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The Seebeck coefficient of a typical thermoelectric material is calculated without recourse to the
relaxation time approximation (RTA). To that end, the Boltzmann transport equation is solved in one
spatial and two k-space coordinates by a generalization of the iterative technique first described by
Rode. Successive guesses for the chemical potential profile are generated until current continuity
and charge-neutrality in the bulk of the device are simultaneously satisfied. Both the mobility and
Seebeck coefficient are calculated as functions of the temperature and the agreement to
experimentally obtained values is found to be satisfactory. Comparison is made with the less
accurate RTA result, which has the sole advantage of giving closed form expressions for the
transport coefficients. © 2010 American Institute of Physics. [doi:10.1063/1.3366712]

I. INTRODUCTION

III-V compound semiconductors and composites are
promising materials' for high-efficiency thermoelectrics out-
side the optimum temperature range of the more conven-
tional Bi,Te;. Most calculations on these and other material
systems rely on the relaxation time approximation (RTA),’
treating the relaxation time either as a constant or as having
a simple energy dependence E". We consider here the calcu-
lation of the Seebeck coefficient outside the RTA of degen-
erately doped n-type zinc-blende semiconductors with
spherical nonparabolic band structure. While variational
methods® have been used to overcome the limitations of the
RTA for mobility and Seebeck coefficient calculation, the
method presented here is much less involved mathematically
without sacrificing any of the rigor, and is applicable to the
more general problem of nonzero load current and arbitrary
temperature differences. Since alloying two or more com-
pounds drastically increases the thermal resistivity and
hence, the energy efficiency metric of a thermoelectric ma-
terial, we consider ternary alloys, though extension to other
alloy systems is simple. The thermoelectric energy efficiency
metric for a material is given by Z=S%0/k where S is the
Seebeck coefficient, o is the electrical conductivity, and « is
the thermal conductivity. Increasing the carrier concentration
increases o but reduces S and increases «. This trade-off
results in maximum Z at an electron concentration of
10'-10% c¢m™3, depending on the details of the band struc-
ture.

In Sec. II we introduce the Boltzmann transport equation
(BTE) in one spatial and two k-space coordinates, and show
the expansion of its solution, the nonequilibrium distribution
function, in spherical harmonics. We then describe the itera-
tive method which is the basis of our solution to the BTE.
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We note en passant that extraction of the mobility follows
upon suppression of the spatial component of the BTE. This
is similar to the method first introduced by Rode* although
we treat the full BTE instead of the truncated linear form. In
Sec. III, a new algorithm is introduced for the extraction of
the Seebeck coefficient from the solution to the spatial BTE.
It is seen that the method has more general applicability, not
limited to open-circuit conditions and infinitesimal tempera-
ture differences. We then define the RTA as the first iterate of
our method and show that the expressions for the mobility
and the Seebeck coefficient extracted from this definition are
identical to the formulae widely used (see, for e.g., Ref. 5)
for estimating these transport coefficients (Sec. IV). After
identifying the conditions under which the RTA is liable to
produce large errors, we compare the Seebeck coefficient
values obtained from the iterative solution with the RTA for-
mulae for a typical thermoelectric material over a wide tem-
perature range. The mobility calculation is used to verify the
models used in this work for scattering probabilities due to
various mechanisms.

Il. THE BTE

We now describe the determination of the current profile
from the BTE

(k) V. f+ % oV.f
— 2 [SelaS(E’,E) + Sinelas(]gr,]z)y(];/’z)[l —f(E,Z)]
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Often, the BTE is written in a truncated linear form* as fol-
lows

>

L 4F
z?(k)-V,f+%-ka

— E [Selas(]g/,lg) + Sinelas(lgl,]g)]f(]gr’z)
k/

_ E [Selas(lg,]g/) + Si“elaS(E,E’)]f(E,z).
k!

We will not use this form since it is valid only in nondegen-
erate cases: besides, with only some changes in the defini-
tions of some scattering rates both problems can be reduced
to the same form, hence there is no mathematical advantage
in using the latter.

Here (k) is the group velocity at &, qF" is the force on an
electron, and S (Ig,lg') denotes “interstate collision rate” from
state k to state k'. The first summation on the right-hand side
(RHS) describes in-scattering into a state of wave-vector k
from all other states, and the second summation describes the
out-scattering from state k to all other states. Scattering rates
due to various mechanisms combine additively. We have
classified scattering mechanisms, for purposes of conve-
nience, into elastic (energy conserving) and inelastic (nonen-
ergy conserving), S¥(k’ k) being defined as the sum of
scattering rates due to all elastic scattering mechanisms, and
sinelas(i’ k) as that due to all inelastic mechanisms. Similar
definitions hold with k and k' transposed.

We introduce here two assumptions such as: (i) The
band-structure is isotropic (but not necessarily parabolic) and
(i))S(k' k) depends only on the magnitudes of k' and k and
the angle between them.

