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Clinical Epigenetics

Evaluation of pediatric epigenetic clocks 
across multiple tissues
Fang Fang1*, Linran Zhou1, Wei Perng2, Carmen J. Marsit3, Anna K. Knight4, Andres Cardenas5, 
Max T. Aung6, Marie‑France Hivert7,8, Izzuddin M. Aris7, Jaclyn M. Goodrich9, Alicia K. Smith4,10, 
Abigail Gaylord11, Rebecca C. Fry12, Emily Oken7, George O’Connor13,14, Douglas M. Ruden15, 
Leonardo Trasande11,16, Julie B. Herbstman17, Carlos A. Camargo Jr.18, Nicole R. Bush19, Anne L. Dunlop4, 
Dana M. Dabelea2, Margaret R. Karagas20, Carrie V. Breton6, Carole Ober21, Todd M. Everson3, Grier P. Page1, 
Christine Ladd‑Acosta22 and on behalf of program collaborators for Environmental influences on Child Health 
Outcomes 

Abstract 

Background Epigenetic clocks are promising tools for assessing biological age. We assessed the accuracy of pediat‑
ric epigenetic clocks in gestational and chronological age determination.

Results Our study used data from seven tissue types on three DNA methylation profiling microarrays and found 
that the Knight and Bohlin clocks performed similarly for blood cells, while the Lee clock was superior for placental 
samples. The pediatric‑buccal‑epigenetic clock performed the best for pediatric buccal samples, while the Horvath 
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clock is recommended for children’s blood cell samples. The NeoAge clock stands out for its unique ability to predict 
post‑menstrual age with high correlation with the observed age in infant buccal cell samples.

Conclusions Our findings provide valuable guidance for future research and development of epigenetic clocks 
in pediatric samples, enabling more accurate assessments of biological age.

Keywords Epigenetic clock, DNA methylation, Gestational age, Early childhood chronological age

Background
DNA methylation (DNAm), a molecular mark in which 
a methyl group is covalently added to the fifth carbon 
of cytosine next to guanine (CpG dinucleotides), is a 
well-studied and stable epigenetic mark associated with 
a diverse array of age-related chronic diseases [1–3], 
including the process of aging itself [4]. Various epige-
netic clocks have been developed to predict chrono-
logical ages using DNAm values from tens to hundreds 
of CpGs identified with statistical and machine learn-
ing methods. While these clocks correlate strongly with 
chronological age by design, they also provide an esti-
mate of an individual’s biological age [4, 5]. These clocks 
have been extensively studied in adult populations in 
whom accelerated epigenetic age (DNAm-predicted age 
older than chronological age) exhibits strong associations 
with age-related diseases, mortality, and health outcomes 
[4–6]. In recent years, a variety of epigenetic clocks have 
been built for pediatric populations, including clocks 
predicting gestational age (GA) and pediatric chronologi-
cal age (CA). However, there is limited research on the 
reliability and accuracy of epigenetic clocks for pediatric 
samples across different tissues and platforms.

Epigenetic clocks are used to evaluate the impact of 
various environmental exposures on aging and chil-
dren’s health outcomes. Understanding how these clocks 
perform across tissue types and developmental stages 
throughout early-life is critical for appropriate study 
design and interpretation of results. The evaluation of 
epigenetic clocks in early life stages may also shed light 
on the role of epigenetic modifications in developmental 
processes and the emergence of diseases later in life.

In this study, we conducted a comprehensive per-
formance evaluation of seven epigenetic clocks using 
DNAm data from various tissues and different Infinium 
arrays during the early stages of life. The seven clocks 
evaluated include the Horvath clock [7], trained across 
various tissues and cell types to predict CA across the 
lifecourse; the Knight [8] and Bohlin [9] clocks, both 
developed based on cord blood data to predict GA; the 
Lee [10] and Mayne [11] clocks, developed for use with 
placental data to predict GA; the PedBE clock [12], 
trained in buccal cells to predict CA across childhood 
and adolescence; and the NeoAge clock [13], trained in 
buccal cells from preterm infants to predict neonatal 

age, including post-menstrual age (PMA, time from esti-
mated conception onward) and post-natal age (PNA, 
time elapsed after birth). Comparisons were performed 
by analyzing a large number of diverse DNAm profiles 
(N = 4555) from newborns, infants, and young children in 
the Environmental influences on Child Health Outcomes 
(ECHO) Project. The goal of our study was to provide 
recommendations for the most suitable epigenetic clock 
in each scenario, ultimately advancing our understanding 
of this important biomarker for healthy development in 
early life.

