------------------------
Regulation/inhibition Self-interaction Random shearing, Random shearing,
mechanism of turbulence Self-interaction Self-interaction
---------------------------------------------------------------------------------------------------------

Branching ratio 0
  ! – "#! d$ – 1

!d

  ! – "#!d$– 1

!d +$2!$– 1

  V 2 / N
---------------------------------------------------------------------------------------------------------
Threshold   ! > 0   ! > "#!d$– 1   ! > "#!d$– 1

(without noise)
______________________________________________________________________
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Table 3.2.1:  Analogy Between Weak Langmuir Turbulence and Zonal Flow

Generation

Langmuir Turbulence Drift Waves and Zonal Flows

High Frequency Population

Plasmon/Electron Plasma

k
2! = p

2! +" The
2v 2k

Drift Wave

k! = *e! 1+ "
2k s

2#

Low Frequency Structure

Phonon/Ion Acoustic

! = q sc

Zonal Flow

! = 0

Drive Mechanism

Ponderomotive Pressure
2E

4! p"

Turbulent Reynolds Stress

x˜ v y˜ v 

Wave Population Distribution

Action !Plasmon Number

N =
2E

!"
#$
#%

Potential Enstrophy !  Drift-ion Number

N =
2

1+ !
2k s

2"( )
2e#

T

Modulational Instability Criterion

d! dk > 0" d N
dk

> 0

Population Inversion Needed

N =
2

1+ !
2k s

2"( )
2e#

T

Population Inversion Unnecessary

Regulator

Ion Landau Damping of Phonon Collisional Damping of Zonal Flow
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Table 3.4.1: Analogy of 1D Vlasov and Drift wave - Zonal flow Problems
______________________________________________________________________

1D Vlasov Plasma Drift Wave Packets
with Langmuir Waves in Zonal Flow Field

______________________________________________________________________
Constituents Particle  ! Drift wave packet

Langmuir wave spectrum  ! Zonal shear spectrum
Particle velocity  v  ! Packet group velocity  v
real space  x  ! wavenumber  k x

---------------------------------------------------------------------------------------------------------
Time scales
  Autocorrelation time   !ac

    
min k ! "/k

– 1
, ! kv

– 1     
min !" – 1, ! q xvg

– 1

  Nonlinear time  Trapping time    e!L/m – 1  Turnover time    !" = q xVZF ,   !bounce
– 1

  Decorrelation time   !c        k 2D
– 1/3

              
    

min !k
– 1, k–2Dk, q x

2 Dk dvg/dk 2 – 1 / 3

  Relaxation time     !v2Dv
– 1    !k 2/Dk

---------------------------------------------------------------------------------------------------------
Resonance Wave-particle     !/k = v Wave packet - Shear flow
and     vg k = !/q x ,
irreversibility Phase space overlap Group-shear resonance overlap

 !  Orbit chaos  !  Ray chaos
---------------------------------------------------------------------------------------------------------
Theoretical Descriptions
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Stochasticity/Quasi-linear

  !ac < !" , orbit chaos,   !ac < !" , ray chaos,
Random Acceleration Random Shearing
Velocity diffusion Diffusive refraction

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Weak turbulence

Induced Scattering  ! Induced scattering of wave packets
Nonlinear Landau damping in Zonal flow field
of particles

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Coherent/Trapping

  !ac > !" , particle bounce motion   !ac > !" , Ray trapping
Trapping oscillations Ray trapping oscillations

 !  BGK mode  !  BGK wave packet
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Trapping in turbulence

Granulations, clumps Wave population granulations
 !  Fokker-Planck drag  !  Wave kinetic drag

______________________________________________________________________
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Table 3.4.2: Regimes of Zonal flow - Wave kinetics

______________________________________________________________________
Chirikov Overlap  Kubo Dominant

Regime Parameter number Physical Process
     S = !vg/! "/q x    K = !ac/!"

