
UC San Diego
UC San Diego Previously Published Works

Title
How mesoscopic staircases condense to macroscopic barriers in confined plasma 
turbulence

Permalink
https://escholarship.org/uc/item/6rt7j140

Journal
Physical Review E, 94(5)

ISSN
2470-0045

Authors
Ashourvan, Arash
Diamond, PH

Publication Date
2016-11-01

DOI
10.1103/physreve.94.051202

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rt7j140
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


RAPID COMMUNICATIONS

PHYSICAL REVIEW E 94, 051202(R) (2016)

How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence
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and Space Sciences (CASS) and Department of Physics, University of California San Diego, La Jolla, California 92093, USA
(Received 22 June 2016; published 18 November 2016)

This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to
form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the
variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized)
potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV
gradients steepen, the density staircase structure develops into a lattice of mesoscale “jumps” and “steps,” which
are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius,
leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a
global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates
how mesoscale condensation of staircases leads to global states of enhanced confinement.

DOI: 10.1103/PhysRevE.94.051202

A feature common to self-organizing, nonequilibrium
nonlinear systems is the formation of patterns. Patterns of
mixed layers, observed in the ocean [1], emerge from double-
diffusive convective instability and salt fingering [2–4]. In
the turbulent gas of planetary atmospheres, pattern formation
manifests itself by the formation of quasiperiodic flow patterns,
such as the lateral belts in the Jovian atmosphere [5,6]. In
magnetized plasmas, E×B zonal flow (ZF) shear patterns
develop from drift-wave (DW) turbulence. ZFs are also a topic
of interest to the magnetic fusion community due to their
important role in regulating turbulent transport and triggering
the development of the H mode and internal transport barriers
[7–9] (see Refs. [10,11] for a general review of the zonal flows).
Recently Ref. [12] reported the observation of a new class of
quasiperiodic “E×B staircase” flow patterns in gyrokinetic
simulations. There, E×B staircases formed spontaneously
were self-organizing, and had a long lifespan. Moreover, ∇Ti

corrugations coincided with these flow staircase jumps, while
in between the shear layers, turbulent avalanching [13–15]
persisted. Furthermore, Ref. [16] reported the experimental
evidence for coherent shearing-turbulence modulational states
in the Tore Supra tokamak. These results are consistent
with interpretation as an E × B staircase, although much
more data is required to make a conclusive identification.
These observations motivate the search for a reduced model
which can explain the underlying mechanism generating these
long-lasting shear patterns and pressure corrugations.

In a related vein, there have been extensive theoretical
studies of ZF generation mechanisms and ZF growth rates,
and numerous comparisons to numerical simulations [17].
There has also been some limited progress towards the
understanding of collisionless saturation mechanisms for ZFs
[17–19]. However, the spatial structure of the zonal shearing
fields and their nonlinear evolution in time and space remain
poorly understood. Here, we present a theoretical model for
the study of space-time flow structure in the context of a simple
DW turbulence system. The goal is to better understand two
subjects:

(1) the evolution and formation of mesoscale density profile
staircase structure, and the associated mesoscale shearing
lattice pattern, and scales thereof; and

(2) how a steady macroscale transport barrier might emerge
from the mesoscale density staircase, as a result of a global
transport bifurcation.

The emergence of shear layers follows from the central
idea of positive feedback resulting from inhomogeneous
turbulent mixing. This leads to the formation of regions with
strong mixing and weak wave elasticity [20] (i.e., memory),
separated by interfaces with steepened potential vorticity
(PV) gradients and sharpened flows. The reduced model
presented here exhibits both the formation of staircases in
the mean density field, similar to buoyancy layering in the
Phillips effect [21], and also the formation of a mean shear
flow lattice pattern, similar to the jet staircase formation in
the PV-Phillips effect [22]. Hence, this model goes beyond
Ref. [23], in that it evolves two coupled mean fields, and
turbulent enstrophy density (Ref. [23] evolved only one mean
field, the mean buoyancy, and turbulent kinetic energy). Here,
cross correlation of mean fields is addressed self-consistently
via the residual stress in the Reynolds stress. In addition, we
show that the evolution of the mesoscale density staircase and
shear lattice through merger and spatial migration can lead to
global transport bifurcation and the formation of macroscale
barriers by a sequence of jump mergers and spatial migration.

