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SOLUTION OF THE UNITARITY EQUATION WITH OVERLAPPING 

LEFT AND RIGHT CUTS: A TOOL FOR STUDY 

OF THE S* AND SIMILAR SYSTEMS.* 

Porter W. Johnson 

Illinois Institute of Technology 
Chicago, Illinois 60616 

and 

Robert Lee Warnock~ 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

February 28, 1979 

ABSTRACT 

LBL-8833 

The partial-wave unitarity condition is complicated 

by the presence of overlapping left and right branch cuts 

when the lowest exchanged mass is small in comparison to 

the direct channel mass. A coupled-channel ND-l method for, 

constructing unitary amplitudes with overlapping cuts 

is described. The study is motivated in part by the problem 

of analyzing the nn - KK system near the S* resonance. 

* Work supported in part by the National Science Foundation and the 
United States Department of Energy under contract No. W-7405-ENG-
48. ' 

+ Participating Guest. 
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1. INTRODUCTION 

We discuss the unitarity condition for coupled two-body 

channels in a definite angular momentum state. For simpl'icity 

in notation we take two channels, but our methods apply as well 

for any finite number. The square of the energy in the center-

of-~ss frame is denoted by s, and s. is the threshold of 
~ 

the i-th channel, 51 ~ 52'. As is appropriate in analytic S-matrix 

theory, we study a generalization of ordinary unitarity obtained by 

analytic continuation. If the masses of the particles in one channel 

are not too dissimilar to those in the other, generalized unitarity 

has the form 

T(S+} = lim T(s+i£}, 
£+0+ -

(1.l) 

where. the 2 x 2 scattering matrix T(s} is analytic in regions 

above and below the half-line s > sl· The diagonal matrix of 

phase-space factors, pes}, includes unit step functions e which 

vanish below channel thresholas: 

pes) {po (s)o .. }, p. (s) 
~'~J ~ 

(1.2) 

For the case of spinless, equal-mass particles in channel i one has 

q. (s) 
~ 

~ 
:'s - SiJ' 
:---
l s 

(1.3) 
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Generalized unitarity (1.1) restricts the amplitudes T12 (s) and 

in, the region s 1 < s < s2 where channel 2 is closed, 

whereas ordinary unitarity refers only to open channels. 

A complication arises if mass differences are large. Namely, 

the left cuts of some of the amplitudes overlap the half-line s> sl' 

This occurs when the lowest mass in a cross channel is sufficiently 

small in comparison with the mass of the direct channel. The 

unitarity condition then!becomes 

(1.4) 

where ~LT(S) is the matrix of discontinuities of T(S) over the 

left cuts (denoted collectively by L). 

An example is the two-channel problem with 1T7T and KK 

channels ina definite isospin state, considered near the KK 

threshold where the 47T !state has only a small production cross 

section. Under the assumption of Mandelstam analyticitv, the partial-

wave amplitude for KK + KK has a left cut beginninq at the branch 

point 

2 at s = 4m1T , 

Accordinq to (1.4) the right cut beqins 

so that the two cuts overlap. The amplitudes for 
I 

1T7T -+- 7T7T and 1T7T -+- KK do not have overlappinq cuts: their nearest 

left branch points are a~ s = O. The possible importance of 

treating correctly the overlappinq cuts in the phenomenology of the 

1T7T - KK system, especially near the S* resonance, has been 
I 

emphasized by Yndurain (1,2,3], Gonzalez-Arroyo [2,3 J ' and 

coworkers (3] . 
I' 

Although the 7T7T - KK system has been discussed 

4 

extensively [sJ, it appears,that a full explication of the unitarity 

effects remains to be made. A similar situation of overlapping cuts 

occurs in the NN system, which is of high current interest in 

connection with baryonium states [6]. 
In studying systems with overlapping cuts, from either a 

dynamical or a phenomenological viewpoint, one encounters a general-

ization of the standard problem 'of partial-wave dispersion relations 

[7]. That is, given the left cut part of the T matrix, 

lJ"" T(S~)P(SI)T(S:)dS' 
B(s) = T(s) -n, --'-------

s' -, s 
sl 

determine the most general T(s) having that left cut part and 

satisfying the augmented unitarity equation (1.4) as well as 

(1.5) 

appropriate conditions of analyticity and asymptotic behavior. We 

shall provide a straight-forwaro;i solution of this problem, based on 

the matrix NO-l method[S,9,lO,II}. As in the usual NO-
l 

method, 

the problem is reducE1d to solving a linear integral equation for 

,N(s). It is gratifying to find that the eql.lation is identical in form 

to the usual one. Only the derivation of the equation is altered. 

Being of Fredholm type under weak conditions ,on B(S), the equation 

is amenable to nUllerical solution. 

Our results are applicable in phenomenology as well as in 

dynamical schemes. In phenomenology the'traditional approach to 

determination of B(s) is to use crossing symmetry and experimental 

information on scattering in the cross channel. Such an approach 

'determines the nearby sinqularities of B(s) to a certain extent, 

... 
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but leaves the distant singularities to be represented by empirical 

parameters. A potentially more informatlve approach now under develop-

ment is to use a new definition of Reggeon exchange, valid at low 

as well as high energy:12,' The Reggeon exchanges involve all 

partial waves in the cross channel, and focn'an important (possibly 

dominant), part of the, analytically continued cross channel absorptive 

part. It is hoped that a model of B(s) based primarily on Reggeon 

exchanges will be realistic. 

unitary 

An ambitious scheme for construction of a crossing-symmetric 

Regge theory, proposed in Refs.[12, 13]and extended in a 

forthcoming paper to allow coupled channels, requires solution of a 

generalization of the problem treated here. In a crossing-symmetric 

treatment of coupled 1111 and KK channels, for instance, one 

must account for the 411 threshold at s = 16 m 
2 

in the KK 
11 

amplitude, which lies to the left of the beginning of the left cut 

2 2 at s = 4 (~ - m
1l
). As we shall show in a later paper, this complicated 

situation of overlapping cuts can be handled in a rather simple way by 

extending the present ND- l method to allow a matrix of externally 
( , 

parameters, in analogy to the work of Ref. [14} p~escribed absorption 

In the crossing-symmetric theory the absaptionparameters for the 

411 state, etc., are obtained dynamically through crossing. The 

extended 
-1 

ND method with absorption should also be useful in 

phenomenology, especially for study of absorption in the NN system. 

A correct treatment of overlapping cuts is conceivably important in 

assessing the effects of absorption on baryonium states predicted from 

crossed NN potentials L6J. 

6 

Section II contains the general solution of the two-channel 

problem under rather weak conditions on B(s). It will be evident 

that the method works as well for n channels. The Castillejo-

Dalitz-Dyson (CDD) ambiguity '7; is treated in detail, since a 

complete treatment, for the coupled channel case has not been available 

'in the literature. Recently NenciJl, Rasche, stihi and Woolcock :,lS( 

criticized the NO-I method, and suggested a method based on a pole 

apprpxiJ)lation to B (s) as a replacement. We feel that the 

discussion of Sections II and III answers their criticisms, and 

shows that the method is both general and practical. In our 

experienc,e the pole approximation has not been very useful, since 

in realistic models B(s) is not given in terms of poles, and to 

approximate it by poles with sufficient accuracy is rather awkward. 

We note, h()wever, that the pole approximation can be used in the 

ND-l scheme with overlapping cuts, and that it leads as usual to 

explicit analytic forms for the solution of the integral equation. 

In Section IV we give an 
-1 

ND method for a single-channel 

problem with absorption present at threshold; for example, 

KK .... KK. The absorption parameters are regarded as given, and left 

cuts mayor may not overlap the absorption cut below threshold. 

In, Section V we discuss a special case of our problem solved 

recently by Gonzalez-Arroyo L4]; namely, a two-channel problem in 

which only the element B22 (s) of B(s) is non-zero. We reveal 

two new aspects of the Gonzalez-Arroyo solution by deriving it from 

our formalism: (a) it necessarily entails CDD poles as defined in 
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the, two-channel formalism; if there is not at least one COO pole, 

orily the trivial solutioh in which' Tll(s) is'obtained; 

(b) eventhough the ~nza:lez-Arroyo solution entails arbitrary 

rational functions, it is, not the, general solution of the problem 

with: Bll (s) =' Bl ; (s) = O!; rather, it corresponds to putting some 

elements of the coo pOl~ residue matrices equal to zero. 

In Section VI we pomment on a proposal of Yndurain for'an 

explicit unitary parametrization of the T matrix with overlapping cuts. 
i 

, Appendix A is conberned with asymptotic estimates of principal' 

value integrals under conditions of logarithmic decrease of the density 
I ' 

function. ,Appendix B contains '~e proof that, the integral equation of , 

Section II is,of Fredholm: type under, conditions of logarithmic 

decrease of B(s). 

'We 'hope to :re-~amine in a later paper'the phenomenolPgyof 

. I 
the TITI ~ KK system neat the S* resonance, using the methods 

described. 

II· GENERAL SOLUTION FOR, TWO-CHANNEL CASE 

In this section we solve the two-channel problem, with two 

pseudoscalar mesons of mass mi in the i-th channel. The phase 

space factors are as given in (1.3), with s. = 4m~. 
J. J. 