______________________________________________________________________
Stochastic   S > 1   K << 1 Stochastic Rays

Random Shearing and Refraction
---------------------------------------------------------------------------------------------------------
Turbulent   S > 1    K ! 1 Stochastic rays,
Trapping Shearing with Granulated  N
---------------------------------------------------------------------------------------------------------
Coherent   S << 1   K > 1 Strongly Deflected Rays,

Wave Packet Trapping
---------------------------------------------------------------------------------------------------------
BGK solution    K !" Wave Packet Trapping
---------------------------------------------------------------------------------------------------------
Single wave    S ! 0    K ! 0 Modulational instability
______________________________________________________________________
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Table 3.4.3: Comparison of Stochastic Dynamics

______________________________________________________________________
Particles in Electrostatic Drift Wave in
Wave Spectrum Zonal Flow Field

______________________________________________________________________
Diffusion Coefficient

   Dr = e 2

m2 Ek
2 R k, !"k

   D x= q x
2k !

2 Vq
2"q x

R k, q x

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Resonance Function

    
R k, !k =

"c, k
– 1

! – kv 2 + "c, k– 2
    R k, qx = !drift

" – q xvg
2 + !drift

2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Scattering Field

Wave spectrum Zonal shear spectrum
   Ek

2!k
   VZF!

2 = q x
2 VZF, q

2"k
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Scattered Field

Particle     v ! f v Drift wave packet      vg k ! N k
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Spectral Autocorrelation Rates

  !" – 1   !  time for fastest     q x dvg/dk !k
– 1

  !  time for

slowest waves wave packet to disperse while crossing
 to cross flow layer

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Nonlinear Decorrelation Rate   !c

– 1

     k 2Dr  
    

max !k, Dkk –2, q x
2Dk dvg/dk 2 1/3

time for particle to scatter lowest of times for wave packets to
one wave length diffuse one wavenumber, or to scatter

through a zonal flow scale by
wavenumber diffusion and propagation,
or persistence time of triad

______________________________________________________________________
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Table 3.5.1  Short summary of theoretical method and description in this subsection

______________________________________________________________________
Theoretical Nonlinear process and Self-consistent state
method subsections in §3.4 explained in §3.5
______________________________________________________________________

Parametric tertiary inst.; 3.4.1 -
instability dithering; 3.4.2 3.5.2

Random phase predator-prey; 3.4.5 3.5.1
approximation diffusion model; 3.4.4 3.5.3

Coherent structure wave trapping; 3.4.6 3.5.4
saturation; 3.4.7 3.4.5

______________________________________________________________________
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Table 4.1: Correspondence between the presentations of theory and corresponding
examples of computational results
______________________________________________________________________
Key Issue Section for Example of

theoretical Computational
explanation result (Figure #)

______________________________________________________________________
Linear Process

eigenfrequency §3.1.1, §3.1.2 4.13
colliisional damping § 3.1.3 4.9
RH undamped flow § 3.1.4 4.9

Generation by turbulence §3.2 4.1, 4.2, 4.3, 4.6
growth rate §3.2.1, §3.2.2 4.3

Suppression of turbulence § 3.3 4.2, 4.3, 4.5
stretching vortex § 3.3.2 4.4
effect on cross phase § 3.6.2 4.12

Nonlinear interaction
tertiary instability § 3.4.1 4.15
RPA and diffusion approach §3.4.3, §3.4.4 4.3
wave trapping §3.4.6, §3.4.7 4.14
broadening of ZF spectra §3.4.8 4.18
dynamical evolution §3.5.1, §3.5.3

Steady state 
and energy partition

weak instability case
complete suppression §3.5.1, §3.5.6 4.5
role of collisional damping §3.5.1 4.10
quench via transient burst §3.5.1 4.8

strong instability §3.5.3-3.5.5 4.5, 4.7
coherent structure §3.4.6, §3.4.7

Other effects
Non adiabatic electrons 4.13
electromagnetic effects §3.2.6 4.13

ETG mode Appendix A 4.17
______________________________________________________________________
Collisionless dissipation 4.16
______________________________________________________________________
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Table 5.2.1 Comparison and Contrast of Jovian Atmosphere and Toroidal System
Dynamics
______________________________________________________________________

Jupiter Toroidal System
______________________________________________________________________
Basic Characteristics
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Free energy   !T   !T ,   !n , etc.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rotation    !rot >>"k    !c, i >>"k
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rossby number    Ro ! " /#rot << 1    Ro = k!
2 "i

2 e#/T << 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effective Reynolds number
strong turbulence    Reff ! 10 – 100

wave turbulence
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Velocity Geostrophic     E! B B– 2

