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ABSTRACT OF THE DISSERTATION

From the Lab to the Classroom:

Effects of Embodied Pedagogies on Students’ Learning of Statistical Concepts

by

Icy Zhang

Doctor of Philosophy in Psychology

University of California, Los Angeles, 2024

Professor James W. Stigler, Chair

The idea that people learn from sensorimotor experiences, whether through performing actions

themselves or observing others, has garnered increasing attention from researchers in

psychology, cognitive science, computer science, and education. In teaching and learning

research, a key question is whether these sensorimotor experiences can help students acquire

abstract concepts in complex domains. Past research has revealed promising evidence in various
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domains such as mathematics and physics regarding the benefit of incorporating some sort of

bodily actions into learning. However, our understanding of how different types of bodily

experiences impact learning is still nascent. Questions remain about the effect, mechanism, and

practical application of using embodied experiences to help learners learn abstract knowledge in

complex domains. These inquiries lead to a series of laboratory experiments and classroom

interventions that I will present across three chapters, each written as a discrete empirical article

that either has been published or is in preparation for publication. Across three chapters, the

work was conducted in the field of statistics and data science education, which was picked

because the concepts are intrinsically abstract and difficult, but they simultaneously do not

require a sophisticated mathematical background. The first question focuses on the effect of

observing bodily actions. Whereas abundant evidence has demonstrated the effect of performing

actions, the concept of observing actions is less explored. Would simply observing hands-on

representations lead to an increase in learning? This question is answered in Chapter 1, a

published work that demonstrates the efficacy of observing hands-on representations in

improving students’ understanding of randomness and the shuffle() function in R programming

used to simulate randomness. The second question focuses on the mechanism underlying the

effect—an embodied representation has more sensorimotor engagement and visuospatial

concreteness than an abstract representation, but does sensorimotor engagement offer a unique

benefit beyond visuospatial concreteness? Chapter 2 is a manuscript under review that reports on

a laboratory experiment designed to isolate the effect of sensorimotor engagement. The findings

suggest that sensorimotor engagement offers a unique benefit beyond visuospatial concreteness

by helping learners develop more robust visuospatial representations. The last question relates to

the practical application of different types of embodied interventions when we have learners with
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diverse levels of prior knowledge in the classroom. Theories in embodied cognition, along with

other empirical evidence in both motor and learning domains, suggest that humans rely on their

knowledge of their own bodies to understand other people’s movements. This insight prompted

me to ask whether learners’ prior knowledge would moderate the type of embodied intervention

(i.e. performing versus observing) on learning. The third Chapter reports on the design of a

curriculum-linked embodied intervention to implement embodied activities over the entire school

term of a college-level introductory statistics course. Students were randomly assigned the role

of a performer or an observer. The findings provided support for the Perform-First hypothesis,

showing that compared to observing, performing hands-on activities diminished the correlation

between prior knowledge and post-test performance. Overall, this body of work extends the

theory of embodied learning and offers practical insights for teachers and curriculum developers

about how to implement embodied interventions into their educational materials and instructions.
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Chapter 1

Watching a Hands-On Activity Improves Students’

Understanding of Randomness

Icy Zhang, Mary C. Tucker, James W. Stigler

University of California, Los Angeles
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Abstract

Introductory statistics students struggle to understand randomness as a data generating process,

and especially its application to the practice of data analysis. Although modern computational

techniques for data analysis such as simulation, randomization, and bootstrapping have the

potential to make the idea of randomness more concrete, representing such random processes

with R code is not as easy for students to understand as is something like a coin-flip, which is

both concrete and embodied. In this study, in the context of multimedia learning, we designed

and tested the efficacy of an instructional sequence that preceded computational simulations with

embodied demonstrations. We investigated the role that embodied hands-on movement might

play in facilitating students’ understanding of the shuffle function in R. Our findings showed that

students who watched a video of hands shuffling data written on pieces of paper learned more

from a subsequent live-coding demonstration of randomization using R than did students only

introduced to the concept using R. Although others have found an advantage of students

themselves engaging in hands-on activities, this study showed that merely watching someone

else engage can benefit learning. Implications for online and remote instruction are discussed.

Keywords: hands-on demonstration, computer simulation, statistics education,

multimedia learning, online instruction, instructional sequence, embodied cognition

2



Watching a Hands-On Activity Improves Students’ Understanding

of the Shuffle Function in R

A long-term challenge for statistics educators has been finding effective ways to help

students understand randomness as a data generating process (Garfield & Ben-Zvi, 2005; Zieffler

et al., 2008). Although hands-on activities such as coin flipping and dice rolling have long been

considered an important part of the statistics educators’ toolbox (Dyck & Gee, 1998; Lunsford et

al., 2006), connecting such activities to important statistical concepts such as sampling

distributions and hypothesis testing has proven difficult in practice (Pfaff & Weinberg, 2009).

Students find it difficult to make these connections, which requires seeing a distribution of data

as just one of many possible distributions that could have been produced by a random process.

Recent developments in the field of statistics and data science, however, provide new

opportunities for students to apply concepts of randomness to the interpretation of data (Chance,

& Rossman, 2006). Once almost entirely based on mathematics and mathematical models,

statistics is increasingly becoming a computational science. Techniques such as simulation,

randomization, and bootstrapping provide a less algebraic and thus relatively more concrete basis

for understanding how simulations of randomness can be applied in the practice of data analysis

(Pfaff & Weinberg, 2009). Instead of proving what a distribution of a sample statistic would look

like under certain conditions using calculus, empirically simulating distributions of statistics

under certain conditions and directly observing what they end up looking like is now possible

with computer code.

A common but very difficult task in statistics is to imagine a circumstance, such as when

two variables have only a random relationship, and then predict the resulting probability

distributions of possible sample statistics (e.g., the correlation of the two variables).
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Computational techniques such as randomization allow us to program up a simulation where two

variables are randomly related, generate many samples, calculate the sample statistic of interest,

and then examine the result of these simulated statistics. Not only do computer-based simulations

support new methods of statistical analysis (e.g., randomization or permutation tests), but they

also provide new ways of teaching students about randomness.

The shuffle function in R, part of the mosaic package (Pruim et al., 2017), allows

students with minimal experience in coding to quickly and easily construct a randomized

sampling distribution based on many random shuffles of an actual data set. Using the shuffle

function, students can construct a sampling distribution of the difference between two

experimental groups by repeatedly randomizing the pairings of grouping and outcome variables

in a data set. The resulting sampling distribution of differences would be centered at 0, because

any relation between group and outcome would be broken by the shuffling. The standard error of

the distribution would give some indication of how likely various differences would be if the null

hypothesis were true. And the sample statistic of interest—the observed difference between

groups in an actual study—could be interpreted in the light of this sampling distribution.

A number of investigators have explored the use of such computational simulations to

support students’ understanding of statistical concepts (Chance & Rossman, 2006; Hodgson &

Burke, 2000; Wood, 2005). Compared to traditional in-class simulation activities, such as

coin-flipping, computer simulation offers several advantages. For example, computer simulations

can be repeated very quickly, thus enabling students to see the results of many random iterations

in a more concrete way than ever before (Hancock, & Rummerfield, 2020). Further, the results of

simulations can be instantly represented in multiple modalities, such as tables and graphs,

potentially resulting in more flexible understanding of complex concepts such as randomness
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(Ainsworth & VanLabeke, 2004; Chance, & Rossman, 2006; Zhang, & Maas, 2019). And

because computer simulations require only a computer and relatively little setup, they are more

feasible to implement in large undergraduate classes than are traditional hands-on experiments,

which require rolling pennies or dice over many iterations.

However, despite the potential of computer-based simulation methods, a review of the

relevant literature suggests mixed evidence overall for the effectiveness of simulation as an

instructional tool (Chance, et al., 2004; delMas et al., 1999; Lane, 2015). Though some studies

show the benefits of simulation, others have shown that the use of computer simulations provides

only limited benefit to students and can, in some cases, impede learning by exacerbating

students’ misunderstandings or increasing their level of confusion (Watkins et al., 2014). Other

researchers have noted that despite statistically significant research findings of the effect of

computer simulations, the observed increase in students’ understanding was not substantial (e.g.,

delMas et al., 1999).

Computer simulations can provide experts with a fast and efficient way to explore various

statistical scenarios. However, because such simulations are highly complex perceptual objects,

they can be confusing for novices who do not know what they are looking at (e.g., is this a

sample or a sampling distribution?) nor where to look during a dynamic simulation. Thus,

simulations may potentially overload novices’ working memory (Savinainen et al., 2005).

Working memory is a short-term system into which information from the environment

flows before it is encoded into long-term memory (Baddeley, 1992). Because teaching

randomness with computer simulations requires keeping track of multiple elements, students

may have difficulty connecting particular components of a simulation with the new and abstract

statistical concepts they are intended to learn. As a result, this kind of instructional experience
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imposes high demand on the learners’ working memory (Sweller, 2010, 2020; Sweller et al.,

2019) and depletes attentional resources (Tarmizi & Sweller, 1988).

While computer simulations can provide powerful demonstrations of key statistical

concepts, students’ attention may need to be directed and scaffolded in order for such simulations

to be effective. In contrast, embodied and concrete activities, such as coin-flipping, are easier to

understand and connect to learners’ prior learning, but limited in their potential to quickly show

patterns that can only be seen over thousands of iterations. An instructional sequence that

combines the benefits of a more embodied approach with the benefits of computer simulations

might help students connect simulations to their prior experience and to important statistical

concepts.

The main goal of the work reported here is to design and test an instructional sequence

that is solidly grounded in theories and findings from cognitive psychology, including work on

cognitive load, embodied cognition, and the design of instructional sequences. We are especially

interested in a body of research and theory known as "concreteness fading" (Fyfe & Nathan,

2019). According to this work, an instructional sequence in which concrete representations are

introduced before abstract representations may maximize learning. This suggests that rather than

choose between hands-on demonstrations and more abstract computer simulations, it might be

best to do both, with the hands-on activity preceding the computer simulation.

According to the concreteness fading hypothesis, concrete representations more easily

connect to prior knowledge, and then provide a foundation on which to build new, related

abstract representations (Fyfe & Nathan, 2019; Glenberg et al., 2004; Goldstone & Son, 2005;

Kokkonen & Schalk, 2021). For example, seeing physical pieces of paper being “shuffled” helps

connect to students’ prior experience of shuffling in the physical world (e.g., with cards), which
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might subsequently help with their understanding of a computational simulation that “shuffles”

rows of a data frame.

By connecting the more abstract computer simulation with their everyday experience of

shuffling, students' attention is constrained and directed toward the most relevant aspects of the

computer simulation. Although some concreteness fading theories have proposed three

progressive forms (i.e., enactive, iconic, and symbolic; e.g., Fyfe et al., 2014), in the current

study, we focus simply on preceding a relatively less concrete experience with one that is more

concrete. (Other studies of concreteness fading have followed a similar approach, e.g., Goldstone

& Son, 2005).

Beyond the instructional sequence suggested by the concreteness fading hypothesis, we

also connect our work to the broader literature on embodied cognition. This literature has clearly

established that bodily movement can lessen cognitive load and support learning (Ballard et al.

1997; Paas & van Merriënboer, 2020; Pouw et al., 2014; Varga & Heck, 2017). For example,

research has shown that both observing and performing gestures can provide a way to introduce

and coordinate multiple pieces of information without increasing cognitive load, which in turn

can benefit learning (Cook et al., 2013; Goldin-Meadow & Alibali, 2013; Goldin-Meadow et al.,

2001; Rueckert et al., 2017). Gestures are beneficial not only because they temporarily offload

information to the hands and physical space (Chu et al., 2014) but also because they provide

another modality for representing information (Sepp et al., 2019). The modality effect in

cognitive load theory states that simultaneously presenting information in more than one

modality, such as adding in an embodied modality, increases working memory capacity beyond

that available to one modality alone, thus expanding the cognitive resources available for

learning (Paas & van Merriënboer, 2020).
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Interestingly, the embodied cognition literature suggests that physical movements can

shape cognition and learning even when students merely observe these movements (Da Rold,

2018; Tran et al., 2017). Neurons with mirroring properties have been shown to be activated both

when performing and when watching others perform a similar physical action (Fu & Franz,

2014). More importantly, this mirroring only occurs when observing embodied human actions,

not when observing disembodied ones such as ball movements. This suggests that an

instructional sequence that leads with a more concrete and embodied experience may not require

a physical hands-on activity. Benefits may occur from simply watching a hands-on

demonstration.

The Current Study

The research reported here lies at the intersection of these research literatures: statistics

education, cognitive load theory, the design of instructional sequences, and embodied cognition.

Most relevant to the current study is a recent one by Hancock and Rummerfield (2020), in which

students engaged in concrete, hands-on activities before engaging in computer-based

simulations. The authors found a small yet significant effect in which students learned more

about the concept of sampling distributions when instruction with simulation applets was

preceded by a hands-on activity. However, in that study, students physically performed the

hands-on activity themselves. Left unanswered was whether simply observing hands-on

activities in a multimedia learning context could produce a similar effect.

In the current study, prompted by the shift to remote instruction during the COVID-19

pandemic, we investigated the same instructional sequence as Hancock and Rummerfield (2020),

preceding computer simulation with a hands-on activity. But this time, instead of having students

participate in a hands-on activity, we had them observe someone else engaging in the activity. It
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is hard enough to implement hands-on activities in large classes, but the prospect of doing so

online seemed even more daunting. It would be of great practical significance if merely watching

a video of a hands-on activity could enhance learning. Based on the argument postulated by the

modality effect and the literature on embodied cognition, watching a hands-on demonstration

could show a benefit similar to that found by observing gestures.

In this initial investigation, we randomly assigned participants into one of two groups: a

hands-on group and a live-coding group. In the live-coding group, students watched a video of R

code being typed and run on a screen as a narrator explained the workings of the shuffle function

in R (Pruim et al., 2017). In the hands-on group, students watched a video with the same

narration, but instead of watching someone code in R, they watched a pair of hands simulate the

shuffle function by cutting and rearranging pieces of paper with data written on them. Both

groups of students then watched the same live-coding video in which the shuffle function was

used to create a sampling distribution. The verbal modality and visual modality were employed

in both conditions, whereas the embodied modality was only present for the first video in the

hands-on condition.

The question of interest to us was whether watching a hands-on simulation of the shuffle

function prior to instruction using computer simulation would result in a better, more flexible,

and more transferable understanding of the shuffle function (e.g., its use for creating sampling

distributions and the interpretation of the resulting sampling distributions) than would simply

watching someone explain the function as they entered and ran code in R. We report two studies

with college students taking an introductory statistics class in a public research institution. The

second study is primarily a replication of the first.
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Study 1

Method

Participants

Thirty-three undergraduate students from a large public research university participated

in the study. All students had completed the same introductory statistics course in the psychology

department, taught by two different instructors using the same course material, during the

previous academic quarter. Students from this class were chosen because they had a common set

of background experiences relevant to the study—All had been taught how to use the shuffle

function in R and had used the function to think about whether randomness alone could have

generated a sample distribution (i.e., without the effect of an independent variable).

The two statistics instructors from the prior term emailed their former students to invite

them to participate in the study. Students were told that their participation would help the

textbook authors to improve the book for future classmates. Those who chose to participate were

given a five-dollar gift card after completing the study. The study design, as well as our method

for recruiting and compensating participants, was reviewed and approved by the university’s

institutional review board for the protection of human subjects.

Design & Procedure

The study was conducted through Qualtrics (https://www.qualtrics.com). On clicking the

survey link, students were randomly assigned into one of two conditions: hands-on (n = 18) or

live-coding (n = 15). Both versions of the survey were structured in the same way. Students first

rated their attitudes toward programming in R, then answered two free-response questions

10
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designed to assess what they remembered about the shuffle function in R from their course. Next,

they watched a series of two videos about the shuffle function and the concept of randomness.

The first video contained the same instructional content across the two groups, but

differed in the mode of presentation depending on which group students had been assigned to.

The hands-on video showed an instructor’s hands manipulating a dataset on paper, cutting and

shuffling the pieces of data, much as might occur during an in-class hands-on exercise. The

live-coding video showed a screen recording of an instructor writing and running R code in an

interactive online Jupyter notebook.

The second video was identical across the two conditions. Students watched an instructor

write code in R and think aloud as they worked through a series of R commands (similar to the

first video in the live-coding condition). After watching each video, participants rated how

difficult it was to comprehend. At the end of both videos, participants completed a 22-question

survey that assessed their understanding of the video and its contents and their perceptions of the

activity (e.g., how much they liked the videos).

