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Consequences of Sampling Frequency on the Estimated Dynamics of AR
Processes using Continuous Time Models

Rohit Batra1*, Simran K. Johal1*, Meng Chen1, and Emilio Ferrer1
1University of California, Davis

Continuous-time (CT) models are a flexible approach for modeling longitudinal data of psy-
chological constructs. When using CT models, a researcher can assume one underlying
continuous function for the phenomenon of interest. In principle, these models overcome
some limitations of discrete-time (DT) models and allow researchers to compare findings
across measures collected using different time intervals, such as daily, weekly, or monthly
intervals. Theoretically, the parameters for equivalent models can be rescaled into a common
time interval that allows for comparisons across individuals and studies, irrespective of the
time interval used for sampling. In this study, we carry out a Monte Carlo simulation to
examine the capability of CT autoregressive (CT-AR) models to recover the true dynamics of
a process when the sampling interval is different from the time scale of the true generating
process.
We use two generating time intervals (daily or weekly) with varying strengths of the autore-
gressive parameter and assess its recovery when sampled at different intervals (daily, weekly,
or monthly). Our findings indicate that sampling at a faster time interval than the generating
dynamics can mostly recover the generating autoregressive effects. Sampling at a slower
time interval requires stronger generating autoregressive effects for satisfactory recovery,
otherwise the estimation results show high bias and poor coverage. Based on our findings,
we recommend researchers use sampling intervals guided by theory about the variable under
study, and whenever possible, sample as frequently as possible.

Keywords: Continuous-Time Models, Autoregressive Processes, Sampling Frequency, Dynamic
Models

One of the primary goals of psychological research is
studying the development of psychological attributes such
as cognitive abilities, emotions, and skills of individuals over
time. This necessitates the collection of longitudinal data
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with repeated measures of a process for an individual, such
as day-to-day changes in mood of an individual with bipolar
disorder, week-to-week changes in stress of a person in a
new job, or month-to-month changes in reading ability of
a child during grade school. Usually, researchers are inter-
ested in modeling the dynamics of the given process, or the
systematicity in the pattern of changes over a time period,
which depend on the time interval at which a process is sam-
pled (Boker and Nesselroade, 2002; Browne and Nesselroade,
2005).

Most of the commonly used approaches for modeling
process dynamics can be categorized as discrete-time (DT)
models such as vector autoregressive models, growth curve
models, or cross-lagged panel models. DT models examine
the relations between consecutive occasions, which are as-
sumed to be equally spaced. Such an assumption provides
the benefit of easily interpretable dynamics with respect to
the specific time interval. At the same time, it limits the
understanding of the true underlying phenomenon, as one
cannot interpolate or extrapolate the findings beyond the
chosen time interval (Gollob and Reichardt, 1987). It is also
likely that this time interval can vary, both within the re-
peated measures of an individual, or across individuals in a
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study, and also across different studies (Voelkle et al., 2012).
For example, an experience sampling method with mea-

surements at multiple times per day may have different inter-
vals for the same individual, such that the interval between
two consecutive daytime measurements will be different
from the time lag between before and after bedtime mea-
surements. Similarly, different individuals may have longer
or shorter sleep periods which can bring differences across
individuals in their sampling intervals. Varying time inter-
vals make it difficult to estimate and interpret a DT model
and are usually handled by inserting phantom variables at
the missing occasions to meet the equal interval assumption
(Boker et al., 2018; Voelkle and Oud, 2015).

Continuous-time (CT) models circumvent the issue of
varying time intervals by conceptualizing time on a real-
number scale1. These models assume one underlying contin-
uous function for the process under study that applies to the
entire span of time, thereby allowing for unequal time inter-
vals between consecutive measures of individuals (Voelkle
and Oud, 2013). Their primary advantage is that one can
rescale the dynamic parameters to any discrete time inter-
val, and compare their strengths across different individuals,
or studies. Nevertheless, CT models still rely on discrete
measurements2 that serve as snapshots into this underly-
ing trajectory of a process. But what happens when these
snapshots do not match the actual dynamics of a process for
an individual? For instance, suppose an individual’s stress
level is a continuous function that is changing mostly on a
day-to-day basis as shown in the top panel of Figure 1, but a
researcher decides to observe them on a weekly time interval
shown in the middle panel of the figure. Theoretically, the
stress dynamics for this individual can be estimated using
a CT model on the weekly interval data and rescaling the
parameters to a daily time interval. However, would we
expect these estimated dynamics to be the same had the
researcher observed the individual at a daily interval?

The frequency at which a process is sampled can be called
the sampling frequency, e.g., weekly sampling frequency
for our hypothetical example. In contrast, the frequency at
which a researcher is interested in studying the dynamics
of a process can be called the data generating frequency3 or
frequency of interest, such as daily frequency of stress for
the above example. The discrepancy between the sampling
and generating frequencies is an important, yet unaddressed,
issue in the CT literature, and there are no established guide-
lines on the limits of rescaling the CT dynamics. The aim of
this paper is to study the consequences of sampling frequency
on the estimation of CT models for individual dynamics. In
the remaining introduction, we first present DT autoregres-
sive and CT autoregressive models along with their assump-
tions. Then we provide an overview of recommendations for
choosing an appropriate sampling frequency in DT models
and consider whether they apply for CT models as well. This

forms the motivation for our simulation work.

DT-AR Models

A dynamic process can be defined as a process with sys-
tematicity or stability in their movement over time with a fea-
ture of self-regulation, where the current state and changes in
the process depend on its past state and changes (Boker and
Nesselroade, 2002). A commonly used model that formalizes
this time-dependence feature using repeated measures from
a single individual is an autoregressive (AR) model of first
order, given by the equation:

yt = c + ϕ . yt−1 + ϵt (1)

where the AR parameter ϕ represents the influence of the
value of a process at the previous state on the current state
at occasion (or discrete time point) t. ϵt is the random shock
to the system at every new time point t, which are inde-
pendently and identically distributed with mean zero and
variance σ2

ϵ . c is an additive constant which we assume to
be 0 for the rest of the paper. We refer to the above model as
the discrete time autoregressive (DT-AR) model because of
its use of discrete time points to specify the process.

The sign and strength of the AR parameter ϕ indicates
whether the process moves towards or away from an equi-
librium point and, if so, at what pace, respectively. In our
work, we are concerned with stationary DT-AR models with
ϕ ∈ (0, 1), also referred to as positive AR systems, in which
the lagged parameter is interpreted as bringing the process
back to the equilibrium, whereas the random shocks push
the system away from it (Browne and Nesselroade, 2005;
Ryan and Hamaker, 2021). In this context, c

(1−ϕ) serves as
the long-term equilibrium point of a dynamic process and
can be thought of as the home base or attractor (Oravecz
et al., 2011). The DT-AR model makes two important but
restrictive assumptions: 1) the process is weakly stationary,
that is, the means and variances remain constant over time;
and, 2) the time interval (also called, time lag) from any one

1Compared to DT models, where time is conceptualized as inte-
gers or discrete increments.

2As time is conceptualized as a real number, per definition, no
matter how densely these snapshots are taken, there always exists
an interval of time between the snapshots. Therefore, measure-
ments are in discrete as opposed to continuous time.

3An assumption of CT is the continuous existence of the process
for all possible frequencies at which a researcher can study such a
process. With the use of the term “generating frequency”, we do
not mean that these processes have a single generating frequency.
However, a researcher still needs to study these processes at a par-
ticular frequency of interest, and this serves as the data generating
frequency. This data generating frequency is helpful as a reference
when we make comparisons with a particular sampling frequency
in the rest of the paper.



CONSEQUENCES OF SAMPLING FREQUENCY ON CT-AR MODELS 3

Figure 1

Example of a daily generating process which is sampled at weekly and monthly frequencies.

discrete measure to the next is of the same length (Browne
& Nesselroade, 2005; du Toit & Browne, 2007).

