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ARTICLE

Spread of pathological tau proteins through
communicating neurons in human Alzheimer’s
disease
Jacob W. Vogel1✉, Yasser Iturria-Medina 1, Olof T. Strandberg2, Ruben Smith 2,3, Elizabeth Levitis1,

Alan C. Evans1,92, Oskar Hansson 2,3,92✉, Alzheimer’s Disease Neuroimaging Initiative* & the Swedish

BioFinder Study*

Tau is a hallmark pathology of Alzheimer’s disease, and animal models have suggested that

tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We

test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau

spread, and compare these simulations to observed patterns measured using tau-PET in 312

individuals along Alzheimer’s disease continuum. Up to 70% of the variance in the overall

spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the

spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ

burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in

accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads

through neuronal communication pathways even in normal aging, and that this process is

accelerated by the presence of brain Aβ.

https://doi.org/10.1038/s41467-020-15701-2 OPEN

1Montreal Neurological Institute, McGill University, Montréal, QC, Canada. 2 Clinical Memory Research Unit, Lund University, Lund, Sweden. 3Memory
Clinic, Skåne University Hospital, Lund, Sweden. 92These authors contributed equally: Alan C. Evans, Oskar Hansson. *Lists of authors and their affiliations
appear at the end of the paper. ✉email: jacob.vogel@mail.mcgill.ca; oskar.hansson@med.lu.se

NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15701-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15701-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15701-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15701-2&domain=pdf
http://orcid.org/0000-0002-9345-0347
http://orcid.org/0000-0002-9345-0347
http://orcid.org/0000-0002-9345-0347
http://orcid.org/0000-0002-9345-0347
http://orcid.org/0000-0002-9345-0347
http://orcid.org/0000-0001-7147-0112
http://orcid.org/0000-0001-7147-0112
http://orcid.org/0000-0001-7147-0112
http://orcid.org/0000-0001-7147-0112
http://orcid.org/0000-0001-7147-0112
http://orcid.org/0000-0001-8467-7286
http://orcid.org/0000-0001-8467-7286
http://orcid.org/0000-0001-8467-7286
http://orcid.org/0000-0001-8467-7286
http://orcid.org/0000-0001-8467-7286
mailto:jacob.vogel@mail.mcgill.ca
mailto:oskar.hansson@med.lu.se
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A lzheimer’s disease is characterized by the presence of β-
amyloid plaques and neurofibrillary tangles of hyper-
phospohrylated tau at autopsy. Both of these pathological

phenomena can now be quantified spatially in the brains of living
humans using positron emission tomography (PET), allowing for
the study of disease progression before death and, indeed, before
symptoms manifest1. β-Amyloid plaques are detectable in the
brain many years or even decades before dementia onset2, but
appear to have only subtle effects on cognition and brain health in
humans3–6. In contrast, tau neurofibrillary tangles are strongly
correlated with local neurodegeneration and, in turn, cognitive
impairment7,8. However, tau tangle aggregation specifically in the
medial temporal lobes is a common feature of normative aging9–11,
itself associated with subtle cognitive effects12,13. Frank cognitive
impairment often coincides with the spreading of tau tangles out of
the medial temporal lobes and into the surrounding isocortex, a
process that animal models have suggested may be potentiated or
accelerated by the presence of β-amyloid plaques14,15.

Due to its close link with neurodegeneration and cognitive
impairment, tau has received special attention as a potential ther-
apeutic target for Alzheimer’s disease16. Perhaps the most com-
pelling features of tau pathophysiology are its rather focal
distribution of aggregation and its highly stereotyped pattern of
progression through the brain. Specifically, neurofibrillary tangles
first appear in the transentorhinal cortex, before spreading to the
anterior hippocampus, followed by adjacent limbic and temporal
cortex, association isocortex, and finally to primary sensory
cortex10,17–19. This very particular pattern has led many to spec-
ulate that pathological tau itself, or a pathological process that
incurs tau hyper-phosphorylation and toxicity, may spread directly
from cell to cell through anatomical connections20,21. Strong evi-
dence in support of this hypothesis has come from animal models,
which have repeatedly demonstrated that human tau injected into
the brains of β-amyloid-expressing transgenic rodents leads to the
aggregation of tau in brain regions anatomically connected to the
injection site14,22–25. An important caveat to the aforementioned
studies is that they often involve injection of tau aggregates that
greatly exceed the amount of tau produced naturally in the human
brain. In addition, the studies were performed in animals that do
not get Alzheimer’s disease naturally.

Unfortunately, there are many obstacles to studying the tau-
spreading hypothesis in humans. While autopsy studies have
provided evidence for tau spreading26,27, this evidence comes in
the form of limited snapshots in deceased individuals. Tau-PET
allows for the quantification of tau in vivo, but the PET signal is
contaminated by off-target binding that limit interpretations28–32.
Despite this limitation, circumstantial evidence has emerged
supporting the hypothesis that tau spreads through connected
neurons in humans. Studies decomposing the spatial distribution
of tau-PET signal in the human brain have revealed spatial pat-
terns highly reminiscent of brain functional networks33–35. In
addition, brain regions with greater functional connections to the
rest of the brain tend to have greater tau accumulation36, regional
connectivity is associated with longitudinal changes in tau bur-
den37, and correlations have been found between functional
connectivity patterns and tau covariance patterns38,39.

Despite mounting evidence linking brain connectivity and tau
expression, the aforementioned studies mostly either involve
comparisons between coarse whole-brain measures of tau and
brain connectivity, or are limited to only a fraction of brain
connections. The initial seeding of tau in the cortex is thought to
lead subsequently to secondary seeding events that cascade sys-
tematically through the cerebral cortex. Therefore, it is para-
mount that studies assessing the spread of tau through the brain
can effectively model the complex spatio-temporal dynamics of
this process. Therefore, we test the tau-spreading hypothesis by

placing a “tau seed” in the entorhinal cortex, simulating its dif-
fusion through measured functional and anatomical connections,
and comparing the simulated pattern of global tau spread with
the actual pattern derived from tau-PET scans of 312 individuals.
This method allows for a cascade of secondary tau seeding events
to occur along a network over time, more closely simulating
proposed models of tau spread in the brain. We then examine
how the behavior of our model interacts with brain β-amyloid
and what it can tell us about asymmetric tau distribution.

Results
Sample information. Flortaucipir (AV1451)-PET scans measur-
ing tau neurofibrillary tangles in vivo were available for 312
individuals spanning the Alzheimer’s disease spectrum. Demo-
graphic information for this sample can be found in Table 1.

Tau-positive probabilities enhance fidelity of tau-PET data. We
executed a procedure to mitigate off-target binding of
Flortaucipir-PET data using mixture modeling. Regional Gaus-
sian mixture modeling of Flortaucipir SUVR data across all
subjects suggested a two-component (bimodal) model as a
superior fit for all 66 cortical regions of interest, including the left
and right hippocampi and amygdalae. These 66 regions were
converted to tau-positive probabilities (Fig. 1c) using the Gaus-
sian mixture models. This threshold-free, data-driven transfor-
mation yielded a sparse data matrix with a clear pattern
suggesting a gradual progression of tau across regions of the brain
(Supplementary Fig. 1). When sorted from least to most tau (e.g.
ref. 18), the regional ordering greatly resembled the previously
described progression of tau pathology17 (Fig. 2).

Neuronal connectivity explains the spatial pattern of tau. An
epidemic spreading model (ESM) was fit to the data, simulating the
spread of tau from a single epicenter through macroscale brain
connections over time (Fig. 1). The ESM was fit over several
regional tau-PET datasets resulting from combinations of arbitrary
data pre-processing decisions (see Methods). All models were fit
using the left and right entorhinal cortex as the model epicenter.
Models performed best when SUVR data for the 66 cortical regions
were converted to tau-positive probabilities as described above, with
regression of age, sex, and non-specific choroid plexus binding from
the data occurring beforehand (Supplementary Fig. 2A, B, F).
Partial volume correction (PVC) (Supplementary Fig. 2C) and
exclusion of Aβ−MCI individuals (Supplementary Fig. 2E) did not
appear to impact model performance, though the best-fitting model
did not use PVC and excluded Aβ− MCI individuals (Supple-
mentary Fig. 2A).

The best-fitting model was fit over a system of anatomical
connections created from a separate sample of young, healthy
individuals using diffusion tensor imaging (DTI) tractography.
This model explained 70.2% (null model mean r2 [95% CI]=

Table 1 Demographic information.

CN MCI AD Total

n 162 89 61 312
Age (SD) 72.0 (6.4) 70.84 (7.8) 72.0 (7.9) 71.7 (7.1)
% Women 45.1 64.0 58.6 53.1
Education (SD) 14.8 (3.6) 15.3 (3.7) 12.8 (3.9) 14.6 (3.8)
%APOE4 41.9 58.4 68.5 51.7
% amyloid
positive

42.6 64.0 100.0 66.2

CN cognitively normal, MCI mild cognitive impairment, AD Alzheimer’s disease dementia, SD
standard deviation.
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0.056 [0.016, 0.135], p < 0.01) of the overall spatial pattern of tau
(Fig. 3a), and on average, explained 50.9% (SD= 21.8%; null
model mean r2 [95% CI]= 0.104 [0.077, 0.147], p < 0.01) of the
spatial pattern within individual subjects (Fig. 3a). Importantly,
across all possible regions of interest, the entorhinal cortex
proved to be the epicenter providing the best model fit,
corroborating autopsy studies finding neurofibrillary tangles to
start in the entorhinal cortex (Fig. 3b). Model performance was
better in ADNI (global pattern r2= 0.78) compared to
BioFINDER (r2= 0.6), though this difference was partially
mitigated by subsampling BioFINDER to match ADNI based
on demographic variables, and the difference disappeared
entirely when subsampling BioFINDER to match ADNI based
on mean cortical tau signal (Supplementary Fig. 3). Model fit was
good across cognitively normal, MCI and AD subjects, and
expected increases in mean tau signal were observed as disease
severity increased (Supplementary Fig. 4). The ESM was
particularly effective in predicting the early progression of tau,
but diverged more from the observed tau pattern over time
(Supplementary Fig. 5, Fig. 4).

As a validation, the ESM was fit over a second set of anatomical
connections from another non-overlapping dataset consisting of
healthy and cognitively impaired older adults. Once again, the ESM
demonstrated good model fit, explaining 65.6% (null model mean
r2 [95% CI]= 0.107 [0.052, 0.217], p < 0.01) of the overall spatial
pattern of tau, and explained 44.8% (SD= 21.7%; null model mean
r2 [95% CI]= 0.104 [0.077, 0.147], p < 0.01) of the spatial pattern
within-individual subjects on average (Supplementary Fig. 6).

