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Abstract instance, the visual input may contain more information

The ACT-R production-system theory (Anderson, 1993)
has been extended to include a theory of visual attention
and pattern recognition. Production rules can direct
attention to primitive visual features in the visual array.
When attention is focused on a region, features in that
region can be synthesized into declarative chunks.
Assuming a time to switch attention of about 200 msec, this
model proves capable of simulating the results from a
number of the basic studies of visual attention. We have
extended this model to complex problem-solving like
equation solving where we have shown that an important
component of learning is acquiring more efficient strategies
for scanning the problem.

Theories of higher-level cognition typically ignore
lower-level processes such as visual attention. They
simply assume that lower-level processes deliver some
relatively high-level description of the stimulus situation
upon which the higher-level processes operate. This
certainly is an accurate characterization of our past work
on the ACT-R theory (e.g., Anderson, 1993). The typical
task that ACT-R has been applied to is one in which the
subject must process some visual array—the array may
contain a sentence to be recognized, a puzzle to be solved,
or a computer program being written. We have always
assumed that some processed representation of this visual
array is placed into working memory in some highly
encoded form and we modeled processing given that
representation.

The strategy of focusing on higher-level processes
might seem eminently reasonable for a theory of higher-
level cognition. However, the strategy creates two
stresses for the plausibility of the resulting models. One
stress is that by assuming a processed representation of
the input the theorists are granting themselves unanalyzed
degrees of freedom in terms of choice of representation.
It is not always clear whether the success of the model
depends on the theory of the higher-level processes or the
choice of the processed representation. The other stress is
that the theorist may be ignoring significant problems in
access to that information which may be contributing to
dependent variables such as accuracy and latency. For
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than can be held in a single attentional fixation, and shifts
of attention (with or without accompanying eye
movements) may become a significant but ignored part of
the processing. For these reasons we have been
encouraged to join the growing number of efforts (e.g.,
Kieras & Meyer, 1994; Wiesmeyer, 1992) to embed a
theory of visual processing within a higher-level theory of
cognition. The choice to focus on vision is largely
strategic—reflecting the fact that most of the tasks that
ACT-R has modeled involved input from the visual
modality. To be more exact, most tasks have involved
processing input from a computer screen and so we have
developed a theory of the processing of a computer
screen.

It is important to define our approach to the problem
from the outset: We require a theory of visual attention
and perception which is psychologically plausible but it is
not our intention to propose a new theory of visual
attention and perception. Therefore, we have embedded
within ACT-R a theory which might be seen as a
synthesis of the spotlight metaphor of Posner (1980), the
feature-synthesis model of Treisman (Treisman & Sato,
1990), and the attentional model of Wolfe (1994). What
this model does is to provide us with a set of constraints
which we then can embed within the ACT-R theory of
higher-level cognition.

We have implemented the spotlight metaphor of visual
attention where a variable-sized spotlight of attention can
be moved across the visual field. When the spotlight
fixates on an object, it’s features can be recognized. Once
recognized, the objects are then available as declarative
structures, called chunks, in ACT-R’s working memory
and can receive higher-level processing. The following is
a potential chunk encoding of the letter H:

object
isaH
left-vertical barl
right-vertical bar2
horizontal bar3
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We assume that before the recognition of the object,
features (e.g., the bars) are available as part of an object
but that the object itself is not recognized. In general, we
assume that the system can respond to the appcarance of a
feature anywhere in the visual field and recognize the
objects. However, it cannot respond to the conjunction of
features that define a pattern until it has moved its
attention to that part of the visual field and recognized the
pattern of features. Thus, in order for the ACT-R theory
of higher-level processing to “know” what is in its
environment, it must move its attentional focus over the
visual field. In ACT-R the calls for shift of attention are
controlled by explicit firings of production rules.
Consequently, it will take time to encode visual
information and we are forced to honor the limited
capacity of visual attention.