Materials

The two videos shown first (one hands-on, the other live-coding) were matched in

content. Both videos explained how the shuffle function works. In the live-coding condition,

participants watched a narrator type and run R code in a Jupyter notebook while explaining what

they were doing out loud. (Figure 1). The narrator used the shuffle function to shuffle one

variable in a small data set. In the hands-on condition, participants watched a person cut a printed

data table into pieces and then rearrange those pieces randomly, simulating exactly what the

shuffle function did in the live-coding video. As they manually shuffled the pieces of data, the
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narrator explained what they were doing, using almost identical language as used in the

live-coding video.

Figure 1

Screen Grabs from the Hands-On Video and the Live-Coding Video

The only difference in narration across the two videos was in the language used to

describe shuffling. For example, in the hands-on condition, the instructor would shuffle the data

by physically moving the pieces of paper and say, “We can see as we shuffle the rows, the

position of each row changes. For example, Matt started in position 1, but moved to a different

position after we shuffled.” In the live-coding condition, the instructor would write down the R

code, then press run and say, “When we shuffle the rows, R creates a new variable called orig.id.

This tells us what position each row occupied in our original dataset. For example, Matt has an

orig.id of 1. This is because Matt was in row 1 of our original dataset.” Then, in both conditions,

the instructor would ask rhetorically, “Is that what you expected it would do? Why or why not?”

The hands-on version of the video was recorded by placing a camera so as to look down

from above at the hand movements of the instructor. The live-coding video was created via a

screen recording of the instructor typing and running code in a Jupyter notebook (Kluyver et al.,
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2016). The second live-coding video (common across the two conditions) was similar in format

to the first live-coding video.

The second video, identical across conditions, was a live-coding video that involved

applying concepts learned in the first video to a larger dataset adapted from a real experiment.

The dataset (called the laptop dataset) involved one independent variable (whether students

viewed a laptop screen during class) and two dependent variables (students’ final grades and

students’ self-rated level of distraction). In the video, the instructor used the shuffle function in R

to explore whether there was an effect of condition on these two outcome measures.

Measures

Pre-survey and pretest. The pre-survey measures asked students how they felt about

their R skills, whether they learned shuffle in their class and asked them to rate, on a scale of 0 to

10, how well they understood the shuffle function. The pretest contained two open response

questions: “In your own words, explain what the shuffle() function does.” and “In your own

words, explain when you would use the shuffle() function.” The purpose of the pretest was to

make sure, given the small sample size, that the two experimental groups did not differ in their

understanding of the shuffle function prior to watching the videos.

Posttest and post-survey. The posttest contained 22 questions designed to assess

students’ understanding of the shuffle function and the concept of randomness. It also included

transfer questions that asked students to make and interpret statistical inferences. For example, in

one question, students were shown one shuffled and one non-shuffled faceted histogram and

asked to reason about whether there could be a difference between the two conditions. It asked

again at the end of the test, “What do you think the purpose of the shuffle() function is?” and “In

your own words, explain when you would use the shuffle() function.”
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Each correct response was awarded a maximum of one point, with possible scores

ranging from 0 to 22. A partial credit of 0.5 was given to answers that were partially correct but

were missing pieces or manifested some minor misunderstandings. The scoring of the

free-response questions were conducted by two trained research assistants. They coded the

questions based on a predetermined rubric, blind to condition. For each question, the discrepancy

rate between the two research assistants was lower than 10%. Then, the two research assistants

met to discuss the discrepancies until a consensus was reached.

In the post-survey, students again were asked to rate, on a scale of 0 to 10, how well they

understood the shuffle function. A change in self-rated understanding score was computed by

subtracting the pretest rating of understanding from the posttest rating. Students also were asked,

using a Likert scale (from strongly disagree to strongly agree), how much they agreed with

statements expressing that “they would like to see more activities like this in their own online

textbook,” “they liked this way of learning R,” and “they learned a lot from the activity.”

Results

An analysis of pretest scores found no significant difference across conditions in

students’ prior understanding of the shuffle function (t(31) = .17, = .00, 90% CI = [.00, .06], pη2

= .864).
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Figure 2

Violin Plot Showing Posttest Scores by Condition

Note. Dashed lines show the mean of each group. Purple dots show the median.

Figure 2 shows overall posttest scores by condition. Participants in the hands-on

condition performed better on average on the posttest than participants in the control condition

(t(31) = 2.27, = .14, 90% CI = [.01, .34], p = .031). Similar benefits of the hands-on groupη2

were observed when pretest was included as a covariate in the multiple linear regression model

(t(30) = 2.23, = .15, 90% CI = [.01, .34], p = .033). When included as a covariate (i.e.,η
𝑝

2

controlling for condition), students’ pretest performance did not predict posttest scores (t(30) =

.86, = .02, 90% CI = [.00, .21], p = .396).η
𝑝

2
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Independent t tests for each question revealed two open response questions on which the

hands-on group performed better than the control group. These questions asked students to 1)

explain what would happen to the number of observations in one condition if the condition

variable were shuffled (t(31) = 2.35, = .15, 90% CI = [.00, .38], p = .025); 2) describe what aη2

specific line of code that shuffled the outcome variable in the dataset was doing (t(31) = 2.06, η2

= .12, 90% CI = [.01, .35], p = .048). One free response question that asked students to imagine

and describe how a histogram would be different if one of the variables were shuffled prior to

running the code yielded some group difference but the difference in this question was not

statistically significant (t(31) = 1.96, = .11, 90% CI = [.00, .34], p = .059).η2

Next, we examined whether participants’ self-rated understanding of the shuffle function

before and after watching the videos differed by condition. The difference between conditions

was not statistically significant (t(31) = 1.30, = .05, 90% CI = [.00, .23], p = .204). We alsoη2

examined if participants would like to see more activities like this in their textbook. A linear

regression showed that the difference between the two conditions was not statistically significant

(t(26) = .40, = .00, 90% CI = [.00, .13], p = .691).η2

To evaluate the impact of the intervention on students’ metacognition, we explored the

relationship between students’ self-rated understanding of the shuffle function post intervention

and their performance on the posttest. A linear regression showed that students’ self-rated

understanding post intervention was a significant predictor of their posttest performance (t(31) =

2.05, = .12, 90% CI = [.00, .35], p = .049). However, students’ change in self-ratedη2
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understanding from pre to post intervention did not significantly correlate with performance

(t(31) = 1.29, = .05, 90% CI = [.00, .26], p = .207).η2

Discussion

In this study, we found preliminary evidence that preceding a live-coding video with one

showing a hands-on simulation of the shuffle function can improve students’ understanding of

the shuffle function and the concept of randomness. The study is, to our knowledge, the first to

test experimentally if students benefit from embodied experiential learning in a concrete to

abstract instructional sequence when their participation is limited to watching a video of

someone else engaging in a hands-on experience. It is important to note that students’

participation was completely online in both the hands-on and live-coding conditions; in both

groups, students’ participation only involved watching instructional videos.

Because we used a live-coding video as the control, the findings suggest that it is

something specific about seeing the hands carry out the randomization, not just the “in the

moment” nature of the demonstration, that benefits learning. Our result lines up with many

studies in the gesture literature that have found that learning is enhanced even when learners

were merely observers of gestures during learning (Cook et al., 2013; Rueckert et al., 2017; Son

et al., 2018). For example, Cook et al. (2013) found that observing hand gestures during

mathematical learning benefited students’ immediate and delayed posttest performance.

The findings also make sense in relation to the theory of embodied cognition and the

modality effect in cognitive load theory. Watching a video of hands shuffling pieces of paper

offers an additional modality (i.e., the embodied spatial modality) to the multimedia learning

context in addition to the visual and auditory modalities. This added modality may have

activated embodied representations of the core ideas that underlie the shuffle function and eased
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the cognitive load by providing another pathway for students to take in and process information

in addition to the already active pathway of language processing.

The efficacy of this instructional sequence with embodied activities and computer

simulation casts light on the teaching of statistics and computer programming in the digital era.

Practically, given the growing interest in using statistical programming languages like R as

pedagogical tools, the findings of this study provide important and encouraging insights into the

use of hands-on demonstrations to complement computer simulation in remote teaching.

This study shows promising evidence that students can benefit from embodied hands-on

experiential learning even when they are just observers of the activity. Nevertheless, it is

important to keep in mind that this study is still exploratory and is limited by its small sample

size. We set out to replicate the findings from Study 1 with a larger sample of students in Study

2.

Study 2

Method

Participants

Based on the results of Study 1, we conducted a power analysis to determine the sample

size needed for the replication. Given an effect size of around .14, obtaining a power of .7 or .8η2

required a sample size of 20 or 25 participants per group.

Forty-seven undergraduate students taking introductory psychological statistics during a

summer session at the same public research institution participated in the study. Participants were

between the ages of 18 and 23 (M = 19.89, SD = 1.09) and 53.19% identified as Asian, 8.51%

Black or African, 25.53% White, 2.13% American Indian or Alaska Native American, and

23.40% other. Students were emailed a link to the survey and told they would receive extra credit
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toward their course grade if they completed the survey. Given the sample size, the power of this

replication is between .7 to .8. As before, the study design and procedures were approved by the

institutional review board for protection of human subjects.

Design, Procedure, and Measures

The design and procedures for Study 2 were identical to those used in Study 1. On

clicking the survey link, students were randomly assigned into one of the two conditions:

hands-on (n = 20) or live-coding (n = 27). Students answered the same pre-survey questions and

posttest items and watched the same series of videos as in Study 1.

The posttest included all 22 questions used in Study 1, plus 9 additional open-ended

questions designed to probe students’ explanations for their multiple choice answers and to

assess transfer beyond the content covered in the video. Each question was given a maximum of

one point, with possible scores ranging from 0 to 31. The post-survey of attitudinal measures was

identical to the one used for Study 1.

Results

We conducted a two-tailed independent t test to examine if there were any pre-existing

differences between the two conditions. The two groups did not differ significantly from one

another on the pretest (t(45) = -.07, = .00, 90% CI = [.00, .00], p = .945).η2

Figure 3 shows the distribution of participants’ posttest scores by condition. Replicating

the results of Study 1, participants in the hands-on group performed better on average than

participants in the live-coding group (t(45) = 2.28, = .10, 90% CI = [.01, .26], p = .028). As inη2

Study 1, this difference remained statistically significant when controlling for students’

performance on the two-question pretest using a multiple linear regression (t(44) = 2.35, =η
𝑝
2

.11, 90% CI = [.01, .27], p = .023).
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Figure 3

Participants’ Performance on Posttest by Condition

Note. Dashed lines show the mean of each group. Purple dots show the median.

Independent t tests for each question revealed two open response questions and one

multiple-choice question, for which the hands-on group performed better than the control group.

On the multiple-choice question, students were shown R code that shuffled the condition variable

in a dataset and were asked what effect they thought running the code would have on the value of

condition for row 1 of the data set (t(45) = 3.80, = .24, 90% CI = [.06, .44], p < .001). Theη2

free-response questions with significant group effects: 1) showed students the code to create a
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faceted histogram with an actual dataset and asked them whether the group difference visible in

the graph could be due to randomness (t(45) = 2.96, = .16, 90% CI = [.02, .36], p = .005); 2)η2

showed students the code to create a faceted histogram with shuffled data and asked them what

might have caused the difference in the means represented in the graphs (t(45) = 2.61, = .13,η2

90% CI = [.01, .32], p = .012).

As in Study 1, participants’ change in self-rated understanding of the shuffle function as a

result of watching the videos did not differ across conditions (t(31) = 1.39, = .04, 90% CI =η2

[.00, .18], p = .173), nor did their ratings of how much they would like to see more activities like

this in the future (t(40) = 1.26, = .04, 90% CI = [.00, .21], p = .216). Also as in Study 1, linearη2

regressions showed that students’ post-intervention ratings of understanding significantly

predicted performance on the posttest (t(41) = 2.54, = .14, 90% CI = [.00, .34], p = .015),η2

whereas participants’ change in self-rated understanding from pre to post intervention did not

significantly predict posttest performance (t(41) = 0.19, = .00, 90% CI = [.00, .08], p = .851).η2

General Discussion

In both Study 1 and Study 2, students who watched a hands-on video before a live-coding

video performed better on the posttest than students who watched two live-coding videos.

Interestingly, despite learning more, students in the experimental group did not necessarily

believe they learned more or enjoyed the experience more. Notably, the effect did not involve

students themselves engaging in a hands-on activity, but only watching someone else engage in

the activity on an instructional video. Together, these two studies demonstrate the efficacy of an

instructional sequence in which computer simulation is preceded by embodied movements to

support learning.
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We think this instructional sequence that precedes computational simulation with

hands-on demonstrations is beneficial for two reasons. First, it is possible that the hands-on video

made the shuffle function and the concept of randomness more concrete. According to

concreteness fading and cognitive load literature, the embodied representations help offload

some cognitive processing to the embodied modality and help connect to learners’ experience in

the physical world, thus reducing cognitive load and improving learning (Weisberg, &

Newcombe, 2017). Previously occupied cognitive resources are thus freed up to process more

information and later engage in problem-solving and inferences-making (e.g., Kastens et al.,

2008).

Although the previous literature in embodied cognition has often focused on learners

physically performing the actions themselves, findings from the gesture literature, especially the

idea that merely observing the actions could be beneficial as well, align with the results of our

studies. For example, research has shown that learners who observed the instructor’s co-speech

gestures about mathematical concepts achieved superior learning outcomes (e.g., extracted more

useful information) than learners who did not see those gestures (Alibali et al., 1997;

Goldin-Meadow et al., 1992).

In addition, based on the modality effect from cognitive load theory, it is possible that

simply having more ways of representing information, especially during tasks that already

require split attention, increases learning. The multiple representations literature would also

suggest that having multiple representations (hands-on + live-coding) is better than having one

representation (live-coding alone). Previous studies have found that being exposed to multiple

representations of the same concept benefits students’ learning in STEM domains (Acevedo

Nistal et al., 2009; Cheng, 1999), because, according to cognitive flexibility theory, having more
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than one representation helps learners achieve a more adaptive and flexible knowledge

reconstruction, which is a crucial feature of deep and transferable understanding (Spiro, 1988).

The current studies suggest a closer connection between the cognitive architecture put

forward by cognitive load theory, the embodied cognition literature, and the instructional

sequence literature. Whereas the previous cognitive framework in cognitive load theory

primarily focuses on gestures, these two studies suggest that the active ingredient that improves

learning may not be limited to gestures, but also includes arm movement and object

manipulation. Although previous interventions in the literature concerning bodily movements

beyond gestures have produced mixed results or small effect sizes, our studies consistently

demonstrated a medium-to-large effect size of watching a hands-on demonstration.

Another interesting point to consider is that, despite the experimental group learning

more, students did not differ significantly across conditions in how much they liked the

intervention and their change of self-rated understanding. This finding makes sense considering

that students are not known to be good judges of their own learning. Students often make such

judgments based on heuristics in the study phase (Koriat, 1997), and their judgments are often

influenced by processing fluency (Kornell et al., 2011), which is their subjective experience of

how much effort they expended on processing information during learning (Alter &

Oppenheimer, 2009). It suggests that the benefits of this intervention may not be perceivable to

students.

Given a larger sample size, it would be interesting to know whether students were

accurate in their ratings—for example, for students who rated their understanding as having

decreased from pre- to post-intervention, did they in fact, perform worse on the posttest than they

did on the pretest, and is that true across conditions? In addition, given that judgments of
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learning can be affected by processing fluency, are there students whose self-rated understanding

decreased but whose performance actually improved from pre- to post-intervention?

The study delivers a practical and timely message to teachers as they work to plan their

post-COVID-19 instructional activities as well as to those seeking to design better instructional

videos with better instructional sequences. It validates the importance of giving students some

hands-on exposure to the simulation processes prior to the computational simulation we want

them to understand and also makes it clear that at least some of the benefits of embodied

activities can be retained even if students are not performing the hands-on activities themselves.

For instructors who are limited by class sizes, COVID-19 restrictions, or even simply class time,

this study points to another possibility to utilize hands-on activities in instruction.

We also want to highlight the significance of the practice of instruction used in the

current study, regardless of conditions. Traditional approaches in teaching statistics often

emphasize computation and procedures while putting less emphasis on the importance of

statistical thinking (Garfield & Ben-Zvi, 2005). Although a focus on memorizing the procedural

steps to perform different statistical routines is a common method of teaching statistics, it often

does not lead to transferable understanding (Fries et al., 2021). The instructional videos used in

the two studies engaged students with statistical thinking and inferences instead of pieces of

procedures, which would limit our capacity to foster students’ ability to think and reason flexibly

with unfamiliar data in new contexts.

