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I. INTRODUCTION

We discuss the unitarity condition for coupled two-body

SOLUTION OF THE UNITARITY EQUATION WITH OVERLAPPING channels in a definite angular momentum state. For simpl@city
' LEFT AND RIGHT CUTS: A TOODL FOR STUDY o in notation we take two channels, but.our mefhods apply as well
OF THE S* AﬁD SIMILAR SYSTEMS.* . ) for any finite number. The square of the energy in the center-

. .~ - of-mass frame is denoted by é,» and s, is the threshold of

Porter W. Johnson -

the i-th channel, s, < 52, As is appropriate in énalytic S-matrix

1
Illinois Institute of Technology: ’
Chicago, Illinois 60616 theory, we study a generalization of ordinary unitarity obtained by
andb . » ahalytic continuation. If the masses of the‘particlés in one channel
+ ' are not too dissimilar to = those in the other, generalized ﬁnitarity
Robert Lee Warnock ) :
) . : has the form
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720 .
-1 )
) . =7 {T(s,) - T(s )] = T(s, )p(s)T(s )
February 28, 1979 . » 2i [ + - Sy IPISITES )y
ABSTRACT s >s, T(s,) = lim T(stie), (1.1)
1 e+ —

‘The partial-wave unitarity condition is complicated

by the presence of overlapping left and right branch cuts where.the 2 X 2 scéttering matrix T(s, is analytic in regions

when the lowest exchanged mass }s small in comparison to above and below the half-line s > sl. The diagonal matrix of

. . . -1 .
the dlrec? channel mass. A coupled-channel ND methodtforv phase-space factors, p(s), includes unit step functions 6 which

constructing unitary amplitudes with overlapping cuts vanish below channel thresholds:

is described. The study is motivated in part by the problem

: . . - b * )
of analyzing the 7T KK system near the S* resonance. o(s) = {pi(s)aij} , pi(s) = g(s - si)qi(s)' . (1.2)

. For the case of spinless, equal-mass particles in channel i one has
* Work supported in part by the National Science Foundation and the

United States Department of Energy under contract No. W-7405-ENG- y

48. a ;

- s - s,
q,(s) = _J . (1.3)
Participating Guest. N



‘(s) and

Generalized unitarity (l.1) restricts the amplitudes le

T,,(s) in the regioﬁ sl < s <s

22 where channel 2 is closed,

2
wheréas‘ordinary unitarity ;efers only to open channels.

A complicatign a;ises if mass differences are large. Namely,
the left cﬁ;s_of sqme of.the amplitudes overlap thé half-liﬁe §> Sy-
This»occu;svwhen the lowest mass in a cross channel is sufficiently
smali»in comparison with the mass of the direct channel. The
uni;arity‘condition fﬁenibecomes

5¥-[T(é ) - T(s_i] = T(s_)p(s)T(s_) + A T(s), ‘(1.4)

i + + L
where ALT(s) is the ma%rix of discontinuities of T(s) o?er the
left cuts (denoted collectively by L).

An example is the two-channel p?oblem'with T and KK
chanhels in a definite isospin state, coﬁsidered near the KK
threshold where the 47 !state has only a small production cross
section. Under the assgmption of Mandelstam.anaiyticitv. the Dértial-
wave amplitude for KK -+ KK has a left cut‘béginninq at the branch
point s = 4(mi - mi). According to (1.4) the right cut begins
at s = 4m§. so that thﬁ two cuts overlap. The amplitudes for
T > " and 7T +> KK do not have overlappinag cuts: their nearest
left branch points are_aﬁ é = 0. The possiple imporpance of
treating correctly theboverlappinq cuts in the phenomenology of the
T - KK syétem,especialfy neaf the s* resénanqe,has been

I g
emphasized by Yndurain [1,2,3], Gonzélez—Arxoyo lZ,B} , and

. o _ .
coworkersl3]. Although the 77T - KK system has been discussed

extensively {SJ, it appears: that a full explication of the unitarity
effects reﬁains to be made. A similar situation of overlapping cuts
occuré ip the NN system, which is of high current interést in
connection with baryonium states [6}.

In stﬁdying systems with overlapping cuts, from either a
dynamical or a phenomenological viewpoint, one encounters a general-

ization of the standard problem of partial-wave dispersion relations

[7]. That is, given the left cut part of the T matrix,

(=]
T(sl)p(s')T(s:)ds’

B(s) = T(s) - , (1.5)

s =5

A

Sy

determine the most generai T(s) having that left cut part and
satisfying fhe augmented unitarity equation (1.4) as well as
appropriate conditions of analyticity and asymptotic behavior. We
shall provide a straight-forward soluﬁion of this problem, based on °
the matrix ND * hetﬁod[e,a,lo,ll]. As in the usual ND = method,

the problem is reduced to solving a linear integral equation for

-N(s). It is gratifying to find that the equation is identical in form

to the-usual one. Only the derivation of the equation_is altered.
Being of Fredholm type under weak conditions on . B(s), the equation
is amenable to numerical solption.

Our results are applicable in phenomenology as well as in
dynamical schemes. In phenomenolqu‘the;traditional approgch to
determination of B(s) is to use crossing symmetry and experimental

information on scattering in the cross channel. - Such an approach

-determines the nearby singularities of B(s) to a certain extent,

»



but leaves the distant singularities to be represented by empirical
parameters. A potentially more ‘informative approacﬁ now under develop-
ment is to use a new definitiop of Reggéon exchange, valid at low
as.well as high energy;lg;. The Reggeon exéhanges~involve all
p;rtial waves in the cross channel, and foman important (possibly
dominant). part of the analytically continued cross channel absorptive
part. It is hoped that a moqel-of B(s) based pr;marily on Reggeon
exchanges will be realistic.

An ambitious scheme for construction of a crossing—symhefric
unitary Regge theory, proposed in Refs.{lZ,Al3]and extended in a
forthcoming paper to allow coupled channels, requires sélutién of éi
generalization of the problem treated here. In a érossing—éymmetric
treatment of coupled 7T and KK channels, for instance, one
must account for the 47 threshold at s = i6 mi in the KK

amplitude, which lies to the left of the beginning of the left cut

at s = 4(m§ - mi). As we shall show in a later paper, this complicated

situation of overlapping cuts can be handled in a rather simple way by

1

extending the present ND method to allow a matrix of externally
prescribed- absorption parameteré, in ahaiogy fo the work of Ref.[l41
In the crossing-symmetric theory the absoption parameters for the

4m state, etc., are obtaingd dynamically through crossing. The
extgnded ND—l method with absorption shoﬁld also be useful in
phenomenology, especially for study of absorption in the NN system.
A correct treatment of overlapping cuts is conceivably important in
assessing the effects of absorption on baryorium states predicted from

5

crossed NN potentials gGi.

Section II contains the general solution of the two-channel
problem under rather weak conditions on B(s). It will be evident

that the method works as well for n channels. The Cagtiliejo-

Dalitz-Dyson (CDD) ambiguity" Zis treated in detail, since a

complete‘treatment_for the coupled channel case has not been available

-in thg literature. Recently Nenciu, Rasche, Stihi and Woolcock§l§

critic{zed the ND—% method, ana suggestéd é method‘ﬁaseé‘on a pole
apprpximation to- B(s) as a replacemenﬁ. Wé fééi ﬁhét the
discuss}on ofiSections II and I1I %nswers théif criticisms; énd
shows that the method is both general aﬁd précticai. in our
experience the pole approximation has not been véry useful, since

in realistic hodels B(s) 1is not given in terﬁs oé poles; aﬁd tob
approximate if by poles with sufficient accuracy is ;ather.awkwérd;
We note, however, that the pole approximation can be uéed ig‘the
ND—l scheme with overlapping cuts, andxthat it léads as usugl to‘ B
explicit analytic forms for the solution of the integral equafioh.

:In Section IV we give an ND-l iﬁethod fér a.single—channel
problem with absorption present at threshold; for examplé,

KK + KX. The absorption parameters are regaréed as given, and léft
cuts may or may not overlap the absorption cut below threshold.

In Section V we discuss a special case ofbour problem solved
recently by.Gonzélez—Arroyo {4;; namely, a two—cﬁannel problem in
which only the element Bzz(s) of ‘B(s) is non-zero. We reveal
two new aspects of the Gonzélez-Arroyo solution by deriving it from

our formalism: (a) it necessarily entails CDD poles as defined in



. the. two~channel formalism; if there is not at least one  CDD pole,
only the trivial solution in which" Tll(s) = le(s)’= 0 is-obtained;
(b) eventhough the @onZélez-Arroyo solution entails arbitrary

rational functions, it is not the.general solution of the problem'-

‘with’ Bll(s) = Blé(s)'= 0; rather, it corresponds to putting some
elements of the CDD - pblF residue matriceé-equal to zero.

:in Section VI we bomment on a proposal of Yndurain for- an
. :

explicit unitary parametrization of the T matrix with overlapping cuts.
4 . | . . X ] I
I
_Appendix A is concerned with asymptotic estimates of principal

value integrals under conditions of iogarithmic decrease of the density

functién. TAppepdix B canain;Whe proof that. the intégral equation of
Section ;I is of Fredholﬁftype under_conditions of logarithmic
decrease of B(é)ﬂ . |

A We "hope to re-e.(amine in 'a. later paper the phenomenology of
thé ™ - KK system néa% the S* resonance, using the methods
describeg;

II. GENERAL;SOLUTION FOR. THO-CHANNEL CASE
In this séction we solve the two-channel problem, with two

pseudoscalar mesons of_maSs mi in the i-th channel. The phase

' space. factors are as given in (1.3), with .8 = 4mi. We make

analyticity assumptions-weaker than those implied- by the Mandelstam
|
representation, - since thelextra generality involves little effort.