The consequence of the second assumption is that the
estimated parameters are a function of the time interval used
to collect and model the data, which has come to be known
as the time lag problem of DT models (Gollob and Reichardt,
1987; Ryan and Hamaker, 2021). Researchers studying the
same dynamic process can use different time intervals to
collect the data, and this makes it impossible to compare
the estimated dynamics across studies. For instance, a re-
searcher might choose to formalize an individual’s stress
as a DT-AR model with repeated measures collected on a
day-to-day interval, whereas another researcher might study
the same individual’s stress as a DT-AR model but on a week-
to-week interval. There is no way to directly compare the
parameters estimated from the two because the parameters
are not linear functions of time (Voelkle et al., 2012). It is also
quite common in empirical research to collect longitudinal
data with unequal time intervals between consecutive assess-
ments, and this is usually handled by treating the unobserved
time points as missing to meet the assumption of equal time
intervals. However, adding missingness can become quite
cumbersome if time intervals vary across assessments waves,
e.g., for an individual with 101 measures, we can have 100
possible time intervals of varying lengths (Voelkle and Oud,
2015).

CT-AR Models

CTmodels assume an underlying generating function that
works continuously over time for a psychological process,
given that this function is smooth and differentiable (Boker,
2002). Unlike DT models, in which the increments in the
process are at discrete intervals, the process in CT models
moves along the smallest possible increments of time. This
shifts the formalization of changes from differences to dif-
ferential equations. A simple CT model for a single-subject
time series is a univariate Ornstein-Uhlenbeck (O-U) process,
which is a first-order stochastic differential equation given
by:

dyt = β . (yt − c) . dt + σ . dwt (2)

where, the differential of yt with respect to time t, dyt
dt , repre-

sents the instantaneous rate of change of yt. This differential
includes both a deterministic and a stochastic component,
denoted by the two summands respectively. The determin-
istic part represents the influence of current values of yt

on the instantaneous changes, scaled by the parameter β,
termed the auto-effect. Similar to the AR parameter ϕ in a
DT-ARmodel, the sign and value of β determine if these small
changes bring the process back to the equilibrium or away
from it (Kuiper and Ryan, 2018; Oravecz et al., 2011; Voelkle
and Oud, 2013). We assume equilibrium (denoted by c in
Equation 2) to be 0 for the discussion here. The stochastic
part represents the change in the unidimensional Weiner
process wt or Brownian motion, scaled by the constant σ
(Voelkle et al., 2012). This represents the random shocks
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to the dynamic system that push it away from (or bring it
accidentally back to) equilibrium.

In this paper, we only consider O-U processes with β < 0
that return to equilibrium over time, making it the CT coun-
terpart to the DT-AR model, and we denote it as the contin-
uous time autoregressive (CT-AR) model for the rest of the
paper. This model provides the flexibility of accounting for
different time intervals across the repeated measures of a
process by considering the discrete measures as informative
of an underlying continuous trajectory, wherever they fall
(Voelkle et al., 2018). Hence, the CT-AR model proves a
more flexible alternative to handling unequal time intervals
than the DT-AR model. Another benefit of CT-AR models
is that one can theoretically rescale the CT parameters to
any discrete time interval, regardless of the sampling design.
This provides a macroscopic view of the process over dif-
ferent time intervals, and many researchers are interested
in capturing the time interval at which the DT parameters
are maximum (Deboeck and Preacher, 2016; Dormann and
Griffin, 2015).

Next, we briefly explain two important concepts of base
time interval and rescaling in CT models, which will be
helpful for our further discussion.

Base Time Scale

A base time scale defines the time metric used in a CT
model, which is usually set to be equal to the smallest time
interval during data collection, or at the discretion of the
researcher based on their hypothesis. For a given initial
observation yt0 , the solution of the differential equation of
the CT-AR model can be found by integrating over Equation
2 and is given by:

yti = eβ . ∆ti . yti−1 + ϵ∆ti (3)

where, yti represents the ith observation taken at time t, pre-
dicted by the previous observation yti−1 scaled by an expo-
nential function and the innovation term ϵ∆ti . Similar to the
errors in Equation 1, these innovations are also indepen-
dent and identically distributed with mean 0 and variance
σ2
ϵ = σ

2
y(1 − e2∗β∗∆i ), where σ2

y is the stationary variance
of the process. This innovation variance is a function of β,
which is the same auto-effect as before, and ∆ti = ti − ti−1,
which is the time elapsed between the two consecutive obser-
vations. We name the time interval when ∆t = 1 as the base
time scale because it serves as the basis relative to which
other discrete time intervals are calculated for the purposes
of estimating a CT model.

For instance, let us consider again a study of stress in
an individual over time. Suppose a researcher decides to
collect stress measures from this individual every day, so
the base time interval is one day, i.e., ∆t = 1 day. During
data collection, however, there might be some days when the
data are not measured, or the observation time is different

across days, e.g., 9 a.m. one day, but 12 p.m. the next day,
which will make the ∆ti = 1.125 days between these two
consecutive measures. The choice of the base time interval
can be entirely up to the researcher modeling the process
and it can be easier to think of it as the smallest possible
sampling interval against which other intervals are scaled.

Rescaling

Rescaling the CT parameter estimates to any discrete time
interval is one of the major advantages of CT models, as it
makes it easier to compare the DT estimates across different
individuals and studies (Voelkle et al., 2012). Using Equations
1 and 3, we can establish this direct relationship between
the autoregressive effect from the DT-AR model and the
auto-effect from the CT-AR model:

ϕ∆t = eβ . ∆t (4)

where ϕ∆t represents the DT AR parameter for a particular
discrete interval ∆t and β is the auto-effect, which does not
depend on any discrete interval. For example, the researcher
collecting daily data on stress of an individual with a base
time interval of ∆t = 1 day can estimate a CT-AR model and
use Equation 4 to get the autoregressive effect for a weekly
interval with ∆t = 7 days (ϕ∆t=7 = eβ . 7). For more informa-
tion on the derivation of this equivalence, see Voelkle et al.
(2012). Unlike DT-AR models, where our inferences about
the process are restricted to the time interval used in data
collection, we can rescale the inferences from CT-AR models
to any discrete interval. Hence, based on this equivalence,
one can functionally rescale to any time interval but Voelkle
et al. (2012) caution the readers to rescale within ‘reasonable
limits’, e.g., it is unreasonable to rescale the estimated dy-
namics with a base time interval of minutes (∆t = 1 minute)
to a discrete interval of years (∆t = 1 year = 524,160 minutes).

Even though the CT model parameters can be rescaled to
any time interval, the estimated dynamics still depend on the
sampling frequency at which the process is observed by the
researcher. In the next section, we discuss the determinants
of sampling frequency for a psychological process together
with past work that has studied the influence of sampling
frequency on the CT dynamics.

Choosing An Appropriate Sampling Frequency

Psychological research relies on observations of discrete
measures from longitudinal studies. However, the determi-
nation of when or how frequently these measures should be
taken in a given time period is usually based on a researcher’s
hypothesis or knowledge. Such knowledge could be the time
lag at which the construct operates, the proposed lag at which
the causal effect is highest in a system of variables, or simply
the convenience of the research design (Dormann and Griffin,
2015; Dormann and van de Ven, 2014). The use of some of
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these approaches has drawn criticism in DT modeling. For
instance, Collins and Graham (2002) warned against using
empirically-derived sampling intervals because they can lead
to chicken and egg situations. This usually happens when
researchers do not have prior knowledge of the shape of the
trajectory. If so, they do not know the frequency at which
to observe the measure and, without such knowledge, the
empirical data collected can be unreliable, ultimately causing
issues if someone were to use empirical intervals for future
data collection and inferences (Adolph et al., 2008).