The ESM was fit once again using connectivity matrices
composed of functional connections measured in separate samples

of young healthy adults, and old healthy and impaired adults,
respectively, using resting-state functional MRI connectivity
(Supplementary Fig. 6, Fig. 4). These analyses test whether the
ESM is robust to different measures of macroscale connectivity,
but also can be thought to test an alternative hypothesis of tau
spread through communication of pathological states, rather than
through physical spread of tau oligomers. Models fit over
functional connectomes performed quite well, though slightly
worse than models using structural connectomes (YOUNG:
Global r2= 0.565; null r2 [95% CI]= 0.089 [0.031–0.187];
individual mean r2= 0.384, SD= 0.168, null r2 [95% CI]=
0.103 [0.069–0.156]; OLD: Global r2= 0.586; null r2 [95% CI]=
0.031 [0.000–0.087]; individual mean r2= 0.451, SD= 0.209, null
r2 [95% CI]= 0.063 [0.037–0.109]), a trend that was consistent
across preprocessing strategies (Supplementary Fig. 2D). Addi-
tional alternative hypotheses have been proposed suggesting tau
may simply spread extracellularly across neighboring regions,
rather than through anatomical connections. To test this
hypothesis, a model was fit over a Euclidean distance matrix
instead of a functional or structural connectome (Supplementary
Fig. 6). As with models using functional connectomes, the
euclidan distance matrix performed far greater than chance, but
not as well as models using anatomical connectivity.

Low-level tau spreading is evident in Aβ− individuals. We
divided our study sample into groups based on Aβ status and
examined model accuracy separately within these groups. Model
accuracy remained high even among Aβ− individuals, despite a
low overall tau burden (Fig. 3a). These effects were additionally
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Fig. 1 Methodological approaches. a An artificial system based on a pairwise relationship (e.g. functional connectivity) matrix is created, where the
relationship between regions i and j is represented by weight ij. For each subject, a seed is placed at the model epicenter, and the diffusion of this signal
over time is simulated through the system, where the inter-regional relationships determine the pattern of spread, and subject-level free parameters
determine the velocity of diffusion, until an optimal fit is reached. The simulated tau signal is then compared to the observed tau-PET signal to evaluate the
model. b Advantages of the ESM over traditional approaches includes the initiation of secondary seeding events as the diffusion process reaches new
regions (top), and the fitting of subject-level production (β) and clearance (δ) parameters. A balance in these parameters will lead to little to no spreading
over time, while increasing imbalance leads to accelerated spread. c The distribution of all SUVR values in the left inferior temporal ROI are shown. Two
Gaussian mixture models are fit to the data. When a one-component model fits the data better, the ROI is discarded. When a two-component model fits
better, the probability that each values falls upon the second distribution is calculated.
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present when including Aβ− MCI subjects, when summarizing
within MCI− subjects alone, and when summarizing results over
only cognitively normal Aβ− individuals without marginally
elevated CSF Aβ and without any APOE4 allele copies (Fig. 5b).
This was validated by examining model fit against the tau pattern
of individual Aβ− subjects (Fig. 5). Model performance was high
across most CN− subjects (Fig. 5a), including those with low or
even very low regional tau burden (Fig. 5c). In many cases, tau
levels that would otherwise be considered subthreshold none-
theless demonstrated a systematic pattern resembling Braak sta-
ging, which was also predicted by brain connectivity.

Regional β-amyloid affects regional model performance. For
each model, regions of interest were was classified as either
overestimated or underestimated by the model based on the sign
of the residual (Fig. 6a, b). Underestimated regions are those
demonstrating greater tau burden than would be expected given
connectivity to the model epicenter (i.e. observed > predicted),
while overestimated regions demonstrate less tau than would be
expected given their connectivity profile (i.e. predicted >
observed). We compared regional model performance to regional
Aβ accumulation as measured from a large dataset of

Aβ− PET (18F-florbetapir, or AV45) scans (Fig. 6c). Compared to
overestimated regions, underestimated regions had greater global
β-amyloid burden (t= 2.9, p= 0.004; Fig. 6d), suggesting the
regional presence of Aβ may accelerate the spread or expression
of tau tangles. Indeed, we observed a significant correlation (p <
0.001) between regional model residuals and regional Aβ levels
(Fig. 6e), and this relationship remained significant when
adjusting for regional tau.

Evidence for individual asymmetry in tau deposition. Asym-
metric lateralization of tau pathology and tau-PET signal is a
prominent feature of rare AD variants40, and pathology studies
have highlighted examples of hemispheric asymmetry in tau
spreading10. We used the ESM to investigate whether a general
lateralization of tau deposition could be observed across the
population, or whether asymmetric patterns in tau deposition
were observable at the individual level. We did not observe a
trend of better model performance when using either the left or
right entorhinal cortex as the sole epicenter, suggesting tau does
not start preferentially in one hemisphere or the other across a
population (Fig. 7a). This effect was only observable when using
models fit over DTI connectomes, since rsfMRI connectomes

Fig. 2 Tau-positive probabilities recapitulate Braak staging. Each brain region was divided into one of six "Braak stage" ROIs, based on which Braak
stage the region first shows abnormal tau (as described in ref. 83). (Left) Each row is a subject sorted top-bottom by least to most overall tau. Each column
is an Braak stage ROI, sorted left to right by most to least overall tau. Warmer colors represent higher SUVR values (top), observed tau-positive
probabilities (middle) or predicted tau-positive probabilites from the best-fitting ESM (bottom). (Right) The same relationship shown in a barchart format.
Error bars represent standard error of the mean. Conversion to tau-positive probabilities creates a sparse distribution of values demonstrating a
progression reminiscent of the staging described in the autopsy literature.
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exhibited strong heterotopic (and likely indirect) connectivity in
the entorhinal cortex. We next determined the best-fitting epi-
center for each individual subject in the study, and categorized
subjects accordingly as best described by a left-limbic, right-
limbic, or non-limbic epicenter. Epicenter hemisphere was asso-
ciated with asymmetry in tau deposition (p < 0.001), and this
effect became more prominent (ps < 0.01) as disease severity
progressed (Fig. 7d). Specifically, individuals with a left-limbic
epicenter exhibited greater left temporoparietal binding, but less
right frontal binding, after adjusting for disease status, age, and
sex. This may point to a differing cortical expression of tau
depending on the hemisphere of origin. Right-limbic epicenters
were more common, but decreased with disease progression
(Fig. 7b, c). Individuals with a right-limbic epicenter tended to be
older (p= 0.01; Fig. 7d), but did not differ in sex, education,
amyloid status, APOE4 status, or total tau.

Discussion
Observations in post-mortem human brains26,27 and experi-
ments in animal models14,22–25 have together provided evidence

that tau can be transmitted from cell to cell through neuronal
projections. However, post-mortem studies cannot provide
direct evidence of cell-to-cell spread, and while animal models
have proven tau can spread through neuronal connections
under certain unnatural conditions, they cannot prove that this
phenomenon occurs naturally in humans. Studies searching for
evidence of cell-to-cell transmission of tau in living humans
have been limited by small datasets, simplistic models, and
issues relating to the quantitative measurement of tau. Here, we
used a mixture-modeling approach on a large sample of humans
on the Alzheimer’s disease spectrum to enhance the quantifi-
cation of tau signal, and we applied to this data a diffusion
model based on theoretical principles of an agent propagating
through a network. These simulations explained a majority of
the variance in the global spatial distribution of tau-PET signal
in the brain, and performed nearly as well in predicting the
distribution of tau-PET signal in individual subjects. A similar
model testing the hypothesis that tau spreads across neighboring
brain regions was less successful at explaining the overall pat-
tern. The models performed well in both Aβ-negative and Aβ-
positive individuals, and also systematically underestimated the

a

b

Fig. 3 Performance of ESM in predicting spatial progression of tau. a For each plot, each dot represents a region. The x-axis represents the mean
simulated tau-positive probabilities across the population, while the y-axis represents the mean observed tau-positive probability. A value of (say) 0.3 for a
given ROI would suggest that an average of 30% of all subjects included were predicted (X) or observed (Y) to have positive abnormal tau signal in that
region. The average performance of the four different models are shown separately for (left) all subjects, (center) Aβ− individuals and (right) Aβ+
individuals. b The ESM was rerun using each left–right pair of ROIs as the model epicenter. The model fit (r2) is depicted on the y-axis, and each bar
represents the fit of a model using a given region as model epicenter. Blue bars represents global model fit across all subjects, and red bars represent the
mean within-subject model fit. An entorhinal cortex epicenter provided the best model fit.
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(structural)

Expected pattern ESM-predicted pattern
(functional)
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Fig. 4 Hypothesized, observed, and predicted pattern of tau spreading. (Left) Hypothetical spread patterns represented by Braak stages I, II, VI, V, and VI
as described in ref. 83. (Right) Spreading patterns of (from left to right) the observed tau-PET data, the ESM simulated data using a young structural
connectome, and using a young functional connectome. Warmer colors represent higher proportion of regional tau-positivity predicted or observed across
the population. Each “stage” was achieved by arbitrarily thresholding the population-mean tau-positive probability image at the following thresholds: 0.35,
0.25, 0.15, and 0.05.

CN– and MCI– MCI– CN– (PET, CSF, ApoE)a b

c

N

Fig. 5 Model performance in CN− individuals. All plots are based on the best-fitting ESM model described in the text. a The distribution of r2 values
representing the range in individual-level model fit across all CN− subjects. b For each plot, each dot represents a region. The x-axis represents the mean
simulated tau-positive probabilities across the population, while the y-axis represents the mean observed tau-positive probability. Predicted and observed
patterns are plotted for (left) all Aβ− individuals (n= 104), (middle) only Aβ−MCI subjects (n= 22), and (right) individuals without elevated Aβ− PET or
Aβ− CSF, and who carry no APOE4 alleles (n= 62). c Four exemplary subjects spanning both cohorts are plotted. All four subjects are cognitively normal
with MMSE 29–30 and do not carry an APOE4 allele. Their respective ages are 73, 63, 71 and 78. Even at very low (subthreshold) levels, the distribution of
tau follows a pattern similar to Braak staging, and which is predicted by anatomical connectivity patterns.
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magnitude of tau in regions classically shown to harbor β-
amyloid. Together, these results provides evidence that tau
spreads through the limbic network in normal aging, and that
the presence of β-amyloid is associated with acceleration of tau
tangle expression into isocortical regions.

