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Abstract 
 

For a learned movement to be effective, it must be produced at the appropriate 

time, but how this is achieved in the brain remains unknown.  Smooth pursuit is a simple 

oculomotor behavior that exhibits temporally specific learning.  Upon repeated exposure 

to a precisely-timed instructive change in target direction, the pursuit system learns to 

produce an eye movement that peaks around time when the instructive stimulus is 

expected to appear.  The smooth eye movement region of the frontal eye fields (FEFSEM), 

a motor cortex for smooth pursuit, contains a spatial map of elapsed time since the 

initiation of pursuit, and is therefore a good candidate for mediating the temporal 

specificity of pursuit learning.  In chapter 1, I describe a series of electrophysiology 

experiments demonstrating that the FEFSEM, by virtue of its innate representation of time, 

may serve to incorporate the salient temporal features of the instructive stimulus into the 

learned eye movement.   

Because movements improve and become ingrained with practice, motor learning 

is inherently a dynamic process.  In chapter 2, I explored the neural changes associated 

with the dynamics of motor learning by comparing how activity in the FEFSEM and a 

downstream cerebellar locus for pursuit, the floccular complex, emerged and evolved as 

the animal learned to produce the desired eye movement.  My findings suggest that 

pursuit learning arises from a combination of neural processes with different dynamics of 

adaptation, and that the FEFSEM and the floccular complex utilize these processes in 

different ways to support at least partially separate aspects of pursuit learning.   
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General Introduction 
 

A vital role of all but the simplest motor circuits is to anticipate, and ultimately 

adapt to, patterns in the environment.  At the heart of motor learning are the questions of 

“when?” and “for how long?”.  “When” refers to a measurement of time in the context of 

a single movement (within-movement).  The importance of “when” is apparent to a sleep-

deprived teenager, or an incorrigible academic, who must hit the snooze button right 

before the alarm clock screeches its jarring wake up call.  “For how long” reflects the 

inherently dynamic nature of motor learning evident across repetitions of the desired 

movement (across-movement).  For example, someone playing tennis for the first time 

may serve the ball too low or too hard.  However, after weeks of practice, placing the 

proper touch on the ball becomes second nature.  Our daily actions serve as constant 

reminder that the ability of neural circuits to operate across multiple time scales allows 

motor learning to be specific yet versatile.   

Numerous brain areas have been implicated in estimating time in the context of a 

single movement and thus provide some possible neural answers for “when?” (Leon and 

Shadlen, 2003; Lewis and Miall, 2003; Sakurai et al. 2004), yet none of these neural 

representations of time have been directly linked to motor learning.  Similarly, we have a 

limited understanding of how the process of motor learning unfolds from changes 

throughout the neural circuit, both due to the dearth of behavioral paradigms that drive 

sufficiently rapid motor learning so as to permit reliable recordings from the same 
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neurons continuously throughout the learning process, as well as the scarcity of learning 

data from multiple brain areas within the motor circuit.  

 Smooth pursuit, an ocular tracking behavior that serves to stabilize a small moving 

target on the fovea by matching eye velocity to target velocity, is an excellent model for 

studying how the within-movement and across-movement dynamics of motor learning 

arise from the changes within the neural circuit.  Much is known about the response 

properties of neurons at different levels of the pursuit circuit, starting from the 

representation of visual information in the middle temporal area (MT) (Newsome et al., 

1988) and the medial superior temporal area (MST) (Chukoskie and Movshon, 2009), to 

the formation of the motor command in the pursuit region of the frontal eye fields 

(FEFSEM) (Tanaka and Lisberger, 2001, 2002) and the cerebellum (Krauzlis and 

Lisberger, 1994, 1996).  Further, the anatomical connectivity of the pursuit circuit has 

been extensively characterized, thus providing additional insight into the interactions 

between these different structures (for reviews, see Krauzlis, 2004; Sharpe, 2008).  

Finally, robust smooth pursuit learning can be easily and rapidly induced using a basic 

experimental setup.  Rhesus macaques repeatedly presented with an instructive change in 

target direction occurring at a fixed delay after target motion onset will rapidly learn to 

produce a eye movement that is in the direction of the expected change in target 

trajectory (Medina et al., 2005).  A salient feature of the learned eye movement is that it 

is maximal around the expected onset of the instructive stimulus, thus providing an 

opportunity for asking how within-movement temporal precision is achieved in the brain.  

Moreover, the learned eye velocity usually ceased to change after 20 to 40 movement 

repetitions, which generally corresponded to a few minutes of absolute time in the 
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experiment.  Therefore, it is technically feasible to precisely measure the evolution of 

neural activity throughout the acquisition of the learned behavior and beyond, to ask how 

the learning process is supported by changes within the neural circuit. 

 A number of areas throughout the pursuit circuit could potentially serve as sites of 

motor learning.  One such area is the smooth eye movement region of the frontal eye 

fields (FEFSEM), a motor cortex for smooth pursuit, located in the fundus of the arcuate 

sulcus.  The FEFSEM is believed to play a major role in regulating the gain of visual-

motor transmission (Macavoy et al., 1991; Tanaka and Lisberger, 2001, 2002), which 

describes the selective gating and enhancement of sensory inputs for driving the motor 

output.  Since learning could arise via a shift in the visual-motor gain, an earlier attempt 

was made to identify changes in the mean firing rate of FEFSEM neurons when animals 

participated in a speed-learning paradigm.  The study failed to find consistent expression 

of learning across the FEFSEM population (Chou and Lisberger, 2004), although the 

authors reported a considerable amount of heterogeneity in the magnitude of learning 

across individual neurons.  One possible explanation for the heterogeneity in neural 

learning, which was not explored in the 2004 study, is that pursuit learning selectively 

recruits FEFSEM neurons based on the amount of overlap between the neuron’s response 

properties and the features of the instructive stimulus.    

 The FEFSEM is unique in the pursuit circuit in that it contains a representation of 

elapsed time from movement onset; different FEFSEM neurons fire most vigorously at 

distinct times during each movement, and the population activity is such that all times 

during the movement elicit maximal responses from a subset of neurons (Schoppik et al., 

2008).  Therefore, the FEFSEM is a possible source for the within-movement temporal 
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specificity of the learned eye movement produced by the direction-learning paradigm.  In 

Chapter 1, I performed series of single-unit recording experiments in awake behaving 

rhesus macaques to test the hypothesis that the amount of neural learning evoked by a 

temporally precise instructive stimulus is related to the innate preference of that FEFSEM 

neuron for the moment during the pursuit movement corresponding to the onset of the 

instructive stimulus.  In the first experiment, I fixed the time at which the instructive 

stimulus appeared during the movement and measured the expression of learning in 

neurons that preferred different times during pursuit.  Subsequently, I controlled for 

variability across neurons by measuring the expression of learning in the same neuron as 

a function of the timing of the instructive stimulus.  In both experiments, the expression 

of learning was greater in FEFSEM neurons that preferred the timing of the instructive 

stimulus.  Finally, by manipulating target motion to directly generate a mean eye 

movement that mimicked the magnitude and time course of the mean learned eye 

movement, I confirmed that the pattern of activation in the FEFSEM during temporally 

specific pursuit learning was not merely a result of the change in the eye movement, and 

instead was unique to the learning context.   Taken together, these results suggest that the 

FEFSEM may help produce a learned eye movement with the desired temporal specificity.  

 The neural circuit for smooth pursuit is composed of two interacting pathways 

(Lisberger, 2010), both originating in the cortical visual areas MT and MST, which serve 

distinct functions.  The first pathway, which includes the FEFSEM, controls the visual-

motor gain.  The second pathway bypasses the FEFSEM, and carries image motion that 

drives changes in eye velocity.  Both pathways are believed to ultimately converge upon 

a number of targets in the cerebellum, including the oculomotor vermis and the floccular 
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complex, where the command for moving the eyes is assembled.  Directional pursuit 

learning elicits changes in the mean firing rate of Purkinje cells in at least one of these 

cerebellar targets, the floccular complex (Medina and Lisberger, 2008).  In Chapter 2, I 

tested the hypothesis that the FEFSEM and the floccular complex have different roles 

during pursuit learning by comparing the how activity in the two brain areas evolved 

across movements as the animal acquired and practiced the learned movement.   

 I found that although both the FEFSEM and the flocccular complex populations 

averages had learning dynamics that closely paralleled that of the behavior, the learning 

dynamics of individual neurons in the two areas diverged from that of the behavior to 

varying extents, both in the rate of acquisition of the learned response and in its 

subsequent maintenance.  A comparison of these two dynamical features in the learned 

responses of individual neurons revealed differences between the FEFSEM and the 

floccular complex, with the latter bearing a closer resemblance to the behavior, perhaps 

reflecting its closer proximity to the motor output of the pursuit circuit.  Therefore, 

pursuit learning appears to be mediated by multiple neural mechanisms with diverse 

adaptation dynamics, and the FEFSEM and the floccular complex may perform at least 

partially separate functions in pursuit learning by engaging these systems in different 

ways.  

 Finally, I examined the millisecond-by-millisecond time courses of the mean 

learned firing rates of neurons from each of the two areas in relation to that of the mean 

learned eye velocity, and found that although the responses of FEFSEM neurons peaked at 

different times throughout the duration of the learned eye movement, both the learned eye 

velocity and the responses of Purkinje cells in the floccular complex followed the same 
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general time course and tended to peak around the onset of the instructive stimulus.  

Thus, the analysis of the time course of the mean learned neural responses underscores 

the earlier assertion that the floccular complex may help regulate the amplitude of the 

learned eye movement, and also reinforces the notion that the FEFSEM may have a special 

role in specifying the temporal precision of the learned eye movement.
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Chapter 1 

 
Learned timing of motor behavior in 
the smooth eye movement region of 
the frontal eye fields 
 
1.1 Abstract 
 

Proper timing is a critical aspect of motor learning. We report a relationship 

between a representation of time and an expression of learned timing in neurons in the 

smooth eye movement region of the frontal eye fields (FEFSEM). During pre-learning 

pursuit of target motion at a constant velocity, each FEFSEM neuron is most active at a 

distinct time relative to the onset of pursuit tracking.  In response to an instructive change 

in target direction, a neuron expresses the most learning when the instruction occurs near 

the time of its maximal participation in pre-learning pursuit. Different neurons are most 

active, and undergo the most learning, at distinct times during pursuit. We suggest that 

the representation of time in the FEFSEM drives learning that is temporally linked to an 

instructive change in target motion, and that this may be a general function of motor areas 

of the cortex.   
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1.2 Introduction 
 

Young children jumping rope soon learn the importance of timing: jumping too 

early or too late can be as bad as failing to jump at all.  Precise timing is critical to all 

aspects of motor control, at levels ranging from the coordination of joints and muscles 

during simple reflexive movements to the acquisition of complex skills such as playing a 

musical instrument. Indeed, timing is so important for motor control that it can be 

learned. There now are multiple demonstrations that the motor system can learn not just 

what to do, but also when to do it (Mauk and Ruiz, 1992; Medina et al., 2005; de 

Hemptinne et al., 2007; Doyon et al., 2009). In the smooth pursuit system, repeated 

presentations of a precisely-timed instructive change in the direction of a moving target 

elicits a learned smooth pursuit eye movement that peaks near the time when the 

instructive motion is expected to occur (Medina et al., 2005). 

The ability to learn timing in motor control requires a representation of time 

during movements. The most relevant temporal signals for motor control are typically on 

the order of tens to hundreds of milliseconds (Buonomano and Karmarkar, 2002; Mauk 

and Buonomano, 2004). In eyelid conditioning and smooth pursuit eye movements, 

learning is largest for an instructive signal that occurs in the range from 200-400 ms after 

the onset of a conditioned stimulus that references time (Mauk and Ruiz, 1992; Medina et 

al., 2005). Possible timing signals have been observed via imaging or 

electrophysiological studies throughout the brain, for example in the basal ganglia (Rao 

et al., 2001; Chiba et al., 2008; Jin et al., 2009), the cerebellum (Lewis and Miall, 2003; 

Smith et al., 2003), the prefrontal cortex (Sakurai et al., 2004; Oshio et al., 2006; Jin and 
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Graybiel, 2009), the supplementary motor cortex (Shih et al., 2009; Onoe et al., 2001), 

and the parietal cortex (Leon and Shadlen, 2003). The next step is to establish a link 

between a representation of time and a neural expression of learning.   

A prior paper from our laboratory reported a representation of time in the smooth 

eye movement region of the frontal eye fields (FEFSEM) (Schoppik et al., 2008). Each 

neuron in the FEFSEM reaches its maximal firing rate at a particular time during pursuit, 

and the peak responses of the full population tile the entire duration of pursuit.  Thus, the 

representation of smooth pursuit in the FEFSEM is such that each neuron primarily 

contributes to a particular moment in the eye movement.  In contrast, most of the brain 

regions in the pursuit circuit have stereotyped responses as a function of time during 

pursuit. Neurons in extrastriate visual area MT tend to have transient responses that are 

driven by, and time-locked to, the visual motion signals caused by the initial target 

motion (Newsome et al., 1988). Similarly, Purkinje cells in the cerebellar flocculus show 

transient responses that are well timed to the onset of target motion, followed by 

sustained responses that are monotonically related to the smooth eye velocity (Stone and 

Lisberger, 1990; Krauzlis and Lisberger, 1994). 

