
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Source Code Analysis and Type Inference for R

Permalink
https://escholarship.org/uc/item/6rw2f7wn

Author
Ulle, Nick

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rw2f7wn
https://escholarship.org
http://www.cdlib.org/

Source Code Analysis and Type Inference for R

By

NICHOLAS ULLE

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Statistics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Duncan Temple Lang, Chair

Norman Matloff

Ethan Anderes

Committee in Charge

2021

i

Copyright © 2021 Nicholas Ulle

ii

To Louis, who never got the chance.

iii

Contents

Abstract vi

Acknowledgements vii

Introduction 1

1 A Framework for Static Analysis of R Code 3

1.1 Introduction . 3

1.2 Analyzing the Syntax and Structure of Code . 7

1.2.1 Using and Extending the AST Classes . 14

1.2.2 Related Work . 17

1.3 Representing the Control Flow of Code . 18

1.3.1 Related Work . 25

1.4 Analyzing How Data Flows Through Code . 25

1.4.1 Iterative Data Flow Analyses . 26

1.4.2 The Static Single Assignment Form . 39

1.4.3 Related Work . 46

1.5 Conclusion . 47

2 Type Inference for R Code 49

2.1 Introduction . 49

2.2 Background on How We Represent Code . 52

2.3 The Damas-Milner Type Inference Strategy . 54

2.3.1 Constraint Generation . 56

2.3.2 Constraint Resolution . 67

2.4 Adapting the Type Inference Strategy to R . 73

2.4.1 The Grammar of Types . 73

iv

2.4.2 The Relationship Between Types and S3 Classes 75

2.4.3 Constructor Functions . 80

2.4.4 Implicit and Explicit Coercions . 83

2.4.5 Indexing . 86

2.4.6 Characteristics of Lists and Data Frames 91

2.4.7 Assertions . 96

2.4.8 Scope and Environments . 99

2.4.9 Dimensions, Recycling, and Loops . 100

2.4.10 Value-based Types . 104

2.4.11 Non-standard Evaluation . 105

2.5 The Type Inference Packages . 106

2.5.1 The typesys Package . 106

2.5.2 The RTypeInference Package . 109

2.6 Related Work . 115

2.7 Conclusion . 116

3 Type Inference for the R API 118

3.1 Introduction . 118

3.2 Background . 121

3.2.1 Packages for C Code Analysis . 122

3.2.2 The LLVM Intermediate Representation 123

3.3 The .C and .Fortran Interfaces . 126

3.3.1 The .C Interface . 127

3.3.2 The .Fortran Interface . 130

3.4 The .Call, .External, and .External2 Interfaces 130

3.4.1 Return Types . 131

3.4.2 Parameter Types . 168

3.4.3 The .External and .External2 Interfaces 180

3.4.4 C++ Routines . 181

3.5 Connecting to R Code . 181

3.6 Related Work . 184

3.7 Conclusion . 185

v

Abstract

R is a dynamic, interpreted programming language designed for statistical computing. In contrast

to languages more traditionally used in software development and engineering, code analysis

and tools for code analysis are not common in the R community, with some notable exceptions.

Nevertheless, a general framework that facilitates the development of novel code analyses for R

is valuable. This dissertation presents a collection of strategies and software for static analysis of

R code. Two of the three parts focus on type inference, a specific kind of static analysis which

attempts to determine the type of data produced by each expression in the code.

The first part describes a framework for creating static analyses and transformations of R code

based on contemporary techniques and research. The framework provides tools to search code

for specific syntactic patterns, extract information about different ways in which code can be

evaluated depending on run-time conditions, and examine how data propagate from definitions

of variables to expressions which use those variables.

The second part presents a static type inference strategy for R code. The strategy leverages

the static analysis framework developed in the first chapter. In contrast to languages like C

and Java, R code is generally not annotated with types and there is no built-in syntax to add

type annotations. Thus type inference is necessary in order to get information about types.

Information about types is useful for transforming and translating code, checking code for errors,

and reasoning about code.

The third part presents strategies for collecting type information from foreign routines written

in C and called from R. The type inference strategy for R code can more accurately infer types

if it has type signatures for these routines. Even in C code, the R type of an R object does not

have to be specified in the code, so type inference is non-trivial.

vi

Acknowledgements

Completing this dissertation would not have been possible without the support and feedback of

many people.

First and foremost, deepest thanks to my advisor, Duncan Temple Lang. Your bottomless

knowledge of R, endless enthusiasm for statistical computing, and unquestioning support for my

interest in teaching have all shaped who I am now. Your patience and neverending confidence

that I’d eventually finish writing kept me going even when I had none myself. I’ve truly enjoyed

our discussions over the years and look forward to more.

I’m also very grateful to the other members of my committee, past and present. Norm Matloff,

thank you for always being friendly and willing to chat, promoting me and my work to others,

and providing general advice. Ethan Anderes, your enthusiasm for statistical computing and

the Julia language is delightful; I hope we can chat about Julia again soon. James Sharpnack,

teaching with you was a great experience; it rekindled my interest in Python and SciPy. Wolfgang

Polonik, your guidance while I was in the RTG program was invaluable, and your humor and

wit always lift my spirits. Zhendong Su, you played an important role in the early stages of my

research by providing opportunities to learn more about computer science.

Thanks to Clark Fitzgerald for many interesting and productive discussions about research

and teaching in statistics, data science, and computer science. Your feedback over the years

has been invaluable. Thanks for the bike as well; it kept me sane during the pandemic. I look

forward to more discussions and collaborations in the future.

Thanks to Deb Nolan for being a role model as a data scientist, educator, and academic. In

spite of the pandemic, you made me feel welcome at UC Berkeley during my year there. Now

that my dissertation is complete, I’m excited to focus on our planned collaboration.

Thanks to Carl Stahmer and the rest of the UC Davis DataLab for encouraging me during

my final year, providing life advice, and ensuring that my work at DataLab didn’t interfere with

the completion of my dissertation.

vii

Thanks to the staff of the UC Davis Department of Statistics, particularly Pete Scully and

Nehad Ismail, for helping me and other students find funding, solve technology problems, and

navigate the university bureaucracy.

Throughout graduate school, my friends both at Davis and farther afield provided much-needed

advice, distraction, commiseration, and escape. Thanks Cecilia, Chris A., Chris C., Dmitriy,

Gary, Hugo, Jamshid, Justin, Kavi, Lingfei, Luna, Nicholas A., Nick B., Rick, Seva, Shuyang,

Tiffany H., Tiffany W., and Zengqun. Thanks as well to my friends in Wong Hall: Raymond,

Matt, Olivia, Clark, Taeyen, Hoseung, and Po.