This study explored a new method for instructors to promote students’ informal statistical

inferences. Through a combination of hands-on simulation and computer simulation, students

were able to better recognize the omnipresence of variability, understand randomness and

uncertainty, and use statistical methods to model them. This approach makes computer
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simulation more understandable for students with lower coding knowledge and fosters one

crucial topic in informal statistical reasoning: reasoning with uncertainty and randomness.

Students are known to view statistics as a branch of mathematics and thus expect

instruction to focus on numbers, formulas, and procedural computations with one unique right

answer (Garfield & Ben-Zvi, 2005). However, if students view statistics as a set of procedures to

achieve the correct answer, they are likely to feel uncomfortable thinking about variation and

uncertainty in data. They are also less likely to consider randomness as a possible explanation for

observed differences or patterns, a key component of statistical inference. Giving students

exposure to embodied demonstrations prior to computational simulations may help them better

appreciate uncertainty and randomness by shifting their attention from the output or conclusions

of statistical tests to the processes that generate the data.

Limitations and Future Directions

The two studies reported here offer significant practical implications, but also bear some

limitations to be addressed by future studies. One important next step to further extend our

theoretical understanding of the mechanism is to add in a condition with students’ own physical

manipulation of the objects, and compare it against the current two conditions. It will be

informative to know whether students’ own physical actions would further benefit their learning

above and beyond the benefits of observing the hands-on demonstration due to increasing level

of embodiment or physically manipulating the objects themselves will actually be too cognitively

demanding (i.e., adding too much extraneous cognitive load) that their learning would fall behind

the group who observed the physical manipulation only.

Another important condition to consider is a condition with the same object manipulation

as the hands-on condition but without the actual hands. Future studies should examine this
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condition because that would help distinguish two competing explanations for the observed

improvement of understanding in our studies, whether it is through an activation of an embodied

pathway or through simply the concreteness in the object manipulations. If embodied cognition

is truly the explanation, the condition without the actual hands would be inferior to the hands-on

condition. Moreover, future studies should explore ways to measure students’ level of

embodiment after the intervention to examine if an elevation of the level of embodiment is truly

the mechanism.

In summary, the two studies reported here leveraged findings from multiple literatures in

cognitive psychology to design and test the efficacy of an embodied-to-abstract instructional

sequence to improve students’ understanding of randomness, their use of R functions to simulate

randomness, and their subsequent statistical inferences. It bears an important practical message

for statistics education and also directs future research to promising advances in our theoretical

understanding of the field of embodied cognition, cognitive load, and instructional sequence.

26



Appendix A

Pre-Test Attitudinal Measures

1. In Psych 100A, you learned how to do some R programming. How are you feeling about
your R skills?
a. Extremely bad
b. Neither good nor bad
c. Somewhat bad
d. Somewhat good
e. Extremely good

2. Did you learn about the shuffle() function in R in your Psych 100A class?
a. Yes
b. No
c. Not sure / can't remember

3. How well do you understand what the shuffle() function does? (from 0 to 10, with 0 being
not at all)

Pre-Test Questions

1. In your own words, explain what the shuffle() function does.

2. In your own words, explain when would you use the shuffle() function.

Post-Test Questions

The laptop_data dataset contains data from an experiment on the effect of laptops on student
learning. Undergraduate students were randomly assigned to one of two conditions: view or
no-view. In the view condition, students attended a 40 minute lecture and were allowed to keep
their laptops open. In the no-view condition, students attended the same lecture, but were asked
to keep their laptops closed. At the end of the lecture, students took a test on the lecture content
and rated how distracted they felt during class.

There are three variables in this dataset:

● condition: the condition students were randomly assigned to, either view or no-view
● total: the percentage of questions students answered correctly on the post-lesson assessment
● distracted: students’ self-reported rating of how distracted they were in class.
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1. What would you expect to happen to the value of condition for row 1 if we ran the code
below?

laptop_data$condition <- shuffle(laptop_data$condition)

2. What would you expect to happen to the value of condition for row 1 if we instead ran the
code below?

laptop_data$total <- shuffle(laptop_data$total)

We ran this code to create a table that shows the number of observations in each condition.

tally(~ condition, data = laptop_data)

Now, imagine we run this code:

laptop_data$condition <- shuffle(laptop_data$condition)
tally(~ condition, data = laptop_data)

3. What would happen to the number of observations in the view condition?
a. The number of observations would increase
b. The number of observations would stay the same
c. The number of observations would decrease
d. The number of observations would increase, decrease, or stay the same, but it's

impossible to tell which

4. Explain your answer to the previous question

We used the code below to create a faceted histogram showing the distribution of total in each
condition. The vertical lines represent mean total scores for the two conditions. Again, you can
see that the participants in the no-view group scored higher, on average, than participants in the
view group.

stats <- favstats(total ~ condition, data = laptop_data)

gf_dhistogram(~ total, data = laptop_data) %>%
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gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition ~ .)

5. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, need to further investigate

6. If you wanted to investigate whether this difference could be due to randomness, what would
you do?

Please be as specific as possible in your response.

Take a look at each line of code below. For each line, explain 1) what the code is doing and 2)
why someone would write that code.

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)

7. What is this line of code doing?

8. Why would someone write this line of code?
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laptop_data$total.shuffle<- shuffle(laptop_data$total)

9. What is this line of code doing?

10. Why would someone write this line of code?

11. Look at the two examples of codes below. Example 1 and Example 2 each produces a faceted
histogram. In what ways would the two faceted histograms be similar? In what ways would
the two faceted histograms be different?

Example 1:
gf_dhistogram(~ distracted , data = laptop_data) %>%
gf_facet_grid(shuffle(condition) ~ .)

Example 2:
gf_dhistogram(~ shuffle(distracted) , data = laptop_data) %>%

gf_facet_grid(shuffle(condition) ~ .)

We ran this code to create the graph below. We added a line in each condition to represent the
mean of distracted of that condition. Notice that the average distracted rating in the no-view
condition is lower than the average distracted rating in the view condition.

stats <- favstats(distracted ~ condition, data = laptop_data)
gf_dhistogram(~ distracted, data = laptop_data) %>%
gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition ~ .)
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12. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, we need to further investigate

13. If you ran the code in the previous question again, do you think it would produce the same
output?
a. Yes
b. No
c. It's possible, but not likely

We revised the code from the previous question to create the graph below. We added a line to
represent the mean of distracted for each condition. Notice that the average distracted rating in
the no-view condition is higher than the average distracted rating in the view condition.

14. What caused the difference in the means represented in the graphs below?

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)
stats <- favstats(distracted ~ condition.shuffle, data = laptop_data)
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gf_dhistogram(~distracted, data = laptop_data) %>%
gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition.shuffle ~ .)

15. If you ran the code in the previous question again, do you think it would produce the same
output?
a. Yes
b. No
c. It's possible, but not likely

16. Explain your answer to the previous question

17. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, need to further investigate

Look at the two faceted histograms below, along with the code that produced each:
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18. Why do the two faceted histograms look different?

19. Based on what you've learned from these two histograms, do you think being able to view or
not view a laptop during class (condition) affects students' self-reported rating of how
distracted they were in class (as measured by distracted score on a post-lesson assessment)?

Imagine we run the code below:

laptop_data$distracted.shuffle <- shuffle(laptop_data$distracted)

mean(laptop_data$distracted.shuffle)
mean(laptop_data$distracted)

20. How would the mean of distracted.shuffle compare to the mean of distracted?
a. The mean of distracted.shuffle would be larger
b. The mean of distracted.shuffle would be smaller
c. The two means would be the same
d. It's impossible to tell

21. What do you think the purpose of the shuffle() function is?

22. In your own words, explain when would you use the shuffle() function.

Post-Test Attitudinal Measures
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1. How well do you understand what the shuffle() function does? (from 0 to 10, with 0 being
not at all)

Please rate your level of agreement with each of the following statements:

2. I learned a lot from this activity
a. Strongly agree
b. Agree
c. Somewhat agree
d. Neither agree nor disagree
e. Somewhat disagree
f. Disagree
g. Strongly disagree

3. I like this way of learning R functions
a. Strongly agree
b. Agree
c. Somewhat agree
d. Neither agree nor disagree
e. Somewhat disagree
f. Disagree
g. Strongly disagree
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Appendix B
Pre-Test Attitudinal Measures

1. On a scale of 1 to 10, how math anxious are you?

2. In Psych 100A, you learned how to do some R programming. On a scale of 1 to 6 (with 1
being not at all confident and 6 being extremely confident), how confident do you feel in
your R skills?

3. Did you learn about the shuffle() function in R in your Psych 100A class?
a. Yes
b. No
c. Not sure / can't remember

4. On a scale of 1 to 10, how well do you understand what the shuffle() function does?

Pre-Test Questions

1. What do you think the purpose of the shuffle() function is?

2. In your own words, explain when would you use the shuffle() function.

Post-Test Questions

The laptop_data dataset contains data from an experiment on the effect of laptops on student
learning. Undergraduate students were randomly assigned to one of two conditions: view or
no-view. In the view condition, students attended a 40 minute lecture and were allowed to keep
their laptops open. In the no-view condition, students attended the same lecture, but were asked
to keep their laptops closed. At the end of the lecture, students took a test on the lecture content
and rated how distracted they felt during class.

There are three variables in this dataset:

● condition: the condition students were randomly assigned to, either view or no-view
● total: the percentage of questions students answered correctly on the post-lesson assessment
● distracted: students’ self-reported rating of how distracted they were in class.

1. What would you expect to happen to the value of condition for row 1 if we ran the code
below?
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laptop_data$condition <- shuffle(laptop_data$condition)

2. What would you expect to happen to the value of condition for row 1 if we instead ran the
code below?

laptop_data$total <- shuffle(laptop_data$total)

We ran this code to create a table that shows the number of observations in each condition.

tally(~ condition, data = laptop_data)

Now, imagine we run this code:

laptop_data$condition <- shuffle(laptop_data$condition)
tally(~ condition, data = laptop_data)

3. What would happen to the number of observations in the view condition?
a. The number of observations would increase
b. The number of observations would stay the same
c. The number of observations would decrease
d. The number of observations would increase, decrease, or stay the same, but it's

impossible to tell which

4. Explain your answer to the previous question

We used the code below to create a faceted histogram showing the distribution of total in each
condition. The vertical lines represent mean total scores for the two conditions. Again, you can
see that the participants in the no-view group scored higher, on average, than participants in the
view group.

stats <- favstats(total ~ condition, data = laptop_data)

gf_dhistogram(~ total, data = laptop_data) %>%
gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition ~ .)
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5. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, need to further investigate

6. Explain your answer to the previous question:

7. If you wanted to investigate whether this difference could be due to randomness using the
shuffle() function, what would you do?
Please be as specific as possible in your response.

8. Alex thinks she only needs to shuffle once to see if the difference between conditions on total
could be due to randomness by comparing the shuffled result with the original data. Mary
thinks she needs to shuffle more than once to be able to see if the difference could be due to
randomness. Do you agree with Alex or Mary? Explain your answer.

Take a look at each line of code below. For each line, explain 1) what the code is doing and 2)
why someone would write that code.

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)
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9. What is this line of code doing?

10. Why would someone write this line of code?

laptop_data$total.shuffle<- shuffle(laptop_data$total)

11. What is this line of code doing?

12. Why would someone write this line of code?

A Look at the two examples of codes below. Example 1 and Example 2 each produces a faceted
histogram.

Example 1:
gf_dhistogram(~ distracted , data = laptop_data) %>%
gf_facet_grid(shuffle(condition) ~ .)

Example 2:
gf_dhistogram(~ shuffle(distracted) , data = laptop_data) %>%
gf_facet_grid(shuffle(condition) ~ .)

13. In what ways would the two faceted histograms be similar?

14. In what ways would the two faceted histograms be different?

We ran this code to create the graph below. We added a line in each condition to represent the
mean of distracted of that condition. Notice that the average distracted rating in the no-view
condition is lower than the average distracted rating in the view condition.

stats <- favstats(distracted ~ condition, data = laptop_data)
gf_dhistogram(~ distracted, data = laptop_data) %>%
gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition ~ .)
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15. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, we need to further investigate

16. Explain your answer to the previous question:

17. If you ran the code in the previous question again, do you think it would produce the same
output?
a. Yes
b. No
c. It's possible, but not likely

18. Explain your answer to the previous question:

We revised the code from the previous question to create the graph below. We added a line to
represent the mean of distracted for each condition. Notice that the average distracted rating in
the no-view condition is higher than the average distracted rating in the view condition.

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)
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stats <- favstats(distracted ~ condition.shuffle, data = laptop_data)

gf_dhistogram(~distracted, data = laptop_data) %>%
gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%
gf_facet_grid(condition.shuffle ~ .)

19. What caused the difference in the means represented in the graphs below?

20. Sometimes groups differ just because of randomness. Do you think the group difference in
the histogram above could be due to randomness?
a. Yes, it must be due to randomness
b. No, it cannot be due to randomness
c. Maybe, need to further investigate

21. Explain your answer to the previous question:

22. If you ran the code in the previous question again, do you think it would produce the same
output?
a. Yes
b. No
c. It's possible, but not likely
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23. Explain your answer to the previous question

Look at the two faceted histograms below, along with the code that produced each (the code
might be a bit hard to read, feel free to zoom in to get a better read):

24. Why do the two faceted histograms look different?

25. Based on what you've learned from these two histograms, do you think being able to view or
not view a laptop during class (condition) affects students' self-reported rating of how
distracted they were in class (as measured by distracted score on a post-lesson assessment)?
Why or why not?

Imagine we run the code below:

laptop_data$distracted.shuffle <- shuffle(laptop_data$distracted)

mean(laptop_data$distracted.shuffle)
mean(laptop_data$distracted)

26. How would the mean of distracted.shuffle compare to the mean of distracted?
a. The mean of distracted.shuffle would be larger
b. The mean of distracted.shuffle would be smaller
c. The two means would be the same
d. It's impossible to tell
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27. Explain your answer to the previous question:

28.What will the distribution of distracted.shuffle look like compared to the distribution of
distracted?
a. Wider
b. Narrower
c. The same
d. Not sure. It will vary randomly.

29. Explain your answer to the previous question:

Post-Test Attitudinal Measures

1. How well do you understand what the shuffle() function does? (with 0 being not at all)

Please rate your level of agreement with each of the following statements:

2. I learned a lot from this activity
a. Strongly agree
b. Agree
c. Somewhat agree
d. Neither agree nor disagree
e. Somewhat disagree
f. Disagree
g. Strongly disagree

3. I like this way of learning R functions
a. Strongly agree
b. Agree
c. Somewhat agree
d. Neither agree nor disagree
e. Somewhat disagree
f. Disagree
g. Strongly disagree

4. On a scale of 1 to 6 (with 1 being not at all confident and 6 being extremely confident), how
confident do you feel in your R skills?
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Abstract

This article explores the role of sensorimotor engagement in students' learning of a challenging

STEM-related concept. Previous research has failed to distinguish two features commonly

associated with embodiment: sensorimotor engagement and visuospatial concreteness. In the

current research, we ask whether sensorimotor engagement – operationalized as watching a

video of hands manipulating paper representations – offers unique benefits beyond the

visuospatial concreteness of a dynamic visualization of the same process. Participants were

randomly assigned to one of three conditions to learn about the shuffle() function in R: a Watch

Hands Moving Objects (WHMO) group, which watched a video with hands; a Watch Moving

Objects (WMO) group, which watched a video with a dynamic visualization in which objects

moved without hands; or a control group, which watched a live-coding video that did not include

either hands or visuospatial representations. Results revealed that only participants in the

WHMO group demonstrated significantly superior performance compared to both the WMO

group and control groups. These findings highlight the unique benefit of sensorimotor

engagement for learning, contributing to a deeper understanding of how embodiment can

enhance the learning process.

Keywords: embodied cognition, multimedia learning, dynamic visualization,

sensorimotor engagement, data science education

Public Significance Statement

This research investigates the unique contribution of sensorimotor engagement when learning

from instructional videos. Students who watched an instructional video in which hands were seen

moving objects representing a statistical programming concept learned more than those who
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watched a video that included the same dynamic visualization but without the hands. The work

contributes to the theory of embodied learning and suggests a simple way to improve educational

materials.
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Watching Hands Move Enhances Learning from Concrete and Dynamic Visualizations

In recent decades, there has been a significant increase in research on embodied

cognition, especially in education, where a multitude of studies have demonstrated that learning

can be enhanced through various forms of embodiment (see Shapiro & Stolz, 2019 for a review).

