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Highlights:

• As global changes including climate change continue, 
we will have to increasingly work across borders to 
achieve biodiversity conservation goals and to do 
better science.

• Conservation biogeography methods, especially species 
distribution models (SDMs), hold great promise to 
inform transboundary conservation under climate 
change.

• We outline the key SDM pitfalls that are most relevant 
to applications of climate change and steps to avoid 
them, such as improving practitioner-modeler 
capacity to follow SDM best practices.

• We argue that, especial ly in transboundary 
conservation contexts, SDMs should be collaboratively 
developed from the outset with all of the stakeholders 
for whom the model will be relevant.

• Borders often exemplify complex sociopolitical 
contexts and histories between countries; thus, 
conservation scientists, practitioners, and managers, 
including conservation biogeographers, have an 
obligation to understand those contexts and know 
how they relate to our work and the goals of 
conservation.

Abstract

Spatially explicit biogeographic models are among the 
most used methods in conservation biogeography, with 
correlative species distribution models (SDMs) being the 
most popular among them. SDMs can identify the potential 
for species’ and community range shifts under climate 
change, and thus can inspire, inform, and guide complex and 
adaptive conservation management planning efforts such 
as collaborative transboundary conservation frameworks. 
However, SDMs are rarely developed collaboratively, 
which would be ideal for conservation applications of such 
models. Further, SDMs that are applied to conservation 
often do not follow best practices of the field, which are 
particularly important for applications in climate change 
contexts for which model extrapolation into potentially 
novel climates is necessary. Thus, while there is substantial 
promise, particularly among machine-learning based SDM 
approaches, there are also many pitfalls to consider when 
applying SDMs to conservation, and especially in the context 
of transboundary management under climate change. Here, 
we summarize these pitfalls and the key steps to mitigate 
them and maximize the promise of applying SDMs to 
facilitate transboundary conservation planning under climate 
change. We argue that conservation modeling capacity must 
be elevated among practitioners such that they can easily 
implement best practices when using SDMs, especially 
regarding: 1) avoiding model overcomplexity, 2) addressing 
input data bias, and 3) accounting for uncertainty in model 
extrapolations and projections. While our discussion centers 
mainly on the pitfalls and opportunities of applying the most 
popular correlative SDM algorithm, Maxent, our suggestions 
can also be generalized to a range of other SDM tools. 
Overall, improved training in, tools for, and implementation 
of best practices in biogeographic models such as SDMs 
hold great promise to facilitate and help guide complex, 
transboundary collaborations for long-term planning of 
conservation under climate change.

Keywords: conservation biogeography, collaboration, conservation planning, cross-border conservation, ecological niche 
modeling, science diplomacy, stakeholder engagement.

This article is part of a Special Issue entitled Transboundary Conservation Under Climate Change, compiled by Mary 
E. Blair, Minh D. Le and Ming Xu. 
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Introduction
Conservation biogeography aims to apply 

biogeographic theories, principles, and analyses to 
management practices that sustain biodiversity (Ladle 
and Whittaker 2011, Franklin 2013). A key focus of 
the field is the investigation of global environmental 
change and its observed and predicted effects on 
biodiversity (Franklin 2013). For example, due to 
climate change, species’ suitable areas are expected 
to shift with some areas becoming less suitable for 
species’ survival, and others becoming more so. 
The resulting shifts in species’ distributions, species’ 
interactions, and biological community assembly and 
structure, increase the likelihood of local and global 
extinctions (Raxworthy et al. 2008, Pecl et al. 2017, 
Brambilla et al. 2020). To date, several studies have 
documented observed impacts of climate change on 
species’ distributions, abundance, phenology, and 
body size (e.g., Rosenzweig et al. 2008, Koleček et al. 
2020) or predicted future impacts of climate change on 
species, such as extinction risk (e.g., Thomas et al. 2004, 
Li et al. 2013). The field of conservation biogeography 
has presented practical methods for incorporating 
climate change within conservation planning and 
assessments to inform forward-thinking conservation 
management (Carvalho et al. 2011, Blair et al. 2012, 
Crossman et al. 2012).