Over time, a recommendation has emerged from many
methodologists to sample as frequently as possible, the so-
called themicrogenetic method (Adolph et al., 2008). However,
such oversampling can lead to high correlations between the
measurement error of the closely repeated measures (Boker,
2002), or issues related to the recruitment and attrition of par-
ticipants in the study (Bolger and Laurenceau, 2013; Janssens
et al., 2018). It is possible to minimize some of these biases
and estimate the pattern for longer sampling intervals from
frequently sampled data but not the other way around – with
data collected at longer time lags, there is no information
to discretize for shorter time lags and estimate the dynam-
ics of the process using current DT modeling approaches
(Adolph et al., 2008). To determine the sampling rate for
oscillating functions, there exists rules of thumb like Nyquist-
Shannon theorem, where the sampling frequency should be
at least twice as frequent as the process frequency of interest
(Nyquist, 1928; Shannon, 1948). In this paper, we are not
concerned with such processes and thus, we do not use this
rule of thumb. Another general advice in the literature has
been that the sampling frequency should be appropriate for
the variable under study. However, researchers do not always
have a clear hypothesis of the time interval at which a pro-
cess operates for an individual and they might use different
exploratory intervals to formalize the operationalization.

Here, we ask the question, does one need to consider these
recommendations when modeling in CT, or can we sample
at any time interval and simply rescale the estimates? For
example, instead of collecting daily measures of stress, a
researcher might decide to collect weekly measures of stress,
which might be too sparse to capture the functional form
of how an individual’s stress changes on a day-to-day basis,
even if theoretically a CT-AR model allows us to rescale the
dynamics from weekly to daily time interval. There has been
little research exploring the effects of sampling intervals
on CT estimation and there are no established guidelines
on rescaling from one discrete interval to another. Only
recently, work by Adolf et al. (2021) on deriving optimal sam-
pling intervals acknowledges the importance of determining
an appropriate sampling frequency for CT models. They
propose a formula that uses past estimates of the auto-effect,
β, to derive an optimal sampling interval that would result
in the most reliable estimation of the CT model from new

data. However, their recommended formula is asymptotically
derived and its performance has not been examined in the
finite number of observations that would be encountered
in psychological research. Our work, on the other hand,
approaches the idea of data collection and sampling inter-
vals from the perspective of a mismatch between the true
underlying process of interest and the interval a researcher
uses to collect their data. This is done within the domain of
finite numbers of observations. We expand on these aspects
in more detail below.

We can rephrase our previous question – Do we expect the
choice of sampling frequency to affect the estimation and in-
ferences about the dynamics from a CT-AR model? We believe
it is possible that the choice of sampling frequency does not
affect the dynamics estimated from CT models, due to their
flexibility to rescale across discrete intervals. However, it is
also possible that an incorrect choice of sampling frequency
might entirely miss the dynamics of interest. If so, the ability
to rescale the estimates cannot correct such a loss. Our results
later show evidence for both these points of view.

Purpose of the Paper

In this paper, we are interested in examining the role of
the sampling time interval for recovering the true dynamics
of a given process, and the consequences of using a sampling
interval different than the interval at which the process oper-
ates. This will also help determine some of the limitations of
rescaling the estimated CT-AR parameters, for a given sam-
pling frequency. To accomplish this, we use a Monte Carlo
simulation study in which we evaluate if it is possible to
capture the true dynamics of a CT-AR model under different
conditions of generating and sampling frequencies.

In the following section, we introduce the conditions and
steps of our simulation procedure along with the criteria
used to evaluate the estimated models. Next, we show the
results from the simulation, and end with a discussion of our
findings and our recommendations to researchers planning
to use CT-AR models for their study purposes.

Methods

Simulation Conditions

We are interested in the ability of CT-ARmodels to recover
population dynamics, and whether this ability is affected by
various factors, including (a) the data generating frequency
(b) the strength of the autoregressive effect, (c) the number
of observations, and (d) the equality of the time intervals
between measurement occasions. We limited our focus to a
single variable with no measurement error in order to reduce
the complexity of the simulation, facilitate the interpretation
of the results, and better illustrate the ability of CT mod-
els to recover population dynamics in the simplest scenario
possible.
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Data Generating Frequency

The generating process operated at one of the two fre-
quencies: a daily or a weekly time interval. CT models as-
sume that the process can operate at multiple discrete time
intervals, and thus there is not necessarily a single time
interval at which the process operates. We do not assume
that the data generating frequency is the only time interval
at which the process operates, but the time interval at which
the dynamics of the process might be the most representative
for that psychological construct. Furthermore, we chose our
data generating frequencies to be either daily or weekly, as
these frequencies can be representative of processes – such
as emotional interactions in close relationship – that are
of interest to psychological researchers (Chen et al., 2018;
Newell, 1994).

Strength of Autoregressive Parameter

We chose four values for the AR coefficient, ϕ, to repre-
sent the dynamics of the generating process: .05, .2, .5, and .8.
These AR coefficients represented the stability of the process
from day-to-day or week-to-week. These four values were
chosen to cover a spectrum of possible processes, with a
process whose current observations are weakly dependent
on the previous observation represented by weaker AR val-
ues on one end, and a process whose current observations
strongly depend on the previous observation represented
with stronger values at the other end. These coefficient val-
ues have been used in previous simulation studies examin-
ing autoregressive processes (de Haan-Rietdijk et al., 2017;
O’Laughlin et al., 2020).

Number of Observations

We sampled either 100, 300, or 1,000 observations from the
true process. We chose 100 as our smallest number of obser-
vations based on previouswork showing that CTmodels with
fewer than 100 observations on one individual are unlikely
to perform optimally (Hecht & Zitzmann, 2020). Therefore,
sampling less than 100 observations would make it difficult
to separate poor performance of the CT-AR model more
generally from poor performance due to sampling frequency.
Furthermore, a sample of 100 observations is typical for most
Experience Sampling Methods (ESM) designs, and has been
used in previous studies investigating the performance of
CT-AR models (Chen & Ferrer, 2022; Liu et al., 2021). We also
examined the effect of increasing the number of observations,
by including samples of 300 and 1,000 observations. A sample
of 1,000 observations also allows us to study the asymptotic
performance of the CT-AR model, with little influence from
sampling error.

Equality of Sampling Intervals

ESM studies are oftentimes designed so that the time in-
terval between measurement occasions is random, and thus
not equal between pairs of measurement occasions. This is
typically considered an advantage, as prompting participants
to respond at random intervals can, for instance, minimize
the risk of participants adapting their behavior in anticipa-
tion of a prompt, and can let researchers better characterize
the process under study (Bolger et al., 2003; Voelkle and Oud,
2013). However, this randomness is ignored when estimating
DT models, as these models assume that the time interval
between consecutive observations is equal.

Therefore, in our simulation, we generated data with both
equal and random time intervals between measurement oc-
casions – the former represents an ’ideal’ research scenario
that meets the assumptions of DT models, and the latter rep-
resents a scenario that better aligns with how ESM research
is conducted.

Summary of Simulation Conditions

Our simulation factors were therefore:

• Data Generating Frequency: Daily frequency, Weekly
frequency

• Strength of Autoregressive Parameter: .05, .2, .5, .8

• Number of Observations: 100, 300, 1,000

• Equality of Sampling Intervals: Equal intervals, Ran-
dom intervals

These factors were fully crossed, resulting in a total of 48
conditions. For each condition, we simulated 500 datasets as
described in the Simulation Procedure.

Simulation Procedure

An overview of the full simulation procedure is shown in
Figure 2. We created our sample datasets by first generating
data for the complete trajectory using a time interval of one
hour between measurement occasions. Then, we created
sample datasets based on three different sampling frequen-
cies, and estimated CT-AR models for each of the samples.

