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CRITICAL REVIEW Open Access

Combining molecular and imaging metrics
in cancer: radiogenomics
Roberto Lo Gullo1*, Isaac Daimiel1, Elizabeth A. Morris1 and Katja Pinker1,2

Abstract

Background: Radiogenomics is the extension of radiomics through the combination of genetic and radiomic data.
Because genetic testing remains expensive, invasive, and time-consuming, and thus unavailable for all patients,
radiogenomics may play an important role in providing accurate imaging surrogates which are correlated with
genetic expression, thereby serving as a substitute for genetic testing.

Main body: In this article, we define the meaning of radiogenomics and the difference between radiomics and
radiogenomics. We provide an up-to-date review of the radiomics and radiogenomics literature in oncology,
focusing on breast, brain, gynecological, liver, kidney, prostate and lung malignancies. We also discuss the current
challenges to radiogenomics analysis.

Conclusion: Radiomics and radiogenomics are promising to increase precision in diagnosis, assessment of
prognosis, and prediction of treatment response, providing valuable information for patient care throughout the
course of the disease, given that this information is easily obtainable with imaging. Larger prospective studies and
standardization will be needed to define relevant imaging biomarkers before they can be implemented into the
clinical workflow.

Keywords: Radiomics, Radiogenomics, Molecular profiling, Precision medicine

Keypoints

� Current radiomic and radiogenomic studies are
limited to few common cancers.

� Radiogenomics may provide accurate imaging
biomarkers, substituting for genetic testing.

� Radiomics/radiogenomics biomarkers may predict
risk and outcomes.

� Radiomics/radiogenomics biomarkers may be used
to personalize treatment options.

� Larger prospective studies and standardization are
needed to validate radiomics/radiogenomics
biomarkers.

Background
Personalized medicine is yielding increasingly precise dis-
ease treatments and prevention strategies for groups of
individuals based on their genetic makeup, environment,

and lifestyle. To enable personalized medicine, more pre-
cise and personalized genetic-based approaches (genom-
ics, transcriptomics, proteomics, metabolomics, etc.) are
used. In oncology, the goal of using such approaches is to
allow more individual-level information rather than
population-level or aspecific clinical information (tumor
stage, age, gender, etc.) to select the most successful can-
cer treatment regimen for each patient [1].
Molecular tumor characterization can be performed

using genomic and proteomic approaches, but this re-
quires using tissue sampling from invasive surgery or bi-
opsy [2]. However, even when molecular characterization
is performed using tissue sampling, samples may not be
accurate for the entire lesion as they are often obtained
from a small portion of a heterogeneous lesion with inher-
ent selection bias during biopsy [3]. Currently, large-scale
genome cancer characterization that would allow genetic
testing for every individual is not feasible due to high
costs, the considerable time burden, and technically com-
plex data analysis and interpretation [3].
Imaging can provide a more comprehensive view of the

tumor in its entirety via radiomics and radiogenomics.
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Whereas radiomics analysis extracts large volumes of
quantitative data from medical images and amalgamates
these together with clinical and patient data into mineable
shared databases [4–6], radiogenomics is the extension of
radiomics through the combination of genetic and radio-
mic data. Detailed reviews of the process of radiomics ana-
lysis (image acquisition, volume of interest selection,
segmentation, feature extraction and quantification, data-
base building, classifier modeling, and data sharing) are
described in detail by Pinker et al. [7], Gillies et al. [8], Sala
et al. [5], and Lambin et al. [4].
Briefly, in radiomics, firstly, a region of interest (ROI)

containing either the whole tumor or sub-regions within
the tumor is identified from multimodality imaging data.
ROIs are then segmented with operator edits and are
eventually rendered in three dimensions (3D). High
dimension features are extracted from these ROIs that
include semantic and agnostic features [8]. Semantic fea-
tures are morphological features that are commonly
used in radiology reports to describe lesions such as size,
location, vascularity, spiculation, and necrosis. Agnostic
features are more complex mathematically extracted
quantitative features which can be divided into first
order statistical outputs (which describe distribution of
value inside a single voxel), second order statistical out-
puts (describe interrelations between voxels), and higher
order statistical outputs (extract repetitive and non-
repetitive patterns within an image trough filter grids).
These features extracted from these rendered volumes

generate a report, which is placed in a database along
with other data, such as clinical and genomic data such
as genes, mutations, and expression patterns.
Radiogenomics entails the correlation between quanti-

tative or qualitative imaging features and the genomic
data obtained from analysis of tissue as well as other
clinical data, thus allowing the discovery of imaging sur-
rogates that can serve as a substitute for genetic testing.
Radiogenomics studies can be either exploratory or
hypothesis-driven. Imaging features that are associated
with single oncogenic defects of a tumor can be used to
support treatment selection and monitoring as well as
predict treatment outcomes [3, 5, 9, 10]. Hence, radioge-
nomics represents a promising novel approach to enable
more personalized patient care [3, 4, 8, 9, 11–13].

Main structure
Because genetic testing remains expensive, invasive, and
time-consuming, and thus unavailable for all patients,
radiogenomics may play an important role in providing ac-
curate imaging surrogates which are correlated with gen-
etic expression, thereby serving as a substitute for genetic
testing [9, 13, 14]. These imaging surrogates can be used to
predict response to therapy and the potential for early me-
tastasis as well as to personalize treatment options [15–17].

