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Abstract

Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may arise in response to 

severe traumatic event and is diagnosed based on three main symptom clusters (reexperiencing, 

avoidance, and hyperarousal) per the Diagnostic Manual of Mental Disorders (version DSM-IV-

TR). In this study, we characterized the biological heterogeneity of PTSD symptom clusters 

by performing a multi-omics investigation integrating genetically regulated gene, splicing, and 

protein expression in dorsolateral prefrontal cortex tissue within a sample of US veterans enrolled 

in the Million Veteran Program (N total=186,689). We identified 30 genes in 19 regions across 

the three PTSD symptom clusters. We found nine genes to have cell-type specific expression, 

and over-representation of miRNA-families – miR-148, 30, and 8. Gene-drug target prioritization 

approach highlighted cyclooxygenase and acetylcholine compounds. Next, we tested molecular-

profile based phenome-wide impact of identified genes with respect to 1678 phenotypes derived 

from the Electronic Health Records of the Vanderbilt University biorepository (N=70,439). 

Lastly, we tested for local genetic correlation across PTSD symptom clusters which highlighted 

colocalization and local genetic correlation with metabolic (e.g., obesity, diabetes, vascular health) 

and laboratory traits (e.g., neutrophil, eosinophil, tau protein, creatinine kinase). Overall, this study 

finds comprehensive genomic evidence including clinical and regulatory profiles between PTSD, 

hematologic and cardiometabolic traits, that support comorbidities observed in epidemiologic 

studies of PTSD.

Keywords

PTSD; brain; transcriptomics; metabolic; blood; expression

3 INTRODUCTION

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that may arise in response to 

severely stressful events. The lifetime prevalence of PTSD in the United States is estimated 

at approximately 7%1,2, and more than 12% in the active US veteran population3. Twin-

based studies estimated a 24–72% heritability of PTSD with strong variation depending 

on the characteristics of the cohort investigated4. Recent large-scale efforts from the 

Psychiatric Genomics Consortium and the Million Veteran Program (MVP) have identified 

several genetic risk loci associated with PTSD1. However, the understanding of processes 

underlying translation of genetic associations into pathophysiological processes remains 

limited due to symptomatic heterogeneity of PTSD patients and the multiplicity of 

implicated regulatory elements. As per the Diagnostic and Statistical Manual for Mental 

Disorders—Fourth Edition, Revised (DSM-IV), 17 symptoms of PTSD comprise three 

main clusters: reexperiencing i.e. recollection of traumatic memories, avoidance i.e avoiding 

thoughts of traumatic events, and hyperarousal i.e. irritability, reactivity, or high vigilance5. 

Furthermore, PTSD is highly polygenic and since genetic variants can affect multiple 

regulatory elements, it is challenging to prioritize targets for personalized therapeutics. 

Neuroimaging studies indicate PTSD is associated with structural and functional changes 
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in the dorsolateral prefrontal cortex (dlPFC)6, which may impair learning and memory, 

executive cognitive functions, and emotional regulation7, and is therefore an important tissue 

to be investigated in the context of PTSD pathogenesis.

In the current study, we performed a characterization of PTSD symptom clusters by 

integrating mRNA, alternative splicing, and proteome expression of the dlPFC (N=1,280) 

with genome-wide association data of reexperiencing, avoidance, and hyperarousal 

symptoms from the MVP (N=186,689)1. We identified several novel dlPFC-specific 

genetically regulated loci through gene/splicing/protein-wide transcriptome-wide association 

studies (TWAS/SPWAS/PWAS). These loci were further investigated for their biological, 

and phenome-wide impact. To elucidate biological impact, we analyzed the identified genes 

for their role in brain cell-type specific expression, cortex-specific gene-co-expression, 

miRNAs, and drug targets. To assess the phenome-wide impact of identified loci, we applied 

two molecular-evidence based approaches. First, we performed a phenome-wide association 

study (PheWAS) using genetically-regulated expression (GReX) of identified genes in 

the electronic health records and laboratory measurements from the Vanderbilt Biobank 

repository (BioVU; n=70,439). Second, we performed phenome-wide colocalization 

analysis of the identified genes (i.e. exhibit a high probability of sharing the same causal 

variant between expression and phenotype). We further investigated these colocalizing 

traits with PTSD symptom clusters using locus-specific genetic correlation. Our findings 

also contribute new information on several molecular mechanisms associated with PTSD 

symptoms and highlight potential therapeutic targets in the context of PTSD comorbidities 

(Figure 1A).

4 SUBJECTS AND METHODS

4.1 GWAS of PTSD symptom clusters

We obtained authorized access to Database of Genotype and Phenotype (dbGaP) for 

the genome-wide statistics of PTSD symptom clusters: reexperiencing, avoidance, and 

hyperarousal from the MVP (dbGaP Study Accession: phs001672.v6.p1)1. This GWAS 

of PTSD and its quantitative symptom clusters included 186,689 US military veterans 

from the MVP. Genome-wide association statistics reflect results from individuals of 

European ancestry, inverse-variance meta-analyzed across two tranches, and reported with 

variant-level beta, standard errors, and p values1. We performed strict quality control using 

the munging procedure provided by LD-score regression (LDSC)8. Our quality control 

procedure resulted in a final count of 1,191,504 high-quality HapMap autosomal genetic 

variants.

4.2 Gene expression weights for dlPFC and TWAS

We obtained pretrained models of gene and splicing expression of the dlPFC fitted in the 

data from the Common-Mind Consortium (CMC; N=452; 5,420 expression transcript and 

7,772 splicing transcripts) stored in the FUSION repository (See URLs). The quality control 

of RNA-seq, RNA-seq splicing, and genotype from CMC data has been previously described 

in detail 9,10. The proteome expression weights for the dlPFC (n=376; features - 1467) were 

leveraged from the Religious Orders Study and Memory and Aging Project (ROSMAP) 
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published by Wingo et. al11 (See URLs). Briefly, the expression weights were generated 

using FUSION’s recommended pipeline described previously for the CMC data9. The 

transcriptome-wide association study using gene, splicing, and proteome expression models 

was performed using FUSION9, and genome-wide transcriptomic correlation for each of 

TWAS/SPWAS/PWAS across three PTSD symptom clusters was tested using RhoGE12. We 

applied Bonferroni correction (0.05/#genes tested) for multiple testing correction. The genes 

identified through T/SP/PWAS approach as hereon referred to as PTSD-associated genes.