Let us first recall the implications 6f the Mandelstam

(s) and

. i ‘
representation. The part%al—wave.amplitudes T11

’le(s) = Tzl(s) are analytic in the}s-plane, each with cuts’

2 .
= 4m12. If m, < Zmi , T

1 m,, (s)

(-~ o, 0] . [sl, @), whére s 22

L S . 2 2
is analytic in the plane with cuts ‘(- co,-4(m2 -»ml)] ,~[sl, @®).

If me % 2m

2 o+ we must regard T, (s) as sectionally analytic, since '

22

the cuts’averlap and divide.the'pléne_ih two:

(¥ :
] T22 (s) , ,_;ms >0 '
(-)

|7 & ms <o,

- 2.
T22(s). (2.1)

(+)(é) Iaﬁd T(_)(s) are analytic in their(respective

wherxe T22 22

. ’ * . L
half-planes. One has T, (s) =T, (% which for i =3j =2

(+)

= ow(e)
meang that T22 {(s) = 7T

{ *
22 (s*) .

Our requirements.on the T matrix, weaker with respect to

analytiéiﬁy, will be as follows:

) Tt = T ()

(ii) Tll(s) and. Tl2(s) are analytic in_qpen neighborhoods
Qll; 912 of_the half-line _[sl, ®), as.illustrated
in Fig. 1. . -

T(iii) +) (+)
T ( ) < T22 (s), 56922 ’
T8 =

)

whgre Téij(s) is analytic in 92§ . Here Qéﬁ)'is an open region’
of the upper half-plane with [sl-e,fo) as part of its boundary, and’
Q;;) is the complex conjuggte of thg; region; see Fig. 1.
(iv) T(s) = T(S*)* ‘
(v) AT(s) = %i [T(s+) - 'i'(s_)] = T(s )p(s)T(s_) + A T(s),
0 )
ALT(S) = . e(sL.- s)¢(5)  .S <s <s, .,



where ©(s) is the unit step function and ¢(s) = AT22(s),
<s <
S15 55,
. -0
(vi) |T(s+ﬂ < K(fns) ~, s > Sy

lres,) - (s < «(2ns) & |§_;_s' ¥,

a>1, 0<wugl/2. (2.2)

Here and in the followiné, K representsré ggneric positive constant,
which is understood to have different values in different equations.
The inequalities (2.2 Qi) apply to each element of the matrix T(s)
separately. The second of these inequalities follows from the stronger
but more comprehensible fequirement that> T(s+)v be Hblder-continuous
for s < r and continuously differentiable for s > r with »
|T'(s+)| < Ks_lln—as, the point r being arbitrary.

We shall determine the entire class of T matrices
satisfying conditions (2.2i) - (2.2vi) and having the same given
left-hand cut term,

A ICALICRLIEREE
B(s) = T(s) - { . (2.3

! s -s
/s

1
Note that property (2.2vi) ensures convergence of the integral in -
(2.3). The following conditions on B(s) are a consequence of the
conditions on T(s) and the definition (2.3):
(1) Bij(s) = Bji(s)

(ii) B,. (s), qu(s), and B2 (s) are analytic in

11 2
= r Q. =
2y =9, U spr =™ 9, =9,Ufs, =, and

5 = Ké;)L)ﬂ;;)LJ[sL,m), respectively; see Fig. 2.

10

(iii) B(s) = B*(s*)
(iv) |B(s)] € k(ns) %, s > s,
u

_a‘s_:il R g >s '>/s

IB(s) - B(s')| €Kifns) - 1

The property (2.4iv) is obtained from (2.3) with thé help of Lemma 2
on asymptotic behavior of principal value integrals which is proved
in Appendix A. The other properties.of B followwimmediately
from (2.2).

Henceforth we suppose ﬁhat a function B(s), satisfying

(2.41) - (2.4iv), is given. We seek the most general T(s) which

bgives that B(s) through (2.3), and which satisfies (2.2i) - (2.2vi).

Our analysis is based on the non-trivial theorem thét any T(s)
satisfying conditions (2.2iv) - (2.2vi) has an ND—l repiesentétion
with appropriate properties. To be more exagt; under those conditions
there exists a 2 X 2 matrix {J(s) ‘such that €16, 17}

(i) l}ij(s) is analytic in the plane with cut [#i' “5,-
and is defined by continuity on the cut. The function on the cut,
Jj;j(s+), is Hblder-continﬁouS'on any finite intervai.

(11) J(s) = il + 2ip(s)T(s+)],C)(s+)
O (s

(iv) j}'(s) is non-singular (has an inverse) at every finite

(1ii) [} (s)

I

point of the cut plane, including points s, on the cut.

(v) There are integers ng such that the modified matrix

o~

i = s o, 2L )

tends to a finite, real, non-singular limit as !sl > o
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. " .
Ds) > e = 7@ aeedFe) # o.

Here (?j(s) denotes the j-th column of () (s). (2.5)

The properties (2.5).éléarly do not determine (}(s)' uniquely;

at the least, one may interchange the columns of a given X}(s), and
multiply them by non—zefo constants, thereby obtaining a new matrik
which staisfies (2.5). INeveitheless, the (non-ordered) pair of
inteéers nye n, ié un%quely determinea by the asymptotic behavior

of T(s), and n, + n, sets the degree of ambigﬁity in the

determination of T(s) from a given B(s), as we shall explain
presently.
In the single-channel case, - {s) is determined up to

| ‘ .
a constant multiplier and has the familiar form

[+~

sy =dexp|-2 / Stsnds' |} (2.6)
‘ . s'(s*-s)
1 . B

where A is an aibitr?ry real constant, and &8(s) .is the phase
shift( normalized so that 5(51) = 0. In‘the many—channei case

theré i% ‘in general,:no closed expreésion for l}(s). Rather, ‘(}(s)
is obtained through‘solution pf a éertain Fredholm integral equation
with ;:kernel constructed from T(s+). If 8(s) in (2.6) tends to

a limit. §(~) and obeys the bounds

|
s - s U
LR

.

|6(s) - 8(=) | < k(tns)™, “|8(s) - 8(s')|¢ K (Rns)™®

s <s', 0<u<i, a >, (2.7)

12

then
O, -~ SET e, ' _ (2.8)

If §(®) » T, one has a Castillejo-Dalitz-Dyson (CDD) ambiguity
in the determination of T(s) from a given "B(s); cf. 7. W
shall find a similar ambiguity in the two-channel case if ny + n, > 1.

Let us write -

T(s) = [T(s)[}(s)] O = Nl e, (2.9)
and compute the discontinutig of Tl(s) from (2.5ii). If the unitarity
eqﬁation (2.2v) holds, we have

8 MNs) = 55 [otsp Lresyy - s _) L+ ()]

2i

=2 [m0s) - s @+ 21000110 LFis
= ALT(s)v‘,O'(s_'_) = ALT(s) 0(5) ;S 28, . (2.10)

In the final step of this calculation we are able to replace 1}(s+)
by'i}(s) because of the form of ALT(s) and the fact that the cut

of {);j(s) begins at s = s_ . We have Ai(s) =0, s >s in the

2 1’
simpler case in which left- and right-hénd cuts do not overlap. With

overlapping cuts,

Anlj(s) =0,

AN, 0 =6 (s - 0t T yite,

j=1,2 s s (2.11)

L K
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The leftfhand cut of each matrix element 71ij(s) does not overlap
the right-hand cut of the corresponding jjij(s).

We next cpnsider the possible‘asymptotic behaviors of J}(s)
allowed by (2.5v) and for each type of behavior write a‘Cauchy .
representation for a matrix Dp(s) closely related to l}(s). The
matrices p(s) will subsequently be used to derive‘integral equations
for N(s) = T(s)D(s). We suppose initially that there is no bound
state pole of T(s), and also that neither column of 1}(5) tends
to the null vector asv |s|v-> ®; - thus, n, 2 0. Presently we shall
show that the vanishing of a column of X}(s) at infinity is an
exceptional case, not expected to occur in realistic models,
provided that there are no bound states.

First take Case 1 : n, = n_, =0 in.(2.5v). We define
pis) = ) O @, mes) = T I Hie) . (2.12)

By properties (2.5ii), (2.5iii), ahd (2.2vi),

I

mp(s,) = [D(s,) - D(s_)} /2i = - p(s)T(s,) LF(s,) O

It

- ots) (&) F 1@ = - pisints) = 08 %) . (2.13)

It follows that D(s) has the Cauchy representation

(Case 1): D(s) =1 -.%./ P(sIN(s"Hds , (2.14)
s’ - S .

!

14

We Next consider Case 2: nl + n2 >0 in (2.5v). To define

D(s) in this case we first choose any polynomials of the form

n.
J .
ill (s - skj), skj < Sy ifn. > 0,

Py(s) = ' ' (2.15)

where the real points skj' k=1,2, ***, n., j=1, 2, are all

distinct. Then D(s) is defined by

PI],'(S) 0 -
D(s) = £} (s) Ly (2.16)
. : -1
! 0 P, (s)
and it has the Cauchy representation
2 .
- k
ois) =1 - V. ¢tk Q(s N(s)ds  , (2.17)
. sk s W J
i=1 k=1 : s §
Since D(®) =1 and N(s) = O(Qn_as). The residue matrices C(kj)
have components
, -7y q—l
xj) _ 'ﬂ- i -1
o = T pytsey | Sy = Spy) | L - (2.18)
p=1 : J
p#k

Henceforth we shall consolidate the indices k and bj, and write

(2.17) as
n
. ‘_\C C ® [ ] k]
- . _ _ i _1 p(s )N(s )ds .
Case 2): D(s) =1 L T s p / R — (2.19)
i=1 i s -s
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Except for possible poles, the matrices D(s) Have tHER same
properties (2.5) as £J(s). Also, (2.10) implies that

AN(s) = ALT(s)D(s)," s»s. (2.20)

1
The poles in (2.19) are;analogous to the familiar CDD poles of the
sindle channel case; we shall again call them CDD poles. Because

the pole positions Oi ,are all distinct, the residue matrices Ci

are singular:

:det c, =0. . (2.21)
o
That is seen from (2.185: the matrix C(ki) has rank 1, being a dyadic
constructed from the vectors X}ij(gkj) and AC};T(W).
We now turn to %he derivation of the integral equation

obeyed by N(s) =’T(s)b(s) for each of the two cases. The integfal

equation has a dual status. First, it is a necessary condition on

\
A

the N(s) associated with any given T(s). Second, it is-a means of
constructing a properly énalytic, unitary, and symmetric T(s) from‘
a gi§eh B(s). In applications one usually thinks only of the second
aspect, but for the general theory, especially for demonstratihg
the'generality of the solution of the ¢onstruction problem, it is
necessary to consider both aspects. We begin by dgriving the‘
equation as a necessary ¢ondition on ﬁ(s) for a given T(s), and
“later treat the construction problem.