The temperature variation is in only one spatial direc-
tion: further, the temperature gradient is aligned with the
z-axis. Let 6 be the angle between the temperature gradient
(z-axis) and the vector k with magnitude k. The solution to
the BTE, namely the nonequilibrium distribution function
f(k,8,z), possesses azimuthal symmetry about the z-axis,
and hence can expressed as a spherical harmonic expansion

[

f(k’ G,Z) :fO(k’Z) + 2 gl(k’Z)Pl(COS 0) -~ fO(k’Z)
=1

+ g(k,z)cos 6. ()

The azimuthal symmetry of the distribution function is not a
separate assumption but a consequence of our assumptions
above regarding the band-structure and the angular depen-
dence of the scattering rates. For weak electric fields, it suf-
fices to truncate expression (2) at /=1, with which form we
will work henceforth. Here f|, is the equilibrium distribution
function, whose form is assumed unchanged to first order by
the applied electrothermal field. It is thus given by the famil-
iar expression of Fermi-Dirac statistics as 1/{exp[E(k)
+Eq(z)—Ep(z)]/kgT(z)+ 1}, where Eq(z) and Eg(z) are the
conduction band and chemical potential profiles, respec-
tively, assumed known for now. These profiles will play an
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important role in determining the Seebeck coefficient in Sec.
1.

The goal is to determine g(k,z), the antisymmetric part
of the distribution function. For elastic scattering mecha-
nisms, the in-scattering and out-scattering terms for any
(k,z) can be combined into the distribution function g(k,z),
times the so-called “momentum relaxation rate,”
(177 (k)). Inelastic scattering couples shells in k-space of
different radii. For inelastic mechanisms, the scattering terms
can be combined as g(k,z)(1/7"%(k,z)), plus a term of the
form [},_,g(k",2)(1/T™(k’ k,z))dk’. We will define 7S
7nelas and [inelas iy terms of the interstate collision rates S€2
and S in the Appendix. Throughout, the superscript will
indicate the nature of the mechanism, e.g., whether the
mechanism is elastic or inelastic. Closed form expressions
for these quantities can be derived for all scattering mecha-
nisms considered in this work by a straight-forward exten-
sion of the results of Ref. 4.

Isotropic band-structure means an isotropic group veloc-
ity v(k)=[5(k)|. Let Q' =sin 6'd0'd¢’ where ¢ and ¢’ are
the polar coordinates of k. Substituting Eq. (2) into Eq. (1),
multiplying by cos 6 sin 6 and integrating over all 6 we get
the following equations, which we derive from Eq. (1) in the
Appendix.

s (0 o
Teti(k»2) dz h o ok
+ fk’zo g(k’,z)<—rinelas(1k,’k’z))dk’. (3a)
Here the quantity 7.(k) is defined by
1 1 1
k) ( (ez) (0 ) ()

It is important to note here that 7.4(k,z) depends only on the
scattering mechanisms involved and the equilibrium distribu-
tion function, and is independent of g(k,z). The electric field
profile is given by —F(z)=(1/¢)(dE+/dz). The group veloc-
ity v(k) is discussed in Sec. V.

At any z, Eq. (3a) can be solved iteratively for g(k,z).
We start with a guess of g(k’,z)=0 for all k' # k inserted into
the in-scattering integral over £’ on the RHS. This solution is
labeled g¥(k,z), given by the following equation:

ﬂz)ﬁ_fo>

ho gk (42)

9fo
8 V(k,z) =~ eff(k,Z)<U(k)_ +
0z
We now insert this solution into the in-scattering integral on
the RHS of Eq. (3a), to get the next iterate:
afy . qF(2) dfy )

W(k,z) = - Togelk ( k)—
g (k) ett(k,2) U()&z+ PR

[

+ 7ok, 2)

——— |dk’
=0 Fmelas(kr,k,z))

(4b)

g(o)(k’,z)(

This process is continued until successive iterates differ from
the previous by less than a user-defined tolerance. Usually
five iterations suffice for mobility and Seebeck calculation to
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FIG. 1. (Color online) Various orders of iteration of Eq. (3a) and corr.

mobility, for 7.7 X 107 cm™ Ing 5;Gag 47As, 600 K.

within 1%. We will later define the RTA as equivalent to zero
iterations, namely Eq. (4a). Scattering rates on the RHS of
Eq. (3a) for various mechanisms considered in this work are
discussed in Sec. VI. df,/dz can be evaluated in terms of
Eq(z), Ef(z), T(z) and their first derivatives. The derivatives
are evaluated on a spatial grid by simple firstorder finite dif-
ferencing.

Once g(k,z) is solved for, the current profile is deter-
mined using the following equation:

J(2)= (3%) fk  Polg(k2)dk 5)
We wish to point out three features of Egs. (3) and (4). The
first is the neglect of “nonlocal scattering.” It is assumed that
collisions are instantaneous events compared to the average
time between scattering events, hence the electron does not
travel any significant distance during the collision event.
Thus g(k,z) does not depend on g(k’,z") for z#z7'.