Data Generation

We chose to generate data using an hourly time interval
because we needed a discrete realization of the continuous
process to sample from that was common to our three sam-
pling frequencies (daily, weekly, and monthly, which will
be discussed further below). Furthermore, generating data
at an hourly time interval means that it occurs faster than
our fastest sampling frequency, allowing us to approximate
a continuous process. Finally, hourly data – although un-
common – is possible in psychological research, particularly
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Figure 2

Overview of data generation procedure and simulation conditions

Generating Frequency AR Parameter (ϕ) CT hourly Auto-Effect (βhour)
Daily .05 -.125

.2 -.067

.5 -.029

.8 -.009
Weekly .05 -.018

.2 -.010

.5 -.004

.8 -.001
Table 1

Table of population values
Note. We used the generating AR parameters to get the CT auto-effects at the hourly interval for data generation.
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when studying physiological systems (e.g., Jacobson et al.,
2019).

To generate the complete trajectory from a process that
met the conditions described above, we first transformed the
DT AR effect, ϕ, to a CT auto-effect, β, using the “indirect”
method (Oud et al., 1993). The “indirect” method solves for
the underlying CT auto-effect for a given AR effect and time
interval using Equation 4. Note that the use of the “indirect”
method is generally not recommended, as it cannot result
in a unique solution for the CT auto-effect except under
certain conditions (Hamerle et al., 1991; Kuiper and Ryan,
2018; Ryan and Hamaker, 2021; Voelkle et al., 2012). In our
simulation, we assumed a negative and real-valued underly-
ing CT auto-effect, satisfying the condition of the “indirect”
method and allowing us to transform from ϕ to βhour. We
then used βhour in Equation 3 to generate data at the hourly
level. For example, suppose the process operated on a daily
frequency with an AR parameter of 0.5. We obtained the CT
auto-effect on an hourly time interval by assuming that the
base time interval was hourly, so that the corresponding time
interval for 1 day would be ∆t = 24 hours. We then solved
the following equation for βhour:

0.5 = e24 . βhour (5)
, resulting in the population hourly auto-effect, βhour = -0.03.
All the values of the true DT effects and the corresponding
CT auto-effects can be found in Table 1.

To generate the entire trajectory for each replication, we
set the first observation and the mean of the process to zero
and substituted βhour into Equation 3 to generate the remain-
der of the process. The innovations are generated for each
new time point (i.e., each new hour) using a standard normal
distributionwithmean zero and varianceσ2

ϵ = σ
2
y(1−e2∗β∗∆i ),

where σ2
y was set to 0.25 for the rest of the simulation. We

decided to keep this variance of the process fixed to a single
small value in order to avoid contamination from the data
generation process and keep our focus on the examination of
simulation conditions mentioned before. Hence, the innova-
tion variance for each condition relies primarily on the auto-
effect β and the data generating frequency. The total time
period for data generation was chosen such that there were
enough data for even the slowest sampling frequency, e.g.,
monthly, to sample the required number of observations4.

Sampling

After generating the complete trajectory, we sampled at
three different sampling frequencies: daily, where measure-
ments were taken once every 24 hours; weekly, where mea-
surements were taken once every 168 hours; and monthly,
where measurements were taken once every 672 hours. Daily
and weekly measurements, in particular, are common in psy-
chological studies assessing emotional affect or psychopatho-
logical symptoms (Bos, 2021; Castro-Schilo and Ferrer, 2013;

Lenderking et al., 2008; Wichers et al., 2021). The exact hour
of measurement from a particular period was determined
based on whether the time intervals were intended to be
equal or random: if measurements were taken with equal
time intervals, then the 10th observation of each period was
always taken; if measurements were taken with random time
intervals, then a random measurement within that period
was selected (this process is visualized in Figure 2). Measure-
ments were taken until the required number of observations
was reached.

Estimation

We fit a CT-AR model to each sampled dataset using
OpenMx (Boker et al., 2022; Deboeck and Preacher, 2016;
Hunter, 2018; Pritikin et al., 2015). To align with how re-
searchers would estimate a CT-AR model with empirical
data, we used the time interval of the sampling frequency
as the base time interval for the model. The CT model is
estimated in OpenMx using the hybrid Kalman filter and
nonlinear optimization (Boker et al., 2022; Chow et al., 2010;
Hunter, 2018). The hybrid Kalman filter estimates the latent
states of the continuous process to the observed measure-
ment under a given set of parameter values and derives the
likelihood associated with this set of parameter values as
a byproduct. It uses a series of recursive steps: first is the
prediction step, where the value of the process at time t
and the covariance matrix are predicted based on the model,
given the parameters, and the corrected estimates of the
process at the previous time point. Next, the correction step
corrects this prediction based on the observed data at time
t. These two steps iterate from the first time point to the
last and return the likelihood value, which is then used in an
optimization algorithm to derive the maximum likelihood
estimates for the model parameters.

In addition to the three CT-ARmodels, we also estimated a
DT-AR model for the dataset where the generating frequency
and the sampling frequency aligned, e.g., the generating and
sampling frequency were both daily or both weekly. We in-
cluded the DT-AR model in comparison to the CT-AR model
because it serves as a useful benchmark for how well our
CT model recovers the dynamics when the assumption of
equal time intervals is violated. If the time intervals between
measurement occasions were equal, then both models should
give equivalent results; however, if the measurements are un-
equally spaced, then the CT-AR model should result in more

4Every iteration of our simulation uses 0 as the initial value
for data generation which is also the mean of the process, and the
process variance is fixed to a small value throughout. Hence, we
did not add a burn-in phase to the data generation. If future studies
explore these simulations for different values of the process mean
or variance, it is recommended to add a burn-in phase for data
generation to let the simulated data reflect the generating process.



CONSEQUENCES OF SAMPLING FREQUENCY ON CT-AR MODELS 9

accurate estimates (de Haan-Rietdijk et al., 2017; Loossens
et al., 2021; Voelkle and Oud, 2013).

All code regarding data generation and model estima-
tion is available online at https://github.com/rohitbatra29/
Sampling_on_CT-AR.git.

Performance Measures

As detailed in Figure 3, we evaluated a total of four models
for each replication: three CT-AR models (one for each sam-
pling frequency), and one DT-AR model when the sampling
frequency matched the generating frequency. We assessed
how accurately and precisely these models were able to esti-
mate the dynamics of the underlying process.

Relative Bias

Since we were interested in how well the CT-AR model
recovers the dynamics of the true process across different
sampling frequencies, we used Equation 4 to rescale the
estimated auto-effects to the generating time interval. These
estimates were then compared to the population AR values as
shown in Figure 3. We evaluated bias for the AR effects and
not the auto-effects because: (1) most empirical researchers
would interpret the results of their model on the original
time metric, and not the CT metric, making it important
that the AR parameters are unbiased; and, (2) bias can be
harder to interpret for the auto-effect, since the auto-effect
can range from − inf to 0, whereas the AR parameter can
(in our simulation) only range from 0 to 1 (de Haan-Rietdijk
et al., 2017; Kuiper and Ryan, 2018).

The accuracy of the estimated AR parameter was assessed
using relative bias, which is calculated as:

RB =
ϕ̂ − ϕ

ϕ
(6)

where ϕ̂ represents the estimated AR value, and ϕ the popula-
tion AR value. We considered a parameter to be substantially
biased if the absolute value of the relative bias was greater
than 0.1, in line with previous literature (Flora and Curran,
2004). Although we did also consider bias (which is simply
the difference between the estimated and population AR val-
ues), we chose to focus our discussion on relative bias, due
to the availability of cut-off values for deeming an estimate
to be substantially biased or not.