We maKe 

analy,ticity assumptions' w~aker than those implied by the Mandelstam 
I 

representation, since the lextra generality involves little effort. 

'Let,us first recall the implications of the Mandelstam 
I 

representation. The part~al-wave,amplitudes Tll (s) and 

T
12

{s) = T21 (s) are analy,tic in the',s-plane, each with cuts 

(-oo, 0], [sl' (0), 
I 

where If 

:-:;, ,.' 
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is analytic in the plane with cuts (- 00, 4 (m; - m~)] , -[ s l' (0). 

If we must regard as sectionally analytic, since 

the cuts'6verlap and divide, the 'plane in two: 

1 

(+) 
T22 (s) , 

T(-) (s) 
22 

Ims > 0 , 

Ims < 0 

where 
(-) 

T22 (s) are analytic in their respective 

* half-planes. one haS' Tij(S) =Tij(s~) , which for i = j = 2 

means that T~~) (s) = T~;) (s*)*. 

- (2.1) 

OUr requirements on the T matrix, weaker with respect to 

analyticity, will be as follows: 

where 

(i) T •• (s) = T).J.' (s) 
J.) 

(ii) T11 (s) and T
12

(s) are analytic in ,open neighborhoods 

°
11

, 012 of the half-line [~, (0), as illustrated 

in Fig. 1. 

(iii) (+) 
T22 (~), 

T(-) "(s) , 
22 ' 

T t±) (s) 
22 

is analytic in 

(+) 
SE022 

(-) 
sE(122 

Here 

of the upper half-plane with [sl-£',oo) as part of its boundary', and 

(-) , (122 is the complex conjugate of that region; see Fig. 1. 

* (iv) T{s) = T(s*) 

(v) ~T{s) = ti (T{S+) - T{S_)] = T{S+)P{s)T{S_) + ~LT{S), 

[: 
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where 9(s) is the unit step function and ¢(s) 

(vi) I 
-a 

IT(s) .." K(!/,ns) , 
+ 

I I -d IS - s' III T(s ) - T(s ') ~ d!/,ns) --- , 
+ + s 

a > 1, 0< II ~ 1/2. (2.2) 

Here and in the following, K represents a generic positive constant, 

which is understood to have different values in different equations. 

The inequalities (2.2 vi) apply to each element of the matrix T(s) 

separately. The second of these inequalities follows from the stronger 

but more comprehensible requirement that T(S+) be Holder-continuous 

for s < r and continuously differentiable for s > r with 

I I -l-a 
T' (s) < Ks in s, 

+ 
the point r being arbitrary. 

We shall determine the entire class of T matrices 

satisfying conditions (2.21) - (2.2vi) and having the same given 

left-hand cut term, 

B(S} T(S) _ 1 
1T 

T(s' ) pes' )T(s' }ds' 
+ - (2.3) 

S' - 5 

Note that property (2.2vi) ensures convergenco of the integral in 

(2.3). The following conditions on B(s) are a consequence of the 

conditions on T(s) and the definition (2.3): 

rill 
A 

rI 
-22 

B .. (s) = B .. (s) 
1.J J1. 

(i) 

(ii) Bll (s) , ];;12 (s), and B22 (s) are analytic in 

rill U LSI' 00), n12 = rl12 U h, 00), and 

~;)U ,~;;) U [sL'OO), respectively; see Fig. 2. 
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(iii) B(s) = B* (s*) 

(iv) IB(s) \ ~ K(!/'ns)-a, s ~ sl' 

\ I 
-a \ s - S' III B(s) - B(s') . ~K\!/'ns) --s--, s' 

The property (2.4iv) is' obtained from (2.3) with the help of Lemma 2 

on asymptotic behavior of principal value integrals which is proved 

in Appendix A. The other properties of B follow immediately 

from (2.2). 

Henceforth we suppose that a function B(S), satisfying 

(2.4i) - (2.4N), is given. We seek the'most general T(s) which 

gives that B(s) through (2.3), and which satisfies (2.2i) - (2.2v~. 

Our analysis is based on the non-trivial theorem that any T(s) 

satisfying conditions (2.2iv) - (2.2vi) has an NO-I representation 

with apPropriate properties. To be more exact, under those conditions 

. 1 
there exists a 2 x 2 matrix D(s) 'such that ~16, 17) 

(i) IJ ij (s) is analytic in the plane with cut [si' ""), 

and is defined by continuity on the cut. The function on the cut, 

jjij(S~), is HOLder-continuous 'on any finite interval. 

(ii) /),(s ) 

(iii) [) (s) 

= [1 + 2ip(s)T(s )1"o-(s ) 
l +~ + 
. * 

= JJ (s*) 

(iv) JJr (s) is non-singular (has an inverse) at every finite 

point of the cut plane, including points s+ on the cut. 

(v) There are integers n. 
1. 

such that the modified matrix 

/j- (s) 
i -nl ri-
, s d-J' (s) 
, .1' 

tends to a finite, real, non-singular limit as \sl ~ "": 
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/} (s) ~ [}(oo) 
,v* 
j} (00); det 1)(00) t o. 

Here .[). (s) denotes the j-th column of jJ'(s). 
.J 

(2.5) 

The properties (2.5) clearly do not determine ~(s) uniquely; 

at the least, one may interchange the columns 'of a given I) (s), and 

multiply them by non-ze~o constants, thereby obtaining a new matrix 

which staisfies (2.5). ,Nevertheless, the (non-ordered) pair 6f 

integers n
i

, n2 is uniquely determined by the asymptotic behavior 

of T(s), and n
l 

+ n
2 

sets the degree of ambiguity in the 

determination of T(s) from a given B(s), as we shall explain 

presently. 

In the single-crannel case, /J(s) is determined up to 

I 
a constant multiplier and has the familiar form 

jJ(s) ~exp[-: 100 o(s· )ds' ] , 

s'(s"-s) 
s' 1 

(2.6) 

where A is an arbitrary real constant, and O(s) is the phase 
I 

shift, normalized so that O(sl) = O. In the many-channel case 

there is, in general, 'no closed expre~sion for /)(s). Rather, /}(s) 

is obtained through solution of a certain Fredholm integral equation 

with a kernel constructed from T(S+). If o(s) in (2.6) tends to 

a limit, 0(00) and obe~s the bounds 

s<s·, O<~<l, Ci. > 1, (2.7) 

12 

then 

(2.8) 

If 0(00) ? TI, one has a Castillejo-Oalitz-Oyson (COO) ambiguity 

in the determination of T(s) from a given B(S); cf. 7 

shall find a similar ambiguity in the two-channel case if nl + n2 ~ 1. 

Let us write 

T(S) = [T(s)[hs)] /J--l(S) = n(S).o-l(s), (2.9) 

and compute the discontinutiy of 11(s) from (2.5ii). If the unitarity 

equation (2.2v) holds, we have 

(2.10) 

In the final step of this calculation we are able to replace j)(s+) 

byJ}(s) because of the form of ~LT(S) and the fact that the cut 

of ~2j(S) begins at s = s2. We have ~rl(s) = 0, s ~ sl' in the 

simpler case in which left- and right-hand cuts do not overlap. With 

overlapping cuts, 

~ n
lj 

(s) 0, 

~ n 2j (s) = e (sL - s)4>(s) 1J 2j (s), 

j 1, 2; s ~ sl .' (2.11) 
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The left-hand cut of each matrix element n, , (s) 
l.J 

does not overlap 

the right-hand cut of the corresponding i}, ,Is). 
l.J 

we next consider the possible asymptotic behaviors of j}(s) 

allowed by (2.5v) and for each type of behav'ior write a Cauchy 

representation for a matrix D(s) closely related to irIs). The 

matrices D(S) will subsequently be used to derive integral equations 

for N(S) = T(s)D(s). We suppose initially that there is no bound 

state pole of T(s), and also that neither column of j)-(s) tends 

to the null vector as lsi ~ 00; thus, n
i 
~ O. Presently we shall 

show that the vanishing of a column of ~(s) at infinity is an 

exceptional case, not expected to occur in realistic models, 

provided that there are no bound states. 

First take Case 1 n
l 

= n
2 

= 0 in (2.5v). We define 

D(s) = i}(s) f} -1(00), N(s) 

By properties (2.5ii), (2.5iii), and (2.2vi), 

- p (s) n (s) jJ -1 (00) - P(s)N(s) 
-a 

Olin s). 