So far, there are numerous genomic and clinical bio-
markers identified from various adult cancers that have
been collected in The Cancer Genome Atlas (TCGA).
These biomarkers have been linked to the corresponding
imaging data present in The Cancer Imaging Archive
(TCIA) [17–19]. However, due to the lack of image sam-
ple registration (i.e., genetic test results cannot be
matched to a specific location on imaging), the imaging
data in the TCIA is so far limited for clinical use [3].
Given that imaging acquisition protocols are becoming
more homogeneous and outcome data more robust, grow-
ing publicly available databases including the TCGA and
TCIA will become more useful and will allow further
radiogenomic studies [3].
Current radiomic and radiogenomic studies are limited

to few types of common cancers. In this review, we will
present the current data as pertains to radiomics and
radiogenomics in glioblastoma multiforme (GBM), non-
small cell lung cancer (NSCLC), hepatocellular carcinoma
(HCC), intrahepatic cholangiocarcinoma, breast cancer
(BC), prostate cancer, renal cell carcinoma, cervical can-
cer, and ovarian cancer and discuss their role and possible
future applications in oncology.

Brain
GBM remains the most common and the most fatal pri-
mary brain tumor in adults [20]. It is characterized by tre-
mendous molecular and genomic heterogeneity, which
leads to treatment resistance. Radiomics and radiogenomics
research in the brain have thus far focused on GBM.
Through the TCGA, the genomic profile of GBM has

been thoroughly assessed, resulting in its division into four
distinct molecular subtypes: classical, mesenchymal, pro-
neural, and neural. These subtypes are associated with dif-
ferent outcomes and tumor progression patterns [21, 22].
Another more recent stratification divided GBM into three
core pathways according to RTK/RAS/PI [3] K, p53, and
RB signaling alterations [23], showing a better correlation
with outcomes. GBM magnetic resonance imaging (MRI)
data from the TCIA has been matched with genetic data
contained in the TCGA, enabling radiogenomics studies.
Using MRI, survival, and genetic data on 92 patients

with GBM from the TCGA, Rao et al. [24] showed that
a combination of three distinct features (volume-class,
hemorrhage, and T1/fluid-attenuated inversion recovery
(FLAIR)-envelope ratio) was able to stratify patient sur-
vival in a statistically significant manner. Between pa-
tients with poorer survival and patients with a better
prognosis, there were significant differences in genes
and microRNAs regulating invasion and proliferation
(median difference of survival of 8 months).
Zinn et al. [25] used microRNA and genetic data of 78

GBMs from the TCGA to identify associations with
quantitative MRI FLAIR features from the TCIA. The
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results suggested that MRI FLAIR can serve as an im-
aging surrogate for GBMs highly enriched in genes and
microRNAs involved in cellular migration/invasion. In
both discovery and validation sets, POSTN was the top
upregulated gene and was associated with high FLAIR
volumes, shorter progression-free survival, and shorter
overall survival. POSTN upregulation is thought to
induce tumor invasion through epithelial to mesenchy-
mal transformation.
Colen et al. [26] reported in a study of 104 TCGA

GBMs with MRI data from the TCIA that three MRI
features could predict a worse prognosis: ependymal
enhancement (10.6 versus 18.6 months, p = 0.0018), deep
white matter tract involvement (10.9 months versus 19.9
months, p < 0.0008), and enhancement across midline (9
months versus 14.3 months (p < 0.0003). Ependymal en-
hancement and deep white matter tract involvement
demonstrated significant association with mitochondrial
dysfunction (p < 0.0001), MYC oncogene activation, and
NFKBIA inhibition. A year later, using gene expression
profiles from the TCGA and MRI data from the TCIA,
Colen et al. [27] reported that patients with GBM with
little necrotic component on MRI had a high prevalence
of X-linked genes, while patients with high volumes of
necrosis on MRI had a high prevalence of Y-linked genes.
The authors also demonstrated that female patients with
GBM characterized by low volumes of necrosis on MRI
had a significant survival advantage.
To date, using TCGA/TCIA data or institutional data,

tumor volume remains the most common MRI feature
extracted from GBM and has been shown to be corre-
lated with genomic data [25, 27–31]. Gutman et al. [31]
carried out a volumetric analysis on the MRI of 76
GBMs profiled in the TCGA and found that tumors with
TP53 mutation had smaller enhancing and necrotic vol-
umes (p ≤ 0.017) while tumors with RB1 mutation were
associated with less edema (p = 0.015). Using institu-
tional data, Diehn et al. [32] found that the ratio of en-
hancing to non-enhancing volume was significantly
correlated with EGFR overexpression (evaluated with im-
munohistochemistry) (p = 0.019). The enhancing pheno-
type was correlated with overexpression of angiogenesis
and tumor hypoxia-related genes such as VEGF, ADM,
and PLAUR (p = 0.012).
Barajas et al. [33] correlated MRI parameters with gen-

etic features (investigated with RNA microarrays) in
enhancing vs peritumoral non-enhancing GBM biopsy
samples. Results showed that T2 dynamic susceptibility-
weighted, perfusion-weighted, and diffusion-weighted mea-
surements were different between biopsy regions and were
correlated with histopathologic features of aggressiveness.
A study by Jamshidi et al. [34] in 23 patients with