Confidence Interval Coverage

In addition to the point estimate, we assessed the coverage
of the 95% confidence intervals for the true CT auto-effect,
as well as the true AR parameter at the generating frequency.
The coverage rate of the auto-effect helps us determine how
well the CT-AR model performs under different sampling
frequencies. As the data were generated from a CT-ARmodel,

we would expect that the coverage rate of the auto-effect
would be satisfactory under optimal sampling conditions.

However, as mentioned before, researchers are more likely
to evaluate and interpret the results of the CT-AR model on
the original time metric of their study, and not the CT metric.
Therefore, it is important that coverage for the true AR value
is also satisfactory, as we would hope that rescaling the CT
model estimates would still allow us to capture the true AR
parameter. Since simply rescaling the limits of the confidence
interval for the auto-effect using Equation 4 would provide us
the same information as the coverage of the CT auto-effect,
we instead used the delta method to transform the 95% confi-
dence intervals of the auto-effect to 95% confidence intervals
of the AR parameter (Weisberg, 2014). The delta method, in
general, is used to calculate the standard error of a nonlinear
transformation of the model parameters based on the model
parameter’s standard error and the partial derivative of the
transformation function. These standard errors can then be
used to calculate confidence intervals. In our case, the AR
estimate is a nonlinear function of the auto-effect (as shown
in Equation 4), and the standard error of the AR parameter
is given by:

S E(ϕ) =
√

var(β) . ∆t2 . e2β . ∆t2 (7)

Therefore, the 95% confidence intervals for the AR parameter
are:

eβ . ∆t ± 1.96 · S E(ϕ) (8)

An example of using the delta method for the 95% confidence
interval of the AR value is shown in Appendix A.

For both types of confidence intervals, the coverage rate
was calculated as the proportion of replications within each
condition whose confidence intervals contained the true pa-
rameter. If this proportion was between 90% and 95%, then
coverage was considered optimal; proportions below 90% re-
flected poor coverage (Collins et al., 2001; Enders and Peugh,
2004).

Results

We analyzed the relative bias and coverage rate of the
estimated models across the 48 conditions. For a given data
generating frequency of daily or weekly time intervals, we
compared: 1) three sampling frequencies – daily, weekly, and
monthly; 2) strengths of the AR parameter, = .05, .2, .5, .8; 3)
number of observations equal to 100, 300 and 1,000; 4) equal
or random time intervals between any two consecutive mea-
surements. For each condition we conducted 500 replications.
Within each replication, we evaluated three CT-AR models
for the three sampling frequencies and one DT-AR model
when the sampling frequency matched the data generating
frequency. Convergence was determined when the estimated
model was successfully optimized in OpenMx. If the model
did not converge, a different starting value was used for the

https://github.com/rohitbatra29/Sampling_on_CT-AR.git
https://github.com/rohitbatra29/Sampling_on_CT-AR.git
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Figure 3

Example of model estimation performance evaluation

optimization of the parameter; if the model failed to converge
even after 10 different starting values, it was classified as
non-convergent, and the results of such models were not
used for further analyses. Figure B1 in Appendix B shows
the convergence rate of the estimated CT-AR models across
all conditions. Overall, most conditions had perfect conver-
gence, whereas a few showed only satisfactory convergence
(but still above 80%). These handful of conditions belonged
to the daily generating frequency with 100 observations and
random intervals between measurements.

Relative Bias

Using relative bias, we were interested in comparing the
rescaled DT parameter estimated from the CT model of the
three sampling frequencies to the true AR parameter. Hence,
Figures 4 and 5 show the median relative bias of ϕ̂ with
respect to the true generating frequency, daily and weekly,
respectively. The value of the rescaled ϕ̂ estimate is con-
sidered substantially biased if the absolute relative bias is
above .1 (Flora and Curran, 2004). We also include the re-
sults for median bias in the Appendix C, but the conclusions

outlined in this section remain fairly similar across the two
performance measures.

Daily Generating Frequency

When the data generating frequency was daily, we no-
ticed an overall large bias for weekly and monthly sampling
frequencies for the smallest AR strength ( = .05), as reported
in Figure 4(a). This bias was reduced as the number of ob-
servations increased, and it was reduced considerably when
the data were sampled with random time intervals and 1,000
observations . This implies that processes with little de-
pendence on their previous states and sampling frequencies
slower than the true frequency of interest show significant
bias when the estimated CT-AR dynamics are rescaled to
the true DT interval. For AR strengths greater than .05,
monthly sampling frequency still showed bias in most cases,
albeit smaller than before. Some exceptions where monthly
rescaled estimates were unbiased include the condition when
data were sampled at equal intervals with ϕ = .5, or random
intervals with ϕ = .5 at sample size of 1,000, or data sampled at
random intervals with ϕ = .8 for any number of observations
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Figure 4

Median relative bias for daily generating frequency.
Note. (a) Relative bias for daily generating frequency for all values of AR parameter; (b) Relative bias for daily generating frequency for all

values of AR parameter except when ϕ = .05. Plot (b) provides a zoomed in view of differences in bias between the three sampling
frequencies, without distortion from larger values of relative bias.
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Figure 5

Median relative bias for weekly generating frequency.

(see Figure 4 (b)). On the other hand, rescaled ϕ estimates
from data sampled at a weekly frequency were generally
unbiased when the data had random intervals. For equal
intervals, weekly estimates were unbiased for stronger AR
parameters (ϕ = .5, .8) and more observations (T > 100).

The estimates when data were sampled at a daily fre-
quency, i.e., when the generating and sampling frequencies
matched, were unbiased across all conditions. That is, across
all strengths of the ϕ parameter, all sample sizes and both
conditions of equality of sampling intervals, the estimates
did not show systematic bias.

Weekly Generating Frequency

When the generating frequency was weekly (Figure 5),
there was no bias present for the daily and weekly sampling
frequencies, across all the strengths of AR parameters, equal-
ity of sampling intervals, and observation sizes. These results
signify that the CT-ARmodel produces unbiased rescaled esti-
mates when sampling frequencies are faster than ormatching
to the generating frequency. Meanwhile, when the sampling

frequency was slower than the data generating frequency, as
was the case with monthly sampled data, we saw underesti-
mates of the true parameter for weaker AR values (ϕ = .05, .2)
at equal intervals of observation. There was also some bias
present for monthly sampling frequency at the smallest AR
value of .05 and random intervals, but it was not as prominent
as compared to equal intervals. For ϕ ≥ .2, monthly sampled
data with random intervals remained unbiased as seen in
Figure 5.

Effect of Sampling Intervals and Number of Observa-
tions

There were no substantial differences in relative bias when
comparing the results across the number of observations.
Generally, we noticed that bias in estimates reduced or dis-
appeared as the number of observations increased, but only
when ϕ ≥ .2. Furthermore, comparing the two conditions
of equality of sampling intervals, data sampled at random
intervals tended to be less biased than data sampled at equal
intervals. These differences were more salient when the
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Figure 6

Comparison of relative bias for CT-AR and DT-AR models.

sampling frequency was slower than the true frequency, as
for instance weekly and monthly sampling frequency, when
the generating frequency was daily.

CT-DT Comparison

In addition to fitting CT-AR models for each of the three
sampling frequencies, we also fitted a DT-ARmodel when the
sampling frequency matched the data generating frequency;
that is, daily sampling for daily generating dynamics and
weekly sampling for weekly generating dynamics. Our aim
was to compare the CT-AR and DT-AR models across the
type of sampling intervals and the number of observations,
and Figure 6 shows this comparison.

When the intervals were equal, the estimates from both
CT-AR and DT-AR models were unbiased across all simu-
lation conditions, when the data generating and sampling
frequencies are in accordance. This is not surprising, be-
cause with invariant intervals between any two consecutive
measurements, the data meet the assumption of DT-AR mod-
els. In this case, both the DT- and CT- models are correctly

specified models. Meanwhile, when the intervals between
consecutive measures were random, the CT-AR model was
unbiased for all AR strengths, and the DT-AR model was
biased for weaker AR values (ϕ = .05, .2), but was unbiased
for values of .5 or above. These results are consistent across
all sample sizes and the two generating frequencies.