For a given T(s) satisfying conditions (2.2) and such»that

Case 1 holds, we examine the matrix function

16

©0

B(s')p(s')N(s')ds" . (2.22)

As) =.[T(s) - B(S)J D(s) - %

’8s

s' - s
1

Since B(s)p(s)N(s) = O(Rn—zas); the integral converges. Notice
that by (2.3) the difference T(s)b- B(s) is defined in the whole
cut plane, eVenthough T(s) and B(s) separatély may not be,v

in view of our,weék assumptions (2;2ii), (2.2iii) on the region of
definition and analfticity of T(s). Ciearly, (2.22) defines a
function Al(sf = A(s), ahalytic in the half-plane Imé >0, énd
another function Az(s) = A(s), analytic in Ims < 0. We show that
Az(s) is the analftiq continuatipn of Al(s), énd that inlgact

Al(s) = Az(s) Z 0. For s < ]

1!

M(s) = [AT(s) -AB(S)] D(s) = oO. (2.23)

AA(s) = AN(s) - AB(s)D(s_) - B(s )AD(s) - B(s)p(s)N(s)-

‘ALT(S)D(S) - A, T(s)DIsY + B(s)p(s)N(s) - B(s)p(s)N(s)
=o0. - (2.24)

The structure of ALT(s), assumed in (2.2v), and the 6 functions
in AD(s) = - p(s)N(s), allowed us to replace D(s_) by D(s)
and B(s+) 'by B(s) in (2.24). In the case without overlapping ‘

cuts, the terms AN(s) and -AB(s)D(s_) .are separately zero; here

-they are non-zero but fortunately cancel. We see that A(s) is

analytic in the entire plane. Also, it vanishes at infinity, as is

clear from (2.3), (2.14), and (2.22). Thus, A(s) Z 0, and (2.14)

®

~»

L
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may be substituted into (2.22) to yield the integral equation®’

(o]
1 B{s) =~ ' . e .
N(s) = B(s) + T _i_l___§i§;L p(s')N(s')yds". *- - (2.25)
. s_s|
51
Thanks to the © . function in p(s'), the. domains of the first. - - *

and second rows of N(s') in the integral are [sl, ©) and {éz, ),
respectively. Consequently, each Nij(s) is in a region of analyticity
oyer the domain_in which Eg. (2.25) is to be solved, as is seen from

(2.11).

The derivation of the integral equation proceeds sihilarly

in Case 2. The only change required is td account for the pbles of

D(s). Referring to (2.22) and (2.19) we see that A(s) inherits the

poles and in fact

‘n -
. s ’
A(s) = L ir(e.) - Bloyle (2.26)
(. s -0, i i'JTic ,
. 1
i=1 :
This equation yields the result
n
c
N(s) = B(s) + 2: 1_ (R +B(s)]
s - 0. s) ¢y
A i .
i=1
o !
1 B(s) - B(s") ;
+ o T e - o P(s")N(s")ds', . . (2.27)
S, ‘ o
Ri = T(Oi) - B(Oi) . : (2.28)
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Henceforth we refer to the general equation (2.27), which includes
(2.25) as. the special case with Ci = 0.

The integral equation (2.27) is amenable to the Fredholm
theory in an appropriate Banach space, as is shown in Appendix B.

By the Fredholm Alternative Theorem éZO?,'the integral equation

.has a unigue solution in the spoce considered, provided that the

corresponding homogeneous equation has no non-trivial solution in that
space. We shall suppose.that the hpmogeneous‘eQuation in fact‘dbes
not have non-trivial solutions, since the contrary case has nét
arisen, as far as we know., in realis;ic physical models. It does arise
in the anomalous event of an "extinct bound state" as discussed by
Atkinson and Halpern{lsg. The assumption that there is no sblution
of the homogeneous equétion allows us to rule out the possibility
that a column of 1}(5) vanishes at. infinity, as promised above.
I1f Xj‘j(g), the j-th column of l}(s),_tends to the null vector as
|s| -+ o, then it has'a Cauchy reéresentation
L * . . .
O o - _%' D(s')ln._j(s')ds' ) e
.J .

s s' - s
1

Owing to the lack of the usual unit matrix term on the right—hana

side of (2.29), the corresponding integral equation for WL j(s) is

homogeneous :

[

: 71' () = % '§£§l_:_§i§llfp(s-)71,_(s')ds', (2.30)
.3 w ' -J
5 s - s )

Thus Tt j(s) = 0 and i&'j(s) 0, contrary to the fact that i}(s)
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is non-singular. The derivation of (2.30), carried out as before
by showing that A(s) = 0, fails if T(s) has a bound state pole.
We defer thevdiscussiOn of bound states.

Since we have'ruled out the possibility thét<£rj(s)
vanishes at infinity, we may conclude that the matrix N(s) for any
T(s) obeying (2.2} satisfiés (2.27). Furthermore, the properties (2.2)
and (2.5) guarantee that N{(s) = T(s)D(s) lies in the Banach space
used in the Fredholm theory of Appendix B. Thus, for a given T(s),
the matrix N(s) = T(s)D(s) ‘coincides wifh the unique solution of .
the integral equation provided by Fredholm theory.

‘When B(s) rather than” T(s) is given, there is no a priori
certainty ‘that a corresponding satisfactory T(s)  exists. By the
preceeding remarks We‘dd know that if such a T(s) exists, it must
be obtainable in the form N(s)D(s)_l, where N(s) is a Fredholm
solution of (2.27) for some choice of the:barameters .Ci and Ri
with an Erbitrary choice of the ci; 'hefe D(s) 1is given in terms
of N(s) by(2.19). We now show that the Fredholm solution N(s)
of (él27)_gives a T(s) satisfying (2.2), provided that detD(s)¥ O
in the cut plane and that, when there are. CDD poles, another minor
condit;on holds icondition (2.34) below}; This assertion holds for
any choice of the paramete?s consistent with restrictions already laid
down. Those restrictions, we recall, are that all parameters be real,

that Oi.< s o, # Oj, det c, = 0, and that the R, be positive-

ll
definite, symmetric matrices. ' The positive-definite character of
Ri follows from its definition and (2.3), since

T(s,) p(s)T(s ) = T(s+)p(s)T(s+)f, where { denotes Hermitian

adjoint. The matriéés~ Ci and -Ri entail only three real paramneters

‘provided that it has no pole at s = Gi.
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each, sinceu Ci is sinéular and Ri is symmetric.
If N(s) is a solution of (2.27) and D(s) is given by
. ' » -1 X
(2.19), we may write T(s) = N(s)D(s) . , the proposed solution of

our problem, in the form

n
o] had .
l l L} 1 L} L} -
T(s) = B(s) + Z BEH RC, + o j EL%_)_Q:_S;_.)}.“_,SE_).dS D H(s).
=t 51 (2.31)

Ihis expreésion is derived byrreCanizing a term B(s)D(s) on the
right-hand side of (2.27). 'Since det D(s) is non-vanishing, it

is clear that T(s) has analyticity in accord with conditions (2.2),
To demonstrate absence of a
pole we write D_l(s) = cof D(s)/det D(s) and show by calculation using

det Ci =0 that

Ci cof D(s) = 0(1), s > Ui,

a3
det D(s) ~

Oi + 0(1), s~ Oi, (2.32)

L= E C.o +C, . C. -C.._C.. =
a; (€512%22 * €522 €5117 €i12 C521 ~ €512 Cizy’
i |

+ + ' - - '
Cill(l Izz(oi) ) + Ci22(l + Ill(ai)) Ilz(ai)ci21 IZl(ai)Cilf

(2.33)
where Iij(s) denotes the integral that appears in Dij(s). Thus,

formula (2.31) contains no pole prévided that

a; #0 . (2.34)

-
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Condition (2.34) is the extra requirement for existence of a solution
in the presgncé of CDD poles, mentioned above.