 The unique, temporally-selective representation of pursuit in the FEFSEM raises 

the possibility we tested here, that this cortical area plays a temporally-specific role in the 

modulation of pursuit through learning. We recorded changes in the responses of FEFSEM 

neurons during pursuit learning induced by a precisely-timed instructive change in target 

direction, to ask whether the learned eye movement would be driven selectively by 

neurons that contribute to pursuit around the time of the instruction.  In agreement with 
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this prediction, we found that the magnitude of learning in any given neuron is correlated 

with how strongly the same neuron would have responded (during pre-learning pursuit) at 

the time of the instructive change in target trajectory. We suggest that the representation 

of time within the FEFSEM may be harnessed to guide the temporal specificity of pursuit 

learning, and that temporally-specific modulation of motor behavior could be a general 

function of the motor regions of the cerebral cortex. 

1.3 Materials and Methods 
 
Two male rhesus monkeys (Macaca mulatta) aged 6 and 8 years, tracked 

smoothly moving targets in exchange for a water reward. Both monkeys had prior 

experience in experiments on pursuit, but neither had participated in learning studies. 

Throughout each experiment, head position was fixed, and eye position in the orbit was 

monitored using a scleral search coil system.  The recording chamber and eye coil were 

attached during surgery with sterile procedure using approaches described before 

(Ramachandran and Lisberger, 2005) with the monkey under anesthesia with isofluorane. 

After surgery, monkeys received analgesics for several days and careful monitoring by 

veterinary staff. All experimental procedures and protocols used were approved by the 

Institutional Animal Care and Use Committee of UCSF, and are in accordance with use 

and care guidelines established by the NIH Guide for the Care and Use of Laboratory 

Animals.   

1.3.1 Data acquisition 
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Horizontal and vertical eye positions were sampled at 1 kHz and passed through 

an analog differentiator with a cutoff of 25 Hz to produce the corresponding eye velocity 

traces. Quartz shielded tungsten electrodes (Thomas Inc) were lowered anew each day 

into the frontal eye fields. FEFSEM neurons were identified by direction-tuned activity 

during smooth pursuit, and weak or non-existent responses to saccades or changes in eye 

position.  Spike waveforms were retained using a threshold crossing criterion, and were 

sorted into single units based on waveform shape and the absence of refractory period 

violations defined as two waveforms occurring within 1 ms. For a typical recording 

session, the waveforms from recorded neurons were 3 to 10 times the amplitude of the 

background noise. Sorted waveforms were converted into spike trains with a temporal 

precision of 1 ms.    

1.3.2 Presentation of visual stimuli 
 

All behavioral experiments took place in a dimly lit room.  Visual stimuli were 

displayed on a BARCO monitor (model number: CCID 7651 MkII) that was placed 40 

cm from the eye and subtended 61°x42° of the visual field. Targets were white squares 

measuring 0.5! along each side. Target motions were presented in discrete trials. Each 

trial started with a stationary fixation target at the center of the screen for an interval that 

was randomized between 500 and 1000 ms. Targets then underwent standard step-ramp 

motion in an unpredictable direction for 750 ms, and then stopped for 500 ms in a second 

fixation period. For step-ramp motion, the step size was chosen to minimize saccades 

during pursuit onset and typically ranged between 2! to 3!, depending on the initial 

direction of target motion.  To successfully complete a trial and receive a water reward, 
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monkeys were required to keep their eyes within a window centered on the target. The 

window was 1.5°x1.5o during fixation, 3°x3o during smooth target motion, and 5°x5o for 

300 ms after an instructive change in target direction. For tests of neural responses to 

passive visual stimuli, monkeys fixated a small square target centered in an invisible 

square aperture that was 5! long on each side. The aperture contained 10 dots that moved 

with 100% coherence at 5°/s in one of the four cardinal directions. 

1.3.3 Behavioral paradigms 
 

The direction and temporal tuning of each neuron were characterized in a pre-

learning block of pursuit trials where the pursuit target moved at 20°/s in one of 8 

possible directions, including all four horizontal and vertical directions and the 45o 

oblique directions.  In some experiments, targets moved in the four cardinal directions 

with speeds of 5, 10, or 20°/s in different trials.  

Each learning experiment consisted of a baseline block and a learning block.  

During the baseline block (80 to 100 trials), the target moved at 20!/s in one of two 

opposing cardinal directions, designated the probe (55% of the trials) and control 

directions (45%).  In the learning block, (250 to 300 trials) the pursuit target also initially 

moved in either the probe (55%) or control (45%) directions; however, targets moving in 

the probe direction had an 82% chance of adopting a 30°/s orthogonal velocity 

component at a fixed time after the onset of target motion.  The direction and timing of 

the instructive stimulus were fixed for a given learning block.  In some recording 

sessions, we performed an additional learning experiment after residual behavioral 

learning had been extinguished with a second baseline block (100-150 trials), or a two-
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block sequence of learning in the opposite direction (50-100 trials) followed by a baseline 

block (50 trials). The residual eye velocity measured after the two reversal procedures 

averaged 27.7% (SD: 30.8%, range: 61.7% to -34.1%) of the original learned response 

after a baseline block and -1.3% (SD: 16.3%, range: 47.9% to -33.1%) after a learning 

block in the opposite direction and another baseline block. For 21 neurons, we followed 

the reversal procedure with a mimic experiment, which consisted of a baseline block 

followed by a mimic block.  The mimic block featured “mimic” trials designed to evoke 

an eye velocity with the same time course and trajectory as the learned component of eye 

movement, but without any learning. To prevent learning during the mimic block, mimic 

trials in the learning direction were counterbalanced by trials that contained the same 

target perturbation in the opposite direction. 

1.3.4 Data analysis  
 

Trials were examined individually by eye to identify the onset and offset times of 

any saccades; we replaced the intervening eye velocity with a linear interpolation whose 

endpoints were the eye velocity values at the onset and offset of the saccade. We 

quantified the magnitude of neural learning in the interval from 100 ms after the onset of 

target motion to 70 ms after the instruction time, as the difference in mean spike count 

between the learning trials in the learning block and the probe trials from the baseline 

block. Neural responses are reported as firing rates, obtained by dividing the spike counts 

by the duration of the analysis intervals. We verified that all analyses produced similar 

results if the firing rate changes were converted to Z-scores. Firing rates were smoothed 

with a 50 ms duration rectangular filter for our figures, but unsmoothed traces were used 
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for quantitative analysis.  In the bottom panel of Figure 5B, we took advantage of the 

larger number of traces to smooth the data with a narrower, 15 ms rectangular filter.   

1.4 Results 
 

We recorded from 100 FEFSEM neurons in two monkeys during directional 

smooth pursuit learning.   The neurons we selected for investigation responded 

vigorously during pursuit prior to learning, and were tuned for the direction of pursuit. In 

the pre-learning behavioral block, we characterized the direction tuning of each FEFSEM 

neuron by measuring its mean firing rate during pursuit in each of eight directions spaced 

45° apart. The neuron in Figure 1A responded most strongly for pursuit that was upward 

or obliquely up and left, and therefore had a preferred direction between 90° and 135°.  

The neuron was only weakly active for purely horizontal pursuit to the right or left. 

1.4.1 Behavioral learning 
 

The tuning of the neuron under study specified the direction parameters of the 

learning experiment (see schematic in Figure 1B).  We chose the learning direction to be 

the cardinal direction closest to the neuron’s preferred direction: 90° in Figure 1.  The 

cardinal axis orthogonal to the learning direction defined the probe and control directions: 

360° and 180° in Figure 1.   

Each learning experiment began with a baseline block of trials that used step-

ramp target motions in the probe and the control direction to establish the baseline pursuit 

response prior to learning.  After the monkey fixated a stationary central target, the target 

stepped 2 or 3° in one direction and ramped immediately in the opposite direction at 20°/s 
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(Figure 1H). For the probe trials in Figure 1F and H, the mean horizontal eye velocity 

was zero for almost 100 ms after target motion onset, accelerated to the right for 100 to 

200 ms, and then approximated the target speed of 20°/s for the remainder of the 750 ms 

target motion. Vertical target velocity was zero throughout the trial, as was the mean 

vertical eye velocity prior to learning.  

The subsequent learning block introduced learning trials that started like probe 

trials with a step-ramp of target motion in the probe direction, but underwent a 

predictable change in target direction at a fixed time. In Figure 1E and G, the initial 20°/s 

ramp motion took the target to the right. After 250 ms, an upward motion at 30°/s began 

so that the target moved up and to the right for 500 ms. The direction of the added 

component of target motion defines the learning direction; the 250 ms delay between the 

onset of target motion and the change in target direction defines the instruction time.  

Both the learning direction and instruction time were fixed for a given learning 

experiment. Learning trials comprised 45% of the trials in a learning block.  The 

remaining 55% consisted of control trials (45%) and probe trials (10%), which were 

identical to the control and probe trials in the baseline block. 

The average vertical eye velocity from the learning trials (Figure 1E, lower panel, 

red traces) shows a small upward deflection that starts before the instructive change in 

target direction and represents the learned response. The initial, early response is 

followed by a later, more abrupt, “visually-driven” change in eye velocity that is the 

immediate consequence of the instructive upward target motion.  The learned response is 

not present in the first few learning trials, but grows rapidly and asymptotes after about 

20-40 learning trials.  This early, upward response reflects behavioral learning because it 
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1) precedes the onset of the instructive stimulus, and 2) occurs in the infrequent probe 

trials interspersed in the learning block, even though they lack an instructive change in 

target motion (Figure 1F, lower panel, blue trace).  As reported before, the peak of the 

learned vertical eye velocity deflection in the probe trials coincides with the instruction 

time (Medina et al., 2005).  

  Our learning paradigm elicits robust, but short-term behavioral changes. For any 

given learning experiment, behavioral learning was quantified as the difference in mean 

eye velocity between the learning trials and the baseline probe trials, integrated across 

100 to 320 ms (Figure 1E, grey shaded region).  Integrating eye velocity yields the 

change in eye position. Behavioral learning averaged 0.8° in Monkey G (SD: 0.2°, range: 

0.4° to 1.2°) and 2.1° in Monkey S (SD: 0.7°, range: 0.7° to 4.5°), and was significantly 

different from zero in all experiments (Mann-Whitney U test: p<0.001).   Residual 

behavioral learning did not persist across learning experiments; the mean eye velocity 

measured in the sessions following training on a particular learning direction was not 

significantly different from the mean eye velocity in the sessions following learning in 

the opposite direction (Monkey G: p= 0.80, Monkey S: p=0.88, Mann-Whitney U test). 

The rate of behavioral learning also did not vary as the study progressed.  Behavioral 

changes continued to reach a plateau after about 20 to 40 learning trials.  We conclude 

that learning proceeded anew for each experiment, so that we could pool neural data 

across recording sessions to assess the effect of directional pursuit learning on the activity 

of the population of neurons in the FEFSEM. 

1.4.2 Neural correlates of learning 
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The example neuron in Figure 1 produced only a few spikes during the baseline 

block probe trials (Figure 1D, black raster), because the probe direction was orthogonal 

to the neuron’s preferred direction. During learning trials, the neuron produced the 

expected vigorous response to the visually-driven eye movement in the learning 

direction, and also acquired a small learned response that appeared before the instructive 

change in target direction (Figure 1C, red raster).  The learned neural response also 

appeared in probe trials during the later part of the learning block (Figure 1D, blue raster) 

and, like the learned eye velocity, began before the time when the instructive change in 

target direction would have occurred in learning trials.  

Different neurons expressed varying degrees of learning. The two neurons whose 

responses appear in Figure 2 were recorded on different days with strong behavioral 

learning that reached almost 4°/s by the time of the instructive change in target direction 

in both experiments (Figure 2 C, D).  However, neuron #1 exhibited a large learned 

change in mean firing rate, while neuron #2 did not. Neuron #2 did respond strongly to 

the instructive change in target direction, but only after the visual latency of 70 ms 

typically found in the FEFSEM (Figure 2B, red trace; Gottlieb et al., 1994).   

The learned change in firing rate, when present, had several important features. First, it 

appeared in temporal register with the learned change in eye velocity, in the interval 

preceding the visual input caused by the instructive target motion. Second, it was present 

in the probe trials in the learning block (Figure 2A, blue trace), and had a transient time 

course that peaked near the instruction time. Third, it appeared during target motion in a 

direction that did not evoke much neural activity before learning, as seen by comparison 

of the blue and black traces in Figure 2A. Therefore, the learned firing rate is related to 
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the acquisition of a vertical response to the horizontal target motion and not to the 

horizontal eye movement itself, which changed very little as a consequence of learning 

(Figure 1F, top panel).  

Figure 2 shows an important feature of the data that motivated our analysis 

procedures. The averages of both eye velocity and firing rate followed the same trajectory 

during learning trials and the interleaved probe trials, up to about 70 ms after the 

instruction time (Figure 2).  Thereafter, the mean eye velocity and firing rate in the 

learning trials, but not the probe trials, showed large visually-driven reactions to the 

instructive change in target direction. The sequence of identical responses followed by 

divergence due to the visual stimulus is expected because the learning and probe trials 

were interleaved randomly. It allowed us to assess neural changes related purely to 

learning from the more frequent learning trials in the 220 ms interval from 100 ms after 

the onset of target motion to 70 ms after the instruction time.  

