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Evolution of a Rapidly Learned Representation for Speech

Ramin Charles Nakisa (RAMIN@PSY.OX.AC.UK)
Kim Plunkett (PLUNKETT@PSY.OX.AC.UK)
Department of Experimental Psychology
Oxford University
South Parks Road
Oxford OX1 3UD

Abstract

Newly born infants are able to finely discriminate almost all
human speech contrasts and their phonemic category bound-
aries are initially identical, even for phonemes outside their
target language. A connectionist model is described which ac-
counts for this ability. The approach taken has been to de-
velop a model of innately guided learning in which an arti-
ficial neural network (ANN) is stored in a “genome™ which
encodes its architecture and learning rules. The space of pos-
sible ANNs is searched with a genetic algorithm for networks
that can learn to discriminate human speech sounds. These
networks perform equally well having been trained on speech
spectra from any human language so far tested (English, Can-
tonese, Swahili, Farsi, Czech, Hindi, Hungarian, Korean, Pol-
ish, Russian, Slovak, Spanish, Ukranian and Urdu). Training
the feature detectors requires exposure to just one minute of
speech in any of these languages. Categorisation of speech
sounds based on the network representations showed the hall-
marks of categorical perception, as found in human infants and
adults.

Introduction

Precocious abilities in newborn infants are frequently taken
as evidence of “hard-wired microcircuitry” that is innately
specified. One such ability is that of newborn infants to be
universal listeners, able to discriminate speech contrasts of
all languages. This is all the more remarkable since the low-
pass filtered speech sounds that foetuses hear in utero vary
widely between different languages.

Eimas et al. (1971) showed that 1-4 month old infants dis-
played categorical perception of the syllables /ba/ and /pa/.
That is to say, infants carve up the phonetic space into a set
of categories with sharp boundaries. Variants of phoneme,
such as /b/, are not discriminable, even though they differ
acoustically by the same amount as /p/ and /b/. More re-
cent research has shown that the categories are universal,
so that English-learning infants can discriminate non-native
contrasts in Czech (Trehub, 1973), Hindi (Werker, Gilbert,
Humphrey, & Tees, 1981), Nthlakampx (Werker & Tees,
1984), Spanish (Aslin, Pisoni, Hennessy, & Perey, 1981) and
Zulu (Best, McRoberts, & Sithole, 1988). This suggests that
infants develop an initial representation of speech that is uni-
versal and largely insensitive to the particular language to
which they are expesed.

Many connectionist models of language acquisition take
a fully developed featural or phonemic representation of the
speech signal as their input rather than spectra (Christiansen,
Allen, & Seidenberg, In press; Elman, 1990). This side-steps
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the problem of acoustic variability and makes the task of ac-
quisition considerably easier. Such models would be more
convincing if it could be demonstrated that suitable features
could be rapidly learned well before word comprehension be-
gins.

Description of the Model

The model builds on interactive activation models, with three
major modifications:

Learning Each network learns using many different, unsu-
pervised learning rules. These use only local information,
and so are biologically plausible.

Flexible Architecture Every network is split into a number
of separate subnetworks. This allows exploration of differ-
ent neuronal architectures, and it becomes possible to use
different learning rules to connect subnetworks. Subnet-
works differ in their time-constants, and therefore respond
to information over a range of time-scales.

Genetic Selection Networks are evolved using a technique
called genetic connectionism. Using a genetic algorithm
allows great flexibility in the type of neural network that
can be used. All the attributes of the neural network can
be simultaneously optimised rather than just the connec-
tions. In this model the architecture, learning rules and
time-constants are all optimised together.

Genome Design and Sexual Reproduction

The genome has been designed to have two chromosomes
stored as arrays of numbers. One chromosome stores the at-
tributes of each subnetwork, such as the number of units in
the subnetwork, the subnetwork time constant and the indices
of the other subnetworks to which the subnetwork projects.
The other chromosome stores learning rules which are used
to modify connections between individual units.

During sexual reproduction of two networks the two chro-
mosomes from each parent are independently recombined. In
recombination, a point within a chromosome array is ran-
domly chosen, and all the information up to that point is
copied from the paternal chromosome and the rest of the
chromosome is copied from the maternal chromosome creat-
ing a hybrid chromosome with information from both parents.
Clearly, the subnetwork and learning rule chromosomes must
be the same length for sexual recombination to occur, so0 not
all pairs of parents can reproduce. Parents must be sexually
compatible i.e. must have the same number of subnetworks
and learning rules.
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Dynamics

The dynamics of all units in the network are governed by the
first order equation

n
Tnda, = E w!i"al —al (n
dt - J J

s,

Where 1, is the time constant for subnetwork rn, a:‘; is the

activity of the j' unit in subnetwork s, al is the activity of
the ith unit in subnetwork n, wi;"™ is the synaptic strength
between the j‘h unit in subnetwork s and the it unit in sub-
network n. In other words, the rate of change in the activation
of a unit is a weighted sum of the activity of the units which
are connected to the unit ¢, minus a decay term. If there is
no input to the unit its activity dies away exponentially with
time constant 7,,. The activity of a unit will be steady when
the activity of the unit is equal to its net input. Activities were
constrained to lie in the range 0.0 < a < 1.0. Network activ-
ity for all the units was updated in a synchronous fashion with
a fixed time-step of 10 ms using a fourth order Runge-Kutta
integration scheme adapted from Numerical Recipes (Press,
Flannery, Teukolsky, & Vetterling, 1988).