Having proved analyticity, we ﬁavé vet fo sHow-that (2.31)7
is properly unitary and symmetfic.. To check unitérity, wé firs£ cai-

culate AN(s) = A(T(s)p(s)) from (2.31):

AN (s)

B(s,)AD(s) + AB(s)D(s_) + B(s)p(s)N(s)

- B(s)p(s)N(s) + A T(s)D(s) + B(s)p(s)N(s)

(2.35)

= AL?(S)D(S).
The unitériﬁy condifion (2.2v) is now verified as follows:
T(s,) - T(s_) = IN(s,)D(s,) *D(s ) - N(s ). D(s ) :
+ A ™ + =0 TR -
i -1 , L -1
= tN(s+)D(s+) D(s_} - N(s+) + 21ALT(s)D(s)} D(s_) ~
= es0ts) Y fois ) - pes)] bes )L + 218 70
= s,)D(s § D(s_ s,) | S_ (23A s)
- N(s )D(é y Lo(syn(s)D(s )7L + 2iA T(s)
+ + - L
= T(s )p(s)T(s ) + 2iALT(S)' (2.36)

As before, the prefactors p(s) and ALT(s) allowed us, on oécasion,
to replace s, by s. This calculation reveals a situation not
present in the case with hon—overlapping cuts. Namely, T(s)
satisfies unitarity only if N(s) satisfies the integral equation
(2.27). In the non-overlapping case N(s)D(s)-l

is unitary, but

in general not symmetric, for an arbitrary real matrix N(s) such that
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the integral in D(s) is well-defined.
.Symmetry of T(s) in (2.31) is proved by the method of

Bjorked and Nauenberg éloi. We examine the function

f i : .
8(s) = D' (s)[T(s) - T" () D(s), (2.37)

where the superscript T denotes transposition. Because of the

definition (2.3) and the assumed symmetry (2.3i) of B(s), it is

clear that '@(s) is analytic in the upper and lower half planes,_

even though we have not assumed that T(s) is analytic in a whole
éut plane. We shall show that the discontinuity of ®&{s) over the
real axis is-zero, and that Q(S) has no pole of s = oi,’ Since
9(s) vanishes at infinity, it mist then be identically zero. The
symmetry of T will follow, since wé have assumed that D(s} is

non-singular. For s < Sy» Ad(s) is obviously zero, since

" AD(s) = 0 and B(s) = BT(S):

DT(s)A(T(S) - TT(S))D(S)

AB(s)

DT (s)A(B(s) - BT (s))D(s)

(2.38)

For s> s we apply (2.35) and find

1
4

82(s) = AlpT(s)N(s) - N (s)D(s)]

D' (s,)AN(s) + AD" (s N(s_) - N'(s)AD(s) - AW (s)D(s )

DT(s)AiT(s)D(s) - NT(s)p(s)N(s) + N (s)p(s)N(s) - DﬂsyALngn(s)

= 0. (2.39)
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o .
The CDD poles in the factors D (s) and D(s) of (2.37) .cancel.
That is seen by introducing (2.31) and invoking the symmetry -of Ri;

the sum of the pole terms is

-2 T T _
2: (s - oi) Ci(Ri - Ri)Ci = 0. (2.40)
i .

To show that T(§) of (2.31) satisfies the bounds . (2.2vi), we refer

to the Fredholm theory of Appendix B which shows that the solution

N(s) of the integrallequation obeys bounds the same as those of T(s).

If 1I(s). denotes the. integral appearing in D(s), then Lemma 2 of
Appendix A shows that I(s+) also obeys bounds like (2.2vi). It
follows that |T(s+)l < K(Qns)_a. To verify the second inequality.
of (2.2vi) we write, with s £ s', '

N(s)D(s+)_l - N(s')D(S_'F)_-l ;

= [veer - nen] s p ™+ misHpisp

.[D(s'+) - n(s,)] pesp ™t

v (2.41)
When there are no CDD poles it is obvious that the required bound is
satisfied for each of the terms on the right side. With poles, the
only additional task is to demonstrate local Holder continuity near
the poles. That is easily done with thé help of (2.32) and
assumption (2.34).

We have finished the proof that T(s) constructed from a
solution of the integral equation (2.27) satisfies all of the

conditions(2.2), provided only that det D(s) # O in the cut plane

and ai # 0.
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The qﬁestidhvarises of how tqvverify in practice the condition

det D(s) # 0. In the folléwiné section we describe a simple and
practicairhéthod of verifying the condition, which involves

computatioh in the physical region only. Fortunately, it is not

‘necessary to search the complex plane for zeros of detD(s).

Suppose that we solve (2.27) with an arbitrary choice of the

real, symmetric,_positivedefinite-matrices Ri; let us denote these
) [

in out

input parameters as - Ri . If T (s) - denotes the amplitude

constructed from (2.31) and the solution of (2.27), will it

necessarily happen that Rzut = Tout(oi) - B(Gi) = R;n}

In general the answer is no, because it is always possible to

i . . ou . . . .
change Rin without changing Ri t. Since Ci is singular, it has
a real left eigenvector 'vi with eigenvalue zero:

vrfc. =.0. (2.42)

i . : : s o "
If ‘we change Rin by-addlng to it the positive-definite symmetric

T

dyadic Avivi + A >0, there is no resulting change in Riut

-
. in . out .
since Ri enters the equations for N(s) and T (s) only in the

i . . .
product RinCi. Furthermore, wé may argue that in general
I L T .(243)
. i Lli.., v ) .

where U = U(R;n) is a real scalar function of Rin. If we multiply
(2.31) on the right by D(s), and equate residues of the poles on
either side of the equation, we find that

-

»

[
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kR?Ut - Rm) c. =0. - (2.44)
i J i »

Both columns of Ci are proportional to the same vector u,, and ’

R?Ut - R}n, being real and symmetric, has the representation
i i . .
2
U RN ) R (2.45)
i i [ 333
=1
By (2.42) and the orthogonality of the wj we see that either
w';‘ui =0 or Aj = 0 for each j, and that at most one of the Aj

is non-zero. If A say, is non-zero, then w has the same

1’ 1
diréctién as v, (béing orthogonal to ui), and (2.43) follows.

Since Rgut is a'ﬁon-linear fuhction of Rin (in the domain where it
is not a constant function) the function u(Rin) is not a simple one.
How many arbitrary parameters are associated with ?ach

CDD pole? To answer this question, we first note that the pole
positions Oi are not to be counted as free pérémeters. Suppose
that we have constructed an amplitude T(s) from‘(2.27) with input
parameters Oi ’ Ci' Ri' Recglling the derivation of (2.27), we see
that the same T(s) has a representatidn T(s) = ﬁ(s)ﬁ(s)—l, where
6(5) has new pole positions Si and new residues éi, and ﬁ(s)
satisfies (2.27) with b(ci, Ci’ Ri) > (8&, éi' ﬁi). Thus, a change in
pole positions Oi may always be compensated by a change in Ci and
Ri so as to yield the saﬁe amplitute " T(s). The essential parameters
are three in Ci and three in Ri' but it hust be remembered thét
there is a subspace in the spaée of Ri éarametefs on which T(s) is

: : . T i
constant; i.e., we may add any term of the form Avivi , A >0,

to Ri without changing T(s).
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III: BOUND STATES, LEViNSON'S THEdREM, AND A
TEST FOR THE PRESENCE OF GHOST POLES. -
Bound states seem not to occur in ﬁeson systems, but there is
nevertheless a gooa technical reason to discuss them. ' The many-
channel version of.Levinson's theorem states that

o~

1 0y = - . .
53,?“ det S(») = n + n_s , (3.1)

where n, is the number of bound state poles, n_ the number of CDD
poles, and S the scattering matrix

S(s) = 1 + 2ip!‘(s)T(s+)pl’(s). ' (3.2)

The quantity £n det S(®) is defined by considering n det.s(s)

as a continuous function of s, with fn det S(sl) = 0, and taking
the increment between s = 5 and s = ®. Our interest in bound
states and the Levinson relation stems from the circumstance that
"ghost" poles (spurious poles of the T matrix 1acking a physical
interpretation) are counted iﬁ Levinson's relation just as though
they were bound state poles. >Ih é system with ghosts (3.;) is

replaced by
;L-ln det S(®) = - -n +n (3.3)
21 fp T 0y T P :

where ng is the number of ghost poles. In a calculation with the

ND_l method based on é specific model of B(s), the number
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n det S(©) 1is computed easily in conjﬁncfibn with solution of the ahd ovérlapping c¢uts. . The object is to construct unitary singlej

integral equation, n, is an input parameter,‘and‘ nb'= 0 is ' ‘channel amplitudes of the form

usually demanded by‘thé physics of the situation. Thus, we can o ) S
T(s;)q(s')T(s'_)ds'

determiné ‘the number of ghosés from (3.3), rather than by searching the T(s) = ﬁr(s) + = o
complex plane for 2eros of det D(s). Should bound states be allowed %o
in the problem, their location and number are easily determined by N 1 > F(s')ds’ @y
looking for zeros of det D(s) on a small interval of the real axis. i s s' -5/
I

Levinson's relation is true for any amplitude T(s) , ) ) S
o ; - . where the left cut part BL(S) . and the absorption function
satisfying conditions (2.2), provided that the homogeneous form of ' :
- . \ F(s) are given. We suppose that BL(S) has the properties of the
Eq. (2.27) has no non-trivial solution (in the space considered in : s o . ‘
. ) ' , function Bzz(s) of Section 2; (s° in (4.1) is to be identified
Appendix B). Of course, the latter condition is a restriction on ; ‘ : )

v with s, in Section 2). The inelastic threshold. sI' is assumed to
B(s) alone, and it seems invariably to be met in realistic models.

) be lower than the physical threshold Sgr and may be either to
It is understood that the poles of T(s), nb in number, are all ’ o

I the left or to the right of the end of the left cut at s_. With
PY—- : . - . - . . 3 : . 3 L
simple . poles with factorized residues (i.e., each residue matrix T ‘ T
- N . o . the channel considered labeled as the zeroth one, F(s) is the
is of rank 1). A proof of Levinson's relation, valid under the o N . : ' :
s . ) . inelastic part of the unitarity sum,
conditions stated here, is given. in section 5 of Ref. [ll]. The ) :

proof-asvwritten applies when the poles of T(s) are &t real points : . :
- ’ F(s) = z T_(s,) P ()T_(s), 4.2)

s < sl; One may also have ghost poles at complex points in conjugate nF0

A A : : .
pairs (s, s*). An extension of the argument of Ref.[lﬂ is required in
' ' where the functions pn(s) contain step functions to account for
that case. ’
the closing of channels. The sum over n may actually include
IV. SINGLE-CHANNEL PROBLEM WITH OVERLAPPING : . o
’ : integrals if states with more than two particles are involved. - We
CUTS AND ABSORPTION AT THRESHOLD : :
) . ) : have F(s)=0 even for s <fso; since the T matrix is real-analytic
In some phenomenological studies it may be more practical to ’ L : '
. ' and symmet;ic , Tno(s_) = Ton(s+)* ‘even below the threshold.of
treat only one channel explicitly, accounting for .coupled channels : :