---------------------------------------------------------------------------------------------------------
Turbulence Physics
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Instability Thermal Rossby Drift- ITG
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Frequency  ! -effect Diamagnetic
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Cell Structure Taylor-Proudmann Ballooning modes,
Columns extended along   B0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Threshold   Ra > Ra, c   R/ LTi > R/LTi crit

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Eddy Rising Thermal Plumes Ballooning envelope fragments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Transport turbulent transport    D, ! " DgyroBohm

______________________________________________________________________
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Table 5.2.2 Comparison, continued

______________________________________________________________________
Jupiter Toroidal System

______________________________________________________________________
Basic structure Belts, Zones   n = 0 ,  k r  finite,

electrostatic fluctuations
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Location Surface, "Weather Layer" Core and Edge of

Confined Plasmas
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Mechanism i) Secondary bifurcation of Modulational instability of
for Convection Column Tip Cells Wave spectrum
Generation

ii) Inverse Cascade in
Weather Layer with

 ! -effect
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Large Scale Ekman Friction Rosenbluth-Hinton Friction
Dissipation
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Anisotropy  ! -effect Flow - Minimal Inertia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Flow and Same Flow 2D (   n = 0 ) and
Fluctuation model Fluctuation 3D, with     k ||vth, e >!k
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Bifurcated State Belt Formation L-mode, ITB, ETB
______________________________________________________________________
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______________________________________________________________________
Zonal flow GAMs
(narrow sense)

______________________________________________________________________
fluctuation structure

  m = n = 0  for  !   m = n = 0  for  !
   n << !   m = 1, n = 0  for  n

   n/n0 = 2 qr!s e"/Te

real frequency
  !ZF " 0     !GAM " vThi/R

autocorrelation time
   ! "ii

– 1 , or other (TBD)    !ii
– 1 , or other (TBD)

radial wavelength
   a!i > qr

– 2> ! i
2  !

radial coherence length
several tens of   !i     ! a"i  !

amplitude (vorticity)
order of    !i

– 1Vd TBD
______________________________________________________________________
Table 7.1.  Experimental characteristics of zonal flows
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Wave 
Dissipation

Dissipation
(i.e., Ion Landau 
Damping, etc.)

Classic Paradigm of Drift Wave Turbulence

New Paradigm of Drift Wave-Zonal flow Turbulence

Free Energy 
Source,
grad T, grad n

Drift Waves

Zonal Flows

Flow Energy 
Dissipation
(i.e., Collisional 
Friction)

Wave 
Dissipation

Free Energy 
Source,
grad T, grad n

Drift Wave
Turbulence

Dissipation
(i.e., Ion Landau 
Damping, etc.)

Fig. 1.1  New paradigm for the plasma turbulence.
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Fig.1.2 Road Map for the review.

State of 
Turbulence 
and Flows

Shearing of Turbulence 
by Zonal Flow

 Zonal Flow Shear
Amplification by 
Turbulence

Fig.2.1 Mutual interaction of drift waves and zonal flows.
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  (a)                         (b)

Fig.2.2. Zonal electric field and zonal flow.  The poloidal crosssection of toroidal plasma
is illustrated.  Hached region and dotted region denote the positive and negative charges,
respectively.  (a)  The flow perturbation in the poloidal cross-section.  The bird-eye view
of the net flow associated with the zonal perturbation is illustratrated in (b).

time

Fig.2.3 Shearing of the vortex.

 (a)          (b)

Fig.2.4  Sheared mean flow (a) and zonal flows (b) are illustrated.
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Fig.2.5 Drift wave in sheared flow field.  When a drift wave packet is propagating in the
x-direction in the presence of flow shear,   dVy/dx > 0 , the wave number  k x changes.

!
ii

"damp

#3/2$t $t

Fig. 3.1.1  Schematic drawing of the collisional damping rate for the zonal flow.
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Fig.3.2.1  Growth rate of the zonal flow for the parametric modulational instability.  A

case of    e !d0/Te = 0.2 " s/Ln  and   k d, x = 0  is shown.