GBM identified associations between genes and MRI
features such as contrast-to-necrosis ratio with KLK3

and RUNX3, subventricular zone involvement with Ras
oncogenes RAP2 and TYMS, and vasogenic edema with
oncogenes FOXP1 and PIK3IP1.
Pope et al. [35] found that incomplete enhancing

GBM on MRI was associated with increased levels of the
oligodendroglioma markers OLIG2 and ASCL1 compared
with completely enhancing imaging GBM. Histopathology
confirmed this finding, showing a higher percentage of the
oligodendroglioma histologic component in the incom-
plete enhancing group.
Pope et al. [36] also used magnetic resonance spectros-

copy (MRS) in patients with glioma to measure the level
of the oncometabolite 2-HG which is associated with
mutations of IDH1 and IDH2. Patients with IDH1 muta-
tion are more likely to progress to malignant gliomas.
MRS detected elevated 2-HG levels in gliomas with
IDH1 mutations compared with those without the muta-
tion (p = 0.003). Tumors with IDH1 mutations showed
elevated levels choline (p = 0.01) and decreased levels of
glutathione (p = 0.03).
Hu et al. [37] demonstrated correlations between diffu-

sion tensor imaging and dynamic susceptibility contrast
perfusion metrics and mutations in EGFR, PDGFRA,
PTEN, CDKN2A, RB1, and TP53 (p < 0.03). Accuracies of
the predictive models ranged from 37.5% for TP53 to
87.5% for RB1. A similar study [38] involving MRI texture
features was able to characterize local EGFR mutation
status as well as predict patient survival in 65 GBMs.
In Jain et al. [39], CT perfusion parameters were corre-

lated with angiogenesis-related genes. The authors found
that 19 of 92 angiogenesis-related genes were signifi-
cantly correlated with permeability surface area product
and nine genes were significantly correlated with cere-
bral blood volume.

Breast
Multiple studies have been conducted in the breast with
promising results for BC analysis of genomic signatures,
molecular subtype characterization, and clinically used
recurrence scores. Most have relied mainly on tumor
features in dynamic contrast-enhanced (DCE)-MRI, al-
though diffusion-weighted imaging (DWI) has been
used, for example, for characterization of molecular sub-
types [40–42].
The first radiogenomic MRI study of the breast was

published in 2012 by Yamamoto et al. [43] who investi-
gated the potential of radiogenomics to correlate gene
expression patterns with DCE-MRI characteristics. They
found that 21 of 26 imaging characteristics were signifi-
cantly associated with 71% of the approximately 52,000
variably expressed genes in BC. The same investigators
also conducted another study [44] to examine the rela-
tionship between quantitative DCE-MRI imaging pheno-
types, early metastasis, and long non-coding RNA
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expression using RNA sequencing. They found eight
long non-coding RNAs that correlated with the enhan-
cing rim fraction score which was in turn associated
with early metastasis and poor metastasis-free survival in
patients with BC.
Using a radiogenomics approach, Zhu et al. [45] inves-

tigated DCE-MRI characteristics (tumor size, shape, and
morphology) of 91 BCs and their correlation with gen-
omic features such as protein expression and mutations.
Tumor size revealed that larger cancers have upregu-
lated pathways, while blurred tumor margins and irregu-
lar shape were associated with more aggressive tumors.
Associations between MRI characteristics and molecu-

lar BC subtypes have been investigated in several studies.
In a systematic review and meta-analysis published in
2014, Elias et al. [46] reported that higher enhancement
within the tumor is associated with the luminal B subtype,
while HER2-enriched cancers are more likely to show fast
initial enhancement or wash-out kinetics with circum-
scribed margins. Elsewhere, triple-negative cancers have
been associated with high T2 signal intensity and the pres-
ence of rim enhancement [47, 48]. In DWI, HER2-enriched
tumors showed the highest ADC values, while luminal B/
HER2-negative cancers showed the lowest [40–42].
Computer-extracted radiomic features have themselves

been associated with molecular BC subtypes. Mazur-
owski et al. [49] showed that in DCE-MRI, extracted
MRI features that relate to an increased ratio of tumor-
to-background parenchymal enhancement were associ-
ated with HER2-positive cancers. This difference might
be due to the increased vascularization found in HER2-
positive subtypes mediated by VEGF which leads to in-
creased vessel diameter, vascular permeability, and extra-
cellular fluid. Grimm et al. [50] found correlations
between extracted imaging features and luminal A and B
breast cancer subtypes. In a more recent study by
Grimm et al. [51], non-mass enhancement and qualita-
tive BI-RADS descriptors were evaluated on DCE-MRI
in 278 patients with breast cancer; results showed sig-
nificant correlations between mass shape and basal can-
cers, mass margin and HER2 cancers, and internal
enhancement and luminal B cancers. In another study,
Yamaguchi et al. [52] assessed the relationship between
the delayed phase of enhancement of DCE-MRI and mo-
lecular subtypes, finding that ER-positive and/or PgR-
positive and HER2-negative cancers demonstrated less
washout. A recent study by Leithner et al. [53] showed
that radiomic features extracted from DWI were able to
separate breast cancers based on molecular subtype and
receptor status with high accuracy (> 90%). Accuracy
was superior for radiomics features extracted directly
from the apparent diffusion coefficient (ADC) map.
Classifier models using tumor phenotypes to differen-