(2.12) 

(2.13) 

~ It follows that D(s} has the Cauchy representation 

(Case 1): D(s) 1 
1 fOO p(s')N(s")ds' 
1T s· - s 

(2.14) 

sl 
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We rext consider Case 2: n
l 

+ n
2 

> 0 in (2.5v). To define 

D(S) in this case we first choose any polynomials of the form 

p, (s) 
J 

1 , if n, 0, 
J 

if n, > 0, 
J 

(2.15) 

where the real points Skj' k = 1, 2, 1, 2, are all 

distinct. Then D(S) is 

D(s) = 17<s) 

L 
o 

defined by 

.0 .... j 
IJ -1 (00) , 

-1 
P

2 
(s) 

and it has the Cauchy representation 

2 IJ 00 
1 c(kj) ( 

D(s) 1 \' L 1 J pIs )N(s - ----
L Skj- s n s· -j=l k=l sl 

(2.16) 

1 1 

Ids (2.17) 

s 

Since 0(00) = 1 and N(s) -c:i 
Olin s). The residue matrices c(kj) 

have components 

r nj 1-1 

C(kj) 
! 

j} -1 
bij(Skj) ITT (skj - s ,) i jm (00) • (2.18) im 

Lp=l 
PJ J 

pr!k 

Henceforth we shall consolidate the indices k and j, and write 

(2.17) as 

n 
c c, 

1
00 

D(s) 
'\ l. 1 PIs )N(s Ids (2.19) Case 2): 1 - L a, - s 1T . i=l l. s - s 

sl 
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Except for possible poles, the matrices D(s) have tlm same 

properties (2.5) 'as ~(s). Also, (2.l0) implies that 

L\N(s) (2.20) 

The poles in (2.19) are ,analogo.us to the familiar CDD poles of the 

single channel case; we shall again call them CDD poles. Because 

the pole positions 

are singular: 

0. 
~ 

are all distinct, the residue matrices 

I det C. 
~ 

O. 

C. 
~ 

(2.21) 

That is seen from (2.18): the matrix C(kj,) has rank 1, 
-1 

being a dyadic 

constructed from the ve~tors 

I 

1)- . (sk') 
.J . J 

and J]-. (co). 
J. 

We now turn to the derivation of the integral equation 
I 

obeyed by N(s) =T(s)D(s) for each of the two cases. The integral 

equation has a dual status. First, it is a necessary condition on 
i 
\ 

the ~(s) associated with any given T(S). Second, it is a means of 

constructing a properly ~nalytic, unitary, and symmetric T{S) from 

a given B(s). In applications one usually thinks only of· the second 

aspect, but for the general theory, especially for demonstrating 

the' generality of the solution of the construction problem, it is 

necessary to consider both aspects. We begin by deriving the 

equation as a necessary condition on N{S) for a given T{S), and 

later treat the construction problem. 

For a given T{s) satisfying conditions (2.2) and such that 

Case 1 holds, we examine the matrix function 

16 

co 

A(s) [T(S) - B(s) ] D(s) - ~-l B(s')p(S')N(s')ds' 

s' - s 
• (2.22) 

- sl 

since 
. -2(1 

B{s)p(s)N{S) = O{!n s), the integral converges. Notice 

that by (2.3) the difference T(s) - B(s) is defined in the whole 

cut plane, eventhough T(s) and B(s) separately may not be, 

in 'view of our weak assumptions (2.2ii), (2.2iii) on the region of 

definition and analyticity of T(s). Clearly, (2.22) defines a 

function Al (s) = A(s), analytic in the half-plane Ims > 0, and 

another function A2 (s) = A (s), analytic in Ims < o. We show that 

A
2

(s) is the analytic continuation of Al (s), and that in fact 

Al(s) = A2 (s) = O. For s < ~l' 

M(s) [L\T{S) -L\B(S)] D(s) O. (2.23) 

M(s) L\N(s) - L\B(s)D(s ) - B(s )L\D(s) - B(s)p(s)N{s) - +. 

L\LT{s)D{S) - L\LT{s)D{sY + B{S)P{s)N{s) - B{s)p{s)N(s) 

O. (2.24) 

The structure of L\LT(s), assumed in (2.2v), arid the e functions 

in L\D{s) = p{s)N{s), allowed us to replace D{S_) by D{s) 

and B{s+) by B(s) in (2.24). In the case without overlapping 

cuts, the terms ~N{s) and -L\B{S)D(S_) are separately zero; here 

-they are non-zero but fortunately cancel. We see that A{s) is 

analytic in the entire plane. Also, it vanishes at infinity, as is 

clear from (2.3), (2.l4), and (2.22). Thus, A{s) = 0, and (2.l4) 
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may be substituted into (2.22) to yield the integral e~liation!' 

00 

N(s) B(s) + ~f B(s) - B(s') P(S')N(s')ds'; " , 
s - s· 

(2.25) 

Thanks to the 9 function in p(s'), the domains of the first 

and second rows of N (s ') in the integral are [sl' (0) and 

respectively. Consequently, each Nij(S) is in a region of analyticity 

over the domain in which Eq. (2.25) is to be solved, as is seen from 

(2.11) . 

The derivation of the integral equation proceeds similarly 

in Case 2. The only change required is to account for the poles of 

D(s). Referring to (2.22) and (2.19) we see that A(s) inherits the 

poles and in fact 

A(s) 

n 
c 

y 
L 

i=l 

1 
s - 0, 

1. 

r 
iT(O, ) 
" 1. 

B(O')J!C, • 
1. 1. 

This equation yields the result 

N(s) 

n 
c 

B(s) + r 
i=l 

R. 
1. 

__ 1_ iR. + B(s) 1 c. 
s - 0i l 1. ,,1. 

B(s) - B(s') 
p (s ') N (s ' ) ds ' " s - s' 

(2.26) 

(2.27) 

(2.28) 

18 

Henceforth we refer to the general equation (2.27), which includes 

(2.25) as, the special case with C. = O. 
1. 

The integral equation (2.27) is amenable to the Fredholm 

theory in an appropriate Banach space, as is shown in Appendix B. 

By the Fredholm Alternative Theorem :20j, the integral equation 

,has a unique solution in the space considered, provided that, the 

corresponding homogeneous equation has no non-trivial solution in that 

space. We shall suppose that the homogeneous ,equation in fact'does 

not have non-trivial solutions, since the contrary case has not 

arisen, as far as we ~ow, in realistic physical models. It does arise 

in the anomalous event of an "extinct bound state" as discussed by 

t "' At~inson and Halpernl18i. The assumption that there is no solution 
~. ,J 

of the homogeneous equati.on allows us to rule out the possibility 

that a column of n(s) vanishes at, infinity, as promised above. 

If IJ . (5), the j-th column of /.;"(s} , ,tends to the null vector as 
• J 

lsi ~ 00, then it has a Cauchy representation 

[} . (s) 
• J 100 p(s')n . (s' Ids' 

_ } ___ .:.... )L-__ 

sl s' - s 

(2.29) 

OWing to the lack of'the usual unit matrix term on the right-hand 

side of (2.29), the corresponding integral equation for 11 .(s) is . ) 
homogeneous: 

n ,(s) 
1 jOOB(S: - B(s') P(s,)Yl.(s')ds'. (2.30) 

.J 11 
-, Sl .) 

sl 

Thus I'l ,(s) 0 and r:r . (s) 0, contrary to the fact that J)(s) 
• J • J 



19 

is non-singular. Thederivation.of (2.30), carried out as before 

by showing that A(s) 0, fails if T(s·) has a bound state pole. 

We defer the discussion of bound states. 

Since we have'ruled out the possibility that j)- . (s) 
• J 

vanishes at infinity, we may conclude that the matrix N(S) for any 

T(S) obeying (2.21 satisfies (2.27). Furthermore, the properties (2.2) 

and (2.5) guarantee that N(s) = T(s)D(s) lies in the Banach space 

used in the Fredholm theory of Appendix B. Thus, for a given T(S), 

the matrix N(s) = T(s)D(s) coincides with the unique solution of 

the integral equation provided by F,redholm theory. 

When B(s) rather 'than' T(s) is given, there is no ~ priori 

certairitythat a 'corresponding. satisfactory T(s)· exists. By the 

preceedirig remarks we do know that if such a T(s) exists, it must 

be obtairiable'in the form 
-1 

N(s)O(s) , N(S) 

solution'of (2.27) '. for some choice of the 'parameters 

is a Fredholm 

C. 
~ 

and R. 
~ 

with an arbitrary choice of the 0ii O(s) is given in terms 

of N(s) by(2.19). We now show that the Fredholm solution N(s) 

of (2.27) gives a T(S) satisfying (2.2)~ provided that detD(s)~ 0 

in the cut plane and that, when there are COO poles, another minor 

condition holds [condition (2.34) belOW]. This assertion holds for 

any choice of the parameters consistent with restrictions alreadY laid 

down. Those restrictions, we recall, are that all parameters be real, 

det C. = 0, 
~ 

and that the Ri be positive-

definite, symmetric matrices. The positive-definite character of 

R. follows from its definition and (2.3), since 
~ 

T(S+) p(S)T(s_) = T(S+)p (S)T(S+) t, where t denotes Hermitian 

adjoint. The matrices C. and ·R. entail only three real parameters 
~ ~ 

each, since C. 
~ 

is singular and 
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R. 
~ 

is symmetric. 

If N(s) is a solution of (2.27) and O(s) is given by 

(2.19), we may write 
. ~l ' 

T(s) = N(s)D(s) ,the proposed solution of 

our problem, in the form 

+!. 
1T 

00 

J -1 o (s). 