Last but not least, thanks to my family—Karl, Barbara, and Hayley—for supporting my

decisions, believing in me even when I don’t, and putting up with all of the board games I want

to play every time I come home.

viii

Introduction

Source code analysis is the process of programmatically extracting information from source code

in order to summarize, suggest improvements to, or transform the code. Static source code

analysis does this without evaluating the code. Static source code analysis is a valuable tool for

understanding and improving code in contemporary statistical computing.

In contrast to languages which originated in the computer science community—such as those

more traditionally used in software development and engineering—code analysis and tools for

code analysis are not common in the R community, with some notable exceptions. Most existing

code analysis tools for R do not leverage accumulated programming languages research about

code analysis, nor provide reusable infrastructure on which to build new tools. They are typically

built for a specific purpose and based on R’s built-in metaprogramming features. Nevertheless,

a general framework that facilitates the development of novel code analyses is valuable.

This dissertation presents a collection of strategies and software for static analysis of code

written in R. Two of the three chapters focus on type inference, a specific kind of static analysis

which attempts to determine the type of data produced by each expression in the code. The

dissertation is organized as follows:

• Chapter 1 describes a framework for creating static analyses and transformations of R

code, based on contemporary techniques and research. The framework provides tools to

search code for specific syntactic patterns, extract information about different ways in

which code can be evaluated depending on run-time conditions, and examine how data

propagate from variable definitions to expressions which use those variables. The chapter

discusses the contexts in which each of these approaches to code analysis is useful, and

also introduces the package rstatic, which implements the framework. The code analysis

framework in this chapter is the foundation for the analyses presented in Chapter 2.

• Chapter 2 presents a static type inference strategy for R code. Information about types

is useful for transforming and translating code, checking code for errors, and reasoning

1

about code. In contrast to languages like C and Java, R code is generally not annotated

with types and there is no built-in syntax to add type annotations. Thus type inference is

necessary in order to get information about types. The type inference strategy is based

on a strategy originally developed by Damas and Milner (1982) for the ML programming

language. In addition to describing the type inference strategy for R code, the chapter

also documents features of R which make type inference challenging, and introduces the

packages typesys and RTypeInference, which together are a prototype implementation

of the strategy.

• Chapter 3 presents strategies for collecting type information from foreign routines written

in C or Fortran and called from R. The type inference strategy from Chapter 2 can more

accurately infer types in R code if it has type signatures for these routines. Routines called

with R’s .Call, .External, and .External2 interfaces use the R Internals programming

interface in order to compute directly on R objects. Even in C code, the R type of an

R object does not have to be specified in the code, so type inference is non-trivial. The

chapter describes a strategy to infer the type signatures of C routines which compute on

R objects.

2

Chapter 1

A Framework for Static Analysis of R Code

1.1 Introduction

This chapter describes a framework for static analysis and transformation of R code. The purpose

of the framework is to bring contemporary strategies and data structures for static analysis to R

in a way that takes advantage of R’s functional and object-oriented programming features. The

framework is organized around extracting information about three different characteristics of

code:

• The syntax and structure of the code, meaning the form and order in which expressions

are written. Representing and navigating this structure is a necessary first step to

programmatically extract other information from the code.

• The control flow, meaning the order in which expressions in the code will be evaluated at

run-time. Control structures such as if-expressions and for-loops mean that code will not

necessarily be evaluated in the order it is written, and that some sections of code might

not be evaluated at all.

• The data flow, meaning—for each variable—the association between expressions which

assign or modify the value of the variable and expressions which use the value of the

variable. We refer to these two kinds of expressions respectively as the definitions and

uses of the variable. Data flow is important to consider when analyzing R code because

variables can be redefined at any point.

A specific static analysis can depend on information about any or all of these characteristics.

For example, locating all calls to functions which load data (such as read.csv) is an analysis

3

that only depends on syntax. On the other hand, a global variables analysis—described in

Example 1—depends on data flow and can also incorporate control flow.

Example 1. The first step to cross validate a statistical model on a given data set is to split

the data into k subsets, called folds. Each fold should contain approximately the same number

of observations as the others, randomly selected without replacement. The function split_eq is

an implementation of this step. The function has a parameter shuffle to control whether or

not the data set is randomly shuffled before it is split. The function also has a subtle bug: the

variable x is only defined when shuffle is TRUE. Here’s the code for the function:

1 split_eq = function(data, k, shuffle = TRUE)

2 {

3 n = nrow(data)

4 if (shuffle)

5 x = data[sample(n, n),]

6 groups = rep(1:k, length = n)

7 split(x, groups)

8 }

Listing 1.1: The split_eq function splits a data frame into k groups of approximately
equal size. The function doesn’t work as intended when shuffle is FALSE.

Since TRUE is the default argument for shuffle, the bug might go unnoticed for a while.

When shuffle is FALSE, the function looks for a global variable x, a variable defined somewhere

outside of the function. If the user of the function has a variable x in their workspace, it may

seem like the function works correctly, or the function may return an unexpected result rather

than emitting an error. When bugs cause unexpected results rather than errors, they are more

difficult to detect and diagnose by hand, especially in functions that are longer or more complex

than split_eq.

A tool to find expressions which use global variables would help with detecting this kind of

bug. Creating such a tool is feasible because the code contains information about where variables

are defined in the function, and R has well-defined rules for scoping.

R packages such as codetools (Tierney 2020) and globals (Bengtsson 2018) provide functions

to find expressions which use global variables. The approach these packages take is syntax-based:

they find variables which are not assigned at any earlier point in the code. This approach

4

is simple, inexpensive to compute, and often produces correct results. However, it does not

produce the correct result for the split_eq function, because there is an assignment to x before

the expression split(x, groups). The problem is that the assignment is conditional—that

is, inside of an if-statement—and these packages do not take control flow and data flow into

account.

Data flow information gets to the heart of the matter. When the variable x is used in

split(x, groups), the value of x can originate from two different places—the definition

x = data[sample(n, n),] or a definition outside of the body of the function. With that

information, the programmer can see that the code doesn’t work as intended and make a

correction. Control flow information adds that the first definition corresponds to when shuffle

is TRUE and the second corresponds to when shuffle is FALSE. This additional information

makes it easier to pinpoint the source of the bug.

It’s possible to extend or fork the packages mentioned in Example 1 so that they correctly

detect the global variable in the example function. That said, our goal is broader—to provide a

framework which is convenient to use to implement any kind of static analysis and transformation

of R code. This framework is also the foundation for the type inference strategy presented in

Chapter 2.