Methods
Study participants
Data used in this study were obtained through the ECHO 
Research Program. ECHO is a consortium of established 
pregnancy and pediatric cohort studies seeking to inves-
tigate the effects of early environmental exposures on 
child health [14]. Our analysis included participants who 
met the following two criteria: (1) availability on an Illu-
mina platform of high-quality DNAm data collected from 
cord blood cells, cord blood mononuclear cells (CBMC), 
newborn blood spots, placental samples, buccal cells, 
peripheral blood mononuclear cells (PBMC), or periph-
eral whole blood, and (2) this data was collected either 
near the time of birth or during childhood (age < 18). 
A total of 3789 participants (with 4555 samples) across 
20 U.S. cohorts were included in the current analy-
sis (see Additional file  1: Table  S1). The study protocol 
was approved by the local or single ECHO institutional 
review board (IRB). The single IRB registered with the 
Office for Human Research Protections (OHRP and FDA) 
is IRB00000533. For participation in the ECHO-wide 
Cohort Data Collection Protocol and specific cohorts, 
written informed consent or parent/guardian permission 
was obtained, as well as child assent as appropriate.

DNA methylation data
Methylation of DNA data was measured using the Illu-
mina Infinium arrays, from the earliest Infinium Human 
Methylation27 BeadChip (27K), the following Infinium 
HumanMethylation450 BeadChip (450K), or the most 
recent Infinium MethylationEPIC arrays (EPIC [850K]). 
Preprocessing of DNAm data from three arrays was con-
ducted in parallel using the same pipeline in R v.4.0.3 
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mainly with the package minfi 1.36.0 [15]. At the probe 
level, we removed probes with more than 1% low-quality 
samples (detection P value > 0.05), cross-reactive probes 
that map to multiple genomic locations [16], and probes 
with SNP(s) (single nucleotide polymorphism) at the sin-
gle base pair extension or CpG site. At the sample level, 
we excluded samples with poor bisulfite conversion effi-
ciency at a cutoff of 4000, low overall array intensity at a 
cutoff of 10, low call rate (> 1% low-quality probes [detec-
tion P value > 0.05 or bead count < 3]), replicates, or a dis-
crepancy between predicted sex and reported sex. After 
applying these quality control steps, we applied the nor-
mal-exponential using out-of-band probes method, com-
monly referred to as “noob”, to correct for background 
signal and dye bias [17]. DNAm levels were calculated as 
β-values, which represent the proportion of cells/chro-
mosomes for which DNA that is methylated at the inter-
rogated CpG site and ranges from 0 to 1.

Epigenetic clocks
In this study, a total of seven epigenetic clocks were 
evaluated: Horvath [7], Knight [8], Bohlin [9], Lee [10], 
Mayne [11], PedBE [12], and NeoAge [13] (see Additional 
file 1: Table S2). The Knight clock consists of 148 CpGs 
and was developed using training data derived from cord 
blood in both 27K and 450K arrays. The Bohlin clock 
is calculated based on 96 CpGs in 450K data from cord 
blood. The Lee clock is based on 558 CpGs designed 
using placental data from the 450K and EPIC arrays. The 
Mayne clock has 62 CpGs and was developed using pla-
cental data from both 27K and 450K arrays. The PedBE 
clock, which involves 94 CpGs, is the first epigenetic 
clock focusing on pediatric samples (0–20 years old). The 
training data for the PedBE clock was obtained from buc-
cal cell DNA profiled with both 450K and EPIC arrays. 
To evaluate the performance of the PedBE clock in pre-
dicting chronological ages in pediatric samples, we com-
pared it with the pan-tissue Horvath clock (353 CpGs). 
The NeoAge clock was trained to predict both PMA and 
PNA for preterm infants in buccal cell samples using 
303–522 CpGs.

Each epigenetic clock was calculated in correspond-
ing tissues to match their training datasets, as outlined 
in Additional file  1: Table  S3. Specifically, Knight and 
Bohlin clocks were calculated for blood samples col-
lected at birth including cord blood, CBMC, blood spot, 
and peripheral whole blood. For placental samples, 
the Lee and Mayne clocks were compared. For samples 
obtained from infants or children in buccal cells, PBMC, 
or peripheral whole blood, the Horvath and PedBE clocks 
were applied and compared. In addition, we tested the 
NeoAge clock in preterm infants by analyzing DNA 
from buccal cells, placenta, and blood spot samples. For 

NeoAge, the predicted PNA was compared to chrono-
logical age in weeks, and the PMA was compared to the 
sum of gestational age at birth and the time elapsed after 
birth in weeks.