Coverage Rate of 95% Confidence Intervals

We assessed the performance of the three sampling fre-
quencies for the coverage of the population parameter based
on two types of 95% confidence intervals. First, we discuss
coverage on the CT-AR model auto-effect estimated in our
simulation, that is, the confidence intervals around β. This
is useful for examining the model’s performance on the CT
metric. Second, we discuss coverage on the DTmetric, where
we rescale the CT-AR confidence intervals to DT using the
delta transformation and assess the coverage of the ϕ pa-
rameters. Since the technique of rescaling and the accuracy
of rescaled estimates have been one of our primary points
of discussion, this approach represents the scenario where
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Figure 7

Plot of 95% confidence interval coverage rate of the β parameter in CT metric.

a researcher collects a sample and checks for the sampling
properties of their rescaled parameter. We use 90% as the
threshold for good coverage (Collins et al., 2001; Enders and
Peugh, 2004).

Coverage of β parameter (CT metric)

Figure 7 shows coverage rates for the β parameter. We
noticed that as the strength of the AR parameter increased,
coverage generally increased for all sampling frequencies.
However, this was especially true for sampling frequencies
slower than the true frequency, e.g., weekly and monthly
sampling frequencies for a daily generating frequency attain
good coverage when ϕ is .5 or .8. On the other hand, for
the weakest AR value (ϕ = .05), slower sampling frequencies
or even sampling frequencies matching the true generating
frequency had low coverage. For example, daily sampling fre-
quency showed moderate coverage when the true frequency
was also daily in the top three rows of the Figure 7. When the
sampling frequencywas faster than the generating frequency,
coverage was perfect across all conditions, as was the case

for data sampled daily when the generating frequency was
weekly.

We also observed differences across random and equal
sampling intervals. In most cases, with data sampled at ran-
dom intervals instead of equal intervals, coverage improved
notably when the sampling frequency was slower than the
generating frequency. For instance, the top 3 rows of Figure 7
show that, when the data were generated at a daily frequency,
coverage improved for weekly and monthly sampling fre-
quencies with random intervals, compared to conditions of
equal intervals. These results align well with past research
showing that random intervals can recover the true dynamics
of a given process better than equal time intervals (Voelkle
and Oud, 2013). When the sampling frequency was faster
than the generating frequency, then the coverage was great
across all conditions, regardless of whether the sampling
interval was equal or random. This was the case for daily
sampled data with weekly generating frequency, as shown
in the bottom three rows of Figure 7.

These results are consistent across the three sample sizes
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Figure 8

Plot of 95% confidence interval coverage of the ϕ parameter in DT metric.

considered in our simulation. The only difference due to sam-
ple size was observed for the monthly sampling frequency,
where coverage improved as sample size increased, particu-
larly for weaker AR parameter values. Lastly, the patterns
of coverage observed were identical for daily and weekly
sampling frequencies when the data had daily and weekly
generating frequencies, respectively. This confirms that the
model is performs similarly across the two conditions, when
the sampling and generating frequency match.

Coverage for ϕ parameter (DT metric)

Figure 8 shows the coverage for the ϕ parameter in the
delta-transformed 95% confidence intervals. Results were
largely similar between CT and DT metrics, except for the
comparison between equal and random intervals. Compared
to the results of coverage in the CT metric, the coverage for
the DT metric also improved for all sampling frequencies
as the value of the AR parameter increased, except when
data was sampled monthly at equal intervals under weekly
generating frequency for a sample size of 1,000. When the

sampling frequency matched the generating frequency, we
noticed parameter coverage increased as AR strength in-
creased, with good coverage attained for most AR parameters
(ϕ ≥ .2) almost everywhere. This trend was identical for the
daily sampling under the daily generating frequency (top
three rows in Figure 8) and the weekly sampling under the
weekly generating frequency (bottom three rows in Figure
8). When the sampling frequency was faster than the gener-
ating frequency, i.e., daily sampling under weekly generating
condition, the coverage was great for larger sample sizes (n
≥ 300).

When the sampling frequency was slower than the gener-
ating frequency, coverage was poor in many conditions. For
the daily generating frequency, both weekly and monthly
sampling frequency had poor coverage for weaker AR pa-
rameters (ϕ = .05, .2). As the AR parameter became stronger
(ϕ = .5, .8), weekly showed better coverage at larger sample
sizes (n = 1,000), but monthly remained poor throughout.
Meanwhile, we found that coverage for the monthly sam-
pling frequency under the weekly generating frequency was
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poor for weaker AR parameters (ϕ = .05, .2), but improved
with stronger AR parameters.

CComparing equal to random sampling intervals, we saw
some differences relative to the previous results for the CT
coverage. In some cases, random interval sampling showed
poor coverage compared to equal interval sampling whereas
in other conditions, random sampling showed better cover-
age than equal. For instance, monthly sampling frequency
showed better coverage at equal intervals than random in-
tervals under the weekly generating data. But in many other
conditions like weekly sampling under daily generating fre-
quency, random intervals led to better coverage than equal
ones.

As for the effect of the number of observations, coverage
mostly improved as the number of observations increased
from 100 to 300, and to 1,000. Overall, the DT metric showed
good coverage of the ϕ parameter, in many cases often similar
to the coverage rate of β parameter in the CTmetric, but there
were some cases, such as with slower sampling frequencies,
where coverage was worse. We believe the reason for this is
due to the delta transformation, which uses the time interval
in its calculation. This makes the DT confidence intervals
narrower (in terms of the AR strength they cover) compared
to the ones in CT, making it harder for the intervals to cover
the parameter of interest.

Discussion

Summary of Results

The purpose of our paper was to determine the extent
to which sampling at different frequencies can affect the
estimated dynamics of an underlying process. To study this
question, we fit a CT-ARmodel after sampling simulated data
at a daily, weekly, or monthly time interval, and evaluated the
accuracy of the resulting parameter estimates after rescaling
them to the generating time interval. We were particularly
interested in investigating whether the ability of CT models
to rescale their estimates to any time interval of interest
could overcome any mismatch between the generating and
sampling frequencies.

The results of our simulation study show that the AR
parameter estimates were unbiased and obtained optimal
confidence interval coverage rates for two conditions. The
first condition was when the sampling frequency was faster
than the generating frequency – for example, sampling daily
when the generating frequency was weekly. The second
condition was when the sampling frequency matched the
generating frequency – for example, when the sampling and
generating frequencies were both daily.

When the process was sampled at a rate slower than that
of the true process and the strength of the AR parameter was
low, then the resulting estimates of the AR parameter were bi-
ased and confidence interval coverage was poor. However, as

the strength of the AR parameter increased, the bias and con-
fidence interval coverage of the slower sampling frequencies
improved. These results show that sampling at a frequency
that is too slow can result in poor model performance on
both the CT and DT metrics, just as it can result in reduced
precision for those estimates (Adolf et al., 2021).

We also found an effect of the equality of the sampling
intervals, such that sampling at random time intervals gener-
ally produced less biased estimates and better coverage rates
than equal time intervals, when sampling frequencies were
slower than the generating frequency. In fact, the improve-
ment in bias was sometimes to the extent that estimates from
samples with random intervals could be unbiased even as
the estimates from samples with equal intervals were biased.
If the sampling frequency was faster than, or matched, the
generating frequency then there was little to no effect of the
type of sampling interval, likely because there was already
little bias in these situations.