Spatially explicit biogeographic models are among 
the most commonly used methods in conservation 
biogeography, with correlative species distribution 
models (SDMs, including ecological niche models 
or niche-based distribution models) the most 
popular among them (Franklin 2009, Franklin 2013, 
Peterson et al. 2011). These SDMs most typically 
estimate environmental suitability for a species in 
geographic space using associations between species’ 
occurrence records and environmental variables 
(Peterson et al. 2011). However, modeling efforts 
intended for conservation planning have been slow 
in applying best practice standards for correlative 
SDMs, in part because modeling goals may differ 
between academic and conservation applications 
of models (Araújo et al. 2019, Sofaer et al. 2019, 
Urbina-Cardona et al. 2019). Nonetheless, because 
SDMs can identify the potential for species range and 
community shifts under climate change, they have 
the ability to inspire, inform, and guide complex and 
adaptive conservation management planning efforts 
such as collaborative cross-border conservation 
frameworks (e.g., Blair et al. 2012, Middleton et al. 
2020, Titley et al. 2021).

More than half of all terrestrial birds, mammals, 
and amphibians have distributions that cross national 
borders (hereafter termed ‘transboundary’; Liu et al. 
2020, Mason et al. 2020). In addition to widespread 
direct threats such as deforestation and hunting, these 
species may be directly threatened by the construction 
of border infrastructure, as well as indirectly by lack 
of coordination of conservation activities on either 
side of the border (e.g., differences in land use and 
policy and other sociopolitical contexts and histories; 
Linnell et al. 2016, Liu et al. 2020, Mason et al. 

2020, Titley et al. 2021). Such threats are likely to 
be exacerbated by climate change. For example, one 
study predicts that most areas climatically suitable 
to be habitat for about one-third of mammal and 
bird species will have shifted to a different country 
by the 2070s (Titley et al. 2021). This highlights the 
need for strategic, coordinated approaches towards 
managing transboundary species and landscapes to 
prevent extinctions or further declines (Liu et al. 2020, 
Mason et al. 2020, Titley et al. 2021).

Transboundary conservation
Transboundary collaboration for conservation 

management will become even more important under 
climate change, as demonstrated by several other 
papers in this special issue (e.g., Blair et al. 2022a, 
Ngo et al. 2022, Tan et al. 2022) and as described 
further here. While in some areas, agreements 
for transboundary cooperation in biodiversity 
management may already be in place, in many cases 
coordination is slow because of limited capacity 
or other geopolitical and governance factors. Also, 
for most species and areas of interest, there is only 
limited information to document current or simulate 
potential future climate-driven habitat changes 
to assess their vulnerability and identify potential 
actions. When agreements are not yet in place or 
when progress is stalled, generating information on 
current and potential future habitat for high-interest 
species (or developing capacity to do so) could help 
to establish the foundation for and boost progress on 
developing such agreements and collaborations and 
improve the information generated at the same time 
(Guisan et al. 2013). For example, in a case study of 
collaborative monitoring of Amur leopards between 
Russia and China, country-specific results were less 
accurate, with uncertainty twice as high, compared 
to integrated estimates (Vitkalova et al. 2018).

While such processes take more time to develop, 
successful transboundary conservation is necessarily 
collaborative. A robust collaborative process 
should inform conservation planning in complex 
transboundary contexts where synergies and trade-
offs among diverse stakeholder needs must be 
balanced. For example, policies addressing the needs of 
marginalized border communities must be coordinated 
with those addressing the anticipated effects of 
climate change and shifts in biodiversity (Wilder et al. 
2013). Cooperative agreements are more likely to 
affect successful policies and actions that account for 
complex sociopolitical contexts (Hodgetts et al. 2018, 
Vitkalova et al. 2018).

Training in and implementation of best practices in 
biogeographic models such as SDMs hold great promise 
to facilitate and help guide complex, transboundary 
collaborations for long-term planning of conservation 
under climate change. SDMs can be particularly helpful 
in illuminating the importance of transboundary 
conservation (e.g., Wang et al. 2021). In particular, 
SDMs can provide inputs for mitigation and adaptation 
strategies, such as ‘climate-connecting’ corridors for 
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coordinated conservation of potential movement 
(Senior et al. 2019).

However, SDMs are often not collaboratively 
developed, which would be ideal for conservation 
applications of such models. Further, SDMs that are 
applied to conservation often do not follow best 
practices of the field (e.g., accounting for sampling bias 
in input datasets or taking steps to avoid overly complex 
and overfit models), which is particularly important 
in applications of climate change for which model 
extrapolation into future novel climates is necessary 
(Araújo et al. 2019, Sofaer et al. 2019).

