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Psychology, San Diego, California

2Department of Psychiatry, University of California San Diego, HIV Neurobehavioral Research 
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Abstract

The co-occurrence of HIV and alcohol use disorder (AUD) amplifies risk for neural injury and 

neurocognitive deficits. However, the substantial neurocognitive heterogeneity across HIV+/AUD

+ individuals suggests inter-individual differences in vulnerability to the neurotoxicity of 

comorbid HIV/AUD. Genetic variation in alcohol dehydrogenase (ADH), which metabolizes 

ethanol, may contribute to inter-individual neurocognitive variability. We evaluated associations 

between five ADH single-nucleotide polymorphisms (SNPs) and neurocognition in men stratified 

by HIV and lifetime AUD status. Neurobehavioral assessments were administered to 153 men. 

Three-way ANOVAs examined the interaction of HIV, AUD, and ADH SNPs on global and 

domain-specific demographically-corrected T-scores. Follow-up ANCOVAs adjusted for age, 

estimated verbal IQ, depression, and remote non-alcohol substance use disorders. HIV/AUD 

groups differed globally and for verbal fluency, working memory, executive function, and 

processing speed T-scores specifically, with HIV+/AUD+ exhibiting the poorest performance. 

ADH4 (rs1126671) was associated with large effects on working memory (d=−1.16, p=.001) and 

executive function (d=−0.77, p=.028) selectively in HIV+/AUD+, which remained significant in 

ANCOVA models. ADH1A (rs3819197) moderated the deleterious effects of HIV+/AUD+ on 

processing speed such that HIV+/AUD+ related to slower information processing in A-allele 

carriers but not GG homozygotes (ps<0.03). Preliminary findings suggest genetic variation in the 

ADH pathway moderates the deleterious neurocognitive effects of comorbid HIV/AUD. 

Differential metabolism of heavy ethanol exposure may compromise neurocognition under 
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conditions of neurobiological stress, such as in HIV infection. The functional effects on ethanol 

metabolism of ADH SNPs examined in this study remain poorly understood, warranting further 

examination of pharmacokinetic mechanisms mediating ADH gene-neurobehavior relationships in 

HIV.

Keywords

alcohol dehydrogenase; single nucleotide polymorphism; cognition; HIV-associated 
neurocognitive disorder; alcohol

INTRODUCTION

Heavy alcohol use is common among persons living with HIV (PLWH) and strongly linked 

to the transmission of HIV, higher viral replication, accelerated disease progression, and 

poorer disease management (Bryant, 2006; Galvan et al, 2002; Paolillo et al, 2017; Rehm et 
al, 2017). The combination of alcohol use disorder (AUD) and HIV infection compromises a 

host of biological functions, including hepatic, cardiovascular, and neurological systems 

(Molina et al, 2014; Price and Thio, 2010). Considering the multisystemic impact of chronic 

alcohol use and HIV, PLWH with comorbid AUDs are at an increased risk for frailty, lower 

health-related quality of life, and poorer everyday functioning (Blackstone et al, 2013; 

Justice et al, 2016; Rosenbloom et al, 2007).

The functional impairments and poor disease-related outcomes associated with heavy 

alcohol use in PLWH are partially driven by neurocognitive dysfunction (Heinz et al, 2014; 

Rothlind et al, 2005). Both AUD and HIV infection independently elevate risk for 

neurocognitive impairment; and within the context of HIV infection, heavy alcohol use is 

particularly detrimental to brain integrity and neurocognition (Cohen et al, 2019; 

Pfefferbaum et al, 2012; Rosenbloom et al, 2010). The pattern of neurocognitive deficits in 

HIV/AUD are predominantly attributed to frontal dysfunction, with specific involvement of 

frontostriatal (e.g., working memory, executive function, psychomotor speed) and 

frontoparietal (e.g., visuospatial, selective attention) circuits (Rosenbloom et al, 2010). 

Given that neurobehavioral dysfunction is a common consequence of comorbid HIV and 

AUD, examining the factors that moderate the relationship between HIV, AUD and 

neurocognition is warranted.

PLWH with heavy alcohol exposure are additionally burdened by biopsychosocial 

comorbidities (e.g., hepatitis C, depression, low socioeconomic status) that can obscure the 

detection of alcohol-specific mechanisms underlying neurocognitive dysfunction (Kennedy 

and Zerbo, 2014; Tedaldi et al, 2015). Indeed, alcohol use parameters do not reliably explain 

variance in neurocognitive performance in PLWH (Durvasula et al, 2001; Fama et al, 2009; 

Rothlind et al, 2005), suggesting the presence of inter-individual differences in neural 

vulnerability to heavy alcohol exposure. Although environmental factors have garnered the 

most attention, genetic predispositions that enhance alcohol-induced biological stress may 

also partially explain inter-individual differences in neurocognition among HIV/AUD 

populations.
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One candidate mechanism occurring at the individual level is genetically-driven differences 

in the metabolism of alcohol (Hurley and Edenberg, 2012). Alcohol dehydrogenase (ADH) 

is the primary enzyme responsible for the conversion of ethanol into acetaldehyde, which is 

then oxidized into the less toxic acetate. The bulk of ethanol is metabolized by ADH in the 

liver, while the remainder of ethanol that reaches the CNS is metabolized by CYP2E1 and 

catalase (Hurley and Edenberg, 2012). ADH is encoded by several genes, and variation in 

these genes predicts level of alcohol consumption and risk of developing an AUD 

(Edenberg, 2007; Hurley and Edenberg, 2012). However, the extent to which ADH genetic 

variants moderate the effects of alcohol on other neurobehavioral phenotypes, including 

neurocognitive function, remains unclear. Moreover, genetically-driven differences in 

alcohol metabolism may be particularly salient in the context of HIV, in which PLWH have a 

diminished physiological capacity to combat the multi-system stressors induced by heavy 

alcohol exposure (Braithwaite et al, 2007).