(2.31) 

This expression is derived by recognizing a term B(s)D(s) on the 

right-hand side of (2.27). Since det O(s) is non-vanishing, it 

is clear .that T(s) has analyticity in accord with conditions (2.2), 

provided that it has no pole at s = 0 .. 
~ 

To demonstrate absence of a 

pole we write O-l(s) cof O(s)/det O(s) and show by calculation using 

det C
i 

=0 that 

C. cof O(s) = 0(1), 
~ 

a. 
det O(s) - ~ + 0(1), 

s - 0i 
s + 0. , 

~ 

a. 
~ 

~ (CillCj22 + Ci22 Cjll- Ci12 Cj21 - Cj12 Ci2l ) 

j;o!i 

where I .. (s) 
~J 

denotes the integral that appears in Dij(S). 

formula (2.31) contains no pole provided that 

(2.32) 

(2:33) 

Thus, 

(2.34) 

'.' 
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Condition (2.34) is the extra requirement for existence of a solution 

in the presence of CDD poles., mentioned above. 

Having proved analyticity, we have yet to show that (2.31) 

is properly unitary and symmetric. To check unitarity, we first cal-

culate L'.N{s) = t.{T(s)D{s» from (2.31): 

till{s) B{S+)L'.D{S) + L'.B{S)D{S_) + B(s)P{s)N(s) 

B(s)p(s)N(s) + L'.LT(S)D(S) + B(s)P(s)N(s) 

(2.35) 

The unitarity condition (2.2v)is now verified as follows: 

f -1 
I
N(S )D(s) D(s) + + -

(2.36) 

As before, the pre factors pes) and L'.LT(s) allowed us, on occasion, 

to replace s+ by s. This calculation reveals a situation not 

present in the case with non-overlapping cuts. Namely, T(s) 

satisfies unitarity only if N(s) satisfies the integral equation 

(2.27) . In the non-overlapping case -1 
N(s)D(s) is unitary, but 

in general not symmetric, for an arbitrary real matrix N(s) such that 
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the integral in D(S~ is well-defined. 

Symmetry of T(s) in (2.31) is proved by the method of 

; 

Bjorkerl and Nauenberg (10:. We examine the function 

~(s) 
T r T ~ 

D (5) tT(s) - T (5): D(s), (2.37) 

where the superscript T denotes transposition. Because of the 

definition (2.3) and the assumed symmetry (2.3i) of B(s), it is 

clear that ~(s) is analytic in the upper and lower half planes, 

even though we have not assumed that T(s) is analytic in a whole 

cut plane. We shall show that the discontinuity of ~(s) over the 

real axis is zero, and that ~(s) has no pole of 5 = 0 .. 
l.. 

Since 

~(s) vanishes at infinity, it must then be identically zero. The 

symmetry of T will follow, since we have assumed that D(s1 is 

non-singular. For s ~ sl' L'.~(s) is obviously zero, since 

L'>D(s) = 0 and B(s) = BT(S): 

M(s) DT(S)L'.(T(S) TT(S»D(S) 

o , 

For s > sl we apply (2.35) and find 

M(s) 
C T T 1 

~ID (s)N(s) - N (s)D(s); 
l 

DT (s+)till(s) + L'>DT(S) N{S ) - NT (s)L'.D(s) - M? (s)D(s ) 

(2.38) 

DT(S)~LT(S)D(S) - NT(S)P(S)N(S) + NT(S)P(S)N{S) - DT(SlL'.L~D(S) 

o. (2.39) 
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The COO poles in the factors oT (s) and O(s) 'of (2. 37)can'cel. 

That is seen by introducing (2.31) and invoking the synunetryof R. ; 
~ 

the sum of the pole terms is 

O. (2.40) 

i 

To show that T(s) of (2.31) sat·isfies the bounds. (2.2vi), we refer 

to the Fredholm theory of Appendix B which shows that the solution 

N(S) of the integIalI.equation obeys bounds the same as those of T(s). 

If I(s). denotes the integral appearing in O(s), then Lemma 2 of 

Appendix A shows that also obeys bounds like (2.2vi). It 

follows that IT(S+)I ~K(JLns)-a. To verify the second inequalitYi 

of (.2.2vi) we write, with 5 ~ 5', 

N(S')O(s~)-l 

[N(S) - N(S')] O(s,..>-l + N(S')O(s+)-l [O(s,+) - O(s+)] O(S~)-l. 

'(2.41) 

When there are no COO poles it is obvious that the required bound is 

satisfied for each of the terms on the right side. With poles, the 

only additional task is to demonstrate local Ho~der continuity near 

the poles. That is easily done with the help of (2.32) and 

assumption (2.34). 

We have finished the proof that T(s) constructed from a 

solution of the integral equation (2.27) satisfies all of the 

conditions(2.2), provided only that det O(s) ~ 0 in the cut plane 
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The q~est{on arises of how to verify in practice the condition 

det Des) ~ O. In the following section we describe a simple and 

practical method of verifying the condition, which involves 

computation in the physical region only. Fortunately, it is not 

necessary to search the complex plane for zeros of detO(s). 

Suppose that we solve (2.27) with an arbitrary choice of the 

real, synunetric, .positi ve-defini te matrices R
i

; let us denote these 

input parameters as 
in 

R .• 
~ 

denotes the amplitude 

constructed from (2.31) and the solution of (2.27), will it 

necessarily happen that 

In general the answer is no, because it is always possible to. 

change without changing Since C. 
~ 

is singular, it has 

a real left eigenvector v. 
~ 

v~C. 
~ ~ 

with eigenvalue zero: 

O. (2.42) 

If h R~n b dd' we c ange ~ y a ~ng to it the pOSitive-definite synunetric 

dyadic AV.V. T
, A > 0 

~ ~ , there is no resulting change in 

~ t 
since Ri enters the equations for N(s) and TOU (s) only in the 

product 

where 
in 

II = II (R
i 

) 

Furthermore', we may argue that in general 

R
in 

+ llv.v.
T 

i ~ ~ 
(2.43) 

is a real scalar function of If we multiply 

(2.31) on the right by O(s), and equate residues of the poles on 

either side of the equation, we find that 

.' '. 
,~ 

i. " 
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C. 
~ 

o. (2.44) 

Both columns of C
i 

are proportional to the same vector ui ' and 

being real and symmetric, has the representation 

out 
R. 

2 
\' 
L 
j=l 

A.w.w: (2.45) 
~ J J J 

By (2.42) and the orthogonality of the w. 
J 

we see that either 

w:u. = 0 
) ~ 

or A. = 0 
) 

for each j, and that at most one of the 

is non-zero. If AI' say, is non-zero, then WI has the same 

direction as Vi (being orthogonal to ui ), and (2.43) follows. 

A. 
J 

Since R~ut is a non-linear function of 
~ 

in R. (in the domain where it 
~ 

is not a constant function) the function 
in 

).l(R. ) 
~ 

is not a simple one. 

How many arbitrary parameters are associated with each 

COD pole? To answer this question, we first note that the pole 

positions G. 
~ 

are not to be counted as free parameters. Suppose 

that we have constructed an amplitude T(s) from (2.27) with input 

parameters Gi , C
i

' Ri • Recalling the derivation o~ (2.27), we see 

that the same T(s) has a representation 
A A -1 

T(s) = N(s)D(s) , 

A 

D(s) has new pole positions G. 
~ 

and new residues and 

where 

N(s) 

satisfies (2.27) with (G., C., R.) + (~., C., R.). Thus, a change in 
~ ~ ~ ~ ~ ~ 

pole positions Gi may always be compensated by a change in C. 
~ 

and 

R. 
~ 

so as to yield the same amplitute T(S) . The essential parameters 

are three in C
i 

and three in R
i

, but it must be remembered that' 

there is a subspace in the space of Ri parameters on which T(s) 

constant; i.e., we may add any term of the form It > 0, 

to Ri without changing T(s). 

is 
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III; BOUND STATES, LEVINSON'S THEOREM, AND A 

TEST FOR THE PRESENCE OF GHOST POLES. 

Bound staws seem not to occur in meson systems, but there is 

nevertheless a good technical reason to discuss them. The many-

channel version of Levinson's theorem states that 

1 
2i tn det S(OO) - ~ + n , 

c 
(3.1) 

where is the number of bound state poles, n 
c 

the number of COD 

poles, and 5 the scattering matrix 

S(s) (3.2) 

The quantity tn det S(oo) is defined by considering tn det S(s) 

as a continuous function of sJ witn tn det S(sl) = 0, and taking 

the increment between s ,: ~ and Our interest in bound 

states and the Levinson relation stems from the circumstance that 

"ghost" poles (spurious poles of the T matrix lacking a physical 

interpretation) are counted in Levinson's relation just as though 

theY'were bound state poles. 

replaced by 

1 
2i tn det S (00) 

In a system with ghosts (3.1) is 

- ~ - n 
g 

+ n , 
c 

(3.3) 

where ng is the number of ghost poles. 

method based on a specific model of 

In a calculation with the 

B(s), the number 
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R.n det S ("") is computed easily in conj"unction with solution of the 

integral equation, nc is an input parameter, 'and nb = 0 is 

usually demanded by the physics of the situation. Thus, we can 

determine' the number of ghosts from (3.3), rather than by searching' the 

complex plane for zeros of det D(s). Should b'ound states be allowed 

in the problem, their location and number are easily determined by 

looking for zeros of det D(s) on a small interval of the real axis. 

Levinson's relation is true for any amplitude T(s) 

satisfying conditions (2.2), provided that the homogeneous form of 

Eq. (2.27) has no non-trivial solution (in the space considered in 

Appendix B). Of course, the latter condition is a restriction on 

B(s) alone, and it seems invariably to be met in realistic models. 

