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Abstract

Essays in Panel Data and Network Econometrics

by

Kevin Dano

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Bryan S. Graham, Chair

This dissertation studies how to leverage the unique characteristics of panel and network
data, particularly repeated observations and symmetries, to recover the structural parame-
ters of three econometric models of theoretical and applied interest.

In Chapter 1, I study parameter identifiablility and estimation of dynamic discrete choice
models with strictly exogenous regressors, fixed effects and logistic errors. Specifications of
this kind are popular in Labor Economics and Industrial Organization to disentangle the
sources of serial persistence in agents’ decisions. The primary challenge lies in the nonlin-
earity of these models, making the treatment of fixed effects difficult in short panel settings.
I introduce a new method that exploits the structure of logit-type probabilities and elemen-
tary properties of rational fractions to derive moment restrictions in a broad class of models.
This includes binary response models of arbitrary lag order as well as first-order panel vec-
tor autoregressions and dynamic multinomial logit models. These moment restrictions are
free from the fixed effects and provide a natural way to estimate the common parameters
via the Generalized Method of Moments. I further establish the identification of a class of
average marginal effects which are often of importance in empirical work. The approach is
illustrated through an analysis of the dynamics of drug consumption amongst young people
in a nationally representative sample.

In Chapter 2, coauthored with Stéphane Bonhomme and Bryan Graham, we study identi-
fication in a binary choice panel data model with a single predetermined binary covariate
(i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The
choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific het-
erogeneity, as well as the feedback process that maps lagged outcomes into future covariate
realizations, are left unrestricted. This setup departs from Chapter 1 which imposed strict
exogeneity of explanatory variables, effectively ruling out any influence of past outcomes on
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covariates. In this framework, we provide a simple condition under which θ is never point-
identified, no matter the number of time periods available. This condition is satisfied in
most models, including the logit one. We also characterize the identified set of θ and show
how to compute it using linear programming techniques. While θ is not generally point-
identified, its identified set is informative in the examples we analyze numerically, suggesting
that meaningful learning about θ may be possible even in short panels with feedback. As a
complement, we report calculations of identified sets for an average partial effect, and find
informative sets in this case as well.

In Chapter 3, I present an approach to address network endogeneity in a linear social inter-
action model. I consider a setting wherein individual-specific latent random effects influence
both outcomes and link formation modelled as a conditionally independent dyad process.
Using the exchangeability properties of the framework, I show that controlling or matching
individuals by degree-centrality can be sufficient to eliminate the omitted variable bias in-
duced by endogenous peer selection. I leverage this result and insights from Bramoullé et al.
(2009) for the case of exogenous friendships to present two simple strategies for the identifi-
cation and estimation of social effects. Asymptotic properties of the proposed estimators are
derived for clustered samples and I illustrate their performance in Monte Carlo simulations.
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Demian Pouzo and James Powell for their generous support and guidance throughout my
graduate studies. Bryan, in particular, deserves special acknowledgment for the time he
has dedicated to me, for his encouragements, for being an exceptional mentor, and for his
profound influence on my interest in econometrics, panel data and networks. I also want to
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Chapter 1

Transition Probabilities and Moment
Restrictions in Dynamic Fixed Effects
Logit Models

1.1 Introduction

The analysis of state dependence is a classic and important topic in many areas of eco-
nomics. Several discrete processes such as welfare and labor force participation manifest
strong serial persistence, and economists have sought various methods to unravel the un-
derlying factors. In this chapter, we reexamine the estimation of one notable set of models
employed for this purpose: discrete choice models with lagged dependent variables, strictly
exogenous regressors, fixed effects and logistic errors. We shall refer to this class of models as
dynamic fixed effects logit models (DFEL) throughout. Specifications of this kind are used
to discriminate between “structural” state dependence, i.e the causal effect of past choices
on current outcomes, and heterogeneity, i.e the serial correlation induced by unobserved in-
dividual attributes (Heckman (1981)). An example of this approach is the analysis of welfare
participation in Chay et al. (1999). There has been considerable interest in this family of
panel data models in econometrics, with a recent surge in attention following new develop-
ments reported in Honoré and Weidner (2020). One general reason is that DFEL models
stand out as a rare case of nonlinear dynamic panel data models for which solutions to the
incidental parameters problem (Neyman and Scott (1948)) and initial conditions problem
(e.g Heckman (1981)) have been known to exist in short panels1.

In the “pure” version of the basic model which abstracts from covariates other than a first
order lag, Cox (1958a), Chamberlain (1985b) and Magnac (2000) showed that the autore-
gressive parameter can be consistently estimated by conditional likelihood. This approach

1The incidental parameters problem refers to the general inconsistency of maximum likelihood in short
panels. The initial conditions problem refers to the general difficulty of formulating a correct conditional
distribution for the initial observations given the fixed effects and covariates.
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relies on the existence of a sufficient statistic linked to the logistic assumption to eliminate
the fixed effect. In an important subsequent paper, Honoré and Kyriazidou (2000) extended
this idea to a setting with strictly exogenous regressors and showed that the conditional
likelihood approach remains viable if one can further condition on the regressors being equal
in specific periods. This strategy was also found to be effective in dynamic multinomial logit
models (Honoré and Kyriazidou (2000)), panel vector autoregressions (Honoré and Kyriazi-
dou (2019)) and dynamic ordered logit models (Muris et al. (2020). At the same time, it has
also been noted that the necessity to be able to “match” the covariates imposes two limita-
tions for the conditional likelihood approach: it inherently rules out time effects and implies
rates of convergence slower than

√
N for continuous explanatory variables. Furthermore,

calculations from Honoré and Kyriazidou (2000) suggested that it does not easily extend to
models with a higher lag order. These shortcomings have motivated the search for alterna-
tive methods of estimation.

Recently, Kitazawa et al. (2013, 2016) and Kitazawa (2022) revisited the AR(1) logit
model - autoregressive of order one - of Honoré and Kyriazidou (2000) and proposed a
transformation approach that deals with the fixed effects without restricting the nature of
the covariates besides the conventional assumption of strict exogeneity. Their methodology
leads to moment restrictions that can serve as a basis to estimate the model parameters at√
N -rate by GMM; even with continuous regressors. In parallel work, Honoré and Weidner

(2020) also derived moment conditions for the AR(1), AR(2) and AR(3) logit models in
panels of specific length using the functional differencing technique of Bonhomme (2012).
Their approach is partly numerical and relies on symbolic computing (e.g Mathematica) to
obtain analytical expressions but has a wider scope of potential applications, e.g dynamic
ordered logit specifications (Honoré et al. (2021)). In another recent paper, Dobronyi et al.
(2021), the authors analyze the full likelihood of AR(1) and AR(2) logit models with discrete
covariates under a new angle that reveals a connection to the truncated moment problem in
mathematics. Drawing on well established results in that literature, they derive moment
equality and new moment inequality restrictions that fully characterize the sharp identified
set.

In this chapter, we introduce a new systematic approach to construct moment restric-
tions in DFEL models with additive fixed effects, i.e when fixed effects are heterogeneous
“intercepts”. This class of models encompasses most specifications studied in prior work
but excludes models with heterogeneous coefficients on lagged outcomes and/or regressors
as in Chamberlain (1985b) and Browning and Carro (2014). Unlike some recent competing
approaches, we do not require numerical experimentation nor symbolic computing. Rather,
as we shall see in examples, we exploit the common structure of logit-type transition proba-
bilities and elementary properties of rational fractions, to obtain analytic expressions for the
identifying moments. We shall focus our attention on deriving valid moment functions for
AR(p) models with arbitrary lag order p ≥ 1 as well as first-order panel vector autoregres-
sions and dynamic multinomial logit models (Magnac (2000)).

Our methodology exploits two key observations. First, the transition probabilities of
logit-type models can often be expressed as conditional expectations of functions of observ-
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ables and common parameters given the initial condition, the regressors and the fixed effects.
We shall refer to these moment functions as transition functions. They have the important
feature of not depending on individual fixed effects. Second, as soon as T ≥ p+ 2, where T
denotes the number of observations post initial condition, many transition probabilities in
periods t ∈ {p + 1, . . . , T − 1} admit at least two distinct transition functions. The combi-
nation of these two features motivates a two-step approach to obtain moment restrictions in
panels of adequate length. In the first step, we shall compute the model transition functions.
Then, the second step will simply consist in differencing two transition functions associated
to the same transition probability. We show that a careful application of this procedure
delivers all the moment equality restrictions available in the binary response case. We shall
further elaborate on these steps in examples and use the resulting moment functions to de-
rive new identification results. At a high level, the approach we advocate in this chapter
consists in solving a sequence of problems with identical structure period by period instead
of solving directly a large system of equations based on the model full likelihood as in Honoré
and Weidner (2020) and Dobronyi et al. (2021). As a consequence, our procedure remains
tractable when the number of time periods increases and in models with higher order lags.

Besides the aforementioned papers, our work also connects to a line of research studying
the identification of features of the distribution of fixed effects in discrete choice models.
One branch in this literature has focused on developing general optimization tools to com-
pute sharp numerical bounds on average marginal effects. This includes most notably the
linear programming method of Honoré and Tamer (2006), recently adapted by Bonhomme
et al. (2023) to the case of sequentially exogenous covariates, and the quadratic programming
method of Chernozhukov et al. (2013). A second branch in this literature has sought instead
to harness the specificities of logit models to obtain simple analytical bounds. In static
logit models, Davezies et al. (2021) exploit mathematical results on the moment problem to
formulate sharp bounds on the average partial effects of regressors on outcomes. In DFEL
models, Aguirregabiria and Carro (2021) are the first to prove the point identification of
average marginal effects in the baseline AR(1) logit model when T ≥ 3. In related work,
Dobronyi et al. (2021) make use of their moment equality and moment inequality restric-
tions to establish sharp bounds on functionals of the fixed effects such as average marginal
effects and average posterior means in AR(1) and AR(2) specifications. We complement
these results as a byproduct of our methodology: average marginal effects and their variants
in AR(p) models, with arbitrary p ≥ 1 are merely differences of average transition functions.

The remainder of the chapter is organized as follows. Section 1.2 presents the setting
and our main objective. Section 1.3 introduces some terminology and gives an outline of
our procedure to construct moment restrictions. Section 1.4 implements our approach in
AR(p) logit models with p ≥ 1 and discusses identification of model parameters and average
marginal effects. The semiparametric efficiency bound for the AR(1) is also presented for
the base case of four waves of data. Section 1.5 discusses extensions to the VAR(1) and
the dynamic multinomial logit model with one lag, MAR(1) for short. In Section 1.6, we
present an empirical illustration on the dynamics of drug consumption amongst young people
and Section 1.7 offers concluding remarks. A complementary set of Monte Carlo simulations
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showing the small sample performance of GMM estimators based on our moment restrictions
is available in Appendix Section 1.8.4. Proofs are gathered in the Appendix.

1.2 Setting, assumptions and objective

Let i = 1, . . . , N denote a population index and t = 0, . . . , T be an index for time. We
study DFEL models which may be viewed as threshold-crossing econometric specifications
describing a discrete outcome Yit through a latent index involving lagged outcomes (e.g
Yit−1), strictly exogenous regressors Xit, an individual-specific time-invariant unobservable
Ai and an error term ϵit. The canonical example is the AR(1) model:

Yit = 1{γ0Yit−1 +X ′
itβ0 + Ai − ϵit ≥ 0}, t = 1, . . . , T

and we shall concentrate more broadly on cases where Ai is additively separable from the
other explanatory variables. An initial condition that we will generically denote Y 0

i com-
pletes such models to enable dynamics. The common parameter θ0 is one target of interest
and governs the influence of lagged outcomes and the regressors on the contemporaneous
outcome. Other quantities of interest include counterfactual parameters such as average
marginal effects.

Throughout, we leave the joint distribution of (Y 0
i , Xi, Ai) unrestricted where

Xi = (Xi1, . . . , XiT ) and thus refer to Ai as a fixed effect in common with the literature. The
schocks ϵit are assumed to be serially independent logistically distributed, independent of
(Y 0

i , Xi, Ai), except for the MAR(1) model where they are instead extreme value distributed.
Finally, we shall assume that (Yi, Y

0
i , Xi, Ai) are jointly i.i.d across individuals.

The data available to the econometrician consists of the initial condition Y 0
i , the outcome

vector Yi = (Yi1, . . . , YiT ), and the covariates Xi for all N individuals. Interest centers
primarily on the identification and estimation of θ0 in short panels, i.e for fixed T . To
this end, the chief objective of this chapter is to show how to construct moment functions
ψθ(Yi, Y

0
i , Xi) free of the fixed effect parameter that are valid in the sense that:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi, Ai
]
= 0 (1.1)

When this is possible, the law of iterated expectations implies the conditional moment:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi

]
= 0

which can in turn be leveraged to assess the identifiability of θ0 and form the basis of
a GMM estimation strategy. This is the central idea underlying functional differencing
(Bonhomme (2012)) and was applied by Honoré and Weidner (2020) to derive valid moment
conditions for a class of dynamic logit models with scalar fixed effects. We borrow the same
insight but instead of searching for solutions numerically on a case-by-case basis, we propose
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a complementary systematic algebraic procedure to recover the model’s valid moments 2.
In doing so, we flesh out the mechanics implied by the logistic assumption which in turn
suggest a blueprint to deal with estimation of general DFEL models. For example, we are
able to characterize the expressions of valid moment functions in AR(p) models for arbitrary
p > 1 which to the best of our knowledge is a new result in the literature. Furthermore,
our approach carries over to multidimensional fixed effect specifications: VAR(1), dynamic
network formation models and the MAR(1) in which searching for moments numerically is
cumbersome or intractable.

In what follows, we shall use the shorthand Y t2
it1

= (Yit1 , . . . , Yit2) to denote a collection of
random variables over periods t1 to t2 with the convention that Y t2

it1
= ∅ if t1 > t2. Likewise,

we may use the notation yt2t1 = (yt1 , . . . , yt2) to denote any (t2−t1)-dimensional vector of reals
with the convention yt2t1 = ∅ for t1 > t2. Elements 1n and 0n shall refer to the n-dimensional
vectors of ones and zeros respectively. The support of the outcome variable Yit shall be
denoted Y . We let ∆ denote the first-differencing operator so that ∆Zit = Zit−Zit−1 for any
random variable Zit and make use of the notation Zits = Zit−Zis for s ̸= t to accommodate
long differences. We use 1{.} for the indicator function; Im(f), ker(f), rank(f) to denote
the image, the nullspace and the rank of a linear map f .

1.3 Outline of the procedure to derive valid moment

functions

Let T ≥ 1. Given an initial condition y0 ∈ Yp, p ≥ 1 being the lag order of the model,
and strictly exogenous regressors Xi ∈ RKx×T , we denote the (one-period ahead) transition
probability in period t ≥ 1 from state (lt1, y

0) ∈ Y t × Yp to state k ∈ Y as:

π
k|lt1,y0
t (Ai, Xi) = π

k|lt1,y0
t (Ai, Xi; θ0) ≡ P (Yit+1 = k | Y 0

i = y0, Y t
i1 = lt1, Xi, Ai)

With p lags, the markovian nature of the models considered in this chapter imply that

π
k|lt1,y0
t (Ai, Xi) will not depend on the entire path of past outcomes but only on the value of

the most recent p outcomes. For instance, in an AR(1) model where p = 1, we have:

π
k|lt1,y0
t (Ai, Xi) = P (Yit+1 = k | Y 0

i = y0, Y t
i1 = lt1, Xi, Ai) = P (Yit+1 = k | Yit = lt, Xi, Ai)

and thus we will suppress the dependence on (y0, l1, . . . , lt−1) and write π
k|lt
t (Ai, Xi). We

shall proceed analogously for the more general case p ≥ 1.

We call a transition function associated to a transition probability π
k|lt1,y0
t (Ai, Xi) any

2Dobronyi et al. (2021) and Kitazawa (2022) also have an algebraic approach but our methodologies are
very different. The first paper uses the full likelihood of the model and focuses on the AR(1) and special
instances of the AR(2) model. The second paper has a transformation approach adapted to the AR(1) model.
Our emphasis here is primarily on developing an approach that is tractable for a large class of models.
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moment function ϕ
k|lt1,y0
θ (Yi, Y

0
i , Xi) of the data and the common parameters verifying:

E
[
ϕ
k|lt1,y0
θ0

(Yi, Y
0
i , Xi) |Y 0

i , Xi, Ai

]
= π

k|lt1,y0
t (Ai, Xi) (1.2)

With these notions in hand, we are ready to describe our two-step approach to derive valid
moment functions in the sense of equation (1.1). In Step 1), we begin by computing the
model’s transition functions. Our procedure requires a minimum of T = p + 1 periods of
observations to accommodate arbitrary regressors and initial condition. In this case, we can
get analytical formulas for the transition functions associated to the transition probabilities
in period t = p and Theorem 1 and Theorem 3 below imply that they are unique. However,
this is not immediately helpful to get moment (equality) restrictions on θ0. We require one
more period. As soon as T ≥ p+2, we explain how to construct distinct transition functions
associated to the same transition probabilities in periods t ∈ {p + 1, . . . , T − 1}. The key
ingredient is the use of partial fraction decompositions for rational fractions adapted to the
structure of the transition probabilities. It is then a matter of taking differences of two
transition functions associated to the same transition probability to obtain valid moment
functions; we refer to this last step as Step 2). The ensuing sections demonstrate this
procedure in scalar and multidimensional fixed effect models.

1.4 Scalar fixed effect models

1.4.1 Moment restrictions for the AR(1) logit model

For exposition, we begin with the baseline AR(1) logit model with fixed effects introduced
above:

Yit = 1{γ0Yit−1 +X ′
itβ0 + Ai − ϵit ≥ 0}, t = 1, . . . , T (1.3)

Here, Y = {0, 1}, θ0 = (γ0, β
′
0) ∈ R × RKx , the initial condition Y 0

i consists of the binary-
valued random variable Yi0 and Ai ∈ R.

1.4.1.1 The number of moment restrictions in the AR(1)

We start out by enumerating the moment restrictions implied by the model. This will
provide a means to assess the exhaustiveness of our approach. To this end, let Ey0,x denote
the conditional expectation operator mapping any function of the outcome variable Yi to its
conditional expectation given Yi0 = y0, Xi = x and the fixed effect Ai, i.e

Ey0,x : RYT −→ RR

ϕ(.; y0, x) 7−→ E
[
ϕ(Yi, y0, x)|Yi0 = y0, Xi = x,Ai = .

]
For example, for any y ∈ YT , Ey0,x

[
1{. = y}

]
yields the conditional probability of observing

history y for all possible values of the fixed effect, i.e:

Ey0,x
[
1{. = y}

]
= P (Yi = y|Yi0 = y0, Xi = x,Ai = .)
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where P (Yi = y|Yi0 = y0, Xi = x,Ai = a) =
T∏
t=1

eyt(γ0yt−1+x′tβ0+a)

1+eγ0yt−1+x′tβ0+a
, ∀a ∈ R . Then, we have

the following result,

Theorem 1. Consider model (1.3) with T ≥ 1 and initial condition y0 ∈ Y. Suppose that
for any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Y, γ0y + x′tβ0 ̸= γ0ỹ + x′sβ0 if t ̸= s or y ̸= ỹ.

Then, the family Fy0,T =
{
1, π

y0|y0
0 (., x), (π

0|0
t (., x), π

1|1
t (., x))T−1

t=1

}
of size 2T forms a basis of

Im(Ey0,x) and dim
(
ker(Ey0,x)

)
= 2T − 2T .

Theorem 1 formalizes the intuition that the transition probabilities summarize the parametric
component of the model: 2T histories are possible yet only 2T basis elements are necessary
to fully characterize their conditional probabilities. This follows from the observation that
when the covariate index 3 of each transition probability differ, the conditional probability
of each history y ∈ YT is a ratio of polynomials in ea, where the numerator has lower degree
than the denominator, and the later is a product of distinct irreducible terms. A sufficient
condition for this is that γ0 ̸= 0 and that one regressor is continuously distributed with
non-zero slope. In turn, standard results on partial fraction decompositions ensure that this
ratio can be expressed as a unique linear combination of transition probabilities. To finally
conclude that Fy0,T is a basis of Im(Ey0,x), we leverage upcoming results demonstrating that
the transition probabilities live in Im(Ey0,x) as expectations of transition functions.

Importantly, since ker(Ey0,x) is the set of valid moment functions verifying equation (1.1),
Theorem 1 tells us that the AR(1) model features 2T − 2T linearly independent moment
restrictions in general. This is a consequence of the rank nullity theorem for linear maps
with finite dimensional domains. The fact that 2T − 2T moment conditions are available for
the AR(1) appeared initially as a conjecture in Honoré and Weidner (2020) and was later
established by Dobronyi et al. (2021) using different arguments from here. They do not
emphasize the role of the transition probabilities. Our ideas extend naturally to the case
of arbitrary lags which was hitherto an open problem. We discuss this extension in Section
1.4.4.1.

Remark 1 (Counting moments in logit models). The idea of decomposing the conditional
probabilities of all choice histories in a basis provides a useful device to infer a lower bound
on the number of moment restrictions in logit models. If one can further prove that elements
of this basis belong to the image of the conditional expectation operator, then this lower
bound coincides with the exact number of moment restrictions.

• In the static panel logit model of Rasch (1960), γ0 = 0 and we have

π
1|1
t (., x) = 1− π

0|0
t (., x). Thus, provided that x′tβ0 ̸= x′sβ0 for all t ̸= s, the family

FT =
{
1, (π

0|0
t (., x))T−1

t=0

}
spans the image of the conditional expectation operator.

This implies at least 2T − (T + 1) moment restrictions. It turns out that 2T − (T + 1)
is precisely the total number of moment restrictions for this model. This follows from

3We refer to the quantity γ0yt−1 + x′tβ0 for a given period t.
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Remark 6 below which characterizes the transition functions associated to each element
of FT .

• In the Cox (1958a) model, γ0 ̸= 0 and β0 = 0 and the transition probabilities are:
π0|0(a) = 1

1+ea
and π1|1(a) = eγ0+a

1+eγ0+a (or equivalently π0|1(a) = 1
1+eγ0+a ). See the next

section for further details. In this case, the family

Fy0,T =

{
1,
(
π0|0(.)j, π0|1(.)j

)T−1

j=1
, π0|y0(.)T

}
which consists of powers of the time-

invariant transition probabilities spans the image of the conditional expectation oper-
ator. Since |Fy0,T | = 2T , the model produces at least 2T − 2T linearly independent
moment restrictions.

Remark 2 (A matrix perspective). Since Ey0,x is a linear map, it admits a unique 2T ×
2T matrix representation Λy0,x where each row translates the conditional probability of a
choice history y ∈ YT in terms of the transition probabilities of Fy0,T

4. From this point
of view, valid moments correspond to 2T -vectors ψ in the left nullspace of Λy0,x, meaning
ψ′Λy0,x = 0. Constructing Λy0,x and then solving this 2T linear system of equations in 2T

unknowns directly is straightforward using symbolic tools when T is “small” (e.g Dobronyi
et al. (2021), Honoré and Weidner (2020)) but is computationally impractical otherwise.
Instead, we propose a constructive approach to back out analytic expressions of the valid
moment functions that is tractable for arbitrary values of T .

Having clarified the total count of moment restrictions in the AR(1) logit model, we next
discuss how to construct them with our two-step procedure.

1.4.1.2 Construction of valid moment functions for the pure model

In the absence of exogenous regressors, model (1.3) simplifies to:

Yit = 1{γ0Yit−1 + Ai − ϵit ≥ 0}, t = 1, . . . , T (1.4)

which was first introduced by Cox (1958a) and then revisited in Chamberlain (1985b),
Magnac (2000). These papers established the identification of γ0 for T ≥ 3 via conditional
likelihood based on the insight that (Yi0,

∑T−1
t=1 Yit, YiT ) are sufficient statistics for the fixed

effect. Our methodology is conceptually different as we seek to directly construct moment
functions verifying equation (1.1).

For what follows, it is helpful to remember that the individual-specific transition proba-
bility from state l to state k is time-invariant and given by:

πk|l(Ai) = P (Yit+1 = k|Yit = l, Ai) =
ek(γ0l+Ai)

1 + eγ0l+Ai
, ∀(l, k) ∈ Y

4Entries of this matrix may be found using for example the identities in Appendix Lemma 8 or any other
standard textbook tools for rational fractions.
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Step 1). We shall begin by deriving the transition functions for π0|0(Ai) and π1|1(Ai).
Observe that π1|0(Ai) and π

0|1(Ai) are effectively redundant since probabilities sum to one.
A natural starting place is to investigate the case T = 2, i.e 2 periods of observations after
the initial condition. Recalling definition (1.2), we search for ϕ

0|0
θ (Yi2, Yi1, Yi0), respectively

ϕ
1|1
θ (Yi2, Yi1, Yi0), whose conditional expectation given (Yi0, Ai) yields π0|0(Ai), respectively
π1|1(Ai). For the purposes of illustration and to show the kind of calculations arising broadly

in DFEL models, let us derive ϕ
0|0
θ (Yi2, Yi1, Yi0). By Bayes’s rule:

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1∑
y2=0

1∑
y1=0

P (Yi2 = y2|Yi1 = y1, Ai = a)P (Yi1 = y1|Yi0 = y0, Ai = a)ϕ
0|0
θ (y2, y1, y0)

=
eγ0y0+a

1 + eγ0y0+a

(
eγ0+a

1 + eγ0+a
ϕ
0|0
θ (1, 1, y0) +

1

1 + eγ0+a
ϕ
0|0
θ (0, 1, y0)

)
+

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
where the second equality uses the logistic hypothesis. By quick inspection, we see that

the terms in the first parenthesis have (1 + eγ0+a) in their denominator unlike π0|0(Ai).

Because −e−γ0 is not a pole of π0|0(Ai)
5, we conclude that ϕ

0|0
θ (1, 1, y0) = ϕ

0|0
θ (0, 1, y0) = 0.

This first deduction leaves us with

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
Now, since π0|0(Ai) does not depend on y0, we must cancel the denominator (1 + eγ0y0+a).

To achieve this, we must set: ϕ
0|0
θ0
(1, 0, y0) = C0e

γ0y0 , ϕ
0|0
θ0
(0, 0, y0) = C0 for some constant

C0 ∈ R \ {0}. Then,

E
[
ϕ
0|0
θ0
(Yi2, Yi1, Yi0)|Yi0 = y0, Ai = a

]
= C0

1

1 + ea

and C0 = 1 is the appropriate normalization to obtain the desired transition function. Of
course, the exact same logic applies for ϕ

1|1
θ0
(Yi2, Yi1, Yi0) and π

1|1(Ai).
This short calculation provides a useful recipe for the general case T ≥ 2. We learned

that we can search for functions of three consecutive outcomes ϕ
k|k
θ (Yit+1, Yit, Yit−1) such that:

ϕ
k|k
θ (Yit+1, Yit, Yit−1) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1) | Yi0, Y t−1
i1 , Ai

]
= πk|k(Ai)

5A pole of a rational function is a root of its denominator. Formally, we are substituting u = ea and we
are extending π0|0(u) to the real line.
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The first restriction is a functional form that eliminates terms with inadequate poles after
taking expectations. The second restriction is a normalization condition to match the desired
transition probability. Following this argument, we arrive at the expressions in Lemma 1.

Lemma 1. In model (1.4) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (1− Yit)e

γYit+1Yit−1

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = Yite

γ(1−Yit+1)(1−Yit−1)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π0|0(Ai) =

1

1 + eAi

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π1|1(Ai) =

eγ0+Ai

1 + eγ0+Ai

Remark 3 (Connection to Kitazawa). Interestingly, Lemma 1 is a reformulation of results
first shown by Kitazawa et al. (2013, 2016), Kitazawa (2022), albeit with a very different logic
than the calculations displayed above. We set out the connection between our respective
approaches in Section 1.4.3 where we also discuss the case with exogenous regressors.

Step 2). The second step in the agenda is the construction of valid moment functions.
Because the transition probability of the model are time-invariant, one trivial way to achieve
this is to consider the pairwise difference of ϕ

k|k
θ (Yit+1, Yit, Yit−1) and ϕ

k|k
θ (Yis+1, Yis, Yis−1) for

any feasible s ̸= t. This is the content of Proposition 1. We will need a minimum of four total
periods of observations, which coincides with the requirements of the conditional likelihood
approach.

Proposition 1. In model (1.4) with T ≥ 3, let

ψ
k|k
θ (Y t+1

it−1, Y
s+1
is−1) = ϕ

k|k
θ (Yit+1, Yit, Yit−1)− ϕ

k|k
θ (Yis+1, Yis, Yis−1)

for all k ∈ Y, t ∈ {2, . . . , T − 1} and s ∈ {1, . . . , t− 1}. Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y s−1

i1 , Ai

]
= 0

Remark 4 (Efficient GMM). Given that the conditional likelihood is semi-parametrically
efficient for T = 3 (Gu et al. (2023), Hahn (2001)), it is natural to ask whether the approach
advocated here accounts for all the information in the model in that case. It turns out that
it does. Specifically, letting sci(θ) denote the conditional scores when y0 = 0 as in Hahn
(2001), we have:

sci(γ0) =
1

(1 + eγ0)(e−γ0 − 1)

(
ψ

0|0
θ (Y 3

i1, Y
2
i1, 0) + ψ

1|1
θ (Y 3

i1, Y
2
i1, 0)

)
where the right-hand side corresponds to the efficient moment for the moment restriction
E
[
ψθ(Y

3
i1, Y

2
i0)|Yi0 = 0

]
= 0, ψθ(Y

3
i1, Y

2
i1, 0) = (ψ

0|0
θ (Y 3

i1, Y
2
i1, 0), ψ

1|1
θ (Y 3

i1, Y
2
i1, 0))

′.
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1.4.1.3 Construction of valid moment functions with strictly exogenous
regressors

In this subsection, we move on to the AR(1) logit model with strictly exogenous covariates
characterized by equation (1.3).

Step 1). We employ the same shortcut recipe as in the “pure” case and begin by looking

for moment functions ϕ
0|0
θ (.) and ϕ

1|1
θ (.) verifying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1, Xi)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi), k ∈ Y

where this time

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

ek(γ0l+X
′
it+1β0+Ai)

1 + eγ0l+X
′
it+1β0+Ai

, ∀(k, l) ∈ Y2

The same simple calculations described just above lead to the expressions in Lemma 2. The
only (expected) change is the appearance of a new term +/ −∆X ′

it+1β which accounts for
the presence of covariates in the model.

Lemma 2. In model (1.3) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+∆X′
it+1β)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eAi+X′
it+1β0

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X
′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

At this point, it is important to highlight that unlike previously, the transition probabilities
are covariate-dependent. The upshot is that the naive difference of ϕ

k|k
θ (Yit+1, Yit, Yit−1, Xi)

and ϕ
k|k
θ (Yis+1, Yis, Yis−1, Xi) for s ̸= t no longer leads to valid moment functions in general.

Indeed, while Lemma 2 ensures that

E
[
ϕ
k|k
θ (Y t+1

it−1, Xi)− ϕ
k|k
θ (Y s+1

is−1, Xi)|Yi0, Xi, Ai

]
= π

k|k
t (Ai, Xi)− πk|ks (Ai, Xi)

clearly, π
k|k
t (Ai, Xi) − π

k|k
s (Ai, Xi) ̸= 0 when X ′

it+1β0 ̸= X ′
is+1β0

6. Thus, a different logic is
required in the presence of explanatory variables other than a first order lag.

6A matching strategy in the spirit of Honoré and Kyriazidou (2000) may still be applicable when in our
example Xit+1 = Xis+1. However, this is known to lead to estimators converging at rate less than

√
N for

continuous covariates and it rules out certain regressors such as time dummies and time trends.
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The key, as foreshadowed in Section 1.3 is that as soon as T ≥ 3, it is possible to construct
transition functions other than ϕ

k|k
θ (Y t+1

it−1, Xi) also mapping to π
k|k
t (Ai, Xi) in time periods

t ∈ {2, . . . , T − 1}. These new transition functions that we denote ζ
k|k
θ (.) to emphasize

their difference have a particular form. They consist of a weighted combination of past
outcome 1(Yis = k), 1 ≤ s < t, and the interaction of 1(Yis ̸= k) with any transition

function associated to π
k|k
t (Ai, Xi) having no dependence on outcomes prior to period s,

e.g ϕ
k|k
θ (Y t+1

it−1, Xi). This property follows from a partial fraction decomposition presented in
Lemma 8 that exploits the structure of the model probabilities under the logistic assumption.
It relates to the hyperbolic transformations ideas of Kitazawa (2022). In the sequel, we shall
see that this insight carries over to the AR(p) logit model with p > 1. Lemma 3 below gives
the “simplest” additional transition functions that one can construct when T ≥ 3 for the
AR(1) model with exogenous regressors (the only ones when T = 3).

Lemma 3. In model (1.3) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let:

µs(θ) = γYis−1 +X ′
isβ

κ
0|0
t (θ) = X ′

it+1β, κ
1|1
t (θ) = γ +X ′

it+1β

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ)), ω

1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

and define the moment functions:

ζ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = (1− Yis) + ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = Yis + ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

Then,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi)

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi)

When T ≥ 4, it turns out that we can build even more transition functions from those
given in Lemma 3 by repeating the same type of logic based on partial fraction expansions ;
Corollary 3.1 provides a recursive formulation.

Corollary 3.1. In model (1.3) with T ≥ 4, for any t and ordered collection of indices sJ1 ,
J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let

ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = (1− YisJ ) + ω

0|0
t,sJ

(θ)YisJ ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = YisJ + ω

1|1
t,sJ

(θ)(1− YisJ )ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
0|0
t,sJ

(θ), ω
1|1
t,sJ

(θ) defined as in Lemma 3. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi), ∀k ∈ Y
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Step 2). Provided T ≥ 3, the difference between any transition functions associated to
the same transition probabilities in periods t ∈ {2, . . . , T − 1} constitutes a valid candidate
for (1.1). One particularly relevant set of valid moment functions for reasons explained below
is presented in Proposition 2.

Proposition 2. In model (1.3), for all k ∈ Y,
if T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1 , let

ψ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi),

if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying
T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let

ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi),

Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= 0

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= 0

This family of moment functions has cardinality 2T −2T which by Theorem 1 is precisely
the number of linearly independent moment conditions available for the AR(1). To see this,
notice that for fixed (k, Yi0) ∈ Y2, and a given time period t ∈ {2, . . . , T − 1}, Proposition 2
gives a total of:

t−1∑
l=1

(
t− 1

l

)
= 2t−1 − 1

valid moment functions. This follows from a simple counting argument. First, we get
(
t−1
1

)
possibilities from choosing any s in {1, . . . , t − 1} to form ψ

k|k
θ (Y t+1

it−1, Y
s
is−1, Xi). To that,

we must add another
∑t−1

l=2

(
t−1
l

)
possibilities from choosing all feasible sequences sJ1 with

t − 1 ≥ s1 > s2 > . . . > sJ ≥ 1 to form ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi). Summing over

t = 2, . . . , T − 1 and multiplying by 2 to account for the two possible values for k delivers
the result:

2×
T−1∑
t=2

t−1∑
l=1

(
t− 1

l

)
= 2×

T−1∑
t=2

(2t−1 − 1) = 2T − 2T

Furthermore, there is evidence that the family is linearly independent. It is readily verified for
T = 3 since the two valid moment functions produced by the model depend on two distinct
sets of choice histories. This can be seen from their unpacked expressions in equations (1.9)
and (1.10) in the Appendix. Unfortunately, this argument does not carry over to longer
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panels but we have verified numerically that the linear independence property of this family
continues to hold for several different values of T ≥ 4. This suggests that our approach
delivers all the moment equality restrictions available in the AR(1) model with T periods
post initial condition 7.

Remark 5 (Symmetry). The transition functions and valid moment functions of the AR(1)
model share a special symmetry property. Indeed, by inspection the transition functions of
Lemma 2 verify

ϕ
0|0
θ (1− Yit+1, 1− Yit, 1− Yit−1,−Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

It is not difficult to see that this symmetry, i.e substituting Yit by (1 − Yit) and Xit by

−Xit to obtain ϕ
1|1
θ (Y t+1

it−1, Xi) from ϕ
0|0
θ (Y t+1

it−1, Xi) transfers to the other transition functions
of Lemma 3, Corollary 3.1 and ultimately to the valid moment functions of Proposition 2.
This symmetry can be useful for computational purposes.

Remark 6 (Static logit). If γ0 = 0, model (1.3) specializes to the static panel logit model
of Rasch (1960) and our two-step approach is still applicable. For that case, Lemma 2 gives
two moment functions for T = 2:

ϕ
0|0
θ (Yi2, Yi1, Xi) = (1− Yi1)e

−Yi2∆X′
2β

ϕ
1|1
θ (Yi2, Yi1, Xi) = Yi1e

(1−Yi2)∆X′
i2β

such that E
[
ϕ
0|0
θ0
(Y 2

i1, , Xi)|Xi, Ai

]
= 1

1+eX
′
i2

β0+Ai
and E

[
ϕ
1|1
θ0
(Y 2

i1, Xi)|Xi, Ai

]
= eX

′
i2β0+Ai

1+eX
′
i2

β0+Ai
. It

follows that a valid moment function with two periods of observation is

ψθ(Yi2, Yi1, Xi) = ϕ
1|1
θ (Yi2, Yi1, Xi)− (1− ϕ

0|0
θ (Yi2, Yi1, Xi))

= (1− e−∆X′
i2β)

(
Yi1(1− Yi2)e

∆X′
i2β − (1− Yi1)Yi2

)
which is proportional to the score of the conditional likelihood based on the sufficient statistic
Yi1 + Yi2 (Rasch (1960), Andersen (1970), Chamberlain (1980)).

1.4.2 Semiparametric efficiency bound for the AR(1) with
regressors

Honoré and Weidner (2020) gave sufficient conditions to identify θ0 = (γ0, β
′
0)

′ in the AR(1)
model with T = 3. A natural follow-up question is to ask how accurately can θ0 be es-
timated in that case, or equivalently what is the semi-parametric information bound. In
a corrigendum to Hahn (2001), Gu et al. (2023) confirmed that the conditional likelihood

7This is not all the identifying content of the AR(1) specification since we know from Dobronyi et al.
(2021) that the model also implies moment inequality conditions.
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estimator is semiparametrically efficient for T = 3 in the “pure” AR(1) model. However, the
characterization of the semiparametric efficiency bound and the question of what estimator
attains it remain unclear with covariates.

To answer these questions, let ψθ(Y
3
i1, Y

1
i0, Xi) = (ψ

0|0
θ (Y 3

i1, Y
1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi))

′ where
the two components correspond to the valid moment functions of Proposition 2 for T = 3.

Additionally, let D(Xi, y0) = E
[
∂ψθ0

(Y 3
i1,Y

1
i0,Xi)

∂θ′
|Yi0 = y0, Xi

]
and let

Σ(Xi, y0) = E
[
ψθ0(Y

3
i1, Y

1
i0, Xi)ψθ0(Y

3
i1, Y

1
i0, Xi)

′|Yi0 = y0, Xi

]
.

Assumption 1. In model (1.3) with T = 3 and initial condition y0 ∈ {0, 1}, the matrix
E
[
D(Xi, y0)Σ(Xi, y0)

−1D(Xi, y0)
′|Yi0 = y0

]
exists and is nonsingular.

With these notations in hand and under the mild conditions of Assumption 1, Theorem 2
clarifies that the efficient score coincides with the efficient moment for the conditional mo-
ment problem: E

[
ψθ(Y

3
i1, Y

1
i0, Xi)|Yi0 = y0, Xi

]
= 0. Put differently, the maximal efficiency

with which θ0 can be estimated is V0(y0) = E[D(Xi, y0)Σ(Xi, y0)
−1D(Xi, y0)

′|Yi0 = y0]
−1.

This result is in accordance with Remark 4 which noted that the score of the conditional
likelihood without covariates is precisely the efficient moment implied by our conditional
moment restrictions in this case.

Theorem 2. Consider model (1.3) with T = 3. Fix an initial condition y0 ∈ {0, 1} and
suppose that Assumption 1 holds. Then, the semiparametric efficiency bound of θ0 is finite
and given by V0(y0) = E[D(Xi, y0)Σ(Xi, y0)

−1D(Xi, y0)
′|Yi0 = y0]

−1.

The proof of Theorem 2 only involves careful bookkeeping of some tedious algebra and an
application of Theorem 3.2 in Newey (1990). Interestingly, Davezies et al. (2023) presented
analogous results in the static panel data case with three periods of observations.

1.4.3 Connections to other works on the AR(1) logit model

As indicated previously, there is a connection between our methodology and that of Kitazawa
(2022) for the AR(1) model. Indeed, after some algebraic manipulation, we can re-express
the transition functions of Lemma 2 (or Lemma 1 without covariates) as:

ϕ
0|0
θ (Y t+1

it−1, Xi) = 1− Yit − (1− Yit)Yit+1 + (1− Yit)Yit+1e
−∆X′

it+1β

+ δYit−1(1− Yit+1)Yit+1e
−∆X′

it+1β

ϕ
1|1
θ (Y t+1

it−1, Xi) = YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β + δ(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β

where δ = (eγ − 1). Thus, the moment conditions of Lemma 2 imply that we can write:

Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β0 − δ0Yit−1(1− Yit+1)Yit+1e
−∆X′

it+1β0

=
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

+ ϵ
0|0
it
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YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β0 + δ0(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β0

=
eγ0+X

′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

+ ϵ
1|1
it

where E
[
ϵ
0|0
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0 and E

[
ϵ
1|1
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0. These expressions

are the so-called h-form and g-form of Kitazawa (2022) for model (1.3) and were originally
obtained through an ingenious usage of the mathematical properties of the hyperbolic tangent
function. The evident connection between the transition functions and the h-form and g-form
offers an interesting new perspective on the transformation approach of Kitazawa (2022) for
the AR(1) model. If we further define

Uit = Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β − δYit−1(1− Yit+1)Yit+1)e
−∆X′

it+1β

Υit = YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β + δ(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β

the two moment functions of Kitazawa (2022) for the AR(1) model write

ℏUit = Uit − Yit−1 − tanh

(
−γYit−2 + (∆Xit +∆Xit+1)

′β

2

)
(Uit + Yit−1 − 2UitYit−1)

ℏΥit = Υit − Yit−1 − tanh

(
γ(1− Yit−2) + (∆Xit +∆Xit+1)

′β

2

)
(Υit + Yit−1 − 2ΥitYit−1)

which can be formulated in terms of our own moment functions as

ℏUit = − 2

2− ω
0|0
t,t−1(θ)

ψ
0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

ℏΥit =
2

2− ω
1|1
t,t−1(θ)

ψ
1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

Appendix Section 1.8.2 provides detailed derivations for the mapping between our two ap-
proaches. This last result indicates that our moment conditions essentially match those of
Kitazawa (2022) when T = 3. However, for T ≥ 4, Proposition 2 imply that there are
further identifying moments than those based solely on ℏUit and ℏΥit for the AR(1) model.
Interestingly, it turns out as we demonstrate in Appendix Section 1.8.2 that our moment
functions coincide exactly with those derived by Honoré and Weidner (2020) for the special
case T = 3.

To the best of our knowledge, besides the AR(1) model and a few specific examples, the
structure of moment conditions in models with arbitrary lag order is not fully understood in
the literature. Building on Bonhomme (2012), Honoré and Weidner (2020) propose moment
functions for the AR(2) model up to T = 4 and the AR(3) model with T = 5 but no results
are offered beyond these special instances. Yet, this is of general interest not only to better
understand the properties of DFEL models but also for practical modelling and estimation
purposes. For example, Card and Hyslop (2005) argue in favor of using higher order logit
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specifications to better fit the behavior of a control group in the context of a welfare ex-
periment. Relatedly, there are few results available for multivariate fixed effect models and
existing methods developed for the scalar case are likely to be difficult to adapt in practice
due to computational barriers. In the remaining sections, we show that our two-step ap-
proach addresses these issues by providing closed form expressions for the moment equality
conditions of these more complex models.