4.3 Biological characterization

4.3.1 Brain cell-types expression—We looked up the identified PTSD-associated 

genes, in the brain cell-type-specific lists from McKenzie et. al13. Briefly, the McKenzie 

et. al identified top genes for six brain-cell types by combining three mouse brain cell 

expression datasets from the cerebral cortex, somatosensory cortex and hippocampus, and 

primary visual cortex, and two human brain cell expression datasets from the temporal lobe.

4.3.2 Frontal cortex-based gene co-expression and gene ontology 
enrichment—To identify genes that are co-expressed with the identified genes in the 

frontal cortex, we used the GTEx v8 data stored within TCSBN (tissue and cancer specific 

biological network), a database of tissue-specific biological networks14. We extracted co-

expression modules for frontal cortex, and created the minimum network (i.e., shortest path 

between query genes and co-expressed genes) to retain the most essential or closest genes 

using the igraph package in R. For all the genes in the network we performed an enrichment 

test for gene ontology of molecular function, biological processes, and cellular components. 

We applied false discovery rate (FDR q <0.05) for multiple testing correction.

4.3.3 miRNA-gene network and miRNA family enrichment—We mapped the 

PTSD-associated genes to miRNAs from the miRTarBase (hsa) using the Official Gene Id 

and performed enrichment of miRNA families with the miRNetR package15. FDR multiple 

testing correction (FDR q<0.05) was applied on enrichment p-values.

4.3.4 Gene-drug assessment—We used the Connectivity Map (CMap) Drug database 

to identify candidate drug targets for the PTSD-associated genes. The CMap database 

was accessed via the CLUE interface (See URLs), which compared the query gene list 

against the database of differentially expressed genes associated with various experimental 

perturbagens including knockdowns, overexpression, and chemical compounds. The median 

connectivity score ranges from −100 to 100 indexes the similarity between the CMap-

reference expression pattern and the list of query genes.

4.4 Phenome-wide Assessment

4.4.1 PheWAS of genetically-predicted expression in electronic health 
records—To understand the phenotypic consequences of dysregulated mRNA expression 

across our 30 genes of interest, we performed a phenome-wide association study 

(PheWAS)16 using the Vanderbilt EHR and linked biobank, BioVU. Phenotypes in BioVU 

are represented as dichotomous traits called phecodes and they reflect a hierarchical 

clustering of the International Classification of Diseases 9th and 10th (ICD9/ICD10) codes. 
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For each phenotype we required a minimum number of 100 cases which resulted in the 

inclusion of 1379 phecodes in 70,439 individuals of European ancestry. We used the 

PheWAS package in R to perform logistic regression to identify the phecodes that are 

significantly associated with genetically imputed gene expression of brain tissues after 

adjusting for sex, age, and the top ten within-ancestry principal components from genetic 

data to control for population stratification (Denny et al. 2010, 2013). Multiple testing 

correction (FDR q < 0.05) was applied per tissue.

4.4.2 BioVU Biomarker LabWAS—The lab-wide association scan (LabWAS)17 

permitted screening of clinical lab tests from the Vanderbilt University Medical Center 

EHR. For each of the 30 genes identified in the analyses, we tested the association between 

its predicted gene expression pattern in brain tissues and the available set of clinical labs. 

We applied the QualityLab cleaning pipeline 17 with settings to yield median age-adjusted 

(residual taken after regressing the cubic splines of age with 4 knots) inverse normal 

quantile transformed lab values (to control for skewness and non-normality). We included 

labs with measurements in at least 100 individuals, which resulted in 299 labs in 70,439 

individuals of European ancestry. The lab tests are divided into 12 sub-categories; blood, 

metabolic, endocrine, kidney, immune, liver, urinary, OB/GYN, toxicology, cardiovascular, 

and cancer. Our analyses included the covariates age, sex, and top ten within-ancestry 

principal components from genetic data to adjust for genetic ancestry. Multiple testing 

correction (FDR q< 0.05) was applied per tissue.

We replicated the genetically predicted PheWAS findings in an external cohort of the 

UK Biobank (UKBB) using PhenomeXcan18 which uses complementary TWAS method, 

S-MultiXcan, and gene expression weights from Genotype-Tissue Expression (GTEx) 

consortia 19. For the traits identified in BioVU cohort, we extracted phenotype associations 

for the same tissue and gene pairs identified in BioVU’s PheWAS and LabWAS. We 

selected – ‘Brain Cortex’, ‘Brain Cerebellum’, and ‘Brain Frontal Cortex BA9’, and four 

genes - LRRC37A2, ARHGAP27, RNF123, and WNT2B. Two traits from BioVU (‘Protein 

serum plasma’ and ‘Tau protein’) were not available in PhenomeXcan/UKBB cohort, and 

hence were not tested. An absolute z-score of 3 (or p=0.0013; 0.05/8 phenotypes reflecting 

Bonferroni correction) or higher was considered as evidence of replication.

4.4.3 Colocalization of identified loci with traits—We investigated all genes 

identified in this study for colocalization against all the phenotypes available in data 

resource-OpenTarget Genetics20. The colocalization was performed using the coloc-R 

package as described previously21, and the traits were considered to be colocalized when 

posterior probability (PP) of the hypothesis (H4) that two loci are shared under a single 

causal variant was H4>= 80%. We performed enrichment of phenotype categories as 

listed within OpenTarget Genetics using hypergeometric test in two ways; i) an ‘all-tissue: 

expression’ and ii) filtered tissues using the keyword “brain”. The hypergeometric test was 

performed for each phenotype category as ratio for colocalized/not-colocalized per category.