It is understood that the poles of T(s), ~ in number, are all 

simple, poles with factorized residues (i.e., each residue matrix 

is of rank 1). A proof of Levinson's relation, valid under the 

conditions stated here, is given in section 5 of Ref. [11]. The 

proof ,as written applies when the poles of T(s) are ~t real points 

s < sl. One may also have ghost poles at complex points in conjugate 

pairs '(6, s*). An extension of the argument of Ref. [11] is required in 

that case. 

IV. SINGLE-CHANNEL PROBLEM WITH OVERLAPPING 

CUTS AND ABSORPTION AT THRESHOLD 

In some phenomenological studies it may be more practical to 

treat only one channel explicitly, accounting for coupled channels 

by empirical absorption parameters. A simple extension of the single­

channel N/D method with absorption [7] allows one to handle proces~s 

such as lG( + KK and NN + NN which have absorption at threshold 
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and overlapping cuts. The object is to construct unitary sing:le-, 

channel amplitudes of the form 

T(s) 

1 
+ 

Tf [ 
I 

T(S~)q(S')T(S'_)ds' 

s' - s 

F(s')ds' 
s' - s 

where the left cut part BL(S) and the absorption function 

(4.1) 

F(s) are given. We suppose that BL(S) has the properties of the 

function B22 (s) of Section 2: (so in (4.1) is to be identified 

with in Section 2). The inelastic threshold is assumed to 

be lower than the physical threshold so' and may be either to 

the left or to the righ~' of the end of the left cut at sL. With 

the channel considered labeled as the zeroth one, F(s) is ,the 

inelastic part of the unitarity sum, 

F(s) L Ton(S+) Pn(S)Tno(S_), 

n;o!O 

(4.2) 

where the functions Pn(s) contain step functions to account for 

the closing of channels. The sum over n may actually include 

integrals if states with more than two particles are involved. We 

have F (s) ~ 0 even for s < so: since the T matrix is real-analyt:ic 

and symmetric T (s 
no 

= T (s)* even below the threshold,of 
, on + 

channel O. For s ~ so' F(s) is expressed in terms of the usual 

elasticity function n(s): 

.i 
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F(s) 

T(s) - ( ) 2io (s) _ 1 
-T) s e 

s ~ S , 
o 

/2iq(s), 

(4.3) 

(4.4) 

We suppose that F(s) satisfies bounds like those on B(s) in 

(2.4iv). It then follows from (4.3) that !l - ~ (s) /q(s) 

satisfies such bounds as well, and in particular that ~(s) - 1, 

In the N/O method with absorPtion
7

, the function JJ (s) 

is defined in terms of the real phase shift 8(s) of (4.4) by the 

expression (2.6). In the present extended method we use the same 

~(s), but use a B(s) different from the usual one; namely, 

B(S) B (s) + ! 
L 11 

F(s' )ds' + 1 fOO 
s' - S 21T 

1 - T)(s') ds'. (4.5) 
q(s') (s' - s) 

S 
o 

In other words, we treat the part of the absorption cut between 

and s o just as though it were a left cut contribution. The 

derivation of the integral equation then proceeds in the same way as 

in Ref. 7. In the case without COO poles the equation reads 

T)(s)n(s) 

where n(s) 

ReB (s) + !. 
11 

ReB(s) - ReB(s') q(s')n-(s')ds' 
s - s' (4.6) 

ImD(s+)/q(S). The amplitude is obtained in terms of 

n(s) [WhiCh is not the same as the numerator function N(S)] by the 

formula 

T(s) 

O(s) 

1 
B(s) + lID(s) 
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100 ReB(s')q(s')n(s')ds' 
s· - 5 

S 
o 

1 - ! 
11 [ q ( s ' ) n ( s ' ) ds ' 

5' - 5 

s 
o 

(4.7) 

(4.8) 

Each of the last two terms in (4.5), contributing to ReB(s), has 

a logarithmic singularity at s = s . o 
The singularities of the two 

terms cancel, however, because F(s) is Ho~der-continuous and 

F(s) 
_ 1 - T) (s) 

2q(s) 
s -+- S +. 

o 
(4.9) 

As a result, ReB(s) is HO~der-continousfor s ~ so' and the integral 

equation (4.6) is of Fledholm type on the space of Appendix B, proviaed 

that ~(s) has no zero. A solution of the integral equation gives 

an amplitude (4.7) that is properly analytic and satisfies unitarity 

in the form 

T(s )9(s - s )q(s)T(s ) + F(s) +AT(s), 
+ 0 - L 

(4.10) 

provided that O(s) has no zero in the cut plane. As in Section III, 

a practkaltest for the presence of ghost zeros of O(s) may be based 

on Levinson's relation, which in the present case holds in the form 

(4.11) 
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V. A SPECIAL CASE SOLVED BY GONZALEZ-ARROYO 

We return to the two-channel problem of Section II and discuss 

a special case treated by Gonzalez-Arroyo [4,3]. namely, the case 

in which the left-cut pa:ts of Tll and T12 vanish, and non-

relativistic kinematics hold: 

P. (s) 
~ 

0, 

Because P. (s) grows at infinity, we must assume that 
~ 

vanishes more rapidly than does B(S) 

(2.4iv) we take 

!. < ct <1, 0 < '].1< 1/2. 
2 

of Section II. 

(5.1) 

(5.2) 

Instead of 

(5.3) 

T(s) 

For a given B(s) satisfying (5.1), (5.3) we seek the general 

satisfying (2.2i) - (2.2vi) and bounds such as (5.3) instead of 

there is a .(}(s) , satisfying (2.5i) -(2.2vii). For such a T(s) 

(2.5v) and a corresponding D(s) as defined in (2.16), having the 

repre'sentation(2.19). Consequently, the integruequation (2.27) 

holds. The first row of the matrix equation is trivial, giving 
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Nij(S) explicitly as a function, of CDD parameters: 

N
1

. (s) 
J 

n 
c 

L 
i=l 

(R.C.) l' 
---2:...2:.:.._l. 

s - cr. 
~ 

j 1, 2 • 

From the second row of the integral equation we have 

n 
c 

L 
i=l 

+~r 
2 

and n 
c 

1 
B22 (s) + L /(Ri + BIS)] Ci } 22 

i";l 
s - cr . 

~ 

The integral in the D matrix elements (2.16) corresponding to 
• 

(5.4) may be evaluated to obtain 

n 
c 

(5.4) 

(5.6) 

L !<C i ; Ij + (R C) [(S - a~)~ + iql(S)] I 1 
i i Ij 1 • 

i=l 
s - cr. 

~ 

(5.7) 

We suppose as in Section II that the homogeneous version of the 

matrix integral equation for N(s), equivalent in the present case 

to the homogen'eous version of the scalar equation (5.5), has no 
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non-trivial solution. Then if there are no CDD poles, the integral 

equation (5.5) for N21 (s) is homogeneous and has only the trivial 

solution N
21

(s) = o. Without CDD poles we obtain only the trivial 

solution in which channel 2 is completely decoupled, and 

Tll(S) = T
12

(s) = T21 (s) = O. Thus, the solution of Gonzalez-Arroyo 

necessarily entails CDD poles as defined in the two-channel 

formali.5m. Since Gomalez-Arroyo reduced his problem to a one-

channel case by a special device, this fact was not previously 

apparent. 

To reduce the problem to a one-channel case through 

our formalism, we circumvent solution of Eq. (5.5), and require 

solution of (5.6) alone. Accordingly, we suppose that the solution 

of (5.5), ina Banach space appropriate to conditions (5.3), is given; 

see the remark of the end of Appendix B. The solution N22 (s) obeys 

conditions like (5.3); of course, the same is true of the solution 

N
21

(S) of (5.5). Because the inhomogeneous term in (5.5) is 

-1 o (s ), it is possible to show that 
-1 

N21 (s) = 0 (s ) and 

-~ 
D21 (s+) = O(s ). The proof is done by showing that the integral 

operator "improves" the asymptotic behavior of N21 (s) . That is, if 

N21 (s) = O(s-a) then the integral is 0(s-2a+~). By iteration of 

this argument one eventually gets 
-1 

N21 (s) = O(s ). 

We exploit the symmetry of the T matrix, writing 

T(s) T(S)/ det D(s) and 

(5.8) 
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From (5.4) and (5.7) we may compute T12 (s); it is just a rational 

function, since the terms from the imaginary parts "of D12 (s) 
( 

and Dll (s) cancel. with that observation and a knowledge of 

N
22

(s) and D
22

(s) we can use (5.8) to find the general form of 

A 

N
21

(S) and D21 (s). The. rational function T12 (s} is 

\ 
L L [ ~, 

(C
J
.) 12 + (sl - a.) (R .C

J
. \2Ji 1 

J J s-o. 
J 

where 

and <P (s) 

+ 

i 

<P(s) 

pes) 

pes) 

n 
c 

11 
i=l 

j 

is a polynomial of degree not greater than n -l. 
c 

The 

(5.9) 

(5.10) 

second order poles, corresponding to i j in the sums of (5.9), 

cancel·because of the condition det C. 
1. 

O. 