The package rstatic is an implementation of the framework for static analysis and transfor-

mation of R code. The package provides data structures to represent code which are based on

contemporary code analysis research and facilitate extracting and using information about syntax,

control flow, and data flow. These data structures are implemented using R’s object-oriented

programming systems so that package users can extend them as needed. The package also

provides functions for common analysis and transformation steps. The framework and package

are informed and inspired by the prior work of Temple Lang, Peng, et al. on the CodeDepends

package (2018).

R provides its own functions to convert code into a data structure which can be programmati-

cally analyzed and transformed. R represents code as language objects. Each language object is

an abstract syntax tree (AST), meaning code is represented as a tree of subexpressions. For

instance, the expression mean(x + 1) is the parent of the subexpressions mean and x + 1. The

expression x + 1 is in turn the parent of the subexpressions x and 1. Figure 1.1 shows the AST

for this expression. The AST is primarily useful in analyses where the focus is syntax rather

than control or data flow.

5

mean(x + 1)

mean x + 1

+ x 1

Figure 1.1: The abstract syntax tree for the expression mean(x + 1).

The rstatic package also provides an abstract syntax tree data structure (described in

Section 1.2) as one of three ways to represent code. We will always refer to the rstatic

representation as an abstract syntax tree, and the built-in representation as a language object

or parse tree. These terms follow the conventions of the R documentation.

This chapter presents the static analysis framework and demonstrates the major features of

rstatic through examples. Here’s how the chapter is organized:

• Section 1.2 introduces the abstract syntax trees provided by rstatic, which are primarily

useful in analyses that search for specific syntax patterns. Additionally, understanding

rstatic’s ASTs is foundational to using its other representations for code. This section also

addresses why rstatic provides its own classes for ASTs rather than using R’s language

objects.

• Section 1.3 focuses on control flow. The section begins by demonstrating why ASTs

are unwieldy for static analyses which depend on control flow information. The section

then introduces control flow graphs (CFGs). A CFG is a graph where nodes represent

expressions and edges represent control flow. If-statements create branches in the graph

and loops create cycles. CFGs are primarily useful for analyses sensitive to the order

in which code will be evaluated at run-time. For instance, an analysis to determine the

point(s) where a variable is no longer needed must find the last expression where the

variable is evaluated.

• Section 1.4 focuses on data flow. The section first describes the iterative data flow analysis

algorithm, a well-known and general algorithm for solving a variety of static analysis

problems. The section then introduces static single assignment (SSA) form, a form of CFG

where each variable definition has a unique identifier, so that when a variable is used in an

expression, its definition can be located immediately. SSA form is essential to the type

6

inference strategy described in Chapter 2, and also useful for other analyses sensitive to

the values assigned to variables at run-time.

1.2 Analyzing the Syntax and Structure of Code

The starting point for static code analysis is the code’s syntax and structure. Using knowledge

about the semantics of the language, we can manually or programmatically identify structural

patterns to gain insight into what the code does and how it works.

An abstract syntax tree retains most of the structure of the code from which it is derived.

This means ASTs are well-suited to analyses which search code for specific structural patterns.

It also means ASTs closely resemble code, so there is minimal cognitive overhead when reasoning

about them. Information about control flow and data flow can be obtained from an AST through

analysis, so ASTs are a starting point for building richer analyses as well.

This section introduces how to use ASTs to analyze and transform code. The focus is specifically

on the ASTs provided by the rstatic package. These are used throughout the package, so

understanding them is crucial to using the package. They have several advantages over R’s

language objects, which are discussed throughout the section. We begin with an example.

Example 2. Consider the problem of analyzing an R script to extract the paths of data files

loaded by the script. This kind of analysis is useful for summarizing the relationships between

files in a project. Packages such as CodeDepends (Temple Lang, Peng, et al. 2018) already

implement this analysis, so the purpose of this example is not the analysis itself. Instead, the

purpose is to demonstrate that rstatic provides a convenient high-level interface for implementing

this kind of analysis, and also to introduce how to use the package.

The first step in any static analysis is to convert the code into an appropriate representation.

In this case, we’ll search for syntax patterns such as calls to read.csv and other functions

which load data. Since the focus of the analysis—at least at this stage—is syntax, an AST is an

appropriate representation. The rstatic functions quote_ast and to_ast convert code and R

language objects, respectively, into rstatic ASTs.

After converting the code to an AST, the next step is to visit each expression in the AST

and test whether the expression is a call to a function which reads data. In the AST, calls to

functions are represented by the class Call. So is(x, "Call") tests whether an expression x is

a call. The analysis can ignore expressions which are not calls.

7

As an aside, the rstatic classes—including Call—which represent expressions in an AST

all inherit from the ASTNode class. Intermediate classes group semantically similar expressions.

For instance, there are intermediate classes to group control flow statements (ControlFlow)

and literal values (Literal). Classes at the lowest level of the hierarchy represent concrete

expressions, such as if-statements (If), function calls (Call), and literal integers (Integer).

Figure 1.2 shows the hierarchy of classes. The hierarchy is designed to be convenient for

distinguishing different kinds of expressions and for creating methods which handle whole groups

of semantically similar expressions.

For calls, the analysis must also test whether the name of the called function is read.csv or

readRDS. The rstatic AST classes use named fields for subexpressions, and for the Call class

the field fn contains the name of the called function. Names are represented in the AST by

the Symbol class. The rstatic function ast_name returns the name represented by a Symbol

as a string. So for a call x, the code to test whether the called function is named read.csv or

readRDS is:

1 readers = c("read.csv", "readRDS")

2 ast_name(x$fn) %in% readers

This code can be extended to check for other functions by adding their names to the readers

vector. Note that in a call to an anonymous function, the fn field contains the AST for the

function rather than a name, but the above code still works correctly, because the ast_name

function returns NA if its argument is not a Symbol.

The rstatic function ast_find_all returns all expressions in an AST which satisfy some

condition. The condition must be provided to ast_find_all as a test function which accepts

an expression and returns a logical value. The ast_find_all function calls the test function

on each expression in the AST and returns a list of all expressions where the test function

returned TRUE. Here’s how to use ast_find_all and the conditions described in the preceding

paragraphs to get a list of all calls to read.csv and readRDS in an AST ast:

1 is_reader_call = function(x, readers = c("read.csv", "readRDS"))

2 {

3 is(x, "Call") && ast_name(x$fn) %in% readers

4 }

5 exps = ast_find_all(ast, is_reader_call)

8

ASTNode

Symbol Parameter

Container

Phi

BlockList

ArgumentList

Brace

Block

ParameterList

ControlFlow
Branch

Break

Return

Next

ConditionalBranch
If

Loop

For

While

Assignment
SuperAssignment

Replacement

Replacement1

Replacement2

ReplacementDollar

Invocation
Parenthesis

Call

Subset

Subset1

Subset2

SubsetDollarNamespace

Internal

Literal

Null

Numeric

Complex

EmptyArgument

Integer

Logical

Character

Callable
Primitive

Function

Figure 1.2: The hierarchy of classes provided by the rstatic package to represent
expressions.