Therefore, the present study examined associations between single-nucleotide 

polymorphisms (SNPs) in ADH genes and neurocognitive outcomes among participants 

stratified by HIV serostatus and lifetime AUD: HIV−/AUD−, HIV−/AUD+, HIV+/AUD−, 

and HIV+/AUD+. Based on prior research, we expected the HIV+/AUD+ group to 

demonstrate the poorest neurocognition. We hypothesized that ADH SNPs would exert 

effects on neurocognition only among AUD+ individuals (i.e., in the presence of substantial 

alcohol exposure), with the most pronounced effects occurring in the dual-risk HIV+/AUD+ 

group.

MATERIALS AND METHODS

Participants

This cross-sectional, retrospective study analyzed data from the baseline visit of 79 HIV-

seropositive (HIV+) and 74 HIV-seronegative (HIV−) men enrolled in NIH-funded research 

studies at the University of California, San Diego’s (UCSD) HIV Neurobehavioral Research 

Program (HNRP). Study visits took place between 2002 and 2012. All participants gave 

written informed consent as approved by the UCSD Institutional Review Board. For the 

present analysis, exclusion criteria were: 1) DSM-IV criteria for substance use dependence 

for any drugs other than alcohol and cannabis within the last 5 years, alcohol dependence 

within the past 12 months, or abuse of any substances other than alcohol and cannabis within 

the last 12 months; 2) diagnosis of psychotic or mood disorder with psychotic features, 

neurological, or medical condition that may impair neurocognitive functioning, such as 

traumatic brain injury, stroke, epilepsy, or advanced liver disease; 3) low verbal IQ of < 70 

as estimated by the Fourth edition of the reading subtest of the Wide Range Achievement 

Test (WRAT-IV; (Wilkinson and Robertson, 2006); 4) evidence of intoxication by illicit 

drugs (except marijuana) by positive urine toxicology or positive Breathalyzer test for 

alcohol on the day of testing; and 5) being female. We restricted our sample to men because 

ADH activity is known to differ by gender (Thomasson, 1995) and there were insufficient 

numbers of women participants in the parent studies to support separate analyses. With the 

exception of HIV serostatus and lifetime AUD, exclusion criteria were identical for all four 

HIV/AUD groups.
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Alcohol, Substance Use, and Psychiatric Evaluation

Participants were evaluated for current and past mood and substance use disorders using 

structured interviews conforming to DSM-IV criteria, as study methodology was developed 

prior to the release of the DSM-5. Diagnoses were made with the Structured Clinical 

Interview for DSM-IV (SCID-IV; (Spitzer et al, 1995) or the Composite International 

Diagnostic Interview (CIDI; (World Health Organization, 1998). To align with current 

DSM-5 criteria, AUD was defined as a DSM-IV lifetime diagnosis of alcohol abuse or 

dependence. DSM-IV criteria for alcohol abuse is met when participants endorse recurring 

problems (e.g., interpersonal, work-related, legal) stemming from sustained alcohol use. 

DSM-IV criteria for alcohol dependence is met when participants report symptoms of 

tolerance, withdrawal, and impaired control over drinking. For the present study, participants 

were stratified into four groups based on HIV serostatus and lifetime AUD: HIV−/AUD− (n 

= 45), HIV−/AUD+ (n = 29), HIV+/AUD− (n = 45), HIV+/AUD+ (n = 34). Of the 63 AUD+ 

participants, four HIV− and two HIV+ individuals met criteria for a current (30-day) AUD 

(abuse only). A semi-structured timeline follow-back interview was administered to gather a 

detailed history of quantity, frequency, and duration of alcohol exposure over a participant’s 

lifetime. Current affective distress was assessed using the Beck Depression Inventory-II 

(BDI-II; (Beck et al, 1996)).

Neuromedical Assessment

All participants underwent a comprehensive neuromedical assessment and blood draw. HIV 

serological status was diagnosed by enzyme-linked immunosorbent assay (ELISA) with 

Western blot confirmation. Hepatitis C co-infection was determined to be present only in 

HIV+ individuals; however, this prevalence was infrequent and HIV/AUD groups did not 

differ significantly with regard to hepatitis C seropositivity. Current CD4+ T-cell counts 

were measured in blood by routine clinical flow cytometry. Levels of HIV viral load in 

plasma and CSF were measured using reverse transcriptase-polymerase chain reaction 

(Amplicor, Roche Diagnostics, Indianapolis, IN), with a lower limit of quantitation [LLQ] of 

50 copies/ml. HIV viral load was considered undetectable below the LLQ of 50 copies/ml.