We showed in Figure 2 that the size of the learned response could be very 

different across FEFSEM neurons even when the concomitant behavioral changes were 

similar. Only 35% of neurons (15/55 in Monkey G, 20/45 in Monkey S) exhibited a 

significant learned change in firing rate (Mann-Whitney U test: p<0.001).  All neurons 

with statistically significant changes in firing rate showed increases in activity as a result 

of learning. Because the firing rate in the preceding fixation period almost always 

remained stable in spite of learning, we argue that the neural changes in the analysis 

interval probably are due to learning and not to fatigue, decreases in motivation, or 

recording instabilities.  Finally, learning did not affect eye velocity during control trials, 

and only 5 neurons showed significant changes in firing rate during the control trials from 
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the baseline and learning blocks: 4/55 in Monkey G, 1/45 in Monkey S.  Excluding 

neurons with significant changes in response amplitude during pursuit in the control 

direction did not alter any of our conclusions. 

 
1.4.3 Neural preference for the instruction time predicts the magnitude of neural 
learning 
 

Each neuron’s response during pursuit of a ramp target motion at constant 

velocity showed a distinct and repeatable trajectory as a function of time (e.g. Figure 3A). 

The smoothed firing rate for this FEFSEM neuron increased rapidly after the onset of 

pursuit, peaked approximately 340 ms after the onset of target motion, and declined 

gradually thereafter.  We defined the neural preference for a particular time during the 

pursuit trial as the firing rate at that time normalized for the peak firing rate.  At 250 ms 

after the onset of target motion (intersection of dashed lines), this particular neuron had a 

neural preference of 0.7, indicating that it fired at 70% of its maximum. The neuron’s 

preferred time was 340 ms after the onset of target motion.  We measured neural 

preference from data acquired in the pre-learning pursuit block, using step-ramp target 

motion in the direction subsequently chosen to be the learning direction.   

 The preferred time varied widely across the full sample of FEFSEM neurons.  In 

Figure 3B, each row uses color to depict the neural preference for a single FEFSEM neuron 

as a function of time.  Neurons are ordered by the latency to 95% of their peak response. 

The narrowness of the red diagonal band indicates that the time of maximal neural 

activity is well defined, and its distribution across the full duration of the pursuit 

movement indicates that the population of FEFSEM neurons shows a wide range of 

preferred times.  Thus, individual neurons are most active during limited distinct 
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temporal chunks of the eye movement, only a fraction of the population is close to 

maximal response at any given time, and the population of FEFSEM neurons encodes all 

times throughout the entire movement.  In our sample, preferred times were fairly evenly 

distributed across the full pursuit movement duration, with some preponderance of 

neurons that preferred the initiation of pursuit, from 100 to 200 ms after the onset of 

target motion (Figure 3C).  

Much of the variation in the magnitude of learning across neurons was related to 

the wide range of neural preferences at the time of the instructive change in target 

direction. When we plotted the size of the mean learned response in each neuron as a 

function of its neural preference for the instruction time of 250 ms (Figure 3E), we 

obtained positive correlations that were statistically significant in both monkeys (Monkey 

G: r = 0.50, p<0.0001; Monkey S: r = 0.58, p<0.0001). Figure 3E uses the mean response 

averaged across all learning trials as an index of the magnitude of learning, but we 

obtained similar correlations when we estimated the magnitude of learning from the first 

or last 40 learning trials within each learning block. 

Figure 3E shows the relationship between the neural preference at the single time 

of 250 ms during pre-learning pursuit and the magnitude of neural learning. For this one 

time point, the correlation coefficients were quite high. To judge the importance of neural 

preference at the time of the instructive change in target direction in determining the 

neuron’s susceptibility to learning, we performed the same analysis shown in Figure 3E, 

except that we varied systematically the time used to obtain neural preference from 0 to 

750 ms relative to the onset of target motion, and computed the correlation between 

neural preference at each time and the magnitude of neural learning for instructions 
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delivered at 250 ms. For each monkey (Figure 3F), the size of learning across our sample 

of FEFSEM neurons showed the highest correlation with the neural preference near 250 

ms, the time of instruction, and lower correlations with neural preference at earlier or 

later times.  Thus, learning with an instruction time of 250 ms engages neurons that 

specifically prefer 250 ms. The temporally-selective relationship between neural 

preference and the magnitude of neural learning in Figure 3F provides evidence that the 

distributed representation of time within the FEFSEM may be used to regulate the temporal 

specificity of pursuit learning.   

As an alternate way to examine the relationship between the amount of neural 

learning in an FEFSEM neuron and its temporal preference during pursuit, we plotted the 

magnitude of neural learning as a function of the difference between the neuron’s 

preferred time and 250 ms (Figure 3D).  There is considerable scatter in the plot, but for 

the population as a whole learning is largest in neurons with preferred times close to 250 

ms, and is smaller in neurons with earlier or later preferred times. A small subpopulation 

of neurons exhibited negative learned responses, but the preferred times of these neurons 

were evenly distributed before and after the instruction time.   

The size of neural learning also was positively correlated with the size of the 

learned eye velocity and the opponent response of the neuron, defined as the difference in 

mean firing rate between pre-learning pursuit in the probe direction versus in the learning 

direction, measured in the interval from 100 to 320 ms after the onset of target motion. 

Partial correlation analysis (Table 1) revealed that a strong correlation between the 

magnitude of neural learning and the neural preference for 250 ms persisted even when 

the correlations with the other variables were taken into account. The size of the 
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opponent response during pre-learning pursuit was not a statistically significant predictor 

of the magnitude of learning. Not surprisingly, the magnitude of the learned eye velocity 

was a strong predictor of the magnitude of neural learning in monkey S, who had wider 

variation in the size of his behavioral learning.   

We now ask whether the magnitude of neural learning varies systematically 

within an individual neuron when we alter the instruction time.  The same neuron was 

exposed to two learning experiments featuring different instruction times associated with 

disparate neural preferences.  The results in Figure 3 predict that the example neuron in 

Figure 4A should show larger learning for an instruction time of 150 ms, when its neural 

preference was 1.0, versus an instruction time of 250 ms, when its neural preference was 

0.6. The prediction was borne out by performing two different learning experiments with 

instruction times of 250 and 150 ms, respectively. The amount of neural learning was 

greater when the instruction time was 150 ms (Figure 4B, top panel), even though the 

learned change in eye velocity was somewhat larger when the instruction time was 250 

ms (Figure 4B, bottom panel).   

We studied the activity of 31 neurons (11 in Monkey G, 20 in Monkey S) during 

two sequential learning experiments that were identical in all respects except the 

instruction time.  The instruction time for one experiment was always 250 ms; the 

instruction time for the other experiment was chosen amongst 150 ms, 350 ms, or 450 

ms. We sorted the 31 neurons into two groups based on whether their neural preference 

for 250 ms was larger or smaller than for the other instruction time. Then, we computed 

the size of learning for a 250 ms instruction time minus that for the other instruction time. 
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These values would be positive or negative depending on whether neural learning was 

larger or smaller when the instruction occurred at 250 ms.  

Neurons with larger preferences for 250 ms showed more learning for an 

instruction time of 250 ms than for the other instruction time, while neurons with larger 

preferences for the other instruction time showed less learning for an instruction time of 

250 ms, results that were confirmed statistically (Figure 4C, Monkey G: p=0.01; Monkey 

S: p=0.01; Wilcoxon signed-rank test). The magnitude of neural learning did not depend 

significantly on alternative explanatory variables, such as the disparity in the sizes of the 

mean learned behavior elicited by the two instruction times (Monkey G: p=0.76; Monkey 

S: p=0.88), or the order of presentation of the two instruction times (Monkey G: p=0.24; 

Monkey S: p=0.28).  Finally, the magnitude of neural learning produced with the most 

frequently used other instruction time, 150 ms, was correlated much better with neural 

preference for 150 ms (Monkey G: r=0.61, p=0.11, 8 neurons; Monkey S: r=0.75, 

p=0.001, 15 neurons), than with neural preference for 250 ms (Monkey G: r=0.075; 

Monkey S: r=0.31).   

 In conclusion, we have demonstrated that pursuit learning with specific timing 

requirements selectively engages FEFSEM neurons that encode the relevant time.  

1.4.4 Changes in firing related to learning versus eye movement performance 
 

Do learned changes occur in FEFSEM neurons because the FEFSEM plays a direct 

role in behavioral learning, or simply because learning causes changes in eye velocity to 

which the FEFSEM responds? To distinguish between the two scenarios, we presented 

“mimic” trials in which target motion presented in the absence of learning created an eye 
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movement similar to that produced by learning with an instruction time of 250 ms. 

During a mimic trial (Figure 5A), a target moving at 20°/s in the probe direction 

underwent a brief motion in the learning direction. The target motion evoked a mean eye 

velocity that closely resembled the mean learned eye velocity expressed in the probe 

trials from the learning block (Figure 5B, top panel).  We verified the excellence of the 

mimicry across neurons using a millisecond-by-millisecond regression analysis of the 

mimic versus the learned mean eye velocities in the interval from 100 to 320 ms after the 

onset of target motion. Regression slopes averaged 1.00 across neurons (range: 0.88 to 

1.19), and correlation coefficients averaged 0.95 (range: 0.83 to 0.99).  

The example neuron in Figure 5 exhibited notably different changes in firing rate 

as a result of learning versus during the mimic trials (Figure 5B, middle panel), even 

though the changes in eye velocity were nearly identical. For the 21 neurons from 

Monkey S that were studied during both learning and the mimic experiment, we 

quantified the size of the evoked firing rate in the mimic trials as we had for the learning 

data, in a comparable interval of duration 220 ms (shaded grey region, Figure 5B). We 

did not find any correlation between the size of the neural responses to the mimic target 

motion and the learned change in firing rate in the corresponding learning block (Figure 

5C, filled circles, r=0.05, p=0.83)). Some neurons had similar responses in the learning 

and mimic conditions, while many others had quite different responses. Measuring the 

sensitivity to eye velocity as the mimic and learned neural responses divided by the 

magnitude of the corresponding changes in mean eye velocity also failed to reveal a 

significant correlation (r=-0.06; p=0.78), reaffirming that minor behavioral differences 

are unlikely to account for the disparate neural responses.  
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To control for recording instabilities, we also compared the firing rate during 

probe trials in the two baseline blocks that preceded the learning and mimic blocks. Most 

neurons showed very similar responses during the two sets of baseline trials (Figure 5C, 

open symbols), and plotted along the line of slope one. Finally, to ascertain whether the 

mismatch between the learned response and the response to mimic target motion 

originates from the differing visual inputs under the two conditions, we measured the 

activity of individual neurons during passive, coherent motion of a 5!x5! patch of dots 

while the monkey fixated a stationary target at the center of the patch.  We found no 

relationship between the size of the disparity between the mimic and learned responses 

and the neuron’s visual sensitivity, computed as the difference in mean firing rate 

produced by passive dot motion in the learning direction versus in the opposite direction 

(21 neurons; r=-0.12, p=0.66). 

In contrast to what we found in individual neurons, averaging the responses 

across the 21 neurons we studied revealed very similar population responses for the 

mimic and learning conditions (Figure 5B, bottom panel). We conclude that the learned 

responses of individual neurons in the FEFSEM cannot be thought of solely as secondary 

consequences of learned changes in smooth eye movement. At least in some neurons, the 

changes in firing rate are related selectively to an eye movement produced in the context 

of learning. However, the response of the population is balanced across different 

behavioral conditions so that the FEFSEM as a whole is always making the same 

contribution to the smooth eye movement. A similar conclusion has been reached for the 

cerebellar floccular complex (Kahlon and Lisberger, 2000; Medina and Lisberger, 2009).  
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Finally, we characterized differences in the temporal preferences of neurons activated by 

learning versus by the mimic stimulus.  For our dataset of 21 neurons, the correlation 

between neural preference and the size of the learned neural response reached a peak 

when the neural preference was taken at 250 ms (Figure 6, gray trace), as expected.  In 

contrast, the correlation between neural preference and the size of the mimic response 

reached a peak for neural preference earlier in the trial (Figure 6, black trace), suggesting 

that the mimic target motion was most effective for neurons that preferred times during 

the initiation of pursuit.   

1.4.5 Effects of the prior trial on neural and behavioral learning   
 

Previous studies have suggested that motor learning occurs on multiple time 

scales (Lee and Schweighofer, 2009; Ethier et al., 2008; Smith et al., 2006), including 

situations where the behavior on a given trial reflects the instruction provided on the 

previous trial (Yang and Lisberger, 2010). To measure the relative contributions of 

single-trial versus longer-term learning processes to the behavioral and neural changes 

reported here, we sorted learning trials based on the identity of the immediately preceding 

trial. The size of the learned eye velocity was smaller if it had been preceded by a control 

trial versus by another learning trial. The effect averaged 7.1% and 21.5% in Monkeys S 

and G and was statistically significant in 15.6% (7/45, Monkey S) and 61.8% (34/55, 

Monkey G) of the learning experiments in the two monkeys (Mann-Whitney U test, 

p<0.05).  

The small trial-over-trial changes in the size of behavioral learning frequently 

were not present in a similar analysis of the size of neural learning (for example, Figure 
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7A).  In the 35 neurons that showed a significant change in mean firing rate as a result of 

learning, the trial-over-trial changes in neural learning were distributed fairly evenly 

above and below zero, and were unrelated to the trial-over-trial learning of eye velocity 

(Figure 7B).  The neural response on learning trials preceded by a control trial were on 

average 2.1% larger (Monkey S) and 4.4% smaller (Monkey G) than those preceded by 

another learning trial. Neural response differences were statistically significant in 15.0% 

(3/20, Monkey S) and 6.7% (1/15, Monkey G) of the neurons (Mann-Whitney U test, 

p<0.05). We conclude that the neural learning in the FEFSEM results from a longer-term 

process that does not contribute to trial-over-trial changes in the learned behavior.    