: . channel 0. For s .2 so, F(s) 1is expressed in terms of the usual
by empirical absorption parameters. A simple extension of thé single-
‘ elasticity function n(s);

channel N/D method with absorption ;~7J allows one to handle processes

such as KX -+ KK and NN -+ NN which have absorption at threshold

v
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F(s) = i1 - n2(s);/4q(s), s >s_, L (4.3)
) = e 1 paiqe), s3s. e

We suppose that F(s) satisfies bounds like those on B(s) in
(2.4iv). It then follows from (4.3) that 51 - ﬂ(s)i /als)
satisfies such bounds as well, and in particular that 7(s)~ 1,
S—e5S_,-
In the N/D method with absOrption7, the function J? (s)
is defined in terms of the real phase shift §(s) of (4.4) by the
expression (2.6). In the present extended method we use the same
l)‘(s), but use a B(s) different from the usual oné; namely,

o
_ 1 F(s')ds' , 1 1 -n(s")
B(s) = BL(S) + m s' - s * 27w q{s') (s' - s)

S : S
I [o}

ds' . (4.5)

In other words, we treat the part of the absorption cut between
sI and S, just as though it were a left cut contribution. The

derivation of the integral equation then proceeds in the same way as

in Ref. 7. 1In the case without CDD poles the equation reads

e o)
- ]
n(s)n(s) = ReB(s) +%r— / Re_B(_s_);___Isl?_B_(_s_) d(s')n(s')ds"' (4.6)
A .
o
where n(s) = - ImD(s+)/q(s). The amplitude is obtained in terms of

[
n(s) i

formula

which is not the same as the numerator function N(s)} by the
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o .
_ 1 ReB(s')g(s')n(s')ds’
T(s) = B(s) + "D(S),J/. o E— ' ‘ (4.7)
. A .
o
o0 . )
I § q(s')n(s')ds"' - .
D(s) =1 -2 e -s - (4.8)
s
o

Each of the last two terms in (4.55, contributing to ReB(s), has
a logarithmic singularity at s = Sg- The singularities of the two
terms cancel, however, because F(s) is Holder-continuous and
2
1-ni(s) _1-n(s)

Fs) = =45(s) 2ats) 57 %t (4.9

As a result, ReB(s) is Holder-continous for s 2 Sy and the integral

equation (4.6) is of Fredholm type on the space of Appendix B, provided

that 7(s) has no zero. A solution of the integral equation gives

‘an amplitude (4.7) that is properly analytic and satisfies unitarity

in the form

S = - ; >
ImT(s+) T(s+)9(s so)q(s)T(s_) 4+ F(s) 4-%}%5), s sI.
(4.10)
provided that D(s) has no zero in the cut plane. As in Section III,
a practical test for the presence of ghost zeros of D(s) may be based

on Levinson's relation, which in the present case holds in the form

8() = - ﬂ[r\b - nc]. _ (4.11)
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V. A SPECIAL CASE SOLVED BY GONZALEZ-ARROYO
We return to the two-channel pfoblem of Section II and discuss
a special case treated by Gohzilez-A?royov[4,3]; namely, the case
in which the left-cut parts of Tll and le vanish, and non-

relativistic kinematies hold:

.

Bn(S) = 312(3) = 321(5) =0, ‘ (5.1)

- 5,
%}s) =8 (s - si)(s - si) , 1=1, 2.‘.-v (5.2)

Because %}s) grows at infinity, we must assume that Bzz(s)

vanishes more rapidly than does B(s) of Section II. Instead of
(2.4iv) we take

|B22(s)| sks¥, s3»s

' -0, s - gu .
1322(5) - B,,(s yos ks | s =%, st ys > Sqs
1 .
3’< a <1, 0<-u<l/2. (5.3)

For a given B(s) satisfying (5.1), (5.3) we seek the gener;l
T(s) satisfying (2.2i) - (2.2vi) and bounds such as (5.3) instead of
(2.2vii). For such a T(s) tbéié is a s . éétisfying‘(Z.Si) -
(2.5v) and a corresponding D{(s) as defined in (2.16), having the
representation(2.19). Consequently, the integral equation (2.27)

holds. The first row of the matrix equation is trivial, giving
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Nij(s) explicitly as a function of CDD parameters:

e
(R.C.) ..
_ ) i7i015 « '
N‘lj (s) = Z ‘“—S——_—é— r 3 =1, 2 . (5.4)
i=1 *

From the second row of the integral equation we have

n
c _ o
- f ; 1
N =
21(5) Z l[Ri * B(s)] ¢ s - 0,
i=1 21 1
i
1 [ Byts) - By (s ,
*T | T ~ d,(s")N,, (s")ds' (5.5)

n
C
= 1
N22(s). Bzz(s) + Z {’[Ri + B‘(s)] Ciizz P
i=1 1

Bya(s). = By,(sh) e
e a,(s )sz(s')ds'i (5.8)

The iqtegral in the D matrix elements (2.16) corresponding to
. . "
(5.4) may be evaluated to obtain

n

c
- ' (c.) ¥ . 1

Dlj(s) Glj + z: (Ci)lj + (R.ici)lj Psl -0+ 1q1(s)] } s

i=1 . . 1

(5.7)

We suppose as in Section II that the homogeneous version of the

matrix integral equation for N(s), equivalent in the present case

to the homogeneous version of the scalar equation (5.5), has no
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non-trivial solution. Then if there are no CDD poles, the integral

equation (5.5) for N__(s) 1is homogeneous and has only the trivial

21
solution N21(s) = 0. without CDD poles we obtain only the trivial
solution in which channel 2 is completely decoupled, and
Tll(s) = le(s) = Tzl(s) =.0. Thus, the solution of Gonzéloz-Arroyo
‘neceSsarilyAentails CDD 'poles as defined in the two-channel
formalism.. Since Gomélez-Arroyo reduced his problem to a one-
channel case by a special device, this fact wao not.previously
apparent.

To roduce the'problem to a one-channel case through

our formalism, we circumvent solution of Eq. (5.5), and require

solution of (5.6) alone. Accordingly, we suppose that the solution

of (5.5), in a Banach space appropriate to conditions (5.3), is given;

see the remark of the end of Appendix B. The solution N22(s) obeys

conditions like (5.3); of course, the same is true of the solution

Nzl(s) of (5.5). Because the inhomogeneous term in (5.5) is

0(s_1), it is possible to show that N21(s) =0 (s_l) and

~%

(s.) = 0(s °). The proof is done by showing that the integral

Dy15:

operator "improﬁes" the asymptotic behavior of NZl(S)' That is, if

- . . -20+ . .
N21(s) = 0(s 0") then the integral is Ofs %). By iteration of

this argument one eventually gets N2l(s) = O(s-l).
We exploit the symmetry of the T matrix, writing

T(s) = a(s)/ det D(s) and

le(s) = - Nll(s)D12(s) + le(s)Dll(s) =

(s). ; (5.8)

=

(s) = - N22(s)D21(s) + N

21 218005,
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From (5.4) and (5.7) we may.compute ﬁlz(s); it is just a rational

function, since the terms from the imaginary parts -of Dlz(s)

<

and D..(s) cancel. With that observation and a knowledge of

11

N__(s) and D..(s) we can use (5.8) to find the general form of -

22 22

A

N_.(s) and D_ (s). The rational function‘ le(s) is

21 21

le(s) = - Nll(S)ReDlZ‘S) +,N12(S)Rénll(5)
-~ (R.C.,) . ' v ' \
ooy Sfu g AP T
ST L Ts-o; €, + (5 ;)T RC 12—
i 3
- STH(R,CL) - 1
), Tiviti2 A PN N
M s (1t LGP s T 9PTR j)n?s-o,J
it . . 3
j
=¥ s >, (5.9)
P(s) 1!
where
n
[o4
P(s) = ﬂ (s - oi) B (5.10)
i=1

and ®(s) is a polynomial of degree not greaoer»than nc—l. The

second order poles, corresponding to i = j in the sums-of (5.9),

cancel -because of the condition det Ci 0.
. Equation (5.8) may be construed as a Riemann-Hilbert

boundary Yalue problem for determination of DZl(S)' Since

N2.(s) = - Isz'(S)/qZ(s)' the real part of (5.8) reads
J J
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q () UL _ = ImD ,(s,)ReD, MR )+ ReD,, (s,)ImD; . (s)
2 "P(s) 22454
- [b‘z'z"(s+)ﬁ-'21(s;) =y spy ()] 28 5

21 7+
By the rearrangement dlsplayed in the second 11ne of (5 11), the

Riemann-Hilbert problem 17] is transformed to an inhomogeneous Hilbert

problem ..17] :

{ 22(5 )] 2iq2(5)¢(5)
D,. (s ) =| —F— (s, Yt o . (5.12)
21 - 22(s+) 21 P(s)D (s+)

To solve the Hilbert problem we invoke the ubiguitous phase integrai,

a(s) = exp —[% . 2%5(54‘?'—5)] . T (5.13)
2
-2i6(s) _
e’ = D22(s+)‘/D22(s_) 3 (5.14)

Notice that 8(s) is the phase shift for the‘amplitude N22(s)/D22(s),
which obeys elastic unitarity, and is not to be confused with the

channel 2 scattéring amplitude T22(s).”'It is easy to see that

D 2(s)/d(s),‘ being real for s> Sy is a rational function with-

poles only at s = oi; we may write

Y(s)

Bls) d(s) o : 0 (5.15)

D,,(s) =

22

where ¥(s) is a polynomial of degree n, equal to the number of

zexos of Dzz(s). Nothing prevents Dzz(s) from having zeros, in

36

and it is real as required. 1In addition, we know that D

analytic in the plane with cut [52’

s = Gi, and that it vanishes at infinity:
n _-n

D21(S+) = 0(s

21 (8)

_!5) .