4.4.4 Local genetic correlation—We mapped 147 out of 172 colocalizing traits using 

the available StudyID from OpenTargets with UKBB phenotype ID (from Neal lab v2) to 

download their munged summary statistics (See URLs). To estimate local genetic correlation 
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(rg) at 19 identified regions for 147 traits and the three PTSD symptom traits, we first 

estimated the heritability of the regions as recommended by Local Analysis of [co]Variant 

Association (LAVA) developers22. We applied an FDR multiple testing correction on 

heritability estimates, and subsequently performed local rg for region:trait pairs that survived 

multiple testing threshold (FDR q<0.05).

5 RESULTS

5.1 Integrative analyses of dlPFC identifies PTSD symptom cluster-associated genes

We tested genetically regulated gene, splicing, and proteome expression of the dlPFC 

across the three PTSD symptoms clusters: reexperiencing, hyperarousal, and avoidance. 

We identified associations across our three regulatory models – TWAS, SPWAS, and PWAS, 

resulting in 11 unique genes for reexperiencing (6-gene expression; 7-splicing expression; 

3-proteome expression), 19 unique genes for hyperarousal (7-gene expression; 9-splicing 

expression; 6-proteome expression), and 20 unique genes for avoidance (9-gene expression; 

7-splicing expression; 7-proteome expression) (Figure 1B–D; Table S1). In total, we 

identified 30 unique gene associations at 19 independent genomic regions across the three 

PTSD symptom clusters. Seven genes (KHK, CGREF1, RBM6, MAPT, CRHR1, RNF123, 
ARHGAP27) were common to all the three PTSD symptoms, while one (RBMX1), seven 

(EXOC6, CDC14B, CTNND1, SERGEF, CEP57, WNT2B, B3GALTL) and nine (HARS2, 
PDLIM2, TSFM, RAB27B, MAPRE3, NDUFA2, PCDHA7, TPM3, NCK1) were distinct 

to Reexperiencing, Hyperarousal and Avoidance respectively (Figure 1E). We compared 

the genes identified from the GWAS of PTSD1, and the genes found through our TWAS/

SPWAS/PWAS approach. Genes outside a 2MB window around the lead gene reported by 

the GWAS were considered novel. We found 17 genes that were novel relative to the GWAS 

of PTSD symptom clusters (Table S2). The transcriptomic correlation (RhoGE) for each of 

the TWAS/SPWAS/PWAS of nominally significant genes across three PTSD symptoms was 

>90% (p<2.92E-92; Table S3), which suggests shared regulatory architectures underlying 

susceptibility for each cluster.

5.2 Biological characterization of identified genes

We performed a biological evaluation of the 30 genes for gene-brain cell types, frontal-

cortex based gene co-expression, miRNA family enrichment and drug targets.

5.2.1 Brain cell-type specific expression—To identify if any of the observed genes 

were enriched for brain cell types, we explored the mouse and human single-cell datasets 

from McKenzie et. al13. We found nine genes that showed specificity for five cell-types; 

astrocytes (CCBL2), endothelia (ARHGAP27, EXOC6), microglia (ARHGAP27, KHK, 
TPM3), neuron (MAPT, RAB27B), and oligodendrocytes (EXOC6, MAPT, PDLIM2, 
PIP4K2C) (Supplementary Figure 1; Table S4).

5.2.2 Prefrontal-cortex specific gene co-expression and gene ontology 
enrichment—To understand the effect of co-expressed genes, we created a network 

of genes co-expressed in the frontal cortex with the identified genes and retained 22 

co-expressed genes with 12 TWAS-derived genes. We tested all the genes in the network 
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for gene ontology and identified two cellular function processes; axon (p-value=4.04e-05) 

and microtubule (p-value=1.78e-04) that were FDR significant. Other nominally significant 

processes were neuron projection, cell projection part, and microtube cytoskeleton among 

others (Figure 2A–B; Table S5).

5.2.3 Gene-miRNA mapping and enrichment—MiRNAs are short non-coding RNA 

sequences that regulate gene expression. Based on structure and function, miRNAs can be 

grouped into families. Using 28 genes of interest that were available in the database, we 

identified 51 miRNAs that interacted with > 2 genes. Enrichment analysis identified four 

miRNA families surviving FDR < 0.05, including 5 members within the miRNA-17 family, 

3 members within the miRNA-148 family, 3 members within the miRNA-8 family, and 3 

members within the miRNA-30 family. (Figure 2C–D; Table S6).

5.2.4 Gene-drug prioritization—To prioritize drug targets, we assessed perturbed 

drug-gene signatures similar to the transcriptional signatures of the identified genes, by 

performing a gene-drug target assessment using CMap. We found data pertaining to 11/30 

genes and used the absolute median connectivity score of 90 or higher as prioritized 

interacting gene-drug targets. We found a total of 10 drugs with overall median connectivity 

score >90. These top drugs primarily include cyclooxygenase or COX-2 inhibitors, and 

acetylcholine receptor antagonists (Supplementary Figure 2).

5.3 Phenome-wide assessment of identified loci

5.3.1 PheWAS and LabWAS of GReX in BioVU and UKBB cohorts—We 

characterized the phenome-wide impact of the identified loci by analyzing clinical 

phenotypes in 70,439 individuals of European ancestry from BioVU cohort. We investigated 

GReX associations of 6 brain tissues for 1,379 clinical phenotypes and 299 laboratory 

measures. The PheWAS approach identified 5 phenotypes including bariatric surgery, 

obesity, hypertrophic cardiomyopathy, myoclonus, inflammatory bowel disease (Table 

S7; Figure 3A). The enrichment of phenotype categories shows a 9.3-fold increase (p-

value=0.0045) for digestive processes (Figure 3B; Table S8). The LabWAS identified 

12 blood traits – mean corpuscular hemoglobin concentration (MCHC), Eosinophils, tau 

protein, and protein-serum plasma volume (Table S9). The statistically overrepresented 

phenotype category was blood-related/hematological traits (7.13 log-fold enrichment; p-

value=0.00027; Table S10).