Brain networks may be key to the evolution of neurodegen-
erative disease41. The atrophy patterns of many neurodegenerative
dementias have been shown to resemble resting-state functional
brain networks42–44, and network “hubs” are especially vulnerable
to neurodegeneration across brain disorders45. Studies modeling

a b

c

d

e

Fig. 6 Amyloid explains regional model underestimation. a Regions were classified as overestimated or underestimated based on the sign of the residual
in a comparison of predicted vs. observed values. b A cortical surface render showing the spatial distribution of over- and underestimated regions. c A
surface render showing the spatial distribution of regional amyloid-positive probabilities averaged over all subjects. d Underestimated regions tended to
have significantly greater amyloid burden, suggesting these regions had more tau than would be predicted given their connectivity to the model epicenter.
For boxplots, the center line=median, box=inner quartiles, whiskers=extent of data-distribution except *=outliers. e Correlation between regional model
residuals and regional amyloid. Each point is a brain region, and the y-axis summarizes the degree to which a region was underestimated (positive) or
overestimated (negative) by the model.
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Fig. 7 Epicenter hemisphere associated with individual variation in demographics and tau-PET binding patterns. a Using only left or right entorhinal
cortex alone as model epicenter did not result in improvement in model fit. Error bars represent standard error of the mean in variation in model fit
depending on PVC strategy, confound-regression strategy, and MCI− inclusion/exclusion. b Proportion of individuals for whom a left-limbic, right-limbic,
or cortical epicenter best fit their individual tau-PET pattern. c The same, across disease progression categories. d Subjects for whom left-limbic epicenter
best fit their data were older, using a two-tailed GLM adjusting for disease status. e Epicenter hemisphere was associated with increasing hemispheric
asymmetry in tau-PET signal across disease progression, using a two-tailed GLM adjusting for disease status. f Regions of higher average tau-PET signal in
subjects for whom left-limbic (blue) or right-limbic (orange) epicenters best fit their data; adjusted for age, sex, disease status, and multiple comparisons.
For boxplots in panels d and e: the center line=median, box=inner quartiles, whiskers=extent of data-distribution except *=outliers.
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the diffusion of gray matter degeneration across brain networks
have recreated such patterns with impressive accuracy43,46,47.
However, in many neurodegenerative disorders, brain atrophy is
preceded and perhaps caused by the aggregation of pathological
agents. In Alzheimer’s disease, the presence of tau is closely linked
to7,8, and likely precedes48, gray matter atrophy. However, because
gray matter degeneration observed in Alzheimer’s dementia may
be caused by many sources other than Alzheimer’s pathology, gray
matter degeneration itself cannot be used as proxy for tau (e.g.
ref. 49). PET studies therefore provide a unique advantage by
measuring pathological proteins more directly, and applying
network diffusion models to PET data has, for example, led to the
successful description of the spatial progression of β-amyloid in
Alzheimer’s disease50. Our model uses a similar framework to
simulate the spread of tau through the brain and reaches a similar
level of success, both within-subject as well as globally across all
subjects. The application of network models to other forms of
dementia will be needed to conclude whether the spread of
pathological proteins through connected neurons is a common
thread linking many diseases.

While our model recapitulated the early stages of tau spreading
accurately (Braak I–III), later stages (IV–VI) were modeled less
accurately, with a systematic underestimation of tau in regions
prone to early and high-volume β-amyloid aggregation. While
tau, not β-amyloid, is closely associated with atrophy in Alzhei-
mer’s disease, the commonly observed concurrence of extra-
limbic tau and cortical amyloid burden has led to speculation that
β-amyloid may accelerate or otherwise facilitate the spread of tau
outside the medial temporal lobe. Recent studies in mice have
shown that β-amyloid creates an environment facilitating the
rapid fibrilization of tau14,15. Our data support this notion, as
brain regions harboring more β-amyloid, such as the precuneus
and temporoparietal regions, had a higher incidence of abnormal
tau than would be predicted simply by their regional connectivity
to the medial temporal lobe. A conclusive model of tau spreading
may not be complete without incorporating dynamic interaction
with Aβ.

Tau tangles are a pathological hallmark of AD, but they are
neither specific to AD nor to neurodegenerative disease in
general. The process of aging appears to lead inevitably to the
accumulation of tau tangles in the medial temporal lobe and
occasionally beyond, a phenomenon known as primary age-
related tauopathy (PART)9. In vivo evidence for the long-
itudinal accumulation of tangles in healthy elderly has been
observed11. While PART may result in subtle insults to cog-
nition and brain health12,13,51, there is still debate as to whether
PART and AD are distinct processes52. We show that even in
individuals without significant Aβ burden and low (subthres-
hold) tau-PET signal, the spatial pattern of tau resembles early
Braak staging, and can be predicted by connectivity to the
entorhinal cortex. This corroborates a recent study finding tau-
PET patterns overlap greater than chance with entorhinal
cortex connectivity even in Aβ-negative subjects53. The
inability of Aβ-PET to identify sparse Aβ burden, especially in
cases with predominant diffuse plaques, may lead to the pos-
sibility that undetectable levels of Aβ pathology may be driving
the observed relationships. However, we demonstrated an early
Braak-like pattern of tau in individuals at very low likelihood of
having Aβ pathology (cognitively normal, APOE4-negative,
CSF Aβ negative). These findings suggest that, even in normal
aging, tau may spread through communicating neurons. The
results also suggest closer scrutiny of subthreshold tau-PET
signal in cognitively unimpaired, Aβ-negative individuals. Ele-
vated SUVR values occurring in a consistent pattern in specific
limbic regions may be indicative of very low tau pathology,
rather than non-specific or off-target ligand binding.

Tau can be directly secreted into extracellular space, and
mechanisms have been described for subsequent cellular uptake
(c.f. ref. 54), leading to the hypothesis that tau may be propagated
to neighboring neurons. This idea is not supported by our data,
where neuronal connectivity patterns provided a better descrip-
tion of the in vivo spatial distribution of tau. Another hypothesis
stems from the observation that tau has an excitatory effect on
neurons55, but is also secreted by activated neurons55,56. These
two observations have lead to the idea of an excitotoxic cascade,
where the presence of tau excites neurons, leading to over-
stimulation of connected neurons, which in turn leads to secre-
tion of tau, and so forth. This latter hypothesis cannot be ruled
out based on our data, as it is still predicated on the spreading of
pathological events across communicating neurons. In our study,
we fit the ESM over two different measures of macroscale con-
nectivity, and the choice of modality comes with different sets of
assumptions and limitations. DTI tractography endeavors to
directly measure white matter connections between brain regions,
and may therefore be the most appropriate choice, but also suffers
from important methodological limitations such as the gyral
bias57. On the other hand, rsfMRI connectomes are conflated by
indirect connectivity57 (e.g. Fig. 7a), which does not fit with the
hypothesis of direct axonal spread. Additionally, one can imagine
a scenario where a region may act as a way station for tau pro-
pagation without itself expressing pathological tau due to (say) its
genomic environment. Additionally, alternative hypotheses of tau
propagation involving network propagation of a pathological (e.g.
excitotoxic or tau overproduction) state would not necessarily
require direct connections. fMRI connectivity may be thought of
a proxy of some of these hypotheses. In our data, DTI
tractography-based connectomes consistently showed superior
model fit compared to models fit over other connectomes (Sup-
plementary Fig. 6, Fig. 2d), once again lending support to the
cell-to-cell transmission hypothesis, though model fit was ulti-
mately high and reproducible across both connectivity modalities.
Next-generation tractography may provide improved models in
the future58, but both measures of connectivity appear to be
sufficient for fairly high-performing simulations of tau spread.

While our findings lend support to the hypothesis of tau
spreading through communicating neurons, connectivity patterns
and regional Aβ burden together could not fully explain the
observed pattern of tau-PET across the brain. While a portion of
this discrepancy may be explained by measurement error, there
are likely other factors at play. Recent work has outlined a con-
sistent genomic profile across regions that express tau59, impli-
cating that regional variation in intrinsic molecular environment
may mediate the presence and rate of tau tangle formation. This
may explain why, for example, many subcortical regions do not
show substantial tau burden despite connections to regions
expressing neurofibrillary tau tangles. In addition, it is also pos-
sible that only certain neuron types can facilitate the transmission
of tau, which may be challenging to model using macroscopic
neuroimaging-based measures of brain connectivity (though
recent advances in single-cell transcriptomic changes in AD may
help guide such analyses60). Heterogeneity in tau patterns61,62

present yet another difficulty in tau spread modeling. Finally,
some studies have suggested the directional flow of neuronal
activity may influence the spread of brain pathology63. Future
studies incorporating this information, along with dynamics
related to regional amyloid burden and regional vulnerability,
may achieve a more complete model of tau spreading. However,
at present, we show that the spread of tau is predicted by con-
nectivity patterns to a degree that greatly exceeds both chance and
other hypotheses of tau spread, and does so in a parsimonious
fashion, supporting the notion that connectivity is in some way
involved in the spread of tau through the human brain.
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The results of the ESM represent an advance on previous
human studies testing the spreading hypothesis of tau. Many
previous studies addressing this hypothesis have elected to
examine covariance between tau patterns and brain networks,
usually measured with rsfMRI. Jones et al.33, Adams et al.53, and
Hoenig et al.35 described overlap between data-driven tau-PET
covariance networks and resting-state functional networks.
Franzemeier et al.38 and Ossenkoppele et al.39 each went further
to show correlations between rsfMRI connectivity and cross-
subject covariance in tau-PET signal, within networks or across
the whole brain. Sepulcre et al.64 instead used longitudinal tau
covariance across spatially distributed regions to infer con-
nectivity between those regions. Each of these studies represent
clues that tau spreading and connectivity are related in humans.
However, they do not construct, test, or simulate models of tau
spreading. The ESM simulates the spread of tau from the
entorhinal cortex through a cascade of secondary seeding events
informed by macroscale functional or structural connections, a
process that is designed to mimic the hypothetical spreading of
tau. This model can explain upwards of 70% of the spatial var-
iation of tau in the human brain, representing a substantial
improvement over the aforementioned associational studies, as
well as over studies using similar diffusion models on structural
MRI measures (e.g. refs. 49,65). Importantly, our model is unique
in finding the entorhinal cortex as the best epicenter, which
corroborates autopsy findings. While our simulation explains the
tau-PET data to an unprecedented degree, it is imperfect and
remains indirect evidence of tau spreading. However, it also
provides a first step toward a tau spreading simulation model,
which can be improved, perturbed, and applied in numerous
contexts. In addition, the ESM has potential as a clinical tool by
estimating where tau will spread based on individual regional
patterns. Knowledge of the expected pattern of tau spread will be
helpful in designing regional outcome measures in future treat-
ment trials directed against tau aggregation.

We used the ESM to conduct a preliminary analysis concerning
individual variation in asymmetric hemispheric distribution of
tau. We observed considerable variation in laterality of tau-PET
signal across individuals, particularly in later disease states, and
the dominant hemipshere was predicted by the hemisphere of the
best-fitting epicenter determined by the ESM. While asymmetric
tau deposition is commonly described in rare AD variants40, our
findings suggest some lateralization even in typical AD, and may
be associated with differential cortical patterning of tau accu-
mulation. Subjects with right-side dominant tau patterns tended
to be older, but a more thorough analysis is necessary to uncover
whether differential hemispheric lateralization of tau deposition
leads to distinct phenotypes of clinical expression.