1.4.6 Nature of temporal information in the FEFSEM 

 
To explore the basis of the temporal responses in the FEFSEM, we used pursuit 

trials featuring target motion at 5, 10, or 20°/s in the future learning direction to ask 

whether the activity of individual FEFSEM neurons was most consistent with a 

representation of speed, elapsed time, or of traversed distance. We collapsed the data 

across the three speeds and performed regression of firing rate (or normalized firing rate) 

versus each variable. A regression slope and correlation coefficient of one for any 

particular variable would indicate that the neuron encodes the value of that variable 

unambiguously.  For the variable of elapsed time, we obtained an average regression 

slope of 0.90 and correlation coefficient of 0.79 in both monkeys.  Slopes and 

correlations were somewhat smaller for distance (slope=0.62 and 0.61; r=0.75 and 0.71) 

and for speed (slope=0.67 and 0.66; r=0.65 and 0.62). Thus, the neural responses as a 

group could encode any of the three variables, but were best related to elapsed time. 
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1.5 Discussion  
 
For a learned movement to be effective, it not only needs to have the correct 

trajectory, but must also be produced at the desired time.  We have provided evidence 

that the FEFSEM is involved in regulating the timing of learned pursuit eye movements.  

We show that when driven by a temporally precise instructive stimulus, learned changes 

in firing rate are preferentially expressed in neurons that respond best at the time of the 

instructive stimulus during pre-learning step-ramp pursuit. Our results suggest that the 

FEFSEM may be a site where the timing of sensory errors is processed during learning and 

integrated into appropriate, learned motor commands. 

We provide several lines of evidence that the learned responses of neurons in the 

FEFSEM are related selectively to learning, and are not secondary to the altered eye 

movement.  Comparing the changes in firing rate resulting from two different instruction 

times showed that the magnitude of the learned neural response depended more on the 

temporal properties of the instructive stimulus than on the size of the learned eye 

movement.  Our analysis of the learned changes in eye velocity and firing rate across 

single trials revealed a dissociation between the magnitudes of the behavioral and neural 

responses. Finally, for the same neuron, the change in firing rate associated with a 

visually-driven eye velocity was often quite different from the change in firing rate 

produced by learning, even though the visually-evoked eye velocity mimicked the 

learned eye velocity closely.   

1.5.1 Neural mechanisms for temporally selective motor learning 
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Why should a precisely-timed instructive signal induce learned responses 

selectively in certain FEFSEM neurons, and how might these neural changes give rise to an 

appropriately timed eye movement?  Based on the knowledge that depolarization of the 

post-synaptic neuron is a key regulator of synaptic plasticity (Malenka and Bear, 2004), 

we suggest that neurons with a high preference for the instruction time are more 

susceptible to plasticity than other neurons in the same population because they have 

higher membrane potentials around the time of the instructive signal. Further, the same 

neurons presumably receive inputs that are maximally active around the onset of the 

instruction.  The convergence of elevated pre- and post- synaptic activity should favor 

plasticity in these neurons around the time of the instruction, which in turn will alter the 

eye movement selectively around the time of the instructive change in target direction.      

We cannot answer definitively the question of whether the learned timing of 

pursuit or neural responses in the FEFSEM results from the timing contingencies of the 

cellular mechanisms of plasticity that are involved, or from timing that emerges out of 

neural circuit properties. We think it is important to remember that timing is inherent in 

the responses of neurons in the FEFSEM before learning, and that the FEFSEM is suited for 

processing the 250 ms intervals utilized in our learning paradigm because FEFSEM 

neurons track time on the order of hundreds of milliseconds. In contrast, cellular 

mechanisms such as spike timing-dependent plasticity, in isolation, process intervals on 

the order of tens of milliseconds (Bi and Poo, 1998).  Modeling results indicate that the 

temporal specificity of order 100 ms in FEFSEM responses could emerge and be 

maintained via network properties (Buonomano, 2005).  Thus, we suggest that temporal 

selectivity in pursuit learning could be the consequence of associative forms of synaptic 
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plasticity acting upon the time-varying pattern of activity created by the properties of the 

circuit through the FEFSEM. 

1.5.2 Factors contributing to timing signals in the FEFSEM 
 

A temporally specific encoding of smooth pursuit is unique to the FEFSEM and has 

not been reported in any other locus within the pursuit circuit, including MST (Newsome 

et al., 1988; Squatrito and Maioli, 1997; Ono and Mustari, 2006), the dorso-lateral 

pontine nucleus (Ono et al., 2005), and the floccular complex in the cerebellum (Krauzlis 

and Lisberger, 1994; Lisberger, 2010).  Further, the representation of time during smooth 

pursuit appears to be an inherent feature of the population response in the FEFSEM and is 

present in animals that had never been exposed to a task that requires learned timing 

(Schoppik et al., 2008).     

The motor system has access to both implicit and explicit information about the 

passage of time (Mauk and Ruiz, 1992; Ivry, 1996; Buonomano and Karmarkar, 2002; 

Regan and Gray, 2000; Sherk and Fowler, 2001; Caijou et al., 2004; Medina et al., 2005), 

and is able to rapidly assimilate temporal information to modify behavior.  Here, we are 

using the terms “explicit” and “implicit” to refer to the nature of the signals the brain uses 

to estimate the duration of a time interval. “Explicit” timing mechanisms would function 

like a stopwatch, creating a neural state that depends entirely on the number of elapsed 

milliseconds.  “Implicit” mechanisms, on the other hand, would estimate time from less 

direct cues generated by one’s self or the environment.  In our learning paradigm, either 

elapsed time or the distance traveled by the target/eye can be used to cue an upcoming 

change in target direction (Medina et al., 2005).  The FEFSEM appears to be an explicit 
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source of temporal information because neural responses during pursuit at three speeds 

were well correlated with elapsed time, and less so with an implicit measurement such as 

distance traveled by the eye. Other potential sources of temporal information, such as 

image motion and eye velocity/acceleration, fail to account for the timed pursuit 

responses because all are fairly constant during steady state pursuit when the temporal 

selectivity of FEFSEM responses is still clearly present. 

1.5.3 Relationship to other sites of pursuit learning  
  

The FEFSEM occupies a prime position within the pursuit circuit for mediating 

motor learning.   It receives information that reports discrepancies between the eye and 

the target via visual motion sensory areas MT and MST (Leichnetz, 1989; Stanton et al., 

2005). Lesion and micro-stimulation studies have pinpointed the FEFSEM as a major 

player in regulating the sensory-motor gain for pursuit (Lynch, 1987; MacAvoy et al., 

1991; Tanaka and Lisberger, 2001), a mechanism that could determine what gets learned, 

and how well.  Finally, the FEFSEM is strongly connected to the caudate nucleus (Cui et 

al., 2003), an area involved in assessing reward contingencies, which could be used to 

guide motor learning. 

 A previous study in the FEFSEM failed to uncover a consistent expression of 

neural learning using a training procedure that provided a change in target speed 150 ms 

after the onset of target motion in the learning direction (Chou and Lisberger, 2004).  

There are two possible reasons for the discrepancy between this earlier finding and our 

present results.  First, behavioral learning is larger and more consistent for changes in 

target direction than target speed (compare results presented here with Kahlon and 
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Lisberger, 1996).  Thus, the direction-learning paradigm may induce more persuasive 

neural changes than the speed learning paradigm, as has been found in the cerebellar 

flocculus (compare Medina and Lisberger, 2008, 2009 with Kahlon and Lisberger, 2000).  

Second, the recordings during speed learning did not examine how learned FEFSEM 

responses varied as a function of neural preference for the time of the instructive 

stimulus. The instructive change in target speed occurred 150 ms after the onset of target 

motion, implying that learning should be expressed mainly in neurons that respond most 

strongly at the initiation of pursuit. Averaging across neurons having a range of temporal 

preferences would dilute any learning-related effects. Consistent with this explanation, a 

subpopulation of FEFSEM neurons did exhibit significant changes in firing rate during 

speed learning (Chou and Lisberger, 2004). 

The cerebellar flocculus, several synapses downstream of the FEFSEM, also may 

play a causal role in temporally specific pursuit learning. Purkinje cells show changes in 

simple spike activity around the time of the instructive stimulus during learning in both 

the OFF and ON directions of the Purkinje cell under study (Medina and Lisberger, 2008, 

2009). In one model of the cerebellar microcircuit, a sparse representation of time in the 

granule cell population provides the excitatory drive for Purkinje cells.  Different granule 

cells would provide inputs to Purkinje cells at different times during a movement so that 

visually-driven climbing fiber inputs could potentiate or depress the granule-Purkinje 

synapses that were active 100 ms prior to the arrival of the climbing fiber signal 

(Buonomano and Mauk, 1994). Thus, the cerebellum could act independently in learning 

motor timing, or inputs from the FEFSEM could contribute to the temporal sparseness of 

the granule cell population in a way that is enhanced by learning in the FEFSEM. Recent 
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work also has highlighted the possibility that learning occurs on different time scales 

(Lee and Schweighofer, 2009; Ethier et al., 2008; Smith et al., 2006; Yang and Lisberger, 

2010) with the possibility of very rapid short term learning in the cerebellar cortex as a 

prelude to slower, longer-term changes in the FEFSEM.  

1.5.4 Utility of a high-dimensional motor code  
 

Neurophysiological studies of motor and perceptual learning reveal a common 

theme: changes are localized to neurons whose properties best capture the features of the 

training stimulus (Arce et al., 2010; Paz et al., 2003; Recanzone et al., 1993; Schoups et 

al., 2001; Yang and Maunsell, 2004).  In real life, the learning rule can be very complex.  

Thus, the dimensionality of the neural representation of movements limits the flexibility 

of the motor system in terms of what can be learned quickly.  For many years, it was 

commonly believed that the responses of motor cortex neurons could be modeled by a 

time-invariant combination of limb kinematics and dynamics (Evarts, 1968; 

Georgopoulos et al., 1982; Moran and Schwartz, 1999).  Recently, examination of a 

broader population of neurons in the primary motor cortex (M1), dorsal premotor cortex 

(PMd), and the FEFSEM has revealed considerable heterogeneity in movement-related 

neural responses (Hatsopoulos et al., 2007; Churchland and Shenoy, 2007).  Many 

response patterns are explained poorly using standard movement parameters such as 

acceleration, speed, and direction.  We propose that the FEFSEM and other motor cortices 

are important for facilitating action selection.  The FEFSEM encodes smooth pursuit 

movements flexibly along seemingly baroque but perhaps behaviorally relevant 
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dimensions, such as time, so that error and reward signals can act selectively on a sub-

region within the movement space to drive rapid, precise motor learning.  
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Figure 1.1: Expression of learning in the FEFSEM.   
 
(A) The direction tuning of an example neuron.  (B) Top: The control (180°), probe 

(360°) and learning (90°) directions chosen for the neuron in A. Bottom: a cartoon of the 

trial configurations for the baseline block and the subsequent learning block. (C-G) 

Example of neural and behavioral responses measured during learning trials. (D-H) 

Comparison of neural and behavioral responses from probe trials in the learning block 

(blue) with probe trials in the baseline block (black). (C, D) Raster of spikes emitted 

during all trials: the top row corresponds to the last trial.  (E, F) mean horizontal and 

vertical eye velocity.  (G, H) mean horizontal and vertical eye position.  The black dashed 

trace depicts motion of the pursuit target, the grey shading shows the analysis interval, 

and the black arrow at 250 ms denotes the instruction time. 
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Figure 1.2: Expression of pursuit learning in two example FEFSEM neurons.  
 
Mean firing rates (A,B) and changes in eye velocity (C,D) as a function of time from the 

onset of target motion. The vertical dashed lines show the time of the instructive change 

in target direction. Black, blue, and red traces show data obtained respectively during 

probe trials in the baseline block, probe trials in the learning block, and learning trials.  

The grey shading indicates the analysis interval from 150 ms before to 70 ms after the 

time of the change in target direction. 
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Figure 1.3: Relationship between the size of neural learning and neural preference 
for the instruction time of 250 ms.  
 
(A) Example of neural preference as a function of time from target motion onset.  The 

neuron’s preference for 250 ms is specified by the intersection of the vertical and 

horizontal dashed lines.  (B) Summary of neural preference during pre-learning pursuit 

for all 100 FEFSEM neurons in our sample, sorted by the time when neural preference first 

reaches 0.95. Each horizontal line of the color map shows the preference of one neuron as 

a function of time; neural preference is quantified by the pixel color. (C) Distribution of 

times of maximal neural preference.  (D) The size of neural learning is plotted as a 

function of the neuron’s preferred time minus 250 ms. (E) The size of neural learning is 

plotted as a function of the neural preference for 250 ms. The lines show linear regression 

fits to the data from each of the two monkeys. In D and E, each symbol shows data for 

one neuron, and filled versus open symbols show data from the two monkeys.  (F) 

Correlations across neurons between the size of neural learning and the neural preference 

as a function of the time used to assess neural preference.  The two traces show results 

from the two monkeys. The vertical dashed line indicates the time of the instructive 

change in target direction, 250 ms after the onset of target motion.   
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Figure 1.4: Effect of the instruction time on the magnitude of the learned neural 
response.   
 