Notably, some of the datasets utilized in this study 
were previously incorporated in the training data of 
certain epigenetic clocks. Specifically, the Neonatal 
Neurobehavior and Outcomes in Very Preterm Infants 
(NOVI) dataset contributed to the training of NeoAge 
clock. The Lee clock, on the other hand, employed pla-
cental samples from the New Hampshire Birth Cohort 
Study (NHBCS) as training data, whereas only cord 
blood samples from this cohort were utilized in our 
study. Although the Conditions Affecting Neurocog-
nitive Development and Learning in Early Childhood 
(CANDLE) study was utilized as a testing dataset in the 
creation of the Knight clock for evaluation purposes, 
it was not utilized as a training dataset. Therefore, the 
only intersection between our study and the develop-
ment of the epigenetic clocks is the utilization of the 
NOVI dataset in the development of the NeoAge clock.

We calculated these epigenetic clocks using the 
methods described for Knight, Bohlin, Mayne, PedBE, 
and NeoAge clocks; and we used the existing R pack-
age planet [18] for the Lee clock and ENmix [19] for the 
Horvath clock. For the Knight, Bohlin, Mayne, PedBE, 
and NeoAge clocks, if a required CpG site was missing, 
then the closest CpG site in the dataset was used in its 
place [20] (see Additional file 1: Table S4).

Statistical analysis
Four measures were considered in evaluating the out-
puts of each epigenetic clock. First, the Spearman cor-
relation coefficient (r) between the predicted epigenetic 
age and observed gestational/chronological age was 
calculated to assess how well the relationship between 
the predicted and observed age could be described by 
a monotonic function. Second, the absolute difference 
between the predicted and the observed age for each 
sample was calculated, and the “median error” was 
defined as the median of the set of absolute differences. 
Third, the signed difference between the predicted and 
the observed age for each sample was calculated, and 
the “mean difference” was defined as the arithmetic 
mean of the set of signed differences. Lastly, the residu-
als obtained from regressing the predicted epigenetic 
age onto the observed age (age acceleration residual) 
were utilized. This residual-based analysis enabled the 
evaluation of how well the epigenetic clock’s predic-
tions aligned with the observed age after accounting 
for linear dependencies and has been demonstrated 
robust with respect to normalization methods and 
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measurement platforms [21]. The “median residual” 
was defined as the median of absolute residuals.

We initiated our analysis by comparing the suitabil-
ity of various epigenetic clocks for each tissue type, 
aiming to provide a comprehensive summary of the 
most appropriate epigenetic clock for each specific 
tissue. Following that, we proceeded to evaluate the 
performance of these epigenetic clocks across diverse 
populations. This evaluation included comparing 
epigenetic clocks between preterm and term infants 
within the same tissue type, analyzing different self-
reported racial groups, comparing males and females, 
and assessing the consistency of epigenetic age esti-
mates across different tissue types within the same set 
of participants.

Results
Sample characteristics
In this study, data were collected from 3789 participants, 
resulting in a total of 4555 tissue samples from seven dif-
ferent tissue types collected at birth or early childhood, 
as indicated in Table  1 and Fig.  1. The sample set con-
sisted of 2273 male and 2282 female samples. The major-
ity of participants self-identified as White race (n = 2302 
[51%]), but a large proportion of individuals identi-
fied as Black (n = 988 [22%]), Asian (n = 94 [2%]), and 
other racial groups (including Hawaiian or other Pacific 
Islander, American Indian or Alaska Native, multiple race 
and other race; n = 752 [17%]). DNAm data was gener-
ated using three different types of arrays: (1) 27K (n = 159 
[3%]), (2) 450K (n = 1963 [43%]), and (3) EPIC (n = 2433 

Table 1 Demographic information for ECHO participants included in this study

*It is an ECHO requirement that table cells and figures that report data from fewer than 5 participants must be suppressed to protect Participant confidentiality (i.e., 
marked as < 5)

CBMC Cord blood mononuclear cells, PBMC Peripheral blood mononuclear cells

Cord blood 
(N = 1938)

CBMC 
(N = 142)

Blood spot 
(N = 701)

Placenta 
(N = 579)

Buccal (N = 552) PBMC 
(N = 290)

Peripheral 
whole blood 
(N = 353)

Total 
(N = 4555)