Our study comes with a number of limitations. The premise of
testing the hypothesis of tau spread through communicating
neurons requires that both neuronal connections and tau burden
are accurately measured. We attempt to partially surmount these
issues by introducing a data-driven approach for overcoming off-
target and non-specific binding in Flortaucipir-PET data, and by
validating our findings over different connectomes across differ-
ent samples and modalities. Our mixture-modeling strategy is
sensitive to sample size and composition. While it is unlikely that
this phenomenon strongly affected the present findings, it is an
important point worth consideration for future studies utilizing
this approach to transform tau-PET data. Another limitation is
raised by our choice to remove regions that do not demonstrate
measurable tau burden, namely subcortical regions, from the
model altogether. Certain subnuclei of subcortical structures such
as the thalamus do accumulate tau pathology in Alzheimer’s
disease66, though we were unable to detect such pathology, per-
haps due to the resolution of our measurements. While it is

possible that subcortical structures participate in neuronal
transmission of pathology without expressing the pathology itself,
the current implementation of our model does not support this
type of dynamic. However, while incidental measurement of
indirect functional connectivity is a common critique of func-
tional MRI, here it may pose an advantage, as functional con-
nectivity mediated by subcortical connections may still be present
in functional connectomes used for this study. Finally, we tested
the ESM over a number of different pre-processing decisions, and
mostly describe results of best-fitting models. It is important to
note that a model that best fits our data does not necessarily
equate to a model that best fits biology. However, many different
pre-processing combinations produced high-performing models
(Supplementary Fig. 2A), so we are confident that our results are
not dependent on our pre-processing decisions.

In conclusion, our data support the notion that tau pathology
itself, or information leading to the the expression of pathology, is
transmitted from cell to cell in humans, principally through
neuronal connections, and not extracellular space. Our findings
further suggest that this phenomenon proceeds fairly ubiquitously
in normal aging, and that the process is accelerated in specific
brain regions demonstrating β-amyloid burden. While our cross-
sectional, in vivo results cannot prove that tau spreads through
neuronal connections, we show that more highly connected
regions have a higher tendency to be affected sooner by tau along
a specific network path cascading from the medial temporal lobe.
Future models may be able to improve results by incorporating
region-specific vulnerability factors, directional flow, and Aβ
dynamics, though contributing such information in a parsimo-
nious way presents a difficult challenge.

Methods
Participants. Participants of this study represented a selection of individuals from
two large multi-center studies: the Swedish BioFinder Study (BioF; http://biofinder.
se/) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://adni.loni.
usc.edu). Both studies were designed to accelerate the discovery of biomarkers
indicating progression of Alzheimer’s disease pathology. Participants were selected
based on the following inclusion criteria: participants must (i) have a Flortaucipir-
PET scan, (ii) have either a β-amyloid-PET scan (for ADNI: [18F]-Florbetapir, for
BioF: [18F]-Flutemetamol) or lumbar puncture measuring CSF Aβ1–42. In addi-
tion, participants were required to be cognitively unimpaired, have a clinical
diagnosis of mild cognitive impairment, or have a clinical diagnosis of Alzheimer’s
dementia with biomarker evidence of β-amyloid (Aβ) positivity. For both cohorts
separately, PET-based Aβ1–42 positivity was defined using mixture modeling, as
previously described5. For BioFINDER, β-amyloid1–42 positivity was defined as an
(INNOTEST) level below 650 ng/L67. All participants fitting the inclusion criteria
with Flortaucipir scans acquired (BioFINDER) or that were available for public
download (ADNI) in May 2018 were included in this study. In total, across both
studies, 162 cognitively unimparied individuals, 89 individuals with mild cognitive
impairment, and 61 amyloid-positive individuals with suspected Alzheimer’s
dementia were included. Demographic information can be found in Table 1,
whereas a detailed comparison of BioFINDER and ADNI cohorts can be found in
Supplementary Table S1. BioFINDER subjects were on average less educated than
ADNI subjects, and included a higher proportion of amyloid-positive individuals.
All BioFINDER subjects provided written informed consent to participate in the
study according to the Declaration of Helsinki; ethical approval was given by the
Ethics Committee of Lund University, Lund, Sweden, and all methods were carried
out in accordance with the approved guidelines. Approval for PET imaging was
obtained from the Swedish Medicines and Products Agency and the local Radiation
Safety Committee at Skåne University Hospital, Sweden. Information related to
participant consent in ADNI can be found at (ADNI; http://adni.loni.usc.edu).

PET acquisition and pre-processing. MRI and PET acquisition procedures for
ADNI (http://adni.loni.usc.edu/methods/) and BioFINDER68 have both been
previously described at length. All Flortaucipir-PET scans across studies were
processed using the same pipeline, which has also been previously described34,68.
Briefly, 5-min frames were reconstructed from 80 to 100 min post-injection. These
frames were re-aligned using AFNI’s 3dvolreg (https://afni.nimh.nih.gov/) and
averaged, and the mean image was coregistered to each subject’s native space T1
image. The coregistered image was intensity normalized using an inferior cerebellar
gray reference region, creating standard uptake value ratios (SUVR). In order to get
an independent map of β-amyloid (Aβ) deposition, regional Aβ-PET images were
downloaded from a larger cohort of subjects. Baseline ROI-level information for
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18F-Florbetapir scans were downloaded from available ADNI subjects (n= 974),
which had been processed using the whole cerebellum as a reference region.

The Epidemic Spreading Model. The spread of tau through connected brain
regions was simulated using the ESM, a previously described diffusion model that
has been applied to explain the spread of β-amyloid through the brain50. The ESM
simulates the diffusion of a signal from an epicenter through a set of connected
regions over time (Fig. 1a, b). The dynamics of the spreading pattern are controlled
by the weighted connectivity between regions, and by a set of parameters fit within-
subject, the latter of which are solved through simulation. Specifically, the para-
meters represent subject-specific (i) global tau production rate, (ii) global tau
clearance rate, and (iii) age of onset, which interact with regional-connectivity
patterns to determine the velocity of spread. The ESM is simulated over time for
each subject across several parameter sets, and the set that produces the closest
approximation to observed tau burden for a given subject is selected. Note that
these parameters themselves do not control regional patterning, which is the metric
by which the accuracy of the model is evaluated (see below). Instead, the free
parameters moderate the overall tau burden (i.e. the stopping point), which allows
the ESM to be fit to individuals across the Alzheimer’s disease spectrum. For
example, an individual with little-to-no tau burden would likely be fit with a
balance of production and clearance rates that would preclude the overproduction
and spread of tau signal (Fig. 1c). A detailed and formalized description of the ESM
can be found elsewhere50.

The ESM takes as input a Region × Subject matrix of values ranging from 0 to 1,
representing the probability of a pathological burden (in this case, of tau) in a given
region for a given subject. The model is fit within-subject and, for each subject,
produces an estimate of tau probability for every region of interest. In previous
applications of the ESM, the model is fit over every possible epicenter as well as
combinations of epicenters, and the epicenter providing the best overall fit to the
data is selected. In our case, autopsy work provides strong evidence for a consistent
“epicenter” of tau neurofibrillary tangles in humans. Tangles first emerge in the
transentorhinal cortex, before emerging in other parts of the entorhinal cortex as
well as the anterior hippocampus10,17. We therefore ran models with the left and
right entorhinal cortex selected as the model epicenters. In order to validate this
choice, we ran the model using the left–right pair of every region of interest (33
pairs in all) and compared the model fit using each regional epicenter. To examine
asymmetric spreading, we later fit models using just the left and right entorhinal
cortex as separate epicenters. We also found a best-fitting model-derived epicenter
for each subject, by fitting the ESM across all possible regions and finding the best
within-subject fit.

There are many data pre-processing and model fitting decisions that may affect
the performance of the ESM. Some of these decisions include (i) what kind of
connectivity data to fit the model over, (ii) which brain regions to include, (iii)
what kind of tau measurement to use as input, (iv) whether regional tau-PET data
should be partial volume corrected, (v) whether and how to correct the regional
tau-PET data for confounding signals, and (vi) whether or not to include amyloid-
negative MCI subjects. Rather than arbitrarily choosing these parameters, we fit the
ESM over a range of different parameter sets (see subsequent sections) and
investigate how these pre-processing decisions affect model performance. We then
select the best-fitting models for subsequent analysis. Choices for (ii)–(v) are
discussed in Section “Regional tau-PET data pre-processing”, whereas choices for
(i) are discussed in Section “Connectivity measurements”. Across all combinations
of methodological choices, a total of 432 models were fit.

Regional tau-PET data pre-processing. Preprocessing of PET data resulted in
mean regional tau-PET SUVR values from the FreeSurfer-derived Desikan-
Killiany-Tourville (DKT) atlas69, extracted from each individual’s native space PET
image. Only cortical and subcortical regions overlapping with the MindBoggle
DKT atlas were used70, leaving 78 regions in total. Previous Flortaucipir-PET
studies have noted considerable off-target binding of the Flortaucipir signal,
leading to signal in regions without pathological tau burden, and likely to pollution
of signal in regions accumulating tau28,29,31,32,34. While many previous studies
have ignored these issues, accounting for off-target binding is essential to the
current study, as our model cannot distinguish off-target from target signal, and we
are not interested in the propagation of off-target signal. To address this issue, we
utilized regional Gaussian mixture modeling under the assumption that the target
and off-target signal across the population are distinct and separable Gaussian
distributions (Fig. 1c).

As most individuals do not have tau in most regions, pathological signal should
show a skewed distribution across the population, whereas off-target and non-
specific signal should be reasonably normally distributed. Such a bimodal
distribution has been observed for β-amyloid, and mixture modeling has been used
in this context to define global β-amyloid positivity71,72. Our approach differs from
these previous studies as we do not assume the distribution of target and off-target
binding to be homogeneous across cortical areas—we apply Gaussian mixture
modeling separately to each region of interest (Fig. 1c). Specifically, for each region,
we fit a one-component and a two-component Gaussian mixture model across the
entire population. We compare the fit of the two models using Aikake’s
information criterion. If a two-component model fits the data better, this likely
indicates the presence of pathological tau in a proportion of the population, and the

Gaussians fit to the data provide a rough estimate of an SUVR threshold, above
which Flortaucipir signal has a high probability of being abnormal. If a one-
component model fits better, this indicates the Flortaucipir-PET signal within the
region is roughly normally distributed across the population, which we do not
expect for tau in a population including many cognitively impaired individuals.
The ESM receives regional (tau) probabilities as input, and so we calculate the
probability that a given subject’s ROI SUVR value falls onto the second (i.e. right-
most) Gaussian distribution using repeated fivefold cross-validation. Assuming this
second distribution represents the subjects with abnormal Flortaucipir signal, this
value estimates the proximity of a subject to the pathological distribution.
Effectively, this converts regional SUVRs to regional tau-positive probabilities. This
approach defines a fairly conservative, data-driven threshold for SUVR values,
above which, one can assume the presence of abnormal signal (perhaps indicating
pathological tau accumulation) with a high degree of confidence.