The second feature is that the integral over k' on the
RHS of Eq. (3a) is often a dummy integral, because S/ for
all inelastic scattering mechanisms of interest contains a
Dirac function over energy of the form JE(k)—E(k')—AE],
AF being a constant. The third feature is that on suppressing
z and derivatives with respect to z in Egs. (3)—(5), we reduce
the problem to solving the BTE for a spatially homogenous
semiconductor, and the solution reduces to Rode’s iterative
method,* extended to the case of arbitrary degeneracy. The
mobility can be obtained by dividing the current by gnF,
where n is the number of electrons in the conduction band.
Since g(k,z) is proportional to the field, we obtain a field-
independent mobility. Of course, the spherical harmonic ex-
pansion and hence, the entire formalism is valid only for low
electric fields.

Figure 1 shows successive iterates g as a function of
energy and the corresponding mobilities for 7.7
X 10" cm™ doped Inys3GagsAs at 600 K, which is the
highest temperature used in our work. The kink at ~30 meV
is due to the onset of optical phonon emission. The equilib-
rium distribution function f;, is shown in Fig. 2 for the sake
of comparison: the nonequilibrium part of the distribution
function is about three orders of magnitude smaller than the
equilibrium part for a field of 10* V/m. Detailed calcula-
tions and measurement data on this particular material and

J. Appl. Phys. 107, 083707 (2010)

—y

‘._O

c

S

©

S 08

[T

c ———— T=300K
£ 06 — T=600K
>

8

®

2 04

€

3

5 0.2

§-

L 0

0 0.1 0.2 0.3 0.4 0.5

Energy (eV.)

FIG. 2. (Color online) Equilibrium distribution function, for 7.7
X 10'7 ¢m™ Ing 53Gay 47As, at 300 and 600 K.

doping are shown in Sec. VII. Carriers with energies up to
~0.3 eV above the conduction band (CB) edge contribute
~90% to the conductivity at 600 K. By comparison, only
carriers up to ~0.18 eV from the CB edge are responsible
for 90% of the conductivity at room temperature.

lll. EXTRACTION OF THE SEEBECK COEFFICIENT

One end of a sample of length L is assumed kept at the
temperature T (kelvin) at which the Seebeck coefficient is
sought, the other at (T+A) K, where A<5 K. The tempera-
ture variation is assumed to be linear and chosen to lie along
the z-axis. Close to equilibrium, space charge neutrality
holds in the bulk of the device. Note that the difference
E(z)-Ep(z) between the spatial chemical potential profile
and the conduction band profile depends solely on the elec-
tron concentration at the temperature 7 and the temperature
profile T(z), and can be calculated as follows, assuming the
dispersion relation E(k) is known (see Sec. V)

- ( 1 ) foc K*dk
n(T(z)) = 7)) {E(k)+EC(z)—EF(Z) )
1 +exp
kgT(z)

(6)

If n(T) is known, e.g., from temperature-dependent Hall data,
the above equation can be solved for the quantity E(z)
—Er(z) using any suitable nonlinear equation solution rou-
tine: we used the Newton-Raphson method after taking loga-
rithms on both sides for better convergence. In practice
n[T(z)] varies negligibly between T and T+A. If Ex(z) is
known, E(z) can be calculated and the BTE can be solved,
as outlined in Sec. II, for the current profile.

The chemical potential profile is determined as follows:
Using an initial guess for the chemical potential profile Ex(z)
given by the user, and E(z) calculated using Eq. (6), as
inputs, the BTE solver determines the current density profile
J(z). If Jy is the target current density, (0 in this work),
continuity requires that J;=J7 for all i=1 to N, N being the
number of spatial grid points (10 in this work). We formulate
the problem of imposing current continuity as an optimiza-
tion problem, where the objective function is f(J)=3 (J;
—J;)%. This objective function has a minimum (=zero) ex-
actly when J;=J; for all i=1 to N. In this work we minimize
f(J) numerically using the MATLAB® optimization routine
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| User Initial Guess E(z) |
¥

4>| E(z) — EL(z) Evaluation Routine |
‘ Ec(z), EF(2)
| BTE solver main Routine

1@
N
Z(Ji_JT)z
i=1

Objective function evaluation

MATLAB® Routine fmincon

Optimality conditions
satisfied?

Yes

Generate new
Profile Ec(z) |

| Exit loop and output E(z) |

E.(i=N)—E(i=1)
A

FIG. 3. Algorithm for extraction of the Seebeck coefficient from the solu-
tion to the BTE.

“fmincon” which iteratively solves general constrained opti-
mization problems. fimincon generates successive guesses for
the chemical potential profile Ex(z) and eventually the cor-
rect profile which minimizes the objective function. In prac-
tice, the optimization leads to a final current density in the
range of 107 to 10~7 A/m?. Finally, the Seebeck coefficient
is the difference between the chemical potentials at the two
ends divided by A, the temperature difference. This proce-
dure is schematically illustrated in Fig. 3. Note that all spa-
tial profiles are vectors of length N.

This procedure can equally well be applied to find the
potential difference for a nonzero load current by setting J;
to the desired value, and hence can be used to evaluate the
load characteristics of a thermoelectric device. Another fea-
ture is that with the choice of an appropriate spatial grid, this
method can handle arbitrary temperature differences between
the device terminals.