Fig.3.3.1  Random shearing flow and stretching.  Shear flow (denoted by blue arrows or

red arrows) is rapidly changing in time.
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Fig. 3.4.1 The contrast of the linear view of the GKH modes (a) to a more general case
where GKH modes are generated by both linear and nonlinear modulational instabilities
(b). The linear view is hierarchical in that GKH is generated by the linear instability of
zonal flows (ZF), which are already generated by DW. In general, GKH modes can,
however, be generated directly from DW by modulational instability.

V
ZF

x/L

0

0-1 1 -1 -0.5 0 0.5 1

0

1

-1

k
x

x/L

Fig.3.4.2  Trapping of wave-packets in the trough of zonal flow velocity.  The spatial
profile of zonal flow velocity (a) and trajectories in phase space (b).
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Fig.3.4.3 Parameter domains for various theoretical approaches.

0 !
damp

DW

<U2> <N>

ZF

Fig.3.5.1   Amplitude of drift waves  N  and that of zonal flow   U 2  for the case where
the self-nonlinear stabilization effect of zonal flow (e.g., the    !NL V 2  term in
Eq.(2.10b)) exists.  It shows the   !damp -dependence with fixed   !L .
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+

0

<N>

<U2>

<N>

<U2>

!
L
/!
2

!
L
/C
d-Z

Fig.3.5.2 Phase portrait in the absence of nonlinear stabilization effect of drift waves,

  !2 = 0 , [2.14] (a).  Trajectory in the case of no zonal flow damping   !damp = 0  is shown

in (b).  Depending on the initial conditions, the system reaches different final states, in

which the waves are quenched.

Fig.3.5.3  Normalized amplitude of zonal flow  Zk  as a function of the normalized
damping rate   !z = !damp/! L .  Quoted from [2.23].
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Fig.3.5.4   Amplitude of drift waves (normalized to   2!L/!2 ) in the stationary state as a
function of the collisional damping rate of zonal flow   !damp .  The horizontal axis is
taken   !damp/!L  in the unstable region   k r < k rc .  In this figure,  A  is a parameter that is
in proportion to    Cd! Z/"2 . (quoted from [3.44].)
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(a) (b)

(c)

Fig.3.5.5   Temporal evolution of drift wave energy, zonal flow and the average wave
number.  cases of   !L " 0 ,   !damp " 0 ,   !2 " 0  (a),   !2 = 0  (b) and   !damp=0  (c) are shown.

[3.92].
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Fig.3.5.6  Coherent profile of normalized zonal flow vorticity.
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semi-
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Fig.3.5.7  Phase diagram for the case of mutual interactions between intermediate scale

and micro modes.

0 U
crit

<N>

U
ZF

dU
ZF

/dt < 0

dU
ZF

/dt > 0!
crit

/!
2

zonal flow 
vorticity

drift wave 
amplitude

!
L

0 !
crit

Fig.3.5.8  Marginal stability boundary for the growth of the zonal flow is shown by the
solid line in the limit of   !damp = 0  (a).  Dotted line indicates the marginal stability

condition for the drift waves (a).  The excited energy of waves and flows as a function of
the growth rate of drift waves, in the limit of   !damp = 0  (b).
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Fig.3.5.9  The diagram, indicating the regions of residual drift wave, and zonal flow
turbulence as well as the region where they coexist in the    !L, !damp  plane.

Fig.4.1  Contour of electrostatic potential from the simulation of [2.6].
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(c)

Fig. 4.3 Radial size of turbulent eddies shown in colored contour of ambient density

fluctuation gets reduced due to the random shearing by self-generated    E! B   zonal flows

from gyrokinetic particle simulation, (a) and (b) (from [2.16]).  (c) is quoted from

http://fusion.gat.com/comp/parallel/gyro_gallery.html.

Fig.4.3.  Temporal evolution of the amplitude of the zonal flow, on log scale (a), and

turbulence level (b) and (c) on linear scale [2.13].
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Fig.4.4  k r  kr spectrum of the ambient density fluctuation from gyrokinetic particle

simulation is broadened due to random shearing of eddies by self-generated    E! B  flows

(dashed lines) [3.77]

Fig.4.5  Dependence of ion thermal conductivity by ITG turbulence on the ion

temperature gradient (collisionless limit).  from [4.15]
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Fig. 4.6 Contour of fluctuation spectrum from [2.17].