1.4.4 Moment restrictions for the AR(p) logit model, p > 1

Allowing for more than one lag is often desirable in empirical work to model persistent
stochastic processes and to better fit the data (e.g, Magnac (2000) on labour market histories,
Chay et al. (1999) and Card and Hyslop (2005) on welfare recipiency). To this end, we now
discuss how to extend our identification scheme to general univariate autoregressive models.
We consider

Yit = 1

{
p∑
r=1

γ0rYit−r +X ′
itβ0 + Ai − ϵit ≥ 0

}
, t = 1, . . . , T (1.5)

for known autoregressive order p > 1 and vector of initial values
Y 0
i = (Yi−(p−1), . . . , Yi−1, Yi0)

′ ∈ Yp, with Ai ∈ R. Here, we let θ0 = (γ′0, β
′
0)

′ ∈ Rp+Kx . The
corresponding transition probabilities are:

π
k|lp1
t (Ai, Xi) = P (Yit+1 = k|Yit = l1, . . . , Yit−(p−1) = lp, Xi, Ai) =

ek(
∑p

r=1 γ0rlr+X
′
it+1β0+Ai)

1 + e
∑p

r=1 γ0rlr+X
′
it+1β0+Ai

and there will be moment restrictions attached to each of the 2p (non-redundant) transition
probabilities. Before detailing the specifics of their construction, we enumerate the moment
restrictions for this model as we did for the AR(1). This provides a way to ensure that we
are not leaving any information on the table.

1.4.4.1 Impossibility results and number of moment restrictions when p ≥ 1

Based on simulation evidence, Honoré and Weidner (2020) conjectured that AR(p) models
possess 2T−(T+p−1)2p linearly independent moment conditions in panels of sufficient length.
We prove this claim in Theorem 3 and establish that no moment restrictions for the common
parameters exist when T ≤ p + 1; that is with less than 2p + 1 periods of observations per
individual. To introduce the result formally, it is again convenient to consider the conditional
expectation operator mapping functions of histories Yi to their conditional expectation given
Y 0
i = y0, Xi = x and the fixed effect, i.e

E (p)

y0,x
: RYT −→ RR

ϕ(., y0, x) 7−→ E
[
ϕ(Yi, y

0, x)|Y 0
i = y0, Xi = x,Ai = .

]
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so that for any y ∈ YT , E (p)

y0,x

[
1{. = y}

]
yields the conditional likelihood of history y for all

possible values of Ai in the AR(p) model. That is,

E (p)

y0,x

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .) = a 7→
T∏
t=1

eyt(
∑p

r=1 γ0ryt−r+x′tβ0+a)

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

Then the following result holds:

Theorem 3. Consider model (1.5) with T ≥ 1 and initial condition y0 ∈ Yp. Suppose that
for any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Yp, γ′0y+ x′tβ0 ̸= γ′0ỹ+ x′sβ0 if t ̸= s or y ̸= ỹ. Then,
the family

Fy0,p,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1

}

forms a basis of Im
(
E (p)

y0,x

)
and therefore

1. If T ≤ p+ 1, rank
(
E (p)

y0,x

)
= 2T and dim

(
ker
(
E (p)

y0,x

))
= 0

2. If T ≥ p+2, rank
(
E (p)

y0,x

)
= (T − p+1)2p and dim

(
ker
(
E (p)

y0,x

))
= 2T − (T − p+1)2p

Theorem 3 generalizes Theorem 1 for AR(p) logit models with p > 1. It confirms the basic
intuition that all the parametric content lies in the transition probabilities, no matter the
lag order. Specifically, the conditional probabilities of all choice histories are spanned by the

transition probabilities. In the basis Fy0,p,T , elements π
y0|y0
0 (., x) and{(

π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

correspond to transition probabilities that are af-

fected by the initial condition y0. In the AR(1) case, it reduces to π
y0|y0
0 (., x) (see Theorem

1). The remaining basis elements are free from the initial condition and correspond to the
collection of all transition probabilities in each period starting from t = p.

Theorem 3 is an implication of partial fraction decompositions and of the fact that the
transition probabilities of AR(p) models admit transition functions. This property is set out

in the following section. If T ≤ p+1, E (p)

y0,x is injective and no non-trivial moment conditions
can be found. Beyond this threshold, the rank nullity theorem which connects image and
nullspace of linear maps tells us that 2T − (T − p + 1)2p moment restrictions exist. Under
weaker conditions on the parameters or regressors then those of the theorem, the model may
admit additional moment conditions even with T ≤ p+ 1.
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1.4.4.2 Construction of transition probabilities with p > 1

Having clarified that T = p+2 is the minimum number of periods required for the existence
of identifying moments, we are now ready to address the issue of their construction. The
blueprint generalizes that of the AR(1) model and can be summarized as follows:

1. Step 1)

a) Start by obtaining analytical expressions of the unique transition functions for the
transition probability in period t = p when T = p + 1 8. Shift these expressions
by one period, two periods, three periods etc to get a set of transition functions
for period t ∈ {p+ 1, . . . , T − 1} when T ≥ p+ 2.

b) Apply partial fraction decompositions to the expressions obtained in (a) for t ∈
{p + 1, . . . , T − 1} to generate other transition functions mapping to the same
transition probabilities.

2. Step 2). Take “adequate” differences of transition functions associated to the same
transition probability in periods t ∈ {p + 1, . . . , T − 1} to obtain valid moments that
are linearly independent.

Step 1) (a) is akin to how we started by getting closed form expressions for the transition
functions in period t = 1 for T = 2 in the one lag case and then deducted a general principle
for t ≥ 2 (see Section 1.4). From a technical perspective, this is the only part of the two-step
procedure that differs from the baseline AR(1). Indeed, Step 2) is fundamentally identical
and Step 1) (b) is also unchanged for the simple reason that the transition probabilities
keep the same functional form as before. That is, a logistic transformation of a linear index
composed of common parameters, the regressors and the fixed effect only. Hence, the same
partial fraction expansions apply. In light of those close similarities with the AR(1) and in
order to focus on the primary issues, we defer a discussion of Step 1)(b) and Step 2) to
Appendix Section 1.8.3.

Theorem 4 provides the algorithm to compute the transition functions for Step 1) (a)
for arbitrary lag order greater than one. It is based on the insight that we can leverage
the transition functions of an AR(p − 1) and partial fraction decompositions to generate
the transition functions of an AR(p). A simple example is helpful to illustrate those ideas.
Consider an AR(2) with T = 3 (i.e 5 observations in total) and suppose that we seek a
transition function associated to, say, the transition probability

π
0|0,1
2 (Ai, Xi) =

1

1 + eγ02+X
′
i3β0+Ai

The first ingredient of the theorem is to view the AR(2) model as an AR(1) model where
we treat the second order lag as an additional strictly exogenous regressor. This change

8The fact that the transition functions in period t = p are unique when T = p + 1 is a direct corollary
of Theorem 3. Otherwise, the difference of two distinct transition functions mapping to the same transition
probability would yield a valid moment which is a contradiction.
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of perspective is advantageous since we already know how to deal with the single lag case.
In particular, Lemma 2 readily gives the transition function ϕ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) for the

transition probability π
0|0,Yi1
2 (Ai, Xi) = P (Yi3 = 0|Yi2 = 0, Yi1, Xi, Ai) in the sense that it

verifies:

E
[
ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Yi1, Xi, Ai

]
= π

0|0,Yi1
2 (Ai, Xi)

This is an intermediate stage since ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) does not quite map to the target

of interest; indeed π
0|0,Yi1
2 (Ai, Xi) depends on the random variable Yi1 unlike π

0|0,1
2 (Ai, Xi). To

make further progress, one would intuitively need to “set” Yi1 to unity to make the two transi-
tion probabilities coincide. We operationalize this idea by interacting ϕ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)

and Yi1 to achieve the desired effect in expectation:

E
[
Yi1ϕ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Xi, Ai

]
= E

[
Yi1π

0|0,1
2 (Ai, Xi)|Y 0

i , Xi, Ai

]
=

1

1 + eγ02+X
′
i3β+Ai

eγ01Yi0+γ02Yi−1+X
′
i1β0+Ai

1 + eγ01Yi0+γ02Yi−1+X′
i1β0+Ai

Here, the first equality follows from the law of iterated expectations. Then, the second in-
gredient of the theorem is a partial fraction expansion (Appendix Lemma 8) to turn this

product of logistic indices into π
0|0,1
2 (Ai, Xi). This last operation is analogous to how we

constructed sequences of transition functions in the AR(1) model. It ultimately tells us that

the solution is a weighted sum of (1− Yi1) and Yi1ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi). Theorem 4 turns

this procedure into a recursive algorithm that computes the transition functions for any lag
order p > 1.

Theorem 4. In model (1.5) with T ≥ p+ 1, for all t ∈ {p, . . . , T − 1} and yp1 ∈ Yp , let

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

k
y1|yk+1

1
t (θ) =

k+1∑
r=1

γryr +

p∑
r=k+2

γrYit−(r−1) +X ′
it+1β, k = 1, . . . , p− 2, if p > 2

ut−k(θ) =

p∑
r=1

γrYit−(r+k) +X ′
it−kβ, k = 1, . . . , p− 1

w
y1|yk+1

1
t (θ) =

[
1− e(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]yk+1
[
1− e−(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]1−yk+1

, k = 1, . . . , p− 1
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and

ϕ
y1|yk+1

1
θ (Yit+1, Yit, Y

t−1
it−(p+k), Xi) =[

(1− Yit−k) + w
y1|yk+1

1
t (θ)ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)Yit−k

](1−y1)yk+1

×[
1− Yit−k − w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
(1− Yit−k)

](1−y1)(1−yk+1)

×[
Yit−k + w

y1|yk+1
1

t (θ)ϕ
y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)(1− Yit−k)

]y1(1−yk+1)

×[
1− (1− Yit−k)− w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
Yit−k

]y1yk+1

,

k = 1, . . . , p− 1

where

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi) |Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

and for k = 0, . . . , p− 2

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi) |Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

The remaining steps to complete the construction of valid moment functions are described
at length in Appendix Section 1.8.3. The end product is a family of (numerically) linearly
independent moment functions of size 2T − (T + 1− p)2p. By Theorem 3, this implies that
our two-step approach recovers all moment equality conditions in the model.

Remark 7. (Extensions) While the exposition emphasized model (1.5), our methodology
applies more broadly to models of the form

Yit = 1
{
g(Yit−1, . . . , Yit−p, Xit, θ0) + Ai − ϵit ≥ 0

}
, t = 1, . . . , T

where the lag order p > 1 is known and g(.) is known up to the finite dimensional parameter
θ0. We can thus incorporate interaction effects which are often of interest in applied work.
For instance, Card and Hyslop (2005) model welfare participation as a random effect AR(2)
logit process of the form

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + δ0Yit−1Yit−2 +X ′

itβ0 + Ai − ϵit ≥ 0
}
, t = 1, . . . , T
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where Ai either follows a normal distribution or a discrete distribution with few support
points. In this case, minor modifications of the results in this section will deliver moment
conditions for θ0 = (γ01, γ02, δ0, β

′
0)

′ that are robust to misspecifications of individual unob-
served heterogeneity. The key is that Ai enters additively in order to leverage the rational
fraction identities of Lemma 8.

1.4.5 Identification with more than one lag

This section discusses ways to leverage our methodology and moment restrictions to assess
the identifiability of common parameters. For ease of exposition, we concentrate on the
AR(2) logit model.

We start by briefly reexamining an identification result due to Honoré and Weidner
(2020). Using functional differencing, they proved (under some regularity conditions) that
θ0 is identified with T = 3 provided Xi2 = Xi3 and that the initial condition Y 0

i = (Yi−1, Yi0)
varies in the population. Notice that this is not in contradiction to Theorem 3 sinceXi2 = Xi3

and Y 0
i “varying” constitute two violations of its key assumptions. It is therefore not un-

surprising that identifying moment exist in that case despite T < 4. To understand why,
note that imposing Xi2 = Xi3 effectively amounts to equate the transition probabilities
in period t = 2 and in period t = 1 for adequate choices of the initial condition; e.g
π
0|0,Yi0
1 (Ai, Xi) = π

0|0,0
2 (Ai, Xi) provided that Yi0 = 0 and Xi2 = Xi3. In turn, this im-

plies that differences of the corresponding transition functions in periods t = 2 and t = 1
deliver valid moment functions to estimate θ0 in certain subpopulations. In Appendix Sec-
tion 1.8.10.1, we show that this is an interpretation of the moment conditions that Honoré
and Weidner (2020) use to show point identification.

Because this identification argument hinges on matching covariates as in Honoré and
Kyriazidou (2000), it breaks down in the presence of certain types of regressors like an age
variable or a time trend. In fact, Dobronyi et al. (2021) showed that there are actually
no moment equality conditions available in the model with such regressors. This finding is
consistent with the intuition that we cannot match the transition probabilities in periods
t = 1 and t = 2 in that case. However, with one additional period, i.e T = 4, we can leverage
the moment restrictions of Proposition 4 which are valid for free-varying regressors and any
initial condition. This leads to two possible approaches to inference. The first is to consider
the “identified set” ΘI of θ0 based on the four conditional moment restrictions implied by
the model:

ΘI =

{
θ ∈ R2+Kx : Eθ0

[
ψ
y1|y1,y2
θ (Y 4

i0, Y
1
i−1, Xi)|Y 0

i , Xi

]
= 0, ∀(y1, y2) ∈ {0, 1}2

}
and construct confidence sets for θ0 following e.g Andrews and Shi (2013). Instead, the
sharp identified set may be computed following the approach of Dobronyi et al. (2021) if
the covariates Xi are discrete with finite support. Alternatively, a second approach which
we develop further here is to formulate sensible restrictions on covariates that secure point
identification in the spirit of Honoré and Kyriazidou (2000). Specifically, we consider the
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case where a continuous scalar component Wi2 of Xi2 has unbounded positive support con-
ditional on Y 0

i , the other regressors, Ai and has a non-trivial effect β0W of known sign to the
econometrician. This is the content of Assumption 2 in which Zi = (R′

i,Wi1,Wi3,Wi4), and
Xit = (Wit, R

′
it) ∈ RKx for all t ∈ {1, 2, 3, 4}. Dobronyi et al. (2023) used a similar device

to develop an alternative distribution-free semiparametric estimator to that of Honoré and
Kyriazidou (2000) that can accommodate time effects in the baseline one lag model.

Assumption 2. (i) The covariate Wi2 is continuously distributed with unbounded support
on R+ conditional on Y 0

i , Zi, Ai and (ii) β0W is known to be strictly negative.

Besides being a technical convenience, Assumption 2 may be reasonable in some situations,
e.g in the context of our empirical application, the econometrician may have a confident prior
that drug prices affect individual drug consumption negatively. We point out that nothing
in the discussion that follows hinges critically on βW < 0 and or Wi2 having support on the
positive reals. A set of perfectly symmetric arguments will deliver the same conclusions if
instead βW > 0 and Wi2 has unbounded support on R−.

Assumption 3. (i) θ0 = (γ01, γ02, β
′
0)

′ ∈ G1 × G2 × B = Θ, G1,G2,B compact. The
conditional densities of Ai and Zi verify:

(ii) lim
w2→∞

p(a|y0, z, w2) = q(a|y0, z), lim
w2→∞

p(z|y0, w2) = q(z|y0)

(iii) There exists positive integrable functions d0(a), d1(z), d2(z) such that
p(a|y0, z, w2) ≤ d0(a) for all a ∈ R, d1(z) ≤ p(z|y0, w2) ≤ d2(z) for all z ∈ RKx−1

(iv) w2 7→ p(a|y0, z, w2), w2 7→ p(z|y0, w2) are continuous in w2.

Assumption 3 are standard regularity conditions for an application of the dominated con-
vergence theorem that once paired with Assumption 2 are sufficient to establish that θ0 is
identified at infinity. The outline of the argument is as follows. Under these assumptions,
by sending Wi2 to ∞, the valid moment function ψ

0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) of Proposition 4

reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(1.6)

which occurs because limw2→∞ ew2βW = 0 and Yi2 = 0 with probability one conditional on the
regressors and the fixed effects. The key observation is that this “limiting” moment function
has a similar functional form to the valid moment functions of the AR(1) model with T = 3.
In turn, this implies monotonicity properties on certain regions of the covariate space that
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we can exploit to point identify θ0 in the spirit of Honoré and Weidner (2020). To this end,
let (x̄, x) ∈ R2, such that x̄ > x and define the sets

Xk,+ = {x ∈ R4Kx|x̄ ≥ xk,3 ≥ xk,4 > xk,1 ≥ x or x̄ ≥ xk,3 > xk,4 ≥ xk,1 ≥ x}
Xk,− = {x ∈ R4Kx|x ≤ xk,3 ≤ xk,4 < xk,1 ≤ x̄ or x ≤ xk,3 < xk,4 ≤ xk,1 ≤ x̄}

for all k ∈ {1, . . . , Kx}. In words, Xk,+ is the region of the covariate space in which values
of the k-th regressor in periods t ∈ {1, 3, 4} belong to [x, x̄] and verify xk,3 ≥ xk,4 ≥ xk,1
with at least one strict inequality. Instead, Xk,− is the region of the covariate space where
realizations of the k-th regressor obey the reverse ranking. With these notations in hands,
we have the following theorem,

Theorem 5. For T = 4, suppose that outcomes (Yi1, Yi2, Yi3, Yi4) are generated from model
(1.5) with p = 2, initial condition y0 ∈ Y2, common parameters θ0 = (γ′0, β

′
0) ∈ R2+Kx and

that Assumptions 2 and 3 hold. Further, for all s ∈ {−,+}Kx, let Xs =
Kx⋂
k=1

Xk,sk and suppose

that for all y0 ∈ Y2

lim
w2→∞

P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0

Let

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Xi) |Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
Then, θ0 is the unique solution to the system of equations

Ψ
0|0,0
s,y0 (θ) = 0, ∀s ∈ {−,+}Kx , ∀y0 ∈ Y2

Theorem 5 shows that point identification of θ0 is achievable in higher-order dynamic logit
models in short panels. The main cost for this guarantee is Assumption 2 which pre-
sumes knowledge of the data generating process beyond the baseline setup. Addition-
ally, there should be sufficient variation in the regressors Xit as Wi2 7→ ∞ to ensure that
limw2→∞ P

(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0 for all s ∈ {−,+}Kx . Our arguments are

easily generalizable to AR(p) models with lag order p ≥ 3. Under natural extensions of
Assumptions 2 and 3, the model parameters θ0 = (γ01, . . . , γ0p, β

′
0) are identified at infinity

provided T ≥ 2 + p.

Remark 8 (Identification with time effects). Theorem 5 does not readily deals with time
effects but it is straightforward to adapt the argument for this case. Suppose for concreteness
that one covariate is a time trend. By further sending Wi3 to infinity, the limiting moment
function of equation (1.6) reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)
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For (Yi0, Yi−1) = (0, 0), this valid moment function only depends on β and arguments anal-
ogous to those in Theorem 5 will point identify β0. Varying the initial condition is then
sufficient to point identify γ0 given the monotonicity of the moment function in (γ1, γ2).

1.4.6 Average Marginal Effects in AR(p) logit models

In discrete choice settings, interest often centers on certain functionals of unobserved het-
erogeneity rather than on the value of the model parameters per se. One particular family
of such functionals that are of interest from a policy perspective are average marginal effects
(AMEs) which capture mean response to a counterfactual change in past outcomes. It turns
out that these key quantities are simply expectations of our transition functions. To see
this, consider first the baseline AR(1) model with discrete covariates Xit. We can define
the average transition probability from state l to state k in period t for a subpopulation of
individuals with covariate xt+1

1 = (x1, . . . , xt+1) and initial condition y0 as

Π
k|l
t (y0, x

t+1
1 ) = E

πk|lt (Xit+1, Ai)︸ ︷︷ ︸
≡πk|l

t (Xi,Ai)

|Yi0 = y0, X
t+1
i1 = xt+1

1

 =

∫
π
k|l
t (xt+1, a)p(a|y0, xt+1

1 )da

where p(a|y0, xt+1
1 ) denotes the conditional density of the fixed effect A given (y0, x

t+1
1 ). The

AME is defined as the following contrast of average transition probabilities:

AMEt(y0, x
t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− Π

1|0
t (y0, x

t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− (1− Π

0|0
t (y0, x

t+1
1 ))

It is interpreted as the population average causal effect on Yit+1 of a change from 0 to 1 of Yit
given (y0, x

t+1
1 ). By Lemma 2 and the law of iterated expectations, we have that for T ≥ 2

and t ≥ 1:

Π
0|0
t (y0, x

t+1
1 ) = E

[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, X

t+1
i1 = xt+1

1

]
Π

1|1
t (y0, x

t+1
1 ) = E

[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, X

t+1
i1 = xt+1

1

]
which implies that AMEt(y0, x

t+1
1 ) is identified so long as θ0 is identified. A sufficient con-

dition for that is T ≥ 3 and Xi3 − Xi2 having support in a neighborhood of zero (Honoré
and Kyriazidou (2000)). Aguirregabiria and Carro (2021) were the first to highlight that
AMEs can be point identified in the AR(1) model. When the lag order p is greater than
one - which seems to be the case for persistent variables such as unemployment (e.g Magnac
(2000)) and welfare recipiency (e.g Chay et al. (1999)) - we can analogously define average
transition probabilities from states lp1 ∈ Yp to state k ∈ Y as:

Π
k|lp1
t (y0, xt+1

1 ) = E

πk|lp1t (Xit+1, Ai)︸ ︷︷ ︸
≡πk|l

t (Xi,Ai)

|Y 0
i = y0, X t+1

i1 = xt+1
1

 =

∫
π
k|lp1
t (xt+1, a)p(a|y0, xt+1

1 )da



26

This permits the consideration of more nuanced counterfactual parameters compared to
the AR(1). In the context of studies on long term unemployment, contrasts of the form

Π
k|lp1
t (y0, xt+1

1 ) − Π
k|vp1
t (y0, xt+1

1 ) may be especially relevant to measure more accurately the
relative effects of work histories spanning multiple periods. Again, these counterfactuals are
simply expectations of transition functions by Theorem 4 and will be identified whenever θ0
is identified (see Section 1.4.5 for examples of sufficient conditions).

Multiperiod analogs of average transition probabilities in AR(p) models

Π
ks1|l

p
1

t (y0, xt+s1 )

= E
[
P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X

t+s
i1 = xt+s1 , Ai)

|Y 0
i = y0, X t+s

i1 = xt+s1

]
may also be of interest to assess state-dependence. These quantities give the average prob-
ability of moving from states lp1 ∈ Yp to future states ks1 ∈ Ys, where s ≥ 1 and the average
is taken with respect to the distribution of Ai conditional on (y0, x

t+1
1 ). The special case

k1 = k2 = . . . = ks delivers a discrete version of the survivor function employed in duration
analysis, i.e the average likelihood to survive s consecutive periods in the same state after
experiencing a given choice history. Proposition 3 shows that they are also identified when
θ0 is identified under certain conditions.

Proposition 3. Consider model (1.5) with T ≥ p+2, and initial condition y0 ∈ Yp. Suppose
that θ0 is identified and that for any t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1− t} and y, ỹ ∈ Yp,
γ′0y + x′tβ0 ̸= γ′0ỹ + x′t+sβ0 . Then, for t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1 − t}, and any

lp1 ∈ Yp, ks1 ∈ Ys, the quantity Π
ks1|l

p
1

t (y0, xt+s1 ) is identified.

The source of this result is the fact that the integrand of Π
ks1|l

p
1

t (y0, xt+s1 ) is a product of
transition probabilities. This entails that under appropriate conditions on the regressors
and common parameters, we can turn this integrand into a unique linear combination of
transition probabilities by means of a partial fraction decomposition. It is then a matter of
taking expectations and invoking the fact that average transition probabilities are identified
from our transition functions.

Example 1 (Survivor function for an AR(2)). To illustrate Proposition 3, and in the spirit
of our upcoming empirical application, suppose that Yit is an indicator for drug consumption
at time t obeying an AR(2) logit process. Fix y0 ∈ Y2 and assume T = 5. One might be
interested in

Π
0,0|1,1
3 (y0, x) = E

[
P (Yi5 = 0, Yi4 = 0 |Yi3 = 1, Yi2 = 1, Xi = x,Ai) |Y 0

i = y0, Xi = x
]

= E
[
π
0|0,1
4 (Ai, x)π

0|1,1
3 (Ai, x) |Y 0

i = y0, Xi = x
]

which gives the average propensity of individuals with characteristics (y0, x) who consumed
drugs in t = 2, 3 to stay drug-free over the next two time periods. A simple calculation using
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for instance the identities of Appendix Lemma 8 gives

π
0|0,1
4 (Ai, x)π

0|1,1
3 (Ai, x) =

1

1 + eγ02+x
′
5β0+Ai

1

1 + eγ01+γ02+x
′
4β0+Ai

=
1

1− eγ01+x
′
45β0

π
0|0,1
4 (Ai, x)−

eγ01+x
′
45β0

1− eγ01+x
′
45β0

π
0|1,1
3 (Ai, x)

and since Theorem 4 implies E
[
ϕ
0|0,1
θ0

(Y 5
i1, x) |Y 0

i = y0, Y 2
i1, Xi = x,Ai

]
= π

0|0,1
4 (Ai, x) and

E
[
ϕ
0|1,1
θ0

(Y 4
i0, x) |Y 0

i = y0, Yi1, Xi = x,Ai

]
= π

0|0,1
3 (Ai, x), we obtain

Π
0,0|1,1
3 (y0, x) = E

[
1

1− eγ01+x
′
45β0

ϕ
0|0,1
θ0

(Y 5
i1, x)−

eγ01+x
′
45β0

1− eγ01+x
′
45β0

ϕ
0|1,1
θ0

(Y 4
i0, x) |Y 0

i = y0, Xi = x

]

1.5 Multi-dimensional fixed effects models

We now turn our attention to multi-dimensional fixed effects models. We show that the
general blueprint developed in the scalar case to derive valid moment functions carries over
to VAR(1) and MAR(1) models. We make no attempt at showing that our approach is
exhaustive in those cases and do not claim that it is. We leave these important questions
for future work. Readers uninterested in the details of the multivariate extensions can skip
directly to Section 1.6 where we discuss the empirical application.

1.5.1 Moment restrictions for the VAR(1) logit model

We begin with the analysis of VAR(1) logit models, variants of which have been successfully
used to study the relationship between sickness and unemployment (Narendranthan et al.
(1985)), the progression from softer drug use to harder drug use among teenagers (Deza
(2015)), transitivity in networks (Graham (2013), Graham (2016)) and more recently the
employment of couples (Honoré et al. (2022)). For a given M ≥ 2, the model reads:

Ym,it = 1


M∑
j=1

γ0mjYj,it−1 +X ′
m,itβ0m + Am,i − ϵm,it ≥ 0

 , m = 1, . . . ,M, t = 1, . . . , T

(1.7)

We let Yit = (Y1,it, . . . , YM,it)
′ denote the outcome vector in period t with support Y = {0, 1}M

of cardinality 2M . We let Xit = (X ′
1,it, . . . , X

′
M,it)

′ ∈ RK1 × . . . × RKM denote the vector of
exogenous covariates in period t and Ai = (A1,i, . . . , AM,i)

′ ∈ RM . The initial condition is
now given by Yi0 = (Y1,i0, . . . , YM,i0)

′ ∈ Y and the model transition probabilities are given
by:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

M∏
m=1

ekm(
∑M

j=1 γ0mj lj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mj lj+X′
m,it+1β0m+Am,i
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for all (k, l) ∈ Y × Y .
Building on Honoré and Kyriazidou (2000), Honoré and Kyriazidou (2019) use a condi-

tional likelihood approach to prove the identification θ0 = (γ011, γ012, γ021, γ022, β01, β02) for
the bivariate specification when T = 3 and the regressors do not vary over the last two pe-
riods. As in scalar models, we show hereinafter that this strong restriction which can yield
undesirable rates of convergence is unnecessary to obtain valid moment conditions.

Step 1) in the VAR(1) logit model has a nuance relative to its scalar counterpart in

that the only transition functions that appear to exist are those associated to π
k|k
t (Ai, Xi),

for k ∈ Y , i.e the probabilities of staying in the same state. We can use the same heuristic
as in the baseline AR(1) model to derive their expressions, especially in the bivariate case.
Once all four transition functions are obtained for the case M = 2, it becomes clear that the
general functional form is as per Lemma 4. It is then a matter of brute force calculation to
verify that this is indeed correct.

Lemma 4. In model (1.7) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

=
M∏
m=1

ekm(
∑M

j=1 γ0mjkj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mjkj+X′
m,it+1β0m+Am,i

Next, we can appeal to the second partial fraction decomposition formula in Appendix Lemma
9 to guide the construction of another set of transition functions when T ≥ 3. These identities
may be regarded as a generalization of Kitazawa (2022)’s hyperbolic transformations to the
multivariate case. As is clear from Lemma 5, the resulting transition functions have a special
structure that generalizes those found in the AR(1) model.

Lemma 5. In model (1.7) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all
m ∈ {1, . . . ,M} and (k, l) ∈ Y2

µm,s(θ) =
M∑
j=1

γmjYj,is−1 +X ′
m,isβm

κ
k|k
m,t(θ) =

M∑
j=1

γmjkj +X ′
m,it+1βm

ω
k|k
t,s,l(θ) = 1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]
and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)
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Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Beyond T = 4, more transition functions are available and can be derived sequentially from
those of Lemma 5. See Corollary 5.1 for their expressions.

Corollary 5.1. In model (1.7) with T ≥ 4, for any t and ordered collection of indices sJ1 ,
J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
k|k
t,sJ ,l

(θ) defined as in Lemma 5. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Step 2). One can obtain a family of valid moment functions by adequately repurposing

the statement of Proposition 2 to the VAR(1) case, i.e by updating the expressions of ϕ
k|k
θ (.)

and ζ
k|k
θ according to Lemma 4 and Corollary 5.1. To conserve on space and avoid repetition,

we leave this simple exercise to the reader.

Remark 9 (Network Extension). Similarly to Remarks 7, we emphasize that the tools
developed here can be modified to handle other interesting variants featuring more complex
interdependencies across the different layers of the model indexed by m = 1, . . . ,M . To
illustrate the wider applicability of our two-step method, we show in Appendix 3.2 how one
can derive moment restrictions in the dynamic network formation model of Graham (2013)
and extensions thereof incorporating exogenous covariates.

1.5.2 Moment restrictions for the dynamic multinomial logit
model

Last, we cover dynamic multinomial logit models which have been utilized to measure state-
dependence in a range of economic contexts including: employment history in the French
labor market (Magnac (2000)), the impact of international trade on the transition matrix of
employment across sectors (Egger et al. (2003)) and consumer product choice (Dubé et al.
(2010)) amongst others.

We focus on the the baseline MAR(1) logit model with fixed effects.
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The model assumes a fixed number of alternatives C+1 with C ≥ 1 and is characterized
by the following transition probabilities:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

eγkl+X
′
ikt+1βk+Aik

C∑
c=0

eγcl+X
′
ict+1βj+Aic

, t = 1, . . . , T (1.8)

with (k, l) ∈ Y = {0, 1, . . . , C}. Here, Yit ∈ Y indicates the choice of individual i in period
t, Xijt denotes a vector of individual-alternative specific exogenous covariates and Aij ∈ R
is the fixed effect attached to alternative j for individual i. The initial condition is Yi0 ∈ Y
and in keeping with the fixed effect assumption, its conditional distribution given unob-

served heterogeneity and the regressors,
(
P (Yi0 = k|Xi, Ai)

)C
k=1

, is left fully unrestricted.
Following Magnac (2000), we normalize the transition parameters and fixed effect of the
reference alternative “0” to zero 9. That is γj0 = γ0j = 0, A0,j = 0 for all j ∈ Y leaving
θ =

(
(γkl)k,l≥1, (βl)l≥0

)
as the unknown model parameters.

This specification can be motivated by assuming that agents rank options according to
random latent utility indices with disturbances independent over time and across alterna-
tives. In this context, equation (1.8) is obtained if the best alternative is selected and the
error terms are Type 1 extreme value distributed conditional on Yi0, Ai, Xi. Magnac (2000)
studies the “pure” case without covariates and shows that an extension of the conditional
likelihood approach proposed by Chamberlain (1985b) can be used to identify and estimate
the state-dependence parameters. Honoré and Kyriazidou (2000) show that this argument
carries over to the case with exogenous explanatory variables if one matches the regressors
across specific time periods. Here, we offer an alternative estimation strategy that circum-
vents the need for matching.

Step 1). Similarly to the VAR(1) model the MAR(1) appears to admit transition func-

tions only for the probabilities of staying in the same state, namely π
k|k
t (Ai, Xi) for k ∈ Y .

This feature appears to be a common trait of multidimensional fixed effects specifications.
To facilitate the derivation of the relevant transition functions, we follow our usual heuristic
of looking for ϕ

k|k
θ (.), k ∈ Y satisfying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi) | Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Upon obtaining their exact expressions for the simplest case with C = 2, it is easy to
conjecture and verify by direct calculations that the general expressions of the C+1 transition
functions of the MAR(1) model are as displayed in Lemma 6.

9The transition parameters of the reference state cannot be identified so a normalization constraint must
be imposed. Setting Ai0 = 0 is also without loss of generality since we can always redefine the fixed effect
as A∗

ik = Aik −Ai0.
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Lemma 6. In model (1.8) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}

× e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y (γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) =

eγkk+X
′
ikt+1βk+Aik

C∑
c=0

eγck+X
′
ict+1βj+Aic

Unsurprisingly, given the similarities shared between the MAR(1) and all other specifications
discussed in the chapter, so long as T ≥ 3, one can again derive transition functions other
than ϕ

k|k
θ (Y t+1

it−1, Xi) also associated to π
k|k
t (Ai, Xi) for k ∈ Y in periods t ∈ {1, . . . , T − 1}.

The simple logistic identities of Appendix Lemma 8 imply that these transition functions,
that we keep denoting ζ

k|k
θ (.) have a similar form to those of the VAR(1) model as shown in

Lemma 7.

Lemma 7. In model (1.8) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all
(c, k) ∈ Y2

µc,s(θ) =
C∑
j=1

γcj1(Yis−1 = j) +X ′
icsβc −X ′

i0sβ0

κ
k|k
c,t (θ) = γck +X ′

ict+1βc −X ′
i0t+1β0

ω
k|k
t,s,c(θ) = 1− e(κ

k|k
c,t (θ)−µc,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Additionally, if the econometrician has access to a dataset with more than four observations
per sampling unit - counting the initial condition - then, more transition functions associated
to the same transition probabilities are available per Corollary 7.1.

Corollary 7.1. In model (1.8) with T ≥ 4, for any t and ordered collection of indices sJ1 ,
J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isj−1−1, Xi)
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with weigts ω
k|k
t,sJ ,l

(θ) defined as in Lemma 7. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

This completes Step 1) for the MAR(1) logit model. For Step 2), we recommend a
family of valid moment functions mirroring those of Proposition 2 for the AR(1) case to
ensure the linear independence of its elements.

1.6 Empirical Illustration

In this last section, we illustrate the usefulness of our methodology by revisiting the analysis
of Deza (2015) on the dynamics of drug consumption amongst young adults in the United
States.10

To provide context, multiple studies have documented that young individuals who ex-
periment with soft drugs have a tendency to continue using them and are at a higher risk
of transitioning to hard drugs. Such correlations are certainly concerning. However, the
empirical evidence of genuine causal links, in particular from softer drugs to harder drugs,
remains limited with Deza (2015) standing as a notable exception. Fundamentally, these
empirical regularities may be attributed to a causal effect (i.e. state dependence within and
between drugs) or alternatively to latent traits that make individuals more prone to using
illicit substances in general. Our primary concern is to untangle these two explanations to
inform the design of policies aiming to mitigate drug addiction 11. For example, if marijuana
consumption indeed serves as a gateway to later cocaine use, early educational interventions
cautioning against casual marijuana usage could potentially have enduring effects on the
population of heavy drug users.

To investigate these issues, we employ the restricted version of the National Longitudinal
Survey of Youth 1997 (NLSY97). This is a panel dataset of 8984 individuals surveyed on a
diverse range of subjects, including drug-related matters from 1997 to 2019. We concentrate
on a subsample of four waves, spanning from 2001 to 2004. This subsample provides insight
into the behavior of young adults between the age of 16 and 20 in 2001 to 19 and 24 in 2004.
We shall examine the statistical association between three binary outcome variables, namely
the consumption of alcohol, marijuana and hard drugs, derived from respondents answers’
during annual interviews. Upon retaining those providing answers in all four waves as well
as a valid state of residence, our cross section ultimately consists of N = 6317 individuals

10This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views
expressed here are those of the author and do not reflect the views of the BLS.

11See Heckman (1981) for insights on the implications of state dependence for the design of labor market
policies.
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12. Following Deza (2015), we then consider the trivariate VAR(1) logit model

Ym,it = 1{
3∑
j=1

γ0mjYj,it−1 + β0mageit + ρ0mTEDSm,it

+ ν011{ageit ≥ 21}1{m = 1}+ Am,i − ϵm,it ≥ 0}

m ∈ {1, 2, 3} (1=“alcohol”, 2=“marijuana”, 3=“hard drugs”), t = 1, 2, 3 where t = 0 corre-
sponds to the year 2001. The state-dependence coefficients γ0mm (within) and γ0mj,m ̸= j
(between) are the principal coefficients of interest in the 16-dimensional vector of common
parameters θ0. We are most particularly concerned about the sign and the statistical sig-
nificance of γ032, i.e the so called “stepping-stone” effect of marijuana on hard drugs. The
covariate ageit denotes the age of respondent i at time t. The regressors TEDSm,it mea-
sure state-level deviations from national trends in treatment admissions for substance abuse
caused by drug m in year t in the state of residence of i13. They are computed as the ratio
of the share of admissions to treatment centers due to drug m in the state of i in year t
against the country wide analog in year t. Intuitively, this may be interpreted as a measure
of exposure to substance m for each respondent in our sample.

Deza (2015) parameterizes both the latent permanent heterogeneity (Am,i)
3
m=1 and the

initial condition Y 0
i to estimate the model by maximum likelihood. We leave these com-

ponents unrestricted and exploit the valid moment functions presented in Section 1.5.1.
We specifically use six of the eight valid moment functions available: ψ

k|k
θ (Y 3

i1, Y
1
i0, Xi) for

k ∈ {(0, 0, 0), (0, 1, 0), (1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}. The other two corresponding to
states k ∈ {(0, 0, 1), (0, 1, 1)} are null for over 99.5% of our sample and were dropped to
mitigate noise in estimation. Next, we (arbitrarily) select a constant, the initial condition
Y 0
i , ageit and the covariates TEDSm,it in all periods t = 1, 2, 3 as instruments to form the

96× 1 moment vector

mθ(Yi, Y
0
i , Xi) =



ψ
(0,0,0)|(0,0,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(0,1,0)|(0,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,1)|(1,1,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,0)|(1,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,1)|(1,0,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,0)|(1,0,0)
θ (Y 3

i1, Y
1
i0, Xi)


⊗



1
Y 0′
i

age3
′
i1

TEDS3′
1,i1

TEDS3′
2,i1

TEDS3′
3,i1


12We adapt the sample selection procedure described in Deza (2015) for the period 2001-2004.
13The variables TEDSm,it are constructed from the Treatment Episode Data Set-Admissions which

records admissions to substance abuse treatment facilities in the United States.
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With mθ(Yi, Y
0
i , Xi) in hand, we then consider the iterated GMM estimator of Hansen et al.

(1996). Starting from an initial candidate θ̂0
14, it can be described as

θ̂ = lim
s→∞

θ̂s

θ̂s = argmin
θ

mN(θ)
′WN(θ̂s−1)

−1mN(θ)

where mN(θ) =
1
N

∑N
i=1mθ(Yi, Y

0
i , Xi) and WN(θ) =

1
N

∑N
i=1mθ(Yi, Y

0
i , Xi)mθ(Yi, Y

0
i , Xi)

′.
Under some regularity conditions (Hansen and Lee (2021)), this estimator is well defined
and asymptotically normally distributed with

√
N(θ̂ − θ0)

d−→ N (0, (M ′
0W

−1
0 M0)

−1)

whereM0 = E
[
∂mθ0

(Yi,Y
0
i ,Xi)

∂θ

]
and W0 = E

[
mθ0(Yi, Y

0
i , Xi)mθ0(Yi, Y

0
i , Xi)

′]. Our motivation

for focusing on this specific estimator originates mainly from Hansen and Lee (2021) who
advocate its use for two practical reasons. First, for a given set of moments, it eliminates the
arbitrariness in the choice of the initial weight matrix of 2-step GMM estimators (see also
Imbens (2002)). Second, because the iteration sequence is a contraction, each iteration is
approximately variance reducing in the sense that: V ar(θ̂s) ≈ c2V ar(θ̂s−1) for some constant
c < 1 15. Empirically, we also found in Monte Carlo simulations that the iterated GMM
estimator performs relatively well for this type of specification (see Appendix 1.8.4).

Table 1.1 presents the iterated GMM estimates for the trivariate VAR(1) logit model in
columns (I), (II), (III). For comparison, columns (IV), (V), (VI) report a random effect (RE)
estimator akin to Deza (2015) 16 while columns (VII), (VIII), (IV) display the “naive” logit
maximum likelihood estimator (MLE) neglecting the presence of fixed effects.
The first observation is that, in line with conventional wisdom, GMM estimates for the
state-dependence parameters within drug, γ11, γ22, γ33, are all positive. As is apparent from
columns (I)-(III), they are statistically significant for alcohol and marijuana but surprisingly
not for hard drugs. In other words, there is no statistical evidence of a direct effect from
past consumption of hard drug to future usage of hard drugs once we account for unobserved
heterogeneity and the effects of other substances, at least in our four-wave sample17. Notice
that the magnitude of the estimates for γ11, γ22, γ33 sharply contrast with the other two

14In practice, we used the GMM estimator putting equal weights on each moment as our starting candi-
date.

15Note that the limiting variance of the iterated GMM estimator and a 2-step GMM estimator will be
identical.

16We borrow the specification presented in Deza (2015). The heterogeneity distribution is discrete with
3 mass points and is independent of the regressors. The initial condition relates to the covariates through a
logistic regression.

17The transition parameters for hard drugs are expected to be noisier given that a smaller fraction of
individuals consume these more lethal substances: approximately 15% of the respondents indicate having
consumed hard drugs at least once from 2001-2004. This contrasts with 86% for alcohol and 40% for
marijuana.
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estimators. The naive MLE largely overestimates the amount of within state-dependence,
yielding coefficients that are comparatively four to eight times larger. Intuitively, this can be
rationalized by the fact that this estimator misinterprets any serial correlation produced by
Ai as evidence of state dependence. The RE estimator borrowed from Deza (2015) (see also
Card and Hyslop (2005), Chay and Hyslop (1998)) acts as an intermediate estimator between
the other two as can be seen in columns (IV)-(VI). This behavior is expected to the extent
that the additional parametric structure of this methodology will account to some degree for
the presence of unobserved heterogeneity. We note that the role of within state dependence
in the dynamics of drug consumption is nevertheless overstated by this approach.