Equation (5.8) may be construed as a Riemann-Hilbert 

boundary value problem for determination of D21 (s) • Since 

N
2j

(S) = - ImD
2j

(S)/q2(s), the real part of (5.8) reads 
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(5.11) 

.: < 

By the rearrangement displayed in the second ,line of (5.11), the 

Riemann-Hilbert 'problem (17J is transformed to an'inhOmOgeneous Hilbert 

problem [17) : 

(5.12) 

To solve the Hilbert problem we invoke the ubiquitous phase integral, 

des) -if [ 
, 2 

exp 

-2il5(s) 
e 

e(s')ds' J 
s'(s'-s) (5.13) 

(5.14) 

Notice that l5(s) is the phas~ shift for the amplitude N22 (s)/022(s), 

which obeys elastic unitarity, and is not to be confused with the 

channel 2 scattering amplitude T22 (S)." It is easy" to see that 

022(s)/d(S), being real for s> s2' is a rational function with 

poles only at s = 0i; we may write 

where '¥(s) 

'¥(s) des) 
pes) , 

is a polynomial of degree n 
z 

(5.15) 

equal to the number of 

zeros of 022(s). Nothing prevents 022(s) from having zeros, in 
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general, s~nc;:e pol!,!s of, N22 (s)/022;Cs)' are'not poles of the full T 

matrix., We have l5 (CO) = TT (n~ n,) 
'" c z' and 

s+ + co. Now substitute des )/d(s ) 
- + for 

<P (s) 
'I' (5) , (5.16) 

Thus we have the discontinuity of,' 021(s)/d(s) over the cut [s2' (0), 

and it is real as, required. In addition, we know that 021(s) is 

analytic in the plane with cut [s2' co), except for simple poles <it 

des) , -

and that it vanishes at infinity: 
n -n c z s at infinity, 021(S)/d(s), obeys an unsubtracted 

dispersion relation if nc ~ nz • The right hand side of (5.16) is 

since degree (<Pj~ n - 1. For n > ' h th' c c '" nz we ave e 

representation 

r 1 
= des) l- iT l

' co 

s2 

<P(s') ds' -------+ '¥(s') S' - s 

(5.17) 

Note that des) may be redefined through ml,11tiplication, by a constant, 

but that (5.17) is invariant to such a change (d + Ad, 'I' + A-1'¥). 

For n - n 
z c we must introduce n 

s 

replace (5.17) by the formula 

subtractions, and 

," 

,t, 
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n s 
D2l (ti ) 

D2l (s) Q(s}d(s} 
\" 1 

d(t.} Q' (t.}(s - t. ) 
i=l 

~ ~ ~ 

00 

n 
q2(s' } 

c 
(Ci }2l 1 4l (s' ) ds' 1 J ) 2· 'I' (s') Q(s') (s' "+ 

Q (0 i) d (0 i) s--O.' 1T 
Id(s' ) I 

- s) ';"'_., 
~ 

2 + i=l 

(5.lS) 

where Q(s} is a polynomial with distinct roots ti < s2' none of 

the t. 
~ 

coinciding with a 0 .. The function 
J 

may be computed from (5.S), (5.9) or by taking the discontinuity of 

(5.l7) or (5.lS). By either method we find 

; D2l (s) " 4l (s) 
N22 (s) LD

22
(S).: + P(S)D

22
(s) 

The representation (5.17) of D2l (s) is determined by 

(Ci )2l and the functions 4l(s), D
22

(s). The latter are in turn 

(5.19) 

determined by the matrices C. 
~ 

and through (5.9), (5.6), and 

(2.16). Thus, we have determined in "terms of the input 

parameters C
i

, Ri without having solved the integral equation 

(5.5), provided that n - n ~ o. c z 
On the other hand, we can assert 

that N2l (s) as determined by (5.19) and (5.17) in fact solves the 

integral equation, since the matrix O(s) constructed from a solution 

of (2.27) satisfies all the requirements that led to the unique 

function (5.17). 

If n - n < 0 
C Z 

(which implies that n ~ 2), then 
z 

D21 (z) is not determined uniquely by the above" considerations, 

because of the unknown subtraction constants D;l (ti)/d(t
i

) in (5.1S). 

3S 

Consequently, we cannot be sure that the corresponding N
21

(s} 

satisfies (5.5). Nevertheless, we can demonstrate that T(s} 

constructed from (5.lS), (5.19) and the other previously determined 

elements of D(s} and N'(s) actually is a solution of our problem 

for arbitrary subtraction constants (provided, as usual, that 

det D(s) 'lOin the cut plane). It then follows that N21 (s) 

constructed from (5.19), (5.lS) with arbitrary subtraction constants 

satisfies (5.5), but with a value of the parameter which may 

only be computed ~ posteriori as I iT (0 .) - B (0 . ): C ~ I 21 from the 
\. '. ~ 1. _, ..&,. 

T(s) constructed. To show that T(s) (constructed with (5.1S), (5.19) 

and arbitrary subtraction constants) is a solution of our problem, we 

have only to verify unitarity, since proper analyticity is evident, 

and symmetry of T(s) was ensured through the use of (5.S). Unitarity 

follows from the calculation (2.36) if (2.35) holds. The first row of 

(2.35) is trivial because of (5.4), and we have t:.N22 (S) = (t:.LTtS>:D(S)~2= 

t:.L T221$)D
22

f$,) as is usual for a single-channel N/D problem. To finish 

the proof of (2.35) one has only to show that t:.N21 (s) = t:.LT22 (S)D
21 

(s), 

and that is easily done by (5.19) and (5.1S). For s> s2' N2l (s) = 0 

because is real, being the discontinuity of the product of 

two real-analytic functions displayed in (5.1S). For s < s2' (5.19) 

gives 

(5.20) 

To make contact with the solution of Gonzalez-Arroyo, we 
" i 

look at the K matrix '19!, 
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ic(s) N(s) [ReD(~)] -1, (5.21) 

The solution in question is such that the element K
22

(s) is equal 

to the K matrix for the "decoupled" channel 2 problem, namely 

(N22/ReD22)ReDll - (N2/ReD22)ReD12 

ReD
ll 

- (ReD
Z1

/ReD
22

) ReD
12 

(5.22) 

Condition (5.22) can be met in only two ways: either ReD1Z(S) = 0 

or N21 (S)ReD
Z2

(S) -N
22

(s)ReD
Z1

(s) = O. The latter equation implies 

that. ~2(s) = K21 (5) = 0, however, from which it follows that 

i.e., that the solution is trivial. We T
12

(S) = T21 (s) = 0 

must take ReD
12

(s) 0, and by (5.7) we see that the Gonz&lez-Arroyo 

solu~ion corresponds to a particular choice of CDO parameters such that 

o. (5.23) 

with ReD12 (s) 0 one has 

K
12

(s) K21 (5) 

N
12

(s) 

ReD
22 

(5.) 
(5.24) 

and 

1 
lNll (5) - N

12
(s) 

ReD21 (s) 
Kll(S) ReD

ll 
(5) Re0

22 
(5) 

(5.25) 
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According to (5.4) and (5.15), we may write (5.24) in the form 

'l'12(s) 1 
K12 (5) = ~ Re des) , (5.26) 

where 'l'12(s) = N12 (s)P(s) is a polynomial of degree not greater that 

n - 1. Gonzalez-Arroyo has 
c 

~2(S) 

_ x(o) (5) 

- Re·d(s)' (S.27) 

n -l-n 
where X(o) (s) is a rational function whiCh is O(s c z) at 

infinity and has poles at the zeros of D
22

(s) (i.e., of '1'(5», 

in agreement with our function 'l'12 (5)/'1' (5) of (S.26). The argument 

(0) 
of Ref. 4 seems to allow poles of X (s) at other points as well, 

but our generally valid expression (5.26) shows that additional 

poles are not possible: we have X(o) (s) = 'l'12(s)/'1'(s) with poles only 

at the zeros of 022(s). 

Next let us evaluate (S.2S) ~sing expression (S.17). 

the help of (S.15) and (S.14) we get 

~l (5) 

n c 

L 
i=l 

4>(5') ds' 
'l'(s')~ 

With 



,. 
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The corre sponding formula in Ref. 4 is 

h (0) (s) 

+ 
Q2(s)tano(s) 

2 
Id(s+l I 

2 

~12(S') 
'II (s' ) 

2 

ds' 
s' - s 

(5.29) 

where h (0) (s) is a rational function which has poles at the zeros 

of '¥(s) and is O(s-l) at infinity. In order that the terms 

proportional to tano(s) in (5.28) and (5.29) agree, it is necessary 

that ~(s) = '¥12(s) arid ReD
ll 

(s) = 1. According to (5.9) and the 

condition ReD
12

(s) = 0 already imposed, ~(s) = '¥12(s) follows from 

ReD12 (s) = 1. By (5.7) the latter is true if and only if 

O. (5.30) 

with ~(s) = '¥12(s) we still have to resolve the discrepancy 

between the integrals that appear in (5.28) and (5.29). Consider 

the function 

f(s) 
'I' (t)' 
12 dt 
~ t-s 

.(5.31) 

-h +n -~ 
The bracketed expression is OCt 

c z 
) at infinity and we are 

assuming that n~n; hence the integral is 
-~ 

The factor O(s ). 
c z 

n -n -1 
in front of the integral is O(s 

c z 
) . We write a dispersion may 

relation for f(s) with n subtractions where 

Namely, 

n-l 

f(s) 

m=O 

n -

1
0, 

n. -n - 1 c;: Z I 

n 
c 
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n n +.1 I 
z z 

(5.32) 

n - n > 1. 
c z 

(5.33) 

where the sum over i is due to the poles of l/'¥(s) at points t
i

, 

assumed distinct. The bracketed factor in the integrand is 0(t-3/ 2 ), 

so that we can remove alln subtractions in the integral by 

itenttion of the identity 

thus 

n 
s 

(s - t)t
n 

Ref(s) 
'II 12 (t) 

--w(t) 
dt 

t - s 

dt 
~+R(S), 

(5.34) 

(5.35) 
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where n 
n-l 

z 

L f(m) (o)sm + n L a. 
R{s) ~ 

s 
t. 

i=l 
s -

m=O 
~ 

n-l L"" \ m 1 
+ L s iT 

lIFO . s 
2 

2 

(
l!'12 (t») 

l!' (t) (S.3G) 

We see that the integrals in (S.2S) and (5.29) differ by a rational 

function which has poles at the ti and which in general is O{sn-l) 

at infinity. 