Self‑reported race

 American 
Indian 
or Alaska 
Native

11  < 5* 6  < 5*  < 5*  < 5*  < 5* 24

 Asian 31  < 5* 21 18 19  < 5*  < 5* 94

 Black 364 112 124 122 99 117 50 988

 Hawaiian 
or other 
Pacific 
Islander

 < 5*  < 5*  < 5*  < 5* 7  < 5*  < 5* 9

 Multiple race 176 9 65 38 104 11 153 556

 Other race 94  < 5* 12 16 36  < 5*  < 5* 163

 White 929  < 5* 435 367 284 142 143 2302

 Missing 333 17 36 14  < 5* 16  < 5* 419

Sex

 Male 914 70 366 313 303 144 163 2273

 Female 1,024 72 335 266 249 146 190 2282

Birth term

 Preterm  < 5*  < 5* 272 399 480  < 5*  < 5* 1151

 Term 1,938 142 439 180 72 290 353 3414

Array type

 27K 159  < 5*  < 5*  < 5*  < 5*  < 5*  < 5* 159

 450K 1,194  < 51 253 59  < 51 150 307 1963

 EPIC 585 142 448 520 552 140 46 2433

Gestational age 
at delivery

39.1 ± 1.5 39.0 ± 1.4 33.7 ± 8.6 29.8 ± 6.2 28.1 ± 4.3 39.1 ± 1.2 39.0 ± 1.7

Age at sample 
collection

0 0 0 0 74.3 ± 40.3 days 9.1 ± 3.0 years 6.0 ± 2.8 years
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[53%]). Notably, the study also included two cohorts of 
infants born very preterm (GA < 30 weeks), consisting of 
1151 samples.

Epigenetic clocks
This study involved the calculation of seven different epi-
genetic clocks, which collectively incorporated a total of 
2587 CpGs. Most of these CpGs (n = 2206) were specific 
to only one clock, as shown in Additional file 1: Table S5. 
Twenty CpGs were included in two clocks, with the Hor-
vath clock having the largest overlap, sharing 11 CpGs 
with other clocks. Additional file  2: Fig.  S1 displays the 
distribution of CpGs for each clock across the genome. 
The performance of the clocks was compared and sum-
marized in Table  2, with the measurements in correla-
tion, median error, median residual, and mean difference.

Gestational age (GA) prediction in blood samples collected 
at birth
We assessed the performance of the Knight and Boh-
lin clocks, in three types of blood samples (cord blood, 
CBMC, and blood spot) collected at birth, stratified by 
array type and gestational age at birth category (term 
[> 37 weeks] or preterm [< 37 weeks]). The Bohlin clock 
consistently shows less variation in terms of age accelera-
tion residuals (Table 2).

In cord blood DNA, the Bohlin clock GA was more 
correlated with observed GA than the Knight clock 
across all three array types (Table  2). The median error 
for the Knight clock was consistently around 1  week 
across array types, whereas the Bohlin clock exhibited 
varied median errors, with the lowest at 0.58 week in the 
27K array, 1.10  weeks in the 450K array, and the larg-
est at 1.64 weeks in the EPIC array. Similar trends were 
observed for mean difference, with the Knight clock 

consistently underestimating GA, typically resulting in 
predictions 0.5 weeks less than observed GA. The Bohlin 
clock had a mean difference of − 0.31 week for the 27K 
array, − 0.99 week for the 450K array, and − 1.41 weeks 
for the EPIC array.

In CBMC DNA using the EPIC array, the Bohlin clock 
showed a higher correlation with observed GA than the 
Knight clock (0.66 vs. 0.38), with smaller median error 
(1.73 vs. 2.02 weeks), median residual (0.35 vs. 0.83 week) 
and mean difference (− 1.56 vs. − 1.90 weeks).

In blood spot DNA, the Bohlin clock GA showed 
stronger correlation with the observed GA than the 
Knight clock using the 450K and EPIC arrays (0.47 and 
0.65 for Bohlin vs. 0.35 and 0.48 for Knight, Table  2). 
The median errors were around 1  week for both clocks 
in 450K data, but the Knight clock had a smaller median 
error than Bohlin clock for EPIC array data (0.89 vs. 
1.42 weeks). The Knight clock also had smaller mean dif-
ference estimates than the Bohlin clock for both 450K 
(− 0.082 vs. − 0.94 week) and EPIC array data (− 0.32 vs. 
− 1.35 weeks).

For the preterm cohort with blood spot DNA, using the 
EPIC array, the Bohlin clock GA had a stronger correla-
tion than the Knight clock (0.67 vs. 0.57), but with higher 
median error (3.91 vs. 2.52  weeks) and mean difference 
(4.01 vs. 2.52 weeks).

Thus, in all the blood samples collected at birth, the 
Bohlin clock GA demonstrates a stronger correlation 
with observed GA compared to the Knight clock GA. 
Nevertheless, the Knight clock exhibits a consistent trend 
of having lower median error and mean differences, 
except in cases where GA is predicted in cord blood 
DNA using the 27K array and in CBMC DNA using the 
EPIC array.