A basic assumption is that the process of recognizing a
visual pattern from a set of features is identical to the
process of categorizing an object given a set of features.
Anderson and Matessa (1992) provide a rational analysis
of how to perform such categorization without
commitment to a particular cognitive architecture. That
theory provides us with the mechanism for assigning a
category (such as H) to a particular configuration of
features. We have implemented this mechanism within
the ACT-R for translating stimulus features into chunks
like the above which can be processed by the higher-level
production system,

The best way to illustrate how this theory functions is to
describe how it functions in particular tasks. In the
following section we will first describe how the theory
would apply in modeling data from the classic Sperling
Task which will give us some estimate of time to move
visual attention. Then we will discuss an application of
this to the subitizing task which shows how this time
estimate plays out in a slightly more complex situation.
We will then turn to discussing movement of visual
attention in a higher-level task—solving equations.

Sperling Task

Sperling (1960) reported a classic study of visual
attention. In the whole-report condition he presented
subjects with brief presentations of visual arrays of letters
(3 rows and 4 columns) and found that on average they
could report back 4.3 letters. In the partial-report
condition he gave subjects an auditory cue to identify
which row they would have to report. Then he found that
they were able to report 3.3 letters in that row. As he
delayed the presentation of the auditory cue to 1 second
after the visual presentation he found that subjects’ recall
fell to about 1.5 letters. Since subjects’ recall at a
second’s delay fell to about a third of the whole report
level, the obvious interpretation was that they were able to
report as many items from the cued row as they happened
to encode without the cue. This research has been
interpreted as indicating that subjects have access to all
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the letters in a visual buffer but they have difficulty in
reporting them before they decay. We will use .8 seconds
as our estimate of the duration of that buffer in our
simulation. We represented the letters in the visual array
as sets of features grouped in unidentified objects.
Dcpending on the situation, one of the following two
productions would apply:

Encode Screen
IF one is encoding digits without a tone
and there is an object on the screen that
has not be attended
THEN move attention to that object

Encode Row
IF one is encoding digits and there is a tone
and a row corresponds to the tone
and there is an object in the row that
has not be attended
THEN move attention to that object

These productions call for attention to be moved to
unattended objects. When the production moves attention
to the location of that object, the letter would be
recognized and a chunk created to encode it. This chunk
creation also allows ACT-R to know it has attended to
that object (and so avoid return visits). The actual
recognition of the letter is done by the categorization
component external to the productions. If no tone is
presented, encode-screen will encode any letter in the
array; whereas, if a tone is present, encode-row will
encode letters in the cued row. Thus, the number of
letters encoded is essentially equal to the number of
productions that can fire in .8 seconds. After the visual
array disappears, the simulation can report only those
letters that had been encoded because only these have a
chunk representation in working memory.

We get the just-over-four letters reported in the whole-
report procedure (as found by Sperling) by setting the
time per attention-switching production rule to .2 seconds.
This was a mean time for a production to apply; we added
a stochastic component to these times producing item-to-
item variability in times. Because of this stochastic
component the model averaged slightly over 4 letters
reported in .8 seconds. To see this, suppose that the array
was just available for .2 seconds and half of the times for
the production were under .2 seconds and half were
above. For those under, the model would get a second
look and so encode a second letter (the assumption is that
the letter is encoded as soon as attention fixates). For
those over, there would be just one letter reported. So the
average number reported would be 1.5 letters.

Performance in the partial report condition was in a
certain sense suboptimal because attention would not
swiltch as soon as the tone sounded but rather as soon as
the next production fired after the tone sounded. Thus, if
the tone sounded at .3 seconds and the next production
fired at .4 seconds the subject would only have 4 (.8 - 4)



seconds to scan the appropriate row. Even when the tone
occurred immediately at the offset of the array the first
attentional fixation would be at a random location on the
array and the second would be set to the target row.
Sperling reports performance somewhat lower in the
partial report condition than would be expected il the
subject could report as many terms from the target row as
the full array. Our simulation reproduces this effect in a
parameter free way.