Table 1.1: Parameter estimates of the trivariate VAR(1) logit

Iterated GMM Random Effects Naive MLE

A M HD A M HD A M HD
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IV)

γm1 0.30 -0.04 -0.02 1.41 -0.36 -0.2 2.44 0.87 0.77
(0.12) (0.21) (0.32) (0.16) (0.22) (0.63) (0.06) (0.14) (0.37)

γm2 -0.07 0.70 0.69 -0.52 1.48 0.16 0.72 2.55 1.43
(0.16) (0.14) (0.22) (0.12) (0.13) (0.25) (0.07) (0.07) (0.16)

γm3 -0.20 0.26 0.32 -0.66 -0.17 1.59 0.22 0.74 2.12
(0.27) (0.22) (0.21) (0.19) (0.13) (0.13) (0.12) (0.09) (0.12)

age 0.06 -0.18 0.08 0.04 -0.14 -0.05 -0.08 -0.13 -0.21
(0.05) (0.06) (0.09) (0.6) (0.27) (0.32) (0.03) (0.02) (0.03)

age ≥ 21 0.04 0.46 0.54
(0.11) (0.2) (0.07)

TEDS1 -0.09 0.96 0.67
(0.09) (0.77) (0.50)

TEDS2 -0.18 0.02 -0.13
(0.12) (0.48) (0.30)

TEDS3 0.42 0.15 -0.10
(0.32) (0.44) (0.40)

N 6317 6317 6317
Periods 2001-2004 2001-2004 2001-2004
# Iterations 12

Notes: The convergence criterion of our iterated GMM procedure is
∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4. Estimated stan-

dard errors are reported in parenthesis.

Second and importantly, we observe in column (III) a positive and statistically significant
effect of marijuana on hard drugs. This supports the view that marijuana usage can be a
gateway to the consumption of harder drugs and accords with the key findings of Deza (2015).
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From a practical standpoint, this result corroborates that there may be scope for policies on
marijuana usage to indirectly curb the consumption of more lethal substances by teenagers
and young adults. The efficacy of such policies in the short and long run are important
questions that will intuitively depend on the distribution of heterogeneity in the population.
We do not explore those questions here but further research in this direction would be of
interest 18. The other two estimators also agree on a positive influence of marijuana on the
consumption of harder drugs, albeit it is statistically insignificant in the RE case.

Otherwise, it is noteworthy that the between state dependence estimates can vary quite
significantly across specifications. Again, the naive MLE likely misinterprets spurious cor-
relation from the Ai as state dependence which results in positive and inflated cross effects.
Column (IV) and (I) show disagreements of the RE and GMM estimates regarding the
strength of the impact of marijuana and hard drugs on alcohol. Overall, this comparative
exercise has showed that accounting for unobserved heterogeneity as flexibly as possible can
be essential to obtain an accurate picture of the patterns of state dependence in practice.

1.7 Conclusion

Dynamic discrete choice models are widely used to study the determinants of repeated deci-
sions made by individuals or firms over time. In this chapter, we have introduced a procedure
to estimate a family of such models with logistic (or Type I extreme value) errors and poten-
tially many lags while remaining agnostic about the nature of unobserved individual hetero-
geneity. This type of approach may be attractive when the risk of misspecifying the initial
condition and the unit-specific effects are important. We also provided general expressions
for average marginal effects in the binary response case which are often the counterfactuals
of interest in practice.

The list of discrete choice models covered in this chapter is of course not exhaustive and
it would be interesting to know if our two-step approach could be deployed in other settings
with “logit” noise. In ongoing work, we have found that this is one avenue to approach
estimation of dynamic ordered logit models, potentially of arbitrary lag order.

18A natural idea to gauge the effectiveness of policy interventions would be to compute average marginal
effects. However, as mentioned in Section 1.5.1, we were unable to find transition functions for the transition
probabilities where the state switches in VAR(1) models. This leads us to believe that only the average
transition probabilities where the state remains unchanged are identified. In turn, this would imply that
average marginal effects are generally partially identified in VAR(1) models. In this case, it is possible that
ideas analogous to those in Dobronyi et al. (2021) and Davezies et al. (2021) could be used to characterize
and compute the identified set of average marginal effects; albeit some difficulties might arise due to the fact
that the fixed effects are now multidimensional. Computing outer bounds as in Pakel and Weidner (2023)
could be another plausible option.
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1.8 Appendix: proofs, simulations and additional

materials

1.8.1 Partial Fraction Decomposition

Lemma 8. For any reals u1, u2, . . . , uK, v1, v2, . . . , vK and a1, a2, . . . , aK, K ≥ 1 we have

1

1 +
K∑
k=1

evk+ak
+

K∑
k=1

(1− euk−vk)
evk+ak(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
1

1 +
K∑
k=1

euk+ak

and

evj+aj

1 +
K∑
k=1

evk+ak
+ (1− e−uj+vj)

euj+aj(
1 +

K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

)+

K∑
k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
euj+aj

1 +
K∑
k=1

euk+ak

Proof.

1

1 +
∑K

k=1 e
vk+ak

+
K∑
k=1

(1− euk−vk)
evk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

1 +
∑K

k=1 e
uk+ak +

∑K
k=1 e

vk+ak −
∑K

k=1 e
uk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

1 +
∑K

k=1 e
vk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

1

1 +
∑K

k=1 e
uk+ak
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and

evj+aj

1 +
∑K

k=1 e
vk+ak

+ (1− e−uj+vj)
euj+aj(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)+
K∑
k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)

=

evj+aj +
∑K

k=1 e
vj+aj+uk+ak + euj+aj − evj+aj +

K∑
k=1
k ̸=j

evk+ak+uj+aj −
∑K

k=1
k ̸=j

evj+aj+uk+ak

(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)

=

euj+aj + evj+aj+uj+aj +
K∑
k=1
k ̸=j

evk+ak+uj+aj

(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)

=

euj+aj

(
1 +

K∑
k=1

evk+ak

)
(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

euj+aj

1 +
∑K

k=1 e
uk+ak

Lemma 9. Fix M ≥ 2, let Y = {0, 1}M . Then, for any k ∈ Y and any reals u1, u2, . . . , uM ,
v1, v2, . . . , vM and a1, a2, . . . , aM , we have

M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am

=
M∏
m=1

ekm(um+am)

1 + eum+am

Proof. Let

LHS =
M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am
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and let Num denote the numerator of LHS. We have:

Num = Num1 +Num2

Num1 =
M∏
m=1

ekm(vm+am)(1 + eum+am)

Num2 =
∑

l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)+lm(vm+am)

=
M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
∑

l∈Y\{k}

e
∑M

j=1 lj(uj+aj)+kj(vj+aj)

=
M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
M∏
m=1

ekm(vm+am)
∑

l∈Y\{k}

M∏
m=1

elm(um+am)

Now, noting that

∑
l∈Y

M∏
m=1

elm(vm+am) =
M∏
m=1

(1 + evm+am)

∑
l∈Y

M∏
m=1

elm(um+am) =
M∏
m=1

(1 + eum+am)

we get
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M∏
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∑

l∈Y\{k}
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ekm(vm+am)
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l∈Y\{k}

M∏
m=1
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=
M∏
m=1
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 M∏
m=1

(1 + evm+am)−
M∏
m=1
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−

M∏
m=1

ekm(vm+am)

 M∏
m=1

(1 + eum+am)−
M∏
m=1

ekm(um+am)


=

M∏
m=1

ekm(um+am)(1 + evm+am)−
M∏
m=1

ekm(vm+am)(1 + eum+am)

=
M∏
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ekm(um+am)(1 + evm+am)−Num1
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It follows that Num =
∏M

m=1 e
km(um+am)(1 + evm+am) and consequently

LHS =

∏M
m=1 e

km(um+am)(1 + evm+am)∏M
m=1(1 + eum+am)(1 + evm+am)

=
M∏
m=1

ekm(um+am)

1 + eum+am

1.8.2 Connection to Kitazawa and Honoré-Weidner

Recall from Proposition 2 that when T ≥ 3, our simplest moment conditions for t, s such
that T − 1 ≥ t > s ≥ 1 write:

ψ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)− ζ

0|0
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)− (1− Yis)

− ω
0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ψ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)− ζ

1|1
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yis

− ω
1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

where we know from Lemma 3 that

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ))

= 1− e(Xit+1−Xis)
′β−γYis−1

ω
1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

= 1− e−γ(1−Yis−1)−(Xit+1−Xis)
′β)

Now, note that:

tanh

(
γ(1− Yit−2) + (∆Xit +∆Xit+1)

′β

2

)
=

1− e−(γ(1−Yit−2)+(∆Xit+∆Xit+1)
′β)
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=
ω
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2− ω
1|1
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tanh
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e−γYit−2+(∆Xit+∆Xit+1)

′β − 1

e−γYit−2+(∆Xit+∆Xit+1)′β + 1

= −
ω
0|0
t,t−1(θ)

2− ω
0|0
t,t−1(θ)

and ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Υit and 1− ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi) = Uit. Thus, we have:
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(2− ω
0|0
t,t−1(θ))ℏUit

= (2− ω
0|0
t,t−1(θ))(Uit − Yit−1) + ω

0|0
t,t−1(θ) (Uit + Yit−1 − 2UitYit−1)

= 2
[
Uit − Yit−1 + ω

0|0
t,t−1(θ)Yit−1(1− Uit)

]
= 2

[
1− ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)− Yit−1 + ω

0|0
t,t−1(θ)Yit−1ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

]
= −2

[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)− (1− Yit−1)− ω

0|0
t,t−1(θ)Yit−1ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

]
= −2ψ

0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

(2− ω
1|1
t,t−1(θ))ℏΥit

= (2− ω
1|1
t,t−1(θ))(Υit − Yit−1)− ω

1|1
t,t−1(θ) (Υit + Yit−1 − 2ΥitYit−1)

= 2
[
Υit − Yit−1 − ω

1|1
t,t−1(θ)Υit (1− Yit−1)

]
= 2

[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yit−1 − ω

1|1
t,t−1(θ)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi) (1− Yit−1)

]
= 2ψ

1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

To establish the connection to the work of Honoré and Weidner (2020), it is useful to re-write
the moment functions slightly differently. By re-arranging terms, one obtains the following
for T = 3

ψ
0|0
θ (Y 3

1 , Y
1
i0, Xi) = (1− Yi1)ϕ

0|0
θ (Y 3

i1, Xi) + e(Xi3−Xi1)
′β−γYi0Yi1ϕ

0|0
θ (Y 3

i1, Xi)− (1− Yi1)

= e(Xi2−Xi3)
′β(1− Yi1)(1− Yi2)Yi3 + (1− Yi1)(1− Yi2)(1− Yi3)

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)

= (e(Xi2−Xi3)
′β − 1)(1− Yi1)(1− Yi2)Yi3

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)Yi2

(1.9)

where the last line uses the fact that:
(1 − Yi1) = (1 − Yi1)Yi2 + (1 − Yi1)(1 − Yi2)Yi3 + (1 − Yi1)(1 − Yi2)(1 − Yi3) to make some
cancellations. For the initial condition, Yi0 = 0, equation (1.9) corresponds to their moment
function mb

0 which they express in an extensive form. For Yi0 = 1, we get instead mb
1.
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Similarly,

ψ
1|1
θ (Y 3

i1, Y
1
i0, Xi) = Yi1ϕ

1|1
θ (Y 3

i1, Xi) + e−γ(1−Yi0)−(Xi3−Xi1)
′β)(1− Yi1)ϕ

1|1
θ (Y 3

i1, Xi)− Yi1

= e(Xi3−Xi2)
′βYi1Yi2(1− Yi3) + Yi1Yi2Yi3

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1

= (e(Xi3−Xi2)
′β − 1)Yi1Yi2(1− Yi3)

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1(1− Yi2)

(1.10)

where the last line uses the fact that: Yi1 = Yi1(1− Yi2) + Yi1Yi2Yi3 + Yi1Yi2(1− Yi3). For the
initial condition Yi0 = 0, equation (1.10) gives their moment function ma

0 and for Yi0 = 1,
we get ma

1. Our moments are thus identical, at least for the case T = 3.

1.8.3 The remaining steps for the AR(p) model with p > 1

As indicated in Section 1.4.4.2 , Step 1) (b) is now analogous to the AR(1) case since
the transition probabilities keep an identical structure. As soon as T ≥ p + 2, we can

construct transition functions other than ϕ
y1|yp1
θ (Yit+1, Yit, Y

t−1
it−(2p−1), Xi) also associated to

π
y1|yp1
t (Ai, Xi), for y

p
1 ∈ Yp in periods t ∈ {p+ 1, . . . , T − 1},. These new transition functions

that we denote ζ
y1|yp1
θ (.) take the form of a weighted combination of past outcome 1(Yis = y1),

s ∈ {1, . . . , t − p} and the interaction of 1(Yis ̸= y1) with any transition function whose

conditioning set encompasses Yis for it to map to π
y1|yp1
t (Ai, Xi). The simplest examples

which are also the only ones available when T = p+ 2, are given in Lemma 10.

Lemma 10. In model (1.5) with T ≥ p+2, for all t ∈ {p+1, . . . , T − 1}, s ∈ {1, . . . , t− p}
and yp1 ∈ Yp, let

µs(θ) =

p∑
r=1

γ0rYis−r +X ′
isβ

κ
y1|yp1
t (θ) =

p∑
r=1

γ0ryr +X ′
it+1β

ω
y1|yp1
t,s (θ) =

[
1− e(κ

y1|y
p
1

t (θ)−µs(θ))
]1−y1 [

1− e−(κ
y1|y

p
1

t (θ)−µs(θ))
]y1

and define the moment functions:

ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = 1{Yis = y1}+ ω

y1|yp1
t,s (θ)1{Yis ̸= y1}ϕ

y1|yp1
θ (Yit+1, Yit, Y

t−1
it−(2p−1), Xi)
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Then,

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

Unsurprisingly, as in the AR(1) case, it becomes possible to construct iteratively more tran-
sition functions from those given in Lemma 10 when at least T = p+3 periods are observed
post initial condition. They are given in Corollary 10.1 below.

Corollary 10.1. In model (1.5) with T ≥ p+3, for all t ∈ {p+1, . . . , T − 1} and collection
of ordered indices sJ1 with J ≥ 2 satisfying t−p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ζ
0|0,yp2
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

= (1− YisJ ) + ω
0|0,yp2
t,sJ

(θ)YisJ ζ
0|0,yp2
θ (Y t+1

it−1, Y
s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

ζ
1|1,yp2
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

= Yisj + ω
1|1,yp2
t,sJ

(θ)(1− YisJ )ζ
1|1,yp2
θ (Y t+1

it−1, Y
s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

with weights ω
y1|yp1
t,sJ

(θ) defined as in Lemma 10. Then,

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

Step 2). Provided that T ≥ p+2, it is clear that the difference between any two distinct
transition functions associated to the same transition probability in t ∈ {p+1, . . . , T−1} will
yield a valid moment function. Proposition 4 hereinbelow presents one set of valid moment
functions that generalize those obtained previously for the one lag case.

Proposition 4. In model (1.5)
if T ≥ p+ 2, for all t ∈ {p+ 1, . . . , T − 1}, s ∈ {1, . . . , t− p} and yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi),

if T ≥ p + 3, for all t ∈ {p + 1, . . . , T − 1} and collection of ordered indices sJ1 with J ≥ 2
satisfying t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

= ϕ
y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

Then,

E
[
ψ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= 0

E
[
ψ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= 0
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This family of moment functions features precisely 2T − (T + 1− p)2p distinct elements
for any initial condition. Indeed, fix Y 0

i and a p-vector yp1 ∈ {0, 1}p. Then, for a given time

period t ∈ {p+1, . . . , T −1}, there are
(
t−p
1

)
moments of the form ψ

y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi)

corresponding to choices of s ∈ {1, . . . , t− p}. Moreover, by choosing any feasible sequence
sJ1 , J ≥ 2, verifying t − p ≥ s1 > . . . > sJ ≥ 1 we produce another

∑t−p
l=2

(
t−p
l

)
moment

functions of the form ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi). In total, for period t, we count

:
t−p∑
l=1

(
t− p

l

)
= 2t−p − 1

valid moments. Now, summing over all possible values for t ∈ {p + 1, . . . , T − 1} and
multiplying by the number of distinct values for yp1, namely 2p, we get:

2p
T−1∑
t=p+1

t−p∑
l=1

(
t− p

l

)
= 2p

T−1∑
t=p+1

(2t−p − 1) = 2p

(
2
1− 2T−p−1

1− 2
− (T − p− 1)

)
= 2T − (T + 1− p)2p

Numerical experimentation for various values of T in the AR(1) and AR(2) cases suggest
that the moment functions of Proposition 4 are effectively linearly independent. Therefore,
Theorem 3 implies that they constitute a complete family of moment functions for AR(p)
models. From a practical standpoint, this shows that functional differencing at least in panel
data logit models can be broken down into a series of equivalent simpler subproblems period
by period that find all moment equality restrictions. Our procedure can be advantageous
in sophisticated models with a few lags where an analysis of the full likelihood, a high
dimensional object, can prove difficult.

1.8.4 Simulation Experiments

In this section, we report the results of a small set of simulations designed to assess the finite
sample performance of GMM estimators based on our moment conditions.

1.8.4.1 Monte Carlo for an AR(3) logit model

For our first example, we consider an AR(3) logit model with T = 5 periods (i.e 8 periods
in total with the initial condition) and a single exogenous covariate. We set the common
parameters to γ01 = 1.0, γ02 = 0.5, γ03 = 0.25, β0 = 0.5 and use the following generative
model in the spirit of Honoré and Kyriazidou (2000):

Yi−2 = 1{X ′
i−2β0 + Ai − ϵi−2 ≥ 0}

Yi−1 = 1{γ01Yi−2 +X ′
i−1β0 + Ai − ϵi−1 ≥ 0}

Yi0 = 1{γ01Yi−1 + γ02Yi−2 +X ′
i0β0 + Ai − ϵi0 ≥ 0}

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + γ03Yit−3 +X ′

itβ0 + Ai − ϵit ≥ 0
}
, t = 1, . . . , 5
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The disturbances ϵit are iid standard logistic over time, Xit is iid N (0, 1) and the fixed effects

are computed as Ai =
1√
8

5∑
t=−2

Xit. To evaluate the performance of the estimators described

below, we simulate data for four sample sizes : 500, 2000, 8000, 16000, and perform 1000
Monte Carlo replications for each design.

For T = 5, we know from Proposition 4 that 8 valid moment functions are available,
each stemming from the 8 possible transition probabilities of the model (there are really
16 transition probabilities in total but 8 are redundant since probabilities sum to one).
We consider the interaction of all 8 valid moment functions with a constant, the 3 initial
conditions Yi−2, Yi−1, Yi0 and the covariates Xit in each period t ∈ {1, . . . , 5} to construct the
72× 1 moment vector:

mθ(Yi, Y
0
i , Xi) =



ψ
0|0,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)


⊗


1
Yi−2

Yi−1

Yi0
X5′
i1



where ⊗ denotes the standard Kronecker product. The choice of this particular set of
instruments is of course arbitrary and only motivated by simplicity. We also consider a
rescaled version of mθ(Yi, Y

0
i , Xi) that we denote m̃θ(Yi, Y

0
i , Xi) where each of the 8 valid

moment functions are appropriately rescaled so that ∀y31 ∈ {0, 1}3,
supXi,Yi,θ

∣∣∣ψy1|y1,y2,y3θ (Y 5
i−1, Y

1
i−2, Xi)

∣∣∣ <∞. We do so by normalizing ψ
y1|y1,y2,y3
θ (Y 5

i−1, Y
1
i−2, Xi)

by the sum of the absolute values of all unique values it can take as a function over choice
histories Y 5

i1. The rationale for normalizing the moments originates from Honoré and Weidner
(2020) who presented numerical evidence that a rescaling of this kind improved the finite
sample performance of their estimators in the one and two lags cases. Given, mθ(Yi, Y

0
i , Xi)

and m̃θ(Yi, Y
0
i , Xi), we study the properties of two simple GMM estimators:

θ̂a = argmax
θ∈R4

 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)


θ̂b = argmax

θ∈R4

 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)
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which both put equal weight on their individual components (i.e the weight matrix is the
identity)19. Under standard regularity conditions, θ̂a, θ̂b should be consistent and asymptot-
ically normal.

Table 1.2: Performance of GMM estimators for the AR(3)

γ̂1
a γ̂1

b γ̂2
a γ̂2

b γ̂3
a γ̂3

b β̂a β̂b

N = 500
Bias -0.52 -0.50 -0.51 -0.50 -0.39 -0.32 -0.15 0.10
MAE 0.52 0.69 0.51 0.58 0.39 0.51 0.15 0.14

N = 2000
Bias -0.37 -0.10 -0.45 -0.12 -0.31 -0.04 -0.08 0.02
MAE 0.37 0.42 0.45 0.34 0.31 0.25 0.08 0.06

N = 8000
Bias -0.24 0.04 -0.32 0.01 -0.21 0.01 -0.04 0.00
MAE 0.24 0.17 0.32 0.15 0.21 0.11 0.04 0.03

N = 16000
Bias -0.18 0.01 -0.25 0.00 -0.16 0.00 -0.03 0.00
MAE 0.18 0.11 0.25 0.10 0.16 0.07 0.03 0.02

Notes: Bias and MAE stand for median bias and median absolute error respectively. Reported results are

based on a 1000 replications of the DGP.

Table 1.2 presents the median bias and median absolute errors of the two GMM esti-
mators for each design N ∈ {500, 2000, 8000, 16000}. Figure 1.1 plots their densities which
as expected resemble gaussian distributions for the larger values of N . Interestingly, a first
observation is that both estimators appear to suffer from a negative bias on the lag param-
eters at least up to N = 2000. And while this bias effectively vanishes for the “rescaled”
GMM estimators for the larger sample size N ≥ 8000, it remains quite significant for all lag
parameters and also the slope coefficient for the “unnormalized” estimator. This is evident
from the sign of the bias in Table 1.2 and from the fact that all green densities are to the left
of the true parameters in Figure 1.1. This observation confirms the practical importance of
normalizing all valid moment functions in binary response logit models to obtain precise esti-
mates in small samples. Focusing on the “rescaled” estimator θ̂b, we can see that it performs
relatively well for N ≥ 8000 with very little bias. This is corroborated in Figure 1.1: the blue
densities are approximately centered at the true parameter values for N ≥ 8000 . Estimates
for the slope parameter β are quite accurate even for N = 500 but precise estimation of
the transition parameters requires a larger sample size. In terms of median absolute bias, it

19In a previous version of this paper we also considered a two-step “rescaled” estimator that uses a
diagonal weight matrix with the inverse variance of each component in the spirit of Honoré and Weidner
(2020). It performs very similarly to the equally-weighted estimator θ̂b.
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Figure 1.1: Densities of GMM estimators for the AR(3) with one regressor

N = 500 N = 2000 N = 8000 N = 16000
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Notes: The densities of estimates based on the first GMM estimator (i.e θ̂a), the second GMM estimator

(i.e θ̂b) are indicated in green and blue respectively. Reported results are based on a 1000 replications of the

DGP presented above with γ01 = 1.0, γ02 = 0.5, γ03 = 0.25, β0 = 0.5. True parameter values are indicated

with a vertical dashed line.

is interesting to note a ranking on the precision of estimates of the transition parameters:
the coefficient on the first lag is noisier than the coefficient on the second lag which itself
is noisier than the coefficient on the third lag for each N ∈ {500, 2000, 8000, 16000}. In an
unreported set of simulations, we have found that this empirical pattern is robust to other
choices of the population parameters and initial condition and also applies to the AR(2)
model with a similar data generating process.
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1.8.4.2 Monte Carlo for a VAR(1) logit model

In our next example, we examine a bivariate VAR(1) logit model with T = 3 and scalar
regressorsXm,it in each layerm ∈ {1, 2}. We set the common parameters to γ011 = γ022 = 1.0,
γ012 = γ021 = 0.5, β1 = β2 = 0.5. The data generating process is:

Ym,i0 = 1
{
X ′
m,i0β0m + Am,i − ϵm,it ≥ 0

}
, m = 1, 2

Ym,it = 1
{
γ0m1Y1,it−1 + γ0m2Y2,it−1 +X ′

m,itβ0m + Am,i − ϵm,it ≥ 0
}
, m = 1, 2, t = 1, 2, 3

where the disturbances ϵm,it are iid standard logistic, the covariates Xm,it are iid N (0, 1) and

the fixed effects are computed as Am,i =
1√
4

3∑
t=0

Xm,it. We consider sample sizes

N ∈ {2000, 8000, 16000} with 1000 Monte Carlo replications per design.
We use all four valid moment functions implied by Proposition 2 when T = 3 for the VAR(1)

case, viz ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi), k ∈ {(0, 0), (0, 1), (1, 0), (0, 0)} and form the 40×1 moment vector:

mθ(Yi, Y
0
i , Xi) =


ψ

(0,0)|(0,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(0,1)|(0,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0)|(1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1)|(1,1)
θ (Y 3

i1, Y
1
i0, Xi)

⊗


1
Y 0′
i

X3′
1,i1

X3′
2,i1


Given the importance of rescaling the valid moment functions for better precision of GMM
in the context of the AR(3), we also consider a normalized moment vector m̃θ(Yi, Y

0
i , Xi) in

which each ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi) is divided by the sum of the absolute values of their unique non-

zero entries as a 64-dimensional vector (64 possible choice histories Y 3
i1 per initial condition).

With these moment functions in hand, we then compare the finite sample properties of three
estimators: i) the VAR(1) analogs of θ̂a and θ̂b defined previously for the AR(3), ii) the
iterated GMM estimator θ̂c based on mθ(Yi, Y

0
i , Xi) as in Section 1.6. The results of the

simulations are summarized in Table 1.3 and Table 1.4.
Similarly to the AR(3) example, both the transition parameters and the slope parameters

of θ̂a are negatively biased for the three sample sizes under consideration. This is particularly
true for the “between” state-dependence parameters γ̂12

a, γ̂21
a which maintain a small bias

even for N = 8000, 16000. By comparison, the rescaled GMM estimator θ̂b and the iterated
GMM estimator θ̂c demonstrate better accuracy, especially for γ12 and γ21 which are really
the key parameters in our empirical application presented in Section 1.6. In this specific
simulation design, θ̂c slightly outperforms θ̂b for all N = 2000, 8000, 16000 in terms of median
bias and median absolute error for the transition parameters. The comparison is somewhat
less clear for the slope parameters β1, β2.

20

20We also experimented with an iterated GMM estimator based on m̃θ(Yi, Y
0
i , Xi) and found nearly

identical results to θ̂b.
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Table 1.3: Performance of GMM estimators for the bivariate VAR(1): transition parameters

γ̂11
a γ̂11

b γ̂11
c γ̂12

a γ̂12
b γ̂12

c γ̂21
a γ̂21

b γ̂21
c γ̂22

a γ̂22
b γ̂22

c

N = 2000
Bias -0.23 0.10 -0.05 -0.21 -0.04 -0.04 -0.20 -0.06 -0.05 -0.24 0.10 -0.05
MAE 0.27 0.23 0.16 0.29 0.24 0.19 0.27 0.23 0.19 0.27 0.23 0.16
Iter 5 5 5 5

N = 8000
Bias -0.07 0.03 -0.00 -0.08 0.00 -0.00 -0.09 -0.01 -0.01 -0.06 0.03 -0.00
MAE 0.13 0.11 0.08 0.14 0.12 0.09 0.15 0.12 0.09 0.12 0.11 0.07
Iter 4 4 4 4

N = 16000
Bias -0.04 0.01 -0.00 -0.05 -0.01 -0.00 -0.07 -0.01 -0.00 -0.03 0.01 0.00
MAE 0.09 0.08 0.05 0.11 0.07 0.06 0.11 0.08 0.06 0.08 0.08 0.06
Iter 3 3 3 3

Notes: Reported results are based on a 1000 replications of the DGP. Bias and MAE stand for median

bias and median absolute error respectively. The convergence criterion for the iterated GMM estimator is∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4 and Iter corresponds to the median number of iterations to reach convergence. Bias and

MAE for the iterated GMM are reported for replications where convergence is attained which is ≈ 91% for

N = 2000 and ≈ 100% for N = 8000, 16000.

Surprisingly, when experimenting with a trivariate logit extension, we found that the
analog of θ̂b performs very poorly for the same simulation design relative to the iterated
GMM estimator or even the naive equally-weighted GMM estimator θ̂a. This is perhaps
due to the “large” rescaling factor applied to each valid moment function in that case which
pose problems for the optimization of the GMM objective. We have not investigated these
peculiarities - which could be design specific - further at this moment but a more thorough
analysis of the behavior of GMM in future work would be beneficial. The good performance
of θ̂c and this shortcoming of θ̂b in the trivariate case was one additional motivation for
concentrating on the iterated GMM estimator in our empirical application.
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Table 1.4: Performance of GMM estimators for the bivariate VAR(1): slope parameters

β̂1
a

β̂1
b

β̂1
c

β̂2
a

β̂2
b

β̂2
c

N = 2000
Bias -0.04 0.01 -0.01 -0.04 0.00 -0.01
MAE 0.06 0.06 0.06 0.06 0.06 0.05
Iter 5 5

N = 8000
Bias -0.01 -0.00 0.00 -0.01 0.00 0.00
MAE 0.03 0.03 0.03 0.03 0.03 0.03
Iter 4 4

N = 16000
Bias -0.00 0.00 0.01 -0.00 0.00 0.01
MAE 0.02 0.02 0.02 0.02 0.02 0.02
Iter 3 3

Notes: Reported results are based on a 1000 replications of the DGP. Bias and MAE stand for median

bias and median absolute error respectively. The convergence criterion for the iterated GMM estimator is∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4 and Iter corresponds to the median number of iterations to reach convergence. Bias and

MAE for the iterated GMM are reported for replications where convergence is attained which is ≈ 91% for

N = 2000 and ≈ 100% for N = 8000, 16000.

1.8.5 Proofs of Theorem 1 and Theorem 3

We focus our attention on proving Theorem 3 since proving Theorem 1 would follow nearly
identical arguments. At each important step of the proof, we highlight where the arguments
for the AR(1) would differ.

Fix a history y ∈ YT and consider the corresponding basis element 1{. = y} of RYT
. We

have:

E (p)

y0,x

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .)
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where by definition, for all a ∈ R,

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) =

Ny|y0(ea)

Dy|y0(ea)

Ny|y0(ea) =
T∏
t=1

eyt(
∑p

r=1 γ0ryt−r+x′tβ0+a)

Dy|y0(ea) =
T∏
t=1

(
1 + e

∑p
r=1 γ0ryt−r+x′tβ0+a

)
Notice that Ny|y0(ea) and Dy|y0(ea) are just polynomials of ea - with dependence on x sup-

pressed for conciseness - and that we always have deg
(
Ny|y0(ea)

)
≤ deg

(
Dy|y0(ea)

)
with

strict inequality unless y = 1T . Moreover, since by assumption for any t, s ∈ {1, . . . , T − 1}
and y, ỹ ∈ Yp, γ′0y+x

′
tβ0 ̸= γ′0ỹ+x

′
sβ0 if t ̸= s or y ̸= ỹ, Dy|y0(ea) is a product of distinct irre-

ducible polynomials in ea. Therefore, by standard results on partial fraction decompositions,
we know that there exists a unique set of coefficients (λy0, λ

y
1, . . . , λ

y
T ) ∈ RT+1 independent of

the fixed effect such that:

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) = λy0 +

T∑
t=1

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

= λy0 + T0(a) + T1(a) + T2(a)

T0(a) = λy1
1

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a

T1(a) =

p∑
t=2

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

T3(a) =
T∑

t=p+1

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

with λy0 = 0 unless y = 1T . This decomposition breaks down the conditional probability
P (Yi = y|Y 0

i = y0, Xi = x,Ai = a) into components that depend on the initial condition,
namely T0(a), T1(a), and components that do not, i.e T2(a). Notice that T1(a) would not
appear in the AR(1) case. Starting with the first group, we can write:

T0(a) = λy1π
0|y0
0 (a, x)

= λy11{y0 = 0}πy0|y
0

0 (x, a) + λy11{y0 = 1}
(
1− π

y0|y0
0 (x, a)

)
= λy11{y0 = 1}+ λy11{y0 = 0}πy0|y

0

0 (x, a)− λy11{y0 = 1}πy0|y
0

0 (x, a)
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and

T1(a) =

p∑
t=2

λyt
∑

ỹt−1
1 ∈Yt−1

1{yt−1 = ỹ1, . . . , y1 = ỹt−1}π
0|ỹt−1

1 ,y0,...,y−(p−t)

t−1 (a, x)

=

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 0, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
0|0,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

+

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}
(
1− π

1|1,ỹt−1
2 ,y0,...,y−(p−t)

t−1 (a, x)

)

=

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}

+

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 0, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
0|0,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

−
p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
1|1,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

Then, for the second group,

T3(a) =
T∑

t=p+1

λy,y
0

t

∑
ỹp1∈Yp

1{yt−1 = ỹ1, . . . , yt−p = ỹp}π
0|ỹp1
t−1 (a, x)

=
T∑

t=p+1

λy,y
0

t

∑
ỹp2∈Yp−1

1{yt−1 = 0, yt−2 = y2, . . . , yt−p = ỹp}π
0|0,ỹp2
t−1 (a, x)

+
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}
(
1− π

1|1,ỹp2
t−1 (a, x)

)

= +
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}

+
T∑

t=p+1

λy,y
0

t

∑
ỹp2∈Yp−1

1{yt−1 = 0, yt−2 = y2, . . . , yt−p = ỹp}π
0|0,ỹp2
t−1 (a, x)

−
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}π
1|1,ỹp2
t−1 (a, x)
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The unique decompositions for each term make it clear that

Fy0,p,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1

}

forms a basis of Im
(
E (p)

y0,x

)
if we can show that the transition probabilities are elements of

Im
(
E (p)

y0,x

)
. We now argue that it is indeed the case:

• First, π
y0|y0
0 (., x) ∈ Im

(
E (p)

y0,x

)
since if y0 = 0

E[(1− Yi1)|Y 0
i = y0, Xi = x,Ai = a] =

1

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a
= π

y0|y0
0 (a, x)

and if y0 = 1

E[Yi1|Y 0
i = y0, Xi = x,Ai = a] =

e
∑p

r=1 γ0ry1−r+x′1β0+a

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a
= π

y0|y0
0 (a, x)

• Second,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1

∈ Im
(
E (p)

y0,x

)
by Theorem 4. For the AR(1) model,

one would appeal to Lemma 2.

• Finally, one can easily adapt the proof of Theorem 4 to show that{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

∈ Im
(
E (p)

y0,x

)
. First, it follows immediately

from Lemma 11 that:(
π
y1|y1,y0,...,y−(p−2)

1 (., x))
)
y1∈Yt−1

∈ Im
(
E (p)

y0,x

)
Then, by inspecting the induction argument of Theorem 4, it is easily seen that the
result that for T ≥ p+ 1 and t ∈ {p, . . . , T − 1}

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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for k = 0, . . . , p− 2 can be generalized. It actually holds for t = k + 1 when
k = 0, . . . , p− 2, yielding

E
[
ϕ
y1|yt1
θ0

(Yit+1, Yit, Y
t−1
i1−p, Xi)|Y 0

i , Xi, Ai

]
= π

y1|yt1,Yi0,...,Yit−(p−1)

t (Ai, Xi)

This is the desired result. The terms

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

are not

present in the AR(1) case which simplifies the argument.

Thus, we have shown that Fy0,p,T is a basis of Im
(
E (p)

y0,x

)
. Next, since E (p)

y0,x is a linear

mapping, we know by the rank nullity theorem that:

dim
(
ker(E (p)

y0,x)
)
= dim

(
R{0,1}T

)
− rank

(
E (p)

y0,x

)
Therefore, we have the following implications:

1. If T ≤ p, |Fy0,p,T | = 1 + 1 +
T∑
t=2

2t−1 = 2 +
T−1∑
t=1

2t = 2 + 21−2T−1

1−2
= 2T . Hence,

rank
(
E (p)

y0,x

)
= 2T and the rank nullity theorem implies dim

(
ker(E (p)

y0,x)
)
= 0

2. If T = p+1, |Fy0,p,T | = 1+1+
p∑
t=2

2t−1+2p = 2×2p = 2p+1. Then, rank
(
E (p)

y0,x

)
= 2T

and the rank nullity theorem implies dim
(
ker(E (p)

y0,x)
)
= 0

3. If T ≥ p+ 2, |Fy0,p,T | = 1+ 1 +
p∑
t=2

2t−1 + 2p(T − p) = 2p + 2p(T − p) = (T − p+ 1)2p.

It follows that rank
(
E (p)

y0,x

)
= (T − p+1)2p and dim

(
ker(E (p)

y0,x)
)
= 2T − (T − p+1)2p

1.8.6 Proofs of Propositions 1, 2, 4

Propositions 1, 2 and 4 all follow from the same strategy proof based on the the law of iter-
ated expectations. We focus on Proposition 1 here and leave the other cases to the reader.
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Take any t, s verifying T − 1 ≥ t > s ≥ 1. For any k ∈ Y , we have

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y s−1

i1 , Ai

]
= E

[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)− ϕ
k|k
θ0

(Yis+1, Yis, Yis−1)|Yi0, Y s−1
i1 , Ai

]
= E

[
E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)|Yi0, Y t−1
i1 , Ai

]
|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= E
[
πk|k(Ai)|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= πk|k(Ai)− πk|k(Ai)

= 0

The second and third equalities follow from the law of iterated expectation and Lemma 1.

1.8.7 Proofs of Lemma 1 and Lemma 2

Without loss of generality, we will consider the case with covariates. The proposed functional
form for the transition function ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi) implies that it is null when Yit ̸= 0.

Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

1 + eγ0Yit−1+X′
itβ0+Ai

×

(
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Yit−1, Xi) +

1

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Yit−1, Xi)

)

Thus, to obtain the transition probability π
0|0
t (Ai, Xi) =

1

1+e
X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
0|0
θ (1, 0, Yit−1, Xi) = eγYit−1+(Xit−Xit+1)

′β

ϕ
0|0
θ (0, 0, Yit−1, Xi) = 1

ϕ
0|0
θ (k, 1, Yit−1, Xi) = 0, ∀k ∈ Y

This can be expressed compactly as: ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)

Likewise, for ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) we have:

E
[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ0Yit−1+X
′
itβ0+Ai

1 + eγ0Yit−1+X′
itβ0+Ai

×

(
eγ0+X

′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Yit−1, Xi) +

1

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Yit−1, Xi)

)
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Hence, to get π
1|1
t (Ai, Xi) =

e
γ0+X′

it+1β0+Ai

1+e
γ0+X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
1|1
θ (1, 1, Yit−1, Xi) = 1

ϕ
1|1
θ (0, 1, Yit−1, Xi) = eγ(1−Yit−1)+(Xit+1−Xit)

′β

ϕ
1|1
θ (k, 0, Yit−1, Xi) = 0, ∀k ∈ Y

This can be written succinctly as: ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+β∆Xit+1)

1.8.8 Proofs of Lemmas 3,10 and Corollaries 3.1, 10.1

The proofs of Lemma 3, Lemma 10, Corollary 3.1, Corollary 10.1 all follow the same logic
based on the use of a partial fraction expansion. We prove Lemma 3 here and leave the other
cases to the reader.

The result hinges on the simple rational fraction identity provided in Lemma 8 that for
any three reals v, u, a, we have:

1

1 + ev+a
+ (1− eu−v)

ev+a

(1 + ev+a)(1 + eu+a)
=

1

(1 + eu+a)

ev+a

1 + ev+a
+ (1− e−(u−v))

eu+a

(1 + ev+a)(1 + eu+a)
=

eu+a

(1 + eu+a)

By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
(1− Yis) + ω

0|0
t,s (θ0)Yisϕ

0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)×

× E
[
YisE

[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
Yis|Yi0, Y s−1

i1 , Xi, Ai
] 1

1 + eκ
0|0
t (θ0)+Ai

=
1

1 + eµs(θ0)+Ai
+ (1− eκ

0|0
t (θ0)−µs(θ0))

eµs(θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
0|0
t (θ0)+Ai)

=
1

1 + eκ
0|0
t (θ0)+Ai

= π
0|0
t (Ai, Xi)

The second equality follows from the measureability of the weight ω
0|0
t,s (θ0) with respect to

the conditioning set. The third equality follows from the law of iterated expectations and
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Lemma 2. The penultimate equality uses the first mathematical identity presented above.
Similarly,

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
Yis + ω

1|1
t,s (θ0)(1− Yis)ϕ

1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)

× E
[
(1− Yis)E

[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)|Yi0, Y s−1

i1 , Xi, Ai
] eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

=
eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+
(
1− e−(κ

1|1
t (θ0)−µs(θ0))

) eκ
1|1
t (θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
1|1
t (θ0)+Ai)

=
eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

= π
1|1
t (Ai, Xi)

The second equality follows from the measurability of the weight ω
0|0
t,s (θ0) with respect to

the conditioning set. The third equality follows from the law of iterated expectations and
Lemma 2. The penultimate equality uses the second mathematical identity presented above.

1.8.9 Proof of Theorem 4

We start by proving the following Lemma

Lemma 11. In model (1.5), with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

0|0,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
1

1 + e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

1|1,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
eγ01+

∑p
l=2 γ0lYit+1−l+X

′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai
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Instead of verifying the result directly from the expression given in the Lemma, it is easier to
start from the heuristic idea, emphasized throughout the text, that we look for two functions
such that:

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Y

t−1
it−p, Xi)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yitϕ

1|1
θ (Yit+1, 1, Y

t−1
it−p, Xi)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Y
t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

k|k,Yit−1,...,Yit−(p−1)

t (Ai, Xi), ∀k ∈ Y

By definition, ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 0. Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , X,A

]
=

1

1 + e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

×

(
e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

1 + e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi)

+
1

1 + eγ02Yit−1+X′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi)

)
Thus, to obtain π

0|0,Yit−1,...,Yit−(p−1)

t (Ai, Xi) = 1

1+e
∑p

l=2
γ0lYit+1−l+X′

it+1
β0+Ai

at θ = θ0, we must

set:

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi) = eγ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi) = 1

ϕ
0|0
θ (k, 1, Y t−1

it−p, Xi) = 0,∀k ∈ Y

more compactly this writes,

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

Analogously, ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 1. Hence

E
[
ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi))|Y 0

i , Y
t−1
1 , X,A

]
=

e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

1 + e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

×

(
eγ01+

∑p
l=2 γ0lYit+1−l+X

′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi)

+
1

1 + eγ01+γ02Yit−1+X′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi)

)
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Consequently, to get π
1|1,Yit−1,...,Yit−(p−1)

t (Ai, Xi) =
e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1β0+Ai

1+e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1

β0+Ai
at θ = θ0, we

must set:

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi) = 1

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi) = eγ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β

ϕ
1|1
θ (k, 0, Y t−1

it−p, Xi) = 0,∀k ∈ Y

This can be written succinctly as:

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

which completes the proof of the Lemma.

Now, for T ≥ p + 1 fix t ∈ {p, . . . , T − 1} and y = (y1, . . . , yp) = yp1 ∈ {0, 1}p. We will
prove by finite induction the statement P(k):

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

for k = 0, . . . , p− 2 for p ≥ 2.

Base step:
P(0) is true by Lemma 11 which also deals with the edge case p = 2. Thus, let us assume
p ≥ 3 in the remainder of the induction argument.