Fig. 1 Flowchart describing the participant and cohort selection process, adhering to the inclusion criteria for the analysis
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Gestational age (GA) prediction in placenta
We evaluated the GA in DNA from placentas using both 
the Lee (robust placental clock [RPC]) and Mayne clocks 
that were developed for placental samples. The Lee clock 
GA showed stronger correlation with the observed GA 
across the 450K (0.50 vs. 0.27) and EPIC arrays (0.36 vs. 
−  0.054) for both preterm (0.6 vs. 0.35) and term pla-
centas. The Lee clock also had lower median errors and 
mean differences (Table 2). The age acceleration residuals 
were less varied for the Lee clock compared to the Mayne 
clock (Table 2).

Pediatric chronological age (CA) prediction
The performance of the PedBE and Horvath clocks was 
assessed across various tissue types and age ranges. For 
DNA obtained from buccal cells of children under the 
age of one, the PedBE clock exhibited a better correla-
tion with the observed CA when compared to the Hor-
vath clockin both preterm (0.62 for PedBE vs. 0.41 for 
Horvath) and term babies (0.12 for PedBE vs. − 0.36 for 
Horvath). Furthermore, the PedBE clock demonstrated 
a smaller median error and mean difference (Table  2), 
as well as less variability in age acceleration residuals 
(Table  2). It is worth noting that the term babies from 
which the buccal cells were obtained were all less than 
one month of age. When converting to CA in years, the 

observed age ranged from 0 to 0.082 years, indicating a 
very narrow variability, which makes accurate prediction 
challenging. The predicted Horvath age ranged from 0 to 
1.8 years and the negative correlation demonstrated the 
poor predictive capacity of the Horvath clock in this sub-
set of samples.

PBMC DNA that were tested with the EPIC array were 
all collected at the same age (age = 7 years old) so no cor-
relation between the predicted and observed CA was 
expected, but the PedBE clock showed a smaller median 
error/residuals and mean difference than the Horvath 
clock. The 450K array data, which included PBMC sam-
ples collected around ages 8 and 14, revealed that both 
clocks had similar correlations (~ 0.8) with the observed 
CA, but the PedBE clock had a larger median error and 
more pronounced mean difference than the Horvath 
clock.

In contrast, for peripheral whole blood samples col-
lected under the age of 1 or between 3–10 years of age, 
the Horvath clock demonstrated higher correlation with 
the observed CA, with smaller median error and mean 
difference than the PedBE clock in both the 450K and 
EPIC array data. The differential correlations of the epige-
netic ages predicted by the Horvath clock and the PedBE 
age were only observed in peripheral whole blood sam-
ples but not in PBMC. This discrepancy may reflect the 

Fig. 2 A summary of the epigenetic clocks used and compared in this study and our recommendation for specific tissue types. CA, chronological 
age; GA, gestational age. All the correlations mentioned are Spearman correlation
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variation in blood cell types present between these two 
sample types. For instance, whole blood includes neutro-
phils and eosinophils, which are not present in PBMC.

The results indicate that the PedBE clock performs 
better than the Horvath clock when analyzing DNA 
extracted from infant buccal cells. However, it is recom-
mended to use the Horvath clock for analyzing pediatric 
blood samples, including PBMC and peripheral whole 
blood.

Epigenetic ages for preterm infants
This study offered a unique opportunity to assess the per-
formance of epigenetic clocks on DNA obtained from 
preterm infants as samples of blood spot, placenta, and 
buccal cell DNA were available. Specifically, the Knight 
and Bohlin clocks were calculated for blood spot DNA, 
while the Lee and Mayne clocks were calculated for 
placental DNA. For buccal cells, both the Horvath and 
PedBE clocks were computed.

When evaluating these epigenetic clocks in the same 
tissue type and same platform, the predicted epigenetic 
ages were better correlated with the observed GA and CA 
in preterm infants compared with term infants (Table 2). 
These results demonstrate the accuracy of applying epi-
genetic clocks to preterm infants, suggesting that they 
can be used within these populations.

For blood spot and placental DNA, corresponding epi-
genetic clocks (Knight and Bohlin clocks for blood spot 
DNA, Lee and Mayne clocks for placental DNA) showed 
mean difference ranges of 2.52 to 7.38 weeks for GA pre-
diction. In term infants, these clocks showed mean dif-
ference ranges of −  1.32 to 0.92  weeks. For buccal cells 
collected during the first year of life, the corresponding 
epigenetic clocks (Horvath and PedBE clocks) showed 
mean difference ranges from 0.07 to 1.26  years in pre-
term infants, and a similar range of 0.04 to 1.00  years 
in term infants. Thus, in blood spot and placental DNA 
collected in newborns, epigenetic ages predicted by the 
corresponding clocks showed age acceleration in pre-
term infants but not in term infants. However, in DNA 
collected from buccal cells of infants at a later life-stage 
(> 1  year), epigenetic ages estimated by corresponding 
clocks do not show as much age acceleration in preterm 
infants compared to term infants.