Neurocognitive Assessment

Participants completed a standardized battery of neurocognitive tests designed to provide a 

comprehensive assessment of neurocognitive domains most impacted in HIV and AUD: 

verbal fluency, executive function, processing speed, learning, delayed recall, working 

memory, and motor skills (Heaton et al, 2010). Raw test scores were converted to 

demographically-corrected standard T scores (mean of 50 and standard deviation of 10) that 

adjusted for the effects of age, education, sex and race/ethnicity, as appropriate (Heaton et al, 
2004; Heaton et al, 2003; Norman et al, 2011). The demographically-corrected T scores 

were averaged across all tests to derive a global mean T score, and averaged within each 

neurocognitive ability area to create domain-specific T scores. These global and domain-

specific T scores were used as outcomes in analyses.
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ADH4 Genotyping

DNA for genotyping was isolated from stored whole blood or peripheral blood mononuclear 

cells (PBMCs) using the Qiagen QIAamp DNA Mini Kit (Qiagen, Valencia, CA). ADH 

SNPs were assayed using an array designed by NIAAA focused on SNPs with relevance to 

addictions (Hodgkinson et al, 2008), using the Illumina BeadStation genotyping platform 

and GoldenGate genotyping assay.

The distribution of the five ADH SNPs included for analysis are presented in Table 1. All 

SNP distributions were consistent with Hardy-Weinberg equilibrium. The sample size for 

minor allele homozygotes was small for each SNP; thus, each ADH SNP was coded 

according to a recessive genetic model such that heterozygotes and minor allele 

homozygotes were grouped together in comparison to major allele homozygotes. SNPs that 

were rare or had low cell rates (i.e., n < 10 per cell) were excluded from analyses.

Although it is established that ADH polymorphisms are linked to different levels of alcohol 

metabolism, there is limited knowledge on the directionality of metabolic effects for the 

ADH SNPs examined in the current study. Moreover, the frequent co-occurrence of SNPs 

(i.e., high linkage disequilibrium) within and between ADH genes makes it difficult to 

isolate our results to SNP-specific mechanisms (Hurley and Edenberg, 2012), particularly in 

the context of a candidate gene study with limited genotyping data. Therefore, our 

interpretation of ADH SNP analyses places a greater emphasis on genetically-driven 

variation in alcohol metabolism than ADH SNP-specific pathways.

Statistical Analysis

HIV/AUD group differences in demographics, alcohol use parameters, neuropsychiatric and 

HIV disease characteristics, and neurocognitive T scores were examined using analysis of 

variance (ANOVA) or Kruskal-Wallis tests for continuous variables and Chi-square statistics 

for categorical variables. To follow-up on significant omnibus results, pair-wise comparisons 

were conducted using Tukey’s Honest Significant Difference (HSD) tests for continuous 

outcomes or Bonferroni-corrections for categorical outcomes. In the full study sample, the 

same univariate comparisons were conducted for ADH SNPs. Cohen’s d statistics are 

presented for estimates of effect size for pair-wise comparisons.

For each SNP, separate three-way ANOVAs (HIV × AUD × SNP) were conducted to 

examine whether ADH genetic variation moderated the effects of HIV/AUD status on 

neurocognitive outcomes. These analyses were restricted to neurocognitive outcomes that 

displayed at least a trend-level univariate association (p < 0.10) with HIV/AUD status. We 

employed the Benjamini-Hochberg procedure to correct for multiple comparisons by 

controlling for the false discovery rate within each set of SNP-specific ANOVAs (Benjamini 

and Hochberg, 1995). For each ANOVA that yielded a significant three-way interaction 

effect (p < .05), a follow-up ANCOVA was conducted to examine potential attenuation of 

interaction effects after covarying for estimated premorbid verbal IQ, as measured by the 

WRAT-IV, and clinical characteristics that significantly differed by HIV/AUD or SNP 

groups. A priori planned comparisons were conducted by examining ADH SNP group 
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differences in neurocognitive outcomes within each HIV/AUD group, as well as pairwise 

HIV/AUD group differences within SNP groups.

As a follow-up analysis for HIV+ individuals, HIV disease and treatment characteristics 

known to be related to neurocognitive function in the era of antiretroviral therapy (ART; i.e., 

nadir CD4, current CD4, HIV plasma viral load detectability, and ART status [on/off]; 

(Heaton et al, 2010), were added as additional covariates to 2 × 2 ANCOVAs (AUD × SNP) 

to examine potential HIV-related attenuation of the effect of ADH SNPs. All analyses were 

performed using JMP Pro version 14.0.0 (JMP®, Version <14.0.0>. SAS Institute Inc., Cary, 

NC, 2018).

RESULTS

Participant Characteristics

Participant characteristics by HIV/AUD group are presented in Table 2. Groups were 

comparable with respect to years of education, WRAT-IV scores, and race/ethnicity. 