For purposes of comparison, we also use two other preprocessing strategies for
regional tau-PET data. First, we apply a regional normalization of SUVR values
along a 0–1 scale, which is equivalent to simply using SUVR values as input (the
ESM expects values to be between 0 and 1). Second, we reproduce the reference
strategy described in the original ESM paper. This approach involves creating a null
distribution by obtaining the maximum value of 40,000 bootstrapped samples of
the 5–95% largest SUVR values within the reference region. The distribution is
used to create an empirical cumulative distribution function, which is applied to
each voxel of the PET image, effectively finding the probability that this voxel is
greater than values in the reference region (see ref. 50 for details). We also fit the
model using different region-sets: (i) all cortical and subcortical regions (n= 78),
(ii) cortical regions only (including hippocampus and amygdala, n= 66), (iii) only
regions demonstrating a bimodal distribution (n varies depending on other pre-
processing decisions).

As mentioned above, tau-PET signal is confounded by a number of off-target
binding sources, some of which are age related28,32. Some studies have found that
regressing out certain signal sources, such as choroid plexus binding or age-related
subcortical signal, can improve expected relationships between Flortaucipir and
other measures (e.g. ref. 73). In addition, recent studies have found a putative
impact of sex on Flortaucipir binding74,75. Therefore, we explored the impact of
removing confounding signals from tau-PET data on model performance. We tried
three different strategies: (i) no preprocessing, (ii) regressing out age, sex and mean
choroid plexus binding from each region separately across all subjects, (iii) using a
W-score approach76, where regional SUVR values are normalized by Aβ-negative
cognitively normal elderly adjusting for age, sex, and choroid plexus binding.
Native space choroid plexus regions were available for each subject from the
Freesurfer parcellation, and the mean Flortaucipir signal was taken between left
and right hemispheres. In addition to these processing steps, we experimented with
the choice of partial volume correcting (PVC) data before running the model. The
geometric transfer matrix77 method was used for PVC, and models were run with
and without PVC.

Connectivity measurements. The overall pattern of spread simulated by the ESM
is determined by the relationship matrix, which represents pairwise relationships
between each region of interest. Indeed, this is the system through which the
simulated signal will diffuse. Varying the relationship matrix can, for example,
allow for tests of different hypotheses of spread. In addition, replicating model
effects over different connectomes can improve confidence that results are robust
to different samples or modalities. We fit the ESM over four different connectivity
datasets, none of which overlap with one another or with subjects from the tau-
PET dataset. We use anatomical connectivity measurements generated using DTI
tractography from (i) healthy and impaired older adults and (ii) young healthy
adults. We further validate this procedure using a functional connectivity matrix
generated from (iii) healthy and impaired older adults and (iv) young healthy
controls to test the hypothesis that tau spreads through communicating neurons.
Finally, we additionally test the hypothesis of tau spreading through extracellular
space by using a Euclidian distance matrix as input.

We created two template structural connectivity matrices using DTI
tractography data from two different samples. The first was a dataset of 60 young
healthy subjects from the CMU-60 DSI Template78 (http://www.psy.cmu.edu/
coaxlab/data.html). The second was a sample of healthy older and cognitively
impaired older adults from ADNI. Demographic information and comparisons to
other datasets can be found in Supplementary Table S1. In total, 204 individuals
had one or more DTI scans available, for a total of 540 scans. The two datasets were
preprocessed separately with a previously described diffusion tractography
pipeline79, and acquisition and processing information has been described in
detail80. Briefly, orientation distribution functions (ODF) were calculated and in
turn used to generate deterministic connections between pairs of brain regions
from the Desikan atlas. Specifically, an ACD measure was used, representing the
total proportion of regional surface area (across both regions) that contain
connecting fibers between the two regions. All images were assessed for quality.
Connectomes were averaged across all subjects within each template, resulting in a
template structural connectome in aging and in health, respectively.

Functional connectivity measurements were generated separately from two
different datasets. The first was a subsample of young healthy controls from the
COBRE dataset81, a publicly available sample which we accessed through the
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Nilearn python library. All subjects listed as healthy controls under the age of 40
were selected, totaling 74 individuals. The images were already preprocessed using
the NIAK resting-state pipeline (http://niak.simexp-lab.org/pipe_preprocessing.
html), and additional details can be found elsewhere81. The second dataset
consisted of a subsample of 189 healthy and cognitively impaired older adults from
ADNI who passed quality control procedures. Demographic data and comparison
to the other datasets can be found in Supplementary Table S1. These data were
processed in-house using NIAK in a manner described previously82. Separately for
each dataset, correlation matrices were generated by finding the correlation
between timeseries’ of each pair of regions of interest from the Desikan-Killiany
atlas, and all available confounds were regressed from the correlation matrices. We
took the mean of all correlation matrices to create an average healthy connectome
template, and an average older/impaired connectome template. These connectomes
were then thresholded so as to only retain the top 10% of connections, and
transformed so all values fell between 0 and 1.

To create a Euclidian distance matrix, we calculated the coordinate representing
the center of mass for each region of interest, and found the Euclidian distance
between it and the center of mass of every other ROI. The matrix was normalized
to a 0-1 scale and inverted. By using this distance matrix in the ESM, we test the
hypothesis that tau diffuses radially across adjacent cortex, rather than through
connected regions.

Statistical analysis. The ESM was fit using different relationship matrices and
across several different preprocessing choices (see above). Each model was eval-
uated by mean within-individual fit, as well as global population fit. Individual
model fit is calculated as the r2 between predicted regional tau probabilities and
actual regional tau probabilities measured with Flortaucipir-PET, for each indivi-
dual. The mean r2 across all individuals was used to represent overall model fit. To
evaluate the accuracy of the global pattern, the regional predicted and observed tau
probabilities, respectively, were averaged across all subjects, and the r2 between
these group-averaged patterns were calculated. Together, these two accuracy
measures represent the degree to which regional connectivity predicts the spatial
pattern of tau-PET measured within and across subjects, respectively. To ensure
the magnitude of our results were greater than chance given a matrix of similar
properties, for select models, we fit the ESM using 100 null matrices with preserved
degree and strength distributions using the Brain Connectivity toolbox (https://
sites.google.com/site/bctnet/). We use the null distribution to calculate the mean
and 95% confidence intervals of the relationship occurring by chance. Since we run
only 100 null models per test, the lowest possible p value is 0.01, which would
suggest the observed test value was higher than all values observed by chance.

To examine the global accuracy of the ESM stratified by amyloid status, we first
divided all subjects into one of two diagnostic groups: amyloid negative and
amyloid positive. We then calculated the mean of predicted and observed values
across all subjects within each amyloid group, respectively. We performed similar
analyses across different diagnoses (CN, MCI, AD). In the same manner, we also
examined ESM accuracy stratified by cohort to ensure the model fit was consistent
between the ADNI and BioFINDER cohorts. As a follow-up, we implemented a
neighborhood search using the ball tree method and Minkowski distance (p= 2) to
created a subsample of BioFINDER subjects matched to ADNI subjects on either
demographics (Age, Sex, Education, APOE4 status) or tau load (average cortical
tau-PET signal). We then once again compared model fit within this BioFINDER-
matched-to-ADNI sample to model fit in ADNI subjects.

Studies in rodents have suggested a role of amyloid in facilitating the rapid
fibrillarization of tau oligomers14. This would suggest that amyloid may play a role
in explaining tau patterns that is at least partially independent of connectivity
patterns. To explore this, we tested the relationship between regional modeling
error and regional amyloid depositon. We converted regional amyloid SUVR
values to amyloid-positive probabilities using the same regional mixture-modeling
approach as described above. Next, we used the sign of the residual to divide
regions into those that were overestimated by the ESM, and those that were
underestimated by the ESM. An underestimated region, for example, would show
more tau than the model predicted given that region’s connectivity to the model
epicenter. We explored the relationship between model estimation and amyloid by
comparing the degree of (group-mean) amyloid between overestimated and
underestimated regions using t-tests. We also calculate the correlation between
regional model residuals and regional amyloid values. To ensure this relationship is
independent of local tau, we fit a model assessing the independent relationship of
regional amyloid and tau, respectively, on regional model residuals.

To investigate global asymmetry in tau spreading, we compared the
performance of ESM fit with a left entorhinal cortext epicenter to performance of
models fit with a right entorhinal cortex epicenter. To explore asymmetry in
individual patterning, we fit the ESM over every possible epicenter and stored
information pertaining to the best-fitting epicenter for each subject. Epicenters
were broadly characterized into left and right hemisphere and limbic or non-
limbic. Limbic epicenters included entorhinal cortex, hippocampus, amygdala,
or parahippocampal gyrus. We stratified subjects by their epicenter hemisphere
(Limbic-Left, Limbic-Right, Other) and used ordinary least-squares general
linear models (GLMs) to examine associations between epicenter hemisphere
and other covariates (age, sex, education, APOE4 status) covarying for disease
status (CN−, CN+, MCI+, AD+). We also compared subjects by their total tau

asymmetry (mean of left minus right across all cortical ROIs). Finally, we ran
separate GLMs assessing relationships between epicenter hemisphere and tau
signal in each region of interest, covarying for disease status, age, and sex. These
relationships were subsequently FDR corrected using the Benjamini–Hochberg
approach.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.
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Additionally, data used to create template connectomes are also publicly available. ADNI
rsfMRI and DTI data can be downloaded at http://adni.loni.usc.edu/. The COBRE
dataset can be accessed at ref. 81, or can be downloaded using the Nilearn python package
https://nilearn.github.io/. CMU60 DTI data can be accessed at http://www.psy.cmu.edu/
coaxlab/data.html. Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).

Code availability
Matlab scripts for the Epidemic Spreading Model will be made available in a forthcoming
public software release. Inquiries into acquiring the scripts beforehand can be sent to
Yasser Iturria-Medina. Python functions used in part to analyze and plot ESM data can
be found at https://github.com/illdopejake/data_driven_pathology/blob/master/esm/
ESM_utils.py.

Received: 22 May 2019; Accepted: 6 March 2020;
Published online: 26 May 2020

References
1. Villemagne, V. L., Doré, V., Burnham, S. C., Masters, C. L. & Rowe, C. C.

Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other
conditions. Nat. Rev. Neurol. 14, 225–236 (2018).

2. Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and
cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study.
Lancet Neurol. 12, 357–367 (2013).

3. Hedden, T., Oh, H., Younger, A. P. & Patel, T. A. Meta-analysis of amyloid-
cognition relations in cognitively normal older adults. Neurology 80,
1341–1348 (2013).

4. Donohue, M. C. et al. Association between elevated brain amyloid and
subsequent cognitive decline among cognitively normal persons. J. Am. Med.
Assoc. 317, 2305–2316 (2017).

5. Palmqvist, S. et al. Earliest accumulation of β -amyloid occurs within the
default-mode network and concurrently affects brain connectivity. Nat.
Commun. 8, 1214 (2017).

6. Gordon, B. A. et al. Cross-sectional and longitudinal atrophy is preferentially
associated with tau rather than amyloid β positron emission tomography
pathology, Alzheimeras and dementia: diagnosis. Assess. Dis. Monit. 10,
245–252 (2018).

7. Xia, C. et al. Association of in vivo [18F]AV-1451 tau PET imaging results
with cortical atrophy and symptoms in typical and atypical Alzheimer disease.
Vivo 74, 427–510 (2017).

8. Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive
impairment in Alzheimeras disease. Brain 140, 3286–3300 (2017).

9. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology
associated with human aging. Acta Neuropathologica 128, 755–766 (2014).

10. Braak, H. & DelTredici, K. The preclinical phase of the pathological process
underlying sporadic Alzheimeras disease. Brain 138, 2814–2833 (2015).

11. Harrison, T. M. et al. Longitudinal tau accumulation and atrophy in aging and
Alzheimer’s disease. Ann. Neurol. 85, 229–240 (2018)

12. Maass, A. et al. Entorhinal tau pathology episodic memory decline and
neurodegeneration in aging. J. Neurosci. 38, 530–543 (2018).

13. Lowe, V. J. et al. Cross-sectional associations of tau-PET signal with cognition
in cognitively unimpaired adults. Neurology 93, E29–E39 (2019).

14. He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded
pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24,
29–38 (2018).

15. Bennett, R. E. et al. Enhanced tau aggregation in the presence of Amyloid β.
Am. J. Pathol. 187, 1601–1612 (2017).

16. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer
disease. Nat. Rev. Neurol. 14, 399–415 (2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15701-2 ARTICLE

NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications 11

http://niak.simexp-lab.org/pipe_preprocessing.html
http://niak.simexp-lab.org/pipe_preprocessing.html
https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://nilearn.github.io/
http://www.psy.cmu.edu/coaxlab/data.html
http://www.psy.cmu.edu/coaxlab/data.html
http://adni.loni.usc.edu
https://github.com/illdopejake/data_driven_pathology/blob/master/esm/ESM_utils.py
https://github.com/illdopejake/data_driven_pathology/blob/master/esm/ESM_utils.py
www.nature.com/naturecommunications
www.nature.com/naturecommunications


17. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathol. 82, 239–59 (1991).

18. Cho, H. et al. In vivo cortical spreading pattern of tau and amyloid in the
Alzheimer disease spectrum. Ann. Neurol. 80, 247–258 (2016).

19. Cho, H. et al. Predicted sequence of cortical tau and amyloid-β deposition in
Alzheimer disease spectrum. Neurobiol. Aging 68, 76–84 (2018).

20. Goedert, M., Eisenberg, D. S. & Crowther, R. A. Propagation of tau aggregates
and neurodegeneration. Annu. Rev. Neurosci. 40, 189–210 (2017).

21. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative
diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

22. De Calignon, A. et al. Propagation of tau pathology in a model of early
Alzheimeras disease. Neuron 73, 685–697 (2012).

23. Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, 1–9
(2012).

24. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary
tangles in a transgenic mouse model of alzheimer’s-like tauopathy. J. Neurosci.
33, 1024–1037 (2013).

25. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau
inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

26. DeVos, S. L. et al. Synaptic tau seeding precedes tau pathology in human
Alzheimeras disease brain. Front. Neurosci. 12, 1–15 (2018).

27. Brettschneider, J., DelTredici, K., Lee, V. M. & Trojanowski, J. Q. Spreading of
pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev.
Neurosci. 16, 109–120 (2015).

28. Choi, J. Y. et al. Off-target 18 F-AV-1451 binding in the basal banglia
correlates with age-related iron accumulation. J. Nucl. Med. 59, 117–120
(2018).

29. Lemoine, L., Leuzy, A., Chiotis, K., Rodriguez-Vieitez, E. & Nordberg, A. Tau
positron emission tomography imaging in tauopathies: the added hurdle of
off-target binding, Alzheimeras and dementia: diagnosis. Assess. Dis. Monit.
10, 232–236 (2018).

30. Marquié, M. et al. [F-18]-AV-1451 binding correlates with postmortem
neurofibrillary tangle Braak staging. Acta Neuropathol. 134, 619–628 (2017).

31. Lockhart, S. N. et al. Elevated (18)F-AV-1451 PET tracer uptake detected in
incidental imaging findings. Neurology 88, 1095–1097 (2017).

32. Baker, S. L., Harrison, T. M., Maas, A., La Joie, R. & Jagust, W. Effect of off-
target binding on 18 F-Flortaucipir variability in healthy controls across the
lifespan. J. Nucl. Med. https://doi.org/10.2967/jnumed.118.224113 (2019).

33. Jones, D.T. Tau, amyloid, and cascading network failure across the
Alzheimeras disease spectrum. Cortex 97, 1–17 (2017).

34. Vogel, J. W. et al. Data-driven approaches for tau-PET imaging biomarkers in
Alzheimer’s disease. Hum. Brain Mapp. 40, 638–651 (2019).

35. Hoenig, M. C. et al. Networks of tau distribution in Alzheimeras disease. Brain
141, 568–581 (2018).

36. Cope, T. E. et al. Tau burden and the functional connectome in Alzheimeras
disease and progressive supranuclear palsy. Brain 141, 550–567 (2018).

37. Jacobs, H. I. et al. Structural tract alterations predict downstream tau
accumulation in amyloid-positive older individuals. Nat. Neurosci. 21,
424–431 (2018).

38. Franzmeier, N., et al. Functional connectivity associated with tau levels in
ageing, Alzheimer’s, and small vessel disease. Brain 1–15, https://doi.org/
10.1093/brain/awz026 (2019).

39. Ossenkoppele, R. et al. Tau covariance patterns in Alzheimeras disease
patients match intrinsic connectivity networks in the healthy brain.
NeuroImage Clin. 23, 101848 (2019).

40. Ossenkoppele, R. et al. PET patterns mirror clinical and neuroanatomical
variability in Alzheimeras disease. Brain 139, 1551–1567 (2016).

41. Iturria-Medina, Y. & Evans, A. C. On the central role of brain connectivity in
neurodegenerative disease progression. Front. Aging Neurosci. 7, 90 (2015).

42. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D.
Neurodegenerative diseases target large-scale human brain networks. Neuron
62, 42–52 (2009).

43. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W.
Predicting regional neurodegeneration from the healthy brain functional
connectome. Neuron 73, 1216–1227 (2012).

44. Brown, J. A. et al. Patient-tailored, connectivity-based forecasts of spreading
brain atrophy. Neuron 104, 856–868 (2019).

45. Crossley, N. A. et al. The hubs of the human connectome are generally
implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

46. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease
progression in dementia. Neuron 73, 1204–1215 (2012).

47. Zheng, Y. Q. et al. Local vulnerability and global connectivity jointly shape
neurodegenerative disease propagation. PLoS Biol. 17, 1–27 (2019).

48. LaJoie, R. et al. Prospective longitudinal atrophy in Alzheimeras disease
correlates with the intensity and topography of baseline tau-PET. Sci. Transl.
Med. 12, 1–13 (2020).

49. Torok, J., Maia, P. D., Powell, F., Pandya, S. & Raj, A. A method for inferring
regional origins of neurodegeneration. Brain 141, 863–876 (2018).

50. Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J. & Evans, A. C. Epidemic
spreading model to characterize misfolded proteins propagation in aging and
associated neurodegenerative disorders. PLoS Comput. Biol. 10, e1003956 (2014).

51. Jefferson-George, K. S., Wolk, D. A., Lee, E. B. & McMillan, C. T. Cognitive
decline associated with pathological burden in primary age-related tauopathy.
Alzheimeras Dement. 13, 1048–1053 (2017).

52. Braak, H. & Tredici, K. Del Are cases with tau pathology occurring in the
absence of Aβ deposits part of the AD-related pathological process? Acta
Neuropathol. 128, 767–772 (2014).

53. Adams, J. N., Maass, A., Harrison, T. M., Baker, S. L. & Jagust, W. J. Cortical
tau deposition follows patterns of entorhinal functional connectivity in aging.
eLife 8, 1–22 (2019).

54. Fuster-Matanzo, A., Hernández, F. & Ávila, J. Tau spreading mechanisms;
implications for dysfunctional tauopathies. Int. J. Mol. Sci. 19, 645 (2018).

55. DeVos, S. L. et al. Antisense reduction of tau in adult mice protects against
seizures. J. Neurosci. 33, 12887–12897 (2013).

56. Pooler, A. M., Phillips, E. C., Lau, D. H. W., Noble, W. & Hanger, D. P.
Physiological release of endogenous tau is stimulated by neuronal activity.
EMBO Rep. 14, 389–394 (2013).

57. Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E.
Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18,
1546–1555 (2015).

58. Maier-Hein, K. H. et al. The challenge of mapping the human connectome
based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

59. Grothe, M. J. et al. Molecular properties underlying regional vulnerability to
Alzheimer’s disease pathology. Brain 14, 2755–2771 (2018)

60. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimeras disease.
Nature 570, 332–337 (2019).

61. Murray, M. E. et al. Neuropathologically defined subtypes of Alzheimer’s
disease with distinct clinical characteristics: a retrospective study. Lancet
Neurol. 10, 785–796 (2011).

62. Ferreira, D., Pereira, J. B., Volpe, G. & Westman, E. Subtypes of Alzheimer’s
disease display distinct network abnormalities extending beyond their pattern
of brain atrophy. Front. Neurol. 10, 524 (2019)

63. Scherr, M., et al. Effective connectivity in the default mode network is
distinctively disrupted in Alzheimer’s disease—a simultaneous resting-state
FDG-PET/fMRI study. Hum. Brain Mapp. 1–10, https://doi.org/10.1002/
hbm.24517 (2019).

64. Sepulcre, J. et al. Neurogenetic contributions to amyloid beta and tau
spreading in the human cortex. Nat. Med. 24, 1910–1918 (2018).

65. Acosta, D., Powell, F., Zhao, Y. & Raj, A. Regional vulnerability in
Alzheimeras disease: the role of cell-autonomous and transneuronal processes.
Alzheimeras Dement. 14, 797–810 (2018).