Induction Step:
Suppose P(k − 1) is true for some k ∈ {1, . . . , p− 2}, we show that P(k) is true. Using the
law of iterated expectations, the induction hypothesis P(k− 1) and the identities of Lemma
8, we have:



60

If y1 = 0, yk+1 = 1

E
[
ϕ
0|0,yk2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
(1− Yit−k) + w

0|0,yk2 ,1
t (θ0)ϕ

0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai

+ w
0|0,yk2 ,1
t (θ0)

× E
[
E
[
ϕ
0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
w

0|0,yk2 ,1
t (θ0)E

[
π
0|0,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai

+ w
0|0,yk2 ,1
t (θ0)E

[
1

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
1

1 + eut−k(θ0)+Ai
+ (1− e(k

0|0,yk2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

=
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

= π
0|0,yk2 ,1,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 0, yk+1 = 0

E
[
ϕ
0|0,yk2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
+ E

[
−w0|0,yk2 ,0

t (θ0)
(
1− ϕ

0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk2 ,0
t (θ0)

× E

[
E
[(

1− ϕ
0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
|Y 0
i , Y

t−k
i1 , Xi, Ai

]
×(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk2 ,0
t (θ0)E

[
(1− π

0|0,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi))(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk2 ,0
t (θ0)E

[
e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1−

 eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

0|0,yk2 ,0

t (θ0)−ut−k(θ0)))
ek

0|0,yk2 ,0

t (θ0)+Ai

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai


= 1− ek

0|0,yk2 ,0

t (θ0)+Ai

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

=
1

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

= π
0|0,yk2 ,0,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 1, yk+1 = 0

E
[
ϕ
1|1,yk2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
Yit−k + w

1|1,yk2 ,0
t (θ0)ϕ

1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk2 ,0
t (θ0)×

E
[
E
[
ϕ
1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

+ w
1|1,yk2 ,0
t (θ0)E

[
π
1|1,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

+ w
1|1,yk2 ,0
t (θ0)

× E

[
eγ01+

∑k
r=2 γ0ryr+

∑p
r=k+1 γ0rYit−(r−1)+X

′
it+1β0+Ai

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

1|1,yk2 ,0

t (θ0)−ut−k(θ0)))
ek

1|1,yk2 ,0

t (θ0)+Ai

1 + ek
1|1,yk2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai

=
ek

1|1,yk2 ,0

t (θ0)+Ai

1 + ek
1|1,yk2 ,0

t (θ0)+Ai

= π
1|1,yk2 ,0,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 1, yk+1 = 1

E
[
ϕ
1|1,yk2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− (1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
+ E

[
−w1|1,yk2 ,1

t (θ0)
(
1− ϕ

1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= 1− 1

1 + eut−k(θ0)+Ai

− w
1|1,yk2 ,1
t (θ0)

× E

E[(1− π
1|1,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)

)
|Y 0
i , Y

t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai


= 1− 1

1 + eut−k(θ0)+Ai

− w
1|1,yk2 ,1
t (θ0)E

[
1

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1−

 1

1 + eut−k(θ0)+Ai
+ (1− e(k

1|1,yk2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai


= 1− 1

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

=
ek

1|1,yk2 ,1

t (θ0)+Ai

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

= π
1|1,yk2 ,1,Yit−k,...,Yit−(p−1)

t (Ai, Xi)

Putting these intermediate results together, we have effectively proved that

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

which shows that P(k) is true and completes the induction argument.
Now, it only remains to show that

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi)|Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

To this end, it suffices to perform calculations identical to those used in the induction argu-
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ment but using this time

E
[
ϕ
y1|yp−1

1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−2), Xi)|Y 0

i , Y
t−(p−1)
i1 , Xi, Ai

]
= π

y1|yp−1
1 ,Yit−(p−1)

t (Ai, Xi)

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

ut−(p−1)(θ) =

p∑
r=1

γrYit−(r+p−1) +X ′
it−(p−1)β

w
y1|yp1
t (θ) =

[
1− e(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]yp [
1− e−(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]1−yp
This concludes the proof of the theorem.

1.8.10 Identification of the AR(2) with strictly exogenous
regressors

1.8.10.1 Identification for T = 3 with variability in the initial condition

By Theorem 4, the transition functions associated to: π
0|0,0
2 (Ai, Xi), π

0|0,1
2 (Ai, Xi),

π
1|1,0
2 (Ai, Xi), π

1|1,1
2 (Ai, Xi) are given by:

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1Yi0+γ2Yi−1−X′

i31β(1− Yi1)

+
(
1− eγ1Yi0+γ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)e

Yi3(γ2Yi0−X′
i32β)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = (1− Yi1)

+
(
1− e−γ1Yi0+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)e

Yi3(γ1−γ2(1−Yi0)−X′
i32β)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1(1−Yi0)+γ2(1−Yi−1)+X

′
i31βYi1

+
(
1− eγ1(1−Yi0)+γ2(1−Yi−1)+X

′
i31β
)
Yi1Yi2e

(1−Yi3)(γ2(1−Yi0)+X′
i32β)

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = Yi1

+
(
1− e−γ1(1−Yi0)+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

(1−Yi3)(γ1−γ2Yi0+X′
i32β)

Moreover, an application of Lemma 11 gives

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi) = (1− Yi1)e

Yi2(γ1Yi0−γ2(Yi0−Yi−1)−X′
i21β)

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi) = Yi1e

(1−Yi2)(γ1(1−Yi0)+γ2(Yi0−Yi−1)+X
′
i21β)
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such that:

E
[
ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

0|0,Yi0
1 (Ai, Xi) =

1

1 + eγ2Yi0+X
′
i2β+Ai

E
[
ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

1|1,Yi0
1 (Ai, Xi) =

eγ1+γ2Yi0+X
′
i2β+Ai

1 + eγ1+γ2Yi0++X′
i2β+Ai

For π
0|0,0
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai, Xi) to match, we require both Yi0 = 0 and Xi3 = Xi2 in

which case:

ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1) +

(
1− eγ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)

ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = (1− Yi1)e
Yi2(γ2Yi−1−X′

i31β)

= (1− Yi1)Yi2e
γ2Yi−1−X′

i31β + (1− Yi1)(1− Yi2)

Therefore,

ψ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = 0

So there is no information about the model parameters in this moment function.

For π
0|0,1
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai, Xi) to match, we require both Yi0 = 1 and Xi3 = Xi2 in

which case:

ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = (1− Yi1) +
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)e

γ1Yi3

ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi) = (1− Yi1)e
Yi2(γ1−γ2(1−Yi−1)−X′

i31β)

Then, a valid moment condition that depends on all model parameters is:

ψ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi)

=
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
eγ1Yi1(1− Yi2)Yi3

+
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)(1− Yi3)

− eγ1−γ2(1−Yi−1)−X′
i31β(1− e−γ1+γ2(1−Yi−1)+X

′
i31β)(1− Yi1)Yi2

Rescaling this moment function by the factor(
eγ1−γ2(1−Yi−1)−X′

i31β(1− e−γ1+γ2(1−Yi−1)+X
′
i31β)

)−1

, one obtains

ψ̃
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)Yi3

+ e−γ1+γ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2
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Thus, for for the initial condition Yi0 = 1, Yi−1 = 1, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 1, Xi) = eX
′
i31βYi1(1− Yi2)Yi3 + e−γ1+X

′
i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

which only depends on γ1 and β. In the notation of Honoré andWeidner (2020), this coincides
with their moment function m(1,1). Clearly, it is strictly decreasing in γ1. Furthermore, this
moment function is either increasing or decreasing in βk depending on the sign of Xi3k−Xi1k.
Honoré and Weidner (2020) show that these monotonocity properties can be exploited to
uniquely identifies γ1, β. Instead, for the initial condition Yi0 = 1, Yi−1 = 0, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 0, Xi) = eγ2+X
′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2+X

′
i31βYi1(1− Yi2)(1− Yi3)

− (1− Yi1)Yi2

which Honoré and Weidner (2020) denote as m(1,0). Provided that γ1, β are identified, the
strict monotonicity of the moment functions in γ2 ensure that γ2 is identified.
Analogously, for π

1|1,0
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai) to match, we require both Yi0 = 0 and

Xi3 = Xi2 in which case:

ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = Yi1 +
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

γ1(1−Yi3)

ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi) = Yi1e
(1−Yi2)(γ1−γ2Yi−1+X

′
i31β)

Then, a valid moment function that depends on all model parameters is:

ψ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi)

=
(
1− e−γ1+γ2Yi−1−X′

i31β
)
eγ1(1− Yi1)Yi2(1− Yi3)

+
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2Yi3

− eγ1−γ2Yi−1+X
′
i31β
(
1− e−γ1+γ2Yi−1−X′

i31β
)
Yi1(1− Yi2)

Rescaling this moment function by the factor

(
eγ1−γ2Yi−1+X

′
i31β
(
1− e−γ1+γ2Yi−1−X′

i31β
))−1

,

one obtains

ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1)Yi2(1− Yi3)

+ e−γ1+γ2Yi−1−X′
i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

For the initial condition Yi0 = 0, Yi−1 = 0, we have

ψ̃
1|1,0
θ (Y 3

i1, 0, 0, Xi) = e−X
′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1−X

′
i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)
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This moment function also only depends on γ1, β and coincides with the moment function

m(0,0) in Honoré and Weidner (2020). Similarly to ψ̃
0|0,1
θ (Y 3

i1, 1, 1, Xi), the monotonicity

properties of ψ̃
1|1,0
θ (Y 3

i1, 0, 0, Xi) can be exploited to uniquely identifies γ1, β (see Honoré and
Weidner (2020)). Instead, for the initial condition Yi0 = 0, Yi−1 = 1, we obtain

ψ̃
1|1,0
θ (Y 3

i1, 0, 1, Xi) = eγ2−X
′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2−X

′
i31β(1− Yi1)Yi2Yi3

− Yi1(1− Yi2)

Provided that γ1, β is identified, the strict monotonicity of this moment function in γ2 implies
that it identifies γ2 uniquely. This is m(0,1) in Honoré and Weidner (2020).

Lastly, for π
1|1,1
2 (Ai) and π

1|1,Yi0
1 (Ai) to match, we require both Yi0 = 1 and Xi3 = Xi2 in

which case:

ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X
′
i31βYi1 +

(
1− eγ2(1−Yi−1)+X

′
i31β
)
Yi1Yi2

ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi) = Yi1e
(1−Yi2)(γ2(1−Yi−1)+X

′
i21β)

= Yi1(1− Yi2)e
γ2(1−Yi−1)+X

′
i21β + Yi1Yi2

Then, a valid moment function

ψ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi)

= 0

is identically zero and hence contains no information about the model parameters.

1.8.10.2 Proof of Theorem 5

We recall from the discussion of Section 1.4.5 that T = 4 andKx ≥ 2 so that there are at least
2 exogenous explanatory variables. We have Xit = (Wit, R

′
it)

′ ∈ RKx , β = (βW , β
′
R)

′ ∈ RKx

and Zi = (R′
i,Wi1,Wi3,Wi4)

′ ∈ R4Kx−1 . Our goal is to prove Theorem 5 under Assumptions
2 and 3.
Specializing Proposition 4 to the AR(2) with T = 4 yields the valid moment function:

ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) =

(
eγ2Yi0−X

′
i42β − 1

)
(1− Yi1)(1− Yi2)Yi3

+

[
eγ2Yi0−X

′
i42β +

(
1− eγ2Yi0−X

′
i42β
)
e−X

′
i43β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+X
′
i21βYi1(1− Yi2)Yi3

+ e−γ1Yi0−γ2Yi−1+X
′
i41β

[
eγ1+γ2Yi0−X

′
i42β +

(
1− eγ1+γ2Yi0−X

′
i42β
)
eγ2−X

′
i43β

]
× Yi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

− (1− Yi1)Yi2
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Define, the “limiting” moment function, where we have taken Wi2 to +∞

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(1.11)

For s ∈ {−,+}Kx , consider the moment objective

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
We will show in two successive steps (a) and (b) that

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
(a)

= E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = ∞
]

(b)

To establish (a), we start by observing that the history sequence (1 − Yi1)Yi2 featuring in

ψ
0|0,0
θ has expectation zero. To see this, note that by iterated expectations

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
= lim

w2→∞

∫
eγ02y0+x

′
2β0+a

1 + eγ02y0+x
′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2)dadz

Now, p(a, z|y0,Xs, w2) = p(a|y0, z, w2)p(z|y0,Xs, w2) = p(a|y0, z, w2)
p(z|y0,w2)1{Xi∈Xs}∫

Xs
p(z|y0,w2)dz

. Hence,

by part (iii) of Assumption 3, an integrable dominating function of the integrand is

eγ02y0+x
′
2β0+a

1 + eγ02y0+x
′
2β0+Ai

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2) ≤ d0(a)

d2(z)∫
Xs
d1(z)dz

Moreover, by parts (ii)-(iii) of Assumption 3 and the Dominated Convergence Theorem,

lim
w2→∞

p(a, z|y0,Xs, w2) = q(a|y0, z)
q(z|y0)1{Xi ∈ Xs}∫

Xs
q(z|y0)dz

≡ q(a, z|y0,Xs)

Hence another application of the Dominated Convergence Theorem gives

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
=

∫
lim
w2→∞

eγ02y0+x
′
2β0+a

1 + eγ02y0+x
′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2)dadz

=

∫
0× q(a, z|y0,Xs)dadz

= 0
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where the third line follows from the fact that limw2→∞ ew2βW = 0 by Assumption 2. Apply-

ing the same arguments to each remaining summand of ψ
0|0,0
θ and collecting terms delivers

(a). To obtain (b), we note that by part (iv) of Assumption 2,

w2 7→ E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
is continuous with a well de-

fined limit at infinity in light of (a). As a result, we can work directly with its continuous
extension at infinity.

Let us focus on the initial condition y0 = y−1 = 0. It is clear from Equation (1.6) that

Ψ
0|0,0
s,0,0(θ) does not depend on γ1. Furthermore, by parts (i) of Assumption 3 we note that we

have the following integrable dominating functions for the derivative:∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2

∣∣∣∣∣∣ = eγ2+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4 ≤ sup

g2∈G2,b∈B
eg2+2max(|x̄|,|x|)∥b∥1

∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂βk

∣∣∣∣∣∣ =
∣∣∣∣Xik,34e

X′
i34β(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+Xik,31e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4

+Xik,41e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)(1− Yi4)

∣∣∣∣
≤
∣∣Xik,34

∣∣eX′
i34β +

∣∣Xik,31

∣∣eγ2+X′
i31β +

∣∣Xik,41

∣∣eγ2+X′
i31β

≤ 2max(|x̄|, |x|) sup
b∈B

e2max(|x̄|,|x|)∥b∥1(1 + 2 sup
g2∈G2

eg2)

Hence, by Leibniz integral rule, we get

∂Ψ
0|0,0
s,0,0(θ)

∂γ2

= E

∂ψ0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2
|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
eγ2+X

′
i31βYi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞
]

= E
[
eγ2+X

′
i31β

×E
[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


> 0
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Similarly,

∂Ψ
0|0,0
s,0,0(θ)

∂βk

= E

∂ψ0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂βk
|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

Xik,34e
X′

i34β E
[
(1− Yi1)(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞

]
+ E

[
Xik,31e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

Xik,41e
γ2+X′

i31β E
[
Yi1(1− Yi2)(1− Yi3)(1− Yi4)|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞

]
The last display shows that

∂Ψ
0|0,0
s,0,0(θ)

∂βk
> 0 if sk = + and

∂Ψ
0|0,0
s,0,0(θ)

∂βk
< 0 if sk = −. Therefore,

appealing to Lemma 2 in Honoré and Weidner (2020), we conclude that the 2Kx system of
equations in Kx + 1 unkowns given by:

Ψ
0|0,0
s,0,0(θ) = 0, ∀s ∈ {−,+}Kx

has at most one solution. It is precisely (γ02, β0), since the validity of ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)

for arbitrary Xi directly implies the validity of the limiting moment ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

at “Wi2 = ∞”. Then, notice that for any other initial condition y0 ∈ {(0, 1), (1, 0), (1, 1)},
the objective Ψ

0|0,0
s,y0 (θ) is strictly monotonic in γ1. Hence, given (γ02, β0), it point identifies

γ01. This concludes the proof of Theorem 5.

1.8.11 Proof of Proposition 3

We recall that by definition,

Π
ks1|l

p
1

t (y0, xt+s1 ) =

E
[
P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X

t+s
i1 = xt+s1 , Ai)

|Y 0
i = y0, X t+s

i1 = xt+s1

]
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We have

P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X
t+s
i1 = xt+s1 , Ai) =

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

where Nks1|l
p
1(ea), Dks1|l

p
1(ea) are polynomials in ea. There are two cases to consider.

Case 1: s < p
Then,

Nks1|l
p
1(ea) = ek1(

∑p
r=1 γ0rlr+x

′
t+1β0+a)

s−1∏
j=1

ekj+1(
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x
′
t+1+jβ0+a)

Dks1|l
p
1(ea) =

(
1 + e

∑p
r=1 γ0rlr+x

′
t+1β0+a

) s−1∏
j=1

(
1 + e

∑j
r=1 γ0rkj+1−r+

∑p
r=j+1 γ0rlr−j+x

′
t+1+jβ0+a

)
We note that deg(Nks1|l

p
1(ea)) ≤ deg(Dks1|l

p
1(ea)) with strict inequality unless ks1 = 1s. Further-

more, since by assumption for any t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1− t} and y, ỹ ∈ Yp,
γ′0y + x′tβ0 ̸= γ′0ỹ + x′t+sβ0, D

ks1|l
p
1(ea) is a product of distinct irreducible polynomials in ea.

Consequently, standard results on partial fraction decompositions entail that there exists a
unique set of known coefficients (µ, λ0, λ1, . . . , λs−1) ∈ Rs+1 such that:

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

= µ+ λ0
1(

1 + e
∑p

r=1 γ0rlr+x
′
t+1β0+a

)
+

s−1∑
j=1

λj
1

1 + e
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x′t+1+jβ0+a

with µ = 0 unless ks1 = 1s. We can rewrite this in terms of transition probabilities as:

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

= µ+ λ0π
0|lp1
t (a, xt+1) +

s−1∑
j=1

λjπ
0|kj ,...,k1,lp−j

1
t+j (a, xt+1+j)

= µ+ λ0(1− l1)π
l1|lp1
t (a, xt+1) + λ0l1(1− π

l1|lp1
t (a, xt+1))+

s−1∑
j=1

λj(1− kj)π
kj |kj ,...,k1,lp−j

1
t+j (a, xt+1+j) +

s−1∑
j=1

λjkj(1− π
kj |kj ,...,k1,lp−j

1
t+j (a, xt+1+j))
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This last result in conjunction with Theorem 4, implies that:

Π
ks1|l

p
1

t (y0, xt+s1 ) = µ

+ E
[
λ0(1− l1)ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 ) + λ0l1

(
1− ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 )
)

+
s−1∑
j=1

λj(1− kj)ϕ
kj |kj ,...,k1,lp−j

1
θ0

(Y t+j+1
it+j−(2p−1), x

t+s
1 )

+
s−1∑
j=1

λjkj

(
1− ϕ

kj |kj ,...,k1,lp−j
1

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

)
|Y 0

i = y0, X t+s
i1 = xt+s1


which shows that Π

ks1|l
p
1

t (y0, xt+s1 ) is identified given that θ0 is identified by assumption.

Case 2: s ≥ p
Then,

Dks1|l
p
1(ea) =

(
1 + e

∑p
r=1 γ0rlr+x

′
t+1β0+a

) p−1∏
j=1

(
1 + e

∑j
r=1 γ0rkj+1−r+

∑p
r=j+1 γ0rlr−j+x

′
t+1+jβ0+a

)
×

s−1∏
j=p

(
1 + e

∑p
r=1 γ0rkj+1−r+x

′
t+1+jβ0+a

)

Nks1|l
p
1(ea) = ek1(

∑p
r=1 γ0rlr+x

′
t+1β0+a)

p−1∏
j=1

ekj+1(
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x
′
t+1+jβ0+a)

×
s−1∏
j=p

ekj+1(
∑p

r=1 γ0rkj+1−r+x
′
t+1+jβ0+a)

Invoking identical arguments as in the case s < p, there exists a unique set of known
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coefficients (µ, λ0, λ1, . . . , λs−1) ∈ Rs+1 such that:

Π
ks1|l

p
1

t (y0, xt+s1 ) = µ

+ E
[
λ0(1− l1)ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 ) + λ0l1

(
1− ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 )
)

+

p−1∑
j=1

λj(1− kj)ϕ
kj |kj ,...,k1,lp−j

1
θ0

(Y t+j+1
it+j−(2p−1), x

t+s
1 )

+

p−1∑
j=1

λjkj

(
1− ϕ

kj |kj ,...,k1,lp−j
1

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

)

+
s−1∑
j=p

λj(1− kj)ϕ
kj |kj ,...,kj+1−p

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

+
s−1∑
j=p

λjkj

(
1− ϕ

kj |kj ,...,kj+1−p

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )
)
|Y 0

i = y0, X t+s
i1 = xt+s1


which again shows that Π

ks1|l
p
1

t (y0, xt+s1 ) is identified given that θ0 is identified by assumption.
This concludes the proof.

1.8.12 Proof of Lemma 4

Let

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

We verify the claim by direct calculation.

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= P (Yit = k|Yi0, Y t−1

i1 , Xi, Ai)

×
∑
l∈Y

P (Yit+1 = l|Yi0, Y t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
M∏
m=1

ekm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

×
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

e
∑M

m=1(lm−km)(
∑M

j=1 γmj(Yj,it−1−kj)−∆X′
m,it+1βm)

=
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i
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=
M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

×
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

Now, noting that∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i) =

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

we finally get

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

×
M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

=
M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

= π
k|k
t (Ai, Xi)

which concludes the proof.

1.8.13 Proof of Lemma 5

By definition, for T ≥ 3, and for t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)|Yi0, Y s−1
i1 , Xi, Ai

]

=
M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)π

k|k
t (Ai, Xi)P (Yis = l|Yi0, Y s−1

i1 , Xi, Ai)

=
M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i

+
∑

l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]] M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

elm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
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=
M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the
definition of µj,s(θ) and follows from the law of iterated expectations and Lemma 5. The

third line makes use of the definition of κ
k|k
m,t(θ) and ω

k|k
t,s,l(θ) and the penultime line uses

Appendix Lemma 9.

1.8.14 Dynamic network formation with transitivity

Graham (2013) studies a variant of model (1.7) to describe network formation amongst
groups of 3 individuals. This is a panel data setting where a large sample of many such
groups and the evolution of their social ties are observed over T = 3 periods (4 counting the
initial condition). Interactions are assumed undirected and modelled at the dyad level as:

Dijt = 1
{
γ0Dijt−1 + δ0Rijt−1 + Aij − ϵijt ≥ 0

}
t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(1.12)

where i, j, k denote the 3 different agents and Dijt ∈ {0, 1} encodes the presence or absence
of a link between agent i and agent j at time t. The network D0 ∈ {0, 1}3 forms the ini-
tial condition. The parameter γ0 captures state dependence while δ0 captures transitivity
in relationships, i.e the effect of sharing friends in common on the propensity to establish
friendships. Finally, Aij is an unrestricted dyad level fixed effect that could potentiall capture
unobserved homophily and ϵijt is a standard logistic shock, iid over time and individuals.
While Graham (2013) establishes identification of (γ0, δ0) for T = 3 via a conditional like-
lihood approach in the spirit of Chamberlain (1985b), one limitation of the model is the
absence of other covariates, in particular time-specific effects. Controlling for such effects
can be essential to adequately capture important variation in social dynamics: think about
the persistent impact of Covid-19 on all types of social interactions. A relevant extension is
thus:

Dijt = 1
{
γ0Dijt−1 + δ0Dikt−1Djkt−1 +X ′

ijtβ0 + Aij − ϵijt ≥ 0
}

t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(1.13)

Letting D = {0, 1}3 denote the support of the network Dt = (Dijt, Dikt, Djkt), it is straight-
forward to see that the results developed for the VAR(1) case can be repurposed to suit
model (1.13) . For T = 3, an adaptation of Lemma 4 yields 8 possible transition functions
given by:

ϕ
d|d
θ (D3, D2, D1, X) = 1{D2 = d} exp

∑
i<j

(Dij3 − dij2)[γ(Dij1 − dij2)−∆Rij1δ −∆X ′
ij2β]
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for all d ∈ D. An adaptation of Lemma 5 implies that we can construct another 8 transition
functions given by

ζ
d|d
θ (D3, D2, D1, D0, X) = 1{D1 = d}+

∑
d′∈D\{d}

ω
d|d
2,1,d′(θ)1{D1 = l}ϕd|dθ (D3, D2, D2, X)

for all d ∈ D where

µij,1(θ) = γDij0 + δRij0 +X ′
ij1β

κ
d|d
ij,2(θ) = γdij + δrij +X ′

ij3β

ω
d|d
2,1,d′(θ) = 1− e

∑
i<j(d

′
ij−dij)

[
κ
d|d
ij,2(θ)−µij,1(θ)

]

Therefore, for T = 3, 8 moment functions that all meaningfully depend on the model pa-
rameter are:

ψ
d|d
θ (D3, D2, D1, D0, X) = ϕ

d|d
θ (D3, D2, D1, X)− ζ

d|d
θ (D3, D2, D1, D0, X), d ∈ D

Their validity, in the sense of verifying equation (1.1), follows from the law of iterated
expectations.

1.8.15 Proof of Lemma 6

Let

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}

× e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y (γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

We verify the claim by direct computation. We have:

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi

]
= P (Yit = k|Y 0

i , Y
t−1
i1 , Xi, Ai)

×
∑
l∈Y

P (Yit+1 = l|Y 0
i , Y

t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

∑
l∈Y

eγlk+X
′
ilt+1βl+Ail

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

ϕ
k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
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 eγkk+X
′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

+
∑

l∈Y\{k}

eγlk+X
′
ilt+1βl+Ail

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

e(
∑C

j=0(γlj−γkj)1(Yit−1=j)+γkk−γlk+∆X′
ikt+1βk−∆X′

ilt+1βl)


=

e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

× eγkk+X
′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

+
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
∑

l∈Y\{k}

1
C∑
j=0

eγjk+X
′
ijt+1βj+Aij

e
∑C

j=0 γlj1(Yit−1=j)+X
′
iltβl+Ail

=
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

1
C∑
j=0

eγjk+X
′
ijt+1βj+Aij

∑
l∈Y

e
∑C

j=0 γlj1(Yit−1=j)+X
′
iltβl+Ail

=
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

= π
k|k
t (Ai, Xi)

which concludes the proof.

1.8.16 Proof of Lemma 7

By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = 0|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{0}

ω
0|0
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
0|0
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

ω
0|0
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai
]
π
0|0
t (Ai, Xi)
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=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

(
1− e(κ

0|0
l,t (θ)−µl,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

=
1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

= π
0|0
t (Ai, Xi)

The first line follows from the measurability of the weight ω
0|0
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the
definition of µc,s(θ) and follows from the law of iterated expectations and Lemma 6. The

third line makes use of the definition of κ
0|0
c,t (θ), ω

0|0
t,s,l(θ) and the normalization

γc0 = γ0c = 0, A0c = 0 for all c ∈ Y . The penultime line uses Appendix Lemma 8.
Likewise, for all k ∈ Y \ {0},

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
k|k
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai
]
π
k|k
t (Ai, Xi)

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

(
1− e−κ

k|k
k,t (θ)+µk,s(θ)

)
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

+
C∑
l=1
l ̸=k

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eκ

k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the
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definition of µk,s(θ) and follows from the law of iterated expectations and Lemma 6. The

third line makes use of the definition of κ
k|k
c,t (θ) and ω

k|k
t,s,l(θ). The fourth line uses the fact

that κ
k|k
0,t (θ) = µ0,s(θ) = 0 due to the normalization γc0 = γ0c = 0, A0c = 0 for all c ∈ Y . The

penultime line uses Appendix Lemma 8.

1.8.17 Proof of Theorem 2

In what follows, we will drop the cross-sectional subscript i to economize on space. To avoid
excessive repetition, we will detail the argument for the initial condition Y0 = 0. A set of
completely symmetric arguments will deliver the result for Y0 = 1 and can be provided upon
request. For conciseness, we will further omit the conditioning on the initial condition Y0 = 0
in conditional expectations.

A) Preliminary calculations
The conditional density of history (Y1, Y2, Y3) of the AR(1) model given initial condition Y0,

regressors X and fixed effect A is f(Y1, Y2, Y3|Y0, X,A; θ) =
3∏
t=1

eYt(γYt−1+X′
tβ+A)(

1+eγYt−1+X′
tβ+A

) . This implies

ln f(Y1, Y2, Y3|Y0, X,A; θ) =
3∑
t=1

Yt(γYt−1 +X ′
tβ + A)−

3∑
t=1

Yt−1 ln
(
1 + eγ+X

′
tβ+A

)
−

3∑
t=1

(1− Yt−1) ln
(
1 + eX

′
tβ+A

)
and hence

∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)
∂γ

=
3∑
t=1

Yt

(
Yt−1 −

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

)
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂β
=

3∑
t=1

Xt

(
Yt − Yt−1

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

− (1− Yt−1)
eX

′
tβ+A

1 + eX
′
tβ+A

)
Our candidate for the efficient score is the efficient moment based on the conditional

moment restriction: E
[
ψθ(Y

3
1 , Y

1
0 , X)|Y0 = 0, X

]
= 0. By Chamberlain (1987), it is given

by,

ψeffθ (Y 3
1 , X) = −Ω(X)ψθ(Y

3
1 , Y

1
0 , X)

where Ω(X) = D(X)′Σ(X)−1 (recall that we are omitting the dependence on the initial
condition Y0 = 0 here). The following expressions for D(X),Σ(X),Ω(X) are useful for the
derivations ahead:

D11(X) = eX
′
21β+γP101(X)
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D21(X) = −eX′
13β−γP011(X)

D1j(X) = X23,j−1e
X′

23βP001(X) +X21,j−1e
X′

21β+γP101(X) +X31,j−1e
X′

31βP100(X),

j = 2, . . . , K + 1

D2j(X) = X32,j−1e
X′

32βP110(X) +X12,j−1e
X′

12βP010(X) +X13,j−1e
X′

13β−γP011(X),

j = 2, . . . , K + 1

Σ11(X) = (eX
′
23β − 1)2P001(X) + e2X

′
21β+2γP101(X) + e2X

′
31βP100(X) + P01(X)

Σ22(X) = (eX
′
32β − 1)2P110(X) + e2X

′
12βP010(X) + e2X

′
13β−2γP011(X) + P10(X)

Σ12(X) = Σ21(X)

= −
(
eX

′
21β+γP101(X) + eX

′
31βP100(X) + eX

′
12βP010(X) + eX

′
13β−γP011(X)

)
det
(
Σ(X)

)
= Σ11(X)Σ22(X)− Σ12(X)2

Ωj1(X) =
1

det
(
Σ(X)

) (D1j(X)Σ22(X)−D2j(X)Σ12(X)
)
, j = 1, . . . , K + 1

Ωj2(X) =
1

det
(
Σ(X)

) (−D1j(X)Σ12(X) +D2j(X)Σ11(X)
)
, j = 1, . . . , K + 1

were I use the shorthand Py1...yn(X) = P (Y1 = y1, . . . , Yn = yn|Y0 = 0, X)

B) Scores and nonparametric tangent set
With T = 3, the conditional likelihood of history (Y1, Y2, Y3) given X = x, Y0 = y0 writes:

L(θ) =
∫
f(Y1, Y2, Y3|y0, x, a; θ)π(a|y0, x)da

where π(.|y0, x) denotes the conditional density of A given X = x, Y0 = y0. Consider a scalar
parametric submodel for the heterogeneity distribution π(.|y0, x; η) such that
π(.|y0, x) = π(.|y0, x; η0). Then, the conditional likelihood of the parametric submodel is

L(θ, η) =
∫
f(Y1, Y2, Y3|y0, x, a; θ)π(a|y0, x; η)da

Define

Cy1y2y3(xt) = E

[
eγ+x

′
tβ+A

1 + eγ+x
′
tβ+A

|Y1 = y1, Y2 = y2, Y3 = y3, X = x

]

By1y2y3(xt) = E

[
ex

′
tβ+A

1 + ex
′
tβ+A

|Y1 = y1, Y2 = y2, Y3 = y3, X = x

]
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Careful bookkeeping yield the following scores for γ and β

Sγ =
∂ lnL(θ, η)

∂γ
= E

[
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂γ
|Y1, Y2, Y3, X = x

]
=
(
1− C111(x2) + 1− C111(x3)

)
Y1Y2Y3 + (1− C110(x2)− C110(x3))Y1Y2(1− Y3)

− C101(x2)Y1(1− Y2)Y3 − C100(x2)Y1(1− Y2)(1− Y3)

+ (1− C011(x3))(1− Y1)Y2Y3 − C010(x3)(1− Y1)Y2(1− Y3)

(1.14)

and

Sβ =
∂ lnL(θ, η)

∂β
= E

[
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂β
|Y1, Y2, Y3, X = x

]
=
(
x1(1−B111(x1)) + x2(1− C111(x2)) + x3(1− C111(x3))

)
Y1Y2Y3

+
(
x1(1−B110(x1)) + x2(1− C110(x2))− x3C110(x3)

)
Y1Y2(1− Y3)

+
(
x1(1−B101(x1))− x2C101(x2) + x3(1−B101(x3))

)
Y1(1− Y2)Y3

+
(
x1(1−B100(x1))− x2C100(x2)− x3B100(x3)

)
Y1(1− Y2)(1− Y3)

+
(
−x1B011(x1) + x2(1−B011(x2)) + x3(1− C011(x3))

)
(1− Y1)Y2Y3

+
(
−x1B010(x1) + x2(1−B010(x2))− x3C010(x3)

)
(1− Y1)Y2(1− Y3)

+
(
−x1B001(x1)− x2B001(x2) + x3(1−B001(x3))

)
(1− Y1)(1− Y2)Y3

+
(
−x1B000(x1)− x2B000(x2)− x3B000(x3)

)
(1− Y1)(1− Y2)(1− Y3)

The score for the nuisance parameter is

Sη =
∂ lnL(θ, η0)

∂η
= E

[
∂ ln π(A|y0, x; η0)

∂η
|Y1, Y2, Y3, X = x

]
Following Hahn (2001), this implies that the nonparametric tangent set is given by

T =
{
E[K(A, x)|Y1, Y2, Y3, x] such that E[K(A, x)|x] = 0

}
To prove that ψeffθ is semiparametrically efficient, we will verify the conditions for an appli-
cation of Theorem 3.2 in Newey (1990). Noting that L(θ, η) is differentiable in θ, that T is

linear, and that by Assumption 1, E
[
ψeffθ (Y 3

1 , X)ψeffθ (Y 3
1 , X)′

]
= E

[
D(X)Σ(X)−1D(X)′

]
is

non singular, all that remains to check are: i) ψeffθ (Y 3
1 , X) ∈ T ⊥ and ii) Sθ−ψeffθ (Y 3

1 , X) ∈ T .

C) Verification of condition i) ψeff
θ (Y3

1,X) ∈ T ⊥

To verify condition i), let us characterize the orthocomplement of T which will also be useful
to verify condition ii). By definition, any g(Y1, Y2, Y3, x) ∈ T ⊥ is such that for any element
of T , E[K(A, x)|Y1, Y2, Y3, x], we have

0 = E
[
g(Y1, Y2, Y3, x)E[K(A, x)|Y1, Y2, Y3, x]|x

]
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=

∫
K(a, x)E

[
g(Y1, Y2, Y3, x)|x, a

]
π(a|x)da

because this equality must be valid for any K(a, x) verifying E[K(A, x)|x] = 0, it must be

the case that V
(
E
[
g(Y1, Y2, Y3, x)|x,A

]
|x
)
= 0 or equivalently that

E
[
g(Y1, Y2, Y3, x)|x,A

]
= E

[
g(Y1, Y2, Y3, x)|x

]
. Conversely, this short calculation makes it

clear that any g function such that E
[
g(Y1, Y2, Y3, x)|x,A

]
is constant will be an element of

T ⊥. We conclude that,

T ⊥ = {g(Y1, Y2, Y3, x) |E
[
g(Y1, Y2, Y3, x)− E

[
g(Y1, Y2, Y3, x)|x

]
|x,A

]
= 0} = R+ T ⊥

∗

T ⊥
∗ = {g∗(Y1, Y2, Y3, x) |E

[
g∗(Y1, Y2, Y3, x)|x,A

]
= 0}

At this stage, an important observation is that T ⊥
∗ coincides with the set of valid moment

functions in the AR(1) model with T = 3. By Theorem 1, this is a 2-dimensional space when

T = 3 with basis elements ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi). As a result, we further conclude

that T ⊥
∗ = span

(
{ψ0|0

θ (Y 3
i1, Y

1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi)}

)
. Hence, ψeffθ (Y 3

1 , X) ∈ T ⊥
∗ since it

is a linear combination of ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi) and ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi). Finally since T ⊥

∗ ⊂ T ⊥,

ψeffθ (Y 3
1 , X) ∈ T ⊥.

D) Verification of condition ii) Sθ − ψeffθ (Y 3
1 , x) ∈ T

To check condition ii) Sθ − ψeffθ (Y 3
1 , x) ∈ T , we will verify the equivalent condition that for

any element g ∈ T ⊥, E
[(
Sθ − ψeffθ (Y 3

1 , x)
)
g(Y1, Y2, Y3, x)|x

]
= 0. Given our characteriza-

tion of T ⊥, it is equivalent to verify that ∀k ∈ {0, 1},

E
[(
Sθ − ψeffθ (Y 3

1 , x)
)
ψ
k|k
θ (Y 3

1 , Y
1
0 , x)|x

]
= 0

D)1) Sγ − ψeffγ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

Let ∆
0|0
γ = (Sγ − ψeffγ (Y 3

1 , Y
1
i0, x))ψ

0|0
θ (Y 3

1 , Y
1
0 , x). It is tedious but straightforward to show

that

∆0|0
γ = ∆

0|0
γ,1 +∆

0|0
γ,2 +∆

0|0
γ,3 +∆

0|0
γ,4 +∆

0|0
γ,5

∆
0|0
γ,1 = (1− C101(x2))e

x′21β+γY1(1− Y2)Y3 − C100(x2)e
x′31βY1(1− Y2)(1− Y3)

∆
0|0
γ,2 = −(1− C011(x3))(1− Y1)Y2Y3 + C010(x3)(1− Y1)Y2(1− Y3)

∆
0|0
γ,3 = Ω11(x)(e

x′23β − 1)2(1− Y1)(1− Y2)Y3 + Ω11(x)e
2x′21β+2γY1(1− Y2)Y3

+ Ω11(x)e
2X′

31βY1(1− Y2)(1− Y3) + Ω11(x)(1− Y1)Y2

∆
0|0
γ,4 = −Ω12(x)e

x′21β+γY1(1− Y2)Y3 − Ω12(x)e
x′31βY1(1− Y2)(1− Y3)

− Ω12(x)e
x′12β(1− Y1)Y2(1− Y3)− Ω12(x)e

x′13β−γ(1− Y1)Y2Y3
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∆
0|0
γ,5 = −eX′

21β+γY1(1− Y2)Y3

We then note that

E
[
∆

0|0
γ,1|x

]
=

∫
1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
21β+γπ(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + ex
′
3β+a

ex
′
31βπ(a|x)da

=

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

= 0

and by a similar calculation E
[
∆

0|0
γ,2|x

]
= 0. Next, we immediately have

E
[
∆

0|0
γ,3|x

]
= Ω11(x)Σ11(x)

E
[
∆

0|0
γ,4|x

]
= Ω12(x)Σ12(x)

E
[
∆

0|0
γ,5|x

]
= −eX′

21β+γP101(x)

and hence,

∆0|0
γ = Ω11(x)Σ11(X) + Ω12(x)Σ12(x)− ex

′
21β+γP101(x) = D11(x)−D11(x) = 0

D)2) Sγ − ψeffγ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

Let ∆
1|1
γ = (Sγ − ψeffγ (Y 3

1 , Y
1
i0, x))ψ

1|1
θ (Y 3

1 , Y
1
0 , x). It can be decomposed as follows

∆1|1
γ = ∆

1|1
γ,1 +∆

1|1
γ,2 +∆

1|1
γ,3 +∆

1|1
γ,4 +∆

1|1
γ,5

∆
1|1
γ,1 = −(eX

′
32β − 1)C1,1,0(x2)Y1Y2(1− Y3)

+ C1,0,1(x2)Y1(1− Y2)Y3 + C1,0,0(x2)Y1(1− Y2)(1− Y3)

∆
1|1
γ,2 = +(eX

′
32β − 1)(1− C1,1,0(x3))Y1Y2(1− Y3)− ex

′
12βC0,1,0(x3)(1− Y1)Y2(1− Y3)

− ex
′
13β−γC0,1,1(x3)(1− Y1)Y2Y3

∆
1|1
γ,3 = −Ω11(x)e

x′21β+γY1(1− Y2)Y3 − Ω11(x)e
x′31βY1(1− Y2)(1− Y3)

− Ω11(x)e
X′

12β(1− Y1)Y2(1− Y3)− Ω11(x)e
x′13β−γ(1− Y1)Y2Y3

∆
1|1
γ,4 = +Ω12(x)(e

X′
32β − 1)2Y1Y2(1− Y3) + Ω12(x)e

2x′12β(1− Y1)Y2(1− Y3)

+ Ω12(x)e
2x′13β−2γ(1− Y1)Y2Y3 + Ω12(x)Y1(1− Y2)
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∆
1|1
γ,5 = ex

′
13β−γ(1− Y1)Y2Y3

First, we have

E
[
∆

1|1
γ,1|x

]
= −

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

(ex
′
32β − 1)π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= −
∫

1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= +

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

= E[Y1Y2(1− Y3)|Y0 = 0, x]

By a very similar calculation, E
[
∆

1|1
γ,2|x

]
= −E[Y1Y2(1− Y3)|Y0 = 0, x]. Then,

E
[
∆

1|1
γ,3|x

]
= Ω11(x)Σ12(x)

E
[
∆

1|1
γ,4|x

]
= Ω12(x)Σ22(x)

E
[
∆

1|1
γ,5|x

]
= +ex

′
13β−γP011(x)

It follows that

E
[
∆1|1
γ |x

]
= Ω11(x)Σ12(x) + Ω12(x)Σ22(x) + ex

′
13β−γP011(x) = D21(x)−D21(x) = 0

D)3) Sβ − ψeffβ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

Fix j ∈ {2, . . . , K + 1}. Let ∆
0|0
βj−1

= (Sβj−1
− ψeffβj−1

(Y 3
1 , Y

1
i0, x))ψ

0|0
θ (Y 3

1 , Y
1
0 , x). Tedious

calculations and rearrangements lead to the following decomposition:

∆
0|0
βj−1

= ∆
0|0
βj−1,1

+∆
0|0
βj−1,2

+∆
0|0
βj−1

(x1) + ∆
0|0
βj−1

(x2) + ∆
0|0
βj−1

(x3)

where

∆
0|0
βj−1

(x1) = ∆
0|0
βj−1,1

(x1) + ∆
0|0
βj−1,2

(x1)
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∆
0|0
βj−1,1

(x1) = −(ex
′
23β − 1)x1,j−1B001(x1)(1− Y1)(1− Y2)Y3

− ex
′
21β+γx1,j−1B101(x1)Y1(1− Y2)Y3

− ex
′
31βx1,j−1B100(x1)Y1(1− Y2)(1− Y3)

+ x1,j−1B011(x1)(1− Y1)Y2Y3 + x1,j−1B010(x1)(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,2

(x1) = ex
′
21β+γx1,j−1(Y1(1− Y2)Y3 + ex

′
31βx1,j−1Y1(1− Y2)(1− Y3)

and

∆
0|0
βj−1

(x2) = ∆
0|0
βj−1,1

(x2) + ∆
0|0
βj−1,2

(x2) + ∆
0|0
βj−1,3

(x2)

∆
0|0
βj−1,1

(x2) = ex
′
23βx2,j−1(1−B001(x2))(1− Y1)(1− Y2)Y3

+ x2,j−1B001(x2)(1− Y1)(1− Y2)Y3

− x2,j−1(1−B011(x2))(1− Y1)Y2Y3 − x2,j−1(1−B010(x2))(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,2

(x2) = +ex
′
21β+γx2,j−1(1− C101(x2))Y1(1− Y2)Y3

− ex
′
31βx2,j−1C100(x2)Y1(1− Y2)(1− Y3)

∆
0|0
βj−1,3

(x2) = −ex′23βx2,j−1(1− Y1)(1− Y2)Y3 − ex
′
21β+γx2,j−1Y1(1− Y2)Y3

and

∆
0|0
βj−1

(x3) = ∆
0|0
βj−1,1

(x3) + ∆
0|0
βj−1,2

(x3) + ∆
0|0
βj−1,3

(x3)