However, the HIV+/AUD+ group was significantly older than the HIV−/AUD− group (42.5 

vs. 34.8; p = .02). As expected, both AUD+ groups (HIV−/AUD+ and HIV+/AUD+) 

reported the highest lifetime exposure to alcohol, as evidenced by significantly more lifetime 

drinks, lifetime drinking days, and lifetime average drinks per drinking day than both AUD− 

groups (HIV−/AUD− and HIV+/AUD−). HIV−/AUD− participants reported more lifetime 

average drinks per drinking day than HIV+/AUD− participants (3.23 vs. 2.51; p = .04). 

HIV/AUD groups did not differ with respect to age of first drink and days since last drink. 

HIV+ groups had higher rates of lifetime and current Major Depressive Disorder (MDD) 

and higher BDI-II scores than HIV− groups. Although HIV/AUD groups significantly 

differed at the omnibus level with respect to rates of lifetime non-alcohol substance use 

disorder, with AUD+ groups displaying higher rates than AUD− groups, there were no 

significant pair-wise differences. The two HIV+ groups did not significantly differ with 

respect to HIV disease characteristics.

Neurocognition Across HIV/AUD Groups

Global and domain-specific neurocognitive T scores for each HIV/AUD group are displayed 

in Figure 1. Significant omnibus group differences were detected for global functioning (F = 

3.25, p = .024), verbal fluency (F = 3.40, p = .019), and working memory (F = 2.72; p 
= .046) T scores. Tukey’s HSD tests indicated that HIV+/AUD+ participants had 

significantly poorer global (d = −.72; p = .030) and verbal fluency (d = −.67; p = .029) T 

scores than the HIV−/AUD− participants. Trend-level omnibus group differences were also 

detected for executive function (F = 2.26, p = .084) and processing speed (F = 2.26, p 
= .084) T scores.

ADH Genotypes and Neurocognition in the Context of HIV and AUD

Three-way ANOVAs examining the interaction effects of HIV serostatus (HIV+ vs. HIV−), 

AUD status (AUD+ vs. AUD−), and ADH SNPs (major allele homozygous vs. 

[heterozygous and minor allele homozygous]) were conducted for neurocognitive outcomes 

that showed significant differences or trends toward significance across HIV/AUD groups: 
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global, verbal fluency, working memory, executive function, and processing speed. Models 

with significant three-way interaction effects are reported in Table 3. Results indicated 

significant HIV × AUD × ADH4 (rs1126671) effects for executive function (F = 7.38, p = 

0.007, ηp2 = 0.05) and working memory (F = 5.58, p = 0.020, ηp2 = 0.04), as well as a trend-

level three-way interaction for global functioning (F = 3.03, p = 0.084, ηp2 = 0.02). The three-

way interaction effects for executive function and working memory remained significant 

after controlling for the false discovery rate. Follow-up comparisons for executive function 

and working memory revealed significant ADH4 (rs1126671) differences in neurocognition 

only within the HIV+/AUD+ group (see Figure 2), with ADH4 (rs1126671) GG 

homozygotes displaying poorer executive function (d = −0.77, p = .028) and working 

memory (d = −1.16, p = .001) than A allele carriers. In ADH4 (rs1126671) GG 

homozygotes, pairwise comparison tests indicated significantly poorer neurocognition in 

HIV+/AUD+ participants compared to HIV−/AUD− (executive function: d = −0.70, p 
= .045; working memory: d = −1.04, p = .003), HIV+/AUD− (executive function: d = −1.02, 

p = .003; working memory: d = −0.77, p = .024), and HIV−/AUD+ (executive function: d = 

−1.13, p = .002; working memory: d = −1.04, p = .011). ADH4 (rs1126671) GG 

homozygote pairwise comparisons between HIV−/AUD−, HIV+/AUD−, and HIV−/AUD+ 

did not reach significance. Similarly, analyses within ADH4 (rs1126671) A allele carriers 

did not reveal any significant pairwise differences between the four HIV/AUD groups.

Results also indicated an HIV × AUD × ADH1A (rs3819197) interaction effect for 

processing speed (F = 4.66, p = 0.033, ηp2 = 0.03). In ADH1A (rs3819197) A allele carriers, 

pairwise comparison tests indicated significantly poorer processing speed in HIV+/AUD+ 

participants compared to HIV−/AUD− (d = −0.87, p = .020), HIV+/AUD− (d = −0.85, p 
= .019), and HIV−/AUD+ (d = −0.88, p = .029). In ADH1A (rs3819197) GG homozygotes, 

pairwise HIV/AUD comparison tests indicated significantly poorer processing speed in HIV

+/AUD− participants compared to HIV−/AUD− (d = −0.65, p = .025). Within HIV/AUD 

groups, ADH1A (rs3819197) group differences in processing speed did not reach statistical 

significance. The three-way interaction effect for HIV × AUD × ADH1A (rs3819197) on 

processing speed did not remain statistically significant after controlling for the false 

discovery rate. Although not statistically significant, results also indicated several trend-level 

three-way interactions involving ADH7 SNPs. Specifically, trend-level effects were detected 

for HIV × AUD × ADH7 (rs894369) on working memory (F = 2.79, p = 0.097, ηp2 = 0.02) 

and HIV × AUD × ADH7 (rs1154470) on executive function (F = 2.79, p = 0.097, ηp2 = 0.02) 

and working memory (F = 2.79, p = 0.097, ηp2 = 0.02).