‘is

qen§§a;,_sin¢e poles of. sz(s)/DzéisY"arewnot poles of the full 'T
matrix. We have §(= LT -n.), ~1 "
trix. We have (®) = (n nz),, since D22( +) ‘1 “and
d(s)) ~ 8(®)/T , s>+ > - Now substitute - d(s_)/d(s,) . for
DZZ(S_)/D22(5+) in gs,LZ) and use,.(5.15) -to obtain
Lo (s) '
21 P21 (840740 - D2‘1('s-)/d(s—)']' =
B KL 1P s>s (5.16)
P I z - .
[d(s+) I “P(S) 2
Thus we have the discontinuity of - D21(s)/d(s) over the>cu£'[s2, ),

®), except for simple polés at

. Since

-~ . c 'z e .
é($)= s at infinity, D,,(s)/d(s)  obeys an unsubtracted

dispersion relation if nc > nz.,vThe right hand side of:(S;IG)‘is

~%+n_-n
z

O(s )} since degree (Q)>$ n_ - 1. For hc > nz' we have}the:

representation

9, (st $(s') -ds'

n

el

.
D .(s) = d{(s) [-
1 , 2\1/( -

S, ld(s +)l * ).s s

im]

1

[=]
§ )y
d(o.) s - 0,
1 1

]

(5.17)

Note that d(s) may be redefined through multiplication by a constant,

but that (5.17) is invariant to such a change

For n -n =n_ >1, we must introduce n
z c s s

replace (5.17) by the formula

@=+2d, ¥ » 2"y,

subtractions,

and
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i Do (t))
AN 21 i 1
Dpls) =Qas)  —FEY (s - £
P i i i
i i=1
@
n
(s") ' -5 ()
1 9 o (s") as' RN i'21 1
I 2 0 0 [ J T
T L las' )| Y(s') Q(s")(s s) [ Q(oi)d(oi) s -0
2 + i=1
(5.18)
where Q(s) is a polynomial with distinct roots ti < S,, none of
the £y coinciding with a oj. The function NZI(S) = - Iszl(s+»@Z@)

may be computed from (5.8), (5.9) or by taking the discontinuity of
(5.17) or (5.18). By either method we find

D, (s)

: ;P21 o (s)
N_.(s) = N__(s) | :
21'% 22777 (D (s " P(s)D,,(s)

The representation (5.17) of D21(s), is determined by

(Ci) and the functions &(s), D22(s). The latter are in turn

21

determined by the matrices C; and R, through (5.9), (5.6), and

(2.16). Thus, we have determined D_,{(s) in terms of the input

21
parameters Ci' Ri without having solved the integral equation
(5.5), provided that nC - nz 2 0. On the other hand, we can assert
that N21(s) as determined by (5.19) and (5.17) in fact solves the
integral equation, since the matfix D(s) constructed from a solution
of (2.27) satisfies all the requirements that led to the unique.
function (5.17).

1f nc - n, < 0 (which implies that nz > 2), then
D21(z) is not determined uniquely by the above considerations,

because of the unknown subtraction constants'Dél(ti)/d(ti) in (5.18).

. (5.19)
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Consequently, we cannot be sure that the corresponding NZl(s)
satisfies (5.5). Nevertheless, we can démonstrate that . T(s)
constructed from (5.18), (5.19) and the other previously determined
eleqents of D(s) and Ni{s) actually is a soiutién of our probleﬁ

for arbitrary subtraction constants (provided, aé usual, that

det D(s) # O in the cut piane). 'ItAthen follows that N21(s)
constructed from (5.19), (5.18) with arbitrary subtraction constants
sat;sfieé (5.5), but with a value of the parameter (Rici)zi which may
only be computed a posteriori as %iT(di) - B(Oi); Ci 21
T(s) constructed. To show that T(s) (constructed with (5.18), (5.19)

from the

and arbitrary subtraction constants) is a solution of our éroblem, we
have only to verify unitarity, since proper analyticity is evident,
and symmetry of. T(s) was ensured through the use of (5.8). Unitarity
follows from the calculation (2.36).if (2.35) holds. The first row of

(2.35) is trivial because of (5.4), and we have AN22(S) = (ALTCSXD(S)££=

ALT2ﬁ$Dzze) as is usual for a single-channel N/D problem. To finish
the proof of (2.35) one has only to show that AN21(S) = ALTZZ(S)D21(S)'

and that is easily done by (5.19) and (5.18). For s > s N21(s) =0

2'
because NZl(s) is real, being the discontinuity of the product of

two real-analytic functions displayed in (5.18). For s < 52, (5.19)

gives

;DZI(S)~
AN21(S) = AN22(S) —— = ALT22(S)D21(S). (5.20)

D,,(s) .

To make contact with the solution of GonzileZ-Arroyo, we

S
look at the K matrix 11921
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K(s) = N(s) ‘[Reb(.’é)] T sys, (5.21)

The solution in question is such that the element K. (s) is equal

22

to the K matrix for the “decoupled" channel 2 problem, namely

sz(s)/ReDZZ(s):
K. (s) = . (N22,/ReD22)ReDll - (N, /ReD ,)ReD. .
22 ReD , - (ReDZI/Repzz)ReDlz
= N22(S)/ReD22(s), . (5.22)

Condition (5.22) can be met in only two ways: gither ReDlz(s) =0
or Nzl(s)ReDzz(s) _"N22(S)ReD21(S) = 0. The latter equation implies
that K12(S) = Kzl(s) = 0, however, from which it follpws that
le(s) = TZl(s) =0 ; i.e., that the solution is trivial. We

must take ReDlz(s) = 0, and by (5.7) we see that the Gonz&lez-Arroyo

solution corresponds to a particular choice of CDD parameters such that

(Ci)12 = 0, (Rici)l2 = 0. } (5.23)

With ReDlz(s) = 0 one has

le(S)
o8 =% (8 =555 &) (5.24)
22
and

c ReD__(s) |

1 21'%7 ¢
K, (s) = %N (s) - N,_(s) b (5.25)

11 ReDll(s) 11 12 ReDzz(s)J
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According to (5.4) and (5.15), we may write .(5.24) in the form

¥1p08) 1

¥(s) Red(s)’ (5.26)

: K (s) =

wherxe le(s) = le(s)P(s) is a polynomial of degree not greater that

n =1, Gonzgiez—Arroyo has

o]
(Q)(s)

= - ig X___ts)
Klz(s) [l 1q2(s)K22(SJ d(s+)

Dpalsy) 0 (g
ReDzz(s) d(s+).

(o)

_ X (s) : )
Re d(s) ' (5.27)
(o) ) ; nc_l-nzi
where Yy (s) is a rational function whith is O0(s ) at

infinity and has poles at the zeros of D22(s) (i.e., of ¥(s)),

in agreement with our fﬁnction le(s)/W(s) dﬁ (5.26). The argﬁment

(o)

of Ref. 4 seems to_allow poles of ¥ (s) ét other points as well,

but our generally valid expression (5.26) shows that additional

poles are not possible: we have X(O)(s) = le(s)/T(s) with poles only
at the zeros of D22(s).
Next let us evaluate (5.25) using expression (5.17). With

the help of (5.15) and (5.14) we det

¥ _(s) q,(s") ' '
K11(S) _ Nll(s) + 15( P 2 ¢(s') ?s
sy {m s Id(s' )12 Y(s') s' - s
2 + ]
n, .
Z (Ci)21 1 qz(S)tanG(s)d)(s)-] 1
- + r S 28,_.
= d(Oi) s -q |d(s+)|2W(s) ReDll(s) (5?28)

@
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The corresponding formula in Ref. 4 is

' g o, n =n_ ,n +1,
S , v , \2 . ) c .; z
(o) P f qz(s ) "12(5 )2 - ds' on= ) . (5.32)
K..{(s) = h (s) + = - — -
1l o arst 112 ¥{s')] s' -s ' ‘ n -n-1 n_-n >1,
)L I (s +)| ) . c 3 c 2
. Namely,
a,(s)tand(s) Y. (s) .2
+ 2 — 12 s>s (5.29) 1 By w
2 ; ) ’ > Sy . n-] z o
las0]® - ¥ . P Y T e S L R M e Al at |
c - STt T {ace )'Iz\ ¥eer tn(t—s)j'
) - (o) o m=0 i=l /s, +7 1 T E
where h (s) is a rational function which has poles at the zerxos : . _ : ) ’ :
(5.33)

of V¥(s) and is 0(5_1) at iﬁfinity., In order that the terms
where the sum over i is due to the poles of 1/¥(s) at points- ti’

/2

proportional to tand({s) in (5.28) and (5.29) agree, it is necessary ) 3
assumed distinct. The bracketed factor in the integrand is O0(t Y,

that ¥(s) = le(s) and ReDll(s) = 1. According to (5.9) and the

so that we can remove all n subtractions in the integral by

condition ReDlz(s) = 0 already imposed, &(s) = ¥, (s) follows from

12 .
iteration of the identity
ReDlz(s) = 1. By (5.7) the latter is true if and only if

. S = S ! % 1 + .].'. (5 34)
(Ci)ll =0, (RiCi)11 = 0. (5.30) s - t)tn‘ o lis-t tj °
with &(s) = le(s) we still have to resolve the discrepancy th§s
between the integrals that appear in (5.28) and (5.29). Consider ¥ y
. . Ref () = 129 4, 129 &
the function : Yi(s) m |d(t )|2 ¥Y(t) t -s
s, +
Lo .
vy y
frey - 22901 N T . )
‘P(s)‘rrJ sld )|2 Y(t) t-s ° e s 2
s Jate, Z p | Qi) TE BT g
Z 7 7 ¥ tos tREN (5.35)
_hc+nz—% J ld(t )I { ;
The bracketed expression is 0(t } at infinity and we are Sz
assuming that ncz n; hence the integral is O(S-%). The factor
n -n -1
z

in front of the integral is Of(s ). We may write a dispersion

v

relation for f(s) with n subtractions where
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where
n
n-1
{m) m n E: ai
R{s) = 2: £ (o)s + s
. X s - t,
i=1 i
m=0

-l ® . (t) ()\2
+ E L % 12 at (5.36)
T g (t) m+ 1" °
g . t
m=0 -]

2
lace)]

We see that the integrals in (5.28) and (5.29) differ by a rational
function which has poles at the ti and‘which in general is OKSn-l)
at infinity.