Architecture

The architecture has to be stored in a “genome” to allow it to
evolve with a genetic algorithm, and one very flexible method
of encoding the architecture is to create a subnetwork con-
nectivity matrix. If there are n subnetworks in the network,
then the subnetwork connectivity matrix will be an n by n
matrix. The column number indicates the subnetwork from
which connections project, and the row number indicates the
subnetworks to which connections project.

Complex architectures can be represented using a subnet-
work connectivity matrix. The matrix allows diagonal ele-
ments to be non-zero, allowing a subnetwork to be fully con-
nected to itself. In addition, the subnetwork connectivity ma-
trix is used to determine which learning rule will be used
for the connections between any pair of subnetworks. If an
element is zero there are no connections between two sub-
networks. A positive integer element indicates that subnet-
works are fully connected and the value of the integer spec-
ifies which one of the many learning rules to use for that set
of connections. A simple architecture is shown in Figure |
alongside its corresponding subnetwork connectivity matrix.

Learning Rules

Learning rules are of the general form shown in equation 2.
They are stored in the network genome in groups of seven
coefficients kg to kg following the representation used by
Chalmers (1990).

Awij = l(ko + kra; + kaa; + ksaia; +
kywi; + ksajw;; + kgajwi;) 2)

In Equation 2, Aw;; is the change in synaptic strength be-
tween units j and 1, [ is the learning rate, a; is the activity
of unit i, a; is the activity of unit j and wj; is the current
synaptic strength between units j and i. The learning rate
[ is used to scale weight changes to small values for each
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time step to avoid undesirably rapid weight changes. The
coefficients in this equation determine which learning rule
is used. For example, a Hebbian learning rule would be
represented in this scheme with k3 > 0 and ky < 0 and
ki = k; = ky = ks = kg = 0. Connections between units
using this learning rule would be strengthened if both units
were simultaneously active. A network has several learn-
ing rules in its genome stored as a set of these coefficients.
Weight values are clipped to avoid extremely large values
developing over long training periods. The range used was
—-1.0< Aw,-j < +1.0.

Training and Evaluation of Fitness

Networks were trained and evaluated using digitised speech
files taken from the DARPA TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus (TIMIT) as described in Garofolo et
al. (1990). All networks were constrained to have 64 in-
put units because speech sounds were represented as power
spectra with 64 values. This was an artificial constraint im-
posed by the format of the spectra. The power spectra were
calculated with a modified version of the OGI speech tools
program MAKEDFT with a window size of 10 ms and with
successive windows adjacent to one another. For these simu-
lations 8 output subnetworks were used to represent features
because this is roughly the number claimed to be necessary
for distinguishing all human speech sounds by some phoneti-
cians (Jakobson & Waugh, 1979).

All the connections, both within and between subnetworks,
were initially randomised to values between -1.0 and +1.0.
Networks were then exposed to a fixed number of different,
randomly selected training sentences (usually 30). On each
time-step activity was propagated through the network of sub-
networks to produce a response activity on the output units.
All connections were then modified according to the learning
rules specified in the genome. On the next time-step a new in-
put pattern corresponding to the next time-slice of the speech
signal was presented and the process of activity propagation
and weight modification repeated. The process of integrating
activities and weight updates was repeated until the network
had worked its way through all the time-slices of each sen-
tence.

In the testing phase activation was propagated through the
network without weight changes. The weights were frozen
at the values they attained at the end of the training phase.
Testing sentences were always different from training sen-
tences. When a time-slice corresponded with the mid-point of
a phoneme, as defined in the TIMIT phonological transcrip-
tion file, the output unit activities were stored alongside the
correct identity of the phoneme. Network fitness was calcu-
lated using the stored output unit activities after the network
had been exposed to all the testing sentences. The fitness
function f was

_ Z:QN Z?rzi+l dist(0;, ;) - s
- N(N -1)

f (3)