Adjusted Models Controlling for Clinical Factors

ANCOVA models (see Table 3) were conducted to determine whether the significant 

interaction effects of HIV, AUD, and ADH4 [rs1126671] on neurocognition were attenuated 

by estimated premorbid function (i.e., WRAT-IV) and clinical factors that significantly 

differed across HIV/AUD groups (i.e., age, lifetime MDD, BDI-II, and lifetime non-alcohol 

substance use disorders). The only ADH SNP group difference in clinical characteristics 

occurred across ADH1A groups, in which A allele carriers exhibited significantly higher 

lifetime rates of other (non-alcohol) substance use disorders than ADH1A GG homozygotes 
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(44% vs. 23%; p = .007). Thus, no additional covariates were added to ANCOVA models. In 

these adjusted models, the HIV × AUD × ADH4 (rs1162271) interaction remained 

significantly associated with executive function (p = .019) and working memory (p = .049). 

Higher WRAT-IV scores were significantly associated with higher executive function (F = 

12.70, p = 0.001, ηp2 = 0.08) and working memory (F = 6.72, p = 0.011, ηp2 = 0.05), while 

individuals with a lifetime diagnosis of MDD had significantly lower executive function (F = 

10.736, p = 0.002, ηp2 = 0.07) and working memory T scores (F = 4.56, p = 0.034, ηp2 = 0.03) 

compared to those without a lifetime diagnosis of MDD.

Relationships In HIV+ Individuals

For the significant HIV × AUD × ADH4 (rs1162271) ANCOVA models, subset analyses in 

HIV+ participants (AUD × ADH4 [rs116227]) were conducted to control for nadir and 

current CD4 counts, ART status, and HIV plasma viral load detectability. The interaction 

effect between AUD and ADH4 (rs116227) was significant for working memory (p = .027) 

and at trend-level significance for executive function (p = .096). None of the HIV-specific 

variables significantly contributed to neurocognitive performance. WRAT-IV scores 

remained a significant predictor of executive function and working memory, while lifetime 

MDD remained a significant predictor of executive function.

DISCUSSION

To our knowledge, this preliminary study is the first to examine associations between SNPs 

coding for alcohol metabolism and neurocognition in the context of HIV infection and AUD. 

As expected, HIV+/AUD+ participants exhibited the poorest neurocognitive performance 

among the four study groups. Our findings demonstrate that genetic variation in the ADH 

pathway moderates the deleterious neurocognitive effects of comorbid HIV infection and 

AUD, particularly in higher-order skills (i.e., executive function, working memory) 

supported by prefrontal brain regions. Contrary to expectations, ADH SNPs did not relate to 

neurocognition among HIV−/AUD+ participants, suggesting that differential metabolism of 

heavy ethanol exposure may be most salient under conditions of high neurobiological stress, 

such as HIV-related neurotoxicity.

The strongest SNP associations occurred with the ADH4 (rs1126671) SNP, for which 

significant SNP effects on executive function and working memory only emerged under the 

dual-risk condition of comorbid HIV infection and AUD. Despite limited power due to small 

sample size, these effects were fairly robust to psychosocial and HIV-specific factors. The 

ADH4 enzyme contributes to roughly 30% of the ethanol oxidizing capacity in the liver 

during high ethanol concentrations (Cederbaum, 2012; Edenberg et al, 2006). Compared to 

the A allele, the G allele of the ADH4 rs1126671 SNP reduces the thermostability and 

ethanol-binding of ADH4 (referred to as ADH2 by Strömberg et al.; (Edenberg et al, 2006; 

Strömberg et al, 2002). This G allele-associated reduction in stability could underlie the 

neurocognitive deficits observed among HIV+/AUD+ GG homozygotes, however, it is 

unclear whether these thermokinetic differences translate to functional differences in ethanol 

metabolism.
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Mechanisms underlying the relationships between ADH genetic variability, alcohol 

metabolism, and neurocognitive outcomes are not well understood. Moreover, the specific 

neurotoxic effects of ethanol versus its first metabolite, acetaldehyde, are also understudied; 

however, both seem to have potentially detrimental effects on brain function. Consistent 

evidence suggests that ethanol may have direct and indirect effects on neuronal damage via 

oxidative and inflammatory mechanisms (Alfonso-Loeches et al, 2010; Sun and Sun, 2001). 

ADH variants that cause decreased alcohol metabolism in the liver lead to increased 

bioavailability of ethanol throughout the body, including the brain, where it is then 

metabolized primarily by CYP2E1. This within-brain metabolic process has been shown to 

increase production of reactive oxygen species (ROS) and nitric oxide, promoting oxidative- 

and inflammation-related neurodegeneration (Haorah et al, 2008). Our results demonstrating 

that PLWH are selectively impacted by the neurocognitive effects of ADH genes is 

supported by evidence that ethanol metabolism is altered in HIV disease, and that ADH can 

modulate ART pharmacokinetics to heighten the risk of liver toxicity (Haorah et al, 2004; 

Pandrea et al, 2010).