∆
0|0
βj−1,1

(x3) = −(ex
′
23β − 1)x3,j−1B001(x3)(1− Y1)(1− Y2)Y3 − x3,j−1(1− Y1)(1− Y2)Y3

+ ex
′
21β+γx3,j−1(1−B101(x3))Y1(1− Y2)Y3

+ ex
′
31βx3,j−1(1−B100(x3))Y1(1− Y2)(1− Y3)

∆
0|0
βj−1,2

(x3) = −x3,j−1(1− C011(x3))(1− Y1)Y2Y3 + x3,j−1C010(x3)(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,3

(x3) = ex
′
23βx3,j−1(1− Y1)(1− Y2)Y3 − ex

′
31βx3,j−1Y1(1− Y2)(1− Y3)

and last

∆
0|0
βj−1,1

= +Ωj1(x)(e
x′23β − 1)2(1− Y1)(1− Y2)Y3 + Ωj1(x)e

2x′21β+2γY1(1− Y2)Y3

+ Ωj1(x)e
2x′31βY1(1− Y2)(1− Y3) + Ωj1(x)(1− Y1)Y2

∆
0|0
βj−1,2

= −Ωj2(x)e
x′21β+γY1(1− Y2)Y3 − Ωj2(x)e

x′31βY1(1− Y2)(1− Y3)

− Ωj2(x)e
x′12β(1− Y1)Y2(1− Y3)− Ωj2(x)e

x′13β−γ(1− Y1)Y2Y3

Starting first with the terms in “x1”, we have:

1

x1,j−1

E[∆0|0
βj−1,1

(x1)|x] = E

[
ex

′
1β+A

1 + ex
′
1β+A

E
[
−ψ0|0

θ (Y 3
1 , Y

1
0 , x)|x,A

]
|x

]
= 0
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E[∆0|0
βj−1,2

(x1)|x] = ex
′
21β+γx1,j−1P101(x) + ex

′
31βx1,j−1P100(x)

Next, for the terms in “x2”, we have:

1

x2,j−1

E
[
∆β,1(x2)|x

]
=

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

1

1 + ex
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
23βπ(a|x)da

+

∫
ex

′
2β+a

1 + ex
′
2β+a

1

1 + ex
′
1β+a

1

1 + ex
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

=

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

−
∫

1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

= 0

1

x2,j−1

E
[
∆β,2(x2)|x

]
=

∫
1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
21β+γπ(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + ex
′
3β+a

ex
′
31βπ(a|x)da

=

∫
1

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

= 0

E
[
∆

0|0
βj−1,3

(x2)|x
]
= −ex′23βx2,j−1P001(x)− ex

′
21β+γx2,j−1P101(x)

By the same token, for the terms in “x3”, one arrives at

E
[
∆

0|0
βj−1,1

(x3)|x
]
= E

[
∆

0|0
βj−1,2

(x3)|x
]
= 0 and

E
[
∆

0|0
βj−1,1

(x3)|x
]
= E

[
∆

0|0
βj−1,2

(x3)|x
]
= 0

E
[
∆

0|0
βj−1,3

(x3)|x
]
= ex

′
23βx3,j−1P001(x)− ex

′
31βx3,j−1P100(x)

Finally, E[∆0|0
βj−1,1

|x] = Ωj,1(x)Σ11(x),E[∆0|0
βj−1,2

|x] = Ωj,2(x)Σ12(x). Collecting terms, we get

E
[
∆

0|0
βj−1

|x
]
= ex

′
21β+γx1,j−1P101(x) + ex

′
31βx1,j−1P100(x)
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− ex
′
23βx2,j−1P001(x)− ex

′
21β+γx2,j−1P101(x)

ex
′
23βx3,j−1P001(x)− ex

′
31βx3,j−1P100(x) + Ωj1(x)Σ11(x) + Ωj2(x)Σ12(x)

= −D1j(x) +D1j(x)

= 0

This is of course valid for all slope parameters βj and hence Sβ−ψeffβ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

D)4) Sβ − ψeffβ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

Fix j ∈ {2, . . . , K + 1}. Let ∆1|1
βj−1

= (Sβj−1
− ψeffβj−1

(Y 3
1 , Y

1
i0, x))ψ

1|1
θ (Y 3

1 , Y
1
0 , x). A last set of

lengthy calculations and rearrangements lead to the following decomposition:

∆
1|1
βj−1

= ∆
1|1
βj−1,1

+∆
1|1
βj−1,2

+∆
1|1
βj−1

(x1) + ∆
1|1
βj−1

(x2) + ∆
1|1
βj−1

(x3)

where

∆
1|1
βj−1

(x1) = ∆
1|1
βj−1,1

(x1) + ∆
1|1
βj−1,2

(x1)

∆
1|1
βj−1,1

(x1) = +(ex
′
32β − 1)x1,j−1(1−B110(x1))Y1Y2(1− Y3)

+ ex
′
12βx1,j−1(1−B010(x1))(1− Y1)Y2(1− Y3)

+ ex
′
13β−γx1,j−1(1−B011(x1))(1− Y1)Y2Y3

− x1,j−1(1−B101(x1))Y1(1− Y2)Y3 − x1,j−1(1−B100(x1))Y1(1− Y2)(1− Y3)

∆
1|1
βj−1,2

(x1) = −ex′12βx1,j−1(1− Y1)Y2(1− Y3)− ex
′
13β−γx1,j−1(1− Y1)Y2Y3

and

∆
1|1
βj−1

(x2) = ∆
1|1
βj−1,1

(x2) + ∆
1|1
βj−1,2

(x2) + ∆
1|1
βj−1,3

(x2)

∆
1|1
βj−1,1

(x2) = −ex′32βx2,j−1C110(x2)Y1Y2(1− Y3)− x2,j−1(1− C110(x2))Y1Y2(1− Y3)

+ x2,j−1C101(x2)Y1(1− Y2)Y3 + x2,j−1C100(x2)Y1(1− Y2)(1− Y3)

∆
1|1
βj−1,2

(x2) = −ex′12βx2,j−1B010(x2)(1− Y1)Y2(1− Y3)

+ ex
′
13β−γx2,j−1(1−B011(x2))(1− Y1)Y2Y3

∆
1|1
βj−1,3

(x2) = ex
′
32βx2,j−1Y1Y2(1− Y3) + ex

′
12βx2,j−1(1− Y1)Y2(1− Y3)

and

∆
1|1
βj−1

(x3) = ∆
1|1
βj−1,1

(x3) + ∆
1|1
βj−1,2

(x3) + ∆
1|1
βj−1,3

(x3)

∆
1|1
βj−1,1

(x3) = +ex
′
32βx3,j−1(1− C110(x3))Y1Y2(1− Y3) + x3,j−1C110(x3)Y1Y2(1− Y3)

− ex
′
12βx3,j−1C010(x3)(1− Y1)Y2(1− Y3)− ex

′
13β−γx3,j−1C011(x3)(1− Y1)Y2Y3

∆
1|1
βj−1,2

(x3) = −x3,j−1(1−B101(x3))Y1(1− Y2)Y3 + x3,j−1B100(x3)Y1(1− Y2)(1− Y3)
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∆
1|1
βj−1,3

(x3) = ex
′
13β−γx3,j−1(1− Y1)Y2Y3 − ex

′
32βx3,j−1Y1Y2(1− Y3)

and last

∆
1|1
βj−1,1

= −Ωj1(x)e
x′21β+γY1(1− Y2)Y3 − Ωj1(x)e

x′31βY1(1− Y2)(1− Y3)

− Ωj1(x)e
x′12β(1− Y1)Y2(1− Y3)− Ωj1(x)e

x′13β−γ(1− Y1)Y2Y3

∆
1|1
βj−1,2

= +Ωj2(x)(e
x′32β − 1)2Y1Y2(1− Y3) + Ωj2(x)e

2x′12β(1− Y1)Y2(1− Y3)

+ Ωj2(x)e
2x′13β−2γ(1− Y1)Y2Y3 + Ωj2(x)Y1(1− Y2)

Starting first with the terms in “x1”, we have:

1

x1,j−1

E
[
∆

1|1
βj−1,1

(x1)|x
]
= E

[
1

1 + ex
′
1β+A

E
[
ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi)|x,A

]
|x
]
= 0

E
[
∆

1|1
βj−1,2

(x1)|x
]
= −ex′12βx1,j−1P010(x)− ex

′
13β−γx1,j−1P011(x)

For the terms in “x2”

1

x2,j−1

E
[
∆

1|1
βj−1,1

(x2)|x
]
= −

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

× ex
′
32βπ(a|x)da

−
∫

1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= −
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

= 0

1

x2,j−1

E
[
∆

1|1
βj−1,2

(x2)|x
]
= −

∫
ex

′
2β+a

1 + ex
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

ex
′
12βπ(a|x)da

+

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

ex
′
13β−γπ(a|x)da

= −
∫

1

1 + ex
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
1

1 + ex
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

= 0
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E
[
∆

1|1
βj−1,3

(x2)|x
]
= ex

′
32βx2,j−1P110(x) + ex

′
12βx2,j−1P010(x)

Similar calculations for the terms in “x3” yield E
[
∆

1|1
βj−1,1

(x3)|x
]
= E

[
∆

1|1
βj−1,2

(x3)|x
]
= 0

and E
[
∆

1|1
βj−1,3

(x3)|x
]
= ex

′
13β−γx3,j−1P011(x)− ex

′
32βx3,j−1P110(x). Finally,

E
[
∆

1|1
βj−1,1

|x
]
= −Ωj1(x)e

x′21β+γP101(x)− Ωj1(x)e
x′31βP100(x)

− Ωj1(x)e
x′12βP010(x)− Ωj1(x)e

x′13β−γP011(x)

= Ωj1(x)Σ12(x)

E
[
∆

1|1
βj−1,2

|x
]
= +Ωj2(x)(e

x′32β − 1)2P110(x) + Ωj2(x)e
2x′12βP010(x)

+ Ωj2(x)e
2x′13β−2γP011(x) + Ωj2(x)P10(x)

= Ωj2(x)Σ22(x)

Putting the different pieces together, we ultimately obtain

E
[
∆

1|1
βj−1

|x
]
= −ex′12βx1,j−1P010(x)− ex

′
13β−γx1,j−1P011(x)

+ ex
′
32βx2,j−1P110(x) + ex

′
12βx2,j−1P010(x)

+ ex
′
13β−γx3,j−1P011(x)− ex

′
32βx3,j−1P110(x)

+ Ωj1(x)Σ12(x) + Ωj2(x)Σ22(x)

= −D2j(x) +D2j(x)

= 0

This is of course valid for all slope parameters βj and hence Sβ−ψeffβ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

E) Conclusion
Having verified all the conditions of Theorem 3.2 in Newey (1990) for the initial condition
Y0 = 0, we conclude that in that case ψeffθ (Y 3

1 , X) is the efficient score of the AR(1) model.

The semiparametric efficiency bound is given by E
[
D(X)′Σ(X)−1D(X)

]−1
. Symmetric re-

sults can be shown to hold for the case Y0 = 1.
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Chapter 2

Identification in a Binary Choice
Panel Data Model with a
Predetermined Covariate1

2.1 Introduction

Empirical researchers utilizing panel data generally maintain the assumption that covariates
are strictly exogenous: realized values of past, current, and future explanatory variables are
independent of the time-varying structural disturbances or “shocks”.2 In many settings this
assumption is unrealistic. If the covariate is a policy, choice or dynamic state variable, then
agents may adjust its level in response to past shocks (as when, for example, a firm adjusts
its current capital expenditures in response to past productivity shocks).

When strict exogeneity is untenable, sequential exogeneity – sometimes called predeter-
minedness – may be palatable. A predetermined covariate varies independently of current
and future time-varying shocks, but general feedback, or dependence on past shocks, is al-
lowed. Assumptions of this type play an important role in, for example, production function
estimation (Olley and Pakes, 1996, Blundell and Bond, 2000).

In two seminal papers, Arellano and Bond (1991) and Arellano and Bover (1995), Manuel
Arellano and his collaborators presented foundational analyses of questions of identification,
estimation, efficiency and specification testing in linear panel data models with feedback.
Today such models are both well-understood and widely-used (see Arellano (2003) for a
textbook review).

In contrast, the properties of nonlinear models with feedback are much less well-understood.
In this chapter we study binary choice. Most existing work in this area focuses on the case
where the covariate is either strictly exogenous or a lagged outcome. Under strict exo-

1This chapter is joint work with Stéphane Bonhomme and Bryan Graham.
2Dependence between the covariates and the time-invariant heterogeneity – the so-called “fixed effects”

– is, of course, allowed.
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geneity, Rasch (1960) and Andersen (1970) show that the coefficient on the covariate is
point-identified using two periods of data when shocks are logistic. Chamberlain (2010) pro-
vides conditions under which the logit case is the only one admitting point-identification with
two periods (Davezies et al. (2020) provide extensions of this result to the case of T > 2).
In the dynamic case, where the covariate is a lagged outcome, Cox (1958b), Chamberlain
(1985a) and Honoré and Kyriazidou (2000) derive conditions for point-identification of the
coefficient on the lagged outcome in the logit case, while Honoré and Tamer (2006) show
how to compute bounds on coefficients for probit and other models.

Results for binary choice panel models with predetermined covariates are limited. Cham-
berlain (2022) studies identification and semiparametric efficiency bounds in a class of non-
linear panel data models with feedback; he provides both positive and negative results. In an
hitherto unpublished section of an early draft of that paper (Chamberlain, 1993), he proves
that the coefficient on a lagged outcome is not point-identified in a dynamic logit model when
only three periods of outcome data are available. Arellano and Carrasco (2003a) and Honoré
and Lewbel (2002) study binary choice models with predetermined covariates. Arellano and
Carrasco (2003a) assume that the dependence between the time-invariant heterogeneity and
the covariates is fully characterized by its conditional mean given current and lagged co-
variates. Honoré and Lewbel (2002) assume that one of the covariates is independent of
the individual effects conditional on the other covariates. In a recent contribution, Pig-
ini and Bartolucci (2022) show that one can accommodate specific forms of feedback while
maintaining point-identification in binary choice models with pretermined covariates.3

In what follows we pose two questions. First, under what conditions is the coefficient
on a predetermined covariate in a binary choice panel data model point-identified? Second,
when the coefficient is only set-identified, how extreme is the failure of point-identification;
i.e., what is the width of the identified set?

Our analyses leave the dependence between the (time-invariant) unit-specific hetero-
geneity and the covariates unrestricted. We focus on the special case of a single binary
predetermined covariate, leaving the feedback process from lagged outcomes, covariates and
the unit-specific heterogeneity onto future covariate realizations fully unrestricted. This is a
substantial relaxation of the strict exogeneity assumption.

Regarding point-identification, we provide a simple condition on the model which guaran-
tees that point-identification fails when T periods of data are available (and T is fixed). The
condition is satisfied in most familiar models of binary choice, including the logit one. This
finding contrasts with the prior work on logit models cited above, where point-identification
typically holds for a sufficiently long panel. As a notable exception, the exponential binary
choice model introduced by Al-Sadoon et al. (2017) does not satisfy our condition. In fact,
point-identification holds in that case.

Regarding identified sets, we first show that sharp bounds on the coefficient can be

3In this chapter we focus on panel data with a fixed number T of time periods. The large-T literature has
also considered models with dynamics and feedback, see for example Carro (2007), Hahn and Kuersteiner
(2002), and Fernández-Val (2009).
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computed using linear programming techniques. Our method builds on Honoré and Tamer
(2006), however, in contrast to their work, we allow for heterogeneous feedback. While the
regressor coefficient is our main target parameter, we also derive the identified set for an
average partial effect. This set can be computed using linear programming techniques as
well.

Second, we numerically compute examples of identified sets. We find that, relative to
the strictly exogenous case, allowing for a predetermined covariate tends to increase the
width of the identified set. However, our calculations also suggest that the identified set can
remain informative under predeterminedness, even in panels with as few as two periods, for
both the coefficient and the average partial effect. Finally, as is true under strict exogeneity,
the widths of the identified sets decrease quickly as the number of periods increases. These
observations are based upon sets computed under a particular data generating processe
(DGP). It is possible that identified sets may be larger under certain types of feedback.

The outline of the chapter is as follows. In Section 2.2 we present the model. In Section
2.3 we provide a condition that implies that the common parameter in this model is not
point-identified when T = 2. In Section 2.4 we show that our condition implies failure of
point-identification for all (finite) T . In Section 2.5 we show how to compute identified
sets on coefficients and average partial effects, and we report the results of a small set of
numerical illustrations. In Section 2.6 we describe potential restrictions one could impose
on the feedback process. These restrictions may restore point-identification or shrink the
identified set. We conclude in Section 2.7. Proofs are contained in the appendix. Lastly,
replication codes are available as supplementary material.

2.2 The model

Available to the econometrician is a random sample of n units, each of which is followed for
T ≥ 2 time periods. We focus on short panels, and keep T fixed. The sampling process
asymptotically reveals the joint distribution of (X1, . . . , XT , Y1, . . . , YT ).

For any sequence of random variables Zt and any non-stochastic sequence zt, we use the
shorthand notation Zt:t+s = (Z ′

t, ..., Z
′
t+s)

′ and zt:t+s = (z′t, ..., z
′
t+s)

′. In addition, we simply
denote Zt = Z1:t and zt = z1:t when the subsequence starts in the first period.

Let Yit ∈ {0, 1} and Xit ∈ {0, 1} denote a binary outcome and a binary covariate,
respectively. We assume that

Pr
(
Yit = 1 |Y t−1

i , X t
i , αi; θ

)
= F (θXit + αi), t = 1, . . . , T,

where αi ∈ S ⊂ R is a scalar individual effect, F (·) is a known differentiable cumulative
distribution function, and θ ∈ Θ is a scalar parameter.

Let πx1(α) denote the distribution of heterogeneity given the initial condition X1 = x1;
i.e., the distribution of αi |Xi1. We leave this distribution unrestricted on S. When S is
a discrete subset of the real line, πx1(α) belongs to the unit simplex on S, however it is

https://zenodo.org/record/8247844
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otherwise unrestricted. We denote as Π the collection of all πx1(α), for all x1 ∈ {0, 1} and
α ∈ S.

For each t ≥ 2, let

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1(α), t = 2, . . . , T,

denote the feedback process through which lagged outcomes, past covariates and hetero-
geneity affect the current covariate. We leave this distribution unrestricted as well. We
denote as G ∈ GT the collection of all Gt

yt−1,xt−1(α), for all t ∈ {2, ..., T}, yt−1 ∈ {0, 1}t−1,

xt−1 ∈ {0, 1}t−1, and α ∈ S.
The (integrated) likelihood function conditional on the first period’s covariate is

Pr
(
Y T
i = yT , X2:T

i = x2:T |Xi1 = x1

)
=

∫
S

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt︸ ︷︷ ︸
outcomes

×
T∏
t=2

Gt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt︸ ︷︷ ︸
feedback

× πx1(α)︸ ︷︷ ︸
heterogeneity

dµ(α), (2.1)

for some (discrete or continuous) measure µ on S.
A key feature of a model with predetermined covariates is the dependence of the feedback

process on lagged outcomes, as reflected in the dependence of Gt on yt−1 in (2.1). When
this dependence is ruled out, the covariate is strictly exogenous, and the likelihood function
simplifies.4 Dynamic responses of covariates to lagged outcome realizations are central to
many economic models, including those where Xit is a choice variable, policy, or a dynamic
state variable.

For any (θ, π,G) ∈ Θ×Π× GT , and any (yT , x2:T ) ∈ {0, 1}2T−1, let Qx1(y
T , x2:T ; θ, π,G)

denote the right-hand side of (2.1). Moreover, let Qx1(θ, π,G) denote the 22T−1 × 1 vector
collecting all those elements, for all (yT , x2:T ) ∈ {0, 1}2T−1. Finally, let Q(θ, π,G) denote
the 22T × 1 vector stacking Q1(θ, π,G) and Q0(θ, π,G). For a given (population) (θ, π,G) ∈
Θ× Π× GT , we define the identified set of θ as

ΘI =
{
θ̃ ∈ Θ : ∃(π̃, G̃) ∈ Π× GT : Q(θ̃, π̃, G̃) = Q(θ, π,G)

}
. (2.2)

4Under strict exogeneity, the likelihood function factors as

Pr
(
Y Ti = yT , X2:T

i = x2:T |Xi1 = x1

)
=

[ ∫
S

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−ytπxT (α)dµ(α)

]
× Pr

(
X2:T
i = x2:T |Xi1 = x1

)
,

where πxT (α) denotes the distribution of heterogeneity given all periods’ covariates x1, ..., xT .
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The set in (2.2) includes all θ̃ ∈ Θ where, for that θ̃, it is possible to find a heterogeneity

distribution π̃ ∈ Π, and a feedback process G̃ ∈ GT , such that the resulting conditional
likelihood assigns the same probability to each of the 22T−1 possible data outcomes as the
true one (given both Xi1 = 0 and Xi1 = 1).

In the first part of the chapter, we provide conditions on the model under which ΘI is
not a singleton. This corresponds to cases where θ is not point-identified. In the second part
of the chapter, we report numerical calculations of ΘI under particular DGPs.

Our focus on θ is motivated by the extensive literature on the identification of coefficients
in binary choice models. However, in applications, average effects may also be of interest. In
the second part of the chapter, we will also report numerical calculations of identified sets
for an average partial effect associated with a change in the binary predetermined covariate.

2.3 Failure of point-identification in two-period

panels

We first present an analysis of point-identification in the two-period case, since this leads to
simple and transparent calculations. In the next section, we will then generalize this result
to accommodate T ≥ 2 periods.

2.3.1 Assumptions and result

To keep the formal analysis simple, in this section and the next we assume that αi takes a
finite number of values, with known support points.

Assumption 4. S = {α1, ..., αK}, where α1, ..., αK are known, and µ =
∑K

k=1 δαk
, where δα

denotes the Dirac measure at α.

Assumption 4 makes the model fully parametric. However this is not a limitation as our
aim in this section and the next is to derive conditions under which point-identification fails.
The conditions we provide will require sufficiently many support points.5

We rely on the parameterization given by the 2(K−1)×1 vector π = (π′
1, π

′
0)

′, where, for

all x1 ∈ {0, 1}, πx1 = (πx1(α1), . . . , πx1(αK−1))
′ and πx1(αK) = 1 −

K−1∑
k=1

πx1(αk). The vector

π ∈ Π is unrestricted, except for the fact that πx1(α), for α ∈ S, belongs to the unit simplex.
This parameterization handles the fact that probability mass functions sum to one.

We next impose the following assumption on the population parameters.

Assumption 5. θ ∈ Θ, π ∈ Π, and G ∈ GT are all interior, and F (θx + α) ∈ (0, 1) for all
x ∈ {0, 1} and α ∈ S.

5The analysis is essentially unchanged if one instead assumes that µ =
∑K
k=1 λkδαk

, for some λk > 0.
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Assumption 5 places restrictions on the underlying parametric binary choice model and
heterogeneity distribution. It rules out heterogeneity distributions that induce a point mass
of “stayers” (i.e., units with such extreme values of α that they either always take the binary
action or they never do).6 Assumption 5 also rules out the “staggered adoption” design com-
mon in difference-in-differences analyses. Exploring the implications of non-interior feedback
processes is left for future work.

Finally, we assume that the parameter point is regular in the sense of Rothenberg (1971).

Assumption 6. (θ, π,G) is a regular point of the Jacobian matrix ∇Q(θ, π,G), in the sense

that the rank of ∇Q(θ̃, π̃, G̃) is constant for all (θ̃, π̃, G̃) in an open neighborhood of (θ, π,G).

The assumption of regularity is standard in the literature on the identification of para-
metric models (Rothenberg, 1971). If F (·) is analytic, the irregular points of ∇Q(θ, π,G)
(i.e., the points (θ, π,G) such that Assumption 6 is not satisfied) form a set of measure zero
(Bekker and Wansbeek, 2001). Thus, Assumption 6 is satisfied almost everywhere in the
parameter space in many binary choice models, including the probit and logit ones.

We aim to provide a simple condition under which point-identification of θ fails when
T = 2. We start by observing that, when T = 2, the 22T−1 = 8 model outcome probabilities
given Xi1 = x1 are

Qx1(θ, π,G) =



Pr
(
Yi2 = 1, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 1, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 1, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 1, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 0, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 0, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 0, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G

)
Pr
(
Yi2 = 0, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G

)


,

which, given the structure of the model, coincide with

Qx1(θ, π,G) =



∫
S F (θ + α)G2

1,x1
(α)F (θx1 + α)πx1(α)dµ(α)∫

S F (θ + α)G2
0,x1

(α)[1− F (θx1 + α)]πx1(α)dµ(α)∫
S F (α)[1−G2

1,x1
(α)]F (θx1 + α)πx1(α)dµ(α)∫

S F (α)[1−G2
0,x1

(α)][1− F (θx1 + α)]πx1(α)dµ(α)∫
S

[
1− F (θ + α)

]
G2

1,x1
(α)F (θx1 + α)πx1(α)dµ(α)∫

S

[
1− F (θ + α)

]
G2

0,x1
(α)[1− F (θx1 + α)]πx1(α)dµ(α)∫

S

[
1− F (α)

]
[1−G2

1,x1
(α)]F (θx1 + α)πx1(α)dµ(α)∫

S

[
1− F (α)

]
[1−G2

0,x1
(α)][1− F (θx1 + α)]πx1(α)dµ(α)


. (2.3)

With this notation in hand we present the following lemma.

6In some microeconometric datasets a substantial fraction of units never alter their value of Xt. For
example, in Card (1996) few workers join or leave a union during the sample period.
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Lemma 12. Let T = 2. Suppose that Assumptions 4, 5 and 6 hold, and that θ is point-
identified. Then, there exists x1 ∈ {0, 1} and a non-zero function ϕx1 : {0, 1}3 → R such
that:

(i) for all α ∈ S and y1 ∈ {0, 1},
1∑

y2=0

ϕx1(y1, y2, 1)F (θ + α)y2 [1− F (θ + α)]1−y2 =
1∑

y2=0

ϕx1(y1, y2, 0)F (α)
y2 [1− F (α)]1−y2 ;

(2.4)

(ii) for all α ∈ S and x2 ∈ {0, 1},
1∑

y2=0

1∑
y1=0

ϕx1(y1, y2, x2)

× F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

(2.5)

The proof of Lemma 12 exploits the fact that, if θ is point-identified, then it is also locally
point-identified. Together with the assumption that the parameter is regular, this allows us
to apply a result of Bekker and Wansbeek (2001) regarding the identification of subvectors,
which guarantees the existence of some x1 ∈ {0, 1} such that ∇θ′Qx1 does not belong to the

range of the matrix
[
∇π′

x1
Qx1 ∇G′

x1
Qx1

]
. We then show, using (2.3), that this implies the

existence of ϕx1 ̸= 0 such that (2.4) and (2.5) hold.
When the population parameter θ is point-identified, Lemma 12 suggests a method-

of-moments approach to estimation. In such settings, ϕXi1
(Yi1, Yi2, Xi2) will generally be a

non-trivial function of θ. Let ϕXi1
(Yi1, Yi2, Xi2; θ) be this function. Next, note that condition

(2.4) in Lemma 12 corresponds to the conditional moment restriction

E
[
ϕXi1

(Yi1, Yi2, Xi2; θ) |Xi1, Xi2, Yi1, αi
]
= E

[
ϕXi1

(Yi1, Yi2, Xi2; θ) |Xi1, Yi1, αi
]
, (2.6)

while – continuing to maintain (2.4) – equation (2.5) implies the additional requirement that

E
[
ϕXi1

(Yi1, Yi2, Xi2; θ) |Xi1, αi
]
= 0. (2.7)

Analog estimators in point-identified models with feedback, based on these observations, are
explored in our companion paper (Bonhomme et al., 2022).

This formulation clarifies that a necessary condition for point-identification of θ is the
existence of a non-zero moment function, ϕXi1

(Yi1, Yi2, Xi2; θ), with a mean that is invariant
to Xi2 given αi and the past (i.e., the first period’s covariate and outcome). Such a moment
function is “feedback robust”, in the sense that it remains valid across all possible feedback
processes. This is the content of condition (2.4) in Lemma 12, while (2.5) imposes a similar
invariance to the distribution of unobserved heterogeneity.

To show that point-identification fails, our focus here, we need to show that no such
non-zero moment function exists. It turns out that there is a very simple condition for this
in our model. Specifically, from Lemma 12 we obtain the following corollary.
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Corollary 12.1. Let T = 2. Suppose that Assumptions 4, 5 and 6 hold, and that 1, F (α),
and F (θ + α), for α ∈ S, are linearly independent, then θ is not point-identified.

Corollary 12.1 shows that a necessary condition for identification of θ is that 1, F (α), and
F (θ + α), for α ∈ S, are linearly dependent. This condition arises directly from condition
(2.4), which requires the existence of a moment function that is robust to unknown feedback.
Indeed, one can show that 1, F (α), and F (θ+ α) are linearly dependent if and only if there
exists a non-constant function ϕ such that

E
[
ϕ(Yit, Xit) |Xit, αi

]
= E

[
ϕ(Yit, Xit) |αi

]
. (2.8)

However, the condition that 1, F (α), and F (θ + α) be linearly dependent is restrictive,
as we show in the next subsection.7

Remark 10. Despite the negative result of Corollary 12.1, the sign of θ is identified provided
that Assumption 5 holds and F (·) is strictly increasing. Specifically, we show in Appendix
2.8.3 that

sign(θ) = sign
(
E
[
Yi2 − Yi1 |Xi1 = 0

])
= sign

(
E
[
Yi1 − Yi2 |Xi1 = 1

])
.

2.3.2 The logit model

Consider the logit model with a binary predetermined covariate, which corresponds to
F (u) = eu

1+eu
. In this case, the linear dependence condition of Corollary 12.1 requires that,

for some non-zero triplet (A,B,C),

A
eθ+α

1 + eθ+α
+B

eα

1 + eα
+ C = 0, for all α ∈ S.

However, this implies

Aeθeα(1 + eα) +Beα(1 + eθeα) + C(1 + eα)(1 + eθeα) = 0, for all α ∈ S,

which is a quadratic polynomial equation in eα. Therefore, provided that there are K ≥ 3
values in S, this implies

Aeθ +Beθ + Ceθ = 0, Aeθ +B + (1 + eθ)C = 0, C = 0,

which, provided that θ ̸= 0, entails

A = B = C = 0,

contradicting the assumption that (A,B,C) is non-zero.
We have thus proved the following corollary.
7While here we focus on a discrete S under Assumption 4, note that, when θ ̸= 0 and F is strictly

increasing on R, 1, F (α), and F (θ + α), for α ∈ R, cannot be linearly dependent. If that were the case,
then for some non-zero triplet (A,B,C) we would have AF (θ + α) + BF (α) + C = 0 for all α ∈ R. This
would imply, by taking α → ±∞ that C = 0 and A+ B = 0, which would then imply A = B = C = 0 and
contradict the assumption that (A,B,C) is non-zero.
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Corollary 12.2. Consider the logit model with T = 2. Suppose that Assumptions 4, 5 and
6 hold, that θ ̸= 0, and that S contains at least three points, then θ is not point-identified.

A precedent to Corollary 12.2 is given in the unpublished working paper by Chamberlain
(1993) mentioned in the introduction. In the model he considers, Xit = Yi,t−1 is a lagged
outcome, and T = 2 (hence, outcomes are observed for three periods). His model also
includes an additional regressor: an indicator for period t = 2.

2.3.3 The exponential model

Suppose now that, for u ≥ 0, F (u) = 1 − e−u. This corresponds to the exponential binary
choice model of Al-Sadoon et al. (2017). Note that here the support of F (·) is a strict subset
of the real line. In this case, letting

A = eθ, B = −1, C = 1− eθ,

we have
A[1− e−(θ+α)] +B[1− e−α] + C = 0.

Hence the non point-identification condition of Corollary 12.1 is not satisfied in the expo-
nential binary choice model.

In fact, in this case (2.4) and (2.5) are satisfied for

ϕx1(y1, y2, x2; θ) = (1− y2)e
θx2 − (1− y1)e

θx1 ,

and θ satisfies the conditional moment restriction

E[ϕXi1
(Yi1, Yi2, Xi2; θ) |Xi1] = 0,

that is,
E[(1− Yi2)e

θXi2 − (1− Yi1)e
θXi1 |Xi1] = 0. (2.9)

See Wooldridge (1997) for several related results. Furthermore, one can show formally that
θ is point-identified based on (2.9), see Appendix 2.8.4.

2.4 Failure of point-identification in T -period panels

for T > 2

In this section we generalize our analysis to an arbitrary number of periods and state our
main result.



99

2.4.1 Main result

The arguments laid out in the previous section extend to an arbitrary number of time
periods, T ≥ 2. Indeed, using a similar strategy to the proof of Lemma 12 and proceeding
by induction, we obtain the following lemma.

Lemma 13. Let T ≥ 2. Suppose that Assumptions 4, 5 and 6 hold, and that θ is point-
identified. Then, there exists x1 ∈ {0, 1} and a non-zero function ϕx1 : {0, 1}2T−1 → R such
that:

(i) for all α ∈ S, s ∈ {0, ..., T − 2}, yT−(s+1) ∈ {0, 1}T−(s+1), xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

ϕx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt (2.10)

does not depend on xT−s:T ;
(ii) for all α ∈ S and x2:T ∈ {0, 1}T−1,

∑
yT∈{0,1}T

ϕx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0. (2.11)

Similarly to Lemma 12, Lemma 13 implies the existence of a moment function, with
(generally) non-trivial dependence on θ, which is “feedback robust”, in the sense that, for
all s ∈ {0, ..., T − 2},

E
[
ϕXi1

(Y T
i , X

2:T
i ; θ) |XT−s

i , Y
T−(s+1)
i , αi

]
= E

[
ϕXi1

(Y T
i , X

2:T
i ; θ) |XT−(s+1)

i , Y
T−(s+1)
i , αi

]
,

while also requiring that

E
[
ϕXi1

(Y T
i , X

2:T
i ; θ) |Xi1, αi

]
= 0.

From Lemma 13 we obtain the following corollary, which we also prove by induction.
This is our main result.

Corollary 13.1. Let T ≥ 2. Suppose that Assumptions 4, 5 and 6 hold, and that 1, F (α),
and F (θ + α), for α ∈ S, are linearly independent, then θ is not point-identified.

2.4.2 Logit model

Using that, when θ ̸= 0, 1, F (α), and F (θ + α), for α ∈ S, are linearly independent in
the logit model, Corollary 13.1 implies that in the logit model with a binary predetermined
covariate, θ is not point-identified irrespective of the number of time periods available.

Corollary 13.2. Consider the logit model with T ≥ 2. Suppose that Assumptions 4, 5 and
6 hold, that θ ̸= 0, and that S contains at least three points, then θ is not point-identified.
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This non point-identification result contrasts with prior work on logit panel data models.
Under strict exogeneity, Rasch (1960) and Andersen (1970) have established that θ is point-
identified under mild conditions on Xit whenever T ≥ 2. In the dynamic logit model when
Xit = Yi,t−1, Chamberlain (1993) shows that θ is not point-identified when T = 2 (a result
also obtained as an implication of Corollary 12.1). However, Chamberlain (1985a), and
Honoré and Kyriazidou (2000) in a model with covariates, show that θ is point-identified
under suitable conditions whenever T ≥ 3.8 By contrast, Corollary 13.2 shows that, when
the feedback process through which current covariates are influenced by lagged outcomes is
unrestricted, the failure of point-identification is pervasive irrespective of T , despite the logit
structure.

2.5 Characterizing identified sets

The previous sections show that point-identification often fails in binary choice models with
a predetermined covariate. In this section, we explore the degree of identification failure by
presenting numerical calculations of the identified set ΘI for specific parameter values. In
the last part of the section we present calculations of the identified set for an average partial
effect.

2.5.1 Linear programming representation

We show that the identified set ΘI , defined by set (2.2) above, can be represented as a set of
θ values for which a certain linear program has a solution. This characterization facilitates
numerical computation of the identified set.

To present our construction, let us first focus on the T = 2 case, and suppose that
Assumption 4 holds, so αi has discrete support. For any hypothetical values
(θ̃, π̃, G̃) ∈ Θ× Π× G2, we define

ψx1(x2, y1, α) = Pr
(
Xi2 = x2, Yi1 = y1, αi = α |Xi1 = x1; θ̃, π̃, G̃

)
. (2.12)

The right-hand-side of (2.12) is determined by the unknown heterogeneity distribution, the
parametric likelihood for Y1 (given X1 and α), and the unknown feedback process for X2.

Finding ΘI essentially involves repeatedly asking whether, for a given θ̃, there exists a
valid feedback process and heterogeneity distributions consistent with the observed data
distribution (and the parametric part of the model).

Specifically we first require that ψx1(x2, y1, α) is a valid probability mass function:

ψx1(x2, y1, α) ≥ 0,
1∑

x2=0

1∑
y1=0

∫
S
ψx1(x2, y1, α)dµ(α) = 1. (2.13)

8Since in the dynamic logit model Xit = Yi,t−1 is a lagged outcome, T ≥ 2 (respectively, T ≥ 3) requires
that individual outcomes be available for at least three (resp., four) periods.
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Second, we check that it is consistent with the parametric likelihood model for Y1 given X1

and α:

1∑
x2=0

ψx1(x2, y1, α) = F (θ̃x1 + α)y1 [1− F (θ̃x1 + α)]1−y1
1∑

x2=0

1∑
y1=0

ψx1(x2, y1, α). (2.14)

Finally, we conclude that θ̃ ∈ ΘI if and only if

Qx1(y2, y1, x2; θ, π,G) =

∫
S
F (θ̃x2 + α)y2 [1− F (θ̃x2 + α)]1−y2ψx1(x2, y1, α)dµ(α), (2.15)

for some vectors ψx1 also satisfying (2.13) and (2.14) for x1 ∈ {0, 1}. Condition (2.15) ensures
compatibility with the likelihood contribution for the period 2 outcome, Y2.

Since all of the equalities and inequalities in (2.13), (2.14) and (2.15) are linear in ψx1 ,

it follows that one can verify whether θ̃ ∈ ΘI by checking the existence of a solution to
a finite-dimensional linear program.9 We provide details about computation in Appendix
2.8.8.

The characterization of ΘI in (2.13), (2.14) and (2.15) remains valid when Assumption
4 does not hold, and αi has continuous support. In that case, one needs to interpret ψx1 in
(2.12) as the product between the density of αi conditional on (Xi2, Yi1) and the probability
of (Xi2, Yi1), both of them conditional on Xi1 and for hypothetical parameter values. The
resulting linear program is infinite-dimensional in that case.

The linear programming representation of ΘI extends to any number T ≥ 2 of periods.
To see this, let, for some (θ̃, π̃, G̃) ∈ Θ× Π× GT ,

ψx1(x
2:T , yT−1, α) = Pr

(
X2:T
i = x2:T , Y T−1

i = yT−1, αi = α |Xi1 = x1; θ̃, π̃, G̃
)
,

with a similar definition when the support of αi is not discrete and Assumption 4 does not
hold. In Appendix 2.8.7 we derive the following characterization of the (sharp) identified set
ΘI .

Proposition 5. ( Identified Set) θ̃ ∈ ΘI if, and only if,

Qx1(y
T , x2:T ; θ, π,G) =

∫
S
F (θ̃xT +α)

yT [1−F (θ̃xT +α)]1−yTψx1(x2:T , yT−1, α)dµ(α), (2.16)

9Note that, to compute the identified set under the assumption of strict exogeneity, one can simply
modify this approach by adding to (2.13), (2.14) and (2.15) the additional restriction

ψx1
(x2, 1, α)

F (θ̃x1 + α)
=

ψx1
(x2, 0, α)

1− F (θ̃x1 + α)
for all (x2, x1, α),

which is also linear in ψx1 . The fact that, under strict exogeneity, ΘI can be computed using linear pro-
gramming was first established by Honoré and Tamer (2006).
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for some integrable functions ψx1 : {0, 1}2T−2 × S → R, x1 ∈ {0, 1}, satisfying

ψx1(x
2:T , yT−1, α) ≥ 0,

∑
x2:T∈{0,1}T−1

∑
yT−1∈{0,1}T−1

∫
S
ψx1(x

2:T , yT−1, α)dµ(α) = 1, (2.17)

and, for all s ∈ {2, ..., T},10 also satisfying∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α).

(2.18)

Proposition 5 shows that one can verify whether θ̃ ∈ ΘI by checking the feasibility of
a (finite- or infinite-dimensional) linear program. In a setting with lagged outcomes and
strictly exogenous covariates, Honoré and Tamer (2006) provided an analogous linear pro-
gramming representation of the identified set. By contrast, in Proposition 5 we characterize
the identified set of θ in the general predetermined case where the Granger condition fails;
i.e., when Gyt−1,xt−1(α) may depend on yt−1, a situation that Honoré and Tamer (2006) did
not consider but anticipated in their conclusion.

2.5.2 Numerical illustration

In this section we compute identified sets ΘI in logit and probit models for a set of example
data generating processes (DGPs). In the DGPs, Xit follows a Bernoulli distribution on
{0, 1} with probabilities (1

2
, 1
2
), independent over time, and αi takes K = 31 values with

probabilities closely resembling those of a standard normal (a specification we borrow from
Honoré and Tamer, 2006), and is drawn independently of (Xi1, ..., XiT ). In the logit case,
F (u) = eu

1+eu
, and in the probit case, F (u) = Φ(u) for Φ the standard normal cdf. Lastly, we

vary θ between −1 and 1. Note that Xit is strictly exogenous in this data generating process.
We characterize identified sets in two scenarios: assuming that Xit are strictly exogenous,
and only assuming that Xit are predetermined.

In Figure 2.1 we report our numerical calculations of the identified set ΘI for the logit
model (in the left column panels) and for the probit model (in the right column panels).
The three vertical panels correspond to the T = 2, 3, 4 cases, respectively. In each graph,
we report two sets of upper and lower bounds: those computed while maintaining the strict

10For s = T , restriction (2.18) should be read as

1∑
xT=0

ψx1(x
2:T , yT−1, α) = F (θ̃xT−1 + α)yT−1 [1− F (θ̃xT−1 + α)]1−yT−1

1∑
xT=0

1∑
yT−1=0

ψx1(x
2:T , yT−1, α).
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exogeneity assumption (in dashed lines) and those computed maintaining just predeter-
minedness (in solid lines). We report the true parameter θ on the x-axis. To compute the
sets, we assume that αi has the same K = 31 points of support as in the DGP. We also
experimented with fewer and additional support points, as we report below.

Focusing first on the logit case, shown in the left column of Figure 2.1, we see that the
identified set ΘI under strict exogeneity is a singleton for any value of θ and irrespective of
T . This is not surprising since θ is point-identified in the static logit model. In contrast,
the upper and lower bounds of the identified set do not coincide in the predetermined case,
consistent with our non point-identification result. At the same time, the identified sets
appear rather narrow, even when T = 2, and the width of the set tends to decrease rapidly
when T increases to three and four periods. This is qualitatively similar to the observation
of Honoré and Tamer (2006), who focused on dynamic probit models and found that the
width of the identified set tends to decrease rapidly with T .

Focusing next on the probit case, shown in the right column of Figure 2.1, we see that the
identified set ΘI under strict exogeneity is not a singleton. Moreover, allowing the covariate
to be predetermined increases the width of the identified set. However, as in the logit case,
the sets appear rather narrow, even when T = 2, and their widths decrease quickly as T
increases. Of course, these observations are specific to a particular data-generating process
and the corresponding bounds may be wide for other DGPs.

The results in Figure 2.1 are obtained by assuming that the researcher knows the (finite)
support of αi. This approach is similar to the one in Honoré and Tamer (2006). Alternatively,
one may wish to characterize the identified set in a class of models where αi is continuous,
e.g., when S = R and µ is the Lebesgue measure. Doing so, as noted earlier, requires
approximating an infinite-dimensional linear program. In Appendix Figure 2.3, we go take a
heuristic step in this direction by reporting numerical approximations to the identified sets,
for T = 2, obtained by taking K = 5, K = 50, and K = 500 points of support for αi,
respectively, where the points of support are equidistant percentiles of a standard normal
distribution. We find very minor differences compared to the case K = 31 that we report in
Figure 2.1. While we do not provide a formal analysis of numerical approximation properties,
this suggests that identified sets under continuous αi may not be markedly different from
the ones in Figure 2.1.