IV. THE RTA

The RTA is the zeroth iterate of our method, namely, Eq.
(4a)

d F(z) 0
¢V (k,2) = eff(k,z>(v<k>aiz° . "T(Z)ai,j)

Our aim here is to reconcile the transport coefficients ob-
tained from this definition of the RTA with those widely used
in the literature. The conductivity for uniform homogenous
materials can be obtained from Egs. (4a) and (5) by sup-
pressing spatial dependence

J. Appl. Phys. 107, 083707 (2010)

( < ) J 0( )eff(k)v(k)kzdk

h k=
q— 2 2 -
EA

(7)

Equation (7) is identical to the conductivity expression in
Ref. 5, p. 51, on performing the implied angular integral in
the latter. We have also defined above a “differential conduc-
tivity” with respect to k.

To extract the Seebeck coefficient from the RTA, we
note first that (dfy/dz)=—(dfy/ IE)(E+E-—Eg)/ T)(dT/dz),
where we assume that although E(z) and Ep(z) vary spa-
tially, their difference is constant for small A. The variation
of 7(k,z) with z is neglected. Substituting Eq. (4a) in Eq.
(5), using the above expression for df,/dz and equating the
current profile J(z) to zero we get:

1 * 1
qoF(z) = l(}) szo o(k)E(k)dk + (;) (Ec

—EF)JOc cr(k)dk]d—T. (8a)
dz

k=0

W

Integrating both sides from z=0 to L,

1 * 1
qoAV = l(;)szo o(k)E(k)dk + (;)(EC

e}

- Ep)

a(k)dk] AT. (8b)
k=0

The Seebeck coefficient is defined as S=AV/AT at open cir-
cuit J(z)=0, whence

oL ( S0 (EK) + Ec - EF)dk)
-

Jicoo(k)dk

This is identical to Eq. (4.9.14), p. 81 of Ref. 5. Thus we
have identified the most frequently used expressions for the
conductivity and Seebeck coefficient with the zeroth iterate
of our iterative procedure. Indeed the RTA is valuable for the
existence of such closed form expressions which lend insight
into the role of various parameters involved in the calcula-
tion. For instance, lower the doping, larger the value of
E(z)—Er(z) and hence larger the Seebeck coefficient.

The quantity 7.4(k,z) as defined in the Appendix is in-
dependent of the detailed distribution function. Sometimes,
the above equations are generalized to treat inelastic scatter-
ing exactly by defining an ensemble scattering rate that de-
pends on the unknown distribution function, and a varia-
tional approach is used to determine the mobility and the
Seebeck coefficient.” As mentioned in the introduction, our
method has two main advantages of over this such as: the
mathematics is more straightforward, and our method is not
limited to infinitesimal temperature differences or open-
circuit conditions.

Table I compares the room temperature Seebeck coeffi-
cient of GaAs calculated using our method with the result of

)
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using the Eq. (9), over three decades in carrier concentration.
It is seen that the discrepancy between the two values is
~24 uV/K up to 107 cm™ and reduces to ~19 uV/K at
10'® cm™. The relative error however increases with doping
concentration. This observation is significant because the
carrier density at which a material exhibits the largest ther-
moelectric  efficiency metric is of the order of
10"8-10%° cm™.

V. BAND STRUCTURE MODEL

E(k) is given by the Kane model® modified for negligible
spin-orbit splitting by Eq. (3) of Rode,” repeated below:
K (a-1)

Ek)y=—+ E,.
&) 2m 2 §

(10)

Here m is the free electron mass, E, is the band-gap and
a2=1+4(ﬁ2k2/2m)((m—m*)/m*Eg). m* is the CB effective
mass at k=0. The temperature dependence of E, is given by
the empirical Varshni equation: the Varshni parameters are
taken from Ref. 7. The augmented density-of-states with re-
spect to parabolic bands, d(k) is the ratio of the density of
states at k, to the density-of-states for a free electron at that
k: it is given by Eq. (6), Ref. 4 as

JE

1 m% (m—-m")
—= =1+ . 11
dk) %k m*a (1)

The group velocity is given by

1 hk

k)=—|VEf|l=——. 12
v(k) h' 4= dm (12)

Overlap integrals have been calculated by Matz® in terms of
the wave-function admixture parameters a(k) and c(k) de-
fined by Kane.’

Gk,k", @) = (a(k)a(k") + c(k)c(k')cos a)?, (13)

a(k) and c(k) are the amplitudes of the s-like and p-like
components of the CB state at k: the sum of their squares is
one at any k. At the bottom of the CB (k=0), a(0)=1, and
¢(0)=0. a here is the angle between the initial and final
states, not to be confused with « in the density-of-states ex-
pression, Eq. (11). The notation was chosen to be consistent
with the references: it should be clear from the context what
a we are referring to.

f _gWk'z) _<{c+[1—fo(k,z)]+c-fo(k,z)}g(k*,z) f f

oo TPOP(K' k,z)

« k*d(k*)G(k,k*,a)cos 0" sin 0'd0'dd’ cos 0 sin 0d6
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A word is in order here regarding the impact of the over-
lap integral on our calculations. In 7.7 X 10'7 ¢m™ doped
Ing 53Gag 47As, ignoring overlap integrals results in an under-
estimation of the mobility by ~9% at 300 K and ~18% at
600 K. Neglecting overlap integrals underestimates the See-
beck coefficient by ~5 uV/K at room temperature and by
~9 uV/K at 600 K compared to the calculation inclusive of
the overlap, which gives 158 uV/K and 245 uV/K, re-
spectively, at 300 K and 600 K.