We replicated these phenotypes in the UKBB cohort (N~100,000–300,000) using brain 

cortex, prefrontal cortex, and cerebellum-based GReX associations as per the gene:tissue 

pairs identified in BioVU (Table S11). Two traits from BioVU (‘Protein serum plasma’ 

and ‘Tau protein’) were not available in UKBB cohort. For hypertrophic cardiomyopathy 

identified in BioVU cohort, we found Illness of father, mother, and siblings- heart disease 

(LRRC37A2; zscore-3.1~4.1) in the UKBB cohort. For hematological traits - Erythrocyte 

distribution width, mean corpuscular hemoglobin concentration, platelet mean volume, 

identified in BioVU cohort, we found ‘Red blood cell erythrocyte count’ (ARHGAP27; 

z-score= 4.7~17.2), ‘Raw-mean corpuscular hemoglobin’ (ARHGAP27, LRRC37A2; z-

score= −8.5 ~ −6), ‘Mean platelet thrombocyte volume’/ ‘Platelet count’ (WNT2B; z-score= 
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−8.7~11.15) in UKBB cohort respectively. Metabolic traits – obesity, and bariatric surgery in 

BioVU cohort were replicated with phenotypes – Trunk fat percentage, body fat percentage, 

and trunk fat mass (ARHGAP27, LRRC37A2; z-score= −5.3 ~ −3.6) in UKBB cohort. 

Together, these replications highlight that GReX of the identified genes with PTSD is also 

involved in peripheral/non-psychiatric traits.

5.3.2 Colocalization of gene-QTL with human phenome—We employed the 

colocalization approach to assesses the probability that the association signal responsible 

for the predicted differences in expression and that the association signal for the trait are 

being caused by the same variant across a larger set of nearby cis-variants 23. Colocalization 

is a complementary approach to GReX- based methods that aggregates several cis-variants 

in the region. We identified 2,457 phenotype:gene:tissue pairs with H4 probability >= 80% 

across 20 genes and 74 tissues (Figure 4A). To prioritize phenotypes, we performed an 

enrichment test using the OpenTarget-assigned categories and found 12 over-represented 

categories that survived multiple testing correction (Figure 4B). We then selected tissues that 

contained the term ‘Brain’ in their description, we found 489 phenotypes:tissue:gene pairs 

across four genes and 12 brain tissues. Here, we found four enriched categories that were 

the same categories as seen in all tissue analysis (Figure 4C). Overall, we identified 172 

unique phenotypes and we were able to map 147 phenotypes available in UKBB to test their 

pleiotropic relationship with PTSD symptom clusters using local rg (Table S12).

5.3.3 Local genetic correlation of PTSD symptom clusters and colocalizing 
phenotypes—We sought to confirm the locus-specific relationship between expression-

colocalizing traits from UKBB, and PTSD symptom clusters from the MVP, we performed 

a local rg analysis. We tested three PTSD symptom clusters across all 19 regions for 

heritability, and regions with significant heritability were tested further for local rg within 

and between three PTSD symptom clusters and 147 colocalizing traits, for a total of 450 

PTSD:trait pairs being investigated. We found that the highest number of correlated traits 

were observed in 3p21.31 (231/450), followed by 17q21.32 (107/450), and 1p13.2 (103/450) 

locus (Figure 5; Table S13). Using the same phenotype categories as colocalization analyses, 

we performed an enrichment of phenotype categories for each of the three loci (Table 

S14). Across the 16 phenotype categories, the 3p21.31 locus which houses three TWAS 

genes (RBM6, RNF123, MON1A) was significantly enriched for anthropometric traits 

(3.39 log fold enrichment; p-value: 1.95 ×10−5), and uncategorized category (2.30 log 

fold enrichment; p-value: 5.29 ×10−3), which contains miscellaneous phenotypes such as 

lifestyle factors, medication use for vascular health, and body composition traits such 

as impendence of leg and arm. At the 3p21.31 locus, there is a positive rg between 

PTSD symptom clusters and several metabolic and blood traits (i.e., high blood pressure, 

cholesterol-lowering medication, BMI, Illness of father, diabetes; white blood cell count; 

neutrophil count). The 17q21.32 locus (ARHGAP2, CRHR1, MAPT, LRRC37A2) was 

enriched for hematological measurement (7.25 log fold enrichment; p-value: 3.20 ×10− 8), 

PTSD symptom clusters (8.13 log fold enrichment; p-value: 4.95 ×10− 3), and biological 

processes (11.4 log fold enrichment; p-value: 1.25 ×10−2). The 1p13.2 locus (WNT2B) was 

enriched for anthropometric traits (5.76 log fold enrichment; p-value: 1.55 ×10−11), and 

bone measurements (4.77 log fold enrichment; p-value: 7.53 ×10−5).
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6 DISCUSSION

PTSD is characterized by symptoms related to hyperarousal (hypervigilance, irritability, 

sleep difficulties, heightened startle response), avoidance of situations and people that serve 

as reminders of the trauma, and reexperiencing the traumatic event, as for example in 

the form of nightmares, flashbacks and/or psychosomatic episodes5. To disentangle the 

molecular basis of PTSD symptom clusters, we integrated the multi-tiered genetically 

regulated expression of gene, splicing, and protein levels, identifying 30 genes in 19 

genomic regions associated with the three main PTSD symptom clusters. We identified 

17 novel genes that were not identified in the previous GWAS of PTSD symptom 

clusters1. Four of these genes (e.g., CCBL2, FURIN, KHK, and PDLIM2) have been 

previously identified in gene expression studies of PTSD24–27, highlighting the importance 

of genetically-regulated expression in PTSD pathogenesis. CCBL2 (also known as KYAT3) 

showed evidence of genetically predicted transcript expression, splicing, and protein 

expression and has previously shown specificity to astrocytes. This gene encodes a 

transaminase in the L-tryptophan catabolic pathway, converting kynurenine to kynurenic 

acid, which has antagonistic effects on glutamate receptors; dysregulation of this metabolic 

pathway has been implicated in a wide variety of neuropsychiatric disorders. KHK and 

PDLIM2 genes were specific for microglia and oligodendrocyte, respectively. Variants in 

FURIN were reported to exhibit gene-environment interaction effect with lifetime trauma 

burden28. We identified 14 miRNAs in four miRNA families that target multiple PTSD 

associated genes; among these, miRNA-20a (miR-17 family), miRNA-200c (miR-8 family), 

and miRNA-30c (miR-30 family) were significantly dysregulated in PTSD among military 

combat veterans29,30. These miRNAs along with miRNA-148a (miRNA-148 family) were 

also identified in rodent models of PTSD31,32. The present observation of genetically 

regulated expression of the genes regulated by these miRNAs highlights the possibility that 

genetic variants could affect target binding for miRNAs which also serve as compensatory 

mechanisms.