The bias of the AR parameters tended to remain constant
even as the number of observations increased. If any differ-
ences were present, it tended to be for weaker AR param-
eters, such that having more observations resulted in less
bias. This is in contrast to previous work (Hecht and Zitz-
mann, 2020), in which 100 observations of a single individual
were insufficient for unbiased results, and increasing the
number of observations generally improved the performance
of the CT-AR model. Our simulation showed that even 100
observations could result in unbiased estimates and satisfac-
tory confidence interval coverage, as long as the sampling
frequency matched, or was faster than, the generating fre-
quency. However, we did discover an effect of the number
of observations on confidence interval coverage, such that
increasing the sample size improved coverage rates.

Finally, when the generating and sampling frequency
matched, we also compared the dynamics that were esti-
mated from a CT-AR versus DT-AR model, and our findings
echoed previous results in the literature. When the data
were sampled at equal time intervals, both models gave the
same, unbiased estimates of the dynamics. This is not sur-
prising, since the CT-AR and DT-AR models are equivalent
when the time intervals are truly equal (Loossens et al., 2021).
When the time intervals were random, however, we found
that the CT-AR model resulted in unbiased estimates of the
dynamics throughout, while the DT-AR model resulted in
biased estimates when the strength of the AR parameter was
low. Yet, once the AR parameter was at least .5, the DT-AR
model gave unbiased results comparable to that of the CT-
AR model. The lack of difference between the DT-AR and
CT-AR models at stronger AR values echoes results from
Boker et al. (2018), where treating random time intervals
as equal gave similar results to a method that corrected for
the random time intervals. Our results may be due to how
the time intervals were randomly generated – since each
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measurement occasion was chosen with equal probability
from each period, the time intervals were not systematically
longer or shorter than in the equal time interval samples,
allowing the bias of shorter time intervals to cancel out the
bias of longer time intervals.

Considerations for Rescaling CT Parameters

An advantage of CT models that is often emphasized in
the literature is that they allow rescaling of the estimated
dynamics to any discrete time interval of interest (Boker et
al., 2018; Deboeck and Preacher, 2016; de Haan-Rietdijk et al.,
2017; Kuiper and Ryan, 2018; Oud and Delsing, 2010; Ryan
and Hamaker, 2021; Voelkle et al., 2012; Voelkle and Oud,
2013). Little mention is given in the literature to how the
interplay between the sampling frequency and the true dy-
namics of the process could affect this rescaling, or the limits
to rescaling these estimated dynamics. Our simulation study
demonstrated that, under certain conditions, researchers can
rescale the estimates from CT-AR models and still accurately
recover the dynamics of the process under study. Researchers
should keep these conditions in mind when designing their
study.

Based on our findings, we recommend that researchers
sample at a frequency that most closely matches that of the
process of interest, or at a faster frequency. Sampling at a
frequency slower than that of the process typically resulted in
biased estimates and poor confidence interval coverage. This
is particularly important when the stability of the process is
suspected to be low, as sampling at a frequency slower than
that of the true process resulted in the worst performance
when the strength of the AR parameter was weak (e.g., .05).
As the strength of the AR parameter increased, however,
the performance across the different sampling frequencies
became comparable. Although the recommendation that
researchers sample as frequently as possible is not a new one
(e.g., Adolph et al., 2008), our results help quantify this rec-
ommendation by showing the decrease in bias and increase
in confidence interval coverage that occurs as the sampling
scheme better matches that of the generating process. In fact,
if the researcher manages to sample at a rate faster than that
of the true process, then our results show that performance
is almost always optimal in the conditions studied here.

The above recommendations for accurately rescaling CT
parameters are summarized in Table 2.

Reconsidering Sampling Frequencies as Sampling Ra-
tios

Throughout our paper, we have discussed the generating
and sampling frequencies in metrics of time that are familiar
and used empirically, such as daily, weekly, and monthly. Yet
we can reframe the discussion of our simulation in terms of
the ratio of the generating frequency to the sampling fre-
quency. For example, if the true process operated at a daily

time interval and was sampled weekly, we could describe
this as sampling at a 1:7 ratio; if the true process operated
at a weekly interval and was sampled at a monthly interval,
that would be a 1:4 ratio.

Reframing the discussion in this way allows us to general-
ize our results to metrics of time beyond the ones mentioned
in this paper, as well as to other ratios more broadly. A ratio
of 1:4 could not only mean sampling every month when the
process operates on a weekly basis, but sampling every four
days when a process operates daily, or every 2 days when a
process operates at a half-day interval.

Regardless of the time metric used, the main takeaways
of our paper should still be considered when deciding how
frequently to sample. Researchers should strive for a ratio
that allows them to be as close as possible to what is likely to
be the true frequency, as the ability to recover the dynamic
parameter improves the closer the ratio is to 1. For example,
even though taking a monthly sample rarely resulted in good
performance for either data generating frequency, the per-
formance of the monthly sample was better when the true
process operated at a weekly interval (1:4 ratio) than a daily
interval (1:28 ratio). Thus, if a researcher designing a study
was choosing between two different sampling frequencies,
our results suggest that sampling close to the frequency of
interest is the best choice in terms of estimation accuracy.

Given our repeated emphasis on sampling at a frequency
that is as close as possible to, or faster than, the data gener-
ating frequency, researchers may wonder how to determine
the generating frequency of their process. In this sense, our
results do not escape the “chicken and egg” issue presented
earlier: researchers need to first determine the frequency of
interest for their process as well as the hypothesized strength
of the AR parameter before they can apply the results of
our simulation study to decide the appropriate sampling
frequency. We believe that this decision would ideally be
based on theoretical knowledge about the process of interest
and its presumed dynamics.

However, in the absence of such theory, some approaches
exist for estimating the frequency that best reflects the pro-
cess from collected data. As mentioned previously, the
method proposed by Adolf et al. (2021) can allow researchers
to use past values of the auto-effect to estimate a sampling
interval that would result in the highest estimation reliabil-
ity. Other techniques, such as the variance decomposition
approach discussed by Shiyko and Ram (2011), could allow
researchers to roughly determine how often the process of in-
terest fluctuates based on collected data. Variance decompo-
sition can provide information, for instance, about whether
the process varies mostly between days or mostly within
days, and therefore whether multiple measurements a day
would be necessary to capture the process.
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Researcher’s Question Recommendation
What frequency should I sample my process at? We recommend researchers to sample as fast as the frequency of interest

for a process and if possible, use a faster sampling frequency based on
the feasibility of data collection.

How does my hypothesis about the strength of
the AR parameter affect my sampling frequency?

A researcher’s hypothesis about the strength of the AR parameter
greatly determines the flexibility they will have with their sampling
frequencies for collecting data. A smaller AR parameter (especially
below .5) requires a closer match between the frequency of interest and
the sampling frequency.

Should I use equally-spaced or unequally-spaced
time intervals during data collection?

Instead of using equidistant time intervals between measurement oc-
casions, researchers should aim to use random intervals for improved
accuracy and coverage of their rescaled parameter estimates from a
CT-AR model.

How many observations do I need, if I am collect-
ing data on a single individual?

If the stability of the process is hypothesized to be high (higher AR
parameter), then researchers can collect as few as 100 observations.
However, less stable processes would require more observations for
good model performance. Increasing the number of observations only
tends to make a difference when the stability of the process is low.
Otherwise, even 100 observations is sufficient for unbiased estimates
and good coverage rates.

In what scenarios is it safe to use a DT-AR model
instead of a CT-AR model?

The CT-AR model is a safer option across the different sampling condi-
tions. However, if a researcher can collect data with an equally-spaced
sampling scheme, then the DT-AR model performs as well as the CT-AR
model. If a researcher collects data with an unequally-spaced sampling
scheme, then the DT-AR model should only be used when the process
is hypothesized to be highly stable (stronger AR parameter).