(A) Neural preference as a function of time for an example neuron.  (B) Baseline-

subtracted mean firing rate (top panel) and eye velocity (bottom panel) when the same 

neuron underwent learning using an instruction time of 250 ms (grey trace) or 150 ms 

(black trace). (C) Each symbol plots data from a single neuron (n=31). Each neuron is 

sorted into one of two x-axis groups according to whether its neural preference was 

greater for 250 ms or for the other instruction time used in the experiment. The y-axis 

plots the size of the neural learning for an instruction time of 250 ms minus the size of the 

neural learning for the other instruction time.  The horizontal lines indicate the group 

means. Filled versus open symbols and different line styles indicate data for the two 

monkeys.    
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Figure 1.5: Assessment of whether learned changes in neural firing can be 
attributed solely to changes in eye movement performance.  
 
(A) The dashed and continuous traces show target and eye velocity during a tracking that 

mimicked the trajectory of the learned eye velocity measured from probe trials in the 

learning block. (B) Black traces show data from the mimic trials and grey traces show the 

learned responses. Top panel: averages of eye velocity. Middle panel: average firing rates 

for the example neuron. Bottom panel: the population responses, averaged across all 

neurons. (C) Filled symbols compare learned firing rates with mimic responses for the 

full sample of neurons. Open circles compare the responses from the probe trials in the 

baseline blocks preceding the learning or the mimic experiments. Error bars denote 95% 

confidence intervals. The dashed line has a slope of one.    
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Figure 1.6: Time course of correlation between neural preference and size of 
learned and mimic responses.   
 
Correlations between neural preferences at the times on the x-axis and the learned 

response with an instruction time of 250 ms (grey trace), or the mimic response (black 

trace). Results reflect all 21 FEFSEM neurons studied in the mimic experiments.  
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Figure 1.7: Trial-over-trial effects on learned eye velocity and firing rate.   
 
(A) Example from a single experiment of baseline-subtracted mean firing rate (top panel) 

and eye velocity (bottom panel) from learning trials preceded by a control trial versus by 

another learning trial.  (B) Population analysis: each symbol shows data from an 

individual neuron and open versus filled symbols show data from the two monkeys.   
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 MONKEY G MONKEY S 

Correlation, 
significance 

Mean   
[range] 

Correlation, 
significance 

Mean  
[range] 

Neural preference      
for 250 ms 

0.43 
p=0.001 

0.63  
[0.06 to 0.98] 

0.36 
p=0.02 

0.50  
[0.01 to 0.98] 

Opponent firing rate 0.22 
p=0.11 

19.2 spikes/s 
[0.6 to 88.7]  

0.27 
p=0.08 

19.0 spikes/s 
[-1.9 to 77.1] 

Behavioral learning 0.18 
p=0.19 

0.8 degrees 
[0.4 to 1.2] 

0.47 
p=0.01 

2.1 degrees 
[0.7 to 4.5] 

 
 

Table 1.1: Partial correlation coefficients between the magnitude of neural learning 
and other neural or behavioral parameters.  
 
For assistance in interpreting the correlations, the table also shows the mean and range of 

each variable in the two monkeys.  
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Chapter 2 
 
Dynamics of frontal eye field and 
cerebellar activity during smooth 
pursuit learning 
 
2.1 Abstract 

 

Smooth pursuit learning elicits changes in the responses of neurons in the smooth 

eye movement region of the frontal eye fields (FEFSEM), a motor cortex for pursuit, and in 

the floccular complex, a cerebellar locus for pursuit.  To better understand the respective 

roles of the two structures in pursuit learning, we compared how their representations of 

learning emerged and evolved across movements as the monkey acquired and practiced a 

precisely-timed smooth eye movement.  The two population averages, along with the 

learned behavior, all had very similar learning dynamics.  However, the learning 

dynamics of individual neurons were heterogeneous, and differed between the two brain 

areas.  Proportionally more neurons in the floccular complex acquired learning at the 

same rate as the behavior.  Further, floccular complex neurons active early in the learning 

process tended to maintain elevated responses throughout learning, while learned 

responses in the FEFSEM were more likely to decrement substantially with further 

practice.  Finally, the millisecond-by-millisecond time course of the mean learned 

responses in the floccular complex were fairly stereotyped and resembled that of the 
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mean learned eye velocity; while the responses of different FEFSEM neurons peaked at 

unique times during the learned eye movement.  We conclude that pursuit learning arises 

from multiple neural components that emerge at different rates, and that the FEFSEM and 

the floccular complex serve at least partially distinct functions during learning. 

2.2 Introduction 
 

The nervous system can use sensory reports of the errors that occur during one 

movement to improve the accuracy of subsequent movements, a process commonly 

referred to as motor learning.  Motor learning is dynamic by nature; behavioral 

improvements occur in increments, and the increments become smaller with practice.  

Nevertheless, traditional approaches to understanding the neural basis of motor learning 

have largely focused on a comparison of the average neural activity before and after 

learning, without considering the dynamical aspect of the learning process.  Tracking the 

evolution of neural activity while an animal acquires a learned movement can provide 

insight into the neural mechanisms that underlie motor learning, while a comparison of 

the learning dynamics from multiple locations throughout the neural circuit may shed 

light their respective contributions to the learning process.  

Primates presented with a small object moving across their visual field can initiate 

an ocular tracking behavior known as smooth pursuit eye movements. Pursuit provides an 

excellent opportunity for exploring the neural basis of motor learning.  Reliable learning 

can be induced in pursuit learning by repeatedly delivering a given change in the 

direction of motion of the visual target at a predictable time (Medina et al., 2005).  The 
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learned changes in the behavior accrue rapidly and plateau within a few dozen 

movements. Thus, it is possible to make a detailed comparison between changes in the 

behavioral and neural responses throughout the learning process.  In addition, the neural 

circuit for smooth pursuit has been extensively characterized.  As in many other types of 

movements, both the motor cortex (Keating, 1991; MacAvoy, et al., 1991) and the 

cerebellum (Westheimer and Blair, 1973; Rambold et al., 2002) are necessary for the 

proper production of smooth pursuit.  Portions of the motor cortex and the cerebellum 

dedicated to smooth pursuit include, respectively, the smooth pursuit region of the frontal 

eye fields (FEFSEM) and the floccular complex.  The FEFSEM, which receives information 

about visual motion from sensory areas MT and MST (Leichnetz, 1989; Stanton et al., 

2005), plays a key role in setting the gain of visual-motor transmission, or the extent to 

which the motor command is altered by incoming visual signals (Tanaka and Lisberger, 

2001, 2002).  The floccular complex is situated closer to the output of the pursuit circuit, 

and encodes the dynamics of the eye movement (Shidara et al., 1993; Krauzlis and 

Lisberger, 1994).   

Despite their differing functions in pursuit, both FEFSEM neurons (Li and 

Lisberger, 2011) and Purkinje cells in the floccular complex (Medina and Lisberger, 

2008) exhibit changes in mean firing rate as a result of learning.  Now, we have tested the 

hypothesis that the FEFSEM and the floccular complex have distinct roles in pursuit 

learning by comparing how activity in the FEFSEM and the floccular complex change 

throughout the learning session, in relation to the accompanying changes in the learned 

behavior.  Our results suggest that pursuit learning is composed of multiple adaptive 

neural processes with diverse dynamical properties, and that these processes are engaged 
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differently in the FEFSEM and the floccular complex, possibly to drive separate aspects of 

pursuit learning.   

2.3 Materials and Methods 
 

2.3.1 General methods  
  

We report further analysis of two sets of data that have been published previously 

to address different questions (Medina and Lisberger, 2008, 2009; Li and Lisberger, 

2011). Data were recorded from four adult male rhesus monkeys during a paradigm that 

induced directional learning in smooth pursuit eye movements.  Two monkeys 

participated in recordings from the FEFSEM and two in recordings from Purkinje cells in 

the floccular complex of the cerebellum. The experimental protocol for the two brain 

areas used the same general procedures and learning paradigm, with minor differences in 

technique that will be mentioned at the relevant places in the following sections. 

 Throughout each daily experiment, the monkey sat comfortably in a primate chair 

with his head held stationary using implanted hardware.  We monitored eye position 

using a magnetic scleral search coil system (Ramachandran and Lisberger, 2005).  The 

hardware for fixing the head, the eye coil, and the recording chamber were attached in 

sterile surgery with the monkey under isofluorane anesthesia. Post-surgical discomfort 

was mitigated by several days of treatment with opiate and non-steroidal analgesics.  The 

experimental procedures and protocols were approved in advance by the Institutional 

Animal Care and Use Committee of the University of California, San Francisco, and were 
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in accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals.   

2.3.2 Experimental design 
 
 Experiments took place in a dimly lit room. Target presentation was different for 

the two brain areas, but the resulting learning was essentially identical. For recordings 

from the FEFSEM, visual targets were presented on a BARCO monitor (model number: 

CCID 7651 MkII) that was placed 40 cm in front of the eye and subtended 61x42° of 

visual field.  For recordings from the floccular complex, visual targets were created by 

imaging the light from a projector. The beam was deflected and moved using a mirror-

galvanometer system, and was projected onto the back of a projection screen that was 

located 30 cm in front of the monkey and subtended 53x53! of visual field.  

 Visual stimuli were presented in a series of individual trials.  Each trial started 

when the monkey fixated a 0.5o white spot at the center of the screen for 500 to 1000 ms. 

Subsequently, the target underwent a step displacement followed by a ramp motion that 

lasted 750 ms. Finally, the target stopped at its final position for an additional 500 ms.  

Throughout the trial, monkeys were required to keep their gaze within a small window 

centered on the target.  The size of the fixation window varied slightly between the 

recordings from the two structures (see Medina and Lisberger, 2008; Li and Lisberger, 

2011).  Failure to fulfill the eye position requirements resulted in immediate termination 

of the trial.  At the end of each successfully completed trial, the animal received a small 

drop of water or juice.   
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 Each learning experiment consisted of a characterization of the direction tuning of 

the neuron under study (~100 to 150 trials), a baseline block to establish the detailed 

responses of the neuron before learning (~100 trials), and a learning block (~250-300 

trials). We describe the experimental design for recordings from the FEFSEM first, and 

then list the minor differences for the floccular complex recordings. The pre-learning 

characterization block delivered 10 to 20 repetitions of step-ramp target motion at 20!/s 

in each of the eight cardinal and oblique directions (Figure 1A). During the subsequent 

baseline block, the target moved at 20!/s along the cardinal axis closest to orthogonal to 

the preferred direction of the neuron under study. The example neuron that provided the 

data illustrated in Figure 1A preferred upward pursuit, so the axis for the baseline block 

was horizontal (Figure 1B).  One direction along the baseline axis was designated as the 

probe direction (black arrow) and the other as the control direction (blue arrow).  55% of 

the baseline trials were “probe” trials and 45% were “control” trials, named thusly 

because they featured target motion in the probe or in the control direction.  In the 

learning block, we introduced “learning” trials that provided an instructive stimulus for a 

learned change in the direction of pursuit (after Medina et al., 2005).  In each learning 

trial, the target initially moved in the probe direction at 20˚/s; 250 ms after the onset of 

target motion, the target adopted a 30˚/s velocity component in the learning direction 

(Figure 1C, second row of icons).  Learning trials comprised 45% of the total number of 

trials in the learning block for recordings from the FEFSEM, probe trials comprised 10%, 

and control trials comprised 45%.  In all blocks, the different types of trials were 

interleaved in random order.  
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 There were a few minor differences between the experimental design for the 

floccular complex recordings, versus that described above for the FEFSEM. First, the pre-

learning characterization block also served as the baseline block; as a result, only 12.5% 

of the trials in the baseline block featured target motion in the probe direction.  Second, 

the learning block did not include target motion in the control direction, so that learning 

trials comprised 90% of the trials in the learning block and probe trials provided the other 

10%.  The schematics in Figure 1C summarize the differences in experimental design for 

the recordings from the two brain areas.  

2.3.3 Data acquisition 
 
 Horizontal and vertical eye position were sampled at 1 kHz and passed through 

analog differentiators with a cutoff of 25 Hz to yield the eye velocity traces.  The eye 

velocity traces from each trial were examined on a computer screen to identify and excise 

any saccades, which were replaced by a linear interpolation whose endpoints were the 

eye velocity values at the onset and the offset of the saccade.   

 Single-unit recordings from the FEFSEM and the floccular complex were made, 

respectively, using quartz shielded tungsten electrodes from Thomas Inc., and glass 

shielded platinum-iridium microelectrodes manufactured in our laboratory.  FEFSEM 

neurons were characterized by robust, directionally tuned activity during smooth pursuit, 

and weak or non-existent responses to saccades, visual motion, or eye position, while 

Purkinje cells in the floccular complex were identified based on their modulation to 

sinusoidal pursuit and the presence of complex spikes.  The recorded voltage signals were 

amplified, filtered, and sorted offline into discrete units using methods described in detail 
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elsewhere (Medina and Lisberger, 2008; Li and Lisberger, 2011).  For the analyses 

reported here, sorted waveforms were converted into spike trains with a temporal 

precision of 1 ms.    

2.3.4 Generation of neural and behavioral learning curves 

 Although all learning experiments produced statistically significant changes in 

eye velocity (significance level p<0.001; Mann-Whitney U test), expression of neural 

learning was highly variable across the FEFSEM, and to a lesser extent, the floccular 

complex.  Thus, the preliminary step was to identify neurons with significant expressions 

of learning, so as to generate learning curves exclusively from these neurons.   