tiate between molecular subtypes have been evaluated by

Li et al. [54] with promising results (Fig. 1). However, in
a similar study, Waugh et al. [55] found an accuracy of
only 57.2%. More studies need to be conducted in this
regard to validate these preliminary findings.
Previous studies have also correlated imaging character-

istics with clinically available prognostic genomic assays
which provide a clinical score for the risk of recurrence.
As Oncotype Dx gene-expression score, MammaPrint,
and PAM50 have been shown to predict recurrence in
early-stage ER-positive/HER2-negative invasive cancers,
these correlations between imaging characteristics and
assay recurrence scores could have important implications
in patient management. Woodard et al. [56] evaluated BC
recurrence in ER-positive patients using OncotypeDx
through the association of BI-RADS mammography and
MRI features. Indistinct mass margins and fine linear
branching calcifications on mammography were associ-
ated with a higher recurrence score, while breast density
on mammography was inversely associated with the recur-
rence score. Spiculated mass margins and non-mass
enhancement on MRI were associated with a lower recur-
rence score. Several radiomic imaging models assessing
risk of recurrence using several assays have been devel-
oped [43–45, 57–65]. Combining imaging and pathology
information, Sutton et al. [59] developed a model that cor-
related with the OncotypeDx Recurrence Score which was
predictive of recurrence and therapeutic outcome (Fig. 2).
A study by Li et al. [62] evaluated whether computer-
extracted imaging phenotypes could predict cancer recur-
rence using MammaPrint, OncotypeDx, and PAM50/Pro-
signa. They found significant correlations between tumor
size, heterogeneity, and higher risk for recurrence (Figs. 3
and 4). In this and other studies using radiomics
computer-extraction methods [57, 62, 63], enhancement
heterogeneity has been related to a high risk of recurrence
in tumor assays. In two studies [57, 59], rapid contrast
uptake predicted high-risk Oncotype Dx.
There is potential for radiogenomics studies regarding

MR perfusion characteristics and genetic expression.
One previous study [65] using genomics analysis has
associated MR perfusion parameters with early metasta-
sis or with differential gene expression when monitoring
anti-VEGF treatment.
Yamamoto et al. [43] evaluated a qualitative imaging

model including tumor heterogeneity and enhancement
for prediction of expression of immune-response genes,
and high-level analysis revealed 21 imaging traits that
were globally significantly correlated with 71% of the
total genes (3717/5231 genes) measured in BC patients.

Gynecological tumors
To date, radiomics and radiogenomics have been applied
in cervical cancer and in high grade serous ovarian can-
cer, providing valuable prognostic information.
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DCE-MRI pharmacokinetic parameters have been asso-
ciated with both genetic and outcome data in patients
with cervical cancer. In Norway, Halle et al. [66] con-
ducted an assessment of pre-treatment DCE-MRI phar-
macokinetic parameters with global gene expression data
in 78 patients who underwent chemotherapy. Through
gene set analysis of 42/78 tumors, they found that the
ABrix parameter correlated with hypoxia gene sets.
Through immunohistochemistry analysis of the remaining
32/78 tumors, they found that a low ABrix was associated
with upregulated HIF1α protein expression. A DCE-MRI
hypoxia gene signature consisting of 31 hypoxia genes up-
regulated in tumors with low ABrix was constructed,
showing prognostic value in an independent cohort of 109
patients. As reported by same group of authors [67] a year
later, several pharmacokinetic parameters, also derived
from pre-treatment DCE-MRI in 78 patients with cervical
cancer who underwent chemotherapy, may be used to
identify patients at risk of treatment failure: ABrix and
Ktrans were associated with poor clinical outcome, while
patients with high Kel had longer survival.
The TCGA Research Network previously introduced the

Classification of Ovarian Cancer (CLOVAR) describing

four prognostic genomic subtypes: differentiated, immuno-
reactive, mesenchymal, and proliferative [68, 69]. In a
hypothesis-generating single-institution study, Vargas et al.
[70] conducted a retrospective radiogenomics study of 46
patients with stage IIIC or IV high grade serous ovarian
cancer. They reported that preoperative CT features evalu-
ated by two radiologists were associated with the CLOVAR
genomic subtypes of high grade serous ovarian cancer and
were predictive of survival. Specifically, the presence of
mesenteric infiltration and diffuse peritoneal involvement
at baseline on CT were associated with CLOVAR mesen-
chymal subtype. The presence of mesenteric infiltration
was also shown to provide important prognostic informa-
tion as it correlated with shorter progression-free survival
and overall survival. To validate the preliminary findings
from this single-institution study, a multi-institutional
study was then conducted by Vargas et al. [71] using TCIA
CT images of 92 patients with high-grade serous ovarian
cancer. The relationship between CT features and time-to-
disease progression and CLOVAR profiles were assessed.
The presence of peritoneal disease in the right upper quad-
rant, supradiaphragmatic lymphadenopathy, multiple peri-
toneal disease sites, and non-visualization of a discrete

Fig. 1 The computer segmentation method in example cases of one estrogen receptor positive tumor and one estrogen receptor negative
tumor. The tumor segmentation outlines are shown along with computer-extracted image phenotype (CEIP) values (and ranges) for size,
irregularity, and contrast enhancement heterogeneity. Reprinted under a Creative Commons license from: NPJ Breast Cancer. 2016;2. pii: 16012.
Epub 2016 May 11. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set.
Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, Fan C, Conzen SD, Zuley M, Net JM, Sutton E, Whitman GJ, Morris E, Perou CM, Ji Y,
Giger ML
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ovarian mass were associated with a shorter time-to-
disease progression. The presence of multiple peritoneal
disease sites and the presence of disease within the pouch
of Douglas were associated with the mesenchymal subtype
which has the worst prognosis among CLOVAR subtypes.