9

Listing 1.2: The code for a static analysis which uses rstatic to find all calls to
read.csv or readRDS in the AST ast.

To make the example and analysis concrete, consider the following excerpt from an R script

which merges earthquake data with population density data:

1 quakes = read.csv("/home/gus/data/quakes.csv")

2 quakes = subset(quakes, 2012 <= year & year <= 2020)

3 pd = readRDS("/home/gus/data/popden.rds")[c("county", "popden")]

4 quakes_pd = merge(quakes, pd, by = "county")

Listing 1.3: An excerpt of an R script for analyzing earthquake data. This code
loads earthquake data, loads population density data, and merges the
two.

This code will be the test case for the analysis. The result from the analysis should be the paths

to the quakes.csv and popden.rds files. Converting the code in Listing 1.3 to an AST and

then running the analysis in Listing 1.2 produces this list:

1 [[1]]

2 <Call> $args $fn $parent

3 read.csv("/home/gus/data/quakes.csv")

4 [[2]]

5 <Call> $args $fn $parent

6 readRDS("/home/gus/data/popden.rds")

Listing 1.4: The list exps, result of applying the reader calls analysis in Listing 1.2
to the earthquakes analysis code in Listing 1.3.

The final step of the analysis is to extract the paths from the list of calls to the read.csv and

readRDS. The list of arguments to a call can be accessed directly through the Call class’ args

field. For each of the two calls in the list exps shown in Listing 1.4, the path—which is the

first argument—is a character literal. Character literals are represented by the class Character,

which inherits from the class Literal. The Literal class’ field value provides access its value.

Thus the code to get the value of the first argument of each call in the list exps is:

1 lapply(exps, function(x) x$args[[1]]$value)

In calls to read.csv and readRDS, the file path does not necessarily have to be the first

argument. The analysis can address this by normalizing the calls, so that the arguments are

10

explicitly assigned to and in the same order as the parameters of the called function. The rstatic

function match_call carries out this normalization step. After normalization, for read.csv

and readRDS, the path will always be the first argument and will always be assigned to the

parameter file. Other functions which load data may have different parameters. The analysis

can be extended to handle these by using a table which pairs reader functions with the name of

their file path parameter.

Finally, the argument for the file path will not be a character literal in every call to read.csv

and readRDS. The argument can also be some other expression, such as a variable name or a

call to another function. For variable names, if the variable is constant—meaning it is assigned a

literal value before the call and does not change—the value can be recovered with static analysis.

We recommend using data flow information and the strategies of Section 1.4 to handle the

variable name case. For other expressions, it’s possible to recover the value with static analysis

if the operands are literals or constants. To do so, the analysis has to emulate evaluation, which

may be undesirable or computationally infeasible depending on the expression.

The goal of the static analysis in Example 2 is to extract the paths of data files loaded by the

code. Since the analysis can be described in a simple way in terms of syntax—finding calls to

specific functions and extracting specific arguments from those calls—the AST is a convenient

and suitable data structure on which to carry it out. The example illustrates a general strategy

for creating syntax-based static analyses: visit each expression in the AST, collecting information

from the expressions which are relevant to the analysis at hand.

Example 2 also highlights several features of the rstatic package’s AST and functions:

• Expressions are represented by classes with only one semantic interpretation. For example,

Call objects represent function calls and only function calls. This is in contrast to R’s

language objects, whose call class is a catch-all for any expression with call syntax,

including return expressions and parentheses.

• Expressions are represented by classes arranged in a meaningful hierarchy. For example,

the classes While and For are both subclasses of Loop. Thus an analysis can provide

a method that handles loops generally, or specific methods for each kind of loop. R’s

language object classes are not part of an inherent class hierarchy.

• Expressions have named fields. As a result, code to manipulate ASTs is explicit about

which components of the AST it accesses. In contrast, code to manipulate R’s language

11

objects uses integer indexes, so understanding the code depends on knowing exactly what

kind of language object is being manipulated and the positions of its components.

• The ast_find_all function automates traversing the AST, so that analysis developers

can focus on their analysis question rather than on traversal. The function returns a list

of expressions which can be used with R’s built-in functions for working with lists or in

additional calls to ast_find_all.

The classes rstatic provides to represent expressions are R6 classes. The R6 class system is

provided by the package R6 (Chang 2021). A distinguishing feature of R6 classes is that their

instances have reference semantics, similar to R environments or reference classes. If one assigns

an R6 object to multiple variables, changing any one of them changes all of them—no copies are

made. In other words, R6 objects are mutable and assigning one to a variable creates a reference

rather than a copy. This differs from the copy-on-write semantics of most R built-in objects.

This feature is convenient when working with ASTs, since it means changing an expression

changes the AST, and that expressions can store a reference to their parent expression to simplify

bidirectional traversal. The next example shows one way this feature makes it easy to transform

code.

Example 3. Example 2 showed how to use rstatic to locate calls in code which read files

from disk. The paths to files in that example were all absolute paths, beginning from the root

directory of the filesystem. The code would be more portable if it used paths relative to some

project directory. The goal of this example is to use rstatic to replace all of the absolute paths

in the code with relative paths.

Suppose the project directory is /home/gus and that the make_relative_path function

converts a relative path into an absolute path, given the path to the project directory. So for

example, this code returns the relative path data/popden.rds:

1 make_relative_path("/home/gus/data/popden.rds", initial = "/home/gus")

In Example 2, the result from using ast_find_all to find calls to reader functions is a list

called exps. Listing 1.4 shows the list. The expressions in the list are ASTNode objects (which

use R6) and have reference semantics, so changing them will change the AST. Thus to change

the paths in the code, an analysis can change the paths in the result from ast_find_all. In

contrast, for ordinary R language objects, it would be necessary to build the transformation into

the traversal which finds the reader calls, or to do a second traversal just for the transformation.

12

Using rstatic and the list of calls exps from Example 2, the code to transform all paths in

the code is:

1 lapply(exps, function(x) {

2 old_path = x$args[[1]]$value

3 new_path = make_relative_path(old_path, initial = "/home/gus")

4 x$args[[1]]$value = new_path

5 })

This transformation can be extended to handle a wide variety of different reader functions as

described at the end of Example 2.

After applying the transformation, the AST object ast reflects the changes. The rstatic

function to_r converts an AST back into an R language object, which can then be evaluated or

saved to a file.