The reduced model is based on the Hasegawa-Wakatani
(HW) system of equations for collisional DW turbulence in a
straight magnetic field [24,25], with electrons in near-adiabatic
regime. In this model, conservation of potential enstrophy (PE)
and inhomogeneous mixing of PV leads to the spontaneous
generation of ZF by turbulence (Reynolds stress). The system
variables are functions of time and radius, and consist of mean
(reduced) density: n ≡ log(N/N0) (N is the particle density
and N0 is a normalization constant); mean vorticity: u ≡
ρ2

s ∇2
⊥(eφ/Te) [ρs = c(miTe)1/2/eB]; mean PV: q ≡ n − u;

and the turbulent PE: ε ≡ 〈(δn − δu)2〉/2 where δn and δu are,
respectively, the perturbations in density and vorticity, and the
averaging is over the directions of symmetry y and z. The set of
reduced evolution equations describing the system are given by

∂tn = ∂xDn∂xn + Dc∂
2
xn, (1)

∂tu = ∂x(Dn − χ )∂xn + χ∂2
xu + μc∂

2
xu, (2)

∂tε = ∂xDε∂xε + χ [∂x(n − u)]2 − ε−1
c ε3/2 + P. (3)
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The first term in Eq. (1) is the gradient of turbulent particle flux
which is given by a local Fickian diffusive term � = −Dn∂xn,
where Dn is the turbulent particle diffusion coefficient.
Both the first and the second term in Eq. (2) come from
taking the product of −∂x on the turbulent vorticity flux
	 = (χ − Dn)∂xn − χ∂xu, where χ is the turbulent viscosity.
The first term in Eq. (2) is the residual stress which is an
off-diagonal term and can accelerate vorticity due to the basic
density gradient. The second term in Eq. (2) is the turbulent
viscous diffusion. The terms in Eqs. (1) and (2) which are
proportional to μu and Dc are, respectively, the viscosity
and diffusivity terms that remove energy from fine scales. In
Eq. (3) the term −ε−1

c ε3/2 is the dissipative term as the result
of forward cascade of PE. Furthermore, Fickian diffusive flux
form is used for the turbulent flux of PE 〈δvxε〉 = −Dε∂xε,
where Dε is the turbulent PE diffusion coefficient. The
external turbulence production source in Eq. (3), i.e., P ,
is due to sources of free energy which are external to the
closed system described by the classic DW-HW equations.
The production term due to this mechanism, described by
the relation P = γεε, is linear in ε and is proportional to
γε, the characteristic growth of the instabilities responsible
for P .

Imposing the condition ∂xε = 0 at the boundaries prevents
the influx and outflux of turbulent PE. As a result, the system
described by the set of equations (1)–(3), manifestly conserves
the total PE (sum of mean and turbulent PE), up to damping
terms and external forcing. In constructing the reduced turbu-
lence model, mixing length and phenomenological arguments
are used to obtain the functional form of the turbulent diffusion
coefficients Dn,χ and Dε. The quasilinear flux relations ob-
tained in Ref. [26], and time scale ordering of αn > ωm/km >

v are used to approximate Dn and χ . For Dn, the approximation

|kmδϕ| = |δvx | ≈ lε1/2 gives Dn ≈ k2
⊥

1+k2
⊥

k2
m|δϕ|2
ηk2

‖
∼= l2 ε

α
, where

the parameter α is identified as the measure of the resistive
diffusion rate in the parallel direction: α = (1 + k2

⊥)/k2
⊥ηk2

‖ .