Both observing and performing bodily movements have been shown in a number of studies to

aid student learning (Cook et al., 2016; Goldin-Meadow et al., 2001; Johnson-Glenberg et al.,

2014, 2016; Ping & Goldin-Meadow, 2008; Pouw et al., 2016; Tran et al., 2017; Zhang et al.,

2022). This benefit has been demonstrated in a variety of STEM fields, including mathematics

(Nathan & Alibali, 2011; Novack & Goldin-Meadow, 2015), data science (Zhang et al., 2022),

and physics (Johnson-Glenberg et al., 2014; Johnson-Glenberg & Megowan-Romanowicz,

2017).

Although the beneficial effects of embodiment on learning have been extensively studied,

past research has typically compared the effect of embodied versus non-embodied approaches

without further isolating different features of embodiment. Here, we identify at least three

important features of embodiment to consider: sensorimotor engagement, visuospatial

concreteness, and dynamic quality. Sensorimotor engagement refers to the level of involvement

of the sensorimotor system during learning. It can range from physically interacting with objects

to imitating actions to simply observing someone's gestures or object manipulations. Visuospatial

concreteness refers to the degree to which a concept or stimulus can be experienced in a material

or objectified manner, representing abstract concepts through concrete representations. Lastly,

dynamic quality characterizes the degree to which perceptual stimuli move or change during the

instruction.

53

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01689/full#B63
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-018-0092-9#ref-CR44


One of the most examined fields of study in embodied learning compares the effect of

more embodied learning experiences or materials that are high on all three of these features

against experiences that are lower on these features. For example, Goldin-Meadow et al.'s (2001)

finding that simply allowing learners to gesture during learning improved learning outcomes was

based on a comparison of a condition that included more sensorimotor engagement, more visual

concreteness, and more movement (or dynamic quality) to one that was low on all three features

(i.e., not allowing learners to gesture). Similarly, Johnson-Glenberg et al.’s (2014) finding that

moving the learners’ entire upper body during instruction benefits learning in science domains

was based on a comparison of a condition that included more sensorimotor engagement, more

visual concreteness, and more movement (or dynamic quality) to one that was low on all three

features (i.e., a regular instruction).

The field of embodied cognition is just beginning to investigate how these features might

interact during learning. Learning experiences that involve the body or hands (i.e., high on

sensorimotor engagement) are almost always dynamic but they can vary in their degree of

visuospatial concreteness. For example, object manipulation and gesture are two dynamic hand

actions commonly leveraged in science education to benefit learners (Yammine & Violato, 2016;

Roberts et al., 2005; Novack & Goldin-Meadow, 2015). They are both high on sensorimotor

engagement, but object manipulation has relatively more visuospatial concreteness

(Castro-Alonso et al., 2019). Because object manipulation requires both the movement of hands

and concrete objects, it has higher visuospatial concreteness than gesture alone (Chu & Kita,

2008).

Evidence suggests that people interpret hand movements differently in the presence and

absence of objects (Schachner & Carey, 2013). When objects are absent, hand movements are
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interpreted in terms of movement-based goals and when objects are present, they are interpreted

relative to external goals (Novack et al., 2016). However, in at least one study, such differences

do not have implications for learning: gestures can benefit learners both in the presence and

absence of objects (Ping & Goldin-Meadow, 2008). This study can be construed as evidence that

a dynamic learning situation with sensorimotor features alone was as beneficial as one with

sensorimotor+concrete features. But more research to disentangle these features is needed.

Similarly, dynamic learning experiences can also be high in visuospatial concreteness but

low in sensorimotor engagement (e.g., squares moving around in space on their own) or they can

be high in both dimensions (e.g., hands moving square objects around). One study found that

people learn better from dynamic drawing with a visible hand than from already drawn diagrams

(Fiorella & Mayer, 2016). In this case, a sensorimotor+concrete+dynamic presentation of a

diagram was better than one that was merely visuospatially concrete. Although studies abound

that show the benefits of performing actions as well as watching the actions of others (for a

review, see Goldin-Meadow & Beilock, 2010), studies of embodied learning interventions, to our

knowledge, have not directly examined whether sensorimotor engagement has any added

benefits above and beyond that of visuospatial concreteness. That is, how would a

sensorimotor+concrete+dynamic presentation compare to one that is concrete+dynamic? Such

evidence is crucial for advancing the field, and thus is the focus of our investigation.

One particularly relevant vein of research provides insight to this question by comparing

performing versus observing actions. For example, Goldin-Meadow and colleagues (2012)

compared the effects of performing versus observing gestures on a mental rotation task that

asked six-year-olds to judge whether two shapes at different angles of rotation were the same or

different. Children who were instructed to perform gestures that mimicked the rotation of the
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figures performed better on the task than children who simply observed someone else performing

similar gestures on a video clip. Performing gestures involves higher sensorimotor engagement

than observing them, but has the same level of visuospatial concreteness and dynamic quality.

Goldin-Meadow et al. have shown a clear effect of a high level of sensorimotor engagement vs. a

medium level of engagement (observing), but leaves open the question of whether observing

sensorimotor activity benefits learning above a condition with no observable sensorimotor

activity.

With dynamic learning stimuli such as those found in instructional videos, it is difficult to

disentangle the role of sensorimotor engagement from visuospatial concreteness. Our approach

compares an embodied intervention, operationalized as an instructional video with both

sensorimotor engagement and visuospatial concreteness, against a similar video that preserves

the visuospatial concreteness but reduces sensorimotor engagement. We designed dynamic

instructional videos to teach students learning about randomness in statistics how to use the

shuffle function (from the programming language R) which randomly re-orders individual

elements (either rows or cells in a data set). In the embodied intervention, students are shown a

video of hands physically cutting up a dataset printed on paper and reordering cells. This

intervention involves both sensorimotor engagement, through the instructor’s hand movements,

and visuospatial concreteness, through physical paper objects and spatial manipulation of those

objects. In the less embodied version, the video shows the data set being split up and re-ordered

without the involvement of any hands. The objects simply move on their own.

The current research aims to investigate whether sensorimotor engagement, such as

watching the hands physically manipulate paper, offers unique benefits beyond representational

concreteness in dynamic learning videos. After all, concrete representations may benefit learning
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without a sensorimotor component. For example, the moving data frames and cells may facilitate

learning by associating abstract ideas (such as "variables" and "values") with more concrete

visuospatial objects (such as columns and cells, respectively). Such representations can

implicitly represent abstract properties in an analog fashion (Goldstone & Barsalou, 1998)

without the need for explicit statements and memorization of assumptions (e.g., when cells of a

data frame are being moved around in space, students can see that cells are not being added or

taken away). Prior research has shown that concrete objects are particularly beneficial for young

children and novices (Fyfe et al., 2014; Montessori, 1917; Piaget, 1970; Uttal et al., 2006)

presumably because they have less background knowledge and need to use concrete features to

build up a basis for understanding new abstract concepts. This has led to the concreteness-fading

hypothesis, which hypothesizes that instruction should transition from concrete to abstract for

optimal learning (Fyfe et al., 2014). Many studies have demonstrated the efficacy of such an

instructional sequence, demonstrating the benefits of visuospatial concreteness early in the

learning process (e.g. Fyfe et al., 2015).

Beyond concreteness, are there additional learning benefits of engaging the sensorimotor

system in a dynamic learning video? If sensorimotor engagement is not found to add additional

value beyond visuospatial concreteness in dynamic learning stimuli, it may challenge a

fundamental tenet of embodied cognition, that the body plays a unique role in cognitive

activities. Therefore, the present study aims to disentangle the effects of visuospatial

concreteness and sensorimotor engagement in embodied learning research. Compared to more

abstract instruction, does concreteness per se lead to better learning or do we need both

concreteness and sensorimotor engagement to see benefits to learning?

Current Study
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The current study is based on a previous study (Zhang et al., 2022) in which college

students were randomly assigned to watch an instructional video featuring either hands-on

demonstrations or live-coding in R prior to watching a second live-coding video using a larger

data set. The results showed that students who watched a hands-on demonstration before

watching a live-coding video learned more than those who watched two live-coding videos in a

row.

However, the hands-on video used in that study involved both visuospatial concreteness

(i.e., pieces of paper to represent data) and sensorimotor engagement (i.e., hands shuffling the

paper). In the current study, we will refer to this as the Watch Hands Moving Objects (WHMO)

condition. We also will introduce a new condition that has visuospatial concreteness without any

hand movements, which we will refer to as the Watch Moving Objects (WMO) condition. In this

condition students saw visuospatial representations of the dataset and cells moving around

dynamically, but without being manipulated by the instructor’s hands. Although this condition

might still involve some sensorimotor engagement (via the presentation of visuospatial objects),

it is at a lower level than the hands-on video, making it suitable for addressing our research

question. We also included Zhang et al.'s (2022) control condition, which showed the same

concepts being taught through live coding alone. Table 1 summarizes how the three conditions

vary on three key features: sensorimotor engagement, visuospatial concreteness, and dynamic

quality.

The embodied cognition view would be that sensorimotor engagement confers a unique

benefit to learning. This view would expect that the type of instructional video students are

exposed to before the abstract live-coding video would significantly impact their subsequent

learning outcomes. In the current study specifically, we hypothesize that students who first watch
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a hands-on video, which involves sensorimotor engagement, visuospatial concreteness, and

dynamic qualities will perform better than those who watch videos with only visuospatial

concreteness and dynamic qualities, or the control (i.e., the live-coding).

Table 1

Summary of the Three Conditions Based on the Three Features

Condition Sensorimotor
Engagement

Visuospatial
Concreteness

Dynamic
Quality

Control (live-coding) Low Low Medium

WMO (Watch Moving Objects) Low High High

WHMO (Watch Hands Moving
Objects)

High High High

Beyond exploring whether sensorimotor engagement leads to better learning, we also

wish to understand the potential mechanisms by which embodiment causes better learning. What

are the mental representations that result from a more embodied learning experience? To explore

this question, at the end of our study we will ask participants to describe whether they thought

about the contents of the video while answering the post-test questions and if so, what they

thought about. Specifically, we are interested in whether their recalls were visuospatial (e.g.,

recall learning that data frames are made up of rows, columns, and cells, and that R code can

change the arrangement of these elements.

If watching sensorimotor activity changes the quality and content of mental

representations, as several studies in gesture have demonstrated (e.g., Alibali et al., 2000; Brooks

et al., 2018; Rimé et al., 1984, Wagner et al., 2004), participants in the WHMO condition should

stand apart from those in the other two conditions in both the quantity and quality of their recall
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of the learning videos. For example, they may be more likely to recall that cells are "moving,"

even though the cells are moving in both the WHMO and WMO conditions. If this were the case,

we would have evidence that sensorimotor engagement even by watching sensorimotor activities

uniquely leads to different mental representations.

If, on the other hand, the quantity and quality of recall look similar across the WHMO

and WMO conditions, yet different from the control condition, we might conclude that it is the

dynamic and concrete qualities of the representations that impacts learning, and not the

sensorimotor engagement.

For the quality of their recall, we asked specifically whether the elements recalled were

visuospatial. This is an important question because past research has revealed mixed evidence of

whether the effect of gesture is visuospatial or propositional (Alibali et al., 2000; Wagner et al.,

2004). If we observe participants reporting more visuospatial recall in the WHMO condition, this

might provide support for a visuospatial representation that underlies embodiment. However, if

we only see differences in general recall, but no difference when it comes specifically to

visuospatial recall between the WHMO condition and the other two conditions, we might lean

toward a propositional representation.

Method

Participants

Participants were 153 undergraduate students taking an introductory psychological

statistics course at a large public research institution. They took the course either during the

summer of 2022 or the winter of 2023. These students were selected to participate in the study

because they had already been introduced to the shuffle function from the mosaic package in R
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(v1.8.4; Pruim et al., 2017) as part of their coursework. Mastery of the shuffle function, which

instantiates the process of randomness, was integral to understanding further course topics, such

as the sampling distribution.

Three participants were excluded because they took more than 5 hours on the study

survey, indicating that they did not complete the study in one sitting as required. This resulted in

a final sample size of 150 students.The gender and ethnic composition of the sample matched

that of the course. The sample contained 120 females and 30 males. The racial/ethnic breakdown

was as follows: 64 Asian, 6 Black or African American, 1 Native Hawaiian or other Pacific

Islander, 32 other or mixed race, and 47 White. This information was collected through

self-reports. Students who participated in the study received a small amount of extra credit

(0.5%) toward their course grades and also may have derived educational benefits from their

participation. The study was reviewed and approved by the university’s institutional review

board.

A power analysis was conducted using the pwr package in R (Champely et al., 2017;

Cohen, 1988). Based on a Cohen’s f of 0.3, with an α of .05 and a power of .85, the minimum

sample size needed with this effect size is 42 per group. The power analysis indicated that the

sample is sufficiently large to detect a medium effect size.

Design & Procedure

The study was hosted on Qualtrics and students participated online. Participants received

an email from their professor with the Qualtrics link to the study. They volunteered to participate

by clicking on the link, upon which Qualtrics randomly assigned participants to one of the three

conditions: Control (n = 47), WMO (n = 52), and WHMO (n = 51).
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After answering some basic demographic questions, participants responded to five

open-response questions designed to assess their existing understanding of probability and the

shuffle function. Subsequently, they viewed two intervention videos, detailed below in the

materials section. The first video varied according to experimental condition, while the second

video was identical across the three conditions. After watching the second video, participants

answered 22 post-test questions. They then answered two additional questions about how often

they thought about the content of the videos during the time they were answering the posttest

questions, and, if they did think at all about the videos, what they were thinking about

specifically.

Intervention Videos

Students started by watching one of three versions of an instructional video. It is worth

highlighting that although some students watched videos that included hands-on activities,

participants in this study did not perform any hands-on activities themselves, a fact that is

reflected in our naming of the conditions (the “W” stands for “Watching”). Although the format

differed, the content of the videos was carefully matched across versions. All three versions of

the video explained the use of the shuffle function to simulate randomness by showing what a

small artifactual dataset would look like after shuffling rows versus cells within columns. A

screenshot from each video is shown in Figure 4.

Figure 4

Screenshots of Each Video from the Three Conditions

Control WMO WHMO
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Students in the WHMO (Watch Hands Moving Objects) condition watched a video, shot

from above, of the instructor's hands as she cut a printed data table into pieces and then randomly

rearranged the pieces. In other words, the pieces of the datasets were cut and moved by the

instructors’ hands. This approach provided a concrete and sensorimotor representation of what

the shuffle function does. As the pieces of data were manually shuffled, the narrator explained

what was being done.

Students in the WMO (Watch Moving Objects) condition heard the same narration as

those in the WHMO condition, but instead of watching a person cut and shuffle pieces of paper,

they saw animated visualizations of the data table being separated and shuffled. The animations,

which were generated by PowerPoint, were matched with the movements of the physical dataset

in the WHMO video but, critically, did not show any hands manipulating the data set. Our goal

was to simulate the WHMO experience but without the hands, thus minimizing the activation of

sensorimotor systems.

Students assigned to the control condition saw a computer screen recording of R code

being typed and executed to perform the same shuffles as those enacted in the WHMO and

WMO videos. The narration was the same, except that it referred to the code being run instead of

the visuospatial movements described in the other two videos. The control condition provided a

less perceptually concrete experience because the pieces of the datasets were not being cut out or
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moved around as in the other two conditions. The data set would simply appear or change after

the code was run. However, it is worth noting that this condition was also dynamic because of

the live coding - it was just less dynamic than the two experimental conditions. It was not

entirely abstract either, as the instructor wrote code to print out the dataset before and after

running the shuffle function to show changes in the data set, thereby retaining a degree of

visuospatial concreteness in the learning experience.

After watching their assigned version of the first video, students in all three conditions

watched a live-coding video, which was similar in format to the live-coding video described

above. In this second video, the live coding involved applying concepts learned in the first video

to a larger dataset adapted from a real experiment. The descriptions of the WHMO condition and

the control condition have been published previously in Zhang et al. (2022).

Measures

Pretest

Participants’ knowledge before watching the videos was measured on a pretest consisting

of five open-response questions (Appendix A).

Post-test

Participants' knowledge after watching the videos was measured using a combination of

eight multiple-choice questions and 25 open-response questions. The questions were designed to

evaluate students' understanding of the shuffle function, the concept of randomness, and how to

use the concept of randomness to make statistical inferences. (A complete list of the questions is

presented in Appendix B.)