To understand the impact of GReX across the clinical and laboratory phenome, we 

performed PheWAS and LabWAS in BioVU. The brain-tissue based GReX of the TWAS 

genes highlighted obesity (and related bariatric surgery), cardiomyopathy, inflammation 

(e.g. inflammatory bowel disease and regional enteritis), neurological (myoclonus-twitching 

of muscles), and several hematological traits (erythrocytes, eosinophils, mean corpuscle 

hemoglobin) and these findings were replicated in the larger UKBB cohort. We observed an 

overrepresentation of similar phenotypes using colocalization as a complementary approach 

(i.e., anthropometric, metabolic traits including diabetes, and cardiovascular traits including, 

vascular health, blood pressure medication, and hematological traits). Our local genetic 

correlation findings provided further support for pleiotropic associations between PTSD, 

metabolic and hematological traits localize in 3p21.31 and 17q21.32, respectively. Our 

findings also highlight some loci and genes that may exert pleiotropic effects across multiple 

comorbid domains.

Several epidemiologic studies identify associations between PTSD and metabolic 

dysfunction like diabetes, hypertension, and abnormal lipid profiles33,34, which are risk 

factors to cardiovascular dysfunction and failure35,36. Our hypothesis-free phenome-wide 
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approach provides convergent evidence and highlights loci and genes that appear to mediate 

risk for both PTSD symptoms and multiple associated metabolic disorder. The genes, 

RBM6, RNF123, MON1A (3p21.31), and WNTB2 (1p13.2) have shared effects in PTSD 

and metabolic-traits, which have been demonstrated to have highly pleiotropic effects 

traits 37. RBM6 and RNF123 were reported in GWAS and expression studies of PTSD, 

and cardiovascular diseases38, which may be due to association with cardiovascular-risk 

factors such as diabetes, and lipid metabolism 39,40. WNTB2 is associated with stress-

induced neuroinflammation in PTSD41 and depression42. ARHGAP2, CRHR1, MAPT, and 

LRRC37A2 (17q21.32) are in a high LD region. These genes are known to be associated 

with PTSD1, but they also have functional links with metabolic traits hypothesized to guide 

diet-based signals via dysregulated expression in brain tissues43. Additionally, LRRC37A2 
was found to be dysregulated in CD133+ cells which are involved in vascular injury 

response44. While directly measured gene expression is highly influenced by environmental 

and technical factors, genetically regulated expression is anchored in the inherited genetic 

variation.

Inflammation is a well-documented common denominator between PTSD and metabolic 

dysfunction45. Hematological measurements such as white blood cell and platelet count 

are considered inflammatory markers and are often altered in PTSD patients46,47. Several 

studies have reported short and long-term changes in inflammatory levels as a cause 

and consequence of PTSD 48. The drug-gene target approach further highlighted several 

cyclooxygenase inhibitors, including some used to treat IBD and other inflammatory 

disorders. Recent study using EHR data further identified role of non-psychotropic 

medications such as anti-inflammatory drugs with improved PTSD symptoms49. In 

addition, a study showed success with anticholinergics in treating reexperiencing-related 

traits such as PTSD-related nightmares50 and an animal model showed evidence for 

reductions in behavioral and stress hormone responses to fear conditioning51. Metabolic 

syndrome also contributes to proinflammatory response52, and on the other hand, PTSD 

has been associated with later development of obesity53. The underlying mechanisms 

indicate putative role of hypothalamic/pituitary hormone signaling, which might result in 

uncontrolled appetite and increased cortisol contributing to central obesity54.

The drug repurposing analysis identified several drugs implicated in the treatment of 

stress-related response. Pterostilbene is a cyclooxygenase and FAAH inhibitor that prevents 

catabolism of anandamide, and endocannabinoid55–57. WH-4023 is a SRC inhibitor with an 

ability to reduce NMDA receptor function which exhibit ketamine-like function, and shown 

to reduce craving-related activation of reward circuits58,59. We also observe Carbetocin, 

an analogue of oxytocin which has shown involvement in reward-related functional 

connectivity in PTSD-affected individuals60–62. Taken together, the findings highlight 

complex associations between PTSD, metabolic conditions, and inflammation that have 

been frequently identified within the epidemiologic literature.

While our study has taken multiple investigative steps to identify biological properties, and 

peripheral traits associated with genes involved with PTSD symptom clusters, our study has 

limitations. The MVP is a military cohort, and prevalence of combat exposure that may not 

generalize outside this cohort. To overcome this limitation, we replicated our associations in 
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other cohorts such as UKBB and BioVU. Additionally, the MVP is primarily consisted of 

male participants, to circumvent this, we checked the identified genes against the sex-biased 

eQTLs from the GTEx63, and didn’t find any overlap. The study was performed using 

summary statistics from the European ancestry, and may not translate to other ancestries, 

future studies with diverse ancestries and improved sample sizes are needed for better 

understanding. Additionally, it is possible for some of the observed effects to be mediated 

by unmeasured mediating variables or confounding variable effects (e.g., health-related 

behaviors) that are causal for our target phenotypes and strongly associated with our loci 

of interest. Future work may involve causal inference methods to try and elucidate specific 

pleiotropic model. Some of the genes identified are in high LD region and will require 

functional experiments to dissect gene-specific effects for possible drug development and 

repurposing.