χ is obtained as χ (x) ∼= cχ l2ε/
√

α2 + auu2. The term auu
2

in the denominator incorporates the effect of strong flow

shear suppression [27,28]. The strength of turbulent viscosity
(χ ) is controlled by cχ . Moreover, for Dε the expression
Dε(x) ∼= βl2ε1/2 is used. Here the parameter β controls the
strength of turbulence spreading [29] of PE.

a. The mixing length. Inhomogeneous mixing of PV is
implemented via a dynamic mixing length l which is a
nonlinear hybrid of two length scales: a constant forcing scale
l0 and the Rhines scale [30] lRh = √

ε/|∂x(n − u)|. At the
Rhines scale, the turbulence dominated spectral range crosses
over to the strongly elastic, wave dominated range. The choice
of the functional form of lRh captures the positive feedback
which drives the feature forming instabilities and leads to the
formation of nonlinear density staircase and shearing lattice.
We employ the following model for the mixing length [23]:

l = l0(
1 + l2

0[∂x(n − u)]2/ε
)κ/2 . (4)

In a system with weak mean PV gradient such that l0 < lRh, l0
is the natural choice for the length scale of turbulent mixing.
However, locally the PV gradient of the system can become
strong enough such that lRh < l0 and the mixing length can be
approximated by l ∼ l1−κ

0 lκRh. At these locations of steep PV
gradient, lRh is the governing spatial scale for the turbulence.

Feature forming instabilities result from local transport
bifurcations. In the relation between the local turbulent flux
versus local mean gradient [e.g., PV flux �q(x) versus PV
gradient ∇q(x)] transport bifurcation manifests in the form
of an S curve. The S curve consists of two stable mean
gradient ranges in which δ�q/δ|∇q| > 0, enclosing the region
of negative diffusion in which δ�q/δ|∇q| < 0. The positive
feedback loop in the negative diffusion region drives the
instabilities which lead to nonlinear feature formation in the
mean profile.

We reduce the number of parameters in the system by
the following rescaling choices: x = x/L, t = γεt(l0/L)2,

ε = ε/γ 2
ε , n = n l0

Lγε
, u = u l0

Lγε
, l = l/ l0, α = α/γε, μc =

μc/(γεl
2
0), au = au(L/l0)2. The rescaled evolution equations

are

∂tn = ∂x

[(
l2ε

α

)
∂xn

]
+ Dc∂

2
xn,

∂tu = ∂x

[(
l2ε

α
− cχ l2ε√

α2 + auu2

)
∂xn

]
+ cχ l2ε√

α2 + auu2
∂2
xu + μc∂

2
xu,

∂tε = β∂x[l2ε1/2∂xε] + �

[
cχ l2ε√

α2 + auu2
[∂x(n − u)]2− ε3/2

ε
1/2
c

+ ε

]
, (5)

where � = L2/l2
0 . In order to find the parameter ranges in

which there is a possibility for the growth and formation
of structures in density and vorticity profiles, linear analysis
is performed on the simple equilibria with uniform density
gradient and turbulent PE, and no flow shear.

b. Numerical solutions of the reduced model. The numerical
solutions for the set of nonlinear equations (5) are explored
using a finite difference method in space and the Runge-

Kutta-Fehlberg method for time integration. Initial condi-
tions are chosen as n(x,0) = −gix; u(x,0) = 0; ε(x,0) =
εi . The values gi and εi are obtained from the linearly
unstable region of the parameter space. Boundary condi-
tions are n(0,t) = 0, n(1,t) = −gi ; u(0,t) = u(1,t) = 0 and
∂xε(0,t) = ∂xε(1,t) = 0. Numerical solutions of the system
exhibit roughly three stages of evolution: (1) development
of nonlinear mesoscale features from microscale instabilities,
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FIG. 1. (a) Contour plot of the time evolution of |∇n| along the
plasma radius for � = 4000, cχ = 0.95, α = 6, εc = 6.25, β =
0.1, μc = Dc = 0.78, au = 1, gi = 5.1, εi = 0.002. Horizontal
axis is the log of time; vertical is the scaled radius. Different stages of
evolution are as follows: a, fast merger of microsteps and formation
of mesosteps; b, coalescence of mesosteps to barriers; c, barriers
propagate along gradient, condense at boundaries; and d, stationary
profile. (b) Evolutionary landscape of the vorticity profile u (i.e., the
shearing profile), as a function of position x and time t .