It was mentioned in Sec. II that electrons with energies
up to 0.3 eV were responsible for ~90% of the conductivity
at 600 K, the highest temperature reported in this work. The
Kane model has been successfully used’ to model bound
states in AllnAs/Ing s3Gag 47As/ AllnAs quantum wells up to
~400 meV above the InGaAs CB edge, hence we are within
the range of validity of this model.

The expressions used in this work for the group velocity
and scattering rates can be modified for a different band-
structure model by replacing d(k) in Egs. (11) and (12) by a
look-up table. Of course, the whole formalism assumes
spherical constant energy surfaces, hence an appropriate
spherical average may have be used to extract d(k) from a
numerical description of the band-structure.

VI. SCATTERING MECHANISMS AND
CORRESPONDING RATES

Four scattering mechanisms are considered in this work.
Closed form expressions can be derived for scattering rates
due to all mechanisms. Below, ¢ is the charge and m=mass
of an electron in free space. The expressions below are in
terms of certain other material parameters, which are defined
in Sec. VIL

A. Polar optical phonon (POP) scattering

POP alone is inelastic. The POP scattering integral on
the RHS of Eq. (3a) can be derived from Eq. (A9) of the
Appendix using Eq. (2.72) and (2.73c) of Ref. 10, and the
overlap integral G(k,k', @) given by Eq. (7) of Ref. 8 with
b;=0. Here « is the angle between k and kK and can be
expressed in terms of the polar coordinates of k and k'. Let
E(k*)=E(k) = hwpgp, Where k™ represents the radii of the
two shells in k-space coupled by POP scattering to the shell
of radius k. Let Npgp=phonon occupation number.

0,0'.¢'

[k + (k") = 2k(k*)cos «]

) + ({C_[l - folk,2)]

B kd(k")G(k,k™,a)cos 0" sin 6'd0'd¢’ cos 0 sin 0d6
+ C*folk,2)}g(k ,Z)fff
0.0 .¢'

[k* + (k7)? = 2k(k")cos «] )
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where C*
, 11y 11
3mq wpopm| Npop+ 5 = - || — - —
B 2 2)\g0 &y (14)
- 2(2m)*h? '

The triple angular integral in Eq. (14) can in fact be evalu-

1 {q%popmd(lﬁ)]( 11 )
= — ——|log

FOP(k,z) 47h’k €0 €50
N q° wpopmd (k") ( 1
47h*k €0

B. lonized impurity scattering

The momentum scattering rate for ionized impurity scat-
tering is given by Egs. (6)—(8) of Ref. 11. In this work we
ignore overlap integrals for ionized impurity scattering be-
cause of singularities at certain temperatures upon incorpo-
rating these (a=1, ¢=0 for all k). This assumption can be
justified as follows: ionized impurity scattering strongly fa-
vors small-angle scattering events, thus cos a~ 1. Also, we
have that k=k' because the mechanism is elastic, hence Eq.
(13) shows that G(k,k’,a) ~1.

1 Nimpg*md(k) ( 2 )
Tglom(k)_< Sﬂlzﬁ3giok3 ) 10g(1+’)/2)_1+'y2_ . (16)

Here y=2k/ where B is the inverse screening length. Sev-
eral expressions are available for the screening length, dif-
ferent ones working best in different ranges of doping. How-
ever the screening length defined by Eq. (3) of Ref. 11 seems
to work satisfactorily from 10'® up to 10'® cm=. Beyond
10" cm™ more sophisticated models are needed to obtain
accurate values of the Seebeck coefficient, especially at room
temperature. For our purposes, we ignore compensation and
assume that all donor atoms are ionized, which is a reason-
able assumption close to 10'® ¢m™. Thus the number of
scattering centers:Nimp=N'L")=n.

C. Alloy disorder scattering

The momentum scattering rate is given by Ref. 12 as

TABLE 1. Seebeck coefficient of n-type GaAs vs carrier concentration,
RTA, and this work.

Carrier Seebeck Seebeck coefficient,
concentration coefficient, RTA this work
(em™) (uV/K) (uV/K)
10'6 500 523
107 329 353
10'8 173 192

J. Appl. Phys. 107, 083707 (2010)

ated in closed form® but the result is not displayed here since
it is not particularly illuminating. In Eq. (14), if k* is outside
the first Brillouin zone the first term is set to zero, and if k=
is imaginary the second term is set to zero.