Subitizing

We have taken the 200 msec estimate of the time to
switch visual attention from the Sperling task and used it
to model a number of other tasks which involve deploying
visual attention and we will describe here its application
to subitizing (see the recent discussion by Simon,
Cabrera, & Kliegl, 1993). Figure 1 illustrates the classic
result obtained in this task where there is an increase in
latency with number of digits to be identified. However,
there is an apparent discontinuity in the increase with the
slope being much shallower until 3 or 4 items and then
getting much steeper. There is about a 50 msec slope
until 3 or 4 items and approximately a 250 msec slope

afterwards. Figure 1 also shows the results from the
ACT-R simulation.
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Figure 1: Data from a subitizing task compared to
predictions of the ACT-R theory.

The basic organization of the model is to assume that
there are special productions that recognize 1, 2, 3, and
familiar configurations of larger number of objects (such
as five on a die face) and that there is a production which
can count single objects. This is the basic model of the
subitizing task that has been proposed by researchers such
as Mandler and Shebo (1982). The following are two of
the productions used in modeling the task:

Recognize-Two
IF the goal is to count the objects starting from a
count of 0
and there is an object at position 1
and there is an object at position 2
THEN move attention to their pattern and the count
is 2.

Count-One
IF the goal is to count the objects starting from
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acount of m
and there is an object on the screen that has
not be attended
and n is the successor of m

THEN move attention to that object on the screen
and increment the count to n.

Faced with an array of objects, the largest pattern-
recognition production (like recognize-two above) will
apply and directly recognize the count of those objects.
After that point it is necessary to add further objects into a
running count and this is done by count-one above.
While one could count multiple additional objects and add
them into the existing count, the simpler model that we
have implemented simply counts up by ones. The basic
latency model for this task is one which takes the 200
msec from the Sperling task as the time for shift of
attention and 50 msec as the time to match each non-goal
element in a production rule beyond the first. The ACT-R
model assumes that production firing increases with
number of production condition elements. The basic
latency will be determined by the productions above plus
the time for response generation. Small arrays will be
handled by productions like recognize-two with each
object matched taking an additional 50 msec to match.
The count-one production, which determines the per-
element time (beyond 3) for larger arrays, is basically the
production from the Sperling task plus a retrieval of the
successor of the count. Each firing of it should take 250
msec, reflecting the 200 msec to shift attention plus 50
msec to retrieve the successor of the count.

Equation Solving

Figure 2 shows a screen image that we have been using in
our research on equation solving. We have done
extensive research on how subjects solve such equations
and much more complex ones (Anderson, Reder, &
Lebiere, submitted; Lebiere, Anderson, & Reder, 1994).
This early work involved simulations which assumed that
subjects were operating on an internal representation of
the equation which came as an encoding of the visual
presentation of the screen. More recently, we have been
interested in modeling how subjects might actually go
about encoding information from the screen. We have
assumed that subjects first encode the symbols from the
equation through a scanning process driven by
productions like:

Encode-Symbol
IF the goal is to solve an algebra equation
and the leftmost unattended object is at a location
THEN move attention to that location.

This production embodies a left-to-right encoding strategy
in which subjects encode each symbol from the equation
and then are able to apply some procedure like:



Multiply-both-sides
IF the goal is to solve an algebra equation
and the equation is of the form X/C =D
THEN set a subgoal to multiply C by D.

However, in observing our own behavior solving this
equation we noted that we often did not bother to scan the
whole equation but rather focused on just the meaningful
parts of the equation — the C and D in X/C = D. (This
occurred in the context of an experiment where all the
problems were division problems.) Therefore, we have
begun a research program to study just how subjects do
scan such equations.

E——————1lgebra

X/77=8 x=[_]

Figure 2

Our initial research has involved using a restricted
interface like the one illustrated in Figure 3. Here the
subject has a movable window with which to examine the
equation. To move the window, the subject just moves
the mouse. We analyzed subject movements into periods
where they spend at least 200 msec. on a meaningful
symbol of the equation. If we represent these simple
equations as X/C = D, then the five meaningful regions
are X, /,C,=, and D. The spacing and size of the window
are such that only one region at a time can be fixated.