66. Aggleton, J. P., Pralus, A., Nelson, A. J. D. & Hornberger, M. Thalamic
pathology and memory loss in early Alzheimeras disease: moving the focus
from the medial temporal lobe to Papez circuit. Brain 139, 1877–1890 (2016).

67. Palmqvist, S. et al. Detailed comparison of amyloid PET and CSF biomarkers
for identifying early Alzheimer disease. Neurology 85, 1240–1249 (2015).

68. Hansson, O., et al. Tau pathology distribution in Alzheimeras disease
corresponds differentially to cognition-relevant functional brain networks.
Front. Neurosci. 11, 167 (2017)

69. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage
31, 968–980 (2006).

70. Klein, A. & Tourville, J. 101 labeled brain images and a consistent human
cortical labeling protocol. Front. Neurosci. 6, 1–12 (2012).

71. Grothe, M. J. et al. In vivo staging of regional amyloid deposition. Neurology
89, 2031–2038 (2017).

72. Palmqvist, S. et al. Accuracy of brain amyloid detection in clinical practice
using cerebrospinal fluid β-amyloid 42. JAMA Neurol. 71, 1282 (2014).

73. Lee, C. M. et al. 18F-flortaucipir binding in choroid plexus: related to race and
hippocampus signal. J. Alzheimer’s Dis. 62, 1691–1702 (2018).

74. Liu, M. et al. Sex modulates the ApoE ϵ 4 effect on brain tau deposition
measured by 18 F-AV-1451 PET in individuals with mild cognitive
impairment. Theranostics 9, 4959–4970 (2019).

75. Rachel F. B. et al. Sex differences in the association of global amyloid and
regional tau deposition measured by positron emission tomography in
clinically normal older adults. JAMA Neurol. 76, 542 (2019).

76. LaJoie, R. et al. Region-specific hierarchy between atrophy, hypometabolism,
and A-amyloid (A) load in Alzheimer’s disease dementia. J. Neurosci. 32,
16265–16273 (2012).

77. Rousset, O. G., Ma, Y. & Evans, A. C. Correction for partial volume effects in
PET: principle and validation. J. Nucl. Med. 39, 904–911 (1998).

78. Yeh, F. C. & Tseng, W. Y. I. NTU-90: a high angular resolution brain atlas
constructed by q-space diffeomorphic reconstruction. NeuroImage 58, 91–99
(2011).

79. Iturria-Medina, Y. et al. Characterizing brain anatomical connections using
diffusion weighted MRI and graph theory. NeuroImage 36, 645–660 (2007).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15701-2

12 NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications

https://doi.org/10.2967/jnumed.118.224113
https://doi.org/10.1093/brain/awz026
https://doi.org/10.1093/brain/awz026
https://doi.org/10.1002/hbm.24517
https://doi.org/10.1002/hbm.24517
www.nature.com/naturecommunications


80. Iturria-Medina, Y., Carbonell, F. M., Sotero, R. C., Chouinard-Decorte, F. &
Evans, A. C. Multifactorial causal model of brain (dis)organization and
therapeutic intervention: application to Alzheimeras disease. NeuroImage 152,
60–77 (2017).

81. Bellec, P. COBRE preprocessed with NIAK 0.17—lightweight release (2016).
82. Vogel, J. W. et al. Brain properties predict proximity to symptom onset in

sporadic Alzheimeras disease. Brain 141, 1871–1883 (2018).
83. Schöll, M. et al. PET imaging of tau deposition in the aging human brain.

Neuron 89, 971–982 (2016).

Acknowledgements
We would like to thank Bratislav Misic, Pierre Bellec, and Mallar Chakravarty for
comments and suggestions during the formulation of this work. J.W.V. is supported by
the government of Canada through the tri-council Vanier Canada Graduate Doctoral
Fellowship. We would also like to acknowledge support from the Ludmer Centre for
Neuroinformatics and Mental Health and the Healthy Brains for Healthy Lives initia-
tive. Work at the authors’ research center was supported by the European Research
Council, the Swedish Research Council, the Knut and Alice Wallenberg foundation, the
Marianne and Marcus Wallenberg foundation, the Strategic Research Area MultiPark
(Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish
Alzheimer Foundation, the Swedish Brain Foundation, The Parkinson foundation of
Sweden, The Parkinson Research Foundation, the Skåne University Hospital Founda-
tion, and the Swedish federal government under the ALF agreement. Doses of 18F-
flutemetamol injection were sponsored by GE Healthcare. The precursor of 18F-
flortaucipir was provided by AVID radiopharmaceuticals. Data collection and sharing
for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of
Defense award number W81XWH-12-2-0012). ADNI is funded by the National Insti-
tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceu-
ticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd; Janssen
Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Phar-
maceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.;
Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharma-
ceutical Company; and Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private sector
contributions are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California. ADNI data are disseminated
by the Laboratory for Neuro Imaging at the University of Southern California. Data
used in preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete list

of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/
howtoapply/ADNIAcknowledgementList.pdf. Open access funding provided by Lund
University.

Author contributions
J.W.V., Y.I.-M., and A.C.E conceptualized the study. Y.I.-M. designed the Epidemic
Spreading Model. J.W.V., Y.I.-M., and E.L. designed and developed the other meth-
odologies. O.T.S. and R.S. preprocessed the data. J.W.V. analyzed the data. O.H. provided
patient data. J.W.V. and O.H. wrote the manuscript. J.W.V., Y.I.M., R.S., A.C.E., and
O.H. interpreted the findings. All authors revised the manuscript and provided critical
feedback. O.H. and A.C.E. supervised the study.

Competing interests
O.H. has acquired research support (for the institution) from Roche, GE Healthcare,
Biogen, AVID Radiopharmaceuticals, Fujirebio, and Euroimmun. In the past 2 years, he
has received consultancy/speaker fees (paid to the institution) from Biogen, Roche, and
Fujirebio.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15701-2.

Correspondence and requests for materials should be addressed to J.W.V. or O.H.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2021

Alzheimer’s Disease Neuroimaging Initiative

Michael Weiner4, Paul Aisen5, Ronald Petersen6, Clifford R. Jack Jr.6, William Jagust7, John Q. Trojanowki8,

Arthur W. Toga9, Laurel Beckett10, Robert C. Green11, Andrew J. Saykin12, John Morris13, Leslie M. Shaw14,

Enchi Liu15, Tom Montine16, Ronald G. Thomas5, Michael Donohue5, Sarah Walter5, Devon Gessert5,

Tamie Sather5, Gus Jiminez5, Danielle Harvey10, Michael Donohue5, Matthew Bernstein6, Nick Fox17,

Paul Thompson18, Norbert Schuff19, Charles DeCArli10, Bret Borowski6, Jeff Gunter6, Matt Senjem6,

Prashanthi Vemuri6, David Jones6, Kejal Kantarci6, Chad Ward6, Robert A. Koeppe20, Norm Foster21,

Eric M. Reiman22, Kewei Chen22, Chet Mathis23, Susan Landau7, Nigel J. Cairns13, Erin Householder13,

Lisa Taylor Reinwald13, Virginia Lee24, Magdalena Korecka24, Michal Figurski24, Karen Crawford9, Scott Neu9,

Tatiana M. Foroud12, Steven Potkin25, Li Shen12, Faber Kelley12, Sungeun Kim12, Kwangsik Nho12,

Zaven Kachaturian26, Richard Frank27, Peter J. Snyder28, Susan Molchan29, Jeffrey Kaye30, Joseph Quinn30,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15701-2 ARTICLE

NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications 13

http://www.fnih.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/howtoapply/ADNIAcknowledgementList.pdf
http://adni.loni.usc.edu/wp-content/uploads/howtoapply/ADNIAcknowledgementList.pdf
https://doi.org/10.1038/s41467-020-15701-2
https://doi.org/10.1038/s41467-020-15701-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Betty Lind30, Raina Carter30, Sara Dolen30, Lon S. Schneider31, Sonia Pawluczyk31, Mauricio Beccera31,

Liberty Teodoro31, Bryan M. Spann31, James Brewer32, Helen Vanderswag32, Adam Fleisher22,

Judith L. Heidebrink20, Joanne L. Lord20, Ronald Petersen6, Sara S. Mason6, Colleen S. Albers6, David Knopman6,

Kris Johnson6, Rachelle S. Doody33, Javier Villanueva Meyer33, Munir Chowdhury33, Susan Rountree33,

Mimi Dang33, Yaakov Stern34, Lawrence S. Honig34, Karen L. Bell34, Beau Ances35, John C. Morris35,

Maria Carroll35, Sue Leon35, Erin Householder13, Mark A. Mintun35, Stacy Schneider35, Angela OliverNG36,

Randall Griffith36, David Clark36, David Geldmacher36, John Brockington36, Erik Roberson36, Hillel Grossman37,

Effie Mitsis37, Leyla de Toledo-Morrell38, Raj C. Shah38, Ranjan Duara39, Daniel Varon39, Maria T. Greig39,

Peggy Roberts39, Marilyn Albert40, Chiadi Onyike40, Daniel D’Agostino II40, Stephanie Kielb40,

James E. Galvin41, Dana M. Pogorelec41, Brittany Cerbone41, Christina A. Michel41, Henry Rusinek41,

Mony J. de Leon41, Lidia Glodzik41, Susan De Santi41, P. Murali Doraiswamy42, Jeffrey R. Petrella42,

Terence Z. Wong42, Steven E. Arnold14, Jason H. Karlawish14, David Wolk14, Charles D. Smith43, Greg Jicha43,

Peter Hardy43, Partha Sinha43, Elizabeth Oates43, Gary Conrad43, Oscar L. Lopez23, MaryAnn Oakley23,

Donna M. Simpson23, Anton P. Porsteinsson44, Bonnie S. Goldstein44, Kim Martin44, Kelly M. Makino44,

M. Saleem Ismail44, Connie Brand44, Ruth A. Mulnard45, Gaby Thai45, Catherine Mc Adams Ortiz45,

Kyle Womack46, Dana Mathews46, Mary Quiceno46, Ramon Diaz Arrastia46, Richard King46, Myron Weiner46,

Kristen Martin Cook46, Michael DeVous46, Allan I. Levey47, James J. Lah47, Janet S. Cellar47, Jeffrey M. Burns48,

Heather S. Anderson48, Russell H. Swerdlow48, Liana Apostolova49, Kathleen Tingus49, Ellen Woo49,

Daniel H. S. Silverman49, Po H. Lu49, George Bartzokis49, Neill R. Graff Radford50, Francine Parfitt50,

Tracy Kendall50, Heather Johnson50, Martin R. Farlow12, Ann Marie Hake12, Brandy R. Matthews12,