ADH variants that cause increased alcohol metabolism in the liver lead to decreased 

bioavailability of ethanol and increased acetaldehyde accumulation. The direct effects of 

acetaldehyde on neuronal injury, however, are less clear, as much of the research on 

acetaldehyde has focused on its carcinogenic and psychologically reinforcing properties 

(Foddai et al, 2004; Seitz and Stickel, 2010). It is also difficult to disentangle neurotoxic 

effects that result from the process of within-brain ethanol metabolism versus the simple 

presence of acetaldehyde in the CNS. Some research suggests acetaldehyde is cytotoxic 

(much more so than ethanol) via pathways that inhibit astrocyte viability and proliferation 

(Sarc and Lipnik-Stangelj, 2009). Indirectly, acetaldehyde can also cause downstream 

detrimental effects on brain integrity via multi-organ damage in the periphery (e.g., hepatic 

encephalopathy; (Butterworth, 2014). Although not statistically significant, a greater 

percentage of the HIV+AUD group (17.6%) relative to the HIV only group (6.7%) had HCV 

co-infection, which has been linked to higher concentrations of ADH and presumably 

increased production of acetaldehyde (Jelski et al, 2016; Jelski et al, 2018).

The current study demonstrated neurocognitive domain-specific findings primarily in 

executive function and working memory. This suggests that genetically-driven differential 

metabolism of alcohol preferentially involves the prefrontal cortex, and is consistent with 

known vulnerabilities among individuals with HIV and/or AUD (Rosenbloom et al, 2010). 

Translational research suggests that mechanisms underlying the dysfunction of prefrontal-

mediated cognitive domains in both HIV and AUD likely include disruption of the 

dopaminergic system. Chronic alcohol exposure appears to disrupt dopaminergic 

neurotransmission by reducing dopamine receptor activity and dopamine transporter 

availability, which have consistently shown to be associated with executive dysfunction 

(Narendran et al, 2014; Trantham-Davidson et al, 2014; Trantham-Davidson et al, 2017; 

Trantham-Davidson and Chandler, 2015; Yen et al, 2015). HIV is also neurotoxic to 

dopaminergic neurons, as viral proteins (e.g., Tat, gp120) cause excitotoxicity and cell death 

within frontostriatal circuitry (Gaskill et al, 2017; Koutsilieri et al, 2001). HIV-related 

dopamine dysfunction has been directly linked to neurocognitive deficits (Kumar et al, 
2011), and the deleterious neurocognitive effects of HIV appear to be heightened when 
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coupled with genetic risk for low dopamine bioavailability (Saloner et al, 2019; Sundermann 

et al, 2015). Last, we also found an interaction effect on processing speed. This domain-

specific finding is also consistent with prior work on neurocognitive outcomes in comorbid 

HIV and AUD, as injury to white matter is common in both conditions (Paolillo et al, 2019; 

Rosenbloom et al, 2010). Notably, the processing speed finding was not significant after 

correction for multiple comparisons.

Psychosocial factors can be a principal source of cognitive reserve among adults with risks 

for cognitive deficits, including HIV and/or AUD (Malaspina et al, 2011; Vance, 2013). In 

our sample, we found that higher estimated verbal IQ (WRAT-IV Reading) and absence of 

lifetime MDD significantly predicted better neurocognitive outcomes. These findings are 

very consistent with previous research in this population. WRAT-IV Reading score is 

primarily used as an indicator of premorbid ability, can be used to estimate education 

quality, and is known to be strongly correlated to neurocognitive performance across clinical 

and non-clinical populations (Foley et al, 2012; Opdebeeck et al, 2016). Depression has been 

found to have both transient and longstanding effects on neurocognitive performance across 

several domains, including processing speed, memory, and executive functioning 

(McDermott and Ebmeier, 2009). For example, neurocognitive deficits are commonly seen 

during acute depressive episodes, though performance can improve somewhat after the 

episode resolves (Douglas and Porter, 2009). Additional research also suggests that a history 

of chronic MDD also exerts long-term effects on neurocognitive functioning via chronic 

stress-induced inflammatory neuronal damage (Wolkowitz et al, 2010). Future work to 

inform this area of “psychosocial reserve” should examine possible interactive effects with 

genetics on neurocognition in HIV and AUD.

The current investigation is not without limitations. For a gene-behavior study, our sample 

size was small and our results should be considered preliminary. Although grouping SNPs 

according to a recessive genetic model (i.e., minor allele carriers vs. major allele 

homozygotes) is common practice, our findings need to be replicated in larger samples that 

have sufficient power to treat each allelic variant independently. Despite our small sample 

size with limited power, we still detected large effects that remained statistically significant 

after adjusting for relevant covariates. Our examination of SNPs involved in the ADH 

pathway highlights the influence of genetic variation in alcohol metabolism as a protective/

risk factor for neurobehavioral dysfunction in HIV+/AUD+ individuals; however, in this 

retrospective study we did not have phenotypic data on the functional effect of the ADH 

SNPs on actual alcohol metabolism. Future mechanistic research should continue to 

examine how ADH enzymatic activity differs among ADH variants, and how these 

genotype-phenotype relationships are modulated by environmental conditions such as HIV 

infection and chronic alcohol exposure. Although our inclusion of genetic factors somewhat 

mitigates the shortcomings of our cross-sectional and associative analysis, it is not possible 

for us to determine the directionality of the relationships between HIV/AUD status and 

neurocognition. Prefrontal dysfunction may serve as both an antecedent and consequence of 

HIV infection and problematic alcohol use (Day et al, 2015; Gierski et al, 2013; Ross et al, 
2016; Walker and Brown, 2018), which underscores the relevance of identifying genetic risk 

factors that exacerbate HIV− and alcohol-related neurocognitive vulnerabilities. Lastly, our 

sample comprised only men and we are therefore limited in extrapolating our findings to 
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women. Replication studies in women are warranted considering that in addition to alcohol 

metabolism, the neurocognitive effects of HIV and AUD may differ by sex (Sharrett-Field et 
al, 2013; Sundermann et al, 2018).