Example 3 shows that because the classes which represent expressions in rstatic have reference

semantics, for simple transformations it is not always necessary to traverse the AST. Instead,

one can reuse or build on the results of prior, related analyses, the way the example does with

the results from the analysis of calls to reader functions.

The other advantage of having reference semantics is that each expression in the AST stores a

reference to its parent expression. This makes it possible to get the context of expressions found

with ast_find_all or by any other means, and even to replace whole expressions. The next

example demonstrates a simple application of parent references.

Example 4. Once again consider the calls to reader functions found by the analysis in Example 2.

Suppose we want to use that analysis as part of a larger analysis to determine which expressions

in the code depend on loaded data sets. The first step, and the goal of this example, is to get

the names of the variables to which loaded data sets are assigned.

An analysis can get the names of these variables using the list exps of calls to reader functions

(from Example 2) and the parent field on every AST expression. In the original code in

Listing 1.3, the parent expression of each call to a reader function is an assignment. After

getting the Assignment expression from the parent field, the analysis can get the Symbol for

the assigned variable from the expression’s write field:

1 lapply(exps, function(x) x$parent$write)

13

The result is a list which contains the two Symbols quakes and pd.

The preceding analysis assumes that calls to reader functions will always be the right-hand

subexpression of an assignment, which will not always be true. There are several different ways

to address this. One is to check the class of x$parent, and if it is not an Assignment object,

take some additional action. For instance, the analysis could traverse further up the tree (by

getting the parent’s parent) in search of an assignment expression, or could return a value (such

as NULL) which indicates that the result of the call is not directly assigned to a variable. Another

approach is to write a completely new analysis which uses ast_find_all to find all assignment

expressions which contain calls to reader functions.

The point of Example 4 is that because the expressions in rstatic ASTs have parent references,

there is a simple way to create an analysis that begins from anywhere in the AST and traverses

upwards towards the root, the expression which is the ancestor of all other expressions in the

AST. This would be difficult to do with R’s built-in language objects, since they do not feature

any way to get their parent.

The rstatic package provides the function ast_transform_all in addition and as a com-

plement to ast_find_all. The ast_transform_all function calls a transformation function

on each expression in the AST and replaces the expression with whatever the transformation

function returns. For transformations where the information extracted in the course of the

transformation is not needed elsewhere, the ast_transform_all function is a more appropriate

choice than using ast_find_all and then transforming the results.

The ast_find_all and ast_transform_all functions are convenient for finding patterns

within a single expression. For patterns composed of multiple expressions, it’s helpful to have finer

control over how the AST is traversed. The rstatic package’s children function is well-suited

to this case. The function returns the list of immediate children for a given expression. Both

the ast_find_all and ast_transform_all all functions call the children function in order to

determine which expressions to visit next during traversal.

1.2.1 Using and Extending the AST Classes

The AST class hierarchy is one of the main features of rstatic. Every class in the hierarchy

inherits from the ASTNode class. The ASTNode class provides basic features such as the parent

field, a copy method, and a .data field.

The .data field is intended for storing arbitrary metadata. Analyses can use the .data field

14

Class Description Inherits From

Brace Braces { } Container
ArgumentList List of arguments in a call Container
ParameterList List of parameters in a function definition Container
Next next expression Branch
Break break expression Branch
Return return() expression Branch
If if expression ConditionalBranch
For for expression Loop
While while expression Loop
Call Function call Invocation
Parenthesis Parentheses () Invocation
Namespace Namespace operator :: or ::: Call
Subset Subset operator [, [[, or $ Call
Assignment Variable assignment operator ASTNode
SuperAssignment Super assignment operator <<- Assignment
Replacement Replacement assignment, e.g., length(x) = 5 Assignment
Symbol Variable name ASTNode
Parameter Parameter name in a function definition Symbol
Function Function definition (unevaluated) Callable
Primitive Primitive function (internally implemented) Callable
EmptyArgument Empty or “missing” function argument Literal
Null NULL value Literal
Logical Literal logical value Literal
Integer Literal integer Literal
Numeric Literal decimal number Literal
Complex Literal complex number Literal
Character Literal string Literal

Table 1.1: Classes in rstatic that represent concrete components of the R language.

to store results when the results are associated with individual expressions or locations in the

code. This circumvents the bookkeeping that would be necessary to match results to expressions

if the results were returned separately. Language objects cannot store additional information

this way. While it is possible to add R attributes to some classes of language object, not all of

them support attributes. For instance, R explicitly forbids setting attributes on symbol objects.

A major advantage of rstatic’s AST class hierarchy over R’s built-in language objects is that

the AST class hierarchy can be extended to represent new syntactic structures or to specialize

analyses for specific kinds of calls. Here are a few examples of where it would be productive to

extend rstatic with new classes:

• To represent R comments. To date, R does not provide a way to represent comments as

language objects. However, R’s built-in parse function does record information about

comments in a srcref attribute on parsed code. When rstatic generates an AST, it could

15

use this information and a custom Comment class to include the comments in the AST,

without the need to develop an entirely new parser. Comments can contain information

that is relevant to code analysis or be of interest in their own right. For instance, the

roxygen2 package uses specially-formatted comments to extend the R language (Wickham,

Danenberg, et al. 2021). The package currently uses regular expressions to find these

comments.

• To represent the magrittr package’s %>% pipe operator (Bache and Wickham 2020). The

pipe operator calls the expression in its second operand using the result of its first operand

as the first argument. That is, 42 %>% f is the same as f(42). The pipe operator uses

non-standard evaluation to transform the syntax of the surrounding code, so its semantics

differ from all of R’s built-in functions. A custom Pipe class to represent the pipe operator

in ASTs would facilitate transforming code into and out of pipe operator form (for instance,

as a normalization step before applying analyses and transformations which were not

designed with the pipe operator in mind).

• To represent the ggplot2 package’s + plus operator for combining layers of plots (Wick-

ham 2016). A custom class would facilitate analyses and transformations which extract

information about or rearrange/change the layers in plots. For instance, since plots often

have more than two layers, the custom class store a list of all layers in the plot. The

implementor of the custom class could also provide helper functions to convert the custom

class to and from the Call class ordinarily used for the plus operator.

After creating a custom AST class, additional work is necessary to get the custom class into

generated ASTs. There are two ways to go about this:

1. By transforming the AST after it’s been constructed, for instance with ast_transform_all

2. By changing how the to_ast function constructs the AST

The to_ast function provides a parameter call_handlers to override how expressions rep-

resented by the call class in R’s parse trees are converted into rstatic AST objects. The

call_handlers argument should be a named list of handler functions. Each handler function

overrides AST construction for calls to the named function. The handler function must accept

three arguments: the R call object to convert, the name of the called function (a character

vector), and further arguments passed down from the to_ast function.