Finally, in order that (5.28) and{S.29) be compatible the 

rational function 

n 
c 

L 
i=l 

1 
s - cr. 

~ 

(S.37) 

must have the properties required of h{o) (s). If 

n + 1, 
z 

then R(s) = O(s-l) and all terms in (5.37) are 

at infinity as required. Otherwise, the second and third terms 

of (5.37) must cancel appropriately at infinity. Gonzalez-Arroyo 

tacitly assumed, in fact, that n z O. With that assumption we 

get a solution of his form when n 
c 

1 and the CDD residues 

satisfy conditions (S.23) and (S.30). Even though the solution of 

Gonzalez-Arroyo contains arbitrary rational functions, it is far 

from being the' general solution of the problem posed. 

VI. REMARK ON A UNITARY PARAMETRIZATION 

SUGGESTED BY YNDURAIN 

We have shown how to construct properly analytic amplitudes 

satisfying the unitarity equation (2.2v), but the construction has the 

44 

disaWantage of requiring the solution of an integral equation. For 

phenomenology it would be useful to have a parametrization of T{s), 

analogouS! to the usual K matr~x parametriza:tion, which would 

automatically satisfy (2.2v). 
. c 1 

Yududlin llj has proposed a parametri-

zation which has .the required property in the region sl.$ s ~ s2 • 

Define T{s) such that T .. (s) = T .. (s) 
~J ~J 

except for i = j = 2, 

and 

s . 

!.LLp{S')dS' 
T22 (s) - 'If s· - s (G.l) 

o 

There is nothing special about the lower limit 0 in the integral 

any lower limit less than will do. Define a matrix M(s), 

which is related to T{s) in the way that M{s) = K-l{s) is related 

to T{s): 

M(s) - ip(s). (G.2) 

Now we may show that the unitarity condition (2.2v) is equivalent 

to the reality condition M(s) = M{s)* in the region sl ~ s ~ s2. 

Let us consider the region 

that region, and write 

T{s) 

A 

T{s) 

suppose that M{s) 

T(s) + T(S), 

o 1 
!.JSL P(s')ds' j 
'If s· - S 

o 

is real in 
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Since reality of M(s) implies that 

we have 

Also, 

where 

U .. 
1) 

of (s )p (S)T(s ) 
+ -

llT(s) T(s )p (s)T(s ) +;llLT(s). 
+ -

T(s )p(s)T(S ) + U(s), 
+ -

A 

T_ilPlT+l j + T-i2P2 T+2j 

A A A A 

+ T_ilPlT+lj + T_i2P2T+2j 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

Since U(s) = 0 for s <" ..:: s2' Eq. (6.5) is indeed the unitarity 

equation for s1'<:: s <: s2' 

For s > s2' however, unitarity is not equivalent to M(s) 

being real, since U
22

(S) t 0 in that region. Indeed, unitarity for 

is equivalent to M(s) = K-l(s) being real, where 

r 1 

l 

-1 
T(s) 
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M(s) + ipes). 

The relation between M and M is as follows: 

2 
+(M -

A 

M12 iP2)T22 Mll - iP l ; M12T22 22 

M12 
M22 -

(6.8) 

J (6.9) 

Clearly M(s) does not change continuously into M(s) at s = s2; 

rather. at we have 

M 
(0.10) 

The matrices M(s) and M(s) are two different analytic 

functions which one would try to represent in terms of a few empirical 

parameters, so as to meet the following conditions: 

(i) M(s) 

(ii) M(s) M(s)*, s '>s2 

(iii) M(s) and M(s) are related by Eq. (6.9), s ~sl' 

(iv) The analyticity properties of M(s) and M(s) should 

reflect to a reasonable extent the correct analyticity 

properties of T(s), especially the nearby singularities 

corresponding to the principal particle exchanges. 
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It seems rather difficult to satisfy all of these requirements 

simultaneously; in particular it seems hard to satisfy (iii) in such 

a way that (i) and (ii) would also hold. 

We Would expect Yndurain~ proposal to be rather 

limited in usefulness. The only ~lternative that we can think of, 

short of sdlving the integral equation (2.27), is to make a pole 

approximation for B(s). As· is well known, the kernel of the equation 

is then separable, and solution of the equation is reduced to 

quadratures and solution of algebraic equations. Unfortunately, for 

a realistic representation of B(s) one usually needs so many poles 

that the resulting formulas are not v,ery illuminating· 
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APPENDIX A 

ESTIMATES OF PRINCIPAL VALUE INTEGRALS . 

We are concerned with the asymptotic behavior and continuity 

properties of principal value integrals of. the fo~ 

g(s) P 

00 

J f(t)dt 
t - s 

s 
o 

,(A".l) 

In the following a, 9, and are fixed positive constants, and K is 

"some positive constant- which is understood to have different values in 

different inequalities. 

Lemma 1: Suppose that f(t) obeys the conditions 

(a) If(t) I ~ ~[~]9 at· 
t 

t2 ~ t
l

, a + 6 < 1, 9 > 6 

Then the integral g(s) of (A.l) is such that 

(a) Ig(s) I ~~. '" a' (b) Ig(sl) - g(s2)1 ~ 
s 

K 

a 
sl 

Lemma 2: Suppose that f(t) obeys the conditions 

9 

If(t) 1< K 
(Jl.nt) a 

[

t - s 1 
--t-~j ; 

K 
(b) 

9 > o. 

(A.2) 

6 
\Sl -

sl 
S2\ ' s2 ~ sl· 

(A.3) 

(A.4) 
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Then the integral g (5) of (A.l) is such that 

(a) \ g(s) \ .~ 
K 

(R-ns)a-l 

° (b) \g(Sl) - g(s2) \ ~ K rl -
5

2 1 
~ 51 (A.S) a-=T 52 

(R-ns
l

) 51 

(A.S) 

We give a proof of Lemma 2: a proof of Lenuna 1 follows the 

same lines , but is somewhat easier. To verify (A.Sa) we write 

jJs 00 

9 p r 
) 
4 

+ I jJ > 1, (A.6) 

jJs 

and majorize g2 inunediately: 

00 00 . 

Ig21 ~ Kf dt 
~ KJ 

dt K 
~ ---a::l R-nat(t - 5) tR-nat R-n 5 jJs lls 

(A.7) 

For gl we use the identity 

jJs 

g1(s) = J f (t) - f(s) dt + f(s)R-n (jJ - 1)5'; 
t - 5 

,. 
5 - So -

(A.S) 

s 
a 

By introducing (A.4b) and (A.4a) in the first and second terms of 

(A.B), respectively, we see that gl Is) is bounded at smalls, 

say 5 < 2so ' and consequently (A. Sa) holds at smalls. For 

5> 2so ' the logarithmic term in (A.B) clearly satisfies (A.Sa). 

The other term is decomposed and bounded as follows, with 1/2 < A < 1: 

(

A .. ' 

5 o· 

+ 

~ K 

~ 

As 

so 

f(t) - f(S)ldt 
t - 5 

1;15 
I 

1 ~ _ 0+ K J 
tOR-nat lAS '- 511 . As 

5 
0 

As ( K K 

dt 
o::-:a-5 R-n 5 

du dt + 
~o I o::-a --a- j 

lu - 111 5 .J t R-n t R-n 5 
5 A 

0 

1 

It _51 1 - e 

K 

o·~ ;,-a-
n 5 

(A.9) 

Thus (A.Sa) is proved, and we . see that the dominant part of g (5) 

at large 5 is .from the tail of the integral, g2(s). 