Scott Herring12, Cynthia Hunt12, Christopher H. van Dyck51, Richard E. Carson51, Martha G. MacAvoy51,

Howard Chertkow52, Howard Bergman52, Chris Hosein52, Sandra Black53, Bojana Stefanovic53,

Curtis Caldwell53, Ging Yuek Robin Hsiung54, Howard Feldman54, Benita Mudge54, Michele Assaly Past54,

Andrew Kertesz55, John Rogers55, Dick Trost55, Charles Bernick56, Donna Munic56, Diana Kerwin57,

Marek Marsel Mesulam57, Kristine Lipowski57, Chuang Kuo Wu57, Nancy Johnson57, Carl Sadowsky58,

Walter Martinez58, Teresa Villena58, Raymond Scott Turner59, Kathleen Johnson59, Brigid Reynolds59,

Reisa A. Sperling60, Keith A. Johnson60, Gad Marshall60, Meghan Frey60, Jerome Yesavage61, Joy L. Taylor61,

Barton Lane61, Allyson Rosen61, Jared Tinklenberg61, Marwan N. Sabbagh62, Christine M. Belden62,

Sandra A. Jacobson62, Sherye A. Sirrel62, Neil Kowall63, Ronald Killiany63, Andrew E. Budson63,

Alexander Norbash63, Patricia Lynn Johnson63, Thomas O. Obisesan64, Saba Wolday64, Joanne Allard64,

Alan Lerner65, Paula Ogrocki65, Leon Hudson65, Evan Fletcher66, Owen Carmichael66, John Olichney66,

Charles DeCarli66, Smita Kittur67, Michael Borrie68, T. Y. Lee68, Rob Bartha68, Sterling Johnson69,

Sanjay Asthana69, Cynthia M. Carlsson69, Steven G. Potkin70, Adrian Preda70, Dana Nguyen70, Pierre Tariot22,

Adam Fleisher22, Stephanie Reeder22, Vernice Bates71, Horacio Capote71, Michelle Rainka71,

Douglas W. Scharre72, Maria Kataki72, Anahita Adeli72, Earl A. Zimmerman73, Dzintra Celmins73,

Alice D. Brown73, Godfrey D. Pearlson74, Karen Blank74, Karen Anderson74, Robert B. Santulli75,

Tamar J. Kitzmiller75, Eben S. Schwartz75, Kaycee M. SinkS76, Jeff D. Williamson76, Pradeep Garg76,

Franklin Watkins76, Brian R. Ott77, Henry Querfurth77, Geoffrey Tremont77, Stephen Salloway78, Paul Malloy78,

Stephen Correia78, Howard J. Rosen4, Bruce L. Miller4, Jacobo Mintzer79, Kenneth Spicer79, David Bachman79,

Elizabether Finger80, Stephen Pasternak80, Irina Rachinsky80, John Rogers55, Andrew Kertesz55, Dick Drost80,

Nunzio Pomara81, Raymundo Hernando81, Antero Sarrael81, Susan K. Schultz82, Laura L. Boles Ponto82,

Hyungsub Shim82, Karen Elizabeth Smith82, Norman Relkin83, Gloria Chaing83, Lisa Raudin83, Amanda Smith84,

Kristin Fargher84 & Balebail Ashok Raj84

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15701-2

14 NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


4UC San Francisco, San Francisco, CA, USA. 5UC San Diego, San Diego, CA, USA. 6Mayo Clinic, Rochester, NY, USA. 7UC Berkeley, Berkeley, CA,
USA. 8U Pennsylvania, Pennsylvania, CA, USA. 9USC, Los Angeles, CA, USA. 10UC Davis, Davis, CA, USA. 11Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA, USA. 12Indiana University, Bloomington, IN, USA. 13Washington University St. Louis, St. Louis, MO, USA.
14University of Pennsylvania, Philadelphia, PA, USA. 15Janssen Alzheimer Immunotherapy, South San Francisco, CA, USA. 16University of
Washington, Seattle, WA, USA. 17University of London, London, UK. 18USC School of Medicine, Los Angeles, CA, USA. 19UCSF MRI, San Francisco,
CA, USA. 20University of Michigan, Ann Arbor, MI, USA. 21University of Utah, Salt Lake City, UT, USA. 22Banner Alzheimer’s Institute, Phoenix, AZ,
USA. 23University of Pittsburgh, Pittsburgh, PA, USA. 24UPenn School of Medicine, Philadelphia, PA, USA. 25UC Irvine, Newport Beach, CA, USA.
26Khachaturian, Radebaugh & Associates, Inc and Alzheimer’s Association’s Ronald and Nancy Reagan’s Research Institute, Chicago, IL, USA.
27General Electric, Boston, MA, USA. 28Brown University, Providence, RI, USA. 29National Institute on Aging/National Institutes of Health,
Bethesda, MD, USA. 30Oregon Health and Science University, Portland, OR, USA. 31University of Southern California, Los Angeles, CA, USA.
32University of California San Diego, San Diego, CA, USA. 33Baylor College of Medicine, Houston, TX, USA. 34Columbia University Medical Center,
New York, NY, USA. 35Washington University, St. Louis, MO, USA. 36University of Alabama Birmingham, Birmingham, MO, USA. 37Mount Sinai
School of Medicine, New York, NY, USA. 38Rush University Medical Center, Chicago, IL, USA. 39Wien Center, Vienna, Austria. 40Johns Hopkins
University, Baltimore, MD, USA. 41New York University, New York, NY, USA. 42Duke University Medical Center, Durham, NC, USA. 43University of
Kentucky, city of Lexington, NC, USA. 44University of Rochester Medical Center, Rochester, NY, USA. 45University of California, Irvine, CA, USA.
46University of Texas Southwestern Medical School, Dallas, TX, USA. 47Emory University, Atlanta, GA, USA. 48University of Kansas, Medical
Center, Lawrence, KS, USA. 49University of California, Los Angeles, CA, USA. 50Mayo Clinic, Jacksonville, FL, USA. 51Yale University School of
Medicine, New Haven, CT, USA. 52McGill Univ., Montreal Jewish General Hospital, Montreal, WI, USA. 53Sunnybrook Health Sciences, Toronto,
ON, Canada. 54U.B.C. Clinic for AD & Related Disorders, British Columbia, BC, Canada. 55Cognitive Neurology St. Joseph’s, Toronto, ON, Canada.
56Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA. 57Northwestern University, Evanston, IL, USA. 58Premiere Research Inst
Palm Beach Neurology, West Palm Beach, FL, USA. 59Georgetown University Medical Center, Washington, DC, USA. 60Brigham and Women’s
Hospital, Boston, MA, USA. 61Stanford University, Santa Clara County, CA, USA. 62Banner Sun Health Research Institute, Sun City, AZ, USA.
63Boston University, Boston, MA, USA. 64Howard University, Washington, DC, USA. 65Case Western Reserve University, Cleveland, OH, USA.
66University of California, Davis Sacramento, CA, USA. 67Neurological Care of CNY, New York, NY, USA. 68Parkwood Hospital, Parkwood, CA,
USA. 69University of Wisconsin, Madison, WI, USA. 70University of California, Irvine BIC, Irvine, CA, USA. 71Dent Neurologic Institute, Amherst,
MA, USA. 72Ohio State University, Columbus, OH, USA. 73Albany Medical College, Albany, NY, USA. 74Hartford Hosp, Olin Neuropsychiatry
Research Center, Hartford, CT, USA. 75Dartmouth Hitchcock Medical Center, Albany, NY, USA. 76Wake Forest University Health Sciences,
Winston-Salem, NC, USA. 77Rhode Island Hospital, Rhode Island, USA. 78Butler Hospital, Providence, RI, USA. 79Medical University South
Carolina, Charleston, SC, USA. 80St. Joseph’s Health Care, Toronto, Canada. 81Nathan Kline Institute, Orangeburg, SC, USA. 82University of Iowa
College of Medicine, Iowa City, IA, USA. 83Cornell University, Ithaca, NY, USA. 84University of South Florida, USF Health Byrd Alzheimer’s Institute,
Tampa, FL 33613, USA.

the Swedish BioFinder Study

Emelie Andersson2, David Berron2, Elin Byman2, Tone Sundberg-Brorsson2, Administrator2, Emma Borland2,

Anna Callmer2, Cecilia Dahl2, Eske Gertje2, Anna-Märta Gustavsson2, Joanna Grzegorska2, Sara Hall2,

Oskar Hansson2, Philip Insel2, Shorena Janelidze2, Maurits Johansson2, Helena Sletten2, Jonas Jester-Broms2,

Elisabet Londos2, Niklas Mattson2, Lennart Minthon2, Maria Nilsson2, Rosita Nordkvist2, Katarina Nägga2,

Camilla Orbjörn2, Rik Ossenkoppele2, Sebastian Palmqvist2, Marie Persson2, Alexander Santillo2,

Nicola Spotorno2, Erik Stomrud2, Håkan Toresson2, Olof Strandberg2, Michael Schöll2, Ida Friberg85,

Per Johansson85, Moa Wibom85, Katarina Johansson86, Emma Pettersson86, Christin Karremo86,

Ruben Smith86, Yulia Surova86, Mattis Jalakas87, Jimmy Lätt88, Peter Mannfolk88, Markus Nilsson88,

Freddy Ståhlberg88, Pia Sundgren88, Danielle van Westen88, Ulf Andreasson89, Kaj Blennow89,

Henrik Zetterberg89, Lars-Olof Wahlund90, Eric Westman90, Joana Pereira90, Jonas Jögi91,

Douglas Hägerström91, Tomas Olsson91 & Per Wollmer91

85Memory Clinic, Ängelholm Hospital, Skåne, Sweden. 86Department of Neurology, Skåne University Hospital, Skåne, Sweden. 87Department of
Neurosurgery, Skåne University Hospital, Skåne, Sweden. 88MRI Unit, Lund University, Lund, Sweden. 89Clinical Neurochemistry Laboratory,
University of Gothenburg, Gothenburg, Sweden. 90MRI Unit, Karolinska Institutet, Solna, Sweden. 91PET UNIT, LUND UNIVERSITY, Lund, Sweden.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15701-2 ARTICLE

NATURE COMMUNICATIONS | (2020)11:2612 | https://doi.org/10.1038/s41467-020-15701-2 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Spread of pathological tau proteins through communicating neurons in human Alzheimer&#x2019;s disease
	Results
	Sample information
	Tau-positive probabilities enhance fidelity of tau-PET data
	Neuronal connectivity explains the spatial pattern of tau
	Low-level tau spreading is evident in Aβ− individuals
	Regional β-amyloid affects regional model performance
	Evidence for individual asymmetry in tau deposition

	Discussion
	Methods
	Participants
	PET acquisition and pre-processing
	The Epidemic Spreading Model
	Regional tau-PET data pre-processing
	Connectivity measurements
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