(2) evolution of mesoscale structure through local merger
processes leading to the formation of mesoscale barriers,
and (3) detachment of the structures from their inception
locations and their migration towards the boundaries, resulting
in the formation of the steady macroscale structure. Each
stage of evolution has a characteristic time scale and length
scale. Figures 1(a) and 1(b) respectively show the evolution
landscape of the density profile and the vorticity profile from
the initial to the final state. In the first stage of evolution,
features develop in the profiles due to the linear instability
of the initial profiles. These are secondary modulational
instabilities, in contrast to the primary linear DW instabilities.
The growth of these instabilities results in the formation of
nonlinear features in the mean profiles, as well as in the
turbulent PE profile. In the density profile these features are in
the form of staircases—series of jumps (steepening) and steps
(flattening) in the density profile. Simultaneously, the vorticity
profile develops jagged (corrugated) features. These features
are quasiperiodic with a characteristic length scale lq .

Variable profiles evolve and transform through the local
merger process. A merger of two jumps (steps) results in
the formation of a wider jump (step) [see Fig. S1 in the
Supplemental Material (SM) [31]]. The locations of the jumps
(steps) in n coincide with the locations of maximum negative
(positive) slope in u. Moreover, a merger results in an increase
of the amplitude of the resulting shearing layer in the vorticity
profile. As a result of mergers, system scale size lq grows and
the profiles become smoother.

The process of mesoscale mergers gradually slows and
stops. Although beyond this evolutionary time, and away from
the boundaries, the profiles formed are locally stationary, they
will evolve globally by profile migration. Migration refers to
when the density staircase and the shear lattice detach and
delocalize from their initial positions and migrate towards
the boundaries. Migrating density barriers and shear layers
condense as they reach the boundaries. This process continues

FIG. 2. (a) Upward, escalator-like migration of the step at times
t = 700 and t = 1300. (b) Detachment of shearing pattern from the
location of formation, and migration towards the boundary.

until the steady macroscale density barrier and the shearing
profile form. We should note that a pattern propagation was
also advocated by Kosuga et al. [32,33], in an alternative theory
approach to an E × B shear layer pattern formation due to the
propagation of heat-flux modulations. Figure 2 shows the den-
sity and shearing profile during the migration stage. In Fig. 2(a)
the density barriers move up the the density gradient in an
“escalator”-like motion. Moreover, Fig. 2(b) shows that along
with the density profile, the shearing pattern also moves to the
left and condenses at the boundary. Migration takes place over
a much longer evolutionary time ∼O(104), in comparison to
the earlier stages of evolution ∼O(102) (note that time is scaled
to L2/l2

0γ
−1
ε , where γε is the external production rate). There-

fore, mesoscale features spend most of their lifetime migrating.
Spreading of turbulent PE is necessary in the formation

of structures as it regulates the steepening in the ε profile.
Lowering β results in the formation of more steps and jumps
in the density profile (see Fig. S2 in SM [31]). Moreover,
below a value for β, the numerical solutions become too stiff
to carry out, due to the fine spatial scale of instabilities and
extreme local steepening of gradients. Raising β results in
the formation of a smaller number of jumps and steps in the
staircase profiles. In the extreme case of large β, turbulent
spreading of PE prevents the formation of any spatial structure
in the mean fields.

c. Flux driven evolution. For the study of the global trans-
port bifurcation of the steady macrostate we use the amplitude
of an additional external particle flux drive, �0, as the control
parameter. The external source is taken to be sharply peaked
on the axis with a constant width. For the initial condition of
the density, the form n0(x) = −gi(x − 1 + 1

b
[e−bx − e−b]) is

used (b � 1). Away from x = 0, ∂xn0 is uniform and close to
−gi . The density equation including the flux drive is given by:

∂tn = −∂x�tot; �tot(x,t) = �(x,t) + �dr(x), (6)

where �(x,t) = −[( l2ε
α

) + Dc]∂xn is the sum of the turbulent
and the collisional diffusion fluxes. As the solutions evolve to
their final steady state, �tot saturates and becomes uniform. As
�0 is increased beyond a threshold of transition �th, the steady
macrostate of the system undergoes a transport bifurcation. As
a result, the steady-state profiles of the n, u, and ε undergo a
drastic transformation. Figure 3 shows the transformation of
the steady-state profiles as �0 is raised from 6 to 8 and brought
back down to 6, in one parameter scan run. Time variation of
�0 is adiabatic, so that at all times the system is close to a
steady-state solution, except for the short transition times.