Thus, while there lies substantial promise in 
applying SDMs to conservation, there are also many 
pitfalls to consider, especially in the context of 
transboundary management under climate change. 
However, collaboration among researchers and 
practitioners during the development of models 
and implementation of policies can help to bridge 
the gap between research and application (e.g., 
Urbina-Cardona et al. 2019), and thus promote more 
sustainable and broader use of SDMs as well as their 
best practices.

Here, we summarize key steps to mitigate the 
pitfalls and maximize the benefits of applying SDMs to 
facilitate transboundary conservation planning under 
climate change. Our discussion centers mainly on the 
pitfalls and opportunities of applying the most popular 
correlative SDM algorithm, the machine-learning 
based Maxent (Phillips et al. 2017), to transboundary 
conservation under climate change. However, our 
suggestions can also be generalized to a range of other 
SDM tools and applications, as we discuss.

The promise of machine-learning based 
SDMs for transboundary conservation 
under climate change

The ability to predict species’ distributions and 
relationships with their environment can be greatly 
enhanced by the application of machine learning to 
SDMs (Elith et al. 2011). Machine-learning based 
SDM algorithms now dominate the field (Urbina-
Cardona et al. 2019) and include methods ranging 
from random forests and artificial neural networks 
(Deneu et al. 2021) to support vector machines 
(Drake et al. 2006, Ferrell et al. 2019) and boosted 
regression trees (Elith et al. 2006). However, among 
the machine-learning based SDM approaches that can 
be applied to presence-only datasets, the maximum 
entropy approach implemented in Maxent software 
has performed better than many others under a range 
of circumstances, especially if appropriate corrections 
for bias and overcomplexity are taken (Elith et al. 
2006, 2011, Radosavljevic and Anderson 2014). As 
such, Maxent is now the most widely used algorithm 
for correlative SDMs (Urbina-Cardona et al. 2019). 
Maxent was born out of a public-private partnership 
between machine learning experts from AT&T labs and 
scientists at the American Museum of Natural History 
(Blair and Anderson 2017). The paper first documenting 
the implementation of Maxent to modeling species 

distributions has been cited more than 14,000 times 
(Phillips et al. 2006).

Machine-learning based SDMs are used for a wide 
variety of applications relevant to transboundary 
conservation efforts, including guiding field surveys 
to accelerate discovery of unknown range areas and 
species (e.g., Raxworthy et al. 2003), predicting invasive 
species risk (e.g., Peterson et al. 2008) or supporting 
conservation area priority-setting and reserve selection 
and related corridor networks (e.g., Senior et al. 2019), 
and more (as reviewed in Urbina-Cardona et al. 2019). 
Importantly in the context of this special issue, SDMs 
can identify the parts of a species’ geographic range 
that are expected to be more susceptible to climate 
change (e.g., Blair et al. 2022a, Nguyen, T.A. et al. 
2022, Trinh-Dinh et al. 2022, this issue).

Similarly relevant for transboundary conservation 
is that SDMs can update and inform range estimates 
used in formalized red-listing and threat assessment 
processes (Kass et al. 2021a, Merow et al. 2022), which 
are crucial for cross border species as asymmetric 
listing across borders can hamper conservation efforts. 
Asymmetrical conservation statuses could pose a 
challenge for effective management for transboundary 
connectivity and climate change resilience in the face 
of species range shifts (Thornton and Branch 2019). 
For example, more than a quarter of mammals in the 
Americas have asymmetric listings across borders 
and many have mismatches between local, national, 
and global listings (Thornton and Branch 2019). 
Asymmetries in listing could indicate that species 
truly are under less threat in one region compared 
to another, or could reflect different levels of concern 
between the two regions although population status 
is similar.