Overall, these calculations suggest that, while relaxing strict exogeneity tends to increase
the widths of the bounds, the identified sets under predeterminedness can be informative
even when the number of periods is very small. To reiterate, these conclusions are based on
a particular set of example DGPs.

2.5.3 Average partial effect

Although our focus in this chapter is on the parameter θ, in applications researchers are
often interested in average partial effects such as

∆ = E[Pr
(
Yit = 1 |Xit = 1, αi

)
− Pr

(
Yit = 1 |Xit = 0, αi

)
], (2.19)
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Figure 2.1: Identified sets in logit and probit models
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Notes: Upper and lower bounds of the identified set ΘI in a logit model (left column) and a probit model

(right column), for T = 2, 3, 4. The identified sets under strict exogeneity are indicated by the dashed lines,

the sets under predeterminedness are indicated by the solid lines. The population value of θ is given on the

x-axis.
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where the expectation is taken with respect to the distribution of αi.
The identified set for ∆ can also be characterized as the solution to a linear program.

Indeed, it follows from Proposition 5 that ∆̃ is in the identified set of ∆ if and only if there
exists θ̃, ψ0 and ψ1 such that (2.16), (2.17), and (2.18) hold, and

∆̃ =

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2:T∈{0,1}T−1

∑
yT−1∈{0,1}T−1

ψx1(x
2:T , yT−1, α)dµ(α), (2.20)

where qx1 = Pr(Xi1 = x1). For any given θ̃ ∈ ΘI , we can therefore compute the set of

∆̃ parameters in the identified set by solving a linear program. We provide details about
computation in Appendix 2.8.8.

In Figure 2.2 we report our computations of the identified set for the average partial
effect ∆, relying on the same parameter values and DGP as before. Focusing first on the
logit case, shown in the left column of the figure, we see that the identified set under strict
exogeneity is not a singleton, except when the true θ and ∆ are equal to zero. This is not
surprising, since average partial effects generally fail to be point-identified in binary choice
models, even when covariates are strictly exogenous. Yet, the sets seem rather narrow, even
when T = 2. Allowing the covariate to be predetermined increases the widths of the sets,
however the increase is relatively moderate. Moreover, the sets under predeterminedness are
very tight whenever T ≥ 3.

Focusing next on the probit case, shown in the right column of Figure 2.2, we see that
although the sets appear wider than in the logit case, relaxing strict exogeneity only mod-
erately increases the widths of the sets, especially when T ≥ 3.

Lastly, while we compute the sets in Figure 2.2 under the assumption that αi has the same
K = 31 points of support as in the DGP, in Appendix Figure 2.4 we report approximations
of the sets, for T = 2, obtained using K = 5, K = 50, and K = 500 points of support for αi.
The sets appear very similar to the ones based on K = 31 points of support shown in Figure
2.2. However, in this case as well, we do not formally analyze the numerical approximation
of the identified sets under continuous αi.

2.6 Restrictions on the feedback process

Our analysis suggests that failures of point-identification are commonplace in binary choice
models with a predetermined covariate. In this section we describe possible restrictions on
the model that can strengthen its identification content. We focus on restrictions on the
feedback process, since restrictions on individual heterogeneity are rarely motivated by the
economic context.
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Figure 2.2: Identified sets for average partial effects in logit and probit models
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Notes: Upper and lower bounds of the identified set for the average partial effect in a logit model (left column)

and a probit model (right column), for T = 2, 3, 4. The identified sets under strict exogeneity are indicated

by the dashed lines, the sets under predeterminedness are indicated by the solid lines. The population value

of the average partial effect is given on the x-axis.
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2.6.1 Homogeneous feedback

In some applications one may want to restrict the feedback process to not depend on time-
invariant heterogeneity; that is, to impose that

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1 (2.21)

is independent of α. For example, in structural dynamic discrete choice models, researchers
may be willing to model the law of motion of state variables such as dynamic production
inputs as homogeneous across units. Kasahara and Shimotsu (2009) show how this assump-
tion can help identification in these models. Here we study how a homogeneity assumption
can lead to tighter identified sets in our setting.

To proceed, we focus on the case where T = 2. Given (2.21), the likelihood function
takes the form

Pr
(
Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1

)
=

{∫
S
F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α)dµ(α)

}
× [G2

y1,x1
]x2 [1−G2

y1,x1
]1−x2 ,

where the likelihood factors due to the fact that the feedback process does not depend on α.
Hence, under Assumption 5 (which avoids division by zero) we have

Pr
(
Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1

)
[G2

y1,x1
]x2 [1−G2

y1,x1
]1−x2

=

∫
S
F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α)dµ(α).

(2.22)

A key observation to make about (2.22) is its right-hand-side coincides with the likelihood
function of a binary choice model with a strictly exogenous covariate (where in addition αi
is independent of Xi2 given Xi1). In turn, the left-hand side is weighted by the inverse of the
feedback process. This is similar to the inverse-probability-of-treatment-weighting approach
to dynamic treatment effect analysis in Jamie Robins’ work (e.g., Robins, 2000), with the
difference that here we focus on panel data models with fixed effects.

The similarity between (2.22) and the strictly exogenous case directly delivers point-
identification results and consistent estimators. For example, suppose that F is logistic.
Given that the left-hand side of (2.22) is point-identified, it follows from standard arguments
(Rasch, 1960, Andersen, 1970) that θ is point-identified. Moreover, a consistent estimator
of θ is obtained by maximizing the weighted conditional logit log-likelihood
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n∑
i=1

ω̂i1{Yi1 + Yi2 = 1}

×

Yi1 ln
 exp

(
θ̃Xi1

)
exp
(
θ̃Xi1

)
+ exp

(
θ̃Xi2

)
+ Yi2 ln

 exp
(
θ̃Xi2

)
exp
(
θ̃Xi1

)
+ exp

(
θ̃Xi2

)

 ,

with weights

ω̂i =
{
[Ĝ2

Yi1,Xi1
]Xi2 [1− Ĝ2

Yi1,Xi1
]1−Xi2

}−1

,

for Ĝ2
y1,x1

a consistent estimate of the homogeneous feedback probabilities.11

2.6.2 Markovian feedback

Another possible restriction on the feedback process is a Markovian condition, such as

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1
(α) (2.23)

is independent of (yt−2, xt−2). Such a condition may be natural in models where Xit is the
state variable in the agent’s economic problem (as in Rust, 1987 and Kasahara and Shimotsu,
2009, for example).

In order to characterize the identified set ΘI with the Markovian condition (2.23) added,
we augment the restrictions (2.16), (2.17) and (2.18) with the fact that, for all s ∈ {2, ..., T},∑

xs+1:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)

does not depend on (ys−2, xs−2).12

A difficulty arises in this case since this additional set of restrictions is not linear in ψx1 .
As a result, one would need to use different techniques to characterize the identified set in
the spirit of Proposition 5, and to establish conditions for (the failure of) point-identification
in the spirit of Corollary 13.1. Given this, we leave the analysis of identification in models
with Markovian feedback processes to future work.

11The analysis in this subsection is not restricted to the binary covariate case. However, when Xit are
continuous, demonstrating

√
n consistency of θ̂ would generally require imposing rate-of-convergence and

other requirements on the first-step estimation of the ω̂i weights.
12When s = T , this requires that

ψx1
(x2:T ,yT−1,α)∑1

xT =0 ψx1 (x
2:T ,yT−1,α)

does not depend on (yT−2, xT−2).
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2.7 Conclusion

In this chapter we study a binary choice model with a binary predetermined covariate. We
find that failures of point-identification are widespread in this setting. Point-identification
fails in many binary choice models, with apparently only a few exceptions (such as the expo-
nential model). At the same time, our numerical calculations of identified sets suggest that
the bounds on the parameter can be narrow, even in very short panels. This suggests that,
while the strict exogeneity assumption has identifying content, models with predetermined
covariates and feedback may still lead to informative empirical conclusions, both for the
coefficients of the covariates and for average partial effects.

Our analysis of models with a binary covariates can easily be extended to handle general
discrete covariates with finite support. In particular, for θ to be regularly point-identified
there need to exist x1 ̸= x2 in the support of Xit such that 1, F (θ′x1 + α), and F (θ′x2 + α),
for α ∈ S, are linearly dependent. This condition fails in many popular specifications such
as the logit. In turn, when Xit has finite, non-binary support, the identified set can still
be computed as a solution to a linear program, analogously to Proposition 5. However, the
extension to continuous covariates is not straightforward in our setting, in particular since
the notion of regularity maintained by Assumption 6 no longer applies.

Finally, although we have analyzed a binary choice model, our techniques can be used to
study other models with stronger identification content, such as models for count data (e.g.,
Poisson regression, Wooldridge, 1997, Blundell et al., 2002) and models with continuous out-
comes (e.g., censored regression, Honoré and Hu, 2004, and duration models, Chamberlain,
1985a). Deriving sequential moment restrictions in such nonlinear models was considered
by Chamberlain (2022) and is further explored in our companion paper (Bonhomme et al.,
2022).

2.8 Appendix: proofs and additional materials

2.8.1 Proof of Lemma 12

For any m× n matrix A, we will denote as

R(A) = {Au : u ∈ Rn}

the range of A,
N (A) = {u ∈ Rn : Au = 0}

the null space of A, and A† the Moore-Penrose generalized inverse of A.

We now proceed to prove Lemma 12. Since θ is point-identified, it is locally point-identified.
Since (θ, π,G) is a regular point of ∇Q(θ, π,G) by Assumption 6, it follows from Theorem
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8 in Bekker and Wansbeek (2001) that

∇θ′Q /∈ R

[∇π′
1
Q1 ∇G′

1
Q1 0 0

0 0 ∇π′
0
Q0 ∇G′

0
Q0

] . (2.24)

Therefore, there must exist x1 ∈ {0, 1} such that

∇θ′Qx1 /∈ R
([

∇π′
x1
Qx1 ∇G′

x1
Qx1

])
, (2.25)

and in the rest of the proof we will fix this x1 value.
Let ϕ̃x1 denote the projection of ∇θ′Qx1 onto the orthogonal complement of the vector space

spanned by the columns of
[
∇π′

x1
Qx1 ∇G′

x1
Qx1

]
; that is,

ϕ̃x1 = ∇θ′Qx1 −
[
∇π′

x1
Qx1 ∇G′

x1
Qx1

] [
∇π′

x1
Qx1 ∇G′

x1
Qx1

]†
∇θ′Qx1 .

It follows from (2.25) that ϕ̃x1 ̸= 0. Moreover, since ι′Qx1(θ, π,G) = 1, where ι denotes a
conformable vector of ones, we have

ι′∇θ′Qx1 = 0, ι′∇π′
x1
Qx1 = 0, ι′∇G′

x1
Qx1 = 0. (2.26)

It follows that ι′ϕ̃x1 = 0, implying that ϕ̃x1 cannot be constant.

Now, since v′ϕ̃x1 = 0 for all v ∈ R
([

∇π′
x1
Qx1 ∇G′

x1
Qx1

])
, we have

ϕ̃x1 ∈ N (∇πx1
Q′
x1
) ∩N (∇Gx1

Q′
x1
).

Next, let Pθ(x1, α) be the 8× 1 vector with elements

Pr
(
Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α

)
,

for (y2, x2, y1) ∈ {0, 1}3. Since ϕ̃x1 ∈ N (∇πx1
Q′
x1
), we have, for all α ∈ S,

ϕ̃′
x1
Pθ(x1, α) = ϕ̃′

x1
Pθ(x1, αK) ≡ Cx1 ,

where we have used the fact that πx1(αK) = 1−
K−1∑
k=1

πx1(αk).

Let us define the following demeaned version of ϕ̃x1 :
13

ϕx1 = ϕ̃x1 − Cx1ι.

13The 8 × 1 vector ϕx1
represents a function ϕx1

: {0, 1}3 7→ R. With some abuse of terminology we
sometimes refer to ϕx1 as a vector and sometimes as a function.
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Note that, since ϕ̃x1 is not constant, it follows that ϕx1 ̸= 0. Moreover, using (2.25) and
(2.26) we have

ϕx1 ∈ N (∇πx1
Q′
x1
) ∩N (∇Gx1

Q′
x1
),

from which it follows that

(i) ∇πx1
Q′
x1
ϕx1 = 0, (ii) ∇Gx1

Q′
x1
ϕx1 = 0.

We are now going to use (i) and (ii) to show (2.4)-(2.5). From (ii) we get, for all α ∈ S,

πx1(α)

(
ϕx1(1, 1, 1)F (θ + α)F (θx1 + α)− ϕx1(1, 1, 0)F (α)F (θx1 + α)

+ ϕx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α)− ϕx1(1, 0, 0)[1− F (α)]F (θx1 + α)

)
= 0,

πx1(α)

(
ϕx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]− ϕx1(0, 1, 0)F (α)[1− F (θx1 + α)]

+ ϕx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)]− ϕx1(0, 0, 0)[1− F (α)][1− F (θx1 + α)]

)
= 0.

This implies, using Assumption 5,

ϕx1(1, 1, 1)F (θ + α)− ϕx1(1, 1, 0)F (α)

+ ϕx1(1, 0, 1)[1− F (θ + α)]− ϕx1(1, 0, 0)[1− F (α)] = 0,

ϕx1(0, 1, 1)F (θ + α)− ϕx1(0, 1, 0)F (α)

+ ϕx1(0, 0, 1)[1− F (θ + α)]− ϕx1(0, 0, 0)[1− F (α)] = 0,

which coincides with (2.4).
Lastly, from (i) we get, for all α ∈ S,

ϕ′
x1
Pθ(x1, α) = ϕ′

x1
Pθ(x1, αK)

= ϕ̃′
x1
Pθ(x1, αK)− Cx1 ι

′Pθ(x1, αK)︸ ︷︷ ︸
=1

= ϕ̃′
x1
Pθ(x1, αK)− ϕ̃′

x1
Pθ(x1, αK)

= 0,

which can be equivalently written as

1∑
y2=0

1∑
x2=0

1∑
y1=0

ϕx1(y1, y2, x2) Pr
(
Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α; θ

)
= 0.

Now, using (2.4), this implies that, for all x2 ∈ {0, 1},
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1∑
y2=0

1∑
y1=0

ϕx1(y1, y2, x2)

× Pr
(
Yi2 = y2 |Xi2 = x2, αi = α; θ

)
Pr
(
Yi1 = y1 |Xi1 = x1, αi = α; θ

)
= 0,

which coincides with (2.5).

2.8.2 Proof of Corollary 12.1

The proof is by contradiction. Suppose that θ is point-identified. Then by (2.4) we have, for
some x1 ∈ {0, 1}, and for all y1 ∈ {0, 1} and α ∈ S,

ϕx1(y1, 0, 1)[1− F (θ + α)] + ϕx1(y1, 1, 1)F (θ + α)

= ϕx1(y1, 0, 0)[1− F (α)] + ϕx1(y1, 1, 0)F (α).

Since 1, F (α), and F (θ + α), for α ∈ S, are linearly independent, we thus have, for all
y1 ∈ {0, 1},

ϕx1(y1, 0, 1) = ϕx1(y1, 1, 1) = ϕx1(y1, 0, 0) = ϕx1(y1, 1, 0). (2.27)

Next, using (2.5) at x2 = 1 we have

ϕx1(1, 1, 1)F (θ + α)F (θx1 + α) + ϕx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]

+ ϕx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α) + ϕx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)] = 0.

Using (2.27) then gives

ϕx1(1, 1, 1)F (θx1 + α) + ϕx1(0, 1, 1)[1− F (θx1 + α)] = 0.

Now, since 1 and F (θx1 + α), for α ∈ S, are linearly independent, it follows that

ϕx1(1, 1, 1) = ϕx1(0, 1, 1) = 0.

Using (2.27) then also gives

ϕx1(1, 0, 1) = ϕx1(0, 0, 1) = 0.

Lastly, repeating the same argument starting with (2.5) at x2 = 0 gives

ϕx1(1, 1, 0) = ϕx1(0, 1, 0) = ϕx1(1, 0, 0) = ϕx1(0, 0, 0) = 0.

It follows that ϕx1 = 0, which leads to a contradiction.
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2.8.3 Proof of remark 10 (sign identification of θ)

Note that

E
[
Yi2 − Yi1 |Xi1 = 0

]
= E

[
E
[
Yi2 |Xi2, Yi1, Xi1 = 0, αi

]
− E

[
Yi1 |Xi1 = 0, αi

]
|Xi1 = 0

]
= E

[
F (θXi2 + αi)− F (αi) |Xi1 = 0

]
= E

[
(F (θ + αi)− F (αi))Xi2Yi1 + (F (θ + αi)− F (αi))Xi2(1− Yi1) |Xi1 = 0

]
=

∫
S

1∑
y1=0

(F (θ + α)− F (α))G2
y1,0

(α)F (α)y1(1− F (α))1−y1π0(α)︸ ︷︷ ︸
>0 by Assumption 5

dµ(α).

(2.28)

If θ = 0, (2.28) implies that E
[
Yi2 − Yi1 |Xi1 = 0

]
= 0. Moreover, since F (·) is strictly

increasing, it follows that θ > 0 (respectively, < 0) and E
[
Yi2 − Yi1 |Xi1 = 0

]
> 0 (resp.,

< 0) are equivalent. This implies that sign(θ) = sign
(
E
[
Yi2 − Yi1 |Xi1 = 0

])
. A similar

argument applied to Xi1 = 1 implies that sign(θ) = sign
(
E
[
Yi1 − Yi2 |Xi1 = 1

])
.

2.8.4 Identification in the exponential model

Let

ϕx1(θ̃)
def
≡ E[ϕx1(Y1, Y2, X2; θ̃) |Xi1 = x1] = E[(1− Yi2)e

θ̃Xi2 − (1− Yi1)e
θ̃Xi1 |Xi1 = x1].

We show that θ is the unique solution to the equation

ϕx1(θ̃) = 0.

Since ϕx1(θ) = 0, the result will follow if one can show that, for any x1 ∈ {0, 1}, ϕx1 is
strictly monotonic.

Let (θ1, θ2) ∈ Θ2 with θ1 > θ2. For x1 = 0, we have

ϕ0(θ1)− ϕ0(θ2)

= E[(1− Yi2)e
θ1Xi2 − (1− Yi1) |Xi1 = 0]− E[(1− Yi2)e

θ2Xi2 − (1− Yi1) |Xi1 = 0]

= E[(1− Yi2)(e
θ1Xi2 − eθ2Xi2) |Xi1 = 0]

= (eθ1 − eθ2)E[(1− Yi2)Xi2 |Xi1 = 0]

= (eθ1 − eθ2)E[(1− F (θ + αi))Xi2 |Xi1 = 0]

= (eθ1 − eθ2)︸ ︷︷ ︸
>0

∫
S

1∑
y1=0

(1− F (θ + α))G2
y1,0

(α)F (α)y1(1− F (α))1−y1π0(α)︸ ︷︷ ︸
>0 by Assumption 5

dµ(α)
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> 0,

which shows that ϕ0 is strictly increasing. If x1 = 1, then

ϕ1(θ1)− ϕ1(θ2)

= E[(1− Yi2)e
θ1Xi2 − (1− Yi1)e

θ1 |Xi1 = 1]− E[(1− Yi2)e
θ2Xi2 − (1− Yi1)e

θ2 |Xi1 = 1]

= E[(1− Yi2)(e
θ1Xi2 − eθ2Xi2)− (1− Yi1)(e

θ1 − eθ2) |Xi1 = 1]

= (eθ1 − eθ2)E[(1− Yi2)Xi2 − (1− Yi1) |Xi1 = 1]

= −(eθ1 − eθ2)E[(1− F (θ + αi))(1−Xi2) |Xi1 = 1]

= − (eθ1 − eθ2)︸ ︷︷ ︸
>0

×

∫
S

1∑
y1=0

(1− F (θ + α))(1−G2
y1,1

(α))F (θ + α)y1(1− F (θ + α))1−y1π1(α)︸ ︷︷ ︸
>0 by Assumption 5

dµ(α)

< 0,

which shows that ϕ1 is strictly decreasing.

2.8.5 Proof of Lemma 13

In what follows we assume T ≥ 3, having already proved the validity of the claim for T = 2
in Lemma 12.

Since θ is point-identified it is locally point-identified. Additionally, since (θ, π,G) is a regular
point of ∇Q(θ, π,G) by Assumption 6, we can appeal to Theorem 8 in Bekker and Wansbeek
(2001) and follow the same line of arguments as in the proof of Lemma 12 to conclude that
there exists x1 ∈ {0, 1} and a 22T−1 × 1 vector ϕx1 ̸= 0 such that

(i) ∇πx1
Q′
x1
ϕx1 = 0, (ii) ∇Gx1

Q′
x1
ϕx1 = 0.

We will now prove (2.10) and (2.11) using finite induction.
Let us start with (2.10). Given s ∈ {0, ..., T − 2}, let P(s) denote the statement that, for all
yT−(s+1) ∈ {0, 1}T−(s+1) and xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

ϕx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

does not depend on xT−s:T .

Base case:
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Condition (ii) implies that (
∂Qx1

∂GT
yT−1,xT−1(α)

)′

ϕx1 = 0,

or equivalently that

1∑
yT=0

1∑
xT=0

ϕx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT

×
T−1∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using Assumption 5, this simplifies to

1∑
yT=0

1∑
xT=0

ϕx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT = 0,

which implies that

1∑
yT=0

ϕx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT

does not depend on xT .
Thus, P(0) is true.

Induction step:
Suppose that P(0), . . . ,P(s) are true for s ∈ {0, . . . , T − 3}. We are going to show that
P(s+ 1) is true.
Condition (ii) implies that  ∂Qx1

∂G
T−(s+1)

yT−(s+2),xT−(s+2)(α)

′

ϕx1 = 0.

If s < (T − 3), this corresponds to∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

ϕx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)

xt [1−Gt
yt,xt(α)]

1−xt
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× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1)

×
T−(s+2)∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

While if s = (T − 3), this corresponds to∑
y2:T∈{0,1}T−1

∑
x2:T∈{0,1}T−1

ϕx1(y
T , x2:T )

×
T∏
t=3

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)

xt [1−Gt
yt,xt(α)]

1−xt

× F (θx2 + α)y2 [1− F (θx2 + α)]1−y2(−1)1−x2

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using Assumption 5 this gives, for all s ∈ {0, . . . , T − 3},∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

ϕx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)

xt [1−Gt
yt,xt(α)]

1−xt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0. (2.29)

Let Ls+1 denote the left-hand side of (2.29). Exploiting successively the fact that
P(0), . . . ,P(s) are true, alongside the property that, for all t ∈ {T − s, ..., T},

1∑
xt=0

Gt
yt,xt(α)

xt [1−Gt
yt,xt(α)]

1−xt = 1, (2.30)

it is easy to see that

Ls+1 =
∑

yT−(s+1):T∈{0,1}s+2

1∑
xT−(s+1)=0

ϕx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0.

Recalling that P(s) is true, this implies that

∑
yT−(s+1):T∈{0,1}s+1

ϕx1(y
T , x2:T )

T∏
t=T−(s+1)

F (θxt + α)yt [1− F (θxt + α)]1−yt
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does not depend on xT−(s+1):T . Hence, P(s+ 1) is true. This concludes the proof of (2.10).

Finally, we show (2.11). As in the proof of Lemma 12, Condition (i) implies that∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

ϕx1(y
T , x2:T )

×
T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)

xt [1−Gt
yt,xt(α)]

1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using (2.10) and (2.30), it follows that

∑
yT∈{0,1}T

ϕx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0,

which coincides with (2.11).

2.8.6 Proof of Corollary 13.1

In what follows we assume T ≥ 3, having already proved the validity of the claim for T = 2
in Corollary 12.1.

The proof is by contradiction. Suppose that θ is point-identified. We will show that this
necessarily leads to ϕx1 = 0, which will contradict Lemma 13. To that end, we will first
prove via finite induction that ϕx1 must be a constant function.

For s ∈ {1, ..., T − 2}, let P(s) denote the statement that there exists a function
ϕT−sx1

: {0, 1}2T−2s−1 → R such that, for all yT ∈ {0, 1}T and x2:T ∈ {0, 1}T−1, we have

ϕx1(y
T , x2:T ) = ϕT−sx1

(yT−s, x2:T−s).

Base case:
By (2.10), the quantity

1∑
yT=0

ϕx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (2.31)

does not depend on xT . Hence
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ϕx1(y
T−1, 1, x2:T−1, 1)F (θ + α) + ϕx1(y

T−1, 0, x2:T−1, 1)[1− F (θ + α)]

= ϕx1(y
T−1, 1, x2:T−1, 0)F (α) + ϕx1(y

T−1, 0, x2:T−1, 0)[1− F (α)].

By linear independence of 1, F (α), and F (θ + α), this implies that ϕx1(y
T , x2:T ) does not

depend on (yT , xT ). Hence P(1) is true.

Induction step

Suppose that P(s) is true for s ∈ {1, ..., T − 3}. Let us show that P(s+ 1) is true.

Since P(s) is true, we know that there exists a function ϕT−sx1
: {0, 1}2T−2s−1 → R such

that
ϕx1(y

T , x2:T ) = ϕT−sx1
(yT−s, x2:T−s).

Thus, by (2.10), the quantity:

∑
yT−s:T∈{0,1}s+1

ϕx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

yT−s=0

ϕT−sx1
(yT−s, x2:T−s)

∑
yT−(s−1):T∈{0,1}s

T∏
t=T−(s−1)

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

=
1∑

yT−s=0

ϕT−sx1
(yT−s, x2:T−s)F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

does not depend on xT−s:T . Therefore,

ϕT−sx1
(yT−s−1, 1, x2:T−s−1, 1)F (θ + α) + ϕT−sx1

(yT−s−1, 0, x2:T−s−1, 1)[1− F (θ + α)]

= ϕT−sx1
(yT−s−1, 1, x2:T−s−1, 0)F (α) + ϕT−sx1

(yT−s−1, 0, x2:T−s−1, 0)[1− F (α)].

Since 1, F (α), and F (θ + α) are linearly independent, this implies P(s+ 1).
It follows from the previous induction argument that there exists a function ϕ2

x1
: {0, 1}3 → R

such that, for all (yT , x2:T ),

ϕx1(y
T , x2:T ) = ϕ2

x1
(y2, x2).

Using (2.10), the quantity

∑
y2:T∈{0,1}T−1

ϕx1(y
T , x2:T )

T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−yt
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=
1∑

y2=0

ϕ2
x1
(y2, x2)F (θx2 + α)y2 [1− F (θx2 + α)]1−y2

does not depend on x2:T . Therefore,

ϕ2
x1
(y1, 1, 1)F (θ + α) + ϕ2

x1
(y1, 0, 1)[1− F (θ + α)]

= ϕ2
x1
(y1, 1, 0)F (α) + ϕ2

x1
(y1, 0, 0)[1− F (α)].

Since 1, F (α), and F (θ+α) are linearly independent, this implies that there exists a function
ϕ1
x1

: {0, 1} → R such that, for all (yT , x2:T ),

ϕx1(y
T , x2:T ) = ϕ1

x1
(y1).

Lastly, (2.11) implies

∑
yT∈{0,1}T

ϕx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
∑

yT∈{0,1}T
ϕ1
x1
(y1)

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

ϕ1
x1
(y1)

∑
y2:T∈{0,1}T

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

ϕ1
x1
(y1)F (θx1 + α)y1 [1− F (θx1 + α)]1−y1

= 0.

Linear independence of 1, F (α), and F (θ + α) thus implies

ϕ1
x1
(0) = ϕ1

x1
(1) = 0.

Therefore, ϕx1 must be the null function, a contradiction.

2.8.7 Proof of Proposition 5

It is immediate to verify that, if θ̃ ∈ ΘI , then (2.16), (2.17) and (2.18) are satisfied.
Conversely, suppose that (2.16), (2.17) and (2.18) are satisfied. Let

px1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α). (2.32)

Using (2.17) we have

px1(y
T , x2:T , α) ≥ 0,

∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

∫
S
px1(y

T , x2:T , α)dµ(α) = 1,
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so px1 is a valid distribution function (conditional on Xi1 = x1).
Next, using (2.16) we have∫

S
px1(y

T , x2:T , α)dµ(α)

=

∫
S
F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)dµ(α)

= Qx1(y
T , x2:T ; θ, π,G),

so px1 is consistent with the conditional distribution Qx1(y
T , x2:T ; θ, π,G) of (Y T

i , X
2:T
i ) given

Xi1.
Next, using (2.18) we have, for all s ∈ {2, ..., T},∑
xs:T∈{0,1}T−s+1

∑
ys:T∈{0,1}T−s+1

px1(y
T , x2:T , α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s


1∑

yT=0

F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT

ψx1(x
2:T , yT−1, α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T∈{0,1}T−s+2

px1(x
2:T , yT , α),

so, for all t ∈ {1, ..., T −1}, the conditional distributions of Yit given (Y t−1
i , X t−1

i , αi) induced

by px1 coincide with the ones under the model; i.e., with F (θ̃xt + α)yt [1− F (θ̃xt + α)]1−yt .
Lastly, using (2.32) we have

px1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)

= F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT
1∑

yT=0

px1(y
T , x2:T , α),

so the conditional distribution of YiT given (Y T−1
i , XT−1

i , αi) induced by px1 also coincides
with the one under the model.
This implies that θ̃ ∈ ΘI .

2.8.8 Computation of identified sets

In this section we describe the practical implementation of the linear programming approach
for the computation of identified sets for two types of target parameters: θ, and average
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partial effects. For simplicity of exposition we discuss the case T = 2, but the construction
is analogous for larger T .

2.8.8.1 Parameter θ

In Proposition 5, we established that a candidate parameter θ̃ lies in the identified set ΘI

if and only if one can find functions ψ0, ψ1 verifying equations (2.13), (2.14) and (2.15).
A useful observation is that these conditions can be viewed as the constraints of a linear
program. Thus, determining whether θ̃ ∈ ΘI is equivalent to determining the feasibility of a
linear optimization problem. In the numerical illustration, we specifically consider:

inf
ψ0,ψ1

∫
S

1∑
x1=0

qx1

1∑
x2=0

1∑
y1=0

ψx1(x2, y1, α)dµ(α),

where the constraints are that ψ0, ψ1 satisfy equations (2.13), (2.14) and (2.15). The addi-
tional constraints for the strictly exogenous case are that ψ0, ψ1 also verify the relationship
presented in footnote 5.

2.8.8.2 Average partial effect ∆

In addition to θ, a quantity of interest is the average partial effect

∆ = E[Pr
(
Yi2 = 1 |Xi2 = 1, αi

)
− Pr

(
Yi2 = 1 |Xi2 = 0, αi

)
]

=

∫
S
[F (θ + α)− F (α)]

∑
x1∈{0,1}

qx1πx1(α)dµ(α).

which is generally not point-identified. Yet, for a given θ̃ ∈ ΘI , one can compute a lower
bound ∆(θ̃) and an upper bound ∆(θ̃) on the range of possible average partial effects as
solutions to the following linear optimization problem:

∆(θ̃) = inf
ψ0,ψ1

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2∈{0,1}

∑
y1∈{0,1}

ψx1(x2, y1, α)dµ(α),

∆(θ̃) = sup
ψ0,ψ1

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2∈{0,1}

∑
y1∈{0,1}

ψx1(x2, y1, α)dµ(α),

subject to ψ0, ψ1 satisfying equations (2.15), (2.13), and (2.14). Under the assumption of
strict exogeneity, ψ0 and ψ1 have to satisfy the additional constraint discussed in footnote
5. The sharp bounds for ∆ are then obtained as

∆ = inf
θ̃∈ΘI

∆(θ̃),

∆ = sup
θ̃∈ΘI

∆(θ̃).
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Figure 2.3: Approximate identified sets for logit and probit models with T = 2
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Notes: Approximate upper and lower bounds of the identified set ΘI in a logit model (left column) and a probit

model (right column) with T = 2 based on a discretization of unobserved heterogeneity with K = 5, 50, 500

support points respectively. The true identified set is depicted by the solid lines while the approximations are

indicated by the dashed lines. The population value of θ is given on the x-axis.
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Figure 2.4: Approximate identified sets for average partial effects in logit and probit models
with T = 2
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Notes: Approximate upper and lower bounds of the identified set for average partial effects in a logit model

(left column) and a probit model (right column) with T = 2 using a discretization of unobserved heterogeneity

with K = 5, 50, 500 support points respectively. The true identified set is depicted by the solid lines while the

approximations are indicated by the dashed lines. The population value is given on the x-axis.
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Chapter 3

Identification and estimation of
random effects linear social
interaction models with endogenous
peer selection

3.1 Introduction

Most studies on peer effects treat friendships between individuals either as fixed or as exoge-
nous random variables in a linear social interaction model for individual outcomes. There
are reasons to be doubtful of this convention; namely the possibility that unobserved indi-
vidual traits such as personality type or sociability level may influence both peer selection
(e.g Selfhout et al. (2010)) and individual outcomes (e.g Golsteyn et al. (2021) in the context
of academic achievement). A concrete example is helpful to flesh out the econometric prob-
lem. Suppose as in Manski (1993) that a researcher is interested in measuring the effects of
an educational intervention providing tutoring program to some students and not to others
on, say, student GPA. Let i = 1, ..., N index students in the school and assume that the
researcher observes an undirected sociomatrix D, where the ijth entry Dij ∈ {0, 1} denotes
a potential friendship between students i and j. The binary treatment Xi is randomly as-
signed amongst students and a simple linear-in-means specification is considered to account
for potential spillover effects of the treatment on the outcome of interest Yi:

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

GijXj + Ui (3.1)

Here, G = (Gij)
N
i,j=1 is the row-normalized version of D:

Gij =

{
Dij

Di+
if Di+ > 0

0 otherwise
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with Di+ =
∑

j ̸=iDij denoting student i’s degree centrality, i.e his number of friends. The
error term Ui can be regarded as a latent sociability level of student i. By virtue of random
assignment, Xi is an exogenous covariate but the fraction of friends treated,

∑
j ̸=iGijXj, is

not due to the potential correlation between the latent sociability of individual i, Ui, and
the identity of her friends. To see this, observe the following:

Cov(Ui,
∑
j ̸=i

GijXj)

=
∑
j ̸=i

Cov(Ui, GijXj)

=
∑
j ̸=i

E(UiGijXj)− E(Ui)E(GijXj) (by linearity)

=
∑
j ̸=i

(
E(UiGij)− E(Ui)E(Gij)

)
E(Xj) (by random assignment)

= E(X1)

E(Ui
∑
j ̸=i

Gij)− E(Ui)E(
∑
j ̸=i

Gij)


= E(X1)

E

Ui∑
j ̸=i

Dij

Di+

1{Di+ > 0}

− E(Ui)E

∑
j ̸=i

Dij

Di+

1{Di+ > 0}




= E(X1)

E

Ui
∑
j ̸=i

Dij

Di+︸ ︷︷ ︸
=1

∣∣∣∣Di+ > 0

− E(Ui)E


∑
j ̸=i

Dij

Di+︸ ︷︷ ︸
=1

∣∣∣∣Di+ > 0


P (Di+ > 0)

= E(X1)
(
E(Ui|Di+ > 0)− E(Ui)

)
P (Di+ > 0)

Generally, we will have E(Ui|Di+ > 0) ̸= E(Ui) as we expect positive degree-centrality to be
indicative of sociability level in networks of finite size. In turn, a standard regression will
lead to biased estimates of the spillover effect δ0, the size of which will depend on the precise
features of the model.

This chapter presents an approach to deal with this issue. Our work fits in the grow-
ing literature initiated by Goldsmith-Pinkham and Imbens (2013) that aims to formally
account for network endogeneity in peer effect models by jointly modelling link formation
and individual outcomes. Motivated by the above example, we assume that individuals have
latent attributes that influence outcomes and exclusively determine friendships according
to a conditionally independent dyad model in the spirit of Auerbach (2019), Johnsson and
Moon (2015) and Shalizi and McFowland III (2016). However, our methodology and as-
sumptions are substantially different from these papers which focus on estimation in “large”
networks while we focus on the more empirically motivated “small” network setting wherein
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the researcher observes several independent clusters of moderate size, e.g. classrooms, teams,
schools. In that respect, our framework is closer to Jochmans (2020) and we develop com-
plementary approaches, though to our knowledge, we are the first to address the additional
complication of correlated unobservables and latent exogenous effects in this setup. Other-
wise, whereas Jochmans (2020) analyzes directed networks, and uses stochastic restrictions
of the link formation process to build instrumental variables, we study undirected networks,
and exploit inherent symmetries of the model to formulate a different solution to the prob-
lem of network endogeneity. Specifically, leveraging the exchangeability of the link formation
model and an independence assumption between observable and latent characteristics, we
show that controlling or matching individuals by degree-centrality is sufficient to eliminate
the omitted variable bias induced by endogenous peer selection. We combine this result and
insights from Bramoullé et al. (2009) for the case of exogenous friendships to propose two
simple strategies for the identification and estimation of social effects. Finally, we draw on
the recent work of Hansen and Lee (2019), to show that our estimators are consistent and
asymptotically normal under standard assumptions for clustered samples.

The remainder of the chapter is organized as follows. Section 3.2 introduces the model
and our working assumptions. Section 3.3 further discusses the complications arising from
endogenous peer selection. In Section 3.4, 3.5 and 3.6 we introduce our estimators and
characterize their properties. We present Monte Carlo results in Section 3.7 and Section 3.8
concludes. Proofs are gathered in the Appendix.

3.2 The econometric model

Our focus is on the estimation of linear social interactions models subject to endogenous peer
selection when the researcher observes data from c = 1, . . . , C distinct clusters (e.g schools,
classrooms) of finite size. To that end, we hypothesize a common data generating process
for each cluster that we detail below.

3.2.1 Data generating process

A cluster c comprises a finite population of Nc agents labelled by the integers in {1, . . . , Nc}.
Each agent i in the cluster is endowed with a pair, (Xi, Ui) ∈ RK × R known to her. The
K-dimensional vector Xi captures observable individual specific characteristics while Ui is a
scalar agent-level attribute unobserved by the econometrician. We collect these features in
the vector Uc = (U1, . . . , UNc) and the matrix Xc = (X1, . . . , XNc) - the cluster subscript c
will be omitted when doing so causes no confusion. Aside from the primitives X,U , cluster
variables include an undirected network D and a vector of individual outcomes Y generated
in two consecutive stages.

First, we posit a peer selection stage producing the symmetric adjacency matrix D.
Specifically, we assume that agents form friendships according to the following non-strategic,
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non-parametric dyadic network formation model:

Dij = 1
{
h(Ui, Uj)− Vij ≥ 0

}
1 {i ̸= j} (3.2)

Vij ∼iid F (.), Vij independent of U

Here, h(., .) is a symmetric function in the latent attributes (Ui, Uj) called a graphon and
Vij = Vji are idiosynchratic shocks. In this setup, the existence of a dyad ij (i.e Dij = 1)
depends on whether the total surplus of forming a friendship, h(Ui, Uj)−Vij, exceeds the zero
threshold. Observe that the link probability: P (Dij = 1|Ui = ui, Uj = uj) = (F ◦ h)(ui, uj)
is an increasing function of (ui, uj) when the graphon is increasing in its arguments. In this
case, agents with a comparatively “high” ui will tend to have a comparatively higher number
of friends, i.e a higher degree centrality, and thus we will generally interpret Ui as a latent
popularity. Note the important restriction that observable characteristics Xi do not enter
link decisions.

In a second stage, given (X,U,D), we assume that all agents in the cluster play a linear-
quadratic game resulting in a pure strategy Nash equilibrium Y . We consider two possibil-
ities: the linear-in-means specification and the local-aggregate specification. In the former,
the utility from an action profile y takes the form:

∀i ∈ {1, . . . , N}, ui(y;D,U,X) = vi(D,U,X)yi −
1

2
y2i + β0ȳn(i)yi (3.3)

where ȳn(i) =
∑

j ̸=iGijYj denotes the average action i’s friends in the network D. Here,

vi(D,U,X) = α0 +X ′
iγ0 + X̄ ′

n(i)δ0 + AD + Ui + λ0Ūn(i)

where X̄n(i) =
∑

j ̸=iGijXj, Ūn(i) =
∑

j ̸=iGijUj capture the average observable (respectively
unobservable) characteristics of i’s peers and AD is a scalar network effect. Solving for the
best response behavior leads to:

Yi = α0 + β0Ȳn(i) +X ′
iγ0 + X̄ ′

n(i)δ0 + AD + Ui + λ0Ūn(i) (3.4)

Equation (3.4) corresponds to what is widely known as the linear-in-means model. As is
common in the literature, we impose |β0| < 1 to ensure the uniqueness of the pure strategy
Nash equilibrium of the game.
The local-aggregate model is a variant focusing on aggregate quantities rather than averages.
In this model the utility function is:

∀i ∈ {1, . . . , N}, ui(y;D,X) = vi(D,X)yi −
1

2
y2i + β0

∑
j ̸=i

Dijyiyj (3.5)

vi(D,X) = α0 +X ′
iγ0 +

∑
j ̸=i

DijXj

′

δ0 + AD + Ui + λ0
∑
j ̸=i

DijUj
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Then, the first order condition for optimality imply a linear best reply of the form:

Yi = α0 + β0
∑
j ̸=i

DijYj +X ′
iγ0 +

∑
j ̸=i

DijXj

′

δ0 + AD + Ui + λ0
∑
j ̸=i

DijUj (3.6)

Similarly, we will assume (N − 1)|β0| < 1, a sufficient condition to ensure the uniqueness of
the pure strategy Nash equilibrium (Ballester et al. (2006)).

Arguably less popular than its counterpart the local-aggregate model has nevertheless
been the subject of several studies in game theory (Ballester et al. (2006), Calvó-Armengol
et al. (2009), Ushchev and Zenou (2020)), in econometrics (Liu and Lee (2010), Liu et al.
(2014)) and in the education literature (Calvó-Armengol et al. (2009), Liu et al. (2014)). The
two models can serve to emphasize different facets of peer influence. For instance, the linear-
in-means model has commonly been employed to represent social conformity in a group of
individuals. To understand why, observe that the utility function (3.3) is isomorphic to:

ui(y;D,U,X) = v′i(D,U,X)yi −
1

2

(
y2i + ζ0

(
yi − ȳn(i)

)2)
In this reformulation an individual’s utility is affected by the deviation of her action from
that of her reference group. If ζ0 > 0, the agent will try to mimic the mean action of her
friends to maximize utility. In contrast, the utility function of the local-aggregate model
(3.5) highlights the complementary of actions between connected individuals. For this rea-
son, the model has traditionally been used to analyze the role of spillovers in education
(Calvó-Armengol et al. (2009), Ushchev and Zenou (2020)). For our purposes and from an
econometric viewpoint, the critical difference between the two models is that one employs
the row-normalized adjacency matrix while the other uses the adjacency matrix.1 We will
see that this difference has important implications for identification and estimation.

For ease of exposition, we will focus on the scalar case (K = 1) and to facilitate the joint
treatment of the two specifications, we will work with the following notation:

Yi = α0 + β0
∑
j ̸=i

ωij(Di)Yj + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj + AD + Ui + λ0
∑
j ̸=i

ωij(Di)Uj (3.7)

where it is understood that ωij(Di) = Gij for the linear-in-means and ωij(Di) = Dij for the
local-aggregate model. Note the rich structure of the composite error term: ϵi = AD + Ui +
λ0
∑

j ̸=i ωij(Di)Uj, which allows for complex forms of dependence within each cluster going

beyond the simple correlation induced by network fixed effects 2.