Two different transitions can occur. The forward transition
(FT) occurs for �0 = �f

th ≈ 7.39, as �0 is increasing, and
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FIG. 3. Transformation in the profiles of (a) density, (b) vorticity,
(c) turbulent PE, and (d) turbulent particle flux. Forward transition is
from A to B, and backward transition is from C to D.

backward transition (BT) occurs for �0 = �b
th ≈ 6.838, as �0

is decreasing. In Fig. 3, curves labeled A and B are snapshots
of the profiles for which �0 is, respectively, slightly below
and slightly above �f

th, i.e., �0|A � �f
th � �0|B (in the BT,

�0|D � �b
th � �0|C). During these fast transitions, the system

is not in steady state. For the FT (from A to B), Fig. 3(a)
shows the rise in n with the formation of a macrostep and
Fig. 3(c) depicts the drop in ε level in the density jump
region x > 0.65. Moreover, Fig. 3(d) shows a drop in the
turbulent particle flux beyond xstep, which implies that the
steady macrostep acts as a barrier for the turbulent transport
of particles. Furthermore, Fig. 3(b) shows a sign reversal of u

for B compared to A (except in the close vicinity of x = 0)
along with the enhancement of its amplitude. The differences
between the profiles for �0 > �f

th and �0 < �f
th lead us to

define the former as the enhanced confinement (EC) modes
and the latter as the normal confinement (NC) modes. In the
BT, the system transitions from the EC mode (C) to the NC
mode (D). In this fast process, the barrier position xstep moves
from x ≈ 0.65 to the right boundary at x = 1, as the height of
the barrier decreases to zero.

In order to elucidate the physics of hysteresis in the process
described above, the global particle flux-density gradient
relation of the steady states is mapped in Fig. 4. The vertical
and the horizontal axes are, respectively, 〈�〉 and 〈−∂xn〉,
where 〈·〉 is averaging over the spatial dimension. Data points
shown with diamonds (triangles) are the (〈−∂xn〉,〈�〉) values
of the system as �0 increases (decreases). Critical transition

Γ

FIG. 4. Global particle flux versus density gradient, showing
hysteresis behavior.

points are shown in Fig. 4. The A-B, and C-D gaps result
from the transport bifurcation, leading, respectively, to barrier
formation in the FT, and barrier annihilation in the BT. The
loop formed due to the separation between the FT and the
BT results from transport bifurcation taking place at different
values of �th in each direction. This loop is a clear depiction
of hysteresis behavior in this process.

In summary, this reduced analytical model manifests the
emergence of quasiperiodic mesoscale density staircase struc-
tures, colocated with a lattice of shears. These mesostructures
reorganize and evolve through merger and spatial migration,
and so form a macro steady state. Some turbulent spreading
is necessary for the formation of structures as it regulates the
steepening of the turbulent PE.

The macrostate of a system driven by an external particle
flux undergoes a global transport bifurcation, from a normal
confinement state to an enhanced confinement state, as the
amplitude of the flux drive is increased beyond a threshold of
transition. This transition is identified by the transformation of
the system profiles: the formation of a step-jump structure
with the rise in overall level in the density profile n, a
regional drop in the level of turbulent PE and turbulent
particle flux, sign reversal, and amplitude enhancement of
the shearing profile u. Furthermore, the system exhibits
hysteresis between the forward and backward transition of the
macrostate.

This research was supported by the U.S. Department
of Energy Grants No. DE-FG02-04ER54738 and No. DE-
SC0008378 and CMTFO. We thank G. Dif-Pradalier, Y.
Kosuga, Ö. D. Gürcan, M. Malkov, D. W. Hughes, and
G. R. Tynan for useful discussions.
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