Where s = +1 if 1 and j are different phonemes and
s = —1ifi and j are the identical phonemes, ¢; and 6; were
the output unit activities at the midpoint of all N phonemes
and s was either +1 or -1 depending on whether phonemes 1
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Figure 1: A network with 9 subnetworks. Subnetwork 1 and 2 are the input and output subnetworks, respectively. Arrows
represent sets of connections and the type of learning rule employed by those sets of connections. There are three learning
rules used; solid arrow (learning rule 1), dashed arrow (learning rule 2) and dotted arrow (learning rule 3). Some subnetworks
are fully connected to themselves, such as subnetwork 8 (since Cgg = 1), while others are information way-stations, such as

subnetwork 5 (Css = 0).

and j were different and dist was euclidean distance. This fit-
ness function favoured networks that represented occurrences
of the same phoneme as similarly as possible and different
phonemes as differently as possible. A perfect network would
have all instances of a given phoneme type mapping onto the
same point in the output unit space and different phonemes as
far apart as possible. Note that constant output unit activities
would result in a fitness of 0.0. An ideal learning rule would
be able to find an appropriate set of weights whatever the ini-
tial starting point in weight space. Each network was trained
and tested three times from completely different random ini-
tial weights on completely different sentences. This reduced
random fitness variations caused by the varying difficulty of
training/testing sentences and the choice of initial weights.

Evolution was carried out with a population of 50 net-
works. Genomes were initially generated with certain lim-
its on the variables. All genomes had 16 input subnetworks
and 8 output subnetworks with time constants randomly dis-
tributed in the range 100 ms to 400 ms. The input subnet-
works had 4 units each and the output subnetworks had 1 unit
each. Each network started with 10 different learning rules
with integer coefficients randomly distributed in the range -2
to +2. Subnetwork connectivity matrices were generated with
a probability of any element being non-zero of 0.3. If an ele-
ment was non-zero, the learning rule used for the connections
between the subnetworks was randomly selected from the 10
learning rules defined for the network. The networks were
also constrained to be feed-forward.

Results

All results shown are from the best network evolved (fit-
ness=0.45) after it had been trained on 30 English sentences
corresponding to about 2 minutes of continuous speech. Fig-
ure 2 shows the response of this network to one of the TIMIT
testing sentences. From the response of the feature units to
speech sounds (see Figure 2) it was clear that some units were
switched off by fricatives, and some units were switched on
by voicing, so both excitation and inhibition play an impor-

tant part in the functioning of the feature detectors. The fea-
ture unit responses did not seem to correlate directly with any
other standard acoustic features (e.g. nasal, compact, grave,
flat etc.). An analysis of the frequency response of the eight
feature detectors (see Figure 3) showed that each unit had ex-
citatory projections from several frequency bands. Generally,
the frequency responses were mutually exclusive so that each
unit responded to slightly different sounds, as one would ex-
pect.

Feature Unit 8 . l - -
Feature Unit 7 s i 1 - .
Feature Unit 6 | § [ | B .
Feature Unit5 i IR | =

Feature Unitd I I | s ] |
Featwre Unit 3 1 NEEEEINR [~

Feawre Unic2 [ IE E Kl =
Feature Unit | | Il 3 N
0 2 4 6 i
Frequency / kHz

Figure 3: Complex frequency response of all eight feature
units to pure tones. Feature units 2 and 3 receive strong ex-
citatory inputs from low frequencies (below 4 kHz) and are
therefore activated by voicing.

In order to determine the cross-linguistic performance of
the “innate™ features evolved on English speech, sound files
of the news in several languages were obtained from the Voice
of America FTP site (ftp.voa.gov). Since phonologi-
cal transcription files were not available for these files they
could not be used to test the network, because the times of the
phoneme mid-points were unknown. All the VOA broadcast
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Figure 2:

Network response to the sentence “Agricultural products are unevenly distributed” (TIMIT speech file

test/dr3/fkms0/sx 140). Input units are fed with sound spectra and activate the feature units. Activity is shown as a greyscale
(maximum activity is portrayed as black) with time on the horizontal axis. Phone and word start and end times as listed in
TIMIT are shown in the bottom two panels. This is the same network as shown in Figure 3.

languages' were used as training files, and the network was
tested on 30 American English sentences found in the TIMIT
speech files. The time-course of development for four lan-
guages are shown in Figure 4. Maximum fitness was reached
after training on any language for roughly 20 sentences (each
lasting about 3 seconds).

All of the human languages tested seemed to be equally ef-
fective for training the network to represent English speech
sounds. To see whether any sounds could be used for train-
ing, the network was trained on white noise. This resulted in
slower learning and a lower fitness. The fitness for a network
trained on white noise never reached that of the same net-
work trained on human speech. An even worse impediment
to learning was to train on low-pass filtered human speech.