Using Egs. (20) and (24) of Ref. 4, the quantity
(1/7°P(k,7)) is likewise given by the sum of two terms:

K+ k
ﬁ ‘ {(Npop)[ 1 = fo(k*,2)] + (Npop + 1)fo(k*,2)}

1 kK +k
— - —)log‘ - = ‘ {(Npop + D[ 1 = fo(k™,2)] + (Npop)fo(k,2)} (15)
€,0 k - k

1 3mkd(k
Thom(k) B ( W;n6ﬁ3( )>V0U§110y)((1 -X) (17)

The original equation has been modified for band nonpara-
bolicity by including the factor d(k). We do not include over-
lap integrals for alloy disorder scattering because the scatter-
ing potential is only approximately given to start with.

D. Acoustic deformation potential (ADP) scattering

The momentum scattering rate for ADP scattering is
given by Egs. (33)—(35) of Ref. 4:
| ( qu%kBkad(k) ) ( 3a*+ ¢t - 2a2c2>
AP h3 pu? 3

mom avg

(18)

VIl. COMPARISON TO EXPERIMENT

The above calculations are done for a typical thermo-
electric material, 7.7 X 10'7 cm™ Si-doped In,s3;Gag 47As,
thickness=1 um, length L=5 mm. grown by MBE on 1
mm. thick semi-insulating InP substrate. Material-dependent
parameters are taken as follows:

1. POP Scattering: Parameters are taken from Ref. 13

(1) £,0=13.9¢, (the permittivity of the material at low
frequency)

(ii))  &,=11.6g(, (the permittivity of the material at infi-
nite frequency)

(i)  Tpop=394.7 K (hwpop=kzTpop, the optical phonon
energy)

2. Acoustic deformational potential scattering

(1) p=5500 kg/m? (the density of the material)

(i) E,;=5.9 eV (conduction band deformation potential,
calculated by linear interpolation between the respec-
tive values’ for InAs and GaAs)
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FIG. 4. (Color online) Mobility vs temp., 7.7X10'7 cm™ Si-doped
Ing 53Gag 4;As: Dotted line is expt., solid line is this work, and broken line is
RTA result. RTA fails at high temperature due to dominant POP scattering.

(iii) u,=4000 m/s (the approximate average speed of
sound)
Note that ADP scattering is not dominant at any
temperature.

3. Alloy disorder scattering

(1) ay=5.8687 A, the lattice constant

(ii))  x=0.47, the number of Ga atoms in the alloy over the
total number of Group-III atoms

(iii)) Uiy ~0.53 eV. (Alloy potential: fitting parameter,
best given by the Phillips -electronegativity
difference'®)
Note that V,, the volume of the primitive cell=a’/4.

All samples for high-temperature measurement under-
went the following process:

1. SisN,/SiO, 150X300 nm by plasma-enhanced
chemical-vapor deposition for surface passivation, so as
to ensure that the surface did not degrade by losing ar-
senic at the high temperatures (up to 450 °C) to which
the samples were subjected.

2. Lithography to define contact areas.

3. Buffered HF etch for 10 min to etch through the passi-
vation layer and expose the semiconductor surface.

4. Metal deposition using electron beam evaporation, fol-
lowed by metal lift-off in acetone.

Contact to n-type material was made using a Ti/Au
40/400 nm metal stack. I-V sweeps showed that Ohmic
contacts were established. Measurements were made under a
vacuum of ~1X 10™* Torr. Temperature measurement used
type-K thermocouples which made contact to the sample sur-
face. Indium was used to establish thermal contact between
the heat sources and the sample, as well as between the ther-
mocouples and the sample.

Figures 4 and 5 summarize the calculation and measure-
ment results. First, scattering rates are verified by comparing
the results of simulation with the experimentally determined
Hall mobility as a function of temperature. (The Hall factor
is <1.01 for Inj53Gag4;As at this doping density and tem-
perature range.) Figure 4 shows an agreement to within 10%
for temperatures between 200 K and 600 K. The discontinu-
ity seen in the experimental mobility data at 300 K (between
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FIG. 5. (Color online) Seebeck coeff. vs temp., 7.7 X 10'7 cm™ Si-doped
Ing 53Gag 47As: Dots are from expt., solid line is this work, and broken line is
RTA result.

two sweeps) is ~2%. At temperatures less than 200 K, the
calculated mobility seriously overshoots the experimental
value. Since our formalism is valid in the degenerate regime,
it is likely that this behavior is at least in part due to the well
known failure of the Born approximation15 for ionized impu-
rity scattering, for low values of average carrier energy. This
is further supported by the underestimation of the Seebeck
coefficient by our calculations, since the more exact partial
wave treatment of ionized impurity scattering would result in
increased scattering of low-energy electrons without much
affecting higher energy electrons. Since the temperature re-
gime below 200 K is not of practical interest to thermoelec-
trics, we have not incorporated corrections to the Born ap-
proximation. Interestingly, a fortuitous agreement to
experiment is obtained all the way up to 100 K by using the
truncated linear form of the BTE mentioned in Sec. II, which
is obviously not valid in this highly degenerate regime. In
fact, the truncated BTE also results in better fit to the room
temperature Seebeck data, by overestimating low-energy
electron scattering.