Finally, in order that (5.28) and(5.29) be compatible the

rational function

n

_ Y. (s) = (C,)

12 i’ 21 1 :
N L —_ e -
0@ *Re - Yo ) G e 3
. s i i
i=1

must have the properties required of h(o)(s). If
nc = nz, nz + 1, thgn R(s) = O(s—l) And all terms in (5.37) are

O(S_l) at infinity as required. Otherwise, the seocond and third terms

of (5.37) must cancel appropriately at infinity. Gonzélez—Arroyo
tacitly' assumed, in fact, tﬁat n, = 0. With that assumption we
get a solution of his form when nc =1 and the CDD residues
satisfy éonditions (5.23) and (5.30). Even though the solution of
Gonzéiez-Arroyo contains arbitrary rational functions, it is far
from being the general solution of the problem posed.
VI. REMARK ON A UNITARY PARAMETRIZATION
SUGGESTED BY YNDURAIN

We have shown how to construct properly analytic amplitudes

satisfying the unitarity equation (2.2v), but the construction has the
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disahanﬁ@e of requiring the solution of an integral equation. For
phenomenology it would be useful to have a parametrization of T(s),
analogous to the usual K matrix parametrization, which would

. L e ’ S
automatically satisfy (2.2v). Yudurlin ilj has proposed a parametri-

.zation which has the required property in the region sl$ sg S, -
Define T(s) such that Eij(s) = Tij(s) except for i = 3j = 2,
and
L _ '
- N _ l Q(sl)dsl
T,,(s) = T,,(s) - = -3 - . (6.1
o}

There is nothing special about the lower limit O  in the integral ;

any lower limit less than s, will do. Define a matrix vﬁ(s)k

1
which is related to T(s) in the way that M(s) = K_l(s) is related

to T(s):

T(s)™} = M(s) - ip(s). : (6.2)

Now we may show that the unitarity condition (2.2v) is equivalent

to the reality condition M(s) = M(s)* in the region s, < s s

1™ 2°

Let us consider the region s 2 s suppose that ﬁ(s) is real in

ll

that region, and write

T(s) = T(s) + T(s),

[o- 0 1

%(s) = SL B
0 % Codistids’ !

s' - s

(6.3)

0
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Since reality of M(s) iimplies that . ‘ . T(s)_l = M(s) + ip(s). . (6.8)

AT(s)

? &a)p(s)T(s_) ) (6.4) The relation between M and M is as follows:

we have - _ - _ o - M11 - lpl MlZ
1My, — 00Ty
= = ' i) M2 ~ 2
AT(s) = T(S+)D(S)T(s_)-HALT(s). (6.5)
[ . 2 _
+ -1 M - - M
Also, L+, — 30Ty, My~ 0 12722 12 »
= : ’ : . (6.9)
. : M2 = L
- - M, -ip
T(s,)p(s)T(s_) = T(s)p(s)T(s_} + U(s), (6.6) , 22 2
where . . . Clearly M(s) does not change continuously into M(s) at s = 8,3
.Uij = T_ilplT+lj + T_izpz T+2j . ‘ : rather. at s = s, we have : o » .
" : - 2 o
a M MMy
.3 = .2 - - _ M= 22 . . (6.10)
—i1P1%ey *F TeioPaTioy o . ' 14,2 g 2
T . 12 22 .22
* T-ilp,lT+1j + T—izpzT+2j‘ . The matrices M(s) and M(s) are two different analytic
functions which one would try to represent in terms of a few empirical -
= i T + T P Ll . . .
pziT—i2T+2j. T—i2T+2j + T—i2T+2j; 6i26j2 (6.7) parameters, so as to meet the following conditions
’ i) M = M(s)* ~s ~
(1) M(s) = M(s)* , s, s ~s,
(ii) M(s) = M(s)?*, s > 52
Since U(s) = 0 for s g S, Eq. (6.5) is indeed the unitarity _ .
. (iii) M(s) and M(s) are related by Eq. (6.9), s S
i < < . L . -
equation for 81% 87 S2 (iv) The analyticity properties of M(s) and M(s) should

For s > s however, uni ity is n equi M ..
2’ ' tarity ot equivalent to M(s) reflect to a reasonable extent the correct analyticity

being real, since U22(s) # 0 in that region. Indeed, unitarity for properties of T(s), especially the nearby singularities

s> s is equivalent to M(s) = K-l(s) being real, where

2 corresponding to the principalbparticle exchanges.
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It seems.rathér difficult to satisfy all of these requirements
simuitaneously; in particular it éeemé ha?d to éatisfy (iii) in such
a way that (i) and (ii) would also hold.

We would expect ’Yhdurains proposai.to be féther.
limited in usefulness. The only alternative that we can think of,
short of sd1ving the  integral equétioh (2.27), is to make a pole
approximation for B(s). As.is w§ll known, the kerﬁel of the equation
is then separable, and solution of the equation is reduced to
quadratures and solution of algebraic-equations. Unﬁortupately, fpr
a reglf?tic fépfesentation of B(s) one usually needs so many poles

that the resulting formulas are not vVery illuminating -

TR
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APPENDIX A
ESTIMATES OF PRINCIPAL VALUE INTEGRALS
We are concerned with the asymptotic behavior and continuity

properties of principal value integfals deEhé form

-
s - [ £ @
S . «
o

In the following a, 8, and § are fixed positive constants, and K is
"some positive constant® which is understood to have different values in
different inequalities.

Lemma l: Suppose that f£(t) obéys the conditions

< |57 % °
@ lew] ¢ 5 |—=—
t

8-§ $
t, - s t. -t -
ki 2 "o 1 2|
(b) |£(t)) - £(t)] \<—a[ 3 ] l T -
t] 2 1 .
t, >ty a+6<1, 8>68 . (a.2)

Then the integral g(s) of (A.1l) is such that

. 8
s S -8
K 1 2 .
(a) Jats)| Sia; (b) Jatsp - als)l € = S AT
s sl 1 ]
' (A.3)
Lemma 2: Suppose that £(t) obeys the conditions’
)
t - s
K
@y [gw)] < —— [ = °];
. (4nt) T .
-8 ] 8
®) e - £ie)] ¢ — B2 ” S‘T |tl 2| N
' 1 2 tnen? | %2 J e |
1
t. >t a>1l, o >34, (ar.4)

2 1’
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Then the integral g(s) of (A.1) 1is such that

a) lats)} g ——h—EE:T ;
(Lns) s
- s .
. 1 2 - .
(b) Ig(sl) - g(s2)| \<;~.K—a_ p I r s, 2s; (ALS)
(2ns.) 1
1
(A.5)

We give a proof of Lemma 2: a'proof of Lemma 1 follows the

same. lines , but is somewhat easier. To verify (A.5a) we write

,’us e
; .
j + j =g, * 9,0 u> 1, _ (A.6)
4 us ’

. g9=P

and majorize 9, immediately:

v g, \<Kj _;_L \<Kj . dta < :1—1 ) a7
: n"t(t - s) tAnt n~ s
us s
For gl' we use the identity
Us : :
. £(t) ~ £(s) i - 1yst

g,(s) = [ ra— dt + f(s)ln.i st (n.8)

s
(o]

By introdgcing (A.4b) and (A.4a) in the first and second terms of
‘A.S), respectively, we see tﬁat gl(s) is bounded at small s,
say s < 250, and consequently (A.5a) holds aﬁ small s. For

s > Zso, the logarithmic term in (A.8) clearly satisfies (A.5a).

The other term is decomposed and bounded as follows, with 1/2 < A<1:
3

50
A3 _us
v l £(r) - £(s)f
: . t - s
so_ As
Ns ;e
<« o dt 1 j dt 1
~ ] -9
g Son?c [xs = sll 8 Xs s &n°s |t - sfl
°
As
K dt K rp du P
> -0 |
1 Js 03 Ln%s J)\ |\1 ~ lll [ Ln?s
o .

Thus (A.5a) is prbved, and we.see that the dominant part of g(s)
at large s is from the tail of the.integral, gz(s).

To establish (A.5b) we Split the integral as follows:
= ] ) ; =g. +qg.. i S .
g=r" + 9 * 9 . _ (2.10)

The bound of 9, is easily obtained:

' s ' dt
[92¢51) ~ 9,05, < «|%1 ™ %2 | a '
. stz Lnt(t - sl) (t --s,)

(o] .

g Kis, - s s. - s
ckls. - 5| dt 0 e St PR 1”7 %
&K sl 52 ; 3 a > a BN 2 s

< t 0"t s _4n"s in%s_. 1
2s . 2 2 2
) 2
s. - 5,6
< aK 1 2! o ) (a.11)
ins 51
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Now put S, = sl (1 + b), and note that we may restrict attention to

sma].l b, say b<1/8. For b >1/8 the required bound is a direct

~ consequence of (A.S5a):

latsp) - ats )] < Josl + |atsls —E—
: &n" s
1
5 ~s,,$
i S 1% (A.12)
a-1 a1 s :
in s, n s, 1
Let .us extend the domain of f(t) to include the interval s /28 tgs
' : P o ©

putting £(t) =,0 on 'thgt interval. The property (A.4b) holds for the

extended function; for ~tl <s and t

o 2>/so"_

' s
[£(t) - £(e,)] = £t < ——f;—— (1 - —°) :

&n t2

. e-§ ) :
s , t t, - s | t, -t
¢ —= (1 - t—°) (1 - ;1—) £ |2 o [—1 2] . (a.13)
in tz 2 2 2t t t

By (A.8) we have

2s

2 ) ) :
R 2s, - s
( = /' —‘“f(t) = f(S) : ( 2 =
9,(s) J' t - s dt+ f(s)in s - s,/2 hl(s) + hfs),

s°/2

(a.14)

. C 2s, - s
2 !
]hz(sl) - hy(s)| ¢ [£(s)) - f(sz)llzn(s — s/lz)i
1 %

25, - s 2s_ s
[£(s )|.',Qﬁ( 2 1)_ on (__Q_
2 s, = s /2/ s, =s /3 °

52

The logarithmic factor in the first term of (A.15) is clearly

bounded by a constant for bgl/8 and s, » so' For the second

1

term we use the mean value theorem, noting that

.
2s2—s

sup

s, s s

& sup

2s, - s
i:zn( 2 ) + sup

ds s - so/2.

s -8 l
2 of?