Both pre- and post-test questions were graded by two trained coders based on a

predetermined rubric. The two coders were blind as to the experimental condition from which
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each response came. Each question was given a maximum of one point. Partial credit of 0.5 was

given to open responses that were missing parts or showed minor misunderstandings. The

possible total score ranged from 0 to 32 (Cronbach’s ɑ = .89).

Recall of Instructional Videos during Problem-Solving

General Recollection of Video Content. After completing the posttest questions,

participants were asked: “When you were answering the posttest questions, how often did you

think about the content in the videos?” Responses were coded on a five point scale based on a

predetermined rubric (see Table 2). After all responses were coded by one experimenter, another

trained experimenter coded 20% of the responses to establish interrater reliability (Cronbach’s ɑ

= .98).

Table 2

Coding Rubric for Reflection of Video Content

Score Coding

4 all the time/ every question

3 often/ half of the questions

2 sometimes/ a couple questions

1 Not often/ only one or two questions

0 Not at all/ never/ none of the questions

Visual Recall of the video. A follow-up question asked, "If you did think about the

video, what did you think about specifically?" A trained experimenter coded whether participants

referenced visual elements from the video or not. For example, mentions of specific actions like

"cutting up paper and ‘shuffling’ data" or recalling distinct images such as histograms from the

video were dummy coded with a 1, signifying visual recall. In contrast, references to abstract
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concepts or non-visual elements, like the idea of "shuffling to break the relationship" or the

importance of "running a function multiple times to explain variation," were coded as 0, no

visual recall. A second experimenter coded 20% of the responses to this question (Cronbach’s ɑ

= .86).

Transparency and openness

The way we determined our sample size, excluded participants, all manipulations and

measures followed the Journal Article Reporting Standards (Kazak, 2018). All data is available

at https://osf.io/y795h/?view_only=c8c8ad03fe74462397e85ef84708e4d3. Analysis code, and

research materials are available upon request. Data were analyzed using R, version 4.0.0 (R Core

Team, 2020) and data visualizations using the package ggplot2, version 3.2.1 (Wickham, 2016).

Neither the study’s design nor its analysis were pre-registered.

Results

Post-test Performance

Figure 5 shows the distribution of students’ performance on the post-test questions by

condition. Students' in the WHMO group scored higher on average than did students in either of

the other two groups.

Figure 5

Violin Plots of Students’ Posttest Performance by Condition
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Note. Dashed lines are means; purple dots are medians.

An analysis of covariance (ANCOVA), which modeled post-test performance as a

function of experimental condition while controlling for pre-test performance and study cohort

(summer versus winter), revealed that the overall effect of condition significantly impacted

post-test performance (Table 3).

Table 3

ANCOVA Results
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Predictor df F PRE η²p 95% CI for η²p p

Model (error

reduced)

5 19.64* 0.41 <.001

Condition 2 6.38* 0.08 0.10 [0.02, 0.20] .002

Pretest

performance

1 79.92** 0.36 0.36 [0.24, 0.47] <.001

Time

(winter/summer)

2 0.07 0.00 0.00 [0.00, 0.00] .934

Post-hoc comparisons showed that students in the WHMO group (M = 17.63, SD = 5.19)

outperformed both those in the WMO group (M = 14.45, SD= 5.74; t(146) = 5.10, padj< .001) and

those in the Control group (M = 14.50, SD= 5.80; t(146) = 4.89, padj< .001). (Note: The error

variance is pooled across all groups and then weighted to the groups being compared to offer a

more robust error term; the p-values were adjusted for multiple comparisons using Bonferroni

correction).

Did Participants’ Visual Recall of the Video during Problem Solving Differ by Condition?

Figure 6 shows the number of participants who self-reported having a visual recall of the

video during problem solving broken down by condition. A logistic regression showed that

participants in the WMO group were 152% more likely to think back to visual components than

those in the Control group (log odds = 0.92, odds ratio = 2.52, p = .109). Participants in the

WHMO group were 590% more likely to think back to visual components than the Control
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group (log odds = 1.93, odds ratio = 6.90, p < .001), and 174% more likely than the WMO group

(log odds= 1.01, odds ratio = 2.74 p = .020).

Figure 6

Participants’ Thinking back to Visual Components by Condition

Did Visual Recall of the Video Predict Participants’s Posttest Performance?

Figure 7 shows violin plots and descriptive statistics of participants’ posttest performance

separated by whether or not they reported a visual recall of the videos. An independent sample

t-test showed that post-test performance of participants who mentioned a visual recall of the

video was significantly higher than that of participants who did not recall visual components of

the videos (t (148) = 3.89, p < .001).

Figure 7
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Violin Plots of Posttest Score by Whether Participants Reported Having Visual Recall of the

Videos

Note. Dashed lines are means; purple dots are medians.

Did Visual Recall of the Video Mediate the Effect of Condition on Learning?

Because the mediator is binary, we used a causal mediation analysis to evaluate whether

the effect of condition on posttest performance was significantly mediated by whether

participants reported visual recall of the instructional videos during the posttest assessment.

Because the predictor variable (i.e., condition) was multi-categorical with three levels, we fitted

three mediation models.

The effect of the WHMO condition versus the Control condition on participants’ posttest

performance was significantly mediated by participants’ self-reported visual recall (Figure 8;

average causal mediation effect = 1.22, 95% CI with 5,000 non-parametric bootstrapping =

[0.32, 2.12], p = .004). The effect of the WHMO condition versus the WMO condition on
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posttest performance was also significantly mediated by visual recall (Figure 9; indirect effect =

0.81, 95% CI with 5,000 non-parametric bootstrapping = [0.02, 1.67], p = .037). The effect of the

WMO condition versus the Control condition on posttest through visual recall) was not

significantly mediated (see Appendix C for complete results).

Figure 8

Diagram Showing Visual Recall of Videos as a Mediator of the Effect of Watching Hands Moving

Objects (versus Control) on Posttest Performance

Note. The estimate for the a path is in the form of log odds.

Figure 9

Diagram Showing Visual Recall of Videos as a Mediator of the Effect of Watching Hands Moving

Objects (versus Watching Moving Objects) on Posttest Performance
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Note. The estimate for the a path is in the form of log odds.

Did Participants’ General Recollection of the Video during the Posttest Differ by

Condition?

In order to explore whether how often participants thought about the content in the videos

differed by conditions, we performed a one-way ANOVA. The one-way ANOVA did not reveal a

significant difference between the three conditions in terms of their general recollection of the

video during the posttest (Figure 10; F (2,147) = .95, p = .389).

Figure 10

Participants’ Thinking Back to the Video by Condition

Did Participants’ General Recollection of the Video Predict their Posttest Performance?

There was no significant correlation between general recollection of video and posttest

performance (t (148) = -0.08, p = .931).
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Discussion

The current study explored whether sensorimotor engagement confers unique learning

benefits over and above those provided by concreteness. Consistent with the embodied cognition

hypothesis, the findings showed that the WHMO group outperformed the WMO group and the

Control group. This distinction between visuospatial concreteness alone and the addition of

sensorimotor engagement enables us to see that sensorimotor engagement confers a distinct

advantage on top of visuospatial concreteness in promoting learning outcomes, whereas

concreteness by itself, as implemented in the dynamic visualizations, is no more helpful than

abstract demonstration. The mediation analyses further suggest that one potential mechanism for

this effect might be that the hands-on demonstrations enabled students to more easily activate

visual memories of the demonstrations, and then use these visual representations during

problem-solving.

It is also interesting that students’ performance after viewing the concrete+dynamic

representations without hands (i.e. the WMO) was almost identical to their performance after

viewing the live-coding control, which was both less concrete and less dynamic. In the realm of

computer science education, live-coding demonstrations are thought to be better than simply

showing students a large block of code on a slide. In live-coding, instructors can dynamically

show and run each line of code one at a time, and model how coding behaviors unfold over time

(Bennedsen & Caspersen, 2005). It is possible that because the live-coding videos dynamically

showed the output of the code (i.e., printed out a changed dataset), this level of concreteness and

dynamic quality was enough to produce a learning benefit. An additional dose of concreteness

may not have added more value.

Previous research has produced mixed findings regarding the effectiveness of dynamic
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visualizations. Concerns have been raised regarding the cognitive load imposed by dynamic

visualizations (Hegarty, 2004; Tversky et al., 2002). On one hand, the dynamic visualizations in

the WMO and WHMO stimuli may have been quite similar in cognitive load because the content

was highly similar. On the other hand, it may be that the embodiment involved in seeing the

hands moving the objects made it easier for students to generate and sustain the visual and

dynamic representations, and to use them in problem solving (de Koning & Tabbers, 2011;

Zhang et al., 2022).

Only a few studies of embodied cognition have experimentally examined the intersection

of sensorimotor engagement, visuospatial concreteness, and dynamic visualization, and each has

focused on slightly different combinations of these features. Ours kept visuospatial concreteness

and dynamic quality relatively constant while manipulating levels of sensorimotor engagement.

This manipulation is similar to the comparison of performing versus observing gestures (e.g.,

Goldin-Meadow et al., 2012), but ours is the first to our knowledge to demonstrate the unique

benefit of observing sensorimotor activities over concrete dynamic visualizations. Others have

kept sensorimotor engagement and dynamic quality constant and manipulated levels of

concreteness (e.g., Ping & Goldin-Meadow, 2008).

Beyond these few studies, other combinations of these three features of embodiment also

merit attention. For example, we need studies that keep sensorimotor engagement and

concreteness constant while manipulating the dynamic quality of the representations. Would

participants benefit more from a video of an instructor's hand drawing a diagram than from a

video in which the instructor's hand simply pointed to parts of an already finished drawing? We

have begun to explore this possibility by teaching students about the normal distribution in

statistics – a diagram that instructors commonly draw and point to as they teach students (Zhang
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et al, in press). Future research could also investigate how much of these features are needed in

order to benefit learning. In the current study we included only the hands in our sensorimotor

engagement condition; would including the entire body result in different benefits?

The disentanglement enabled by the current study highlights the need for a more nuanced

understanding of what we mean when we say "embodied learning experiences.'' The three

features we have proposed are only a starting point to finding the best ways to characterize a

construct as complex as embodied learning. Whether embodiment should be categorized in types

or considered on a continuum, ranging from purely abstract representations to somewhat

embodied ones (e.g., observing actions) to strongly embodied ones (e.g., performing actions),

varies depending on the theory and remains a subject of inquiry (e.g. Johnson-Glenberg and

Megowan-Romanowicz, 2017). Additionally, it remains unclear whether the learning benefits of

embodiment increase linearly with the levels of embodiment.

When there are learning benefits of embodiment, what are the mechanisms underlying

the effect? The robustness and content of mental representations may be one potential

mechanism for the benefits of embodied learning. This study not only narrowed in on the causal

relationship between sensorimotor engagement and learning benefits but also revealed that

sensorimotor engagement prompted learners to activate and use visuospatial mental

representations, ultimately resulting in enhanced learning outcomes. Recognizing that

sensorimotor engagement provides a distinct benefit has the potential to reshape instructional

practices and curriculum development, moving beyond a narrow emphasis on visuospatial

concreteness and expanding to incorporate deliberate engagement of the body and physical

experiences in the world.

Constraints on Generality
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The participants in this study are students from a highly selective public university

learning coding and statistics. Compared to the general student population in the United States,

they are students who are high-achieving and have relatively high content knowledge. Future

studies might want to implement a similar design on students from more diverse educational

backgrounds. Further research is also needed to explore the implications of sensorimotor

engagement and perceptual concreteness in domains beyond coding and statistics.

In conclusion, this study highlights that students exposed to hands-on representations

exhibited superior learning outcomes because of the unique contribution of sensorimotor

engagement beyond perceptual concreteness and dynamic quality. By exposing the role of

mental representations in embodied benefits to learning, this study sheds light on the processes

underlying embodied learning. Finally, the practical implications for teaching are noteworthy. As

educators face daily decisions regarding the integration of different types of representations and

activities into their lessons, this study advocates for the inclusion of bodily movements, even in

lessons that are already perceptually concrete.
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Appendix A

1. In your own words, explain what the shuffle() function does

2. In your own words, explain when you would use the shuffle() function

3. Which process do you think will create a more random result? Shuffling once or ten

times? Explain your answer

4. Given a specific dataset, would the number of observations in the condition variable

(either experimental or control) increase, decrease, stay the same or we cannot know until

after we see the shuffled result after the condition column is shuffled

5. Suppose you roll a dice four times, which is more likely to occur and why: see the

numbers 6, 6, 6, 6 in order, see the numbers 1, 2, 3, 4 in order or see the numbers 3, 4, 1,

6 in order.
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Appendix B

Now, you will answer some questions based on the videos you have watched.

The laptop_data dataset contains data from an experiment on the effect of laptops on student

learning. Undergraduate students were randomly assigned to one of two conditions: view or

no-view. In the view condition, students attended a 40 minute lecture and were allowed to keep

their laptops open. In the no-view condition, students attended the same lecture, but were asked

to keep their laptops closed. At the end of the lecture, students took a test on the lecture content

and rated how distracted they felt during class.

There are three variables in this dataset:

● condition: the condition students were randomly assigned to, either view or no-view

● total: the percentage of questions students answered correctly on the post-lesson

assessment

● distracted: students’ self-reported rating of how distracted they were in class.

1. What would you expect to happen to the value of condition for row 1 if we ran the code

below?

laptop_data$condition <- shuffle(laptop_data$condition)

________________________________________________________________
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2. What would you expect to happen to the value of condition for row 1 if we instead ran

the code below?

laptop_data$total <- shuffle(laptop_data$total)

________________________________________________________________

3. We ran this code to create a table that shows the number of observations in each

condition.

tally(~ condition, data = laptop_data)

Now, imagine we run this code:

laptop_data$condition <- shuffle(laptop_data$condition)

tally(~ condition, data = laptop_data)

What would happen to the number of observations in the view condition?

The number of observations would increase

a. The number of observations would stay the same

b. The number of observations would decrease

c. The number of observations would increase, decrease, or stay the same, but it's

impossible to tell which
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4. Explain your answer to the previous question

________________________________________________________________

We used the code below to create a faceted histogram showing the distribution of total in each

condition. The vertical lines represent mean total scores for the two conditions. Again, you can

see that the participants in the no-view group scored higher, on average, than participants in the

view group.

stats <- favstats(total ~ condition, data = laptop_data)

gf_dhistogram(~ total, data = laptop_data) %>%

gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%

gf_facet_grid(condition ~ .)

5. Sometimes groups differ just because of randomness. Do you think the group difference

in the histogram above could be due to randomness?

a. Yes, it must be due to randomness

b. No, it cannot be due to randomness

c. Maybe, need to further investigate

6. Explain your answer to the previous question

________________________________________________________________
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7. If you wanted to investigate whether this difference could be due to randomness, what

would you do? Please be as specific as possible in your response.

________________________________________________________________

8. Alex thinks she only needs to shuffle once to see if the difference between conditions on

total could be due to randomness by comparing the shuffled result with the original data.

Mary thinks she needs to shuffle more than once to be able to see if the difference could

be due to randomness. Do you agree with Alex or Mary? Explain your answer.

________________________________________________________________

Take a look at each line of code below. For each line, explain 1) what the code is doing and 2)

why someone would write that code.

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)

9. What is this line of code doing?

________________________________________________________________

10. Why would someone write this line of code?

________________________________________________________________

laptop_data$total.shuffle<- shuffle(laptop_data$total)

11. What is this line of code doing?

________________________________________________________________

12. Why would someone write this line of code?
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________________________________________________________________

13. Look at the two examples of codes below. Example 1 and Example 2 each produces a

faceted histogram. In what ways would the two faceted histograms be similar?

Example 1:

gf_dhistogram(~ distracted , data = laptop_data) %>%

gf_facet_grid(shuffle(condition) ~ .)

Example 2:

gf_dhistogram(~ shuffle(distracted) , data = laptop_data) %>%

gf_facet_grid(shuffle(condition) ~ .)

________________________________________________________________

14. Would one histogram be more random than the other one? If yes, which one is more

random and why; if not, why not.

15. Would the two histograms look exactly the same or different? Explain your answer.

We ran this code to create the graph below. We added a line in each condition to represent the

mean of distracted of that condition. Notice that the average distracted rating in the no-view

condition is lower than the average distracted rating in the view condition.

stats <- favstats(distracted ~ condition, data = laptop_data)

gf_dhistogram(~ distracted, data = laptop_data) %>%
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gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%

gf_facet_grid(condition ~ .)