In summary, our study reports comprehensive evidence including clinical and regulatory 

data that highlight the molecular basis of the epidemiologic associations among PTSD, 

inflammation, and metabolic dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors thank publicly available resources from Neale Lab (UK Biobank GWAS statistics), the Million Veteran 
Program (GWAS statistics via dbGaP), and Common-Mind Consortium (pretrained dlPFC models). The authors 
acknowledge support from the National Institutes of Health (R21DC018098, R33DA047527, F32MH122058, 
U54MD010722-04, R01MH113362, R01MH118223, R56MH120736, T32HG008341) and One Mind. The BioVU 
projects at Vanderbilt University Medical Center are supported by numerous sources: institutional funding, private 
agencies, and federal grants. These include the NIH-funded Shared Instrumentation Grant S10OD017985 and 
S10RR025141; CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975 from the National Center for 
Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily 
represent official views of the National Center for Advancing Translational Sciences or the National Institutes of 
Health. Genomic data are also supported by investigator-led projects that include U01HG004798, R01NS032830, 
RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711; and additional funding sources 
listed at https://victr.vumc.org/biovu-funding/.

11 REFERENCES

1. Stein MB, Levey DF, Cheng Z, Wendt FR, Harrington K, Pathak GA et al. Genome-wide 
association analyses of post-traumatic stress disorder and its symptom subdomains in the Million 
Veteran Program. Nat Genet 2021; 53: 174–184. [PubMed: 33510476] 

2. Smith SM, Goldstein RB, Grant BF. The association between post-traumatic stress disorder and 
lifetime DSM-5 psychiatric disorders among veterans: Data from the National Epidemiologic 
Survey on Alcohol and Related Conditions-III (NESARC-III). J Psychiatr Res 2016; 82: 16–22. 
[PubMed: 27455424] 

3. Steele M, Germain A, Campbell JS. Mediation and Moderation of the Relationship Between 
Combat Experiences and Post-Traumatic Stress Symptoms in Active Duty Military Personnel. Mil 
Med 2017; 182: e1632–e1639. [PubMed: 29087905] 

4. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE et al. 
Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences 
in heritability. Mol Psychiatry 2018; 23: 666–673. [PubMed: 28439101] 

5. Pai A, Suris AM, North CS. Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and 
Conceptual Considerations. Behav Sci (Basel) 2017; 7. doi:10.3390/bs7010007.

Pathak et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://victr.vumc.org/biovu-funding/


6. Nutt DJ, Malizia AL. Structural and functional brain changes in posttraumatic stress disorder. J Clin 
Psychiatry 2004; 65 Suppl 1: 11–17.

7. Arnsten AFT, Raskind MA, Taylor FB, Connor DF. The Effects of Stress Exposure on Prefrontal 
Cortex: Translating Basic Research into Successful Treatments for Post-Traumatic Stress Disorder. 
Neurobiol Stress 2015; 1: 89–99. [PubMed: 25436222] 

8. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R et al. An atlas of 
genetic correlations across human diseases and traits. Nat Genet 2015; 47: 1236–1241. [PubMed: 
26414676] 

9. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJHet al. Integrative approaches for large-
scale transcriptome-wide association studies. Nat Genet 2016; 48: 245–252. [PubMed: 26854917] 

10. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y et al. Transcriptome-wide 
association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat 
Genet 2018; 50: 538–548. [PubMed: 29632383] 

11. Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM et al. Integrating human 
brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s 
disease pathogenesis. Nat Genet 2021; 53: 143–146. [PubMed: 33510477] 

12. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating Gene Expression with 
Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. Am J Hum 
Genet 2017; 100: 473–487. [PubMed: 28238358] 

13. McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A et al. Brain Cell 
Type Specific Gene Expression and Co-expression Network Architectures. Sci Rep 2018; 8: 8868. 
[PubMed: 29892006] 

14. Lee S, Zhang C, Arif M, Liu Z, Benfeitas R, Bidkhori G et al. TCSBN: a database of tissue 
and cancer specific biological networks. Nucleic Acids Res 2018; 46: D595–D600. [PubMed: 
29069445] 

15. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA 
functional analysis and systems biology. Nucleic Acids Res 2020; 48: W244–W251. [PubMed: 
32484539] 

16. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K et al. PheWAS: 
demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. 
Bioinformatics 2010; 26: 1205–1210. [PubMed: 20335276] 

17. Dennis JK, Sealock JM, Straub P, Hucks D, Actkins K, Faucon A et al. Lab-wide 
association scan of polygenic scores identifies biomarkers of complex disease. medRxiv 2020. 
doi:10.1101/2020.01.24.20018713.

18. Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L et al. PhenomeXcan: 
Mapping the genome to the phenome through the transcriptome. Sci Adv 2020; 6. doi:10.1126/
sciadv.aba2083.

19. Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B et al. The GTEx Consortium atlas 
of genetic regulatory effects across human tissues. BioRxiv 2019. doi:10.1101/787903.

20. Ghoussaini M, Mountjoy E, Carmona M, Peat G, Schmidt EM, Hercules A et al. Open 
Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and 
functional genomics. Nucleic Acids Res 2021; 49: D1311–D1320. [PubMed: 33045747] 

21. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C et al. Bayesian 
test for colocalisation between pairs of genetic association studies using summary statistics. PLoS 
Genet 2014; 10: e1004383. [PubMed: 24830394] 

22. Werme J, van der Sluis S, Posthuma D, de Leeuw C. LAVA: An integrated framework for local 
genetic correlation analysis. BioRxiv 2021. doi:10.1101/2020.12.31.424652.

23. Giambartolomei C, Zhenli Liu J, Zhang W, Hauberg M, Shi H, Boocock J et al. A Bayesian 
framework for multiple trait colocalization from summary association statistics. Bioinformatics 
2018; 34: 2538–2545. [PubMed: 29579179] 

24. Stein MB, Chen C-Y, Jain S, Jensen KP, He F, Heeringa SG et al. Genetic risk variants for social 
anxiety. Am J Med Genet B, Neuropsychiatr Genet 2017; 174: 120–131. [PubMed: 28224735] 

Pathak et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Marchese S, Cancelmo L, Diab O, Cahn L, Aaronson C, Daskalakis NP et al. Altered gene 
expression and PTSD symptom dimensions in World Trade Center responders. medRxiv 2021. 
doi:10.1101/2021.03.05.21252989.