NeoAge clock
NeoAge clock was trained on buccal cell samples and 
specifically developed for neonatal aging in preterm 
infants, providing predictions for both PMA and PNA. 
We first compared the NeoAge clock’s prediction of 
PNA with the PedBE clock’s prediction in buccal cells. 
In the current study, the largest cohort with buccal cells 
collected from preterm infants was also the cohort that 

contributed to the training dataset for the NeoAge clock 
[13]. Therefore, the prediction performance is very strong 
in this cohort and outperforms the PedBE clock (Table 3).

In another cohort with buccal cells collected from term 
infants within the first month, the PedBE clock has a bet-
ter correlation with the observed CA (0.12 vs. −  0.02) 
with smaller median error (2.66 vs. 7.35 weeks) and mean 
difference (2.30 vs. 7.44  weeks) than the NeoAge PNA 
(Table  3). However, the NeoAge clock is currently the 
only clock that predicts PMA, which incorporates both 
the GA (the time from conception to birth) and the time 
elapsed after birth. The correlation between the predicted 
PMA by the NeoAge clock and the observed GA plus the 
time after birth, surpasses the correlation between the 
Knight clock-predicted GA and the observed GA (0.44 
vs. 0.25). Moreover, the NeoAge clock exhibits substan-
tially smaller median error (0.98 vs. 11.01  weeks) and 
mean difference (− 0.87 vs. − 10.96 weeks) compared to 
the Knight clock..

We further examined the NeoAge PMA performance 
in two additional tissue types. Specifically, we compared 
its performance to that of the Knight clock in blood spot 
samples and to the Lee clock in placental samples. Our 
findings suggest that the NeoAge PMA prediction did 
not perform as well in blood spot samples compared to 
the Knight clock. Similarly, the NeoAge clock did not 
perform as well as the Lee clock in placental samples 
(Table 3).

Variation in epigenetic age among diverse self‑identified 
racial groups
Race is a social construct that may reflect the lived expe-
riences of the reporter. These lived experiences may be 
associated with biological age [22]. Our study incorpo-
rates data from various self-reported race groups pre-
senting an opportunity to explore how epigenetic clocks 
adapt to racial group heterogeneity. To ensure a robust 
comparison analysis, we have required a minimum of 
40 samples from each self-reported race group to ensure 
that the Spearman correlation could reach approxi-
mately 0.3 with a significance level of p < 0.05 [23]. Our 
study specifically examines the Knight and Bohlin clocks 
in cord blood and blood spot samples, Lee and Mayne 
clocks in placental samples, and Horvath and PedBE 
clocks in buccal cells among both self-identified White 
and Black individuals (see Additional file 1: Table S6). To 
maintain simplicity and clarity, we will henceforth refer 
to the self-identified racial groups as either "White" or 
"Black" in the subsequent sections of the study.

When comparing the Knight and Bohlin clocks in cord 
blood samples, we observed similar performances for 
both clocks in both White and Black participants. How-
ever, using data from the 27K array, both the Knight and 
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Bohlin clocks were more correlated with observed GA in 
Black individuals (n = 58) than White individuals (n = 66) 
(see Additional file 2: Fig. S2). In contrast, using data from 
450K and EPIC arrays, both clocks were more correlated 
with observed GA in White individuals than Black indi-
viduals (see Additional file 2: Figs. S3 and S4). Also, we 
found consistently larger median errors for participants 
in the Black group than the White group across all three 
arrays and for both clocks (average 1.23 vs. 0.91  weeks, 
t test P = 0.005). The estimated mean differences were 
similar across groups for both clocks. It should be noted 
that the White and Black groups had similar sample size 
in 27K array data, but the White group has > 3 times the 
sample sizes in the 450K array data and ~ 2 times the 
sample sizes in EPIC array data.

In blood spot samples collected from term infants using 
the EPIC array, we found both the Knight and Bohlin 
clocks had better correlations with observed GA in the 
Black group (n = 47) than the White group (n = 101), with 
larger mean differences (see Additional file  2: Fig.  S5). 
The median errors were similar across both groups. In 
contrast, for blood spot samples from preterm infants, 
we observed better correlations with observed GA for 
both clocks in the White group (n = 170) compared to the 
Black group (n = 76) (see Additional file  2: Fig.  S6). The 
median errors were similar between both groups, as were 
the mean differences.

Analyses of placental samples using the EPIC array in 
preterm infants revealed that both the Lee and Mayne 
clocks had better correlations with observed GA in the 
White group (n = 245) than in the Black group (n = 112), 
with similar median errors and mean differences (see 
Additional file 2: Fig. S7 and Additional file 1: Table S6). 
For buccal samples collected within the first year of life 
from preterm infants using the EPIC array, the Horvath 
clock showed better correlation with smaller median 
error and mean difference for the Black group (n = 94) 
than for the White group (n = 231); however, there was 
substantial overestimation in both groups. The PedBE 
clock showed overall better performance and similar 
results across race groups (see Additional file 2: Fig. S8).