1 1 K )
==t — & — . : : (A.16)
Sy SpTS427 5
. . . . 8
The difference of logarithms in (A.15) is then less than Kb < Kb ,
and the required bound of t;he increment of h2 is obtain_ed from

(A.15). To estimate the increment of h. we break the integral

2
into three parts,
sl(l—Zb) sl(1+2b) 252
hl= + + = Jl +-32+j3 .. (A.17)
({2 . 1(1-2b) sl(1+2b)

The separate terms in the increment of j2 are so small that we need

not consider their. difference:

13,(s9) =13,0 )] 13,5 + [3,0s0]
sl'(‘l + 2b)

K / ‘1
£ ———

$, a §
s) dns). s, (1-2b) lt -5 ! 2

rl+2b ¢
_ K . a H 1 + 1 J
pon) I rre —13
1-2b Uu—ll lu-1-b|"}

Ry A , ' (a.18)

®
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Next we estimate
3pisy) #3505 = 3 0s)) = 3,(s))
rsl(l—Zb) fsz
- e - 265, ! « gt
Tl Sl 2 L ~ t - s
s /2 sl(l+2b
i"s_(1-2b) 2s, ° “
Pt P : c 1
N * A Rl G
: ’ i " 2 1.
50/2 51(1+2bU
= A_19
k1 + k2. ( )
The part k1 is easily diéposed of:
2s_ - s 8
[ 2 1 K
k.| = |£(s;) - £(s)] [8n — )I < b - (.20}
I 1I 1 2 \sl 59/2 Qnasl

For the first integral in k2 we need a further decomposition to

handle the combination of two poles and a logarithm:

1-
(Sl( 2b)
|k |<Klsl s)| | dt L k L T
21l = BT Sl 5, a TR
s /2 tan’t |t - 5|
-1-2b
- b ! du 1 1
=xb ! - T
; uéﬁnas u. |u-1-b| 76lu - 1|
“8o/2s ! o
1
' 172 -1-2b 3
cxb | T L u
<K H S a a ! 1-8 :
i ; - - - 1]
Jso/28 u &n slu n s1 J1/2 lu 1 b[ |u |_
(A.21)
. sy2 1-2b s
: - b
< kb’ i 5 5dta + i . du2-55 gb 1+b6 1 le
! - -1 : n's
151 sos2 EARE s o ju-1] o n"s,
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To complete the proof of Lemma 2 we treat the second integral in k2:
. e v252 )
lk | Ki 1 2’ . dt 1
221 € 5 a ' 1-6 't - s
sAns, s, (142b) | - sl | 1]
s - s  r2(1#b)
e S i du 1
T 8 1-5, a | : 10 Ju - 1
5,8, 2n S, Jiiop’ fu - 1 - bl | I
~2(1+b) s
Kb i : du <« Kb . (A.22)
o a [ 28, a
-1 - 2
fn s, 142b [u -1 - b} n's,

Notice ﬁhatbif two functions fl(t), fz(t) satisfy (A.4),
then the product fl(t)fz(t) sati;fies (A.4) Qi;h the exponent
a replaced by 2a. Consequently, when we estimate the integral in
(2.3) using (2.2vi) and thé definition (1.2) of 0O(t), we find that
it obeys conditions like (A.5) with a = 20, 8§ =U., Since 20 - 1 > @,
we therby establish conditions (2.4iv) on B(s).

APPENDIX B
FREDHOLM THEORY OF THE INTEGRAL EQUATION

We show that the integral equation (2.27) may be treated

by Fredholm theory »201, under conditiéns (2.4iv) on .B(s). We.map

the interval El,w) onto (O, 1] . The choice of the mapping

i

is not crucial; we take t = sl/s for convenience. In a numerical
calculation of the Fredholm solution it is usually best to choose

the mappiné t(s) so as to make the integrand finite and non-zero

"at the point corresponding to s =%, We multiply the equation by (lns)%

. . - I a
a > 1, and seek a solution ¢(t) = (Qns) N(s) in a Banach space

U conéisting of real matrix functions ¢(t) continuous on the closed
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" .
interval . | i ‘ : ’ 3
al. 0, 1.]. with norm when ]tl - t,| [<6), where { is independent of n. With

~

l
fn(tl, t.) defined as the left side of (B.4) ,:‘ {¢'n} any bounded

”¢” = sup Mij ‘(t)l . v (B.1) sequence, and sls S,r we have

tlirj N .
o0
. . P (s -B )
Le s!
t us define the operator K by the formula.. fn(tl’tz) < Kl(gn_;-lsx - (-ﬁnszg lz z) s (s o
; £ 2 (gns')
. @ . 1
- a | B(s) - B(s' : b
K¢(t) = (Zns) f “_s — Sl(s ) p(s_l) QL)Q ds'. (B.2) - |Bi'(sl)_Bi'(sl) Bi' (52)_-Bi._ (s
-5 - (2ns*) + ks, f ) | sl [ CR = g+h.
) =k 1 2 (gns'
J 1 (B.5)

As we shall see presentl_y, K maps U into itself if X¢(0) is

defined to be zero. Accordlng to the Ascoli-Arzela criterion ‘20]’ X The right side of (B.5) is independent of n, and we have only to show

i R R . - R _
S compact (completely COntlnuous) if. the sequence {K¢ ®)} is that it vanishes|with ltl t2| . The analysis of (A.10) (pr.22),

bound s . . i : edn® i i i i
ed and equicontinuous, where . q ¢n(t)} is any bounded. simpler now because we needn't bother with subtraction of logarithmic

sequence of functions in U. terms, shows that the second term h in (B.5) has the bound

Let {¢_ (t)} be i |
¢, (6} a bounded sequence in U, ¢ |} <k, and check 181 7 8, s 58 )
n . K - K
boundedness of HK¢ [| as follows' ’ h(t1' £ < *1 s ) OH'I ¢ l S
: (s) - B,.(s") |l H (mey) ' (mSl) ’
lI%,]] < swp 3" (ne)® 0,0 st (8.3)
s L s -'s (Zns')a )0" ) -
i sl Also, we may bound the two terms in h ‘separately to get
An analysis like that in (A. 6), (A.7), and (3.9) (but not requiring . " 7 (lnslfl M
h(tl t2) < =1 + K -1 < o (B.7)
, .
subtractlon of a logarlthm) shows that the integral in (B.3) is (msl) (R,nsz) , (R,nsl)
-20+1
0(&n s), thus |[x¢ < i ' i
Kk since o > 1. I ’ ' i
n|| < ncidentally we have For any ¢ > 0, let us divide the interval of t, into two parts,
shown that K¢(t) + 0, t + 0. With the definiti | |
. ef K =
’ inition ¢ (0) 0 the tz ¢ nle and t2 > nle), where nple) is chosen to make
function K¢ (t) is continuous on the closed inferval iiO,l‘; ; K
maps U into itself.
The requi t of - ) &2
qulrement of equicontinuity of the f ti [ -1 ' 5.8
‘ y unctions K¢ (t) iln(so/m)]u (B.8)

is that for any ¢ > 0,

_ijl <e (B.4)

s limn(tl') T Ky ey

&
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2~ 1
we have by (B.7) that h(tl, t,) < €/2. on the other hand if

with M as in (B.7). Then if t < n(g) and |t - t. | < nle),

t2 Sn(e), we have by (B.6) that

|
<g/2 (B.9)

c l_tl__,t2
(4ns )0‘-l n(e)
o .

. for ]tl - t2| less than some Z(€). Hence for

|tl - t2| < fdn Dwe), c(e)] = §1(£) we have h(tl, t2) < E/2.
To majorize the first term g in (B.5) we apply the mean value
theorem to the difference of logarithms and bound the integral as

usual to obtain

K
(Znsl)a

g(t,, t

1 ) €

2

p l . : . (B.10)

Alternatively, we may bound the two logarithmic terms separately

and find

K

) £ — -1
(Qnsl)a :

g(tl, t2 . (B.11)

The argument used above then shows that g(tl, t2) < €/2 for
kl - té[ less than some 62(8). For Itl - té| < min{ﬁl(e)[ Q(EJ
= §lg) we have fn(tl, t,)) < e, and the proof of equicontinuity -and

compactness of K is complete.

Our hypothesis B(s) = O([lné]_a), o > 1, is close in

some sense to being the weakest asymptotic3éqndition'oanB(s)b”fhét Y

.

leads to a Fredholm equation in a classiéal Banach space of

continuous functions.. With B(s) ~ (&ns)il the operator K is
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non-compact in a space analogous to U, but may be regularized by
extraction of a non-compact part in such a way that the problem is
reduced to a reqgular Fredholm problem ;2{%. Under stili weaker
conditions on B(s) a regularization is bossible, but only at the
expense of new arbitrary constants entering:the equations 1?2].

Since Eq. (2.27) entails a compact operator, it may be
solved numerically by various well-developed methoés; see for
instance the review of Atkinson {2% and the book of Anselone ié%é,
Which deals with the rigorous justification of discretization.

The operator of Eq; (5.6),; multiplied by sa, is compact
on a Banaéh space V under conditions (5.2), (5.3) on P(s) ana
B22(s). Here V consists of real continuous functions

¢(t) = N,_(s) with

22

[16]] = sup|o(e)] . (B.12)

The proof of compactnéss is the saﬁe as that abéve, but with the
estimates of Lemma 1 of Appendix A replaéing those of Lemma 2.
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