16

Changing AST construction to get custom classes into an AST is possible but more difficult

when the classes correspond to syntax which is not represented by a call. In that case, the

to_ast function does not provide a parameter to override construction, so instead the to_ast

function must be modified. This is not a serious limitation because R users typically introduce

new semantics to the language through the call syntax, and because transforming the AST after

it’s been constructed is still viable.

1.2.2 Related Work

The codetools package (Tierney 2020) was the first code analysis package for R. The package

provides documented functions to detect global variables, to check function definitions for

possible problems with how variables are used, and to print language objects as a tree. The

package also provides several undocumented functions to support these, including a function to

collect information while traversing a language object. Updates to the package are infrequent,

and it was labelled as potentially unstable until 2018. Lack of detailed documentation makes the

package relatively difficult to use for new analyses, although the function it provides for finding

global variables is used or extended by several other code analysis packages.

The lintr package (Hester 2017) provides functions to check for stylistic problems in R code,

a process called linting. The package uses regular expression pattern matching on the string

representation of code in order to carry out its analyses. This approach is adequate for the

problems the package is designed to detect, since they all have to do with how the code is written

(syntax) rather than what the code means or does (semantics). The package is not designed nor

intended to facilitate development of new analyses.

The covr package (Hester 2018) analyzes R code to determine which parts of the code is tested

by the code’s associated test cases. Unlike rstatic and all of the other packages mentioned in this

section, covr uses dynamic code analysis. In a dynamic code analysis, the code is instrumented

to collect information at run-time and then run. Dynamic code analysis can collect information

that is unknowable before run-time, but requires running the code. The covr package is not

designed nor intended to facilitate new analyses.

17

1.3 Representing the Control Flow of Code

The goal of many static analyses is to determine characteristics the code will have at run-time.

For instance, we may want to analyze code to determine the points at which variables can be

freed because they are no longer needed, to replace constant variables with their literal values,

or to infer the types of values returned by expressions (the topic of Chapter 2). Something these

analyses have in common is that they depend on control flow—the order in which code will be

evaluated—because they typically emulate part of the evaluation model.

Control flow expressions (if-expressions and loops) create regions of code which are only

evaluated if certain conditions are satisfied at run-time. As a result, running the same code

with different inputs can cause different sequences of expressions to be evaluated. We call

these sequences of expressions evaluation paths, since each traces a path through the code from

evaluated expression to evaluated expression. It’s usually not possible to statically determine

which evaluation path will be selected at run-time, so static analyses which depend on control

flow must analyze and account for all possible evaluation paths.

While it’s possible to implement any analysis or transformation with only abstract syntax

trees, ASTs model the code’s syntax rather than its control flow. This means a simple top-down

or bottom-up traversal of an AST generally won’t visit expressions in order of evaluation (for

any evaluation path). Moreover, expressions which are consecutive in an evaluation path can

be relatively distant from each other in the AST. For example, in the body of a loop, a break

expression redirects evaluation to the first expression after the loop, which will be at a different

level of the AST. As a consequence, to use the AST, a static analysis or transformation which

depends on control flow must implement custom traversal logic in addition to the logic of the

analysis.

This section begins with an example (Example 5) which highlights the difficulties of using

the AST to implement an analysis that depends on control flow. After the example, the section

introduces control flow graphs (CFGs), a representation for code which models the code’s control

flow, so that traversing evaluation paths is simple. The next section, Section 1.4, will use this

representation as a fundamental building block for data flow analyses.

Example 5. Suppose we want to create an analysis which detects redundant calls, where the

arguments have the same values as a prior call to the same function. Listing 1.5, which is an

excerpt of real code to simulate water flow at Shasta Dam in California (Adams 2018), provides

18

an example of a redundant call. The second call to Vdiscretize will produce the same result

as the first call:

1 spillRc = Vc

2 spillRw = Vw

3 spillR = spillRc + spillRw

4 spillRdisc = Vdiscretize(spillRc, spillRw)

5 spillRopts = t(Vdiscretize(spillRc, spillRw)[1:2,])

Listing 1.5: A modified excerpt from a simulation of water flow at Shasta Dam
(Adams 2018).

Redundant calls waste time and can also waste memory. The goal of this example is identify

redundant calls; a later example, Example 9, shows how to transform the code to eliminate

redundant calls.

Detecting redundant calls is complicated by the fact that calls which are syntactically identical

are not always redundant, because the values of variables used as arguments can change between

call sites. For instance, if spillRc is reassigned just before the last line of Listing 1.5, the second

call to Vdiscretize is no longer redundant:

1 spillRdisc = Vdiscretize(spillRc, spillRw)

2 spillRc = spillRc + 1

3 spillRopts = t(Vdiscretize(spillRc, spillRw)[1:2,])

Listing 1.6: The last two lines of Listing 1.5 with an assignment to spillRc inserted
between them. The second call to Vdiscretize is no longer redundant.

As a consequence, the analysis must keep track of which variables are reassigned between calls,

using information about the order in which the code will be evaluated.

We’ll use the AST to implement the redundant calls analysis in order to show why a simple

top-down or bottom-up traversal is not adequate for analyzing code in full generality. The

analysis will initially use the ast_find_all function (from Section 1.2) to traverse the AST.

Let is_redundant_call be the test function passed to ast_find_all to implement the logic

of the analysis. The is_redundant_call function is actually a closure, since it will maintain

a persistent list of calls, called the available calls, during traversal. The available calls are the

calls which have already been made in the code (and therefore their result already “available” to

use). The action of is_redundant_call depends on the class of the expression it is passed:

19

• Call expressions. Check whether the call is in the list of available calls. If it is, return

TRUE. If it’s not, append it to the list and return FALSE.

• Assignment expressions. Remove all calls which contain the assigned variable from the

available calls. Return FALSE.

• All other expressions. Return FALSE.

Then the code to run this analysis on an AST ast is

1 ast_find_all(ast, is_redundant_call)

This simple analysis returns the correct list of redundant calls for the water flow simulation code

in Listing 1.5 and Listing 1.6.

The results from the analysis are not always correct for code which contains control flow

expressions (if, for, while, and repeat). For instance, suppose the second call to Vdiscretize

in Listing 1.5 is in the body of a for-loop:

1 spillRdisc = Vdiscretize(spillRc, spillRw)

2 for (i in seq_along(spillRopts)) {

3 spillRopts[[i]] = Vdiscretize(spillRc, spillRw)[i,]

4 spillRc = spillRc + 1

5 }

Listing 1.7: The last two lines of Listing 1.5 changed so that the second call to
Vdiscretize is in the body of a for-loop. Now the second call is not
redundant.