Fig.4.7  Dependence of the turbulence level (shown by ion thermal conductivity) and

zonal flow amplitude on the ion temperature gradient.  (from [4.16])
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Fig.4.8 Transient burst of ITG turbulence and associated transport in the collisionless

limit. [3.109]

Fig.4.9  Transient evolution of the poloidal flow and approach to the R-H zonal flow.
   K t = ! t /! 0  is the normalized potential and time is normalized to   !ii  .  (from [2.37])
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Fig. 4.10 Ion heat conductivity in nonlinear gyrokinetic simulations
with   R/LT = 5.3  vs the ion-ion collision frequency [2.49].

Drift wave
turbulence

Zonal flows

DRIVESUPPRESS

Collisional
flow damping SUPPRESS

Inhomoge-
neity

Nonlinear
flow damping

energy
return

DRIVE

Fig. 4.11  Schematic illustration of the self-regulation.  In the right circle, 'energy return'

indicates the process of energy return to drift waves (being investigated.)
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Fig. 4.12  Cross phase evaluated at the radial position where the ZFs are persistently
localized (   r/a = 0.8 ) for all the simulations with   !* = 0.02  versus time.    !pfd , the
poloidal damping rate normalized to   cs/qR , is varied as indicated. [4.19].

Fig.4.13 Frequency spectrum of the zonal flows in collisionless trapped electron mode

(CTEM) turbulence. Note a peak of pure zonal flow near   ! = 0  and that at GAO

frequency    !GAO = vThi/R .  The influence of non-adiabatic response of electrons is

illustrated.  The case without (left) and with (right) are shown.  In the presence of

nonadiabatic response of electrons, the power spectrum of zonal flow component

becomes wider.  [4.23]
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Fig.4.14  Snapshots of the zonal    E! B  flow, ITG amplitude, and effective temperature

profile in the nonlinear stage.  [4.26]

Fig.4.15 Growth rate of tertiary instability [2.51]
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Fig.4.16  Asymptotic convergence of the turbulent transport in the collisionless limit.

from [4.33]

Fig.4.17  Two dimensional contour of the electrostatic potential perturbation of ETG

turbulence near the q-minimum surface   x = 0 .[2.52]

Fig. 4.18 Frequency spectrum of the zonal flows from gyrofluid simulation of edge drift-

Alfven turbulence [4.66]. Note a significant intensity spectrum from zero frequency all

the way up to the GAO frequency   !GAO ,  without a distinct single peak.
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!F

x
y

z

Rossby wave

Fig. 5.1.2 Rotating sphere.  Coordinates on a rotating sphere are: The x-axis in the

direction of latitude (from pole to equator), y-axis in the direction of longitude, and z-axis

in the vertical direction.  Propagation of Rossby wave in the westward direction.
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Fig.5.2.1 Schematic drawing of convection phenomena in Jovian atmosphere.  Schematic

depiction of zonal belt formation in secondary bifurcation scenario is also shown.

Northern and southern projections of Taylor column onto Weather Layer with tilting

modulation and bifurcation.
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Fig.5.2.2 The assumptions and logic of the two scenarios.
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Fig.5.2.3 Cartoon of secondary bifurcation scenario [5.4].

Fig.7.1 Identification of zonal flow on CHS. Geometry of measurements and fluctuation
spectra. (a) Observation points of dual heavy ion beam probes in CHS. (b) Power spectra
of a electric field, and coherence between electric fields from the HIBPs. In the frequency
range from 0.3 kHz to 1 kHz, the activity to show long range correlation is found to be
zonal flow. A peak at the GAM frequency is shown by an insert.  Fluctuations in the
range of tens of kHz are drift-wave turbulence. [7.17]
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Fig. 7.2 Spectra measured with the modified forked probe. Peaks of zonal flow and
ambient turbulence (AT) are shown.  (a) Auto power spectrum of    V!1  (    !r = – 0.2 cm ).
(b) Auto power spectrum of    V!2  (    !r = – 1.2 cm ). (c) Cross power spectrum. (d)
Coherency spectrum. (e) Wave number spectrum. (c), (d). and (e) were calculated from
the long distance correlation between     V!1  and    V!2 . [7.19]

Fig.7.3 Frequency of observed oscillations (attributed to GAM) and it dependence on

temperature.  Measurement of D III-D is compared to the calculated GAM frequency

(left) [7.37].
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