In another study by Vargas et al. [72], the authors used
radiomics to derive inter-site spatial heterogeneity met-
rics across multiple metastatic lesions from preoperative
CT of 38 patients with stage IIIC–IV high grade serous
ovarian cancer. Several of these metrics were associated

Fig. 2 The best-fit linear regression model allows imaging features to differentiate tumors with different Oncotype Dx Recurrence Score (ODxRS). a
Sagittal T1-weighted fat-suppressed post-contrast MRI of an invasive ductal nuclear grade 1 carcinoma with an ODxRS of 10 and (b) corresponding
kurtosis histogram, which demonstrates the frequency of MR intensity. c Sagittal T1-weighted fat-suppressed postcontrast MRI of an invasive ductal
nuclear grade 2 carcinoma with an ODxRS of 21 and (d) corresponding kurtosis histogram. e Sagittal T1-weighted fat-suppressed postcontrast MRI of
an invasive ductal nuclear grade 3 carcinoma with an ODxRS of 43 and (f) corresponding kurtosis histogram. Reprinted with permission from: J Magn
Reson Imaging. 2015 Nov;42 [5]:1398–406. doi: https://doi.org/10.1002/jmri.24890 Breast cancer subtype intertumor heterogeneity: MRI-based features
predict results of a genomic assay. Sutton EJ, Oh JH, Dashevsky BZ, Veeraraghavan H, Apte AP, Thakur SB, Deasy JO, Morris EA.
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with the amplification of CCNE1, as well as a shorter
overall survival and incomplete surgical resection. Previ-
ously, CCNE1 amplification itself has been associated with
higher chemoresistance [73] and treatment failure [74].

Liver
HCC, the most common primary liver cancer, can be
managed with a variety of treatment approaches such as
embolization, radiation, surgery, and pharmacological
therapy [7]. Currently, the approach is selected based on
only the number and size of liver lesions [7]. In this
context, radiomics and radiogenomics can serve an im-
portant role in helping to select the best clinical man-
agement for each patient [7]. The studies below indicate
that they are particularly promising to allow for a better
prediction of prognosis or treatment response.
The presence of microscopic venous invasion (MVI) is

a well-established parameter associated with poor prog-
nosis in HCC but its diagnosis is difficult with only con-
ventional imaging [75, 76]. Pathologic examination of
the explanted tissue after surgery is currently the only
way to diagnose MVI. Since 2002, several groups have
addressed this issue. Chen et al. [77] found a correlation

between the presence of MVI and a 91-gene expression
signature assessed through microarray analysis. Later,
Segal et al. [78] identified two imaging features on CT—
the presence of “internal arteries” and absence of “hypo-
dense halos”— that were associated with these same 91
genes. In another study by Banerjee et al. [79] in 157
patients with HCC who eventually underwent surgical
resection, these two imaging features along with “tumor–
liver difference” were shown to be both highly predictive
of the presence of histological MVI as well as associated
with early disease recurrence and poor overall survival,
thus showing that these features may be helpful to select
candidates who will benefit less from surgical treatment
or liver transplant. On MRI, rather than CT, Renzulli et al.
[80] found that features including peritumoral enhance-
ment and non-smooth margins were shown to be promis-
ing for the prediction of pathologic MVI in 125 patients
with 140 nodules diagnosed with HCC.
Taouli et al. [81] found significant correlations be-

tween certain imaging traits in contrast-enhanced CT
(26 patients) or MRI (12 patients) and gene signatures of
aggressive HCC phenotype, with an infiltrative pattern on
imaging having the highest number of positive associations.

Fig. 3 Correlation heat map based on univariate linear regression analysis between each individual MR imaging phenotype and the recurrence
predictor models of MammoPrint, Oncotype DX, PAM50 ROR-S, and PAM50 ROR-P. In this color scale, yellow indicates higher correlation as
compared with blue and the different gene assays served as the “reference standard” in this study. Some phenotypes correlate similarly (i.e.,
similar color on the color scale) across the risk estimate models, while others do not. Reprinted with permission from: Radiology. 2016 Nov;281
[2]:382–391. Epub 2016 May 5. MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research
Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, Conzen SD, Whitman GJ,
Sutton EJ, Net JM, Ganott M, Huang E, Morris EA, Perou CM, Ji Y, Giger ML
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Although no correlations were found between gene expres-
sion signatures and enhancement ratios in this study, they
proposed that their findings should be validated with DCE-
MRI in the future to overcome the inherent limitations to
measurements of tumoral enhancement on arterial and
portal venous phases alone as used in their study.
When using multiparametric MRI, Hectors et al. [82]

did not find differences among genetic subclasses in 14
patients, and none of the parameters could distinguish

between HCC grades. However, they found significant
correlations between several MRI parameters and indi-
vidual gene expression levels, e.g., poor tumor perfusion
on DCE-MRI correlated with high expression of VEGF-A.
Multiparametric MRI with quantitative parameters is po-
tentially a powerful tool for radiomics and radiogenomics
study of HCC but the challenges to the reproducibility of
advanced MRI techniques including DCE-MRI, DWI, and
BOLD imaging in the liver presents a handicap.