We used three different methods to identify neurons with significant expressions 

of learning, all of which produced largely overlapping sets of neurons.  All three methods 

compared neural responses from the complete set of probe trials in the baseline block 

with the first 100 learning trials from the learning block.  First, we included neurons with 

a significant change in mean spike count, integrated across in the interval spanning 100 to 

320 ms after the onset of target motion, between the baseline block probe trials and the 

learning trials (significance level p<0.01; Mann-Whitney U test).  This method identified 

37/86 FEFSEM neurons and 22/31 Purkinje cells.  Second, we screened for neurons that 

showed a significant change in neural responses that was present only transiently during 

the block of learning trials. For each neuron, we determined whether learning caused an 

increase or decrease in the mean spike count (integrated across 100 to 320 ms), counted 

the number of learning trials whose spike count lay above the 95th percentile (for an 

increase in mean spike count) or below the 5th percentile (for a decrease) of the spike 
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count distribution from the baseline block probe trials, and included neurons with at least 

11 such learning trials (1% chance occurrence).  9/86 FEFSEM neurons and 2/31 Purkinje 

cells were added to the group of neurons for further study using the second method.  

Finally, to screen for neurons with learned responses that are brief in time during each 

individual trial, we smoothed the 0 to 320 ms portion of the spike train of each trial with 

a 50 ms rectangular filter, performed a millisecond-by-millisecond statistical comparison 

of the smoothed responses from the learning trials with those from the baseline block 

probe trials, and included all neurons with at least 50 time points where the two 

populations were significantly different (significance level p<0.01; Mann-Whitney U 

test). 2/86 FEFSEM neurons and 0/31 Purkinje cells were added to the group of neurons 

for further study using the third method. In total, 48/86 FEFSEM neurons and 24/31 

Purkinje cells satisfied at least one of the three criteria. 

We used an adaptive algorithm that has been described in detail elsewhere to 

generate a smoothed estimate of the activity of each neuron during learning (Brown et al., 

2000; Frank et al., 2002; Wirth et al., 2003). 

In brief, the algorithm models the underlying firing rate of the neuron, 

! 
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where t " (t j ,t j#1] , v(t) $
t %t j

t j#1%t j

 , and &(t |') $max(&(t |'),0)  to ensure a positive 

firing rate. At each millisecond, t , the algorithm updates the four nearest control points 

based on the difference between the firing rate function specified by the current values of 

the control points, &(t |' t%1) , and the actual value of the raw spike train, dN(t), where a 

spike is 1, a pause is 0, and ' t  is the vector of control points at time t :  

    ' t$' t%1#(
d&
d'

dN(t) % &(t |' t%1)) * ,          (1.2) 

 

At the end of each trial, the updated control points serve as the initial template for 

the next trial.  The learning rate of the algorithm, (, which we fixed at 0.005 (5 Hz), 

determines the extent to which the new information from the spike train modifies the 

existing control points.  Our conclusions were not dependent on the exact parameters 

chosen for the algorithm, as comparable results were produced using learning rates of 

0.01 or 0.0025 and a 10 or 50 ms spacing between successive control points. 

The first step in the procedure to estimate the firing rate of a given neuron on each 

trial was to construct a matrix of raw spike trains from the full set of baseline block probe 

trials and learning trials. Each row in the matrix was the spike train from a single trial 

spanning 200 ms before to 750 ms after the onset of target motion, and the first row 

contained data from the earliest probe trial presented in the baseline block.  The 

algorithm represented by Equations (1.1) and (1.2) was run once forward in time, starting 

with the earliest probe trial in the baseline block, and once in reverse, starting with the 

last learning trial.  When the algorithm was run forward in time, the control points were 
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initialized from the mean firing rate from all probe trials in the baseline block.  When the 

algorithm was run in reverse, the control points were initialized from the mean firing rate 

from the last 20 learning trials. Running the algorithm forward and in reverse produced 

two firing rate estimates for each trial, which were then averaged to yield the final firing 

rate estimate for that trial (examples shown in Figure 2D).  

To smooth the behavioral responses, we organized the raw eye velocity traces 

from the baseline block probe trials and the learning trials in the manner described above 

for the spike trains, and then convolved each millisecond of data across trials with an 

exponential filter whose decay constant was chosen to be -0.077 to match the parameters 

used for the adaptive algorithm.  As with the neural data, the behavioral data were 

smoothed forward and backward in time, and the results were averaged.  We did not use 

the exponential filter to smooth the neural data because the results from the adaptive 

algorithm were less noisy; however, we confirmed that our general conclusions were 

unchanged when spike trains were smoothed with an exponential filter.  

The learning curves quantified the magnitude of the neural or behavioral response 

as a function of the trial number.  Each learning curve included data from last 9 probe 

trials in the baseline block, followed by data from the first 100 learning trials.  To ensure 

that learning curves exclusively featured responses associated with learning, we focused 

the interval spanning 100 to 320 ms after the onset of target motion, because inherent 

delays within the pursuit circuit prevented the instructive change in target direction at 250 

ms from directly affecting neural and behavioral responses until at least 70 ms later, at 

320 ms. Therefore, we measured the behavioral response on each trial as the integral of 
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the smoothed eye velocity trace from 100 to 320 ms; for the neural responses, the firing 

rate estimate was integrated from 100 to 300 ms to account for the ~20 ms resolution of 

the adaptive algorithm.  Finally, we subtracted the average of the 9 baseline values from 

each point along the learning curve, and normalized the resulting curve by its most 

extreme value so that all learning curves had a maximal value of 1. 

2.4 Results 
 
 In recordings from both the FEFSEM and the floccular complex, we searched for 

neurons that responded selectively during smooth pursuit, and characterized responsive 

neurons according to their preferred direction during step-ramp target motion (Rashbass, 

1961).  We defined the preferred direction as the direction of target motion that elicited 

the largest mean firing rate, which was upward, or 90˚, for the example neuron in Figure 

1A.  

 As described in the Materials and Methods, we chose the learning direction to be 

the cardinal direction closest to the neuron’s preferred direction, and the probe direction 

to be orthogonal to the learning direction.  For the neuron used to create Figure 1, target 

motion in the learning trials started in the rightward probe direction and then added a 

component of motion in the upward learning direction. Repeated exposure to the 

instructive target motion elicited learned upward changes in the mean vertical eye 

velocity that appeared before the instructive motion (see arrow in Figure 1D, bottom), but 

minimal concurrent changes in the mean horizontal eye velocity (Figure 1D, top).   
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 Our goal in the present paper differs from those in our prior reports, which 

documented how mean eye velocity and firing rate changed as a result of directional 

pursuit learning (Medina and Lisberger, 2008, 2009; Li and Lisberger, 2011).  Here, we 

treated learning as a dynamic process and evaluated how eye velocity and firing rate 

evolved across learning trials. Thus, results are typically presented as a function of the 

number of the learning trial during the learning block. Because the monkey paces the 

experiment, absolute time is not under our control.  We return to a conventional analysis 

of the mean learned firing rate and eye velocity as functions of time during single pursuit 

responses only in the final figure of the paper.  

 Learned eye velocities emerged gradually over the course of a learning session. In 

each learning trial, the target started to move to the right at time zero, and underwent an 

“instructive” change in direction 250 ms later. During the first few learning trials (Figure 

2A, top blue traces), before any learning had occurred, the vertical eye velocity remained 

near zero until about 70 ms after the change in target direction.  At that time, the vertical 

eye velocity exhibited a sharp upward deflection that we will refer to as the visually-

guided eye movement because it was driven by the change in target direction.  As we 

proceeded from 1st to the 20th learning trial in Figure 2A, the general size and shape of 

the large visually-guided eye movement were unaffected, but the eye velocity acquired an 

earlier upward deflection that peaked around the time of the change in target direction, 

250 ms after rightward motion onset.  This deflection in vertical eye velocity became 

progressively larger in later-occurring learning trials, and appeared too early to be part of 

the visually-guided response. Therefore, the early upward eye velocity response is 
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understood best as a learned response, rather than as a visually-guided response or 

random eye velocity fluctuations.  

Learned changes in firing rate also emerged gradually over the course of a 

learning session.  Prior to learning, neurons showed little or no firing during baseline 

probe trials that took the pursuit target and the eyes exclusively in a direction that was 

approximately orthogonal to the neuron’s preferred direction (Figure 2A, black raster).  

In the first learning trial (first row, red raster), the neuron retained a low level of activity 

up to 320 ms, 70 ms after the change in target direction. Thereafter, it started to fire 

vigorously because the change in target direction evoked an eye velocity in a direction 

close to the preferred direction of the neuron.  Across learning trials, the neural response 

during the visually-guided eye movement did not change in size, but a small learned 

response developed in the interval between the onset of rightward target motion and the 

change in the direction of target motion.  

The data in Figures 2A and C are raw and unsmoothed.  Figures 2B and D show 

that the same effects persisted after analyses that smoothed the data (see Materials and 

Methods). As the sessions proceeded from the 1st to the 20th learning trial, both the 

smoothed eye velocity and firing rate traces showed a gradual acquisition of learned 

responses that preceded the onset of the instructive change in target direction.  

2.4.1 Relationship between neural and behavioral learning dynamics 

 We used learning curves, which measure the size of the learned change in spike 

count or eye position as a function of the number of learning trials, to portray the learning 

dynamics of individual neurons and of the behavior (see Materials and Methods).  Figure 
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3A plots the neural (red traces) and behavioral (blue traces) learning curves for eight 

different recording experiments, four each from the FEFSEM and the floccular complex.  

Neural learning curves from both brain areas often diverged considerably from the 

behavioral learning curves, suggesting that the learning dynamics of individual neurons 

in the FEFSEM and the floccular complex do not merely reflect changes in the animal’s 

motor performance across learning trials.  Further, the shape of the behavioral learning 

curve was fairly stereotyped across experiments, consisting of a brief acquisition period 

where the size of the learned behavior increased rapidly, followed by an extended 

maintenance period where the size of the learned behavior gradually stabilized, while the 

shapes of the neural learning curves were much more heterogeneous.   

Although the learning curves of individual neurons sometimes bore little 

resemblance to the behavioral learning curve, it was possible to recover the behavioral 

learning curve by averaging across neurons.  Figure 3B reveals a high degree of 

similarity between the mean behavioral learning curve (Figure 3B, blue traces) and the 

average of the full set of learning curves from either the FEFSEM or the floccular complex 

(Figure 3B, red traces).  To determine the minimum number of neurons from either brain 

area needed to produce an average population learning curve that faithfully tracked the 

behavioral changes, we randomly drew neurons (with replacement) from the original 

FEFSEM and floccular complex datasets to generate pools containing anywhere between 

one neuron and the total number of neurons present in each of our original datasets. We 

drew 1000 pools of each size, and quantified the performance of each pool by measuring 

the amount of variance in the behavioral learning curve that could be explained by the 

mean population learning curve.  Single neurons from both the FEFSEM and the floccular 
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complex were variable in their ability to faithfully track the behavioral changes, and 

accounted for, on average, 60.5 and 50.9% of the variance in the behavioral learning 

curve, with no significant difference between the two brain areas (p=0.23; Mann-Whitney 

U test).  Performance improved rapidly as a function of pool size. A pool of as few as 10 

randomly selected neurons from the floccular complex or the FEFSEM accounted for, on 

average, nearly 90% of the variance in the behavioral learning curve.  Overall, the 

performances of the two brain areas were extremely similar across all pool sizes, 

indicating that the FEFSEM and the floccular complex encode equally well the time course 

of the changes in eye velocity during the learning process.   

2.4.2 Comparison of learning dynamics in the FEFSEM and the floccular complex  

The example learning curves in Figure 3A suggest that learning in the behavior 

can either lead or lag learning in individual neurons from either the FEFSEM or the 

floccular complex.  To compare and contrast the rates at which the two brain areas 

acquired learning, we defined the “trial of learning acquisition” for each neuron as the 

trial on which its learning curve first reached 75% of maximum. We then plotted the trial 

of acquisition for neural learning as a function of the trial of acquisition for behavioral 

learning, defined by the same threshold from the behavioral results for the same 

experiment (Figure 4A).  Neurons that plot on the oblique dashed line showed identical 

trials of acquisition for neural and behavioral learning, while the distance of each point 

from the line indicates the size of the discrepancy between the acquisition of neural and 

behavioral learning. The location of each point above or below the unity line indicates 

whether that neuron learned more or less quickly than did the behavior. 



  

 
 
 
 

60

The FEFSEM and the floccular complex differed in the extent to which the trial of 

neural learning acquisition matched that of the behavior.  Neurons from the FEFSEM 

(Figure 4A, open symbols) were fairly evenly distributed throughout the plot, at all 

distances from the unity line and about equally above or below the unity line. Most of the 

neurons from the floccular complex (filled symbols) were clustered near the unity line, 

with a minority displaced quite far from the line.  In a histogram of the absolute 

difference between neural and behavioral learning acquisition (Figure 4B), the data from 

the FEFSEM and the floccular complex had means that were not significantly different 

(19.3 trials, floccular complex; 25.5 trials, FEFSEM; p=0.08; Mann-Whitney U test), but 

had significantly different distributions (p=0.04; Kolmogorov-Smirnov test).  The 

floccular complex distribution was bimodal: 58% of the neurons acquired learning within 

10 trials of the behavior, while another 21% differed from the behavior by between 50 to 

60 trials.  In contrast, the distribution from the FEFSEM was flatter and broader: there were 

groups of neurons that differed from the behavior by anywhere between less than 10 

(25% of the population) to more than 50 trials (12%), but no group was clearly 

predominant.  Therefore, neurons in the floccular complex either acquired learning at 

roughly the same rate as the behavior, or differed considerably from the behavior, 

whereas learning acquisition in FEFSEM neurons was much more distributed, with 

neurons differing from the behavior by anywhere between a small to a large number of 

trials.  