Since the assignment to spillRc is at the end of the loop, the analysis doesn’t visit the assignment

until after visiting the second call to Vdiscretize. Thus the analysis marks the second call to

Vdiscretize as redundant, even though it is only redundant on the first iteration of the loop.

We can make the analysis handle the for-loop in Listing 1.7 correctly by changing how the

analysis traverses the AST. Instead of using the ast_find_all function, we can create a custom

top-down traversal (for instance, using the children function from Section 1.2). Then when the

analysis reaches a for-loop, it can:

1. Collect the names of all variables assigned in the loop, including the induction variable—the

counter variable defined by the loop.

20

2. Search the loop for redundant calls, ignoring any which have variables collected in step 1

as arguments.

The custom traversal can still use the is_redundant_call function to handle other expressions,

provided it collects a list of all of the calls for which is_redundant_call returns TRUE (meaning

the call is redundant).

Although the modified analysis handles the for-loop in Listing 1.7 correctly, it will still produce

incorrect results for other control flow expressions, including control flow expressions which

interact with for-loops, such as break and next. For example, consider this version of Listing 1.7

with a break expression added:

1 spillRdisc = Vdiscretize(spillRc, spillRw)

2 for (i in seq_along(spillRopts)) {

3 if (break_condition) {

4 spillRc = spillRc + 1

5 break

6 }

7 # ...

8 spillRopts[[i]] = Vdiscretize(spillRc, spillRw)[i,]

9 }

Listing 1.8: The code from Listing 1.7 changed to include a break expression. Now the
second call to Vdiscretize is redundant. This kind of redundancy can be
difficult to spot in loops which contain a lot of code. The additional code,
including code to compute the variable break_condition, is omitted
here but indicated by the ... comment.

Since the assignment to spillRc is followed by break, the assignment will never affect the call

to Vdiscretize on the last line of the loop. However, the assignment will cause the analysis to

fail to detect that the second call to Vdiscretize is redundant.

We can fix the analysis by adding another special case to handle break expressions in if-

expressions, but there are many more cases the analysis must handle in order to produce correct

results for general code. For instance, the current version of the analysis will not handle while-

loops, repeat-loops, the next expression, the return expression, and all interactions between

these expressions correctly. We could refine the analysis handle all of these cases correctly, but

since the semantics of control flow expressions are the same from one analysis to the next, it’s

more efficient and convenient to use a code representation specifically designed for traversal

21

along evaluation paths. Then analysis implementors can focus on the logic of the analysis rather

than how to traverse the code.

The conclusion of Example 5 is that the AST inadequate as a basis for analyses which

depend on control flow and need to correctly handle a variety of code. In spite of that, before

implementing an analysis, one should weigh the simplicity of the AST against the need for

correctness. As the example showed, it only takes a few lines of code to create an analysis of the

AST that is correct for code with simple control flow.

The meaning of each control flow expression is the same regardless of the analysis, so it’s

possible to handle control flow separately from any specific analysis. This approach is convenient

because then we can reuse the same representation for code and traversal tools rather than

implementing something new for each analysis. It also minimizes the number of places where

bugs can be introduced due to missing or incorrectly handled control flow cases.

A control flow graph (CFG) is a graphical representation for code which models the code’s

control flow. Each node in the graph is a basic block, an ordered sequence of expressions.

Evaluation of a basic block is all-or-nothing: the entire sequence of expressions in the block is

evaluated in order, or none of them are. This means basic blocks cannot contain control flow

expressions. Instead, control flow expressions are represented by directed edges from the end of

one basic block to the beginning of another. An if-expression creates a branch in the graph and

a loop creates a cycle. The next example demonstrates a CFG.

Example 6. Consider again the code from Listing 1.8 in Example 5, which is based on code to

simulate water flow at Shasta Dam (Adams 2018). The code includes a loop, if-expression, and

break expression. This example presents the control flow graph for the code, in order to make

the details of the CFG representation clear.

Figure 1.3 shows the control flow graph for the code in Listing 1.8. The graph has eight basic

blocks, which are shown as text boxes in the figure.

The entry point to the code is basic block 1, which contains the call to the Vdiscretize

function on line 1 of Listing 1.8. Control always flows from block 1 to block 2, as indicated by

the directed edge between the blocks in the CFG.

Basic block 2 is the entry to the for-loop in Listing 1.8. In a CFG, for-loops, while-loops,

and repeat-loops correspond to multiple basic blocks, some of which will be arranged in a cycle.

For the loop in this code, the cycle is 3 → 4 → 5 → 6 → 3. At run-time, each iteration of the

22

1
spillRdisc = Vdiscretize(spillRc, spillRw)

2
Loop setup code...
for (i in seq_along(spillRopts))

3
Loop increment code...
if (continue_looping)

4
if (break_condition)

7
spillRc = spillRc + 1
break

5
else

6
...
spillRopts[[i]] = Vdiscretize(spillRc, spillRw)[i,])

8
Exit block

TRUE

FALSE TRUE

FALSE

Figure 1.3: The control flow graph for the code in Listing 1.8. Code to set up and
increment the loop induction variable is omitted.

23

loop where break_condition is FALSE corresponds to one traversal of this cycle. Besides the

blocks in the cycle, the loop also includes block 2, which evaluates the vector over which the

loop iterates and sets up any counters needed by the loop, and block 7, which corresponds to

the body of the if-statement in the body of the loop. From block 2, control flows to block 3.

Basic block 3 checks whether there are more elements for the loop to iterate over and updates

the induction variable i accordingly. If there are more elements to iterate over, control flows to

block 4. If there are no more elements to iterate over, control flows to block 8, which is the end

point for the code.

The basic block 4 is the entry point to the if-expression in Listing 1.8. If-expressions (and

other tests of conditions) correspond to branches in the CFG, where there are two different

edges out of a basic block. Since block 3 tests whether there are more elements over which the

for-loop must iterate, it also has two out edges. Block 4 tests the condition break_condition.

If the condition is TRUE, control flows to block 7, and if the condition is FALSE, control flows to

block 5, so these two block correspond to the two branches of the if-expression.

Basic block 7 corresponds to the body of the if-expression in Listing 1.8. It contains the

expression which increments the variable spillRc, and also the break expression. The break

expression redirects control flow to the first expression after the for-loop. Since there aren’t any

expressions after the for-loop, control flows from the break expression directly to the end point

for the code, block 8.