Fig. 4 Box and whisker plots show the relationship of the MRI based phenotypes of (a) size (effective diameter) and (b) enhancement texture
(maximum correlation coefficient) with the recurrence predictor models of MammaPrint, Oncotype DX, PAM50 ROR-S, and PAM50 ROR-P. A
positive correlation between the selected MR imaging phenotypes of size (effective diameter) and negative correlation with enhancement texture
(maximum correlation coefficient) and increasing levels of risk of recurrence for MammaPrint, Oncotype DX, PAM50 ROR-S, and PAM50 ROR-P
were observed. A low value of this enhancement texture feature indicates a more heterogeneous enhancement pattern. Reprinted with
permission from: Radiology. 2016 Nov;281 [2]:382–391. Epub 2016 May 5. MR Imaging Radiomics Signatures for Predicting the Risk of Breast
Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Li H, Zhu Y, Burnside ES, Drukker K,
Hoadley KA, Fan C, Conzen SD, Whitman GJ, Sutton EJ, Net JM, Ganott M, Huang E, Morris EA, Perou CM, Ji Y, Giger ML
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Intrahepatic cholangiocarcinoma (ICC) is a less com-
mon tumor in the liver; therefore, only a few studies
have been published to evaluate the relationship of ICC
imaging features with genetic data. Sadot et al. [83] used
texture analysis on the pre-treatment CT of 25 ICC
patients, comparing the extracted quantitative and
qualitative imaging phenotypes with hypoxia biomarkers
such as HIF-1α, VEGF, EGFR, and CD24 measured in
pre-treatment biopsies. Qualitative variables, including
“tumor liver difference” and “attenuation heterogen-
eity,” were found to be correlated with VEGF expres-
sion, while CD24 expression was correlated with
biliary dilatation.
In 2011, Kim et al. [84] demonstrated that ICC en-

hancement in the arterial phase on CT was associated
with fewer necrotic areas and longer disease-free survival
after surgical resection. In 2017, Fujita et al. reached a
similar in their study involving 47 ICC patients who
underwent arterial phase CT. The 47 patients were di-
vided into three groups: hypovascular, rim-enhancing,
and hypervascular. Patients with hypovascular tumors
had more instances of lymphatic, biliary, and perineural
invasion and poorer disease-free survival than patients
with hypervascular or rim-enhancing tumors [85]. More
recently, Aherne et al. [86] identified a strong correlation
between necrosis or vascular encasement on CT and
decreased overall survival. A link was also identified
between larger tumor sizes (or the presence of satellite
nodules) and a reduction in progression-free survival
(Figs. 5 and 6). This study also assessed associations
between CT imaging features and genetic pathways
(IDH1, chromatin, and RAS-MAPK) but did not find
any significant associations.

Kidney
The recent advances in genetics have led to the discov-
ery of multiple mutations or genetic alterations in clear
cell renal cell carcinomas (RCCs), including mutations
or alterations of the genes encoding polybromo-1 pro-
tein (PBRM1), BRCA1-associated protein 1 (BAP1), SET
domain containing 2 enzyme (SETD2), and lysine-
specific demethylase 5C (KDM5C) [87–91], resulting in
increased interest in the use of radiogenomics for asses-
sing clear cell RCCs [92–95].
Even though the most common and well-known

mutation identified in clear cell RCCs is the VHL
tumor suppressor gene, it has no prognostic or pre-
dictive value in patients with clear cell RCC [96]. The
second most commonly identified mutation in clear
cell RCC is the PBRM1 tumor suppressor gene [92,
97–99]. A recent meta-analysis [100] of 2942 RCC
patients from seven studies reported that a mutation
in or decreased expression of PBRM1 is associated with
poor survival, advanced TNM categories, advanced tumor
stage, and a higher Fuhrman nuclear grade. A study by
Kocak et al. [101] suggested that high-dimensional CT
texture analysis is promising to distinguish clear cell RCCs
with PBRM1 mutation and those without PBRM1
mutation.
Karlo et al. [93] conducted a preliminary radioge-

nomics study in 233 patients with clear cell RCC which
showed associations between CT features and underlying
mutations in several genes (VHL, PBRM1, BAP1, SETD2,
and KDM5C). Well-defined tumor margins, nodular
tumor enhancement, and intratumoral vascularization
were associated with VHL mutations, while renal vein
invasion was significantly associated with KDM5C and