Categorical perception of some phonemes is a robust phe-
nomenon observed in both infants and adults. We tested
the network on a speech continuum ranging between two
phonemes and calculated the change in the representation of
the speech tokens along this continuum. Note that this model
simply creates a representation of speech on which identifi-
cation judgements are based. It does not identify phonemes
itself. All that the model can provide is distances between its
internal representations of different sounds. Categorical per-
ception can be exhibited by this network if the internal rep-
resentation exhibits non-linear shifts with gradual changes in
the input i.e. a small change in the input spectrum can cause
a large change in the activity of the output units.

Using a pair of real /|/ and /s/ spectra from a male speaker,
a series of eleven spectra were created which formed a lin-

"English, Cantonese, Swahili, Farsi, Czech, Hindi, Hungarian,
Korean, Polish, Russian, Slovak, Spanish, Ukranian and Urdu.
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Figure 4: Network performance increases to its final value
after presentation of just 20 sentences regardless of the lan-
guage used to train the network. The six curves show the
learning curves for a network tested on 30 sentences of En-
glish having been trained on English, Cantonese, Swahili,
Farsi, white noise and low-pass filtered English.



car continuum from a pure /J/ to a pure /s/. This was done
by linearly interpolating between the two spectra, so the sec-
ond spectrum in the continuum was a linear sum of 0.9 times
the /[/ spectrum plus 0.1 times the /s/ spectrum. The next
spectrum was a linear sum of 0.8 times the /[/ spectrum plus
0.2 times the /s/ spectrum, and so on for all nine intermediate
spectra up to the pure /s/. Each of the eleven spectra in the
continuum were individually fed into the input of a network
that had been trained on 30 sentences of continuous speech
in English. The output feature responses were stored for each
spectrum in the continuum. The distances of these feature
vectors from the pure /[/ and pure /s/ are shown in Figure 5.
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Figure 5: Response of the network to input on a /[/ - /s/ con-
tinuum. Circles show the distance from a pure /[/ and trian-
gles show the distance from a pure /s/.

Clearly, the distance of the pure /f/ from itself is zero, but
moving along the continuum, the distance from the pure /[/
increases steadily until it reaches a maximum for the pure
/s/ (distances were scaled such that the maximum distance
was 1). It is clear from Figure 5 that the representation is
non-linear. That is, linear variations in the input spectrum
do not result in linear changes in the activity of the feature
units. Compared to the spectral representation of the /[/
/s/ continuum, the network re-represents the distances in the
following ways:

e There is a discontinuity in the distances which occurs
closer to the /[/ than the /s/.

o The distance from the representation of a pure /s/ remains
small for spectra that are a third of the way toward the pure
/1.

A classifier system using this representation would there-
fore shift the boundary between the two phonemes toward
/[7 and be relatively insensitive to spectral variations that oc-
curred away from this boundary. These are the hallmarks of
categorical perception.

540

Discussion

By developing an appropriate architecture, time-constants
and learning rules over many generations, the task of learn-
ing to represent speech sounds is made more rapid over the
course of development of an individual network. Evolution
does all the hard work and gives the network a developmen-
tal “leg-up”. However, having the correct innate architecture
and learning rules is not sufficient for creating good represen-
tations. Weights are not inherited between generations so the
network is dependent on the environment for learning the cor-
rect representation. If deprived of sound input or fed acousti-
cally filtered speech input, the model cannot form meaningful
representations because each network starts life with a ran-
dom set of weights. But given the sort of auditory input heard
by an infant the model rapidly creates the same set of univer-
sal features, whether or not it is in a noisy environment and
whatever the language it hears.

We envisage that this method of creating a quick and dirty
initial representation of sounds by innately guided learning is
not specific to humans. Clearly, humans and other animals
have not been sclected for their ability to discriminate the
phonemes of English. But we would expect results similar to
those presented here if the selection criterion were the ability
to discriminate a wide range of spectrally dissimilar sounds in
the environment from only limited exposure to their patterns
of regularity e.g. discrimination of the maternal call from
other conspecific calls, and the sound of predators from ev-
eryday environmental noises. It is therefore unsurprising that
animals have been found, after suitable training, to discrimi-
nate some phonemes in similar ways as do humans (Kuhl &
Miller, 1975).

The advantages of innately guided learning over other self-
organising networks are that it is much faster and is less de-
pendent on the “correct” environmental statistics. It also of-
fers an account of how infants from different linguistic en-
vironments can come up with the same featural representa-
tion so soon after birth. In this sense innately guided learn-
ing as implemented in this model shows how genes and the
environment could interact to ensure rapid development of a
featural representation of speech on which further linguistic
development depends. In terms of the taxonomy of “ways
to be innate” offered by Elman et al. (1996), this model is
lacking in any form of representational innateness — there
is no hard-wiring of the microcircuitry. On the other hand,
the model exemplifies what Elman et al. call “architec-
tural/computational innateness” — innate processing biases
in the network make it ideally suited to extracting structural
information from speech input when the opportunity presents
itself. Speech offers the network a nutritious environment in
which to grow.
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