SDMs have great potential to facilitate coordinating 
and improving range information for listing purposes 
both to correct asymmetries and to incorporate 
climate change concerns. In particular, presence-
only approaches are very attractive because they 
can leverage new online databases and update 
estimates even for rare species with very few 
available occurrence records (e.g., Pearson et al. 
2007, Kass et al. 2021a). Also, machine-learning 
based SDMs may sidestep concerns about the use 
of correlated input variables. For example, Maxent 
performs iterative internal predictions that learn from 
novel information in correlated variables, leaving out 
repeated information (Elith et al. 2011). Also, Maxent 
can account for complex variable interactions, and 
has an extrapolation approach to project models 
to environmental spaces that are outside of the 
range of model training data, for example under 
future climate and land use change scenarios 
(Phillips et al. 2006, 2017). While correlative SDMs 
often do not account for other factors that influence 
distributions including dispersal, demography, and 
biotic interactions, it is possible to couple SDMs 
with spatially explicit stochastic population models 
to explore the interactions of mechanisms causing 
population decline (e.g. Stanton et al. 2015).
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Pitfalls and challenges
While SDMs have been widely applied to many 

fields, major challenges and pitfalls have presented 
themselves in the last decade, especially to the 
machine-learning based correlative approaches like 
Maxent. Researchers are beginning to establish best 
practice standards (e.g. Araújo et al. 2019, Sofaer et al. 
2019), however, among the largest concerns are 
issues with:

1) model complexity,
2) input data bias,
3) model extrapolation, and
4) modeling capacity among practitioners.

Common across these concerns is the ability for 
Maxent and other machine-learning based approaches 
to overfit to the training data. As an example, overly 
complex models are very easy to build using Maxent. 
Overly complex models are those that include large 
numbers of features that can end up over-fitting to 
random effects in a training dataset, with limited 
ability to generalize well to new data. In fact, models 
run with default settings tend to be overfit because 
of the sophisticated way that Maxent allows for 
variable interactions and multiple feature classes 
(Radosavljevic and Anderson 2014). Maxent allows 
multiple feature classes in the same model, meaning 
that a single variable can be included in a model in 
multiple ways (e.g. the same variable can be included 
in the model in multiple ways, as a linear, quadratic, 
and a hinge feature). Thus, Maxent will potentially 
predict very tightly to training data. This can lead to 
a poor predictive ability as withheld or new data or 
undetected occurrences may not be predicted.

Further, if our data are biased to begin with – 
then what are we even predicting? Occurrence data 
often suffer from biased sampling across geography 
and especially across geopolitical and administrative 
boundaries (Meyer et al. 2016), leading to biases in 
the representativeness of environments (Radosavljevic 
and Anderson 2014). This is especially important when 
projecting the model to different regions or time periods. 
In studies of potential climate change effects, these 
biases will be extrapolated and lead to great over- or 
underestimations of suitable habitat and downstream 
biodiversity change analyses, with the potential of 
misdirecting conservation efforts (Sofaer et al. 2018).

Similarly, the extrapolation feature of Maxent 
(‘clamping’) as described above can present a 
challenge, depending on the situation. Due to the 
likelihood of non-analog conditions in the future, 
choices about extrapolation are particularly important 
when thinking about these projections, especially given 
the expected role in which climate change will play 
in altering species’ distributions. Fortunately, Maxent 
includes model exploration tools and features to help 
understand the effects of extrapolation (such as the 
multivariate environmental suitability surface (MESS) 
tool, described further below and see Elith et al. 2010). 

However, these tools are often overlooked or resources 
around proper parameterization are inaccessible.

Navigating the pitfalls and a path towards 
wider implementation of best practices

Luckily, as mentioned above, many machine-
learning based SDM algorithms, including Maxent, 
include tools and guidance to help navigate potential 
pitfalls, and extensive advice on best practices in 
applying SDM exists (for further reading and elaborated 
details on best practices, please see Araújo et al. 
2019). Applying best practice standards to navigating 
SDM pitfalls is especially important for studies of 
climate change and in conservation applications of 
SDMs (Sofaer et al. 2018). This is especially true in 
transboundary conservation contexts under climate 
change, where there may be inherent biases in training 
datasets such that overly complex, overfit models 
would be unable to extrapolate to areas beyond 
that of model training, which is an inherent goal of 
projecting SDMs under future climate change. Here, 
we summarize key steps to navigate SDM pitfalls, 
including a review of selected best practices for model 
training and application to transboundary conservation 
management under climate change and ways to 
lower entry barriers to using these best practices for 
practitioners:

1. Avoid model overcomplexity
A widely accepted SDM best practice to avoid 

overly complex models is to test multiple models 
with a range of parameter settings (e.g., in Maxent, 
regularization multiplier and feature classes) and 
choose the setting with optimal model complexity 
based on a combined set of evaluation metrics that 
provide slightly different types of information about 
predictive performance and model complexity (e.g., 
omission error, AUC, AIC; please see Warren and Seifert 
2011, Radosavljevic and Anderson 2014). Avoiding 
overly complex models is of particular importance 
for rare species of conservation concern that may 
have very small input sample sizes for occurrence 
data (Radosavljevic and Anderson 2014). In Maxent, 
trying a range of different regularization multiplier 
values is particularly important. The regularization 
multiplier limits the complexity of the model to 
generate a less localized prediction (Phillips and Dudík 
2008): the default value of 1 tends to allow for more 
complexity and tends to lead to overfit models. Higher 
regularization values penalize complexity, so the best 
practice is to try a range of regularization values and 
then choose an optimal model for the species based 
on a set of evaluation metrics (e.g., see Kass et al. 
2021b). Similarly, Maxent’s default settings allow for 
multiple feature classes in same model, based on the 
number of occurrence records, which can also lead to 
model overfitting and overcomplexity depending on 
the particular biological system. Alternatively, avoiding 
overly simple models is equally important, but the 
previously mentioned evaluation metrics are usually 
sufficient to remove these models.
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2. Address input data bias
Reducing bias in the input data is another best 

practice to avoid overfitting SDMs. If the occurrence 
records used to build a correlative species’ distribution 
model do not provide unbiased information regarding 
the environmental requirements of the species, then 
the model cannot accurately estimate the species’ 
environmental tolerances or, conversely, a given 
location’s suitability as habitat for the species.

One strategy to address this issue is to improve the 
quality of species’ occurrence datasets. A GBIF task 
group on Data Fitness for Use in Distribution Modeling 
outlined a number of ways to enable this, which have 
and will greatly improve the quality of globally available 
input data (Anderson et al. 2020). A recommendation 
from this task group included that GBIF should serve 
indicators of precision, quality, and uncertainty of 
data, which has already been implemented. Another 
recommendation is to develop functionalities to 
enable users to annotate and communicate errors 
to data providers. An excellent example of a national 
biodiversity occurrence dataset that is collaboratively 
vetted and curated by both taxonomic experts and 
modelers is that of BioModelos in Colombia (Velásquez-
Tibatá et al. 2019). Indeed, even before starting to 
follow best practices to address remaining biases (as 
described below), modelers should do as much as 
possible to assemble a set of occurrence records that 
is as comprehensive as possible.

Where an unbiased and comprehensive coverage of 
occurrence records cannot be assured, best practices 
that avoid models being overfit because of biased 
data include reducing bias itself by thinning points to 
remove spatial clustering to reduce sampling bias and 
therefore spatial autocorrelation. One can also mitigate 
the effects of sampling bias through approaches that 
quantify sampling effort by including a bias layer in 
model training (Phillips et al. 2009).

Another best practice is selecting the proper 
background area used to train models, which can 
help account for both biased data and differences in 
dispersal capacities. The model assumes, following 
niche theory, that areas where the species is not 
present are due to unsuitable habitat, rather than 
just an artefact of sampling bias or a dispersal barrier 
(Soberón 2007). Thus, it is recommended to constrain 
the background training area to only include those 
areas to which the species might possibly disperse 
(Anderson and Raza 2010).

Data biases can also come from environmental input 
variables and how they are included in the model. 
One should carefully study all of the variable response 
curves for the completeness of predictor variable 
sampling (i.e., that the entire range of the species’ 
suitability for the variable was sampled in model 
training). Further, models are commonly improved 
by including other abiotic factors beyond climate in 
model training. Vegetation cover, microclimate, water 
surface coverage, and geology (e.g. Blair et al. 2022b, 
Ngo et al. 2022, Tan et al. 2022, this issue) can all 
improve a model’s predictive ability so long as they 
are relevant to the species’ biology. These types of 

variables may present challenges to climate change 
projections because of data limitations, restrictions, 
or lack of interoperability in some areas. For example, 
microclimate data may be quite important for many 
species but relevant datasets may be challenging 
to obtain depending on the extent and resolution 
required. However, a study in this issue shows that 
variables that approximate microclimate reflect 
essential characteristics that result in predictions that 
are likely as informative as using microclimate itself for 
model training (Blair et al. 2022b this issue). Another 
study in this issue pointed out the need for more 
long-term ecological research to better understand 
microclimate and fine-scale habitat preferences and 
improve model projections for the purpose of adaptive 
conservation management plans (Blair et al. 2022a this 
issue). It is noted however that while including non-
climate variables, such as topographic variables, may 
improve model fitting, doing so may also compromise 
model predictability under future climate change 
because of high correlations between topography and 
climate, such as temperature and elevation, depending 
on the modeling algorithm applied.