16. Sometimes groups differ just because of randomness. Do you think the group difference

in the histogram above could be due to randomness?

a. Yes, it must be due to randomness

b. No, it cannot be due to randomness

c. Maybe, we need to further investigate

17. Explain your answer to the previous question

________________________________________________________________

18. If you ran the code in the previous question again, do you think it would produce the

same output?

a. Yes

b. No
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c. It’s possible, but not likely

19. Explain your answer to the previous question

________________________________________________________________

We revised the code from the previous question to create the graph below. We added a line to

represent the mean of distracted for each condition. Notice that the average distracted rating in

the no-view condition is higher than the average distracted rating in the view condition.

20. What caused the difference in the means represented in the graphs below?

laptop_data$condition.shuffle <- shuffle(laptop_data$condition)

stats <- favstats(distracted ~ condition.shuffle, data = laptop_data)

gf_dhistogram(~distracted, data = laptop_data) %>%

gf_vline(xintercept = ~mean, data = stats, color = "blue") %>%

gf_facet_grid(condition.shuffle ~ .)

________________________________________________________________
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21. Sometimes groups differ just because of randomness. Do you think the group difference

in the histogram above could be due to randomness?

a. Yes, it must be due to randomness

b. No, it cannot be due to randomness

c. Maybe, need to further investigate

22. Explain your answer to the previous question

________________________________________________________________

23. If you ran the code in the previous question again, do you think it would produce the

same output?

a. Yes

b. No

c. It’s possible, but not likely

24. Explain your answer to the previous question

________________________________________________________________

Look at the two faceted histograms below, along with the code that produced each (the code

might be a bit hard to read, feel free to zoom in to get a better read):
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25. Why do the two faceted histograms look different?

________________________________________________________________

26. Based on what you've learned from these two histograms, do you think being able to

view or not view a laptop during class (condition) affects students' self-reported rating of

how distracted they were in class (as measured by distracted score on a post-lesson

assessment)? Why or why not?

________________________________________________________________

Imagine we run the code below:

laptop_data$distracted.shuffle <- shuffle(laptop_data$distracted)

mean(laptop_data$distracted.shuffle)

mean(laptop_data$distracted)

27. How would the mean of distracted.shuffle compare to the mean of distracted?
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a. The mean of distracted.shuffle would be larger

b. The mean of distracted.shuffle would be smaller

c. The two means would be the same

d. It's impossible to tell

28. Explain your answer to the previous question

________________________________________________________________

29. What will the distribution of the variable, distracted.shuffle, look like compared to the

distribution of the variable, distracted?

a. Wider

b. Narrower

c. The same

d. Not sure. It will vary randomly

30. Explain your answer to the previous question

________________________________________________________________

Imagine now we have a new variable, gender, so that we have four variables in the dataset:

gender: the gender students self-identify with

condition: the condition students were randomly assigned to, either view or no-view

total: the percentage of questions students answered correctly in their final exam

distracted: students’ self-reported rating of how distracted they were in class.
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31. If we now shuffle the column of gender, what would happen to the relationship between

condition and total? Explain your answer.

________________________________________________________________

32. What do you think the purpose of the shuffle() function is?

________________________________________________________________

33. In your own words, explain when you would use the shuffle() function.

________________________________________________________________
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Appendix C

The indirect effect of watching moving objects without hands versus watching live-coding on

participants’ posttest performance through participants’ self-reported visual recall was not

statistically significant (indirect effect = 0.29, 95% CI with 5,000 non-parametric bootstrapping

= [-0.20, 1.34], p = .16).
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Abstract

In this study, we implemented and compared two types of embodied pedagogy: one in which

students actively participated in hands-on activities, and another in which they observed other

students doing the activities. The activities were implemented as the lab component of a 10-week

college-level introductory statistics course in which students were taught to use R for data

analysis. 227 college students participated in the study. Half were randomly assigned to perform

a series of hands-on activities and half to observe a partner performing the same activities. We

hypothesized that students with less prior knowledge would benefit more from active

participation, while those with more prior knowledge would gain more from observing their

peers, a hypothesis we call the Performing First Hypothesis. As predicted, an analysis of

students' exam scores showed a significant interaction between students’ prior knowledge (as

measured by a self-rating) and type of pedagogy in the hypothesized direction. Interestingly, only

self-rated prior knowledge—not factors like math anxiety or previous math

performance—significantly moderated the effectiveness of the embodied pedagogies. Multilevel

analysis of weekly pretests and delayed posttests confirmed these findings, supporting the

Performing First Hypothesis and suggesting new directions for research on the mechanisms and

applications of embodied pedagogies in complex learning environments.
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The Role of Prior Knowledge in Effects of Embodied Pedagogies on Learning

The idea that bodily experiences enhance learning is not new. Embodied learning

pedagogies, the use of the body through learners’ enactment, observation, and even mental

simulation, have emerged as a promising approach to fostering transferable knowledge (Wilson,

2002). Past research has observed an increase in learning when learners directly act on external

manipulatives or representations (Sommerville & Woodward, 2010; Wilson, 2002), represent

ideas in gesture or directed actions without exerting any change to the external environment

(Congdon & Goldin-Meadow, 2021; Zhang et al., 2021), or simply watch someone else produce

gestures or object manipulations (Cook et al., 2024; Zhang et al., 2022). However, our

understanding of how embodied pedagogies enhance learning in complex domains like

mathematics or statistics remains nascent. Although these methods have been well-explored in

lab settings, mastering complex real-world domains requires more extensive interaction with a

broad array of interconnected concepts over longer periods of time than is typically offered in

laboratory studies (Fries et al., 2021).

This paper aims to address this gap in our current understanding by posing two key

questions. The first question focuses on the generalizability of embodied pedagogies beyond the

learning of single concepts. Most of the evidence for embodied pedagogies comes from

laboratory studies. Although embodied pedagogies have been shown to facilitate the learning of

a single concept in the lab, how applicable and impactful are they in a course setting where

students are expected to learn a multitude of interrelated concepts over time? Studying embodied

pedagogies in a longitudinal environment allows us to more closely examine learners’

knowledge development in ways that we could not in laboratory settings.
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The second question concerns individual differences among learners, particularly the

diversity of their prior knowledge. In lab studies, prior knowledge is usually treated as a

covariate and only a few studies have considered how prior knowledge could interact with

embodied pedagogies (e.g. Congdon et al., 2018; Cook et al., 2024; Guarino & Wakefield, 2020;

Zacharia et al., 2012). Even laboratory experiments that do consider prior knowledge may not be

a good model for investigating how learners develop a deep understanding of abstract concepts

in STEM domains. Although research has shown that when relevant prior knowledge is activated

during learning, it contributes to the development of later concepts (Brod, 2021; Thompson &

Zamboanga, 2003; Simonsmeier et al., 2022), the contribution of prior knowledge might be

different in a longitudinal setting than in a single lab experiment. The critical point is that when

learners come into the class for an embodied learning experience, their understanding of the

concepts differs. No study to our knowledge has directly investigated how prior knowledge

might moderate the effect of embodied pedagogies in complex domains over a significant period

of time. How do interventions with different levels of embodiment impact learners with different

levels of prior knowledge and experiences in the domain?

A focus on this question has the potential to serve students with a wide range of prior

educational experiences. In particular, we identify the subject of statistics and data science. In

this increasingly data driven society, it is important for students to use programming technology

to explore messy data landscapes and make data-informed decisions, but because concepts in this

domain are intrinsically abstract, novices frequently fail to develop interconnected robust mental

representations of these concepts (Lau & Yuen, 2008; West & Ross, 2002). Could embodied

learning be an effective strategy to serve students with low prior knowledge of statistics and

programming? Beyond practical insights, this line of investigation is also important from a
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theoretical standpoint: do different types of embodied pedagogies differ in their effect on people

with varying levels of prior experience? If so, that would shed light on the potential mechanisms

that may underlie the benefits of embodied pedagogies.

To begin answering these two questions, we build up a theoretical framework based on

current literature looking for clues about how embodied pedagogy might impact long-term

learning in an academic domain with a diversity of learners. Then we detail the results of an

in-class intervention experiment that exposed students to embodied learning activities for nine

weeks.

Theoretical Framework

Theories of embodied cognition assume that concepts are grounded, given meaning, and

intertwined with action and perception (Barsalou, 1999, 2008; Borghi & Pecher, 2011; Clark,

2008; Golonka & Wilson, 2012; Piaget, 1983). According to these theories, physical actions

observed and performed during learning influence our internal mental representations as well as

subsequent information processing, including problem-solving, reasoning, and retrieval

(Barsalou, 2008; Fu & Franz, 2014). Given this, it is essential that classroom teachers carefully

consider how to incorporate embodied actions, as overlooking this key component could

significantly diminish the effectiveness of the learning experience (Abrahamson et al., 2020;

Sullivan, 2018).

STEM education has emerged as a particularly promising area for investigating embodied

instructional approaches. Despite the inherent abstractness of many STEM topics, characterized

by formal notation (e.g., symbols used in mathematical equations or to reference chemical

elements) and not easily perceptible concepts, the efficacy of various embodied learning

interventions in STEM domains has been validated through controlled laboratory experiments
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(Goldin-Meadow & Wagner, 2005; Johnson-Glenberg & Megowan-Romanowicz, 2017; Zhang

et al., 2021, 2022).

One Potential Mechanism Underlying the Effectiveness of Embodied Pedagogies

One potential explanation for these effects is that involving learners' bodies during

instruction, whether through performing or observing actions, generates concrete sensorimotor

experiences that imbue abstract STEM symbols with meaning. Both theory and empirical

research have suggested the importance of “meaning” for embodied pedagogies to be effective.

For example, the perceptual symbols system theory posits that when people first have a

meaningful perceptual experience, it activates a combination of neurons that are stored mentally

as multimodal frames of perceptual symbols. Later, observing or performing bodily actions

activates these multimodal frames (in terms of neural connections) to create simulations of

perceptions and actions that have happened in the past (Barsalou, 1999). The underlying

assumption for the sensorimotor simulation relies on having a meaningful experience, i.e., a

simulator, in the past that can be activated, without which the embodied experience loses

meaning.

This idea is supported by infant research showing that what infants see when they

observe an action (e.g., a hand reaching for an object) depends on whether they have experience

performing such an action themselves. In a classic study, Sommerville and colleagues (2005) had

infants who could not yet grasp an object wear velcro mittens, which, because of their stickiness,

enabled infants to experience what it would be like to reach out and grasp an object. These

infants, having now experienced the action themselves, found observing an experimenter

perform a similar action more interesting than did infants without prior experience, as the action

now held meaning for them (Gerson & Woodward, 2014).
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We would argue that this same idea applies when students are learning abstract and

difficult concepts in educational settings. Our own experience as well as research by others

indicates that the same embodied pedagogy may be experienced as meaningful by some learners

but not by others. Further, only when the embodied experiences are meaningful to learners do

such experiences facilitate learning, presumably by helping them establish a robust mental

representation of the concept (Authors et al., under review; Congdon et al., 2018; Cook et al.,

2024). The critical question is what does it take for different types of embodied pedagogies to be

meaningful for different learners? In order to approach this question, we need to first unpack the

concept of “embodiment” or “embodied pedagogies” and then ask whether different embodied

pedagogies impact different learners equally.

Distinguishing between Performing and Observing Bodily Actions

By now, a large number of studies have found that embodied pedagogies are better than

non-embodied pedagogies (e.g., for reviews, see Nathan, 2021 and Novack & Goldin-Meadow,

2015). However, what counts as "embodied" varies across studies. In some studies, learners

themselves perform bodily movements (e.g., Johnson-Glenberg et al., 2014), gestures (e.g.,

Broaders et al., 2007), object manipulations (Rosenbaum et al., 2012), and drawing (Zhang et al.,

2024), whereas in other studies, learners merely observe actions performed by an instructor or

another person (Cook et al., 2024; Goldin-Meadow et al., 2012; Zhang et al., 2022).

We argue that the distinction between performing and observing bodily actions is an

important one, supported both by theory and research. According to the previously discussed

Barsalou’s perceptual symbol systems theory (1999, 2008), there is a difference between

performing and observing an action: performing is more likely to be meaningful to novice

learners than observing.Observing will only be meaningful to the learner if there are existing
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multimodal frames to be activated and used as simulators that reactivate the same neural

connections and thus simulate the original experience without bodily actions (Pezzulo & Calvi,

2011).

Neurological research on a class of motor neurons called mirror neurons provides support

for Barsalou's theory (Rizzolatti & Craighero, 2004). Mirror neurons discharge when a person

acts, but whether they will also discharge when a person observes an action depends on whether

the observer understands the goal of the action (Calvo-Merino, 2013; Gazzola et al., 2007). In

other words, they must find the action to be meaningful. If they don't understand the goal, simply

observing may not be sufficient for them to develop an embodied representation (Sommerville et

al., 2005).

Research on learning has shown that at least in some cases performing is more

advantageous than observing. For example, Goldin-Meadow and colleagues (2012) directly

compared the effects of performing versus observing gestures on a learning outcome. In this

study, six-year-olds were asked on a mental rotation task to judge whether two shapes at different

angles of rotation were the same or different. Children who were instructed to perform gestures

that mimicked the rotation of the figures performed better on the task than children who simply

observed someone else performing similar gestures on a video clip.

Research on the Role of Prior Knowledge in Embodied Pedagogies

Zacharia and colleagues (2012) demonstrated that learners with low prior knowledge

benefited more from physically manipulating objects than from virtually manipulating objects on

a computer screen. Kindergarteners who had a correct understanding of a balance scale (i.e. high

prior knowledge) and those who did not (i.e., low prior knowledge) were randomly assigned to

either physically interact with a balance scale and objects of different weights or virtually
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interact with those same objects on a screen. Arguably, physical manipulation is more

perceptually available than virtual manipulation because it can be more directly experienced.

Zacharia and colleagues (2012) found that for participants who had high prior knowledge

of a balance scale (i.e. a correct understanding), performance in using the balance scale to

measure and differentiate objects of different mass did not differ based on whether they engaged

in physical or virtual manipulation. However, participants with low prior knowledge

demonstrated a different pattern of results: those who performed the physical manipulation

outperformed those who performed the virtual manipulation. Notably, the low-prior-knowledge

participants who did the virtual manipulation did not improve from the pre- to post-test, whereas

the low-prior-knowledge participants who went through the physical manipulation improved the

most.

Similarly, learners’ prior knowledge mattered when researchers compared a more

concrete gesture instruction (pretending to pick up and manipulate the addends in a math

problem) with an abstract gesture instruction (a v-point gesture for mathematical equivalence

followed by a single-point for the blank to fill in the answer). Children who learned with the

abstract gesture instruction were more likely to transfer their knowledge to solve new problems

(Novack et al., 2014). However, a secondary analysis of the data suggests an interaction between

prior knowledge and type of instruction (Congdon & Goldin-Meadow, 2021). Children with low

pretest scores learned the least from abstract gesture instruction compared with high-pretest

children in the abstract gesture group and both low- and high-pretest children in the

concrete-gesture group. The findings suggest that more perceptually available concrete gesture

instruction might create a more meaningful mental representation for low-prior knowledge
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learners while the abstract gesture instruction might help high-pretest children to transfer their

knowledge.

Whereas these two studies suggest that low prior knowledge learners benefit more from

more embodied pedagogies, there is also some evidence suggesting that learners may need some

prior knowledge in a domain just to benefit from embodied pedagogies. For example, Wakefield

and James (2015) randomly assigned children to learn the concept of a palindrome with either

speech-only instruction, speech+gesture match instruction or speech+gesture mismatch

instruction. They found that only children with high phonological ability, but not children with

low phonological ability, benefited more from training that required them to perform gestures

(i.e. speech+gesture match and speech+gesture mismatch) than from training that included

speech-only instruction. A later paper by Guarino and Wakefield (2020) interpreted this finding

in terms of children’s developing knowledge in the domain. They posited that there is a

developmental point for children to benefit from gestures and argued that very young children

may lack necessary existing knowledge in the domain to understand how gesture can index

speech. On the other hand, older children with sufficient existing knowledge may not not need

gestures to understand.There might be a “sweet spot” where children possess the foundational

knowledge and cognitive ability for gestures to benefit word learning.

However, learning abstract concepts in complex domains is a very different context than

the one studied by Wakefield and James. Especially if the learners are students enrolled in a

college-level class, as the course progresses, they should all develop some foundational

knowledge and all possess a higher level of cognitive ability than that of young children. It is still

unclear what the effect of embodied pedagogies would be on adults learning abstract concepts in
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complex domains with different levels of prior knowledge, who are developmentally different

from children.