1Another more subtle difference of the linear-in-sums is that the equilibrium outcome will be proportional
to the Katz-Bonacich centrality of the agent in the network (Ballester et al. (2006), Calvó-Armengol et al.
(2009)). This feature is absent in the linear-in-means model due to the row-normalization of the adjacency
matrix.

2Suprisingly, a very few number of papers entertain the possibility of latent exogenous effect; Graham
(2008) and Graham et al. (2020) being notable exceptions. This common asymmetric treatment of observ-
ables and unobservables covariates effectively adds restrictions to the model that are rarely mentioned.
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This data generating process produces a tuple {Y,D,X,U,AD} for each cluster from
which only {Y,X,D} are observed by the econometrician; U and AD being latent by defini-
tion. Our goal in this chapter is to provide identification conditions and discuss methods to
estimate the common vector of (observable) social effects: θ0 = (β0, γ0, δ0)

′ ∈ R2K+1 3. We
follow the terminology of Manski (1993) and refer to β0 as the endogenous effect and δ0 as
the exogenous effect. We point out that the fact that U enters linearly in equation (3.4) or
(3.6) is for expository purposes and is inconsequential for the subsequent discussion 4.

3.2.2 Discussion of the network model

A key characteristic of network formation model (3.2) that we will exploit throughout is
that links form independently conditionally on the vector of agent-specific latent attribute
U with:

Dij|Ui, Uj ∼ Bernouilli
(
(F ◦ h)(Ui, Uj)

)
for every dyad {i, j}, i < j. Models that feature this property are called Conditionally
Independent Dyad Models (see Graham (2020)) - henceforth CID - and are ubiquitous in
the network-related literature: the Erdős–Rényi random graph model (Erdős and Rényi
(1960)), the β-model (Chatterjee et al. (2011)) and the Stochastic Block Model (Holland
et al. (1983)) being notable special cases. Prior work in economics that employ these models
are Auerbach (2019) and Johnsson and Moon (2015) in a similar context to ours.

Note that in its present form, our link formation model (3.2) does not accommodate
assortative matching on observable characteristics. This turns out to be a facilitating element
for identification of the social effects. However, we discuss how the model may incorporate
this behavioral dimension if we impose that covariates entering links decisions are distinct
from those featuring in the outcome equation in Section 3.5. This generalization requires a
distributional exclusion restriction (Powell (1994), p. 2484)) to preserve the identification
of the social effects but has the advantage to allows for some degree of correlation between
the latent attributes and the observable characteristics. Finally, we point out that the
network modelling approach pursued here has two limitations: strategic considerations (e.g
reciprocity, transitivity) are absent, though they may be critical in certain contexts, and we
rule out the possibility of a feeback effect of outcomes on link formation.

3.2.3 Sampling and main assumptions

As in Jochmans (2020), we follow the conventional sampling view in the peer effect literature
and assume that the researcher has a sample of independent networks of finite size. In
the language of network inference, we cast our identification and estimation strategies in

3The parameter α0 cannot be identified due to the presence of network fixed effects
4The crucial assumption common to all conventional peer effects models is that all terms enter in an

additive separable way.
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the many networks asymptotics. As detailed in Section 3.2.1, we assume the econometrician
observes a collection of C clusters/networks (we use the terms interchangeably), potentially
of different sizes, with observations {Yc, Xc, Dc}Cc=1 produced by the same data generating
process. Importantly, this entails that each adjacency matrix is generated according to a
CID process of the form (3.2) and that outcomes are generated with the same social influence
vector: θ0 = (β0, γ0, δ0)

′ in either the linear-in-means model or the local-aggregate model.
Our asymptotic framework involves C −→ ∞.

The following assumptions are assumed to hold for each individual cluster:

Assumption 7. (IID-ness)
{Xi, Ui}Ni=1 are independent and identically distributed with finite second moment. The
density of Ui denoted fU(u) = f(u) is continuous with support U ⊂ R. The covariates Xi

may be discrete or continous and are non degenerate random variables.

Assumption 8. (Random Effect)
∀i ∈ {1, . . . , N} : Xi and Ui are independent

Assumption 9. (Correlated Unobservables)
The network fixed effect AD is arbitrarily correlated with X,U .

Assumption 10. (CID network model)

1. The graphon h : U × U 7→ [0, 1] is symmetric, measurable and non-degenerate

2.
{
Vij
}
1≤i<j≤N follow a standard uniform, are independent across dyads {i, j}, and in-

dependent of (AD, U,X).

Assumption 8 is arguably restrictive but a fixed effect assumption for Ui is likely to be too
demanding in our context. Indeed, since we are working with a cross-section of networks as
opposed to repeated observations of the same network over time, differencing out the fixed
effect as in linear panel data is problematic. Thus, the alternative is to treat the latent
attributes as additional parameters to be estimated from the data. However, we know by
analogy with the panel data literature on the incidental parameter problem that this would
be equally inadequate in common economic applications where clusters have a relatively
small size. This is of course a lesser issue for very large networks and when working within a
large network asymptotics framework (Johnsson and Moon (2015)) since the effective number
of observations (i.e links) per individual is increasing with the sample size. Our restrictions
on unobservables would be particularly fitting in the context of a randomized experiment
where a treatment X would be randomly assigned and thus independent of unobserved
heterogeneity U . We will discuss how Assumption 8 can be relaxed to some extent in
Section 3.5. Assumptions 7, 9 and 10 are otherwise standard.

A word on notation and conventions. Hereafter, a lower case letter will denote a spe-
cific value of the random variable denoted by the corresponding upper-case letter. We use
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the generic notation fY (y), fY,X(y, x), fY |X(y|x) to denote a density, a joint density and a
conditional density. We also use the standard notation X ∼ Y to indicate that the random
variables X and Y are identically distributed. Finally, to conserve on space, we introduce
Di = (Di1, . . . , Di(i−1), Di(i+1), . . . , DiN) and Gi = (Gi1, . . . , Gi(i−1), Gi(i+1), . . . , GiN) as the
ith row of the adjacency matrix D and the row-normalized adjacency matrix G representing
a network of size N . We use agent(s), individual(s), node(s) and vertex/vertices interchange-
ably and likewise for link(s) and edge(s).

3.3 The issue of endogenous peer groups

To understand the complications that arise when individuals self select their peers, we start
by considering a trimmed down version of the linear-in-means with no network effect and
that only features exogenous social effects

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

GijXj + Ui (3.8)

We refer to Equation (3.8) as the baseline linear-in-means model. We are interested in the
identification of θ0 = (γ0, δ0)

′ ∈ R2K . To help with interpretation, reconsider our introduc-
tory example wherein a researcher is interested in the effect of an educational intervention
providing tutoring program to certain students on student GPA. He employs a random as-
signment procedure and uses model (3.8) to account for potential spillover effects. In this
case, we can view (3.8) as a linear regression model explaining the GPA of student i in
terms of his treatment status Xi, and the fraction of his peers participating in the tutoring
program,

∑
j ̸=iGijXj . While Xi is an exogenous covariate in this context (i.e Assumption

8), a priori, it is unclear if this is also the case for the fraction of her friends in the tutoring
program,

∑
j ̸=iGijXj, due to the direct relationship between the latent attribute Ui and the

friends of student i. Indeed, we previously established that:

Cov

Ui,∑
j ̸=i

GijXj

 = E(X1)
(
E(Ui|Di+ > 0)− E(Ui)

)
P (Di+ > 0)

suggesting an endogeneity bias in general if degree-centrality is indicative of sociability, i.e if
E(Ui|Di+ > 0) ̸= E(Ui). Yet, a special edge case is if Assumption 11 holds which precludes
isolated individuals and enforces that Cov(Ui,

∑
j ̸=iGijXj) = 0 (see Bramoullé et al. (2020)

for a similar observation).

Assumption 11. (No Isolated Individuals)
P (Di+ > 0) = 1

Under such conditions, the fraction of treated friends becomes an exogenous regressor and
under appropriate regularity conditions, the social interaction effects θ0 can be consistently
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estimated via least squares for cluster samples (Hansen and Lee (2019)). This identification
result crucially hinges on Assumption 11 which is often explicitly or implicitly made in
applied work but would be inadequate for any network dataset in which the fraction of
isolated individuals is non-negligible: 23% in the Add Health dataset of Dieye and Fortin
(2017) for example. Importantly, note that Assumption 11 is incompatible with CID models
such as (3.2) given any finite set of individuals unless the graphon is degenerate; Assumption
10 excludes that possibility. Generally, we will have E(Ui|Di+ > 0) ̸= E(Ui) which in turn
will lead to inconsistent estimates of the social effects as illustrated in Figure 3.1. The size
of the bias will depend on the choice of the graphon, the distribution of latent attributes
and importantly on the size of the network. The latter is illustrated in panels a, b and c
of Figure 3.1 where the reduction in bias is clear as N increases. Note that this is little
surprising since we are using a graphon-based model also suited to the modelling of dense
network graphs. In Appendix 3.9.1, we show that standard methods to estimate Spatial
Autoregressive models and the full linear in means (3.4) are also valid under Assumption 11.
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(a) δOLS with N = 20
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(c) δOLS with N = 80

Figure 3.1: Contextual effect in the baseline linear-in-means model

Notes: The figures represent histograms of the least squares estimates for the contextual effect δ0 in model
(3.8) for M = 5000 Monte Carlo iterations. Each iteration considers C = 200 independent clusters with
identical networks size N = 20, 40, 80. The link formation model is kept constant with U, V ∼ N (0, 1) and

h(x, y) = Φ
(
x+y√

2

)
, where Φ(.) denote the CDF of a standard normal. Finally, the parameters of the outcome

equation are α0 = 0.2, γ0 = 0.5, δ0 = 2.0 and the covariates Xi ∼ Bernouilli( 12 ). The vertical dashed line
in red indicates the true parameter value δ0 = 2.0 while the vertical dashed line in blue shows the average
value of least squares estimates.

It is worth highlighting that the same logic would not apply in a model that considers a
different weighting scheme for the terms capturing peer influence even under our Assumption
11, a fact first pointed out in Bramoullé et al. (2020). Indeed the above derivations leveraged
both the absence of isolated individuals and the fact that G is row-normalized. In the
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corresponding baseline local-aggregate model we have:

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

DijXj + Ui (3.9)

If the graphon is increasing in its arguments, then the link probability is monotonic in the
unobserved heterogeneity. Thus, popular agents, i.e agents with a high Ui will mechanically
have more friends assigned to the tutoring program which implies Cov(Ui,

∑
j ̸=iDijXj) > 0

and in turn an upward bias for estimates of the exogenous effect. Interestingly, Figure 3.2,
shows that the same CID process as in Figure 3.1 produces biases that are much more
significant in the local-aggregate model, even for networks of relatively large size (N = 80 in
panel c Figure 3.2 ).
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(a) δOLS with N = 20
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Figure 3.2: Contextual effect in the baseline local-aggregate model

Notes: The figures represent histograms of the least squares estimates for the contextual effect δ0 in model
(3.8) for M = 5000 Monte Carlo iterations. Each iteration considers C = 200 independent clusters with
identical networks size N = 20, 40, 80. The link formation model is kept constant with U, V ∼ N (0, 1) and

h(x, y) = Φ
(
x+y√

2

)
, where Φ(.) denote the CDF of a standard normal. Finally, the parameters of the outcome

equation are α0 = 0.2, γ0 = 0.5, δ0 = 2.0 and the covariates Xi ∼ Bernouilli( 12 ). The vertical dashed line
in red indicates the true parameter value δ0 = 2.0 while the vertical dashed line in blue shows the average
value of least squares estimates.

Taking stock, these results show that standard models used in economics to analyze peer
influence are subject to a potentially severe endogeneity bias when the self-selection of peers
is not properly addressed. Under the condition of no isolated individuals, the baseline linear-
in-means is unaffected but this restriction will be ruled out in several real cases of interest.
Therefore, alternative strategies dealing with network endogeneity are necessary to identify
and estimate the parameters of peer influence.
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3.4 Identification with network endogeneity

3.4.1 Symmetries of CID models

In this section, we present key symmetry properties of CID models that will help us address
the problem of endogenous peer selection and motivate our identification and estimation
strategies. The main result is that the latent attributes of any pair of automorphic nodes in
a graph generated by a CID process are identically distributed conditional on the graph. To
establish and clarify the meaning of this property, we require the introduction of a few graph-
related concepts and it will be convenient to switch momentarily to the graph representation
of a network instead of working through the adjacency matrix. That is, an undirected
network of order N is a double G = (V (G), E(G)), where V (G) = {1, . . . , N} denotes the set
of all nodes in the network and E(G) is the set of edges across these nodes, i.e unordered pairs
of vertices. For our purposes, it will also be useful to let Ē(G) record the set of non-edges
so that we can equivalently represent G as the triplet (V (G), E(G), Ē(G)).

Definition 1. (Partial-edge subgraph). A partial-edge subgraph S of a graph G, is a triplet
(V (S), E(S), Ē(S)) where V (S) ⊆ V (G) is a subset of the vertices of G,
E(S) ⊆ E(G)∩V (S)×V (S) is a subset of the edge set of G, and Ē(S) ⊆ Ē(G)∩V (S)×V (S)
is a subset of the non-edge set of G.

In the sequel, we will focus on the set of links of pairs of agents i and j in a network, i.e
the ith and jth rows of the adjacency matrix, which constitutes an important example of a
partial-edge subgraph. Figure 3.3 provides an illustration for the case of a tetrad network.
In panel (b), the partial-edge subgraph S of network D depicted in panel (a) represents the
friendships of agents 1 and 2 and is characterized by: V (S) = {1, 2, 3, 4}, E(S) = {13, 24}
and Ē(S) = {12, 14, 23}. Importantly, note that S is silent about the connectivity of agents
3 and 4 as indicated by the dotted line between the two nodes in panel (b).

Figure 3.3: Subgraphs of a tetrad network

1 2

3 4

(a) Network D

1 2

3 4

(b) Partial-edge subgraph
S = (D1, D2) of D

1 2

3 4

(c) Partial subgraph S̃ of D

Notes: A dotted line between two nodes indicates that their connectivity is unspecified by the subgraph.

As a result, it may generally be the case that:
∣∣E(S)∣∣ + ∣∣Ē(S)∣∣ ≤ (∣∣V (S)

∣∣
2

)
. This feature

of a partial-edge subgraph reflects the fact that in our leading estimation strategy, there will
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be pairs of vertices whose connectivity we simply do not need to condition on.
We stress that our notion of a partial-edge subgraph is conceptually distinct from that

of a partial subgraph (see Graham (2020)). The latter does not require “consistency” of
the non edge set: Ē(S̃) ̸⊆ Ē(G) ∩ V (S̃) × V (S̃) as illustrated in Panel (c) of figure 3.3
where 34 ∈ Ē(S̃) though agents 3 and 4 are originally connected in the network D of panel
(a). Thus, a partial subgraph can modify the original topology while we can think of a
partial-edge subgraph as providing a faithful but incomplete description of the underlying
graph.

Definition 2. (Graph automorphism). Given a partial-edge subgraph
S = (V (S), E(S), Ē(S)) of a graph G, a relabelling (i.e permutation) of the vertex set
σ : V (S) 7→ V (S) is an automorphism of S if it maintains structure, that is if:

1. it preserves adjacency: ∀(i, j) ∈ V (S), ij ∈ E(S) =⇒ σ(i)σ(j) ∈ E(S)

2. it preserves non-adjacency: ∀(i, j) ∈ V (S), ij ∈ Ē(S) =⇒ σ(i)σ(j) ∈ Ē(S)

We let Aut(S) denote the set of automorphisms of S.

With these definitions in hand, we can formally restate the assertion at the beginning of this
section as follows: given a partial-edge subgraph S of an underlying graph G and σ ∈ Aut(S),
Ui|S ∼ Uσ(i)|S. To show this result, we will prove the stronger fact that for any A,B ⊂ V (S),
A ∩ B = ∅, such that σ(A) = B, σ(B) = A for some σ ∈ Aut(S), we have UA|S ∼ UB|S.
First, we must clarify the source of any potential symmetry, which of course lies in the
exchangeability of CID models.

Lemma 14. For any partial-edge subgraph S = (V,E, Ē) and σ ∈ Aut(S), we have
P (S|UV = u) = P

(
S|Uσ(V ) = u

)
Proof.

P (S|UV = u) =
∏

(i,j)∈E

h(ui, uj)
∏

(i,j)∈Ē

(
1− h(ui, uj)

)
(by Assumption 10)

=
∏

(σ−1(i),σ−1(j))∈E

h(uσ(i), uσ(j))
∏

(σ−1(i),σ−1(j))∈Ē

(
1− h(uσ(i), uσ(j))

)
(by def of σ)

=
∏

(i,j)∈E

h(uσ(i), uσ(j))
∏

(i,j)∈Ē

(
1− h(uσ(i), uσ(j))

)
(by def of σ)

= P
(
S|Uσ(V ) = u

)

Now, Bayes theorem allows us to swap the conditioning variables to obtain the following
corollary:
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Corollary 14.1. For any partial-edge subgraph S = (V,E, Ē) and σ ∈ Aut(S), we have
fUV |S(u|S) = fUσ(V )|S

(
u|S
)

Proof.

fUV |S(u|S) =
P (S|UV = u)fUV

(u)

P (S)

=
P (S|UV = u))fUσ(V )

(u)

P (S)
(by Assumption 7)

=
P (S|Uσ(V ) = u)fUσ(V )

(u)

P (S)
(by Lemma 14)

= fUσ(V )|S(u|S)

Corollary 14.1 shows a rather rich form of exchangeability in CID processes that we can now
apply to prove the promised distributional identity:

Corollary 14.2. For any partial-edge subgraph S = (V,E, Ē) and σ ∈ Aut(S), ∀A,B ⊂ V ,
A ∩ B = ∅, such that σ(A) = B, σ(B) = A, we have fUA|S(u|S) = fUB |S(u|S). In particular
for A = {i} and B = {σ(i)}, i ∈ V , we have fUi|S(u|S) = fUσ(i)|S(u|S), i.e, automorphic
nodes in S are identically distributed conditional on S.

Proof.

fUA,UB |S(ua, ub) =

∫
U |V |−|A|−|B|

fUA,UB ,UV \A∪B |S(ua, ub, uV \A∪B)duV \A∪B

=

∫
U |V |−|A|−|B|

fUσ(A),Uσ(B),Uσ(V \A∪B)|S(ua, ub, uV \A∪B)duV \A∪B

(by Corollary 14.1)

=

∫
U |V |−|A|−|B|

fUB ,UA,Uσ(V \A∪B)|S(ua, ub, uV \A∪B)duV \A∪B

=

∫
σ(U |S|−|A|−|B|)−1

fUB ,UA,UV \A∪B |S(ua, ub, uσ(V \A∪B)−1)duσ(V \A∪B)−1

=

∫
U |V |−|A|−|B|

fUB ,UA,UV \A∪B |S(ua, ub, uV \A∪B)duV \A∪B

= fUB ,UA|S(ua, ub)

We conclude that UA and UB are exchangeable conditional on S and consequently identically
distributed conditional on S.

Corollary 14.2 is a simple, yet powerful exchangeability result that will be essential to
deal with network endogeneity and identify the social effects θ0 . We defer the discussion of
how to leverage this result in linear social interactions models to section 3.4.2.2.



137

3.4.2 The baseline model with contextual effect

3.4.2.1 Observed control function: adjusting for degree centrality

This section introduces a simple observed control function procedure to deal with network
endogeneity that we present in the baseline model that only features exogenous effects. The
stragegy is a natural starting point and though it is considerably limited, we will see that it
carries valuable insights on how to approach the problem of endogenous peer selection more
systematically (Section 3.4.2.2). Consider the following specification

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj + Ui (3.10)

Recall that ωij(Di) = Gij for the linear-in-means and ωij(Di) = Dij for the local-aggregate
model. In light of Assumption 8, we know that Xi is an exogenous covariate but the char-
acteristics of friends

∑
j ̸=i ωij(Di)Xj are generally not due to the endogeneity of the peer

group: Ui and Di are correlated. One possible solution to address this problem is to proceed
as follows. By Assumptions 7,8 and 10 we have: E[Ui|X,Di] = E[Ui|Di]. Furthermore, since
Dij are dummy variables, we recognize a saturated regression model entailing that E[Ui|Di]
is a polynomial in the Dij. For example, with a triad network, N = 3 , we can write:

E[U1|D12, D13] = a+ bD12 + cD13 + dD12D13

In general, this decomposition adds 2(N−1) parameters to estimate but this can be reduced
in our context by exploiting a symmetry property of the network formation model (3.2)
referenced in Lemma 15. This useful feature harks back to the work of Altonji and Matzkin
(2005) who studied the implications of exchangeability for identification in nonseparable
panel data settings with endogenous regressors.

Lemma 15 (Permutation Invariance). The conditional density of Ui|Di = di is invariant to
permutations in di.

fUi|Di
(ui|di1, . . . , di(j−1), di(j+1), . . . , diN) = fUi|Di

(ui|diσ(1), . . . , diσ(j−1), diσ(j+1), . . . , diσ(N))

∀σ a permutation of {1, . . . , N} \ {i}

By definition:

E[U1|D12 = d12, D13 = d13, . . . , D1N = d1N ] =

∫
ufU1|D12,D13,...,D1N

(u|d12, d13, . . . , d1N)du

and since fU1|D1(u|d1) is permutation invariant in d1 by Lemma 15, it follows that
E[U1|D1 = d1] is a symmetric polynomial in d1 = (d12, d13, . . . , d1N). Returning to the
example of 3 agents, this symmetry implies:
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E[U1|D12, D13] = a+ bD12 + cD13 + dD12D13

= E[U1|D13, D12] = a+ bD13 + cD12 + dD13D12

this entails b = c, so:

E[U1|D12, D13] = a+ b(D12 +D13) + dD12D13

which leaves us with only N nuisance parameters instead of 2(N−1). Finally, since E[Ui|Di]
is a symmetric polynomial, we can succinctly express it in terms of degree centrality of the
agent. In the simple case of a triad, we have:

E[U1|D12, D13] = a+ b(D12 +D13) + dD12D13

= a+ bD1+ + dD12D13

= a+ (b− 1

2
d)D1+ +

d

2
D2

1+

And more generally with N agents, it is not difficult to see that we will obtain:

E[Ui|Di] =
N−1∑
k=0

ck,ND
k
i+

Intuitively, this expression says that the degree centrality of an agent acts as a “sufficient
statistic” to approximate it’s unobserved heterogeneity. We can write:

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj + Ui

= α0 + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj + E[Ui|X,Di] + (Ui − E[Ui|X,Di])

= α0 + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj +
N−1∑
k=0

ck,ND
k
i+ + Vi

with Vi = Ui−E[Ui|X,Di], the reduced-form error satisfying E[Vi|X,Di] = 0 by construction.
Under this alternative formulation of equation (3.10) that controls for the degree centrality
of the agent - an observable quantity for the econometrician -

∑
j ̸=i ωij(Di)Xj is no longer

endogenous. Therefore, under standard rank conditions, the identification and consistent
estimation of the social effects becomes possible when the data consists of a collection of
networks of the same size and generated by the same DGP. These strong conditions are
necessary to ensure that the coefficients of the control function: (ck,N)

N
k=0 are identical across

networks. One caveat of course is that in practice the researcher is likely to observe networks
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of varying sizes which invalidates this approach.5 Another weakness of this method is that
it requires the distribution of latent attributes, the distribution of dyadic schocks and the
graphon to be identical across networks. We introduce the degree-matching approach in the
ensuing section to overcome some of these limitations.

3.4.2.2 The degree-matching approach

The reduced-form expression of specification (3.10) featuring the observed control function
suggests taking pairwise differences of agents having identical degree centrality to eliminate
the network fixed effect and the counfounding effect of latent attributes; a strategy reminis-
cent of Honoré and Powell (1994), Aradillas-Lopez et al. (2007). We refer to this approach as
degree-matching. The logic is simple: since degree centrality approximates the latent individ-
ual characteristic Ui well, and since it is observable, degree-matching should approximately
remove these sources of endogeneity from the estimating equations. This is similar in spirit
to how first-differencing removes individual heterogeneity in a linear panel data setting. To
illustrate, let us consider an extended version of the baseline model with both network fixed
effect and latent exogenous effect:

Yi = α0 + γ0Xi + δ0
∑
j ̸=i

ωij(Di)Xj + ϵi

ϵi = AD + ϵ̃i, ϵ̃i = Ui + λ0
∑
j ̸=i

ωij(Di)Uj

Naturally, the added complexity of the error term in the outcome equation exacerbates the
problem of peer group endogeneity. The intuition described above for the validity of degree-
matching as an identification strategy can be formalized through the conditional moment
restrictions of Theorem 6. Before stating its content, we need a few more exchangeability
results that we discuss at length below.

Corollary 15.1. Consider N agents. ∀(di, dj) ∈ {0, 1}N−1 : di+ = dj+, we have:

1. Ui|Di = di, Dj = dj ∼ Uj|Di = di, Dj = dj

2. ∀(k, l) ∈ {1, . . . , N} \ {i, j}:

a) dik = 1, dil = 0, djk = 0, djl = 1 =⇒ Uk|Di = di, Dj = dj ∼ Ul|Di = di, Dj = dj

b) dik = 1, dil = 1, djk = 0, djl = 0 =⇒ Uk|Di = di, Dj = dj ∼ Ul|Di = di, Dj = dj

5Similar assumptions have nonetheless antecedents in the literature: Moffitt et al. (2001) discusses ver-
sions of the linear-in-means model where the researcher observes multiple groups of the same size
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Corollary 15.1 is merely an implication of Corollary 14.2 and follows from noticing that
S = {Di = di, Dj = dj} is a partial-edge subgraph of network D, and that the restriction
di+ = dj+ imposes that: 1) i and j are automorphic nodes in S, 2) the “exclusive friends”
of i and j are exchangeable within and across groups.
The conclusions can be easily grasped in the case of a triad network. Consider for example
the event in which agent 1 and agent 2 have identical degree centrality when N = 3:

{D1+ = D2+} = {D12 = 0, D13 = 0, D23 = 0} ∪ {D12 = 1, D13 = 0, D23 = 0}
∪ {D12 = 0, D13 = 1, D23 = 1} ∪ {D12 = 1, D13 = 1, D23 = 1}

Figure 3.4: Triads with {D1+ = D2+}

1

2 3

(a) D1+ = D2+ = 0

1

2 3

(b) D1+ = D2+ = 2

1

2 3

1

2 3

(c) D1+ = D2+ = 1

Notes: This figure depicts all triad configurations consistent with the event {D1+ = D2+}.

Figure 3.4 depicts all four triad configurations consistent with the latter. Notice the evident
symmetry of each subgraph with respect to vertices 1 and 2. Since the Ui’s and Vij’s are iid,
in the absence of node specific covariates, node labels are meaningless so agent 1 and agent
2 are exchangeable in each triad configuration of Figure 3.4. This observation implies part
1 of Corollary 15.1; part 2 is equally intuitive.

Importantly, note that the distributional statements of Corollary 15.1 are conditional
on the observed links of two agents only and not on the full network of interactions as the
results would not generally hold otherwise. To understand why, consider the pentad wiring
displayed in Figure 3.5. There, agent 1 and agent 2 both have degree 1 but are linked to
agents that differ in gregariousness: agent 1 is friend with agent 3 with degree 3 while agent
2 is friend with agent 5 with degree 2. Thus, they cannot be permuted in contrast to agent
1 and agent 4 who are automorphic. Intuitively, the level of popularity of an individual is
not solely reflected by her number of friends but also by her position in the network. From
a mathematical vantage point, the reason is that with a CID model such as (3.2), indirect
connections (Dk)k ̸=i,j are informative for Ui and Uj because Dil and Djl are correlated to Dkl
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through Ul. As a result, in this example, with d representing the pentad wiring of Figure
3.5, we have U1|D1 = d1, D2 = d2 ∼ U2|D1 = d1, D2 = d2 but U1|D = d ̸∼ U2|D = d.

1

3

2

4 5

Figure 3.5: Asymmetric pentad wiring relative to nodes 1 and 2

Theorem 6. Let g(.) be a measurable function of (Di, Dj, X) such that

E
[∣∣g(Di, Dj, X)

∣∣2] <∞. Then

E
[
g(Di, Dj, X)(ϵi − ϵj)|X,Di+ = Dj+

]
= 0 (3.11)

The proof of Theorem 6 follows from two observations. First, for a network of order N , the
law of total expectations in conjunction with Assumptions 7,8,10, allow us to express the
moment condition (3.11) as:

E
[
g(Di, Dj, X)(ϵi − ϵj)|X,Di+ = Dj+

]
=

∑
(di,dj):di+=dj+

P (Di = di, Dj = dj)

P (Di+ = Dj+)
g(di, dj, X)

× E
[
ϵ̃i − ϵ̃j|Di = di, Dj = dj

]
Second, ϵ̃i− ϵ̃j involves two types of quantities: Ui−Uj and Uk−Ul where k and l are exclu-
sive friends of i and j respectively. Therefore, by Corollary 15.1, it follows that conditional
on Di = di, Dj = dj where di+ = dj+, E[ϵ̃i − ϵ̃j|Di = di, Dj = dj] = 0.

Theorem 6 is a very useful result for linear social interaction models; it says that by
matching individuals on degree centrality we have the guarantee that any statistical char-
acteristic involving their links and the covariates of interest X is exogenous. In particular,
this is true for the difference in friends characteristics by setting
g(Di, Dj, X) =

∑
k ̸=i ωik(Di)Xk −

∑
l ̸=j ωjl(Dj)Xl.

To operationalize the degree-matching idea, let Zi = (Xi,
∑

j ̸=i ωij(Di)Xj)
′, i = 1, . . . , N , be

the vector of explanatory variables and consider the objective function:

Q(θ) = E
[(
Yi − Yj − (Zi − Zj)

′θ
)2 |Di+ = Dj+

]
, θ ∈ R2

Additionally, suppose that the following rank condition for the regressors holds:
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Assumption 12. (Rank condition)
E
[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]
is non singular

Assumption 12 is an identification condition analogous to the standard full rank assumption
on the regressors in linear regression models. It is implied by Assumption 7-10 when K = 1.

Lemma 16. In the baseline linear-in-sums and linear-in-means model with
dim(Xi) = K = 1, Assumption 7-10 implies Assumption 12.

Then, the following result holds:

Proposition 6. Suppose Assumptions 7-10 and 12 hold. Then Q(θ) is uniquely minimized
at θ0.

Proposition 6 shows formally that matching agents on degree centrality is a fruitful approach
to identify the social effects θ0. Conceptually, the method first deals with network endogene-
ity through matching and then exploits covariate variation in subgraphs with identical degree
sequence to identify θ0 in the same way that variation in group size in a setting where in-
dividuals interact in groups helps identify the social parameters (Davezies et al. (2009)). A
convenient by-product of this approach is that it automatically deals with the problem of
correlated effects. Heuristically, when N = 2, identification of the social parameters via
degree-matching comes down to comparing the reduced-form coefficients for connected and
disconnected pairs and a similar logic applies when N = 3. For larger networks N ≥ 4, the
identification of θ0 is helped by the presence of network wirings in which two agents have
identical degree centrality but do not share exactly the same set of friends. Such network
configurations, at least in the case K = 1, guarantee that Assumption 6 is verified (see
Lemma 16).

Remark 11.
In light of the results of section 3.4.1, another strategy to identify the social effects in the
same vein as degree-matching would be to match symmetric agents in the full network:
orbit-matching. Consider the shorthand, i ∼G j, to denote two nodes of a graph G that are
automorphic and let OG(i) = {j ∼G i, j ∈ V (G)} = {σ(i)|σ ∈ Aut(G)} denote the G-orbit
of i. Orbits partition the vertex set into disjoint equivalence classes. Then, it is natural to
consider the criterion function:

S(θ) = E
[(
Yi − Yj − (Zi − Zj)

′θ
)2 |j ∈ OG(i)

]
, θ ∈ R2

S(θ) and Q(θ) are similar and in fact coincide when N ≤ 3. In general however, the two
criteria will be different as i ≈ j =⇒ Di+ = Dj+ but
Di+ = Dj+ ≠⇒ i ≈ j. The pentad wiring of Figure 3.5 is an illustration of the latter.
In practice, from an estimation perspective, this approach is likely to be less tractable than
degree-matching as it will require to first determine the automorphism group of G to charac-
terize the G-orbits and make the pairwise difference approach feasible. Generally, this initial
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step is a non trivial task called the “graph isomorphism problem” and is a well known compu-
tational problem in discrete mathematics. However, in our setting of many small networks,
the computational considerations are likely to be less important which makes orbit-matching
a potentially viable strategy 6. I leave the investigation of this idea for future work.

To conclude this section, let us highlight that degree-matching also presents some draw-
backs: its inability to identify the “own-effect” γ0 when the dependence between Xi and
Ui is unrestricted - a general limitation of pairwise difference procedures (Aradillas-Lopez
et al. (2007)). In Section 3.5, we show that while it is possible to relax the independence
assumption between Xi and Ui, salvaging the identification of the entire parameter vector
θ0 requires a type of exclusion restriction.

3.4.3 SAR and the full model

Extending the degree-matching approach to identify the social effects in Spatial Autore-
gressive (SAR) models is relatively straightforward. The SAR model, popular in spatial
econometrics posits the following relation:

Yi = α0 + β0
∑
j ̸=i

ωij(Di)Yj + γ0Xi + ϵi (3.12)

ϵi = AD + ϵ̃i, ϵ̃i = Ui + λ0
∑
j ̸=i

ωij(Di)Uj (3.13)

It is obtained by setting δ0 = 0 in specification (3.7). In other words, the model assumes away
(observable) exogenous effects. Commonly, λ0 = 0 but in line with our previous discussions,
we will consider the possibility of latent exogenous effect: λ0 ̸= 0. This constitutes a system
of simultaneous equations which even in the absence of endogenous peer selection would
pose an endogeneity problem due to the correlation between the outcome of peers and the
error term, i.e the reflection problem (Manski (1993)). The traditional approach to identify
and estimate θ0 = (β0, γ0)

′ without correlated effects when the covariates and the network
are exogenous is to instrument peer response

∑
j ̸=i ωij(Di)Yj by the characteristics of peers∑

j ̸=i ωij(Di)Xj. Of course, this is not directly applicable in our setting with endogenous
peers as

∑
j ̸=i ωij(Di)Xj is correlated with the latent individual attributes and potentially

with the network fixed effect. To identify the social effects, we propose combining the IV
approach with the degree-matching procedure discussed previously for the baseline models.
A heuristic rationale is that since degree-matching jointly deals with network endogeneity
and correlated effects; upon matching individuals by degree centrality we are free to use
the remaining exogenous variation from the instrument to solve the reflection problem and
identify θ0.

Let Zi = (Xi,
∑

j ̸=i ωij(Di)Yj)
′ denote the vector of regressors and

6There are efficient algorithms such as Nauty (No AUTomorphisms, Yes?) that can compute the auto-
morphism group of graphs with less than 100 nodes in under a second.



144

Wi = (Xi,
∑

j ̸=i ωij(Di)Xj)
′ denote the vector of instruments. Under degree-matching the

instruments satisfy the exclusion restriction:

E
[
(Wi −Wj)(ϵi − ϵj)|Di+ = Dj+

]
= E

E [(Wi −Wj)(ϵi − ϵj)|X,Di+ = Dj+

]︸ ︷︷ ︸
=0 by Theorem 6

|Di+ = Dj+


= 0

which combined with Assumption 13 hereinafter can be leveraged as a basis for the identifi-
cation of θ0.

Assumption 13. (Instrument relevance)
E
[
(Wi −Wj)(Zi − Zj)

′|Di+ = Dj+

]
is full rank

Indeed, it follows that:

θ0 = E
[
(Wi −Wj)(Zi − Zj)

′|Di+ = Dj+

]−1 E
[
(Wi −Wj)(Yi − Yj)|Di+ = Dj+

]
The treatment of the full linear social interaction model is more challenging and it will be
useful to cover the linear-in-means and the linear-in-sums separately. Let us begin with the
linear-in-means specification (3.4) assuming temporarily the absence of network fixed effect.
Rewriting the equations in matrix form, we have:

Y = α0ι+ β0GY + γ0X + δ0GX + U + λ0GU

=⇒ (I − β0G)Y = α0ι+ (γ0I + δ0G)X + (I + λ0G)U︸ ︷︷ ︸
=ϵ

where ι is a conformable vector of ones. Given our primitive assumption that |β0| < 1, the
matrix (I − β0G) is diagonally dominant, thus invertible with (I − β0G)

−1 =
∑∞

k=0 β
k
0G

k.
Therefore:

Y = α0(I − β0G)
−1ι+ (γ0I + δ0G)X + (I − β0G)

−1(I + λ0G)U

= α0(I − β0G)
−1ι+ γ0X + (γ0β0 + δ0)

∞∑
k=0

βk0G
k+1X + (I − β0G)

−1(I + λ0G)U

and hence

GY = α0G(I − β0G)
−1ι+ γ0GX + (γ0β0 + δ0)

∞∑
k=0

βk0G
k+2X +G(I − β0G)

−1(I + λ0G)U

This last expression suggests that under the usual assumption of network exogeneity:
E[U |X,G] = 0, and provided that (γ0β0+δ0) ̸= 0, G2X, G3X . . . may be used as instruments



145

for GY (Bramoullé et al. (2009)). However, in our model, the exclusion restrictions for the
conventional instruments generally fail as:

∀k ≥ 0, E(Gk+2G(I − β0G)
−1(I + λ0G)U) ̸= 0

Thus an alternative methodology is required. In the specific case of the linear-in-means
specification, we can show that as in SAR models, IV-degree-matching offers a potential
solution. This is motivated by the following moment conditions:

Lemma 17. ∀m ∈ N, E

[(
(GmX)i − (GmX)j

)
(ϵi − ϵj)

∣∣∣∣Di+ = Dj+

]
= 0

Lemma 17 shows in particular that the friends’ friends’ average characteristics, the base-
line instrument under network exogeneity remains viable after matching individuals by de-
gree centrality. Interestingly, this result hinges again on the fact that the matrix G is
row-normalized and thus does not carry over to the local-aggregate model. Note that the
result is also unaffected by the presence of network fixed effects. Utimately, the validity
of this strategy will rest on the relevance of the set of instruments which may be prob-
lematic depending on network size in contrast to the simpler models discussed previously.
To illustrate this point, let Zi = (Xi, (GX)i, (GY )i)

′ denote the vector of covariates and
Wi = (Xi, (GX)i, (G

2X)i)
′ its corresponding vector of instruments. In a population of net-

works of size N = 2, we will not be able to pin down the social effects having more parameters
than equations per cluster. For N = 3, the set of network wirings such that two individuals
have the same degree centrality (see Figure 3.4) exhibit such symmetry that the friends’
friends’ average characteristics will be colinear to own characteristics and friends’ average
characteristic. Similar difficulties occur for the case N = 4, 5. Starting at N ≥ 6, there
are network configurations where two individuals have the same degree centrality and have
friends whose friends do not fully overlap. Hence, there will be variation in (G2X)i−(G2X)j)
unrelated to that in Xi − Xj and (GX)i − (GX)j. In turn, this means that in most net-
works of modest size the combination of IV and degree-matching in linear-in-means models
provides a way to pin down the social effects.

Unfortunately, as hinted above, there is no equivalent of Lemma 17 for the local-aggregate
model although, the model has a similar reduced form motivating the use of DX, D2X,... as
instruments under network exogeneity (Liu and Lee (2010)). The underlying reason is that
for m ≥ 2, (DmX)i− (DmX)j involves links outside the partial-edge subgraph {Di, Dj} that

must be integrated over in quantities such as: E

[(
(DmX)i − (DmX)j

)
(ϵi − ϵj)

∣∣∣∣Di+ = Dj+

]
.

Integrating the product of (DmX)i− (DmX)j and ϵi− ϵj over the linking decisions of agents
different from i and j necessarily involves computations of this integrand over network con-
figurations that are asymmetric with respect to i and j - even though they have the same
degree centrality - which in turn prevents the use of an exchangeability argument in the
vein of Corollary 14.2 to obtain an orthogonality condition. The fact that the linear-in-
means model is immune to this issue is an artificial product of the row-normalization of
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the adjacency matrix. As a concluding remark, note that this issue would not arise with
orbit-matching as the conditioning event {j ∈ OG(i)} requires a symmetry over the entire
graph in contrast to {Di+ = Dj+}.

3.5 Adding homophily on observable characteristics

We now briefly discuss how to generalize our identification strategy to the case of a CID
model that accommodates homophily on observables. Let Ri denote an observable individual
attribute distinct from Xi entering the following link formation process:

Dij = 1
{
h(Ui, Ri, Uj, Rj) ≥ Vij

}
1 {i ̸= j} (3.14)

with the graphon h(.) symmetric in (Ui, Ri), (Uj, Rj). For simplicity, we will focus on the case
where Ri is a discrete random variable with finite support R = {r1, . . . , rL}. Nothing that
follows essentially hinges upon this restriction 7. These observable attributes partition the
population into |R| = L categories that we will call types. Here, we relax the assumption
of independence between Ui and Xi and assume instead that the following distributional
exclusion restriction (Powell (1994), p. 2484)) holds:

Assumption 14. (Distributional exclusion restriction)
fUi|Xi,Ri

(ui|xi, ri) = fUi|Ri
(ui|ri)

with the joint distribution of (Xi, Ri) left unrestricted. This kind of assumption is familiar
from the work of Blundell and Powell (2004) on semiparametric binary response models with
endogenous regressors. In the present context, it corresponds to a redundancy condition:
Xi cannot have any predictive power over Ui conditional on Ri. Then, a straightforward
adaptation of the previous methodology is to match agents on: degree centrality, their type,
and the types of their friends. The intuition for that is similar to before: if agent i and
agent j are of the same type and have an identical number of friends of the same type, then
conditional on this sole information, agent i and agent j are exchangeable (in a partial-edge
graph sense). A formal proof is omitted for brevity but would be a straightforward variant
of Corollary 15.1.

Following this logic, the identification of θ0 in, say, the baseline model could be established
from the criterion function:

Q(θ) = E
[(
Yi − Yj − (Zi − Zj)

′θ
)2 |Di+ = Dj+, Ri = Rj, Ri(−j) = Rj(−i)

]
where we use the shorthand Ri(−j) = {rk ∈ R|k ∈ {1, . . . , N} \ {j} : dik = 1}, i.e the
types of i’s friends that are not j. The form of Q(θ) makes it clear that in general any
component of Xi that overlaps with Ri will be wiped out in the objective function which in
turn compromises the identification of the associated parameters. The role of Assumption 14
is precisely to guarantee that there remains identifying varation from Xi after the matching
step to pin down θ0.

7The continous case can be tackled with an appropriate choice of bandwidth and kernel.
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3.6 Estimation

3.6.1 Baseline models

For ease of illustration, we start by presenting the estimators based on the observed control
function approach and the degree-matching strategy for the baseline peer effect models fea-
turing only exogenous effects, i.e equations (3.10).

Following Section 3.2.3, we consider a collection of C independent networks with size
N1, . . . , NC respectively. Let n =

∑C
c=1 nc, where nc =

(
Nc

2

)
corresponds to the number of

unique dyads in cluster c. As discussed in Section 3.2.3, although we allow networks to be of
varying sizes, it is assumed that friendships are generated according to the same CID model
(3.2) and that the same outcome equation (3.10) applies to each cluster. In this setting, the
degree-matching estimator θ̂DM for our baseline peer effect model takes the form:

θ̂DM = argmin
θ

1

n

C∑
c=1

Nc−1∑
i=1

Nc∑
j=i+1

1{Dc
i+ = Dc

j+}
(
Y c
i − Y c

j − (Zc
i − Zc

j )
′θ
)2

with a closed form solution conveniently given by: θ̂DM = Q̂−1
n Ŝn with

Q̂n =
1

n

C∑
c=1

Nc−1∑
i=1

Nc∑
j=i+1

1{Dc
i+ = Dc

j+}∆Zcij∆Z ′
cij

Ŝn =
1

n

C∑
c=1

Nc−1∑
i=1

Nc∑
j=i+1

1{Dc
i+ = Dc

j+}∆Ycij∆Zcij

where ∆ξcij = ξci − ξcj

where Zi denotes the vector of explanatory variables: Zi = (Xi,
∑

j ̸=iDijXj)
′ for the local-

aggregate model and Zi = (Xi,
∑

j ̸=iGijXj)
′ for the linear-in-means. Observe the normal-

ization by n here rationalized by the fact that each cluster c contributes precisely a total of
nc unique pairs of observations.