Fig. 5 Kaplan–Meier survival curves which illustrate that the presence of necrosis, satellite nodules, and vascular encasement were all associated with
decreased survival. Reprinted with permission from: Aherne EA, Pak LM, Goldman DA, Gonen M, Jarnagin WR, Simpson AL, and Do RK. Intrahepatic
cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdom Radiol, 2018, 43 [10]:2665
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BAP1 mutations. Mutations of VHL and PBRM1 were
more common in solid than in cystic tumors.
Using TCGA and TCIA data, Shinagare et al. [94] con-

ducted a study of 103 clear cell RCCs (81 cases were
evaluated with CT, 19 cases with MRI, and 3 cases with
CT and MRI), showing that ill-defined tumor margins
and calcifications were associated with BAP1 mutation.
Several studies have shown that KDM5C mutation is as-

sociated with decreased survival in patients with clear cell
RCC, though paradoxically it is associated with prolonged
survival in patients with metastatic disease [102–105].
Apart from associating imaging features with genetic

mutations, they can also be associated with biomarkers
such as DNA methylation, which is known to play a key
role in cancer development and has potential prognostic
and diagnostic value [106–109]. DNA methylation in
tumor suppressor genes including RUNX3 negatively
impacts survival in some cancers [110–115]. An explora-
tory study by Cen et al. [116] divided RCC patients into
high RUNX3 methylation and low RUNX3 methylation
groups. Higher levels of RUNX3 methylation were linked
to decreased survival time (Fig. 7). Independent imaging
predictors of high methylation of RUNX3 such as ill-
defined margins, high intratumoral vascularity, and left
laterality of the lesions are shown in Fig. 8.
To build a radiogenomic risk score (RRS), a study by

Jamshidi et al. [117] combined clinical data, genetic data
extracted from genomic analysis, and preoperative CT
data of clear cell RCC. Survival analysis confirmed that
the high-RRS group had significantly lower disease-
specific survival rates than the low RRS, independent of
disease stage and grade.

Lung
In the past decades, several subtypes of lung carcinoma
harboring specific mutations (most notably EGFR, KRAS,
and ALK mutations) have been identified, allowing for
the development of therapies specifically targeting the
mutated pathway [118].
The NSCLC lung cancer subtype is the leading cause

of cancer death, accounting for more than 85% of all
lung cancer cases. Genetic expression data of NSCLC is

Fig. 6 Kaplan–Meier survival curves which illustrate that the presence of satellite nodules and vascular encasement were associated with
decreased disease-free survival. Reprinted with permission from: Aherne EA, Pak LM, Goldman DA, Gonen M, Jarnagin WR, Simpson AL,
and Do RK. Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdom Radiol, 2018, 43
[10]:2665

Fig. 7 Univariate Cox regression analysis of prognostic factors for
overall survival is summarized. Reprinted with permission from: Cen
et al. [116] PubMed PMID: 30877466
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abundantly available in public databases. Approximately
15% of all NSCLCs in patients from European ethnicities
and 50% of NSCLCs in never-smokers are EGFR-posi-
tive. The most frequent EGFR mutations (sensitizing ac-
tivating mutations) are associated with tumor sensitivity
to EGFR tyrosine kinase inhibitors (gefitinib, erlotinib,
and afatinib) [119]. ALK mutations are less common (<
7% of all NSCLCs) and are more frequent in never/
former smokers. Crizotinib was the first drug approved
for NSCLC harboring ALK rearrangements, while ceriti-
nib and alectinib have been approved only in the USA
and Japan [118, 120, 121]. Approximately 20–25% of
NSCLC harbor KRAS mutations and are associated with
smoking and adenocarcinoma histology [122]. KRAS has
been associated with poor response to standard treat-
ments. Therapeutic strategies involving KRAS are cur-
rently under research [123].
Contradictory results have been found when consider-

ing the imaging features of different lung cancer sub-
types. Glynn et al. did not find an association between
CT imaging and EGFR- or KRAS-positive tumors [124].
Others, however, found associations. Lee et al. [125],
using CT and 18-FDG PET/CT, demonstrated that
tumors > 2.4 cm in diameter, an uptake of > 5.0, or
ground glass opacity proportion of ≤ 50% within the
lesion were associated with EGFR overexpression. The
same group of authors [126] also showed that tumor
morphology on CT could differentiate between the two
most common subtypes of EGFR mutation, exon 19 de-
letions, and exon 21 mis-sense mutations; specifically,
the ground glass portion of lesions were higher in lesions
with exon 21 missense mutations compared with both

wild type lesions and tumors with exon 19 deletions. Yano
et al. [127] suggested an association between the size of a
lesions ground glass component and the likelihood of an
EGFR mutation [127].
In a study by Rizzo et al. [128], EGFR mutation was

shown to be associated with CT features such as the
presence of air bronchogram, pleural retraction, small
lesion size, and absence of fibrosis, whereas ALK muta-
tion was associated with pleural effusion. Round shape,
nodules in non-tumor lobes, and smoking were variables
linked to KRAS mutation. For this study, ALK gene
rearrangement was detected by fluorescence in situ
hybridization while EGFR and KRAS mutations were
evaluated with DNA amplification of exons 18 through
21 and exon 2 and 3 respectively.
A study by Halpenny [129] showed that ALK-positive

tumors tended to be bigger with a more solid consistency
and involved more thoracic lymphadenopathy. This study
showed no correlation between ALK mutation and pres-
ence of pleural effusion on CT.
Other, less frequent mutations such as RET and ROS1,

which comprise 1–2% of all lung adenocarcinomas, have
also been assessed for associations with imaging features.
A study by Plodkowski et al. [130] included a group of
patients with pathologically confirmed lung adenocarcin-
omas of any stage with a RET or ROS1 rearrangement
tested via fluorescence in-situ hybridization or next-
generation sequencing and a control group of EGFR-
positive lung cancers. CT features such as the presence
of an effusion, lung metastases, adenopathy, and extra-
thoracic disease were recorded. Peripheral tumors were
seen most likely in patients with ROS1 rearrangements