Taken together, our preliminary findings indicate a context-dependent relationship between 

alcohol metabolism genetics and neurocognition, such that ADH SNPs were related to 

neurocognition only under the environmental conditions of AUD and HIV infection. Our 

domain-specific analyses align with the hallmark neurocognitive deficits of HIV+/AUD+ 

individuals as our significant ADH genetics findings were circumscribed to executive 

function, working memory, and to a lesser extent, processing speed. Replication and 

examination of pharmacokinetic mechanisms mediating the relationship between ADH 

genetics and neurobehavioral outcomes may inform precision treatments for chronic 

drinkers living with HIV and help to identify patients that are particularly susceptible to the 

deleterious neurocognitive effects of HIV infection and AUD.
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Fig. 1. 
Neurocognitive performance by HIV/AUD group. Asterisks next to neurocognitive domains 

reflect significance for omnibus HIV/AUD group differences. Tukey’s HSD pairwise 

comparison tests indicated significantly lower (worse) global functioning and verbal fluency 

in HIV+/AUD+ compared to HIV−/AUD−. *p < 0.05; ^p < 0.10
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Fig. 2. 
ADH4 (rs1126671) is selectively associated with executive function and working memory in 

HIV+/AUD+ individuals. Cohen’s d estimates reflect effect size for A allele vs. GG 

differences in neurocognitive T scores. **p < 0.01; *p < 0.05
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Table 1.

Distribution of Alcohol Dehydrogenase (ADH) Single-nucleotide Polymorphisms

ADH SNP All variants Analytic group
a HIV−/AUD− HIV−/AUD+ HIV+/AUD− HIV+/AUD+

ADH1A G/G 86 (56.6%) G/G 86 (56.6%) 26 (57.8%) 15 (53.6%) 23 (51.1%) 22 (64.7%)

rs3819197
b A/G 58 (38.2%) A allele 66 (43.4%) 19 (42.2%) 13 (46.4%) 22 (48.9%) 12 (35.3%)

A/A 8 (5.3%)

ADH4 G/G 77 (50.3%) G/G 77 (50.3%) 21 (46.7%) 18 (62.1%) 24 (53.3%) 14 (41.2%)

rs1126671 A/G 59 (38.6%) A allele 76 (49.7%) 24 (53.3%) 11 (37.9%) 21 (46.7%) 20 (58.8%)

A/A 17 (11.1%)

ADH6 C/C 73 (47.7%) C/C 73 (47.7%) 20 (44.4%) 17 (58.6%) 22 (48.9%) 14 (41.2%)

rs4699733 G/C 72 (47.1%) G allele 80 (53.3%) 25 (55.6%) 12 (41.4%) 23 (51.1%) 20 (58.8%)

G/G 8 (5.2%)

ADH7 C/C 87 (57.6%) C/C 87 (57.6%) 26 (59.1%) 16 (57.1%) 27 (60.0%) 18 (52.9%)

rs894369
c G/C 52 (34.4%) G allele 64 (42.4%) 18 (40.9%) 12 (42.9%) 18 (40.0%) 16 (47.1%)

G/G 12 (7.9%)

ADH7 G/G 61 (39.9%) G/G 61 (39.9%) 28 (62.2%) 17 (58.6%) 33 (73.3%) 14 (41.2%)

rs1154470 A/G 74 (48.4%) A allele 92 (61.1%) 17 (37.8%) 12 (41.4%) 12 (26.7%) 20 (58.8%)

A/A 18 (11.8%)

a
Heterozygotes and homozygous recessive participants were grouped together for statistical analysis.

b
N = 152

c
N = 151

J Neurovirol. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saloner et al. Page 19

Table 2.

Study sample characteristic by HIV/AUD status

A. HIV−/AUD− 
(n=45)

B. HIV−/AUD+ 
(n=29)

C. HIV+/AUD− 
(n=45)

D. HIV+/AUD+ 
(n=34)

p
Pair-wise

a

Demographics

Age (years) 34.78 (10.17) 36.72 (14.33) 39.22 (11.65) 42.50 (9.44) 0.023 A<D

Education (years) 14.40 (2.75) 13.45 (1.64) 13.13 (2.13) 13.68 (1.89) 0.053

Race/Ethnicity 0.463

 Black 4 (8.9%) 4 (13.8%) 5 (11.1%) 4 (11.8%)

 Hispanic 14 (31.1%) 8 (27.6%) 8 (17.8%) 4 (11.8%)

 Non-Hispanic White 27 (60.0%) 17 (58.6%) 32 (71.1%) 26 (76.5%)