We draw on the work of Hansen and Lee (2019) on asymptotic theory for clustered sam-
ples to prove the consistency and asymptotic normality of our estimators. It is helpful to
express Q̂n and Ŝn in matrix form to establish a clear connection to their work. To that
end, we introduce the boldface indices i = 1,2, . . . as an index for dyads in each cluster
c = 1, . . . , C and abusing notations, we let i also denote the set {i1, i2} where i1 and i2 are
the agents comprising the dyad i. With these notations in hand, let us introduce:
∆̃Zci = 1{Dc

i1+
= Dc

i2+
}∆Zci1i2 the 2K × 1 vector of individual regressors and

∆̃Zc = (∆̃Zc1, . . . , ∆̃Zcnc)
′ the nc × 2K matrix of regressors for the cth network. Analo-

gously, let ∆̃Yc = (∆̃Yc1, . . . , ∆̃Ycnc)
′, ∆̃Uc = (∆̃Uc1, . . . , ∆̃Ucnc)

′ be the nc × 1 matrix of

outcomes, respectively errors in the cth network, with ∆̃Yci = 1{Dc
i1+

= Dc
i2+

}∆Yci1i2 and
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∆̃Uci = 1{Dc
i1+

= Dc
i2+

}∆Uci1i2 . Then, we can write:

Q̂n =
1

n

C∑
c=1

∆̃Z ′
c∆̃Zc

Ŝn =
1

n

C∑
c=1

∆̃Z ′
c∆̃Yc

and thus θ̂DM = Q̂−1
n Ŝn has the natural interpretation of the least squares estimator of ∆̃Yci

on ∆̃Zci. Alternatively, noting that we also have:

Q̂n =
1

n

C∑
c=1

∆̃Z ′
c∆Zc

Ŝn =
1

n

C∑
c=1

∆̃Z ′
c∆Yc

where ∆ξc = (∆ξc1, . . . ,∆Ycnc)

we can view θ̂DM as an IV estimator at the dyad level that uses ∆̃Zic as an instrument. To
derive consistency, let us make the following additional assumption:

Assumption 15. Cluster sizes are fixed

Observe that, Assumption 15 is stronger than the original condition of Hansen and Lee
(2019) which permit each cluster to grow in size so long as they remain asymptotically
negligible: maxc≤C

nc

n
−−−→
n→∞

0 (see Assumption 1, p23, Hansen and Lee (2019)). We impose

this stronger condition to ensure that the covariates capturing peer influence remain bounded
in the local-aggregate model. Assumption 15 can be relaxed to match that of Hansen and Lee
(2019) in the linear-in-means model due to the row-normalization of the adjacency matrix.

Theorem 7. Suppose Assumptions 7-10, 12 and 15 are satisfied, supc,i E(|Y c
i |
κ) < ∞ and

supc,i E(∥Zc
i ∥
κ) <∞ for some κ > 2. Then θ̂DM

p→ θ0

Theorem 7 follows directly from Theorem 8 of Hansen and Lee (2019) (see Appendix Section
3.9.8 for a brief discussion). Next, we discuss the asymptotic distribution of θ̂. Define:

Qn =
1

n

C∑
c=1

E[∆̃Z ′
c∆̃Zc]

Ωn =
1

n

C∑
c=1

E[∆̃Z ′
c∆̃Uc∆̃U

′
c∆̃Zc]

Vn = Q−1
n ΩnQ

−1
n
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Let ∆̃Ûc = (∆̃Ûc1, . . . , ∆̃Ûcnc) denote the nc × 1 vector of residuals where

∆̃Ûci = 1{Dc
i1+

= Dc
i2+

}(Û c
i1
− Û c

i2
) and Û c

ik
= Y c

ik
− Zc

ik
′θ̂DM . Define:

Ω̂n =
1

n

C∑
c=1

∆̃Z ′
c∆̃Ûc∆̃Û

′
c∆̃Zc

The robust variance estimator is then:

V̂n = Q̂−1
n Ω̂nQ̂

−1
n

The proof of asymptotic normality of our estimator is an adaptation of Theorem 9 in Hansen
and Lee (2019) applicable for OLS and 2SLS. It requires stronger conditions than for Theorem
7 regarding the size of the clusters that we collect in Assumption 16 below:

Assumption 16. Cluster sizes are fixed and for some 2 ≤ κ <∞(∑C
c=1 n

κ
c

) 2
κ

n
≤M <∞

max
r≤R

n2
c

n
−−−→
n→∞

0

Theorem 8. Suppose Assumptions 7-10, 12 are satisfied and 16 holds for some
2 ≤ κ < τ < ∞. In addition, suppose that supc,i E(|Y c

i |
2τ ) < ∞ and supc,i E(∥Zc

i ∥
2τ ) < ∞

and λmin(Ωn) ≥ λ > 0 where λmin(A) denotes the minimum eigenvalue of A. Then:

V −1/2
n

√
n
(
θ̂DM − θ0

)
d−→ N (0, I2K)

the robust covariance matrix V̂n is consistent in the sense that V
−1/2
n V̂nV

−1/2
n

p−→ I2K so

V̂ −1/2
n

√
n
(
θ̂DM − θ0

)
d−→ N (0, I2K)

Finally, when all networks are of the same size, θ̂CF the estimator associated with the
observed control function approach is given by:

θ̂CF =

 1

NC

C∑
c=1

N∑
i=1

SciS
c
i
′

−1 1

NC

C∑
c=1

N∑
i=1

SciY
c
i
′


where Sci is the vector of explanatory variables: Sci = (Xi,

∑
j ̸=iDijXj, Di+, . . . , D

N−1
i+ )′ for

the local-aggregate model and Sci = (Xi,
∑

j ̸=iGijXj, Di+, . . . , D
N−1
i+ )′ for the linear-in-means.

Since θ̂CF is a conventional least squares estimator for clustered samples, its asymptotic
properties can be directly deduced from Theorem 8 and Theorem 9 of Hansen and Lee
(2019). We refer the interested reader to their paper for more details.
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3.6.2 SAR and the full model

In SAR (3.12) and the full model (3.7), the degree-matching strategy takes the form of a
two-stage least squares procedure. To see this, let Wi denote a vector of instruments as in
Section 3.4.3. Then,

θ̂DM =

 C∑
c=1

∆̃Z ′
c∆̃Wc

 C∑
c=1

∆̃W ′
c∆̃Wc

−1
C∑
c=1

∆̃W ′
c∆̃Zc


−1

×

 C∑
c=1

∆̃Z ′
c∆̃Wc

 C∑
c=1

∆̃W ′
c∆̃Wc

−1
C∑
c=1

∆̃W ′
c∆̃Yc


The asymptotic behavior of θ̂DM can once again be derived from Hansen and Lee (2019).
We provide a theorem below for completeness but we first require a few additional notations.
Now, let:

Qn =
1

n

C∑
c=1

E[∆̃W ′
c∆̃Zc], Hn =

1

n

C∑
c=1

E[∆̃W ′
c∆̃Wc], Ωn =

1

n

C∑
c=1

E[∆̃W ′
c∆̃Uc∆̃U

′
c∆̃Wc]

Vn = (Q′
nH

−1
n Qn)

−1Q′
nH

−1
n ΩnH

−1
n Qn(Q

′
nH

−1
n Qn)

−1

Q̂n =
1

n

C∑
c=1

∆̃W ′
c∆̃Zc, Ĥn =

1

n

C∑
c=1

∆̃W ′
c∆̃Wc, Ω̂n =

1

n

C∑
c=1

∆̃W ′
c∆̃Uc∆̃U

′
c∆̃Zc

Vn = (Q̂′
nĤ

−1
n Q̂n)

−1Q̂′
nĤ

−1
n Ω̂nĤ

−1
n Q̂n(Q̂

′
nĤ

−1
n Q̂n)

−1

Theorem 9. Suppose Assumptions 7-10, 12 are satisfied and 16 holds for some
2 ≤ κ < τ <∞. In addition, suppose that supc,i E(|Y c

i |
2τ ) <∞,

supc,i E(∥Zc
i ∥

2τ ) < ∞, supc,i E(∥W c
i ∥

2τ ) < ∞ and λmin(Ωn) ≥ λ > 0 where λmin(A) denotes
the minimum eigenvalue of A. Then:

V −1/2
n

√
n
(
θ̂DM − θ0

)
d−→ N (0, I3K)

the robust covariance matrix V̂n is consistent in the sense that V
−1/2
n V̂nV

−1/2
n

p−→ I2K so

V̂ −1/2
n

√
n
(
θ̂DM − θ0

)
d−→ N (0, I3K)

The proof is omitted as it is identical to that of Theorem 8.

3.7 Monte Carlo Simulations

We examine the properties of our estimators in Monte Carlo Simulations.
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Links are generated according to the CID model of Equation (3.2) with graphon

h(x, y) = Φ
(
x+y√

2

)
and with unobserved attributes and dyadic innovations drawn from a stan-

dard normal and a standard uniform respectively. This graphon yields an unconditional edge
probability of: 50%. For the observed individual covariate, we choose Xi ∼ Bernouilli(1

2
).

Outcomes Yi are then generated according to one of our baseline models: Equations (3.8)
for the linear-in-means and Equation (3.9) for the linear-in-sums with identical parameters:
α0 = 0.2, γ0 = 0.5, δ0 = 2.0 and no latent exogenous effects, λ0 = 0. This data-generating
process is replicated for C = 200 independent clusters of size N = 20, 40, 80 to produce data
that we then use to compute estimates of the social effects. We evaluate the performance of
our estimators by repeating this procedure over 5000 Monte Carlo iterations.

Table 3.1: MC Simulation: estimates of θ0 = (γ0, δ0)
′ in the baseline linear-in-means model

OLS PCF DM IVJ
γ δ γ δ γ δ γ δ

N = 20
Bias -0.000 0.199 0.000 0.029 -0.000 0.002 -0.000 -0.002
MAB 0.025 0.203 0.012 0.048 0.018 0.068 0.025 0.106
Size 0.050 0.409 0.052 0.095 0.051 0.056 0.052 0.055

N = 40
Bias -0.000 0.099 0.000 0.021 0.000 -0.000 -0.000 -0.000
MAB 0.018 0.136 0.006 0.046 0.009 0.053 0.018 0.102
Size 0.051 0.113 0.049 0.071 0.046 0.051 0.051 0.055

N = 80
Bias -0.000 0.042 -0.000 0.011 -0.000 -0.000 -0.000 0.003
MAB 0.013 0.136 0.003 0.046 0.004 0.038 0.013 0.102
Size 0.054 0.062 0.055 0.054 0.046 0.052 0.054 0.054

Notes: PCF stands for the proxy control function estimator, DM for the degree-matching estimator, IVJ

for the instrumental variable strategy proposed in Jochmans (2020). MAB stands for mean absolute bias

and Size indicates the fraction of draws that fall outside the asymptotic 95% confidence interval

In Table 3.1, we compare the performance of OLS, a proxy control function estimator ad-
justing only for degree centrality (i.e we omit the higher order powers), the degree-matching
estimator and the IV estimator of Jochmans (2020) (henceforth IVJ). The IVJ corresponds
to an estimation procedure whereby the average peer characteristics,

∑
j ̸=iGijXj is instru-

mented by
∑

j ̸=i(Q1)ijXj, with:

(Q1)ij =
1

N − 1

∑
k ̸=i

(G−i)kj
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G−i is the N by N row-normalized adjacency matrix after excluding the links of i

Each matrix entry (Q1)ij encodes the probability of arriving at j in the network in one step,
ruling out any path starting from i. By construction, (Q1)ij is independent of Ui and since it
is correlated with Gij through Uj, the weighted average of peer characteristics

∑
j ̸=i(Q1)ijXj

is a valid instrument. We refer the interested reader to Jochmans (2020) for more details on
this approach to estimate the social effects.

The left-most columns of Table 3.1 show that the least squares estimates of the exogenous
effect suffer from a systematic upward bias, particularly noticeable for N = 20, but that
recedes with network size. Remarkably, the proxy control function estimator is able to
eliminate this bias almost entirely simply by adjusting for degree centrality. The degree-
matching and IVJ estimates are unsurprisingly the most accurate with nearly no average
bias while displaying appropriate size in accordance with theoretical expectations. We note
a slight advantage for the degree-matching estimator in terms of mean absolute bias in the
specific context of this DGP. More generally, it would be interesting to conduct a theoretical
comparison of these estimators and determine which one may be more efficient 8. It is also
worth mentioning that estimates of γ0 are all unbiased, consistent with the fact that Xi is
immune to the endogeneity of average peer characteristics by Assumption 8.

In line with our discussion in Section 3.3, Table 3.2 shows that the OLS bias in the local-
aggregate model is relatively more severe. Indeed, the upward bias of the exogenous effect
represents close to 14% of the true parameter value for N = 20 and still as much as 5%
for N = 80. By comparison, the proxy control function and especially the degree-matching
approach show almost perfect accuracy.

While the simulation results are concordant with the theory for the degree-matching
estimator, it is interesting to notice that just controlling for degree-centrality in the baseline
models does a remarkable job when individuals form links according to a CID process. In
practice, this should provide a very easy-to-implement check for applied researchers interested
in measuring peer effects when endogenous selection of peers is of potential concern. For
networks of moderate size, a significant difference between conventional methods and the
proxy-control function approach would be indicative of network endogeneity. To test the
latter formally, a Hausman-Durbin-Wu test statistic based on either the degree-matching
estimator of the control function estimator appears conceivable but I leave the investigation
of this question for future work.

8Perhaps one advantageous feature of the degree-matching procedure within our framework is that it
can flexibly accommodate correlated effects and latent exogenous effects while there does not appear to
be immediate ways to generalize the approach of Jochmans (2020) to those cases. At the same time, the
IVJ estimator is more flexible on other dimensions. For example, it also works for directed networks and
could accommodate homophily on observable attributes without requiring the kind of exclusion restrictions
imposed in Assumption 14.
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Table 3.2: MC Simulation: estimates of θ0 = (γ0, δ0)
′ in the baseline local-aggregate model

OLS PCF DM
γ δ γ δ γ δ

N = 20
Bias 0.001 0.271 0.000 0.000 -0.000 0.000
MAB 0.021 0.271 0.012 0.006 0.018 0.009
Size 0.057 1.000 0.052 0.055 0.053 0.049

N = 40
Bias 0.001 0.175 0.000 -0.000 0.000 0.000
MAB 0.013 0.175 0.006 0.003 0.009 0.003
Size 0.062 1.000 0.050 0.051 0.046 0.048

N = 80
Bias 0.000 0.103 0.000 -0.000 0.000 -0.000
MAB 0.007 0.103 0.003 0.001 0.004 0.001
Size 0.056 1.000 0.050 0.057 0.047 0.052

Notes: PCF stands for the proxy control function estimator, DM for the degree-matching estimator. MAB

stands for mean absolute bias and Size indicates the fraction of draws that fall outside the asymptotic 95%

confidence interval

3.8 Conclusion

In this chapter, we analyze leading peer effect models in the presence of network endogeneity
and correlated effects. When the existence of isolated individuals is precluded, identification
of the linear-in-means model is unaffected by these complications. However, this result
crucially hinges on the use of the row-normalized adjacency matrix and is thus not verified
in the local-aggregate model. Assuming that friendships form according to a CID model,
we argue that standard estimation strategies relying on network exogeneity produce biased
estimates of the social interaction effects. To address this issue, we introduce two simple
methods and derive their asymptotic properties: a control function approach that essentially
adjusts for degree centrality in the reduced form outcome equation, and the degree-matching
approach which takes pairwise differences of agents with identical degree centrality. The
common theme of these approaches is that network symmetries can be fruitfully exploited to
account for endogenous peer selection and recover the social effects. Finally, results from a
Monte Carlo study demonstrate the effectiveness of our estimators and highlight the severe
estimation bias that can arise, especially for small networks, when friendship endogeneity is
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unaddressed.

3.9 Appendix: proofs and additional materials

3.9.1 SAR(in-means) and the full linear-in-means model with
no isolated individuals

In this section, we show that under Assumption 11, the spatially autoregressive model (SAR)
and the full linear-in-means model (Equation (3.4)) are immune to network endogeneity. The
SAR model, popular in spatial econometrics posits the following relation:

Yi = α0 + β0
∑
j ̸=i

GijYj + γ0Xi + Ui (3.15)

This is a simultaneous-equation model which even in the absence of endogenous peers would
pose an endogeneity problem due to the correlation between the average outcome of peers
and the unobserved individual attribute, i.e the reflection problem. The standard approach
when the covariates and the network are exogenous is to instrument average peer response
by the average characteristics of peers. In light of the previous derivations for the baseline
linear-in-means model, this instrumental variable strategy remains valid under approriate
rank conditions if Assumption 11 is verified:

Cov(
∑
j ̸=i

GijXj, Ui) = 0

Cov(
∑
j ̸=i

GijYj,
∑
j ̸=i

GijXj) ̸= 0

The full linear-in-means model constitutes a more challenging case as we have to deal both
with simultaneity and the issue of endogenous peers contaminating the two covariates of
peer influence. Rewriting the equations in matrix form, we have:

Y = α0ι+ β0GY + γ0X + δ0GX + U =⇒ (I − β0G)Y = α0ι++γ0X + δ0GX + U

Given our primitive assumption that |β0| < 1, and ruling out isolated agents (Assumption
11), we can re-express the system as:

Y =
α0

(1− β0)
ι+ γ0X + (γ0β0 + δ0)

∞∑
k=0

βk0G
k+1X +

∞∑
k=0

βk0G
kU

=⇒ GY =
α0

(1− β0)
ι+ γ0GX + (γ0β0 + δ0)

∞∑
k=0

βk0G
k+2X +

∞∑
k=0

βk0G
k+1U

In a context where the network and the regressors are exogenous, Bramoullé et al. (2009)
suggests using G2X, G3X . . . as possible instruments provided that (γ0β0 + δ0) ̸= 0. It
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turns out that these instruments remain valid in our more complicated setting. When,
(γ0β0+ δ0) ̸= 0 the reduced-form expression hereinabove shows that GY and the peers peers
characteristics G2X are correlated so relevance of the instrument is satisfied. To confirm the
exogeneity of the instrument, observe that since Di+ > 0 with probability one, we have the
following:

Cov((G2X)i, Ui)

= Cov(
∑
j ̸=i

Gij

∑
k ̸=j

GjkXk, Ui)

= E

∑
j ̸=i

Gij

∑
k ̸=j

GjkXkUi

− E

∑
j ̸=i

Gij

∑
k ̸=j

GjkXk

E(Ui)

=

E

∑
j ̸=i

Gij

∑
k ̸=j

GjkUi

− E

∑
j ̸=i

Gij

∑
k ̸=j

Gjk

E(Ui)

E(X) (by Assumptions 7-8)

=

E

Ui∑
j ̸=i

Dij

Di+

∑
k ̸=j

Djk

Dk+

1{Di+ > 0, Dk+ > 0}



−E

∑
j ̸=i

Dij

Di+

∑
k ̸=j

Djk

Dk+

1{Di+ > 0, Dk+ > 0}

E(Ui)

× E(X)

=
(
E
(
Ui|Di+ > 0, Dk+ > 0

)
− E(Ui)

)
P (Di+ > 0, Dk+ > 0)E(X)

=
(
E (Ui)− E(Ui)

)
E(X)

= 0

Consequently, the usual moment restriction holds:

E
[
(ι G2X X GX)′(Y − α0 − β0GY − γ0X − δ0GX

]
= 0

It follows that the methodology developed in Bramoullé et al. (2009) is also applicable in
a setting with endogenous friendships if the network formation model precludes isolated
individuals. Because this assumption is violated in a wide class of link formation models,
we suggest novel approaches to estimate social effects in Sections 3.4-3.6 that do not rely on
Assumption 11.

3.9.2 Proof of Lemma 15

In this part of the Appendix, we prove Lemma 15. First, by the law of iterated expectations:

P (D1 = d1) =

∫
P (D1 = d1|U1 = u1)fU1(u1)du1
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Furthermore, given Assumptions 7 and 8, conditional on Ui: Dij and Dik, k ̸= j are inde-
pendent. Consequently:

P (D1 = d1) =

∫ ∏
j ̸=1

P (D1j = d1j|U1 = u1)fU1(u1)du1

With the notation g(u1) = P (D1j = 1|U1 = u1) we can write:
P (D1j = d1j|U1 = u1) = g(u1)

d1j(1− g(u1))
1−d1j . It follows that:

P (D1 = d1) =

∫ ∏
j ̸=1

g(u1)
d1j(1− g(u1))

1−d1j

 fU1(u1)du1

=

∫
g(u1)

∑
j ̸=1 d1j(1− g(u1))

N−1−
∑

j ̸=1 d1jfU1(u1)du1

=

∫
g(u1)

d1+(1− g(u1))
N−1−d1+fU1(u1)du1

which makes it clear that P (Di = di) is permutation invariant in its argument as it is a
function of the degree of centrality of the agent. In proving the latter, we have also shown
that P (D1 = d1|U1 = u1) is symmetric in d1. Therefore, via Bayes rule, the joint density
also inherits this property:

fU1,D1(u1, d1) = P (D1 = d1|U1 = u1) ∗ fU1(u1)

which in turn implies

fU1|D1(u1|d1) =
fU1,D1(u1, d1)

P (D1 = d1)

is permutation invariant in d1 = (d12, d13, . . . , d1N). In other words, the conditional density
of U1 given agent 1’ connections in the network: fU1|D12,D13,...,D1N

(u1|d12, d13, . . . , d1N) is a
symmetric function of (d12, d13, . . . , d1N).

3.9.3 Proof of Corollary 15.1

Fix any set of links for nodes i and j, (di, dj) ∈ {0, 1}N−1 : di+ = dj+. We can naturally
reformulate this network data in terms of a subgraph S = (V,E, Ē) with
V = {1, . . . , N}, E = {(m, k)|m ∈ {i, j}, k ∈ V (S) : dmk = 1}, and
Ē = {(m, k)|m ∈ {i, j}, k ∈ V (S) : dmk = 0}. Now, let us partition the set of nodes V as
follows: V = {i, j} ∪ CFij ∪ EFi ∪ EFj ∪NFij where

• CFij = {k ∈ V |dik = 1 and djk = 1}, that is the common friends of i and j

• EFi = {k ∈ V |dik = 1 and djk = 0}, EFj = {k ∈ V |djk = 1 and dik = 0}, that is the
exclusive friends of i and j respectively. Note that since i and j have the same degree
centrality, |EFi| =

∣∣EFj∣∣ = m
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• NFij = {k ∈ V |dik = 0 and djk = 0}, i.e the set of agents that are not linked to i nor
j.

It will be convenient to adopt an arbitrary labelling of individuals in EFi, EFj as follows:
EFi = {i1, . . . , im}, EFj = {j1, . . . , jm} - this is just a technical device. Define σ : V 7→ V
by:

1. σ(i) = j

2. ∀k ∈ CFij ∪NFij, σ(k) = k

3. ∀(ik, jk) ∈ EFi × EFj : σ(ik) = jk

In words, σ swaps i and j and their exclusive friends and fixes all other agents. By construc-
tion, σ ∈ Aut(S) and i,j are automorphic in S. Therefore by the previous corollary

Ui|Di = di, Dj = dj ∼ Uj|Di = di, Dj = dj

Likewise ∀(ik, jk) ∈ EFi × EFj, ik, jk are automorphic in S, thus

Uik |Di = di, Dj = dj ∼ Ujk |Di = di, Dj = dj

Finally, fix (k, l) ∈ EFi × EFi, and consider σ′ : V 7→ V defined by:

1. σ′(k) = l

2. ∀m ∈ V \ {k, l} : σ′(m) = m

By construction σ′ is an automorphism and we have shown that k, l are automorphic. Con-
sequently:

Uk|Di = di, Dj = dj ∼ Ul|Di = di, Dj = dj
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3.9.4 Proof of Theorem 6

We will show that (3.11) holds in two steps. First, observe that in a network of order N , we
have:

E[g(Di, Dj, X)(ϵi − ϵj)|X,Di+ = Dj+]

= E[g(Di, Dj, X)(ϵ̃i − ϵ̃j)|X,Di+ = Dj+]

=
E[g(Di, Dj, X)(ϵ̃i − ϵ̃j)1{Di+ = Dj+}|X]

P (Di+ = Dj+|X)

=
E[g(Di, Dj, X)(ϵ̃i − ϵ̃j)1{Di+ = Dj+}|X]

P (Di+ = Dj+)
(by Assumptions 7,8,10)

=
1

P (Di+ = Dj+)

× E

g(Di, Dj, X)(ϵ̃i − ϵ̃j)
∑

(di,dj):di+=dj+

1{Di = di, Dj = dj}
∣∣∣∣X


=
∑

(di,dj):di+=dj+

P (Di = di, Dj = dj)

P (Di+ = Dj+)
g(di, dj, X)

× E[ϵ̃i − ϵ̃j|Di = di, Dj = dj]

(by Assumptions 7,8,10)

This identity is simply a variant of the law of total expectations that we use repeatedly in
this chapter. Next, fix (di, dj) ∈ {0, 1}N−1 : di+ = dj+. Appealing to Corollary 15.1, it
suffices to show that:

E[ϵ̃i − ϵ̃j|Di = di, Dj = dj] = 0

Case 1: di+ = dj+ = 0

E[ϵ̃i − ϵ̃j|Di = di, Dj = dj] = E[Ui − Uj|Di = di, Dj = dj]

= 0 (by Corollary 15.1.1)

Case 2: di+ = dj+ > 0
By definition, conditional on di, dj we have:

ϵ̃i − ϵ̃j = Ui − Uj + λ0
∑
k ̸=i

ωik(di)Uk − λ0
∑
l ̸=j

ωjl(dj)Ul

= (1− λ0ωij(di))(Ui − Uj) + λ0
∑

k ̸={i,j}

ωik(di)Uk − λ0
∑
l ̸={i,j}

ωjl(dj)Ul

since (dij = dji, di+ = dj+ =⇒ ωij(di) = ωji(dj))

= (1− λ0ωij(di))(Ui − Uj) + λ0
∑

k ̸={i,j}

ωik(di)(1− djk)Uk − λ0
∑
l ̸={i,j}

ωjl(1− dil)Ul
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+ λ0
∑

m̸={i,j}

(ωim(di)Djm − ωjm(dj)Dim)Uk

= (1− λ0ωij(di))(Ui − Uj) + λ0
∑

k ̸={i,j}

ωik(di)(1− djk)Uk − λ0
∑
l ̸={i,j}

ωjl(dj)(1− dil)Ul

the last line follows from the fact that the terms involving common friends of i and j cancel
out.

Define the sets of “exclusive friends” for i and j respectively:
EFi = {k ∈ {1, . . . , N}|dik = 1 and djk = 0}, EFj = {k ∈ {1, . . . , N}|djk = 1 and dik = 0}.
Note that since i and j have the same degree centrality, |EFi| =

∣∣EFj∣∣ = m. By Corollary
15.1.1: E

[
(1− λ0ωij(di))(Ui − Uj)|Di = di, Dj = dj

]
= 0. Hence,

E[ϵ̃i − ϵ̃j|Di = di, Dj = dj]

= λ0E

 ∑
k ̸={i,j}

ωik(di)(1− djk)Uk −
∑
l ̸={i,j}

ωjl(dj)(1− dil)Ul

∣∣∣∣Di = di, Dj = dj


In the linear-in-means framework, we have

E[ϵ̃i − ϵ̃j|Di = di, Dj = dj]

=
1

di+

∑
k∈EFi

E[Uk|Di = di, Dj = dj]−
1

dj+

∑
k∈EFj

E[Uk|Di = di, Dj = dj]

=
1

di+
mE[Uk|Di = di, Dj = dj; k ∈ EFi]−

1

dj+
mE[Uk|Di = di, Dj = dj; k ∈ EFj]

= 0

where the penultime line follows from Corollary 15.1.2a, the fact that di+ = dj+ and
|EFi| =

∣∣EFj∣∣ = m and the last line is a consequence of Corollary 15.1.2b. The derivations
are analogous for the local-aggregate version - substitute 1

di+
by 1.

3.9.5 Proof of Lemma 16

Without loss of generality, let us focus on the baseline linear-in-sums model - the derivations
are completely analogous for the baseline linear-in-means model. Start with N = 2 and let
p = P (Dij = 1).

E
[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]
= pE

[
(Zi − Zj)(Zi − Zj)

′|Dij = 1
]

+ (1− p)E
[
(Zi − Zj)(Zi − Zj)

′|Dij = 0
]

= pE
[
(Xi −Xj)

2(1,−1)′(1,−1)
]
+ (1− p)E

[
(Xi −Xj)

2(1, 0)′(1, 0)
]
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= 2V ar(X)

[
1 −p
−p p

]
(by Assumption 7)

By Assumption 10, the graphon is non-degenerate which rules out p ∈ {0, 1}. Thus, the
matrix is non singular.

With N = 3, let p =
P (Dij=0,Dik=0,Djk=0)+P (Dij=0,Dik=1,Djk=1)

P (Di+=D̄j)
. Then, similar calculations

yield:

E
[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]
= 2V ar(X)

[
1 −p
−p p

]
(by Assumption 7)

By Assumption 10, we conclude again that the matrix is non-singular. When N ≥ 4, there
always exist network wirings such that agent i and agent j have the same strictly positive
degree and do not share exactly the same set of friends. For instance, in the case of a tetrad,
T = {Dij = 0, Dik = 1, Dil = 0, Djk = 0, Djl = 1} is such an event and a subset of
Di+ = Dj+. Observe now that

E
[
(Zi − Zj)(Zi − Zj)

′|T
]
= 2V ar(X)

[
1 0
0 1

]
(by Assumption 7)

so E
[
(Zi − Zj)(Zi − Zj)

′|T
]
is positive definite which immediately implies that

E
[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]
is positive definite as well. This follows from the fact

that the latter is a convex combination of positive semi-definite matrices with some of them
being strictly positive definite such as E

[
(Zi − Zj)(Zi − Zj)

′|T
]
.

3.9.6 Proof of Proposition 6

The method of proof is standard and follows from expanding the squared term in Q(θ):

Q(θ) = E
[(
ϵi − ϵj − (Zi − Zj)

′(θ − θ0)
)2 |Di+ = Dj+

]
= E

[(
ϵi − ϵj

)2 |Di+ = Dj+

]
︸ ︷︷ ︸

=T1

+
′

E
[
(ϵi − ϵj)(Zi − Zj)|Di+ = Dj+

]︸ ︷︷ ︸
=T2

(θ − θ0)+

(θ − θ0)
′E
[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]′
(θ − θ0)︸ ︷︷ ︸

=T3

T1 is always positive and does not depend on θ.
By Assumption 12: E

[
(Zi − Zj)(Zi − Zj)

′|Di+ = Dj+

]
is positive definite, thus T3 is mini-

mized at θ = θ0. Finally,
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E
[
(ϵi − ϵj)(Zi − Zj)|Di+ = Dj+

]
= E

E [(Zi − Zj)(ϵi − ϵj)|X,Di, Dj, Di+ = Dj+

]︸ ︷︷ ︸
=0 by Theorem 6

|Di+ = Dj+


= 0

Therefore: θ0 = argminθQ(θ)

3.9.7 Proof of Lemma 17

By symmetry, it suffices to show that

∀m ∈ N, E

[
(GmX)i(ϵi − ϵj)

∣∣∣∣Di+ = Dj+

]
= E

[
(GmX)i(ϵ̃i − ϵ̃j)

∣∣∣∣Di+ = Dj+

]
= 0

Recall that ϵi = AD + ϵ̃i = AD + Ui +
∑

j ̸=iGijUj. The cases m = 0 and m = 1 follow from
Theorem 6 so suppose m ≥ 2. By the law of total expectations, for a network of order N ,
we have:

E[(GmX)i(ϵ̃i − ϵ̃j)|Di+ = Dj+]

=
∑

(di,dj):di+=dj+

P (Di = di, Dj = dj)

P (Di+ = Dj+)
E
[
(GmX)i(ϵ̃i − ϵ̃j)|Di = di, Dj = dj

]
Thus, it suffices to show that ∀(di, dj) ∈ {0, 1}N−1 × {0, 1}N−1 : di+ = dj+,

E
[
(GmX)i(ϵ̃i − ϵ̃j)|Di = di, Dj = dj

]
= 0

To facilitate the derivations, it is helpful to proceed as in the proof of Theorem 6 and
decompose the difference of error terms in two subcomponents:

ϵ̃i − ϵ̃j = (1− λ0Gij)(Ui − Uj) + λ0

 ∑
k ̸={i,j}

Gik(1−Djk)Uk −
∑
l ̸={i,j}

Gjl(1−Dil)Ul


We will start by showing that E

[
(GmX)i(Ui − Uj)

∣∣∣∣Di = di, Dj = dj

]
= 0. The mathemati-

cal treatment of the second term will be similar.
Fix (di, dj) ∈ {0, 1}N−1 × {0, 1}N−1 : di+ = dj+ and for notational convenience let
I = {Di = di, Dj = dj}. Then:

E

[
(GmX)i(Ui − Uj)

∣∣∣∣I
]
= E

∑
k1 ̸=i

Gik1

∑
k2 ̸=k1

Gk1k2 . . .
∑

km−1 ̸=km

Gkm−1kmXkm(Ui − Uj)

∣∣∣∣I
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Case 1: if di+ = dj+ = 0, then E

[
(GmX)i(Ui − Uj)

∣∣∣∣I
]
= 0

Case 2: if di+ = dj+ > 0, then:

E

[
(GmX)i(Ui − Uj)

∣∣∣∣I
]
= E(X)

∑
k1:dik1=1

1

di+
E

∑
k2 ̸=k1

Gk1k2 . . .
∑

km−1 ̸=km

Gkm−1km(Ui − Uj)

∣∣∣∣I


︸ ︷︷ ︸
=uk1

(by Assumptions 7-8)

Abusing notations, define the following sequence of information sets:

Ik1 = I, Fk1k2 = {Dk1k2 = 1} ∪ Ik1
Ik1k2 = σ

(
Dk1(−k2),Fk1k2

)
, Fk1k2k3 = σ (Dk2k3 = 1, Ik1k2)

...

Ik1,...,km−1 = σ
(
Dkm−2(−km−1),Fk1,...,km−1

)
where I use the standard notation σ(W ) to denote the σ-algebra generated by W . By
repeated applications of the law of iterated expectations, we can see that the term uk1 has
the following recursive structure:

uk1 =
∑
k2 ̸=k1

P (Dk1k2 = 1|Ik1)E

[
1

Dk1+

uk1k2

∣∣∣∣Fk1k2

]

uk1k2 =
∑
k3 ̸=k2

P (Dk2k3 = 1|Ik1k2)E

[
1

Dk2+

uk1k2k3

∣∣∣∣Fk1k2k3

]
...

uk1,...,km−2 =
∑

km−1 ̸=km−2

P (Dkm−2km−1 = 1|Ik1,...,km−2)E

[
1

Dkm−2+

uk1,...,km−1

∣∣∣∣Fk1,...,km−1

]

uk1,...,km−1 = E

 ∑
km ̸=km−1

Gkm−1km(Ui − Uj)

∣∣∣∣Ik1,...,km−1


Examining the last term of this sequence more closely, we have:

uk1,...,km−1 = E

 ∑
km ̸=km−1

Dkm

Dkm−1+

1{Dkm−1+ > 0}(Ui − Uj)

∣∣∣∣Ik1,...,km−1
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Since we are conditioning on the event Ik1,...,km−1 , we are in particular conditioning on
Dkm−2km−1 = 1 and because, the network is undirected, we know that
Dkm−1km−2 = Dkm−2km−1 = 1 which implies 1{Dkm−1+ > 0} = 1. Therefore:

uk1,...,km−1 = E


 ∑
km ̸=km−1

Dkm

Dkm−1+


︸ ︷︷ ︸

=1

(Ui − Uj)

∣∣∣∣Ik1,...,km−1


= E

[
(Ui − Uj)

∣∣∣∣Ik1,...,km−1

]
Going back one step in the sequence, we get:

uk1,...,km−2

=
∑

km−1 ̸=km−2

P (Dkm−2km−1 = 1|Ik1,...,km−2)E

[
1

Dkm−2+

uk1,...,km−1

∣∣∣∣Fk1,...,km−1

]

=
∑

km−1 ̸=km−2

P (Dkm−2km−1 = 1|Ik1,...,km−2)E

 1

Dkm−1+

E

[
(Ui − Uj)

∣∣∣∣Ik1,...,km−1

] ∣∣∣∣Fk1,...,km−1



= E


 ∑
km−1 ̸=km−2

Gkm−2km−1


︸ ︷︷ ︸

=1

(Ui − Uj)

∣∣∣∣Ik1,...,km−2


= E

[
(Ui − Uj)

∣∣∣∣Ik1,...,km−2

]

and successively

uk1,...,km−3 = E

[
(Ui − Uj)

∣∣∣∣Ik1,...,km−3

]
...

uk1k2 = E

[
(Ui − Uj)

∣∣∣∣Ik1,k2
]

uk1 = E

[
(Ui − Uj)

∣∣∣∣Ik1
]
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Thus,

E

[
(GmX)i(Ui − Uj)

∣∣∣∣I
]
= E(X)E

[
(Ui − Uj)

∣∣∣∣I
]

= 0 (see Theorem 6)

Now, all that remains to show is:

E

(GmX)i

 ∑
k ̸={i,j}

Gik(1−Djk)Uk −
∑
l ̸={i,j}

Gjl(1−Dil)Ul

∣∣∣∣I
 = 0

Case 1: if di+ = dj+ = 0, this equality is trivially satisfied
Case 2: di+ = dj+ > 0.
Define the sets EFi = {k ∈ {1, . . . , N}|dik = 1 and djk = 0}, and
EFj = {k ∈ {1, . . . , N}|djk = 1 and dik = 0}, i.e the sets of exclusive friends of i and j
respectively. Note that since i and j have the same degree centrality, |EFi| =

∣∣EFj∣∣ = m.
Then, we equivalently want to show that

1

di+

∑
k∈EFi

E

[
(GmX)iUk

∣∣∣∣I
]
− 1

dj+

∑
l∈EFj

E

[
(GmX)iUl

∣∣∣∣I
]
= 0

By repeating exactly the same arguments as above, we get:

E

[
(GmX)iUk

∣∣∣∣I; k ∈ EFi

]
= E(X)E

[
Uk

∣∣∣∣I; k ∈ EFi

]

E

[
(GmX)iUl

∣∣∣∣I; l ∈ EFj

]
= E(X)E

[
Ul

∣∣∣∣I; l ∈ EFj

]

Consequently,

1

di+

∑
k∈EFi

E

[
(GmX)iUk

∣∣∣∣I
]
− 1

dj+

∑
l∈EFj

E

[
(GmX)iUl

∣∣∣∣I
]

=
E(X)

di+

∑
k∈EFi

E

[
Uk

∣∣∣∣I
]
−
∑
l∈EFj

E

[
Ul

∣∣∣∣I
]

=
E(X)

di+
m
(
E[Uk|I; k ∈ EFi]− E[Ul|I; l ∈ EFj]

)
= 0
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The penultimate line follows from Corollary 15.1.2a and the fact that di+ = dj+. The last
line is a consequence of Corollary 15.1.2b. Putting these intermediate derivations together,
we have ∀(di, dj) ∈ {0, 1}N−1 × {0, 1}N−1 : di+ = dj+

E[(GmX)i(ϵ̃i − ϵ̃j)|Di = di, Dj = dj]

= (1− λ0gij)E
[
Ui − Uj|Di = di, Dj = dj

]︸ ︷︷ ︸
=0

+

λ0 E

 ∑
k ̸={i,j}

Gik(1−Djk)Uk −
∑
l ̸={i,j}

Gjl(1−Dil)Ul

∣∣∣∣Di = di, Dj = dj


︸ ︷︷ ︸

=0

= 0

Hence, E[(GmX)i(ϵ̃i − ϵ̃j)|Di+ = Dj+] = 0, which concludes the proof

3.9.8 Proof of Theorem 7

From Assumption 12:

Qn =
1

n

C∑
c=1

E[∆Z ′
c∆Zc]

=
1

n

C∑
c=1

E

Nc−1∑
i=1

Nc∑
j=i+1

1{Dc
i+ = Dc

j+}(Zc
i − Zc

j )(Z
c
i − Zc

j )
′


=

1

n

C∑
c=1

ncE
[
1{Dc

i+ = Dc
j+}(Zc

i − Zc
j )(Z

c
i − Zc

j )
′
]

is positive definite. Furthermore:

E
[∣∣∣∆̃Yci∣∣∣κ] = E

[
1{D̄i1 = D̄i2}

∣∣Y c
i1
− Y c

i2

∣∣κ]
≤ E

[∣∣Y c
i1
− Y c

i2

∣∣κ]
E
[∥∥∥∆̃Zci∥∥∥κ] = E

[
1{D̄i1 = D̄i2}

∥∥Zc
i1
− Zc

i2

∥∥]
≤ E[

∥∥Zc
i1
− Zc

i2

∥∥κ]
From the triangle inequality and the cr inequality (convexity), we further have:

E
[∣∣∣∆̃Yci∣∣∣κ] ≤ 2κ−1

(
E[|Yi1|

κ] + E[|Yi2|
κ]
)
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E
[∥∥∥∆̃Zci∥∥∥κ] ≤ 2κ−1

(
E[∥Zi1∥

κ] + E[∥Zi2∥
κ]
)

It follows that:

sup
c,i

E
[∣∣∣∆̃Yci∣∣∣κ] ≤ 2κ sup

c,i
E[|Y c

i |
κ] <∞

sup
c,i
E[∥∆Zci∥κ] ≤ 2κ sup

c,i
E[∥Zc

i ∥
κ] <∞

Therefore by Theorem 8 of Hansen and Lee (2019), θ̂
p→ θ0.

3.9.9 Proof of Theorem 8

As in the proof of Theorem 7 we have that Qn is positive definite from Assumption 11 and
similarly:

sup
c,i

E[|∆Yci|2τ ] ≤ 22τ sup
c,i

E[|Y c
i |

2τ ] <∞

sup
c,i

E[∥∆Zci∥2τ ] ≤ 22τ sup
c,i

E[∥Zc
i ∥

2τ ] <∞

Therefore by Theorem 9 of Hansen and Lee (2019), we have the desired conclusion.
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Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s who in networks. wanted:
The key player. Econometrica, 74(5):1403–1417.

Bekker, P. and Wansbeek, T. (2001). Identification in parametric models. A companion to
theoretical econometrics, pages 144–161.

Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic
panel data models. Journal of econometrics, 87(1):115–143.

Blundell, R. and Bond, S. (2000). Gmm estimation with persistent panel data: an application
to production functions. Econometric Reviews, 19(3):321 – 340.

Blundell, R., Griffith, R., and Windmeijer, F. (2002). Individual effects and dynamics in
count data models. Journal of econometrics, 108(1):113–131.

Blundell, R. W. and Powell, J. L. (2004). Endogeneity in semiparametric binary response
models. The Review of Economic Studies, 71(3):655–679.

Bonhomme, S. (2012). Functional differencing. Econometrica, 80(4):1337 – 1385.

Bonhomme, S., Dano, K., and Graham, B. (2022). Sequential moment restrictions in non-
linear panel data models. Working Paper.

Bonhomme, S., Dano, K., and Graham, B. S. (2023). Identification in a binary choice
panel data model with a predetermined covariate. Technical report, National Bureau of
Economic Research.
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