Fig. 8 Hierarchical clustering yielded distinct groups of RUNX3 promoter methylation status and CT features. Red positive, green negative.
Reprinted with permission from: Cen et al. [116] PubMed PMID: 30877466
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(65% vs 32% in EGFR-positive cancers, p = 0.04). Solid
tumors with spiculation were most likely RET- and
ROS1-rearranged and EGFR-mutant, and these rarely
presented with cavitations or calcifications.
Nair et al. [131] have examined differential genome

wide expression across varying FDG uptake levels in pa-
tients with NSCLC to identify individual genes and gene
expression signatures associated with prognostically rele-
vant FDG uptake features. Their analysis suggested an
existing correlation between NFΚB signaling and FDG
uptake. NFΚB signaling seems to be increased in inflam-
matory and malignant conditions since it is enhanced by
lactate as a result of glycolysis [132].

Prostate
Prostate cancer is the most common cancer in men in
the western world [133, 134]. However, only some pros-
tate cancers exhibit a particularly more aggressive behav-
ior, where they tend to metastasize and resist treatment
[135]. Early detection of the more aggressive prostate
cancers is important to optimally manage this subgroup
[7]. To date, prostate risk stratification relies on clinical
examination, biopsy data (e.g., Gleason grade), and sero-
logical markers (e.g., prostate-specific antigen) [136].
Genomic [137] and quantitative MRI-derived imaging bio-
markers [138] have been shown to be helpful, not only in
risk stratification, but also in detection [139, 140], staging
[141], characterization [142–145], and treatment planning
and follow-up [146, 147], thus setting the stage for radio-
genomic studies.
Stoyanova et al. [15] hypothesized that radiomic features

may be used to characterize imaging phenotypes or habi-
tats in the prostate, thereby improving risk stratification.
Distinct habitats on multiparametric MRI analysis were
identified based on reduced diffusion and increased perfu-
sion. From radiogenomic analysis, they reported that sev-
eral radiomic imaging features were significantly associated
with genes related to aggressive behavior (Fig. 9), and ADC
values in particular were the most strongly associated with
distinct biological processes.
Renard-Penna et al. [16] correlated MRI features (Pros-

tate Imaging Reporting and Data System (PI-RADS)
scores, lesion diameter, and mean ADC values) in 106 sus-
picious lesions with the Prolaris® Cell Cycle Progression
score, finding a significant correlation between PI-RADS
and CCP scores (ρ = 0.26, p = 0.007).
McCann et al. [148] correlated MRI features from 45

peripheral zone prostate cancer lesions in 30 patients
with PTEN expression on prostatectomy specimens.
They found only a weak correlation between kep and
PTEN expression (r = − 0.35, p = 0.02).
Jamshidi et al. [149] conducted a study whereby spatial

mapping between pre-operative multiparametric MRI
and the resected prostate gland was performed. Whole-

exome DNA sequencing data was performed on multiple
regions of interest representing abnormal vs. abnormal
regions. MRI features identified high-grade lesions cor-
rectly in all patients. However, there were no significant
differences in mutation profiles between histopathologic-
ally normal tissue, high-grade prostate cancer, MRI-
normal, and MRI-suspicious regions (p = 0.3). The authors
suggested that the baseline mutation spectrum among
non-cancerous tissue within prostate may be wider than
hypothesized.

Challenges
Radiogenomics is an emerging field that correlates tumor
genotypes with imaging phenotypes. Over the past 10
years, numerous studies have been published on radioge-
nomics of various cancers, yet the implementation of
radiogenomic in clinical practice is still not routinely done.
This is due to several limitations associated with radioge-
nomic analysis.
Gene expression and signaling pathways are extremely

complex, and it is difficult to match the large amount of
data from whole-genome sequencing with imaging data
(in literature there are only few studies that use the
whole genome data). The dimensionality of genomic
data should be reduced to match that obtained from
imaging studies.
Differences in quantitative imaging features are not

only related to gene expression but can also be re-
lated to other factors such as patient characteristics
or imaging technique. Inter- and intra-institutional
heterogeneity of datasets due to different hardware
and scan protocols limits the generalizability of re-
sults. The limitations associated with interobserver
variation make qualitative imaging features even less
preferable.
Another factor limiting generalizability and reproduci-

bility of the results stems from the often-small patient co-
hort and the retrospective nature of radiogenomic studies.
Larger prospective studies and standardization will be

necessary to validate the potential of radiogenomics,
define relevant imaging biomarkers, and define which
radiogenomics associations can be meaningfully imple-
mented in the clinical routine.

Conclusion
Radiomics and radiogenomics are promising to increase
precision in diagnosis, assessment of prognosis, and pre-
diction of treatment response, providing valuable infor-
mation for patient care throughout the course of the
disease, given that this information is easily obtainable
with imaging. With personal medicine playing an in-
creasing role in clinical practice, radiogenomics in par-
ticular can allow fast and non-invasive genotype
identification and be applied to all cancer types. Further
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research in radiogenomics should be conducted to ob-
tain larger datasets with more accurate information for
the standardization to provide meaningful and clinically
applicable results, and standardization will be necessary
to validate the potential of radiogenomics and to define
relevant imaging biomarkers before they can be imple-
mented into the clinical workflow.
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