Past research suggests prior knowledge is also a robust predictor of learning in adults

(Chakraborty & Esposito, 2024); see Tobias, 1994, for review) and might moderate the effect of

learning interventions. One important study by Grotelueschen (1979) found that adults with low

prior knowledge in the domain benefited more from an instructional sequence that went from

concrete to abstract whereas adults with high prior knowledge benefited more from materials that

were abstrac throughout. But certainly more research is needed to elucidate the role of prior

knowledge in embodied learning in adults.

The Performing First Hypothesis

Building on the distinction between performing and observing actions and the importance

of meaning previously established in this paper, we propose a hypothesis that we will refer to as

the Performing First Hypothesis. This hypothesis is that performing bodily actions will benefit

learners with no or low prior knowledge in a domain more than learners with high prior

knowledge, whereas observing bodily actions will benefit learners with high prior knowledge

more than learners with no or low prior knowledge. Whereas most research on educational

interventions finds a positive correlation between students’ prior knowledge of the concepts and

their performance after the intervention, performing embodied activities might attenuate or even

eliminate the correlation between prior knowledge and performance after the intervention.

Although the specific interaction between prior knowledge and performing vs. observing

has not been tested, some empirical support for this hypothesis may be found in research

comparing other types of embodied pedagogies. For example, Congdon et al. (2018) compared

gesture and object manipulation to see whether learners with low prior knowledge might
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understand one but not the other. Because object manipulation enables learners to directly

interact with external objects, it is more perceptible and potentially more comprehensible by

novice learners. Congdon and colleagues found that when students learning linear units of

measure were randomly assigned to one of the two embodied pedagogies, those with low prior

knowledge benefited from object manipulation but not from gesture. In contrast, children with

higher prior knowledge benefited equally from both types of embodied pedagogies.

This difference suggests that whereas object manipulation can be more directly

experienced and is thus more meaningful to novice learners, gesture might only activate

embodied knowledge for learners who have the prior knowledge required to make meaningful

connections between the gesture and the targeted abstract concepts. This finding provides

rudimentary support for the Performing First hypothesis. Higher prior knowledge makes less

perceptible embodied pedagogies meaningful to learners, whereas learners with low prior

knowledge need more perceptible experiences, such as physically manipulating the objects, to

understand the meaning behind the actions.

Both of the embodied pedagogies included in the Congdon et al. study involved physical

performance. We do not know the effect that merely observing embodied pedagogies would

produce for learners with different levels of prior knowledge. Findings from this study also do

not speak to the other half of the Performing First hypothesis, that is, whether learners with high

prior knowledge will benefit more from observing embodied pedagogies or whether more

concrete and perceptible embodied pedagogies are always better for learning. At least some

evidence reviewed above suggests that more concrete pedagogies might diminish learners’

ability to transfer knowledge to solve new problems in novel contexts (Novack et al., 2014).
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In addition, these pieces of evidence all come from highly controlled lab experiments

and from children who differ both developmentally and cognitively from college students.

Moreover, past research only measured participants’ knowledge right before and right after the

intervention. Because developing expertise in STEM domains is a lengthy process, a single

intervention may not accurately reveal how prior knowledge and types of embodied intervention

might interact over time.

The Current Study

In the current study, we developed a supplementary lab curriculum employing embodied

pedagogies, and then implemented the curriculum over a 10-week term as part of a college-level

introductory course in statistics and data science. The course was taught using a CourseKata

interactive online textbook, available for preview at https://coursekata.org. The book takes a

modeling approach to statistics, and teaches students to analyze data using R as well as

techniques such as randomization, bootstrapping, and simulation. (For more information about

the CourseKata book and the principles guiding its design see Stigler et al., 2020; Son et al.,

2021; Fries et al., 2021.)

In the mandatory once per week lab sessions, students were randomly paired with lab

partners. Within each pair, roles were assigned randomly: one student as the performer, engaging

directly in hands-on activities, and the other as the recorder, observing and recording the

performer’s hand movements using a smartphone. We hypothesized that there would be an

interaction between the type of embodied intervention and the participants' prior knowledge.

Specifically, we expected that performers with low prior knowledge would outperform recorders

who also had low prior knowledge, whereas this advantage would not hold for those with high

prior knowledge.
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Methods

Participants

Participants were students enrolled in an introductory psychological statistics course at a

large public research university. The class was structured as two weekly lectures and a lab

session. The experimental interventions took place once a week for nine weeks during the

50-minute in-person lab sessions. Students received class participation points for attending lab

sessions but were allowed to miss one lab session without losing any participation points.

Although there were 236 students enrolled in the course, any students who did not agree

to the data-sharing agreement of the course or who dropped the class were removed from the

analysis. The final sample size was 227. Out of these students, 171 students self-identified as

female (75% ), 49 as male (22%), and 7 as non-binary (3%). The self-reported race and ethnicity

of these students were as follows: 100 Asian or Asian American (44%), 8 Black or African

American (4%), 47 Hispanic, Latino or Spanish origin (21%), 13 Middle Eastern or North

African (6%), 46 White (20%), and 13 mixed/multi races (6%).

Design and Procedure

Participants were randomly assigned a lab partner at the beginning of the course. Within

each student dyad, students were randomly assigned to either the perform condition (n = 113) or

the observe/record condition (n = 114). Each student's role and partner stayed the same for the

entire course (Figure 11).

Figure 11

Condition and Dyad
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The participants assigned to the perform condition (i.e. the performers) were expected to

perform embodied instructional actions designed to enhance learning. The participants assigned

to the observe/record condition (i.e. the recorders) used their smartphone to video their partner's

actions during the activity. If a student's partner could not make it to a lab, the student was

temporarily paired with another student while maintaining their same role. We used a cover story

to explain students' role assignment. Students were informed that we were interested in using

student video data to design a pedagogical agent, and their recordings would provide valuable

hand movement data.

Starting from the second week, students began each lab by taking a set of "practice

questions" on their laptops. They received a link to a Qualtrics survey and were given 6-10

minutes to complete the questions, with the time varying based on the number of questions. Half

of these questions were designed as a delayed posttest assessment to measure what students had

learned from the previous week. The other half were designed as a pretest to assess what students

might already know about the concepts they were going to be taught in the current lab. (Because

week 2 was the first lab activity, all questions from that week were pretest questions.)
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After taking the assessments, students engaged in a lesson that incorporated embodied

activities in the forms of object manipulation, gesture, and drawing. For example, students cut

out a piece of paper with a small data table and used the pieces of paper to "shuffle" a variable

and “resample” observations (i.e., sampling with replacement). In a later lab session, students

used what they had learned about shuffle and resample in a hands-on activity in which they

constructed sampling distributions. Based on their randomly assigned condition, students either

performed these activities or observed and recorded their partner performing them.

During the course, there were two midterm exams. The first midterm was administered in

week 4 and the second midterm was administered in week 8. At the end of the course,

participants completed their final lab assessment and a lab exit survey in the 10th week and took

a final exam in the 11th week. Figure 12 illustrates when the assessments and ratings were

administered.

Figure 12

Timing of Each Assessment

Materials
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A description of the lab schedule and activities is included in Appendix A.

Measures

Formative Assessments (Practice Questions)

Prior knowledge Assessments. Half of the practice questions administered to students at

the beginning of each lab served as a pretest of prior knowledge related to the day's activities. A

complete list of the prior knowledge assessment questions can be accessed on the study’s OSF

page (https://osf.io/ntsr2/?view_only=ce650267f407451a9ea26abcb428d8f7).

Delayed Post-Test Assessment. The other half of the practice questions answered at the

start of each lab were designed as delayed post-test assessments of concepts worked on during

the previous week's lab. (For a complete list of the questions see

https://osf.io/ntsr2/?view_only=ce650267f407451a9ea26abcb428d8f7). .

Scoring of Formative Assessment Questions. Four trained coders graded participants’

responses to the practice questions, with two coding each response as a means of assessing

inter-rater reliability. All coding was conducted blind to condition.

The rubric the coders used to grade the responses was jointly determined in a meeting

with the four coders and the lead researcher based on a preliminary analysis of a sample of

responses. Each question was worth one point, with half points given to correct but incomplete

answers or answers with minor misunderstandings. If the discrepancy rate between two coders

on a question exceeded 20%, they would meet with the lead researchers to review the coding

rubric and recode all responses to that question. If the discrepancy rate on a question was lower

than 20%, the two coders would discuss and resolve their disagreements to arrive at a final score.

Summative Assessments
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Final Lab Assessment. The final lab assessment was given to students in-person in week

10 at the last lab they were required to attend. It was composed of 28 questions (17

open-response, five multiple-choice, and six drawing questions). It was structured as a paper and

pencil test. The same four coders scored students’ responses using the same grading approach.

Midterm One & Midterm Two Performance. Midterm One consisted of 20 questions

(15 multiple-choice and five open-response/coding questions). The exam assessed students’

mastery of content covered in Chapters 1 to 5 in the book.

Midterm Two had 25 questions (18 multiple-choice and seven open-response/coding),

which assessed students’ mastery of content covered in Chapters 1 to 9 in the book.

The two midterms were graded by the two teaching assistants for the course, blind to the

experimental condition students were assigned to. Each question was worth one point, with half

points given to open-response questions that were incomplete or partially correct.

Final Exam. The final exam consisted of 44 questions designed to assess concepts

covered in the entire book (Chapters 1 to 12). Out of the 44 questions, 29 were multiple choice

and 15 were open response or coding questions. The same two teaching assistants graded the

final exam following the same approach as their grading of the midterms.

Self-ratings at the End of the Course

Self-rated Overall Prior Knowledge of Lab Content. In addition to measuring

students’ prior knowledge of each separate lab we also measured students’ overall prior

knowledge of concepts covered in the lab interventions on an end-of-course survey at the end of

week 10. We asked students to respond retrospectively to the question: “What percentage of

concepts covered in the labs are concepts you already knew?” Students could choose 0%, 20%,

40%, 60%, 80% or 100%.
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Past Math Performance. Previous math performance was self-rated by students at the

end of the course on the same survey. Students rated how much they agreed with the statement,

“My math/statistics marks were lower compared to other subjects”, by choosing among five

possible choices: strongly agree, agree, neither agree nor disagree, disagree, or strongly disagree.

General Math Anxiety. Students’ general math anxiety was measured at the same time

as their past math performance. Students responded to the question, “On a scale of 1 to 6 (1

being not anxious at all and 6 being extremely anxious), how math anxious are you?”

Analyses

We tested our main hypothesis with two types of analyses. Analysis of CoVariance

(ANCOVA) was used to examine whether students’ self-ratings (i.e., their general prior

knowledge, past math performance, and math anxiety) moderated the effect of condition on the

summative assessments (the two midterms, final lab assessment, and final exam). We expected

this interaction to be weak for the earlier summative assessments (e.g., midterm one) because the

intervention had just begun, but stronger for assessments used later in the course.

Next, to investigate whether students’ pretest performance moderated the effect of

condition on the weekly formative delayed posttest assessments, we conducted a multilevel

analysis with the repeated measures data. We expected a significant interaction between

condition and pretest performance such that students with low pretest performance would benefit

more from performing embodied pedagogies whereas students with high pretest performance

would benefit more from observing embodied pedagogies.

Missing Data

Each student was assigned a partner ID to identify their lab partner. While the majority of

students retained the same partner throughout the study, in instances where a student had more
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than one lab partner they were assigned the partner ID of the student with whom they were

paired most frequently. When students missed a lab, or if their partner was switched during a lab,

their data for that week (i.e., their corresponding pre and delayed posttest scores for that week)

was treated as missing. Students who withdrew from the class midway, were not included in any

data analyses.

Missing data were imputed using the Markov Chain Monte Carlo (MCMC) algorithm as

implemented in the Blimp application (Enders, 2017).

Results

The deidentified data and data analysis syntax on which the present conclusions are based

are available through the Open Science Framework

(https://osf.io/ntsr2/?view_only=ce650267f407451a9ea26abcb428d8f7). The study design,

hypotheses, and analytic plan were not pre-registered.

Analyses of Summative Assessments

The sample size for this part of the analysis is 217 (i.e., the number of students who

completed the post survey). Because the final lab assessment was given in-person in their last

structured lab session, there were a few more missing data for the final lab assessment (N = 195).

Interactions of Prior Knowledge and Condition

There were no significant main effects of condition on any of the summative assessments

(midterm 1, midterm 2, the final exam, or the final lab assessment. This result was not changed

by controlling for students’ self-rated overall prior knowledge of the interventions (see Appendix

B for the complete results).

Figure 13 shows the relationship between condition and self-rated prior knowledge

predicting Midterm 1, Midterm 2, final exam, and final lab assessment. With the exception of
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midterm 1, all three other graphs showed a similar pattern of results: in the Observe condition,

students’ self-rated prior knowledge showed a positive correlation with their performance on the

assessment, but such a correlation was not evident in the Perform condition.

We tested whether there was a significant interaction between prior knowledge and

condition for each of the four outcome variables using ANCOVA. Statistical analysis was carried

out using R Studio (Version 2023.12.1.402, RStudio Team, 2023). Due to students dropping the

class or not attending the session, four participants were removed from the analysis for midterm

1, midterm 2, and the final exam, and 26 participants were removed from the analysis for the lab

final assessment.

There was no significant interaction between self-rated prior knowledge of the labs and

condition for midterm 1 (F(1, 213) = 0.33, p = .564). However, there was a significant

interaction between students’ self-rated prior knowledge and condition for midterm 2 (F(1, 213)

= 7.43, p = .007), the final exam (F(1, 213) = 8.41, p = .004), and the final lab assessment (F(1,

191) = 5.05, p = .026). A complete table of results for the four models is included in Appendix

C.

Figure 13

The Relationship Between Condition and Self-Rated Prior Knowledge for Each of the Four

Summative Assessments

Midterm 1 Midterm 2
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Final Exam Final Lab Assessment

Model predictions and 95% confidence intervals are plotted in Figure 14, a suggested

way to interpret significant interactions by Garofalo et al. (2022). From the graphs, we can see

that for the three models where we detected significant interactions, the red and blue lines cross

each other at approximately the 50% rating of prior knowledge. For students with lower

self-rated prior knowledge, those in the Perform condition showed significantly superior learning

in midterm 2, the final exam, and the final lab assessment than those in the Observe condition.

(The shaded confidence interval does not contain the model prediction.) For students with higher
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self-rated prior knowledge, in contrast, those in the Observe condition achieved significantly

better learning outcomes than students in the Perform condition (this difference is marginal in the

final lab assessment).

Figure 14

Model by Self-Rated Prior Knowledge and Condition for each Summative Assessment

Midterm 1 Midterm 2

Final Exam Final Lab Assessment

Interactions of Past Math Performance and Condition

Figure 15 shows the relationship between self-rated past math performance and the four

summative assessments broken down by condition. Except for the graph for midterm 1, the other
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three graphs indicate a positive correlation between past math performance and outcome scores

regardless of condition. In none of the summative assessments was the interaction between

condition and self-rated past math performance significant.

Figure 15

The Relationship Between Condition and Self-rated Past Math Performance for Each of the Four

Summative Assessments

Midterm 1 Midterm 2

Final Exam Final Lab Assessment
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Interactions between Math Anxiety and Condition

Similarly, the relationship between students’ self-rated math anxiety and each summative

assessment separated by condition is shown in Figure 16. There was in general a negative

relationship between math anxiety and performance regardless of the condition. Although the

lines were steeper for the Observe group than the Perform group, we did not find any significant

interaction between math anxiety and condition for any course assessment (p > .05).

Figure 16

The Relationship Between Condition and Self-rated Math Anxiety for Each of the Four

Summative Assessments

Midterm 1 Midterm 2

Final Exam Final Lab Assessment
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Analyses thus far provide support for the Performing First hypothesis. Students who rated

themselves as lower in prior knowledge for the lab activities benefited more from performing

relative to observing than did students with higher prior knowledge. But these analyses measure

prior knowledge using students' self-ratings. We next use multilevel modeling to see if the same

effects can be spotted using formative assessment data, collected prior to each lab, as a more

targeted and objective measure of prior knowledge.