The RTA underestimates mobility by ~34% at 300 K
and by ~54% at 600 K, making it entirely inapplicable for
mobility calculation. The Seebeck coefficient is predicted by
the exact calculation to within ~10% up to 560 K (Fig. 5),
while the RTA always underestimates Seebeck by ~20%,
with the absolute error increasing slightly with temperature.
The Hall carrier concentration increases by ~10% between
70 and 600 K but this has a negligible effect on our calcula-
tions.

VIil. CONCLUSION

In summary, we have developed a rigorous framework
for the solution of the BTE in the presence of temperature
gradients. We have defined the RTA and shown that our defi-
nition of the RTA results in expressions for transport coeffi-
cients identical to those frequently used in the literature. We
have noted that the conditions under which the RTA pro-
duces significant relative error are precisely those seen in
high-efficiency thermoelectric materials. Temperature-
dependent Hall and Seebeck coefficient data are presented to
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support our calculations. The improvement in accuracy dem-
onstrated here is made more significant by the fact that the
efficiency metric of a thermoelectric material varies as the
square of the Seebeck coefficient. The use of the RTA is not
justifiable on grounds of computational time either, since the
exact computation takes only ~250 s per temperature point
using MATLAB® on an Intel® Dual-Core PC.
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) qF(z)<<9fo dg
— 4+ ——cos f|cos O+ —| — +—
dJdz  dz

i\ ok ok

+S"SE ) g (K z)cos 0'[1 - fo(k,2)] - fo(k',2)g(k,2)cos G}k dk’ ~

+ S k) gk 2)cos 61 = fo(k',2)]— g(K'2)cos 0 fo(k,2)}dQ k" *dk’

Terms of the order of g*(k,z) are neglected since g(k,z)
<fo(k,z) for low fields. The integrals for the elastic scatter-
ing mechanisms on the RHS of Eq. (Al) simplify to the
following:

1 S
3f f f [Sla(k" ,k)g (k' ,z)cos 6’
(2’7T) 0.4

— 5k, k") g (k,z)cos 6]dQ'k"dk’ . (A2)

To further simplify this expression, we note first the principle
of detailed balance for elastic mechanisms,

Selas(]zr’]z) — Selas(]z’]zr) — Selas(kr’a,)

We have used the assumption that the interstate collision rate
depends only on the angle a between k and k" and not their
individual polar angles. We now recognize that the inner an-
gular integration can equally well be performed about the
angular coordinates a, y of k' about k. Lastly, k=k' for

qF(2)

cos 6) cos 0+
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APPENDIX

We derive Egs. (3a) and (3b) from the BTE: the deriva-
tion, shown here to help define the scattering rates as well as
highlight the assumptions used in this work parallels that of
Eq. 2.72 of Ref. 16. We consider one elastic scattering
mechanism and one in-elastic mechanism for purposes of
illustration: extension to multiple scattering mechanisms is
trivial.

We start by recognizing that in the spherical band ap-
proximation, the group velocity (k) is directed along k and
its magnitude depends only on the magnitude of k. Let
dQ)'=sin 8'd0’'d¢’ where 6 and ¢’ are the polar coordi-
nates of k’. On insertion of the gradient operator with respect
to k, the assumed form of the distribution function f(lg,z)
=f(k,0,z)=fy(k,z)+g(k,z)cos 0, and the spatial gradient
=(df/dz)z where Z is the unit vector in the z-direction, (2)
reads

l '20_
P kgsm =

) ], e
[Se]as(k/,k)
(277 3 k’,ﬂ’,lf)l
1 ff f [Selas(lg Ig/)
(27T 3 k/’0/’¢/

(A1)
[
elastic scattering, whence Eq. (A2) becomes
-1 elas(7,/
——g(k,z)cos 6 STk, a)(1
(27T)* Ly
— cos a)sin adadyk'*dk’ . (A3)

We have use the identity cos 6 =cos 6cos «
+sin 6 sin a cos vy, the second term of this identity integrat-
ing over vy to zero. The integral over k' is dummy, since
Se8(k" @) is proportional to [ E(k)—E(k')] The momentum
scattering rate for an elastic scattering mechanism, following
Ref. 5 is defined in Eq. (A4) below:

; — 1 elas 7,/
(ﬁ,ig;(@)‘(mﬁf f J o ()1

— cos a)sin adadyk'*dk’

(A4)

Substituting this definition in Eq. (A1) we get Eq. (A5)
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1l
—g sin 0+g(k,z)( )cos 0
k Tonom (k)

(277)3f JJ Smelas(]gr,lzr)(l —fo(k,z))+Si“das(lg,lg’)fo(k,z))k’zdk’g(k’,z)cos 9'dQ)’
! 07 !