To be sure that our results were not related to the choice of a 75% threshold for 

estimating the trial of learning acquisition, we repeated our findings using thresholds of 

65% or 85%.  We also obtained the same results with a “cross-correlation” method for 
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estimating the leads and lags between the neural and behavioral learning curves, where 

we calculated the shift, in number of trials, needed to maximize the correlation between 

each pair of neural and behavioral learning curves.  

To visualize how responses in the FEFSEM and the floccular complex evolve 

throughout the entire duration of the learning experiment, we created the representation 

shown in Figure 5A. After ordering all of the learning curves from each brain area by the 

trial at which the learning curve first reached 95% of its maximal value, we represented 

the learning curves on a color scale and plotted each learning curve along a horizontal 

line (Figure 5A). For both the floccular complex and the FEFSEM, the colored summary of 

the learning curves reveals a diagonal red swath, indicating that each neuron shows a 

response that peaks for a specific trial during the learning experiment and then declines. 

Different neurons reached their peak response after a different number of learning trials. 

The red swatch of peaks is continuous for the FEFSEM, but is slightly broken for the 

floccular complex, hinting at the existence of two distinct groups of neurons that 

respectively reach peak responses during early- and late-occurring learning trials. In 

contrast to the diversity in the trajectories of the neural learning curves, the behavioral 

learning curves in Figure 5B, which were in the order defined by their corresponding 

neural learning curves, had fairly stereotyped trajectories and maintained near-peak 

values throughout much of the learning experiment.  As a result, the learned behavior was 

often maximal on trials where the expression of neural learning was weak.  The opposite 

situation also occurred, although less frequently.   



  

 
 
 
 

62

Inspection of Figure 5A suggests that neurons from the floccular complex whose 

responses peaked during the early learning trials exhibited a modest decrease in activity 

as learning progressed, whereas FEFSEM neurons whose responses peaked early in 

learning tended to undergo a more drastic decrease in activity during later learning trials, 

with some neurons returning to baseline levels of activity.  To quantify the differences in 

the maintenance of peak neural responses between the FEFSEM and the floccular complex, 

we plotted each neuron’s activity early in learning, defined as the mean value of the 

learning curve across the first 30 learning trials (learning trials #1 to #30), against its 

activity late in learning, defined as the mean value of the learning curve across the last 30 

learning trials (learning trials #71 to #100) (Figure 5C).   

In both brain areas, neurons weakly active early in learning tended to become 

highly active by the end of the learning experiment (Figure 5C).  FEFSEM neurons highly 

active early in learning subsequently showed decrements in their learned responses, 

causing the correlation between early learning activity and late learning activity across 

the FEFSEM population to be significantly negative, at -0.44 (p=0.002).  In contrast, 

neurons in the floccular complex whose activity peaked early in learning maintained an 

elevated level of activity up to the end of the learning experiment, reminiscent of the 

manner in which the behavior changed throughout learning.  Therefore, the correlation 

for the floccular complex, 0.27, was not significantly different from zero (p=0.21). 

Removing an outlier data point located at (-0.05, -0.42), further decreased the correlation 

to 0.02.  Finally, our findings were not dependent on the exact interval chosen for early 

and late learning; using the first/last 20 or 40 learning trials led to similar conclusions.   
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2.4.3 Time course of mean learned neural responses 
 
 We now move our focus to a comparison of how the mean learned response in the 

FEFSEM and the floccular complex change as a function of time within the trial, and away 

from the analysis of learning curves that has comprised most of the paper.  In agreement 

with earlier reports that different FEFSEM neurons are most involved in pursuit at 

particular times during a pursuit movement (Schoppik et al., 2008; Li and Lisberger, 

2011), we find similar features in the expression of learning in FEFSEM neurons.  

Examples of the learned component of the mean firing rate as a function of time for two 

representative neurons (Figure 6A, B) show that the learned response of the neuron from 

the floccular complex (A) increased steadily over almost 200 ms up to the time of the 

instructive change in target direction, in parallel with the eye velocity of the learned 

behavior (B). In contrast, the firing rate of the example FEFSEM neuron reached a peak 

before the time of the instructive change in target direction, even though the learned eye 

velocity continued to increase right up to the time of the instructive change in target 

direction. 

The learned responses across the FEFSEM population peaked at different times 

throughout the learned eye movement, while the peak times of the learned responses in 

the floccular complex were more uniform.  Because neural responses tend to be noisy, we 

smoothed the raw firing rate traces with a 50 ms rectangular filter, and analyzed the 

smoothed results.  To visualize the time courses of the collective mean learned neural and 

behavioral responses, we first normalized each learned response to have a maximal value 

of 1 and sorted them by the time at which the normalized neural response first reached 
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95% of its maximal value. We then plotted the ordered neural (Figure 6D) and behavioral 

(Figure 6E) responses as a series of colored lines, where pixel color encoded the 

magnitude of the normalized response at each time.  In the floccular complex, the red 

swatch, which corresponds to the peaks of the learned neural responses, lies between 250 

and 300 ms, indicating that the time course of the learned responses of Purkinje cells 

tended to exhibit a fairly stereotyped trajectory characterized by a monotonic increase up 

to the time of the instructive change in target direction, followed by a plateau.  The 

FEFSEM population shows a thin diagonal red swatch that extends from 100 to 300 ms, 

indicating that different FEFSEM neurons were most active during distinct, brief 

movements in the learned eye movement.  Collectively, the time of the peak responses in 

the FEFSEM population spanned the duration of the learned eye movement. In contrast to 

the learned neural responses, the set of learned eye velocity traces failed to show a 

corresponding diagonal red swatch, indicating that the temporal diversity in the peaks of 

the FEFSEM responses are unlikely to result from the heterogeneity in the peak times of 

the behavioral responses.  On average, the difference between the latency to 95% of peak 

in learned neural responses versus learned behavioral responses averaged 35.8 ms for the 

floccular complex and 49.9 ms for the FEFSEM.  

 Finally, we looked for a relationship between the peak time of the learned 

response in FEFSEM neurons and the time during pre-learning pursuit when they are most 

active. We assessed the preferred time of each neuron during pre-learning pursuit in the 

direction ultimately chosen to be the learning direction, as the time when its mean firing 

rate over the first 320 milliseconds after the onset of target motion first reached 95% of 

its maximal value.  As with the learned response, we analyzed the pre-learning response 
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after it had been smoothed with a 50 ms rectangular filter.  Plotting the time to 95% of 

the maximal response during pre-learning pursuit as a function of the time to 95% of the 

maximal learned response (Figure 6D) revealed that almost all neurons plotted on or 

below the unity line. Thus, the learned responses of FEFSEM neurons tend to peak at the 

same time or later than their responses during pre-learning pursuit, at times that represent 

a compromise between the time contingencies of the learned behavior and the intrinsic 

preferred timing of each individual neuron.  

2.5 Discussion 
 

The motor cortex and the cerebellum act in concert to produce a broad range of 

movements; however, their respective roles during motor learning are not well 

understood.  In this paper, we compared how activity in regions of the motor cortex and 

cerebellum associated with smooth pursuit, the FEFSEM and the floccular complex, 

evolved across movement repetitions as the monkey gradually learned to produce an 

accurately-timed pursuit eye movement.  Smooth pursuit is a useful system for studying 

motor learning because much is known about the function of specific areas throughout 

the neural circuit in generating the eye movement.  Current models of the smooth pursuit 

neural circuit postulate the existence of two interacting pathways (Lisberger, 2010), one 

that uses visual motion signals to drive changes in eye velocity, and another that controls 

the extent to which incoming visual motion signals affect the motor command, also 

known as the gain of visual-motor transmission.  The FEFSEM is part of the gain control 

pathway (Tanaka and Lisberger, 2001, 2002), while the floccular complex is probably 

downstream from the site of convergence of the two pathways, and contains information 
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related to the dynamics of the eye movement (Shidara et al., 1993; Krauzlis and 

Lisberger, 1994).    

2.5.1 Functional mechanisms of pursuit learning 

The findings in the present paper suggest that the mechanisms of pursuit learning 

are likely to involve changes in FEFSEM, corresponding to a shift in the visual-motor gain, 

which may be coupled with separate changes in signal processing in the floccular 

complex.  The details of the representation of learning in the FEFSEM and the floccular 

complex are different, but in a manner consistent with the established functions of the 

two structures within the pursuit circuit.  There was a looser link between behavioral 

learning and learning in individual neurons in the FEFSEM versus the floccular complex.  

58% of the neurons in the floccular complex acquired learning within 10 trials of the 

behavior, compared to 25% of the neurons in the FEFSEM.  Further, floccular complex 

neurons that acquired learning early on subsequently maintained elevated levels of 

activity throughout the remainder of the learning experiment, much like the learned 

behavior, while FEFSEM neurons maintained their learned responses for only a brief 

number of trials once learning had been acquired.  Finally, on a millisecond-by-

millisecond basis, the trajectories of the mean learned responses of neurons from the 

floccular complex closely resembled those of the learned eye movement in that both 

increased monotonically starting from pursuit initiation and reached a maximum around 

the time of onset of the instructive change in target direction.  In contrast, the learned 

responses of FEFSEM neurons had more heterogeneous time courses, with different 

neurons maximally active at select moments throughout the duration of the learned eye 
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movement.  The output from the floccular complex behaved as if tightly linked to the 

movement itself, while FEFSEM output appeared to reflect a compromise between the 

timing of the learned response and the intrinsic preferred time of the individual neuron.   

Although learned responses in the FEFSEM and the floccular complex differed 

somewhat at the level of individual neurons, the population representations of learning 

were surprisingly similar. Consistent with its role in encoding the motor command, the 

population average of the floccular complex evolved in step with changes in the learned 

eye velocity.  Consistent with the prior suggestion that learned changes in pursuit eye 

movement might at least be partly driven by changes in the gain of visual-motor 

transmission (Chou and Lisberger, 2004), the population average in the FEFSEM also 

evolved over learning trials along with the learned eye velocity.   The population 

averages emerged from a considerably heterogeneous set of learning dynamics measured 

in individual neurons.  In both brain areas, but more so in the FEFSEM than in the 

floccular complex, only a fraction of neurons were highly active on any particular 

learning trial, and the identity of the maximally active neurons changed continuously 

throughout the duration of the learning experiment.  We suggest that during different 

stages of learning, changes in the gain of visual-motor transmission and in the motor 

command are encoded by distinct subsets of neurons.  The dynamics of the acquisition in 

individual neurons may provide information about the mechanisms of learning, while the 

population responses may tell us more about its final implementation.   
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2.5.2 Pursuit learning as a multi-rate process 

Heterogeneity in the learning dynamics of neurons in both the floccular complex 

and the FEFSEM fits well with recent suggestions that motor learning arises from the 

interaction of multiple processes that adapt at different rates (Smith et al., 2006; Lee and 

Schweighofer, 2009; Yang and Lisberger, 2010).  Unlike many earlier motor learning 

studies that focused on long-lasting neural changes occurring over days or even weeks 

(Medina et al., 2001; Kleim et al., 2004), we examined the evolution of neural activity 

throughout a single learning session, which consists of dozens of movements produced 

over the course of 10 to 20 minutes. Our finding of a broad diversity in the rate of 

learning acquisition across individual neurons after a few minutes of training provides 

direct evidence that even short-term motor learning is composed of a multitude of neural 

processes whose timescales of plasticity are incredibly varied and rich. 

Work on smooth pursuit learning has provided some insight into the locations of 

different adaptive processes throughout the neural circuit.  For example, a previous study 

using the same directional learning paradigm described here identified a form of rapid 

neural learning in the cerebellar cortex that occurs over a single trial (Medina and 

Lisberger, 2008).  The findings in the present paper suggest two components of learning 

in the floccular complex: one in a group of cells that expressed neural learning after a 

relatively small number of learning trials and a second in a group of Purkinje cells that 

expressed learning only toward the end of a learning block. The two groups of Purkinje 

cells could be related to the theory (Miles and Lisberger, 1981; Krupa et al., 1993; 

Raymond et al., 1996; Medina et al., 2001; Nagao and Kitazawa, 2003; Kassardjian et al., 
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2005) that that the motor memory initially forms in the cerebellar cortex, but is 

subsequently transferred to the deep cerebellar nuclei for long-term storage. The second 

group of neurons that did not become highly active until late in the learning process may 

play a special role in driving memory consolidation in the deep cerebellar nuclei, or may 

reflect a hitherto underappreciated form of long-term memory storage in the cerebellar 

cortex.   

Our observation that the learned responses of different FEFSEM neurons reach 

their peak on different learning trials indicates that the FEFSEM is likely to also participate 

in multiple stages of motor learning.  We found distinct groups of neurons that were 

recruited at the end of a learning block versus early in the learning block, indicating that 

the FEFSEM may not only play an important role in the consolidation of the memory trace, 

like what has been suggested for the primary motor cortex (Wise et al., 1998; 

Muellbacher et al., 2002; Paz et al., 2005; Richardson et al., 2006; Hadipour-Niktarash et 

al., 2007; Xu et al., 2009), but may also contribute to memory formation.  However, 

because learned responses in the FEFSEM tended to have less sustained periods of elevated 

activity than responses in the floccular complex, the identity of the maximally active 

FEFSEM neurons evolved rapidly and continuously throughout the learning experiment.  