Analyses of Formative Assessments

Preprocessing and Plotting the Data

Because each week’s pre- and post-test questions might differ in difficulty, we

standardized within each test the scores prior to analysis so that each week’s pre- and post-test

scores are centered at 0. We plotted the standardized scores for each week to explore the

differences between the two conditions in each week (Figure 17). From the graph, we can see

that the Perform and Observe groups did not differ from each other on pretest questions. They

also did not differ a lot from each other on the post-tests in the early weeks, but starting in week

5, the Perform group seemed to score a bit higher than the Observe group.
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Figure 17

Standardized Pretest and Posttest Scores for each Week by Condition

Multilevel Model Specification

Given that the pre-test performance and post-test performance were not just collected

once but repeatedly, there were three levels of analysis (i.e., repeated measures, student, and

dyad). The sixteen repeated measures were nested within students and students were nested in

dyads. Thus, we calculated the intraclass correlation coefficient (ICC) first for the post-test
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performance at each level followed by a similar analysis of pre-test performance. 68.8% of the

total variability in post-test performance is due to repeated measures (level-1). Between-person

mean differences (level-2) accounted for 23.8% of the variability in post-test performance. In

other words, the expected correlation between two post-test scores of the same student is 23.8%,

which is considered large in educational datasets. Lastly, between-dyad mean differences

(level-3) accounted for 7% of the variability in post-test performance. While this percentage may

seem relatively small, it was enough to warrant the inclusion of a third level for dyads in the

model.

Similarly, for pre-test performance, repeated measures accounted for 77.6% of the total

variability in pre-test scores. Between-person mean differences (level-2) accounted for 16.3% of

the variability in pre-test performance. Lastly, between-dyad mean differences (level-3)

accounted for 5.7% of the variability in pre-test performance.

We specified a three-level MLM. The first level was the repeated measures nested within

students. The second level was the students, who are nested in dyads (i.e. the third level). Below,

we show the equation for the overall model:
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In the equation above, we partitioned the variation of students’ pretest performance into

, which stands for the mean of each student’s pretest performance (i.e. the𝑃𝑟𝑒𝑡𝑒𝑠𝑡
𝑗𝑘
𝑏.𝑐𝑔𝑚

between-cluster variation) and , which stands for how each student’s pretest𝑃𝑟𝑒𝑡𝑒𝑠𝑡
𝑖𝑗𝑘
𝑤

performance varied from week to week (i.e. the within-cluster residual). The equations for each
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level are fully presented in Appendix D. Based on our hypothesis, we were particularly interested

in and . Because the variation in pretest performance has both level-1 and level-2γ
03

γ
11

variation, the interaction between pretest performance and condition (perform versus observe)

was partitioned into the interaction between condition and each individual’s average pretest

performance (i.e. ), which we will refer to as the level-2 interaction, and the interactionγ
03

between condition and the variation within each individual’s pretest performance ( ), which weγ
11

will refer to as the cross-level interaction.

Interaction between Pretest and Condition

We used maximum likelihood estimation to fit the model using the Blimp application

(Enders, 2017). There was no significant level-2 interaction between condition and pretest

performance (median = 0.09, 95% credible interval = [-0.15, 0.34], but there was a significant

cross-level interaction between condition and pretest (median = -0.12, 95% credible interval =

[-0.22, -0.01]). A complete printout of the model results is included in Appendix E.

We next probed the significant cross-level interaction at the two levels of condition. For

participants in the Observe condition, the correlation between pretest performance and delayed

posttest performance was statistically significant (median = 0.11, 95% credible interval = [0.03,

0.18]). However, for participants in the Perform condition, the correlation between pretest

performance and delayed posttest performance was not statistically significant (median = -0.01,

95% credible interval = [-0.08, 0.07]).

Discussion

In the current project, we designed and implemented an embodied lab curriculum in a

college-level introductory statistics course taught using R programming. Central to our

investigation were two questions: how to design and apply embodied pedagogies in a
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longitudinal academic setting and whether learners' prior knowledge moderates the effectiveness

of these pedagogies. We proposed the Performing First Hypothesis, which posits that learners

who have no or low prior knowledge of the concepts to be learned need to physically perform the

activities to reap the most benefit out of the hands-on instruction, whereas learners with higher

levels of prior knowledge can benefit similarly from simply observing a hands-on demonstration.

In two sets of analyses, we demonstrated the pivotal role of prior knowledge in

moderating the effect of performing versus observing actions and gestures. First, we found that

learners’ self-ratings (at the end of the course) of their overall prior knowledge of the concepts

covered in the labs significantly moderated the effect of condition on their midterm 2, final

exam, and final lab assessment performance. We did not find self-rated prior knowledge to

moderate the effect of condition on the first midterm, for which there are three potential

explanations. First, there may be a ceiling effect in students’ performance on midterm 1. Second,

the overall prior knowledge rating may not accurately capture students’ prior knowledge in the

first weeks of the course. Third, and more related to the investigation of why embodied

pedagogies are important in learning, is that the absence of this moderating effect on the first

midterm can possibly be attributed to the students having experienced only two lab sessions by

that point.

Students might need to practice performing actions and gestures more than two times in

order to construct mental representations of concepts that are robust enough to be connected to

other concepts. In weeks 2 and 3 (i.e., the two weeks before the midterm) students learned to

enact or observe hands-on shuffling versus resampling of a dataset. In the later weeks of the

course, students used what they had learned about shuffle and resample to engage in hands-on

activities related to creating and manipulating sampling distributions. In this way, the mental
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representations they acquired in earlier weeks were further developed and connected. This is one

of the strengths of conducting an intervention longitudinally because such an approach allows us

to detect effects that would not have been detected in an intervention that lasted only two

sessions.

We also found that other factors, such as students’ previous mathematics performance

and mathematics anxiety, did not significantly moderate the effect of condition. This suggests

that what matters is not whether learners had more positive experiences with mathematics in the

past, but whether they came into the course with already-developed mental representations

related to the concepts that were the focus of the intervention. Past literature has also highlighted

how actions can lead to conceptual insights and the development of more robust mental

representations (Brooks et al., 2018; Broaders et al., 2007; Cartmill et al., 2012; Goldin-Meadow

et al., 2009). Our findings contribute to this literature by positing a unique role of learners’ prior

knowledge and putting forward the Performing First Hypothesis that serves as a framework for

such investigations.

Under the framework of the Performing First Hypothesis, it is hypothesized that prior

knowledge of the concepts to be learned—and not other factors—would moderate the impact of

varying levels of embodiment (i.e., performing versus observing) on learning outcomes. Our

results, which revealed a significant interaction consistent with this hypothesis, validate the

proposed mechanism and support the theory that embodied pedagogies differentially influence

learners. Future research should deliberately seek evidence to further elucidate this mechanism,

for instance, by exploring the type and quality of mental representations formed under various

embodied and non-embodied pedagogical approaches among diverse learners. Preliminary data

from our research, currently under review, indicate that more embodied pedagogies foster
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enhanced visuospatial representations of the concepts taught compared to both less embodied

and non-embodied approaches. These mental representations appear to mediate the influence of

differing pedagogical strategies on students’ learning outcomes (Authors et al., under review).

Our measure of students’ overall prior knowledge of the lab interventions is retrospective

and self-reported. It is possible that students’ rating of prior knowledge is impacted by their

experience in the intervention instead of the other way around. This is why we supplemented our

analysis with the MLM, which used students’ actual performance on each week’s pretest to

measure their prior knowledge. Consistent with our Performing First hypothesis and previous

analysis, the three-level MLM revealed a significant cross-level interaction between the type of

embodied intervention and learners’ prior knowledge. Specifically, when learners observed

hands-on activities, there was a significant correlation between their prior knowledge and their

performance on a delayed posttest. Conversely, when learners engaged in physical activities

themselves, this correlation between prior knowledge and posttest performance was not evident.

This suggests that while prior knowledge typically predicts post-intervention performance, active

participation in physical tasks disrupts this predictive relationship, possibly due to the different

cognitive processes involved in physical versus observational learning. The de-emphasis of prior

knowledge when learners engage in active performance delivers a powerful message to

educators, especially from an equity perspective.

The findings from the current study not only provide support for the Performing First

Hypothesis but also suggest new directions for embodied learning research. Past research on

embodied learning has demonstrated the efficacy of embodied interventions (i.e., interventions

that leverage bodily experience in some form) when compared with abstract instructions that do
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not involve the body. The current study suggests more nuanced questions of what and when -

what type of embodied pedagogies are the most effective, and when are they the most effective?

In the current study, we focused on the distinction between performing and observing

hands-on activities, as both forms of embodied pedagogy are prevalent in both research and

practice. We hypothesized that there is something inherently unique about "performing"

activities, a concept that is supported by classical developmental psychology. Piaget, for

example, highlighted the sensorimotor stage as foundational for later higher-order thinking and

abstract concept processing (Piaget, 1983; Piaget & Inhelder, 1969). Nonetheless, we also

recognize the potential value in exploring other types of embodied pedagogies, including

whole-body movements, virtual reality (VR) manipulations, and directed actions, as these too

may offer significant educational benefits.

We are not the only researchers who have started to pay attention to the role prior

knowledge plays in learners' response to embodied pedagogies (Cook et al., 2024, Congdon et

al., 2018; Congdon & Goldin-Meadow, 2021). For example, in addition to the study by Congdon

et al., 2018 reviewed in the introduction, a recent study by Cook and colleagues (2024) randomly

assigned second- and third-grade students to watch an instructional video about mathematical

equivalence that either included gestures or not. The researchers found a complex interaction

between learners’ prior knowledge (as demonstrated by their pretest strategy), the condition

(gesture vs. no gesture), the question type (whether the question was a conceptual question or

procedural question) and the way they asked the question (whether there was interference from

prior knowledge). Although it is difficult to interpret the exact meaning of the four-way

interaction, the findings suggest that the effect of gesture depends on the learners’ prior

knowledge and the nature of the questions.
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These are just the beginning of such an investigation to explore the intricate relationship

between prior knowledge and different types of embodied pedagogies. Our Performing First

theory provides a framework for forthcoming research, which will allow researchers to generate

testable hypotheses and experiments that are crucial to moving the field forward. We urge future

studies to investigate the relationship between prior knowledge and other forms of embodied

pedagogies to fully elucidate the question of “what” types of pedagogies and “when” in learners’

knowledge development would embodied pedagogies be beneficial.

Lastly, these findings have important implications for instructional design in STEM

education. Although teacher demonstrations are much easier to implement in real classrooms, for

novices it seems more beneficial to incorporate active participation in physical performance into

the curriculum to facilitate a deeper understanding of the concepts. After students have gained

meaningful hands-on experience with the concepts, teachers can then switch to teacher

demonstrations or perhaps even more abstract instruction. This research highlights the

importance of tailoring educational strategies to the learner's prior knowledge. Future research

should continue exploring the nuanced ways in which different types of embodied pedagogies

impact learners at different time points of their knowledge development. This could lead to more

refined strategies and curriculums that cater to the diverse needs of learners in higher education,

particularly in STEM domains.
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Appendix A: lab schedule

Week Content

Week 1 General introduction

Week 2 Cutting out and shuffling a dataset to understand shuffle ()

Week 3 Cutting out and sampling with replacement to understand

resample()

Week 4 Comparing shuffle() and resample()

Week 5 Drawing and gesturing to understand the empty model and

the two-group model

Week 6 Drawing and gesturing to understand the three-group model

Week 7 Drawing and gesturing to understand the regression model,

and compare it with group models

Week 8 Using shuffle () and resample () to simulate sampling

distributions

Week 9 Hands-on construction of the confidence interval

Week 10 Lab general assessment and debrief
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Appendix B

Model: midterm1 ~ role + concept_known

Predictors Estimates df F CI p

(Intercept) 93.86 91.25 – 96.47 <0.001

role [Perform] 1.04 1 0.909 -1.11 – 3.18 0.342

concept known 1.13 1 0.261 -3.24 – 5.50 0.610

Observations 217

R2 / R2 adjusted 0.005 / -0.005

Model: midterm2 ~ role + concept_known

Predictors Estimates df F CI p

(Intercept) 84.41 80.48 – 88.34 <0.001

role [Perform] 1.63 1 0.992 -1.59 – 4.85 0.320

concept known 8.45 1 6.426 1.88 – 15.02 0.012

Observations 217

R2 / R2 adjusted 0.030 / 0.021

Model: final exam ~ role + concept_known

Predictors Estimates df F CI p

(Intercept) 87.86 84.70 – 91.03 <0.001

role [Perform] 0.17 1 0.017 -2.42 – 2.77 0.896
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concept known 4.25 1 2.500 -1.05 – 9.54 0.115

Observations 217

R2 / R2 adjusted 0.012 / 0.002

Model: final lab assessment ~ role + concept_known

Predictors Estimates df F CI p

(Intercept) 20.32 17.75 – 22.89 <0.001

role [Perform] 1.55 1 2.061 -0.58 – 3.68 0.153

concept known 5.25 1 5.780 0.94 – 9.56 0.017

Observations 195

R2 / R2 adjusted 0.034 / 0.024
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Appendix C

Model: midterm1 ~ role * concept_known

Predictors Estimates df F CI p

(Intercept) 93.18 89.67 – 96.68 <0.001

role [Perform] 2.19 1 0.926 -2.30 – 6.69 0.337

concept known 2.53 1 0.594 -3.94 – 8.99 0.442

role [Perform] * concept

known

-2.57 1 0.334 -11.36 – 6.21 0.564

Observations 217

R2 / R2 adjusted 0.006 / -0.008

Model: midterm2 ~ role * concept_known

Predictors Estimates df F CI p

(Intercept) 79.64 74.46 – 84.83 <0.001

role [Perform] 9.70 1 8.281 3.06 – 16.35 0.004

concept known 18.19 1 14.047 8.62 – 27.75 <0.001

role [Perform] * concept

known

-17.97 1 7.430 -30.96 – -4.97 0.007

Observations 217

R2 / R2 adjusted 0.063 / 0.050
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Model: final exam ~ role * concept_known

Predictors Estimates df F CI p

(Intercept) 83.78 79.61 – 87.95 <0.001

concept known 12.58 1 6.821 4.89 – 20.27 0.001

role [Perform] 7.08 1 10.391 1.74 – 12.43 0.010

concept known * role

[Perform]

-15.37 1 8.410 -25.82 – -4.92 0.004

Observations 217

R2 / R2 adjusted 0.049 / 0.036

Model: final lab assessment ~ role * concept_known

Predictors Estimates df F CI p

(Intercept) 17.75 14.35 – 21.15 <0.001

concept known 10.51 1 7.120 4.23 – 16.80 0.001

role [Perform] 5.89 1 10.882 1.54 – 10.24 0.008

concept known * role

[Perform]

-9.74 1 5.048 -18.30 – -1.19 0.026

Observations 195

R2 / R2 adjusted 0.059 / 0.044
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Appendix D: equation for each level

Level 1:

𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡
𝑖𝑗𝑘

=  π
0𝑗𝑘

+π
1𝑗𝑘

(𝑃𝑟𝑒𝑡𝑒𝑠𝑡
𝑖𝑗𝑘
𝑤 ) + π

2𝑗𝑘
𝑇𝑖𝑚𝑒

𝑖𝑗𝑘
+ 𝑒

𝑖𝑗𝑘

Level 2:

+ +π
0𝑗𝑘

=  β
00𝑘

+ β
01𝑘

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑗𝑘

β
02𝑘

𝑃𝑟𝑒𝑡𝑒𝑠𝑡
𝑗𝑘
𝑏.𝑐𝑔𝑚 β

03𝑘
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑗𝑘
* 𝑃𝑟𝑒𝑡𝑒𝑠𝑡

𝑗𝑘
𝑏.𝑐𝑔𝑚 + 𝑟

0𝑗𝑘

π
1𝑗𝑘

=  β
10𝑘

+ β
11𝑘

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑗𝑘

π
2𝑗𝑘

 =  β
20𝑘

+β
21𝑘

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑗𝑘

Level 3:

= + β
00𝑘

γ
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𝑢
00𝑘
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01𝑘
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=β
02𝑘
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Appendix E: Results of the Three-level MLM

Coefficients Median StdDev 2.5% CI 97.5% CI

Intercept 0.039 0.096 -0.150 0.228

Condition.Exp -0.100 0.129 -0.350 0.154

Pretest 0.107 0.037 0.034 0.181

Time -0.022 0.015 -0.052 0.008

Pretest.mean[ID] 1.062 0.139 0.794 1.342

Pretest.mean[Dyad] -0.003 0.312 -0.593 0.631

Condition.Exp*Pretest -0.114 0.053 -0.218 -0.012

Condition.Exp*Time 0.044 0.022 0.001 0.086

Condition.Exp*Pretest.

mean[ID]

0.178 0.187 -0.180 0.556

Condition.Exp*Pretest.

mean[Dyad]

-0.270 0.417 -1.103 0.549

* CI stands for the credible interval.
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