26. Muhie S, Gautam A, Meyerhoff J, Chakraborty N, Hammamieh R, Jett M. Brain transcriptome 
profiles in mouse model simulating features of post-traumatic stress disorder. Mol Brain 2015; 8: 
14. [PubMed: 25888136] 

27. Tylee DS, Chandler SD, Nievergelt CM, Liu X, Pazol J, Woelk CH et al. Blood-based gene-
expression biomarkers of post-traumatic stress disorder among deployed marines: A pilot study. 
Psychoneuroendocrinology 2015; 51: 472–494. [PubMed: 25311155] 

28. Tamman AJF, Wendt FR, Pathak GA, Krystal JH, Southwick SM, Sippel LM et al. Attachment 
style moderates polygenic risk for incident posttraumatic stress in U.S. military veterans: A 
7-year, nationally representative, prospective cohort study. Biol Psychiatry 2021. doi:10.1016/
j.biopsych.2021.09.025.

29. Martin CG, Kim H, Yun S, Livingston W, Fetta J, Mysliwiec V et al. Circulating miRNA 
associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry 
Res 2017; 251: 261–265. [PubMed: 28222310] 

30. Zhou J, Nagarkatti P, Zhong Y, Ginsberg JP, Singh NP, Zhang J et al. Dysregulation in 
microRNA expression is associated with alterations in immune functions in combat veterans with 
post-traumatic stress disorder. PLoS One 2014; 9: e94075. [PubMed: 24759737] 

31. Balakathiresan NS, Chandran R, Bhomia M, Jia M, Li H, Maheshwari RK. Serum and amygdala 
microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J Psychiatr 
Res 2014; 57: 65–73. [PubMed: 24998397] 

32. Muiños-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T, Maron E et al. Human 
microRNAs miR-22, miR-138–2, miR-148a, and miR-488 are associated with panic disorder and 
regulate several anxiety candidate genes and related pathways. Biol Psychiatry 2011; 69: 526–533. 
[PubMed: 21168126] 

33. Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in 
disguise? Exp Neurol 2016; 284: 220–229. [PubMed: 27246996] 

34. Palmer BW, Shir C, Chang H, Mulvaney M, Hall JMH, Shu I-W et al. Increased prevalence of 
metabolic syndrome in Veterans with PTSD untreated with antipsychotic medications. Int J Ment 
Health 2021; : 1–16.

35. O’Donnell CJ, Schwartz Longacre L, Cohen BE, Fayad ZA, Gillespie CF, Liberzon I et al. 
Posttraumatic stress disorder and cardiovascular disease: state of the science, knowledge gaps, and 
research opportunities. JAMA Cardiol 2021; 6: 1207–1216. [PubMed: 34259831] 

36. Edmondson D, von Känel R. Post-traumatic stress disorder and cardiovascular disease. Lancet 
Psychiatry 2017; 4: 320–329. [PubMed: 28109646] 

37. Li Y, He XN, Li C, Gong L, Liu M. Identification of candidate genes and micrornas for acute 
myocardial infarction by weighted gene coexpression network analysis. Biomed Res Int 2019; 
2019: 5742608. [PubMed: 30886860] 

38. Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A et al. Genetic Regulation of Adipose 
Gene Expression and Cardio-Metabolic Traits. Am J Hum Genet 2017; 100: 428–443. [PubMed: 
28257690] 

39. Fadason T, Ekblad C, Ingram JR, Schierding WS, O’Sullivan JM. Physical interactions and 
expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes 
associated snps. Front Genet 2017; 8: 150. [PubMed: 29081791] 

40. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I et al. Multi-omic 
integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to 
chronic exercise in Type 2 diabetic obesity. Physiol Genomics 2014; 46: 747–765. [PubMed: 
25138607] 

41. Muhie S, Gautam A, Chakraborty N, Hoke A, Meyerhoff J, Hammamieh R et al. Molecular 
indicators of stress-induced neuroinflammation in a mouse model simulating features of post-
traumatic stress disorder. Transl Psychiatry 2017; 7: e1135. [PubMed: 28534873] 

Pathak et al. Page 14

Mol Psychiatry. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Mariani N, Cattane N, Pariante C, Cattaneo A. Gene expression studies in Depression development 
and treatment: an overview of the underlying molecular mechanisms and biological processes to 
identify biomarkers. Transl Psychiatry 2021; 11: 354. [PubMed: 34103475] 

43. Merino J, Dashti HS, Sarnowski C, Lane JM, Todorov PV, Udler MS et al. Genetic analysis of 
dietary intake identifies new loci and functional links with metabolic traits. Nat Hum Behav 2021. 
doi:10.1038/s41562-021-01182-w.

44. Liu D, Glaser AP, Patibandla S, Blum A, Munson PJ, McCoy JP et al. Transcriptional profiling of 
CD133(+) cells in coronary artery disease and effects of exercise on gene expression. Cytotherapy 
2011; 13: 227–236. [PubMed: 21235297] 

45. Wilson MA, Liberzon I, Lindsey ML, Lokshina Y, Risbrough VB, Sah R et al. Common pathways 
and communication between the brain and heart: connecting post-traumatic stress disorder and 
heart failure. Stress 2019; 22: 530–547. [PubMed: 31161843] 

46. Koraishy FM, Salas J, Neylan TC, Cohen BE, Schnurr PP, Clouston S et al. association of severity 
of posttraumatic stress disorder with inflammation: using total white blood cell count as a marker”. 
Chronic Stress (Thousand Oaks) 2019; 3. doi:10.1177/2470547019877651.

47. Lindqvist D, Mellon SH, Dhabhar FS, Yehuda R, Grenon SM, Flory JD et al. Increased circulating 
blood cell counts in combat-related PTSD: Associations with inflammation and PTSD severity. 
Psychiatry Res 2017; 258: 330–336. [PubMed: 28942957] 

48. Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci 2019; 
73: 143–153. [PubMed: 30653780] 

49. Shiner B, Forehand JA, Rozema L, Kulldorff M, Watts BV, Trefethen M et al. Mining clinical data 
for novel PTSD medications. Biol Psychiatry 2021. doi:10.1016/j.biopsych.2021.10.008.