Comparison of epigenetic clocks between sexes
We conducted a comparative analysis of epigenetic 
clocks between males and females in each subgroup, with 
a requirement of a minimum of 40 samples. It is impor-
tant to highlight that we had balanced sample sizes for 
both sexes in all subsets (Additional file 1: Table S7).

The Knight and Bohlin clocks displayed comparable 
performances in blood spot samples with slight variations 
observed in EPIC array data. Specifically, in blood spot 
samples collected from term babies with EPIC array, the 
Knight clock showed a better correlation in females with 

smaller median error and mean difference. Conversely, 
the Bohlin clock had a better correlation in males with 
smaller median error and mean difference. In blood spot 
samples obtained from preterm babies with EPIC array 
data, both clocks showed better correlations in males. 
In CMBC, both the Knight and Bohlin clocks exhibited 
better correlations with observed GA in males compared 
to females, with similar median errors, median residuals 
and mean differences. For cord blood samples, the Knight 
clock showed a slight better correlation in 27K array data 
for females, while it showed a better correlation with the 
observed GA in males for 450K array data. On the other 
hand, the Bohlin clock showed slightly better correlations 
in males for both 450K and EPIC array data (see Addi-
tional file 1: Table S7).

For placental samples, both the Lee and Mayne clocks 
had better correlations with the observed GA in males, 
showing similar median errors, median residuals and 
mean differences between sexes (see Additional file  1: 
Table S7).

In the case of buccal cells, PBMC, and peripheral whole 
blood samples, both the Horvath and PedBE clocks 
exhibited similar performances between sexes (see, Addi-
tional file 1: Table S7).

Comparison of predicted epigenetic age across tissues
In this study, some participants had DNAm measures 
from multiple tissue types. We subsequently compared 
the estimated epigenetic ages, using appropriate clocks, 
across various tissues for these subsets of participants 
(see Additional file 1: Table S8).

We first analyzed data from 258 preterm infants who 
had both blood spot and placental samples collected at 
birth. For blood spot DNA, we used the Knight clock, 
and for placental DNA, we used the Lee clock. Our anal-
ysis revealed that the predicted epigenetic ages were sim-
ilar across tissues ( r = 0.44, [paired t− test] p = 0.47 ). 
Both clocks predicted similar age acceleration of approxi-
mately 2.5  weeks. This cross-tissue validation provides 
additional confidence in our findings that preterm infants 
have an older epigenetic age than term infants.

For another subset of 68 term newborns who had both 
cord blood and placental samples, we used the Knight 
clock for the cord blood DNA and the Lee clock for the 
placental DNA. The estimated epigenetic ages were also 
similar ( r = 0.38, [paired t− test] p = 0.10 ), with a 
mean difference of − 0.28 week for the Knight clock and 
0.06 week for the Lee clock.

Our results indicate that epigenetic age estimations 
are comparable across tissue types available in our study 
(blood spot, cord blood and placenta) when tissue-appro-
priate clocks are employed.
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Discussion
Our study aimed to evaluate epigenetic clocks for meas-
uring gestational age and early-childhood chronologi-
cal age by analyzing 4,555 DNAm samples from 7 tissue 
types with 3 arrays in cohorts from a large national con-
sortium. Our performance comparisons emphasize the 
strengths and limitations of each epigenetic clock to 
accurately determine gestational or chronological age in 
diverse pediatric populations. These analyses suggested 
three major conclusions: (1) the Knight and Bohlin clocks 
had comparable performance in predicting gestational 
age in blood cell samples (cord blood, CBMC, and blood 
spot), with the Bohlin clock being more highly corre-
lated but with larger errors and mean differences in some 
cases; (2) The Lee clock outperformed the Mayne clock 
in predicting gestational age in placental samples; and 
(3) The PedBE clock had better accuracy with respect to 
correlations with the observed CA, smaller median error 
and mean difference in predicting CA in infant buccal 
cells compared with the Horvath clock. Conversely, the 
Horvath clock performed better in pediatric blood cell 
samples (PBMC and peripheral whole blood).