3. Account for uncertainty in model extrapolations 
and projections in conservation recommendations

Even with suitable validation data (e.g., ground-
truthing a model), SDM projections under climate 
change can have poor performance (Sofaer et al. 
2018). One common reason for this poor performance 
is uncertainty in future climate projections, the 
effects of which can be exacerbated in areas with a 
low density of species’ occurrence records or those 
that are topographically complex, which often exhibit 
rapid and systematic changes in temperature and 
precipitation over fine spatial scales (Kueppers et al. 
2005). Unfortunately, these are often exactly the 
areas of highest interest for biodiversity conservation 
(biodiversity hotspots, topographically diverse areas, 
particularly in the tropics). Therefore, for conservation 
efforts, especially in complex transboundary contexts, 
accounting for uncertainty in model extrapolation and 
projection is key.

A large amount of variation in model projections 
is driven by GCM uncertainty and variation, especially 
for future projections under climate change (Blair et al. 
2012). A typical strategy to address model uncertainty 
is to apply an ensemble approach (Araújo and New 
2007, Beaumont et al. 2019, Woodman et al. 2019). 
It is very important to not just choose one GCM 
or only one emissions scenario for future climate 
change projections, it is best to choose a range and 
then compare overall trends by summarizing across 
them to get a sense of trends across models and the 
extent of variation among them (Araújo and New 
2007, Woodman et al. 2019, Blair et al. 2022a). Basing 
management decisions on agreements across a range 
of scenarios is a reasonable, conservative approach to 
guide conservation (Beaumont et al. 2019). Ensembling 
can also be used for current models of species to 
examine the potential effects of intuitive extrapolation, 
in addition to the other tools and strategies. For 
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example, as mentioned above, many modelers choose 
the default setting in Maxent for intuitive extrapolation 
(clamping). The multivariate environmental suitability 
surface (MESS) tool included with Maxent can help 
to decide whether one wants to turn clamping on or 
off, change the training area given the purpose of the 
model, or remove non-analog extrapolation areas from 
the final projection (Elith et al. 2010).

4. Build modeling capacity among practitioners
One reason that many SDM studies, especially for 

conservation, do not employ best practices to address 
the pitfalls discussed above is the “black box” nature of 
some machine-learning based tools, especially Maxent 
in its past versions. It is not easy to open the box and 
look at what is inside and examine it to adjust the 
model to best fit the data for a specific purpose. Thus, 
it has been tempting for people to just use the default 
parameters (Blair and Anderson 2017, Phillips et al. 
2017). The new open-source version release of Maxent 
(Phillips et al. 2017), as well as other open-source 
tools that facilitate best practices in model tuning 
and parameterization like Wallace (Kass et al. 2018), 
are changing this landscape to lower entry barriers 
into robust application of SDM for conservation. For 
example, Wallace implements two state-of-the art 
R packages spThin (Aiello-Lammens et al. 2015) and 
ENMEval (Kass et al. 2021b) that facilitate some of 
the best practices outlined above to avoid pitfalls, 
and in a user-friendly graphical user interface (GUI) 
environment. The application guides modelers through 
a complete analysis, from the acquisition of data to 
choosing and evaluating optimal models, to visualizing 
model predictions on an interactive map, thus 
bundling complex workflows into a single, streamlined 
interface. Increased openness, reproducibility, and 
transparency of modeling approaches is not only an 
ethical imperative but also necessary to build capacity 
for higher-quality SDMs, and thereby facilitate more 
robust, collaborative SDM research on global change 
in transboundary contexts.