To establish (A.Sb) we split the integral as follows: 

(252. ,.00 

9 p ! + gl + g2' (A.IO) 

~ -'2s
2 0 

The bound of is easily obtained: 

00 

00 

(A.ll) 
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Now put s2 = sl U + b), and note that we may restrict attention to 

small b, say b::; 1/8. For b > 1/8 the. required bound is a direct 

consequence of (A.Sa): 

I g(sl) - g(s2) I ~ Ig(Sl)1 + I g(s2)1~ K 
a-I 

R.n sl 

KbO 
1 sl :1 s21 

0 

~ 
K 

a-I a-I (A.12) 
R.n sl R.n sl 

Let" us, extend the domain of f (t) to include the interval s 0/2 ~ t ~ So ' 

putting f(t) = 0 on that interval. The property (A.4b) holds for the 

extended function; for tl < So and t2 ~ so' 

(A.13) 

By (A.8) we have 

f(t) - f(s) ( 2S2 - S) 
t - s dt + f(s)R.n 's -'So/2 = hl (s) + ~), 

(A.14) 
and 
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The logarithmic factor in the first term of (A. 15) is clearly 

bounded by a constant for b ~ 1/8 and sl;::' so. For the second 

term we uSe the mean value theorem, noting that 

(A.16) 

o 
The difference of logarithms in (A.lS) is then less than Kb~ Kb , 

and the required bound of the increment of h2 is obtained from 

(A.lS). To estimate the increment of h2 we break the integral 

into three parts, 

The separate 

not conSider 

'I (1+2b) + 12
'2 

+ ~'-2b) '1 (1+2b, 

terms in the increment of j2 are so small that we need 

Jheir,difference: 

1 

-I j2 (s2) I ~ b2 (sl) I + 

1 

sl(1 + 2b) 

· ,~ .:-,: I (1-2b) 
1 

dt[ It 
1 + 

_ s 10 
1 
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Next we estimate 

i- s(1-2b) 

+ i Jl + 

L s /2 
o 

The part kl is easily disposed of: 

r 1 1 
It::---s-~ 
l 2 1 

b 

(A.19) 

(A.20) 

For the first integral in k2 we need a furtherdecorriposition to 

handle the combination of two poles and a logarithm: 

.5
1 

(1-2b) 
! 

Ik2l1 ~ Kj~ - s21 i 
)5 /2 o 

·1-2b 

Kb 
du 

dt 

t°Jl.nat 

1 
oa 

) 5 0 /2s 
u Jl.n slu lu - 1 -

1 

~+ , ° a 
so/2 t Jl.n t 

1 

1 1 

I r 
1-0 It - s I 

t - 52 1 

1 

bll"i')~1 

-1-2b 
du 

(A.2l) 

l-2b 

du _ ,:: ~ l+bo-l 

1
2-0 " a 

1/2 lu~l ~ Jl.n sl 
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To complete the proof of Lemma 2 we treat the second integral in k
2

: 

(2 (l+b) 
du 

J 
.J 1+2b - I 'I-iS 

u - 1 - bl 

(2 (l+b) 
Kb i 

~- Jl.n
a

s 2 Jl+2b 

du <~ 
I u - 1 - b 12-0 JI. a n sl 

Notice that if two functions 

(A.22) 

satisfy (A.4), 

then the product fl (t)f
2

(t) satisfies (A.4) with the exponent 

a replaced by 2a. Consequently, when we estimate the integral in 

(2.3) using (2.2vi) and the definition (1.2) of pet), we find that 

it obeys conditions like (A.5) with a = 2a , ° =~. Since 2a - 1 > a, 

we therby establish conditions (2.4iv) on B(s). 

APPENDIX B 

FREDHOLl1 THEORY OF THE INTEGRAL EQUATION 

We show that the integral equation (2.27) may be treated 

by Fredhoim theory 20, under conditions (2.4iv) on B(s). We map 

the interval [>1,00) onto (0, 1]. The choice of the mapping 

is not crucial; we take t = sl/s for convenience. ,In a numerical 

calculation of the Fredholm solution it is usually best to choose 

the mapping t(s) so as to make the integrand finite and non-zero 

-at the point corresponding to s = 00. We multiply the equation by (Jl.ns) 0; 

and seek a solution <p(t) =. -(Jl.ns ) aN (s) in a Banach space 

U consisting of real matrix functions <p(t) continuous on the closed 



55 

interval '[0, lJ with nonn 

II <p1I sup 
t,i,j 

(B.l) 

Let us define the operator K by the fonnula 

- B{s') (R,ns}a 
- s' 

pes') pet') ds' • 
(R,ns' )a 

(B.2) 

As we 'shall see presently, K maps U . 
~nto itself if K<P{O) is 

defined to be zero. According to the Ascoli-Arzel~ criterion 1201 
l . 

is compact (completely continuous) if, the sequence {K<Pn{t)} is 

bounded and equicontinuous, where 

sequence of functions in u. 
fep (t)} is any bounded. n 

K 

be a bounded sequence in U II'" II ' ~ < K, and check 

boundedness of IIK¢n ll as fgllows: 
n 

sup 
s 

" J IB .. {S) ?-. (R,ns)a ~J s 

~,J sl 

- Bij{s') 111<1> II 
- s' Pj{S')C:fns~)a ds'. (B.3) 

An analysis like that in (A.6), (A.7), and (A.9) (but not requiring 
; 

subtraction of a logarithm) shows that the integral in (B.3) is 
-2a+l 

O{R,n s), thus 11ll''''n ll ~ K since N > 1. . • ~, ~ Inc~dentally we have 

shown that Kep{t) .. 0, t + o. With the definition Kep{O) = 0 the 

function K¢{t) is continuous on the closed interval K 

maps U into itself. 

The requirement of equicontinuity of the functions ll'''' ( ) 
.~n t 

is that for any £ > 0, 

(B.4) 
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when I tl - t21 < o{£) ,. where Q is independent of n. With 

fn(t
l

, t
2

) defined as the left side of {B.4),·{<P
n
} any bounded 

sequence, and s 1 ~ s 2 ' we have 

'n,t"t,' ~ K~.1~ -''""l I L 
l i,j 

B .. {S';-B .. {S') I d' 
~J ~J' P. (s') , __ s_a 

s2 - s' J (R,ns') 

+ ''''''/ L ~ IV"::-~i:~'" -
ij sl 

I 

B .. (s2)"';B.; (S') 
~J ~J ( ') 

s - s' Pj s 
2 

. ds' 
--- = g+h. 
( RJ'ls' r 

(B.S) 

The right side of (B.S) is independent of n, and we have only to show 
I 

that it vanisheslwith It 1 - t21. The analysis of (A.IO) - (A.22), 

simpler now because we needn't bother with subtraction of logarithmic 
I 

tenns, shows that the second tenn h in (B.S) has the bound 

Also, we 

b't" T 
may bound 

(B.6) 

the two terms in h separately to get 

h(tl , t
2

) K 
(R,nsl ? 

~ 
M (B.7) ~ 

(!/1ls1)cx-l + K 2a-l a-I 

I 

(R,ns
2 

) (R,ns
l

) 

). . 
For any £ > 0, let us divide the interval of t2 into two parts, 

I 
t2 ~ n( £l and t2 > n( £l, where n( £l is chosen to make 

~ 

M 
£/2 , 

(B.8) < 
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with M as in (B. 7). Then if; t2 ~ 11( £) and It 1 - t~ I < 11( £) , 

we have by (B.7) that h(t
l

, t
2

) < E/2. On the other hand if 

t2 > 11( £l , we have by (B.6) that 

It 1 _t2 
~ 

h(t
l

, t
2

) ~ 
K 

1<£/2 (B.9) 
(ins )Ct-l 11(£) 

0 

for It 1 - t2 I less than some 1;;(£) . Hence for 

It 1 - t21 < min [11(£) , 1;;( £) ] <\ (£) we have h(t
l

, t
2

) < £ /2. 

To majorize the first term g in (B.5) we apply the mean value 

theorem to the difference of logarithms and bound the integral as 

usual to obtain 

(B.IO) 

Alternatively, we may bound the two logarithmic terms separately 

and find 

(B.ll) 

The argument used above then shows that g (t
l

, t
2

) < £/2 for 

h - t21 less than some O2 (£). For I tl - t21 < min [01 (£), ~ (£)] 

= o( £l we have f n (tl , t 2) < £, and the proof of equicontinui ty and 

compactness of K is complete. 

Our hypothesis B (s) = 0 ([ins] -Ct) , Ct > 1, is close in 

some sense to being the weakest asymptotic ,condition onB(s) that 

leads to a Fredholm equation 'in a classical Banach space of 

continuous functions. With B(s) - (ins) -1 the operator K is 
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non-compact in a space analogous to U, but may be regularized by 

extraction of a non-compact part in such a way that the problem is 

reduced to a regular Fredholm problem ;-211. Under still weaker 

conditions on B(s) a regularization is possible, but only at the 
,- , 

expense of new arbitrary constants entering the equations ,22j. 

Since Eq. (2.27) entails a compact operator, it may be 

solved numerically by various well-developed methods; see for 
• '1 

instance the review of Atkinson ~~ and the book of Anselone 

Which deals with the rigorous justification of discretization. 

Ct 
The operator of Eq. (5.6); multiplied by s, is compact 

on a Banach space V under conditions (5.2), (5.3) on P(s) and 

B22 (s). Here V consists of real continuous functions 

Ct 
~(t) = s N22 (s) with 

II cp II sup I CP(t) I (B.12) 

The proof of compactness is the same as that above, but with the 

estimates of Lemma 1 of Appendix A replacing those of Lemma 2. 
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