WRAT-IV 105.40 (9.61) 101.79 (9.93) 103.73 (11.42) 101.85 (7.44) 0.321

Psychiatric and medical

Lifetime non-alcohol 
substance use disorder

11 (24.4%) 15 (51.7%) 10 (22.2%) 14 (41.2%)
0.023

b

Lifetime MDD 9 (20.0%) 8 (27.6%) 21 (46.7%) 19 (55.9%) 0.003 A<C,D

Current MDD 1 (2.2%) 2 (6.9%) 9 (20.0%) 5 (14.7%) 0.034 A<C

BDI-II 1 [0, 3] 3 [0, 8] 7 [3, 12] 7.5 [4, 13] <0.001 A,B<C,D

Hepatitis C virus 0 (0%) 0 (0%) 3 (6.7%) 6 (17.6%) 0.128

Alcohol use parameters

Age of first drink 16.29 (5.22) 15.07 (3.69) 15.76 (4.62) 15.85 (4.32) 0.756

Days since last drink 4 [1, 28] 4 [2, 31] 14 [4, 61] 7 [2, 274] 0.358

Lifetime drinking days 506 [164, 1177] 1529 [413, 3349] 462 [195, 1210] 1650 [576, 3853] <0.001 A,C<B,D

Lifetime drinks 1690 [577, 3922] 7186 [2373, 
13543]

1480 [348, 2602] 6734 [3116, 17915] <0.001 A,C<B,D

Lifetime average drinks 
per drinking day

3.23 [2, 4.86] 4.29 [3.43, 5.58] 2.51 [1.98, 3.36] 4.40 [3.12, 6.54] <0.001 C<A<B,D

HIV disease characteristics

AIDS diagnosis - - 19 (42.2%) 20 (58.8%) 0.144

Estimated years of 
infection

- - 4.01 [0.64, 13.24] 8.54 [3.60, 15.57] 0.179

Nadir CD4 - - 250 [90, 315] 198 [43, 299] 0.195

Current CD4 - - 435 [311, 659] 499 [371, 628] 0.736

Detectable plasma virus 
(>50 copies/ml)

- - 19 (46.3%) 11 (33.3%) 0.257

Log plasma viral load - - 1.70 [1.60, 3.65] 1.70 [1.70, 2.60] 0.762

On ART - - 29 (64.4%) 26 (76.5%) 0.170

Values are presented as mean (SD), median [IQR], or N; WRAT-IV = Wide-Range Achievement Test-Fourth Edition, reading subtest; MDD = 
Major Depressive Disorder; HCV=hepatitis C virus; BDI-II = Beck Depression Inventory-II; ART = antiretroviral therapy.

a
Pair-wise comparisons were examined using Tukey’s H.S.D. (α = 0.05) for continuous outcomes and Bonferroni-adjustments (α = 0.05/6 = 

0.0083) for dichotomous outcomes

b
Pair-wise comparisons for lifetime non-alcohol substance use disorders did not reach statistical significance after Bonferroni-adjustments
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Table 3.

Alcohol dehydrogenase (ADH) single-nucleotide polymorphisms moderate the interactive effects of HIV-

infection and lifetime alcohol use disorders (AUD) on neurocognition

2 × 2 × 2 ANOVA 2 × 2 × 2 ANCOVA

Outcome: Executive Function F p ηp2 F p ηp2

HIV 5.46 0.021 0.04 1.96 0.164 0.01

AUD 0.83 0.363 0.01 0.24 0.624 0.00

ADH4 rs1126671 0.97 0.325 0.01 0.60 0.439 0.00

HIV × AUD 2.63 0.107 0.02 3.08 0.082 0.02

HIV × ADH4 rs1126671 0.01 0.923 0.00 0.41 0.523 0.00

AUD × ADH4 rs1126671 0.69 0.408 0.00 0.69 0.408 0.00

HIV × AUD × ADH4 rs1126671 7.38 0.007 0.05 5.65 0.019 0.04

Age 1.27 0.261 0.01

WRAT 12.70 0.001 0.08

Lifetime Major Depressive Disorder 10.36 0.002 0.07

BDI-II 0.11 0.742 0.00

Lifetime Substance Use Disorder 0.57 0.453 0.00

Outcome: Working Memory F p ηp2 F p ηp2

HIV 8.09 0.005 0.05 7.81 0.006 0.05

AUD 1.04 0.311 0.01 0.29 0.594 0.00

ADH4 rs1126671 4.79 0.030 0.03 5.64 0.019 0.04

HIV × AUD 0.08 0.784 0.00 0.03 0.856 0.00

HIV × ADH4 rs1126671 0.8 0.373 0.01 1.96 0.164 0.01

AUD × ADH4 rs1126671 2.21 0.139 0.02 2.43 0.122 0.02

HIV × AUD × ADH4 rs1126671 5.58 0.020 0.04 3.94 0.049 0.03

Age 3.53 0.062 0.02

WRAT 6.72 0.011 0.05

Lifetime Major Depressive Disorder 4.56 0.034 0.03

BDI-II 1.67 0.199 0.01

Lifetime Substance Use Disorder 1.01 0.317 0.01

Bolded values are significant at p < 0.05. WRAT = Wide-Range Achievement reading subtest; BDI-II = Beck Depression Inventory-II
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