One interpretation could be that the FEFSEM contains a more detailed representation of the 

different stages of the learning process than the floccular complex.   

Our data provide strong evidence that motor learning is a multi-site, multi-

component behavioral phenomenon, but do not allow us to definitively pinpoint the 

neural substrates of the component adaptive processes. Indeed, because of the dense 
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interconnectivity of the pursuit circuit, expressions of learning in the FEFSEM and the 

floccular complex may reflect not local plasticity, but rather a response that is inherited 

from elsewhere in the pursuit circuit. Still, the heterogeneity in the dynamics of the 

expressions of learning in the two structures suggests that both rapid and slower forms of 

learning could arise independently in the FEFSEM and in the floccular complex.  We favor 

this scenario, because cellular and molecular studies are revealing an ever-increasing 

number of sites in both the cerebellum (Aizenman and Linden, 2000; Hansel and Linden, 

2000; Zhang and Linden, 2006; Weeks et al., 2007; Pugh and Raman, 2008; Connor et 

al., 2009) and the cerebral cortex (for review, see Feldman, 2009) that are sensitive to 

multiple forms of physiological and structural plasticity with diverse temporal properties.  
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Figure 2.1: Behavioral learning paradigm.   
 
(A) The direction tuning of an example neuron.  (B) Top: The control (180°), probe 

(360°), and learning (90°) directions chosen for the neuron in A. (C) Trial configurations 

for the baseline block and the learning block, shown separately for the FEFSEM and 

floccular complex learning experiments. (D) Mean horizontal and vertical eye velocity 

traces from a single learning experiment.  The red and pink traces show, respectively, the 

mean eye velocities from the learning trials and the probe trials in the baseline block, as a 

function of time from the onset of target motion.  The gray shaded box indicates the 

analysis interval spanning 100 to 320 ms, and the black arrow denotes the learned 

behavioral response.  The dashed black lines plot the target velocity from the learning 

trials. 
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Figure 2.2: Trial-over-trial changes in the neural and behavioral responses within 
individual learning experiments.   
 
The raw eye velocity traces (A) and spike trains (C) from the last 10 probe trials in the 

baseline block (black) and the first 20 learning trials from the learning block (blue: eye 

velocity, red: spike trains) are plotted as a function of time from the onset of target 

motion.  The earliest trial is presented at the top. Note that the neural and behavioral data 

are from separate learning experiments.  Smoothed eye velocity traces (B) and firing rate 

estimates (D) from the first, 10th, and 20th learning trials.  The analysis interval (gray 

shaded box) spanned 100 to 300 ms for neural learning, and 100 to 320 ms for behavioral 

learning.  The black traces plot the smoothed neural and behavioral data averaged across 

the last 10 probe trials from the baseline block. 
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Figure 2.3: Comparison of behavioral learning curves with single-unit and 
population neural learning curves.   
 
(A) Plots of the normalized learned change in spike count (red) or eye position (blue) as a 

function of the learning trial number.  Each pair of neural and behavioral learning curves 

is from the same learning experiment, for a total of eight different learning experiments.  

(B) Normalized average of the full set of neural (red) and behavioral (blue) learning 

curves.  (C) The percent variance in the average behavioral learning curve accounted for 

by the population neural learning curve is plotted as a function of the number of neurons 

in the population.  Each symbol shows the mean percentage for a population with a given 

number of neurons; filled and open symbols represent data from the two brain areas.  

Error bars denote the 95% confidence intervals, calculated from the 1000 sample 

populations generated for each population size. 



  

 
 
 
 

74

 

 

Figure 2.4: Acquisition of neural and behavioral learning.   
 
(A) Plot of the trial of learning acquisition for the neural and behavioral responses.  Each 

symbol represents data from a separate learning experiment.  The dashed line has a slope 

of one.  (B) Distribution of the difference, in number of trials, between the acquisition of 

neural and behavioral learning, for the FEFSEM and the floccular complex. 
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Figure 2.5:  Neural and behavioral learning dynamics throughout the duration of 
the learning experiment.   
 
(A) Summary of all 24 floccular complex (top) and 48 FEFSEM learning curves (bottom) 

in our sample.  Each line uses color to plot the value of a single learning curve as a 

function of learning trial number.  Neurons are ordered from top to bottom by the trial at 

which their learning curve first reached 95% of maximum.  (B) Behavioral learning 

curves are plotted in the order in which the neural learning curves from the same learning 

experiment appeared in A.  (C) A plot of the mean value of the learning curve across the 

first 30 (early) versus the last 30 (late) learning trials, for the full set of neurons in 

floccular complex (top) and the FEFSEM (bottom).  Each symbol represents data from a 

single neuron, and the line in each graph is the linear regression fit to the population data.  
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Figure 2.6: Analysis of the time course of the mean learned neural and behavioral 
responses.   
 
(A) Mean firing rates of a representative floccular complex (top) and FEFSEM (bottom) 

neuron, plotted as a function of time from the onset of target motion.  (B) The mean eye 

velocities traces from the learning experiments shown in A. Black and red traces 

represent, respectively, data from the probe trials in the baseline block and from the 

learning trials.  The grey shaded boxes in A and B, which span 1 to 296 ms, delineate the 

interval of the learned response plotted in C and D.  (C) For each of the 48 FEFSEM 

neurons, we plot the time at which its pre-learning response first reaches 95% of 

maximum, against the time at which its learned response first reaches 95% of maximum.  

Each symbol shows data from a separate neuron, and the dashed line has a slope of one.  

(D) Color maps of the normalized mean learned responses for all 24 floccular complex 

(top) and 48 FEFSEM (bottom) neurons.  Each line uses color to plot the magnitude of the 

normalized learned response of a single neuron as a function of time from the onset of 

target motion.  Responses are ordered from top to bottom according to their latency to 

95% of maximum.  (E) The normalized mean learned behavioral responses, sorted by the 

order in which the neural responses from the same learning experiment appeared in D. 
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General Discussion 
 
 The element of time shapes all aspects of motor control.  The brain must be capable 

of processing time within a single movement, i.e., when to strike the ball during a tennis 

serve, as well as improving the serve with practice.  In this thesis, I used a simple ocular 

tracking behavior, smooth pursuit, to probe the neural basis of the dynamics of motor 

learning, both within a single movement and across repetitions of the movement.  I 

recorded the responses of single neurons in the motor cortex of the pursuit circuit, the 

FEFSEM, as the monkey learned to produce a temporally precise smooth eye movement, 

and compared the results from the FEFSEM with previously published data from the 

floccular complex of the cerebellum, another site that has been implicated in pursuit 

learning (Medina et al., 2008).   

 By relating the magnitude of learning expressed by the neuron with its innate 

sensitivity to elapsed time within a movement, I demonstrated that the FEFSEM might be 

an important source of within-movement timing signals during learning.  A comparison 

of how the learned responses in the FEFSEM and the floccular complex evolved across 

movements as the animal acquired and practiced the learned eye movement suggested 

that the two brain areas may participate in multiple aspects of the learning process, and 

that their roles are likely to be at least partially distinct.   

 This thesis illustrates that characterizing the pattern of learned responses across the 

population can provide insight into the function of a given brain area during learning. 

FEFSEM neurons that preferred the timing of the instructive stimulus expressed greater 
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amounts of learning, indicating that the pursuit circuit makes use of the temporal 

information in the FEFSEM during motor learning.  Similarly, the across-movement 

response dynamics in the FEFSEM and the floccular complex led to the conclusion that the 

two areas may be involved in different facets of the learning process, and provided some 

insight into what those facets might be.  However, one major drawback of inferring brain 

function based on the form of the neural responses is the inability to establish causality.  

In the following paragraphs, I have proposed a series of experiments aimed towards 

bridging this gap.   

 In light of the results presented in Chapter 1, how might one demonstrate that the 

within-movement temporal map in the FEFSEM is necessary for producing an 

appropriately-timed learned eye movement?   Throughout the cerebral cortex, neural 

selectivity to specific stimulus features appears to arise partly as a result of GABAergic 

inhibition (Li et al., 2008; Allito and Dan, 2010; Wu et al., 2008).  Thus, it might be 

possible to make FEFSEM neurons less selective for distinct times during pursuit by 

blocking GABA transmission via muscimol or bicuculline, and then asking whether the 

learned eye movement loses its temporal precision.   Since proper execution of smooth 

pursuit requires an intact FEFSEM (Keating, 1991; Macavoy et al., 1991), it would be 

necessary to eliminate a general motor deficit as the cause of any changes in the learned 

behavior.  Similarly, one might manipulate the temporal map of the FEFSEM in other, less 

invasive ways, and relate changes in the precision of the neural representation of time to 

corresponding shifts in the temporal specificity of the learned eye movement.  For 

example, long-term exposure to pursuit trials where target motion lasts not for 750 ms, 

but for 400 ms or 1600 ms, may cause FEFSEM neurons to refine or broaden their 
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temporal selectivity, which may in turn lead to learned eye movements that are more or 

less temporally precise.   

 The results presented in Chapters 1 and 2 provide some clues about the 

involvement of the FEFSEM and the floccular complex in pursuit learning, but fail to 

specify whether plasticity in either structure is necessary for any aspect of pursuit 

learning.  A classical approach for establishing necessity is to lesion the brain area or 

block excitatory neurotransmission via application of a variety of drugs.  Unfortunately, 

because the FEFSEM (Keating, 1991; Macavoy et al., 1991) and the floccular complex 

(Rambold et al., 2002), are necessary for normal smooth pursuit performance, it will be 

difficult to distinguish whether learning deficits are related specifically to a lack of 

plasticity in the FEFSEM or the floccular complex, or are secondary to general problems in 

motor execution.  However, it might be possible to use a variety of molecular techniques 

to selectively block the induction of plasticity, but allow for signal transmission.  CamKII 

is a calcium binding protein that is not required for basic neuronal function, but is critical 

for activity-dependent synaptic plasticity (Silva et al., 1992a); blocking CamKII activity 

impairs learning (Silva et al., 1992b).  To selectively inactivate CamKII in the FEFSEM or 

the floccular complex, we could use a virus vector to deliver either CamKII siRNA, or 

inject a membrane permeable CamKII inhibitor, such as KN-93, and monitor the effects 

on various properties of pursuit learning, such as the size of the learned eye movement, 

the rate of learning acquisition, and the stability of the motor memory, to name a few.  

We can also use a similar approach to test other candidate molecules with available 

inhibitors, such as protein kinase M zeta, which appears to be selectively involved in the 
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maintenance of long-term memories (Pastalkova et al., 2006; Shema et al., 2007), 

including sensorimotor memories (von Kraus et al., 2010).   

 An alternative to directly blocking plasticity in the FEFSEM or the floccular complex 

is to corrupt processing of the visual error caused by the instructive change in target 

direction.  One could use electrical or optogenetic methods to briefly inhibit the brain 

area around the time at which the visual error signal is expected to arrive, which is 

approximately 70 ms after the instruction time for the FEFSEM (Li and Lisberger, 2011) 

and 75 to 175 ms for the floccular complex (Medina and Lisberger, 2008).  Finally, it 

may be possible to selectively prevent plasticity in the flocculus by perturbing the inferior 

olive, which is a direct source of the visual error signal for the floccular complex, but not 

for the FEFSEM (Simpson, 1984; Langer et al., 1985; Voogd and Barmack, 2006).  

 Although data presented in this thesis implicated the FEFSEM in specifying the 

timing of the learned eye movement, there is evidence suggesting that the cerebellar 

cortex also plays an important role in motor timing (Perrett et al., 1993).  Therefore, the 

manipulations proposed above would additionally be useful for disentangling the 

respective contributions of the two brain areas to the within-movement temporal 

specificity of the learned behavior.   

 In each pursuit learning experiment, the first few exposures to the instructive 

stimulus elicit large learned changes in the eye movement, but subsequent exposures to 

the same stimulus produce successively more modest behavioral improvements, 

consistent with what is typically observed during motor learning.  However, a growing 

body of evidence from other motor learning tasks indicates that training affects more than 

just the dynamics of the movement: in a task where subjects were required to perform a 
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rapid sequence of finger movements, training on one hand initially improved the 

performance of the contralateral hand for the same movement sequence.  However, 

additional training on the original hand resulted in improvements that were restricted to 

the trained hand (Korman et al., 2003).  Extended training has also been shown to make 

the memory trace more robust (Yin and Kitazawa, 2001; Joiner and Smith, 2008).  In one 

instance, overtraining on a visuomotor rotation task partially blocked the retrograde 

interference induced upon subsequent learning of a counter-rotation (Krakauer et al., 

2005).  Therefore, the number of times the system experiences the instructive stimulus 

has important implications for not only the amount of behavioral learning expressed by 

the animal, but also the specificity and stability of the learned behavior.  An interesting 

avenue of future research would be to determine 1) whether the robustness and the 

directional and temporal specificity of the smooth pursuit memory trace change as a 

function of training, 2) the properties and time scales of these changes, and 3) the 

characteristics of the responsible neural mechanisms and their locations within the pursuit 

circuit. 

 In conclusion, I have only explored a small corner of the rich space of motor 

learning.  Motor learning does not saturate with a single training session, but can further 

develop over hours, days, or even years, and is likely to engage a dynamic network of 

brain areas.  Careful behavioral studies, coupled with recordings from multiple locations 

within the smooth pursuit circuit, will set the stage for a more complete understanding of 

how the intricate interplay of neural signals gives rise to all facets of motor learning.    
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