- 3 f f f (SRR (1 = folk'2)) + ™K R)fo(k',2)) AV K %dk' g k. 2)cos 6 (AS)
m) s

We define the a distribution function-independent rate for inelastic mechanisms as

1 1 inelas/7 7.7 ’ inelas( 1 1) ’ 17! ’
H“el”(k,z)z(Zw)-%f J fk 1SRRI = o', D]+ SR DK )k (A6)

If §™18s s a function only of the angle between k" and k, the above integral is independent of 6. Equation (A5) then simplifies

to
(k)( f0+(9_gco 0) s 6+ qF(Z)<(9—ﬁ)+ﬁ—g
0z h dk  dk

cos 0) cos 0+

1
)cos 0=

2l 1
%g sin? 0+g(k,Z)< elas 7_inelas(k 2)

mom(k)

f f f (Smelas(Z" B)(1 = folk,2)) + STS(E, K)o (k,2) )K" 2dk' g (K, z)cos @' dQY (A7)
(277) o

Multiplying throughout by cos 6 sin 646 and integrating over 6 from 0O to 7, we obtain

1 1 o)\  aF@)( fo
g(k,Z)|: fneldb(k Z) elas (k):| [ (k)< ) h ( ok

mom

)+ B)mp s osm
+ 2 (277)3 0:OCOS S

x( f f f (ST BT — folk2)]
k’,H',(}S'

+ SRS(E K)ok, 2)}g (k' 2)cos 9'k'2dk’d9'>d0. (A8)

We define

1
FinelaS(kr ,k,Z)

Xcos 0 cos 6 sin 6d6k'>dQ)’ .

3 1 ™ . N . > >
=<E>Wf HJ f » {S™ (" R = folk,2)]+ S (K,K") fo(k,2)}

(A9)

Equation (A8) now becomes Eq. (A10) which is identical to Egs. (3a) and (3b), thus proving our assertion.

1 1 afo\ . aF ) ( dfo
g(k,z){ 7_me1as(k Z) elds (k):| [ (k)< ) fi ( dk

mom

A few words are in order here about the nature of the kernel
(1/Tnelas(k" k. z)) for the special case of inelastic scattering
by polar optical-mode phonons. S™(k” k) and S"s(k, k")
differ only in the phonon occupation number, and the factors
[1-fo(k,z)] and fy(k,z) have no angular dependence. Hence
the closed form expressions for the triple angular integral in
the kernel can be directly carried over from the treatment of
POP in-scattering in Ref. 4.

.M. 0. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri,

and A. C. Gossard, Phys. Rev. B 74, 205335 (2006); G. Zeng, J.-H. Bahk,
J. E. Bowers, H. Lu, A. C. Gossard, S. L. Singer, A. Mazumdar, Z. Bian,
M. Zebarjadi, and A. Shakouri, Appl. Phys. Lett. 95, 083503 (2009).

)

T glKz)
+ e dk' (A10)
LO rielas(x’ k,z)

R. Arita, K. Kuroki, K. Held, A. V. Lukoyanov, S. Skornyakov, and V. I.
Anisimov, Phys. Rev. B 78, 115121 (2008); N. Hamada, T. Imai, and H.
Funashima, J. Phys.: Condens. Matter 19, 365221 (2007).

°D. J. Howarth and E. H. Sondheimer, Proc. R. Soc. London, Ser. A 219,
53 (1953); H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957).

“D. L. Rode, Phys. Rev. B 2, 1012 (1970).

K. Seeger, Semiconductor Physics: An Introduction (Springer-Verlag, Ber-
lin Heidelberg New York Tokyo, 1985).

E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

"I. Vurgaftman et al., J. Appl. Phys. 89, 5825 (2001).

¥D. Matz, Phys. Rev. 168, 843 (1968).

°C. Sirtori, F. Capasso, J. Faist, and S. Scandalo, Phys. Rev. B
(1994).

M. Lundstrom, “Fundamentals of Carrier Transport,” (Cambridge Uni-
versity Press, Cambridge, 2000).

D. L. Rode and S. Knight, Phys. Rev. B 3, 2534 (1971).

50, 8663

10.


http://dx.doi.org/10.1103/PhysRevB.74.205335
http://dx.doi.org/10.1063/1.3213347
http://dx.doi.org/10.1103/PhysRevB.78.115121
http://dx.doi.org/10.1088/0953-8984/19/36/365221
http://dx.doi.org/10.1098/rspa.1953.0130
http://dx.doi.org/10.1016/0022-3697(57)90099-9
http://dx.doi.org/10.1103/PhysRevB.2.1012
http://dx.doi.org/10.1016/0022-3697(57)90013-6
http://dx.doi.org/10.1063/1.1368156
http://dx.doi.org/10.1103/PhysRev.168.843
http://dx.doi.org/10.1103/PhysRevB.50.8663
http://dx.doi.org/10.1103/PhysRevB.3.2534

083707-10 Ramu et al. J. Appl. Phys. 107, 083707 (2010)

125, Singh, Electronic and Optoelectronic Properties of Semiconductor Y“GalnAsP Alloy Semiconductors,” edited by T. P. Pearsall (Wiley, New
Structures (Cambridge University Press, Cambridge, 2003). York, 1982).

BThe NSM archive, loffe Institute. URL: http://www.ioffe.rssi.ru/SVA/ Bg 1. Blatt, J. Phys. Chem. Solids 1, 262 (1957).
NSM/Semicond/ '°G.A.Baraff, Phys. Rev. 133, A26 (1964).


http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
http://dx.doi.org/10.1016/0022-3697(57)90014-8
http://dx.doi.org/10.1103/PhysRev.133.A26