Conclusion

SDMs as essential tools for improved capacity for 
transboundary conservation under climate change

When used in combination with other information, 
accounting for bias and uncertainty, and trained 
well, SDMs have great promise to help conservation 
managers be forward-thinking about the possibility 
of endangered species moving out of their current 
distributions and to prepare for coordinated 
transboundary management, among other strategies. 
For example, in this issue several studies identify 
potential areas suitable for population re-establishment 
and community monitoring (Blair et al. 2022a, Trinh-
Dinh et al. 2022, this issue), and for refugia for 
species (Nguyen, T.A. et al. 2022, this issue). More 
indirectly, SDM approaches can inform monitoring 
and management for species highly threatened by 
international wildlife trade, a particularly challenging 

transboundary conservation issue (Nguyen, T.T. 2022). 
We have discussed why increased capacity to build 
robust SDMs and more collaborations across borders 
will be increasingly important for forward-thinking 
conservation management under climate change. We 
also show how, conversely, when SDMs are poorly done 
or when partnerships are not strong or communication 
is not happening, it can negatively affect important 
decisions.

Partnerships are a strong foundation for 
strengthening transboundary work and communication, 
including the development of SDMs for conservation 
across borders. Collaborative efforts provide a better 
understanding of range dynamics, build trust, and 
can lead to cooperative agreements to coordinate 
conservation policies for endangered species 
conservation across borders (Vitkalova et al. 2018). 
Thus here, the guiding principles of stakeholder 
engagement and science diplomacy, which can facilitate 
transboundary communication and consultation, 
are especially crucial to use. The need for strong 
partnerships and communication to assure evidenced-
based conclusions and decisions is at the foundation of 
the concept of science diplomacy—the use of scientific 
collaborations among nations to address common 
problems and to build constructive international 
partnerships (CGSPSD 2011). Stakeholder engagement 
processes, in turn, are critical for successful biodiversity 
conservation outcomes, especially to ground project 
goals and activities in particular social-cultural-political 
contexts (Sterling et al. 2017). Engagement of varied 
stakeholders may be especially important under 
transboundary contexts because borders, whether 
real or imagined, signal the very geographies where 
already marginalized communities, including both 
people and wildlife, are the most vulnerable to being 
further pushed towards the edge (Hodgetts et al. 2018).

Collaborative partnerships also improve the quality 
of SDMs (Urbina-Cardona et al. 2019, Velásquez-
Tibatá et al. 2019, Skroblin et al. 2021). Stakeholder 
engagement and partnerships can generate more 
accurate and less biased SDM inputs and outputs for 
example by including taxonomic expert opinion as a 
part of the SDM development process (Velásquez-
Tibatá et al. 2019, Merow et al. 2022), and have more 
potential to best fit the goals and preferred outcomes 
of diverse stakeholder communities in complex border 
contexts (Villero et al. 2016, Sterling et al. 2017). 
Collaboration and engagement of input from a variety 
of stakeholders in the SDM development process will 
also improve results by better facilitating inclusion of 
human responses to climate change in assessments, 
which are often overlooked (Segan et al. 2015).

Further, we argue that transboundary work 
should be transboundary in authorship and a 
collaborative process from the beginning of the 
work. We note that in addition to analyses about 
how important transboundary conservation and 
collaborative management across boundaries is 
and will continue to be, it is perhaps even more 
important to engage in collaborative processes from 
the outset of research activities themselves, as in 
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the case of our authorship group on this paper and 
in many of the papers in this special issue.

Collaborative frameworks that include multiscale 
and multisector partnerships are even stronger, 
including coordination for science policy and 
management across borders. Such frameworks are 
vitally important for more complex situations such 
as management of migratory species across different 
jurisdictions (e.g. ungulate migrations in Greater 
Yellowstone Ecosystem; Middleton et al. 2020). 
Transboundary science, policy, and management 
frameworks may consist of widespread mapping and 
assessment of distributions and migrations, improved 
coordination of policy and management across 
jurisdictional lines, increased investments, and strong 
engagement of local stakeholders.

Borders often indicate complex sociopolitical 
contexts and histories between countries. We argue 
that conservation scientists, practitioners, and 
managers, including SDM modelers, have an obligation 
to understand those contexts and know how they 
relate to our work and the goals of conservation 
(Hodgetts et al. 2018, Murphy 2021). Biodiversity 
and landscapes do not follow sociopolitical borders; 
thus, especially as global changes including climate 
change continue, we will have to increasingly work 
across borders to achieve biodiversity conservation 
goals. Fortunately, conservation and science can build 
bridges between societies where official relationships 
may be difficult, and through approaches like those 
detailed here and others in this special issue, we 
hope to model ways to strengthen interactions and 
partnerships between both scientific and diplomatic 
communities.
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