Table 2

Recommendations for researchers on sampling decisions for CT modeling

Methodological Considerations

In the conditions used in our study, the primary difference
between our data generating models was the strength of
the autoregressive parameter, which when combined with
the chosen data generating frequency, translated into dif-
ferences in the CT auto-effect. However, estimation and
inference of both CT-AR and DT-AR models depend not only
on the values of the auto-effect or autoregressive coefficients,
but also on the innovation variance. In our simulation, the
innovation variance was determined by the strength of the
autoregressive effect and the process variance which we kept
fixed to a small value). Of course, another alternative would
have been to manipulate the process variance as another
factor in our simulation.

However, we chose to only manipulate the autoregressive
effect for a number of reasons. First, we believe that keeping
the variance of the process fixed to a small value helps avoid
contamination of the effects of interest. Second, the main
benefit of manipulating the innovation variances directly -
for a fixed strength of the autoregressive effect - would be
to change the signal-to-noise ratio of the process. We were
able to indirectly include a range of innovation variances in

our simulation, as the calculation of the innovation variance
depends on the strength of the autoregressive effect and the
data generating frequency. Hence, although indirectly, we
were able to study the performance of the CT-AR model
across a range of signal-to-noise ratios. Furthermore, we
believe that increasing the innovation variance for a fixed
autoregressive strength would not change the findings and
the main recommendations offered here. Instead, we predict
that an increased innovation variance would require either
more observations or stronger underlying autoregressive
effects for good model performance.

Another methodological consideration is the discrepancy
in results for confidence interval coverage in the CT versus
DT metric. As mentioned in the Results, we believe most of
this discrepancy comes from the difference in the standard
errors across the two metrics. More specifically, the standard
errors used in the DT confidence intervals are smaller than
those in the CT confidence intervals. This is illustrated in
Figure D1 of the Appendix. We believe this is due to the
use of the time interval in the delta method calculation. The
smaller standard errors then result in narrower confidence
intervals, as can be seen in Figure D2, where the confidence
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intervals obtained from the delta method are contrasted with
those from CT for the same point estimate. Although there
are other methods available to rescale confidence intervals
to DT (e.g., exponentiating the CT intervals), we believe the
delta method is the most theoretically appropriate because it
maintains the non-linear relationship between the CT and
DT metrics. However, we do not know how this nonlinear
transformation of the standard errors from CT to DT metric
compares to other approaches for rescaling. This issue should
be investigated in future research.

Limitations and Future Directions

As with every simulation study, the results and recom-
mendations we offer are limited to the specific conditions
that we examined. In these analyses, we used a univariate
autoregressive model of order 1 with manifest variables. We
chose to limit our attention to this simple scenario for two rea-
sons. First, even though many researchers are increasingly
focused on exploring the dynamics of multiple variables,
analyses examining time series of a single manifest variable
are still common in psychological research (e.g., Coppersmith
et al., 2023; De Haan-Rietdijk et al., 2016; Koval & Kuppens,
2012). Second, we chose to focus on the simplest possible
case for our simulation to represent a best-case scenario.
This seemingly simple case reduces potential complexity of
parameters, facilitates the interpretation of the results, and
can better demonstrate the impact of the mismatch between
the data generating and sampling frequency. Of course, it is
possible to increase the complexity of the generating model
in a number of ways – either by extending to a multivariate
process with the vector autoregressive model, increasing the
order of the model to a lag of 2 or more, or including latent
variables to consider a factorial structure and account for
measurement error (Chow, 2019; Driver and Voelkle, 2018;
Oud and Delsing, 2010).

Although this complexitymay better represent the process
of interest in psychological research, such complex models
are likely to introduce further difficulties into the estimation
process, as well as the recommendations we could make to
researchers. For example, in the simplest multivariate case
involving two variables, each variable could have its own
data generating frequency. Evaluating the effect of the mis-
match between the sampling and data generating frequency
would then be significantly more complicated. For example,
the data generating frequency could either match, be too
fast, or be too slow for one variable, and then independently
match, be too fast, or be too slow for the second variable.
Any recommendations regarding the sampling frequency
would then need to take all these possible scenarios into ac-
count. Future work should investigate how introducing these
complexities affects the recommendations offered above and
expand those recommendations to situations researchers are
likely to encounter.

A second limitation of our model is that we only gener-
ated data from a single individual. A future extension of our
work could involve incorporating information from multiple
individuals using, for example, a multilevel approach (Driver
and Voelkle, 2018). Psychological research often involves
analyzing the data of multiple individuals, so generating
data and estimating models within a multilevel modeling
framework represents a common research scenario. With
multiple individuals in a single sample, information could be
borrowed from each person during the estimation process
to potentially improve the estimation of the dynamic param-
eters. Although having multiple individuals could compen-
sate for having fewer timepoints per individual (Hecht and
Zitzmann, 2020), we believe it is unlikely to make up for
the consequences of a mismatch between the sampling and
generating frequency.

Conclusion

Our simulation study shows that researchers can rescale
estimates from the CT-AR model and accurately estimate the
dynamics in some circumstances. However, the choice of
sampling frequency plays an important role in such rescal-
ing. Our results demonstrated that researchers can generally
rescale the estimated auto-effects to the true frequency as
long as the sampling frequency is not slower than the data
generating frequency, but in other circumstances the accu-
racy as a result of rescaling depends on a delicate interplay
among expected AR strength, differences between the true
and sampling frequencies, and the number of observations.
This requires researchers to have some knowledge of the fre-
quency at which the process of interest operates. Therefore,
even though CT-AR models can theoretically be rescaled to
infer about the process studied on a time scale different than
the one used in sampling, researchers utilizing CT models
cannot escape the need for theory when designing their
sampling schedule.
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Appendix A
Example of Delta Method

In general, the delta method is used to calculate the standard
error for a nonlinear transformation of a parameter or set
of parameters. If the transformation, f (θ), involves only a
single parameter theta, then:

var( f (θ) = var(θ) . (
∂ f
∂θ

)2

Here, we have defined in Equation 4:

f (β) = eβ . ∆t

Thus, we can define the variance of the ϕ parameter
as:

var(ϕ∆t) = var(β) . (∆t . eβ . ∆t)2

For example, suppose the true generating frequency
and sampling frequency were both daily, the estimated CT
auto-effect was -2.37, and its standard error was 1.06. Then
we could calculate the 95% confidence interval for the phi
parameter as:

e−2.37 1.96 . (1.06 · 1 · e−2.37)
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Appendix B
Plot of Convergence

Figure B1

Convergence rate for the CT-AR models (out of 500 replications for each condition)

Appendix C
Plots for Bias

Appendix D
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Figure C1

Median Bias plots for daily and weekly generating frequencies.
Note. ((a) Plot of bias for the daily generating frequency; (b) Plot of bias for the weekly generating frequency.
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Figure C2

Plot of median bias for comparison of CT-AR and DT-AR models.
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Figure D1

Illustration of the confidence intervals obtained from the delta method (DT metric) versus CT
Note. All estimates are on the DT metric, to make comparisons easier. To transform the confidence intervals from the CT metric to the DT
metric, we either applied the delta method transformation, or directly applied Equation 4 to the bounds of the CT confidence intervals. The
graph shown here includes 25 random iterations from a single condition where the data generating frequency was weekly, the process was

sampled daily, and there were 100 observations. These findings are overall consistent across other conditions.
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Figure D2

Difference in standard error estimates between the delta method (DT metric) and CT
Note. To ensure that comparisons were done on the same metric, all SEs are on the DT metric. This was done either by applying the delta
method, or by the more “direct” approximation of dividing the length of the Rescaled CT confidence intervals (see Figure D1) by 2 * 1.96.
The graph shown here includes 25 random iterations from a single condition where the data generating frequency was weekly, the process

was sampled daily, and there were 100 observations. These findings are overall consistent across other conditions.
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