Figure 3

We found evidence for at least two scanning patterns.
One involved a near-exhaaustive, linear scan of the
equation in which the subject fixated the symbols in the
sequence X, /, C, =, D. If we use this strict definition then
subjects engage in this scanning pattern (with over 200
msec fixations on each symbol) on just 8% of the
problems. However, if we use a more liberal scoring
definition in which we require the subject to fixate C, D,
and two of X, /, and D in any order with any number of
repeat visits that percentage rises to 43%. The second
strategy was indicated by the subject just visiting the C
and D. This occurred 35% of the time. These
percentages are for the first day of the experiment.
Subjects were in the experiment for three days. By the

third day the first strategy had dropped from 43% 10 11%
by the liberal scoring method while the second strategy
had risen from 35% to 67%. Thus, there is a very definite
shift over the course of the experiment to a more efficient
scanning strategy.

This raises the issue of what the nature of the learning
might be in this task. Subjects get much faster over the
course of the three days, taking 4.06 seconds to solve the
simple equations on day 1 but 2.66 seconds on day 3. We
broke this time up into two components. There is the time
spent when not fixating the equation and the time spent
fixating the equation. The non-fixation time includes the
time before the first equation fixation when the subject is
perhaps organizing a strategy and the time after the last
fixation when the subject is typing out the answer. This
non-fixation time decreases from 1.84 seconds on day 1 to
1.34 seconds on day 3. The fixation time decreases from
2.22 seconds to 1.32 seconds. We analyzed the fixation
time into time per fixation and separated these out into
fixations before the last and fixations after the last. The
pre-last fixations appear to be relatively constant and
average .42 seconds on day 1 and .36 seconds on day 3.
So there is little speed up in the duration of these
fixations. The last fixation takes much longer—.94
seconds on day 1 and .92 seconds on day 3. The longer
time for the last fixation (almost always on d) presumably
reflects the time for the subject to make the calculation.
Thus, the reason why subjects are spending less fixation
time is not a reduction in amount of time per fixation but
rather a reduction in the number of fixations—from about
4.2 on day 1to0 2.8 on day 2

Thus, we have discovered that an important component
of the learning (indeed the majority of the time savings)
that is going on in this experiment is due to improved
strategies for scanning the equation. This is very different
than the typical explanation of speed up in ACT which
attributes it either to stronger and more rapid productions
or to compositions of existing productions (Anderson,
1987). This serves to illustrate the important contribution
that study of visual attention can make to our
understanding of the nature of learning. This research
indicates that an important component ot skill
development is learning where critical information is to
be found in the visual interface. The ACT-R theory does
have strategy learning mechanisms which can model the
transition between strategies (Anderson, 1993; Lovett &
Anderson, in press) and we are currently in the process of
trying to model this transition.

Concluding Remarks

In the introduction we described two motivations for
developing a theory of visual processing in ACT-R. One
was to model the information-processing limitations in
accessing information from the screen. This paper has
been mainly devoted to describing that—showing how we
can model classic attentional paradigms and gain insight
into the performance and improvement of complex



cognitive skills. The other motivation was to eliminate
magical degrees of freedom in going from a description
of an experiment, to a cognitive model of how it is
performed. We have accomplished this also. The same
experimental software that runs subjects interacts with the

ACT-R sysu:m.l We have developed the experiment-
running system that can be “toggled” so that it will either
administer an experiment to a real subject or interact with
the ACT-R simulation. When it is toggled to interact with
ACT-R, ACT-R can “see” the screen in terms of this
feature representation and the experimental program will
read key presses, mouse movements, and mouse clicks
issued by ACT-R. Thus, it becomes possible for anyone
to build a simulation to interact with the same
experiment-running software that subjects interact with
(provided that software is written in LISP on the
Macintosh).
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