By analyzing DNAm from preterm infants, we had the 
opportunity to compare the performance of epigenetic 
clocks based on term status and to evaluate the NeoAge 
clock, which was specialized for preterm infants. Our 
results showed that all six clocks had better correlations 
with observed gestational/chronological ages in preterm 
infants compared to term infants in corresponding tis-
sues. The epigenetic ages predicted exhibit a mean differ-
ence ranging from 2.5 to 7.4 weeks for preterm infants. 
This finding is consistent with earlier research demon-
strating gestational age acceleration in preterm newborns 
[24–26]. While the NeoAge clock showed better accu-
racy in predicting post-natal and post-menstrual age in 
buccal cells for preterm infants, it didn’t perform well in 
blood spot and placental DNA samples. The PedBE clock 
exhibited superior accuracy in predicting post-natal age 
for buccal cells collected within 30 days of birth in term 
infants, as compared to the NeoAge clock. Neverthe-
less, the NeoAge clock offers a unique prediction for 
post-menstrual age, which is an estimate of the dura-
tion between conception and tissue collection, and this 
estimate corresponds well with the actual age at tissue 
collection.

Using data on self-reported racial group, we were able 
to test whether the epigenetic clocks performed equally 
for the White and Black individuals in cord blood, blood 
spot, placental and buccal samples. The results of epi-
genetic clocks across these groups were not consistent. 
Although the majority of training data for these epige-
netic clocks are based upon samples from White indi-
viduals, our study found that in some cases, epigenetic 

clocks performed better in self-reported Black individu-
als. Specifically, the Knight and Bohlin clocks in cord 
blood DNA using 27K array and in blood spot DNA 
using EPIC array, as well as the Horvath clock in buccal 
cells using EPIC array showed better correlations with 
observed gestational/chronological age in Black individu-
als. These findings suggest that further research is needed 
to explore the adaptability of epigenetic clocks for diverse 
populations.

Our study represents the largest study to date evaluat-
ing epigenetic clocks in pediatric populations across vari-
ous tissue types using different arrays, providing valuable 
insights for future applications of epigenetic clock tools 
in specific tissues throughout different stages of pediatric 
life. However, it is important to consider certain limita-
tions when interpreting the results. Firstly, the sample 
sizes from blood tissues are considerably larger than 
those from other tissues, which may limit the power for 
comparisons in certain tissues. Secondly, the number of 
chronological age points from available pediatric samples 
is limited, which could constrain the evaluation of epi-
genetic clocks that predict chronological age. Addition-
ally, the observed gestational ages in our study may have 
been obtained from different sources, such as maternal 
self-report or first-trimester ultrasound. The variabil-
ity in the source of gestational age data could introduce 
potential biases and affect the reliability and accuracy 
of the results. Similarly, not all CpGs used in each epi-
genetic clock are available in our data, necessitating the 
use of nearest CpGs as proxies, which may influence the 
performance of the epigenetic clocks. For example, 90% 
(88 out of 97) CpGs of the Bohlin clock were missing on 
the 27K array. Another important consideration is the 
heterogeneity of the pediatric cohort samples included in 
this study. Variation in factors such as sample size, demo-
graphic variations, and recruitment weighted toward 
specific underlying health conditions could potentially 
contribute to the variation in epigenetic age estimates. 
Therefore, these data should be interpreted with caution 
particularly as it pertains to conclusions about the per-
formance of specific epigenetic clocks in pediatric popu-
lations with varied health backgrounds. Furthermore, 
the lack of genetic data limits our ability to examine the 
effects of genetic ancestry on the performance of epige-
netic clocks. Lastly, it is worth noting that our study pri-
marily focuses on comparing age estimation accuracy, 
which may not fully reflect the clinical relevance of epi-
genetic age during the process of development and aging. 
To gain a comprehensive understanding of the implica-
tions, it is essential to consider other common covari-
ates, such as cell type proportions, batch effects, sex, 
and health conditions when examining the associations 
between epigenetic clocks and health outcomes.
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Conclusion
Our study has provided valuable insights into the per-
formance of seven epigenetic clocks across various tis-
sue and array types for samples collected at birth or early 
childhood. Our results suggest that the optimal choice of 
epigenetic clock depends on the specific tissue and age 
group under investigation (Fig. 2). For instance, the Boh-
lin and the Knight clocks are the preferred options for 
newborn blood cell samples, while the Lee clock is rec-
ommended for placental samples. The higher correlation 
makes the Bohlin clock a better choice to evaluate health 
and development. In contrast, for age prediction pur-
poses, the Knight clock is preferred for its lower median 
errors. The PedBE clock is suitable for children’s buccal 
cell samples, while the Horvath clock is recommended 
for children’s blood cell samples. Notably, the NeoAge 
clock stands out for its unique ability to predict post-
menstrual age and high correlation with the observed age 
in infant buccal cell samples. Overall, our study provides 
practical recommendations for selecting the most appro-
priate epigenetic clock in different research contexts, 
highlighting the significance of accounting for tissue and 
platform differences when interpreting results. 
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