50. Sogo K, Sogo M, Okawa Y. Centrally acting anticholinergic drug trihexyphenidyl is highly 
effective in reducing nightmares associated with post-traumatic stress disorder. Brain Behav 2021; 
11: e02147. [PubMed: 33991066] 

51. Kaur H, Kaur R, Jaggi AS, Bali A. Beneficial role of central anticholinergic agent in preventing the 
development of symptoms in mouse model of post-traumatic stress disorder. J Basic Clin Physiol 
Pharmacol 2020; 31. doi:10.1515/jbcpp-2019-0196.

52. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 
542: 177–185. [PubMed: 28179656] 

53. Masodkar K, Johnson J, Peterson MJ. A review of posttraumatic stress disorder and obesity: 
exploring the link. Prim Care Companion CNS Disord 2016; 18. doi:10.4088/PCC.15r01848.

54. Aaseth J, Roer GE, Lien L, Bjørklund G. Is there a relationship between PTSD and complicated 
obesity? A review of the literature. Biomed Pharmacother 2019; 117: 108834. [PubMed: 
31177066] 

55. Mayo LM, Rabinak CA, Hill MN, Heilig M. Targeting the Endocannabinoid System in the 
Treatment of Posttraumatic Stress Disorder: A Promising Case of Preclinical-Clinical Translation? 
Biol Psychiatry 2021. doi:10.1016/j.biopsych.2021.07.019.

56. Mayo LM, Asratian A, Lindé J, Morena M, Haataja R, Hammar V et al. Elevated anandamide, 
enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid 
amide hydrolase: A randomized, controlled experimental medicine trial. Biol Psychiatry 2020; 87: 
538–547. [PubMed: 31590924] 

57. Mayo LM, Asratian A, Lindé J, Holm L, Nätt D, Augier G et al. Protective effects of elevated 
anandamide on stress and fear-related behaviors: translational evidence from humans and mice. 
Mol Psychiatry 2020; 25: 993–1005. [PubMed: 30120421] 

58. Thompson SL, Gianessi CA, O’Malley SS, Cavallo DA, Shi JM, Tetrault JM et al. Saracatinib 
Fails to Reduce Alcohol-Seeking and Consumption in Mice and Human Participants. Front 
Psychiatry 2021; 12: 709559. [PubMed: 34531767] 

59. Patel KT, Stevens MC, Dunlap A, Gallagher A, O’Malley SS, DeMartini K et al. Effects of the Fyn 
kinase inhibitor saracatinib on ventral striatal activity during performance of an fMRI monetary 
incentive delay task in individuals family history positive or negative for alcohol use disorder. A 
pilot randomised trial. Neuropsychopharmacology 2021. doi:10.1038/s41386-021-01157-5.

Pathak et al. Page 15

Mol Psychiatry. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60. Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A et al. Oxytocin and fear memory 
extinction: possible implications for the therapy of fear disorders? Int J Mol Sci 2021; 22. 
doi:10.3390/ijms221810000.

61. Sippel LM, Flanagan JC, Holtzheimer PE, Moran-Santa-Maria MM, Brady KT, Joseph JE. 
Effects of intranasal oxytocin on threat- and reward-related functional connectivity in men and 
women with and without childhood abuse-related PTSD. Psychiatry Res Neuroimaging 2021; 317: 
111368. [PubMed: 34455213] 

62. Melkonian AJ, Flanagan JC, Calhoun CD, Hogan JN, Back SE. Craving Moderates the Effects of 
Intranasal Oxytocin on Anger in Response to Social Stress Among Veterans With Co-Occurring 
Posttraumatic Stress Disorder and Alcohol Use Disorder. J Clin Psychopharmacol 2021; 41: 465–
469. [PubMed: 34121063] 

63. Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ et al. 
The impact of sex on gene expression across human tissues. Science 2020; 369. doi:10.1126/
science.aba3066.

Pathak et al. Page 16

Mol Psychiatry. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
A. Study Design. A schematic of the study design showing the concept of genetically 

regulated expression (GReX) and applied to three PTSD symptom cluster. B-D. Three-

tiered Manhattan plots of three PTSD symptoms B-Avoidance, C-Hyperarousal, D-

Reexperiencing, the lowest layer is TWAS, middle is SPWAS, and top is PWAS (See text for 

more details). E. The Venn diagram of overlapping genes across the three PTSD symptom 

clusters.
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Figure 2: 
A. Tissue Co-expression Network. The network of TWAS genes (purple) with prefrontal-

cortex based co-expressed genes (green) B. Bar plot showing top ten gene ontology 

enrichment processes of all genes in the network wherein dark green processes survived 

FDR testing. C. MiRNA-Gene network. The network of miRNAs (orange) which map to 

TWAS genes (orange circles); the miRNAs belonging to overrepresented miRNA-families 

are color coded in the legend. D. The details of the miRNA-family enrichment are shown as 

bar plot, all the four miRNA families survived FDR q<0.05.
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Figure 3: 
PheWAS and LabWAS of TWAS identified genes in BioVU cohort. A. PheWAS of 1379 

clinical phenotypes and B. LabWAS of 299 laboratory measures using genetically regulated 

expression of identified TWAS genes and brain tissues.
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Figure 4: 
A. Colocalization plot showing probability of having shared causal variant between gene 

expression (top-x axis), and phenotype (left axis), grouped by categories (right axis). B. 

Enrichment of Phenotype categories that survive multiple testing, comparing colocalized vs 

non-colocalized gene:phenotype pairs for all tissues. C. Enrichment of Phenotype categories 

comparing colocalized vs non-colocalized gene:phenotype pairs that survive multiple testing 

for brain tissues only.
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Figure 5: 
Matrix plot of local genetic correlation between three PTSD symptom clusters and 

colocalizing traits (few presented here on the left y-axis). The x-axis shows PTSD symptoms 

grouped for each locus as identified in the TWAS analysis. The positive correlation is 

denoted in orange, and blue is negative correlation, the size of the squares is relative to 

genetic correlation value.
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