Basic block 5 contains the code which is evaluated when the if-expression is FALSE. If the

if-expression in the code had an else-expression, block 5 would be the beginning of the body

of the else-expression. Since the if-expression does not have an else-expression, block 5 does

not contain any computations. This means that technically block 5 could be omitted from the

graph, with the edges into and out of block 5 replaced by an edge from block 4 to block 6. We

included block 5 in Figure 1.3 in order to make explicit both branches of the if-expression.

The basic block 6 contains the last line of the for-loop, which calls the Vdiscretize function

to compute an element of spillRopts. At the end of this block, control flows back to block 3,

which checks whether the loop should run for another iteration. The edge from block 6 to block 3

creates the cycle which defines the loop. This edge is called a backedge, since it leads back to a

basic block (block 3) that’s always evaluated before this block (block 6).

Finally, block 8 is the exit block, the end point for the code.

The rstatic packages provides the function to_cfg to compute the control flow graph for an

24

rstatic AST or R language object. The CFG is returned as a list of BasicBlock objects. Each

basic block contains the expressions as ASTNode objects (see Section 1.2). The CFGs returned

by the to_cfg function always have a single entry block and single exit block.

Example 6 presented the basic concepts of control flow graphs. We’ll use CFGs in Section 1.4

as the basis for analyses which extract information from code about where variables are defined

and used. By using CFGs, the analyses generally do not have to handle control flow expressions

as special cases during traversal. The trade-off, made apparent by the example, is that a CFG

has more structural differences from the original code than an AST. This means there is a higher

upfront cost analysis implementors in terms of learning how to use the CFG.

1.3.1 Related Work

The package cyclocomp (Csardi 2016) computes CFGs for R code in order to compute the

code’s cyclomatic complexity. Cyclomatic complexity is a measure of computational complexity

based on the number of evaluation paths in the CFG which have at least one edge not shared

with any other path. The CFGs the cyclocomp package computes do not preserve the actual

expressions in the code, so they are not well-suited to code analysis which goes beyond examining

the graph structure.

1.4 Analyzing How Data Flows Through Code

As code is evaluated, data “flows” or propagates from expressions which define variables to

expressions which use those variables. A data flow analysis is a static code analysis that depends

on and collects information about what and how data flows between expressions at run-time.

For instance, a simple data flow analysis question is: given a variable x which is reassigned

several times and an expression mean(x), which value assigned to x will reach the expression at

run-time? This kind of question is non-trivial for most code because most code contains control

flow expressions which change the flow of data depending on run-time conditions. This means

that in order to produce correct results, a data flow analysis must consider all of the possible

evaluation paths for the code. As a consequence, data flow analyses are often formulated as

analyses of control flow graphs.

Two widely-used techniques to implement data flow analyses are iterative data flow analysis

and static single assignment (SSA) form (Cooper and Torczon 2012). The rstatic package

25

provides tools which facilitate using either technique. As of writing, rstatic is the only package

we’re aware of which provides this functionality for R (see Section 1.4.3 for related work). The

type inference strategy presented in Chapter 2 uses the SSA form generated by rstatic.

In the iterative approach, the data flow analysis problem is framed as computing a set of

values, expressions, or properties for each basic block in a CFG. Each set is defined by an

equation which relates it to the sets of adjacent basic blocks. The sets are computed by assigning

them approximate initial values and then iteratively updating each set using the equations until

the sets converge. Section 1.4.1 describes iterative data flow analysis in more detail.

The static single assignment form is a form of the CFG in which each variable name uniquely

refers to a single assignment. This means that for any expression which uses a variable, no

additional analysis is necessary to locate the corresponding assignment. Section 1.4.2 presents

the details of the SSA form.

1.4.1 Iterative Data Flow Analyses

Many data flow analyses can be framed as computing a set of information about each basic

block in the control flow graph or each expression in the code. For instance, the redudant calls

analysis of Example 5 can be framed as trying to compute, at each expression, the set of all calls

which are already available (that is, have already been computed). Then a call is redundant if

it appears in its own set of available calls. Iterative data flow analysis is a general strategy to

compute such sets, whether they contain values, expressions, or other information.

The main benefit of iterative data flow analysis is that one can use it to solve multiple data

flow analysis problems without having to develop, implement, and maintain several different

algorithms, each with their own idiosyncrasies. Some examples are:

• Reaching definitions analysis, which addresses the question posed in the second paragraph

of Section 1.4: given an expression that uses a variable x, which values assigned to x can x

have at that expression? This analysis is necessary to construct use-definition chains, a

mapping from each use of a variable to all of its possible definitions, and to construct the

static single assignment form described in Section 1.4.2. The results from this analysis

have many other uses as well, such as determining which variables depend on each other

and determining the possible dimensions and shapes for a variable in a given expression.

• Live variables analysis, which, at each expression, determines which variables are live, or

26

necessary to compute subsequent expressions. Once a variable is no longer live, there’s no

reason to keep its value in memory. One can use the results from this analysis to transform

code so that memory is freed as soon as variables are no longer needed.

Cooper and Torczon (2012) and Nielson et al. (2010) describe additional analyses which can be

implemented with iterative data flow analysis.

Iterative data flow analysis can operate at the level of basic blocks or individual expressions.

We will explain the strategy at the level of basic blocks. In order to use the strategy at the level

of expressions, one can construct a control flow graph where each expression is placed in its own

basic block; the edges in such a CFG have the same interpretation as in an ordinary CFG. It is

also possible to use the strategy at the level of basic blocks and then propagate the result sets

to the level of expressions (Nielson et al. 2010).

The result set for a basic block characterizes run-time properties which hold immediately

before or immediately after the block is evaluated, depending on the specific analysis. The core

of the iterative data flow analysis strategy is the update or transfer equation, which relates the

result set for one block to the result sets of adjacent blocks in the CFG. The transfer equation

for basic block b with result set Result(b) has a general form for many analyses:

Result(b) =
⊔

a ∈ Ab

Gen(a) ∪
(
Result(a) \ Kill(a)

)
(1.1)

Depending on the analysis, the operation t can be a union or intersection, and the set of basic

blocks Ab can contain all predecessors or all successors of b. The sets Gen(a) and Kill(a)

are computed from the block a alone and also depend on the analysis. The next example

demonstrates the result sets and specific transfer equation for a reaching definitions analysis.

Example 7. Consider the following code to convert temperatures to Kelvin:

1 to_kelvin = function(temperature, unit) {

2 if (unit == "fahrenheit")

3 temperature = (temperature - 32) * 5 / 9

4 temperature + 273.15

5 }

Listing 1.9: A function to convert Fahrenheit or Celsius temperatures to Kelvin.

27

Figure 1.4 shows the CFG for the code. For each basic block b, the result set we want to

compute is ReachesIn(b), the set of definitions which can apply to, or reach, each variable at

the beginning of the block. So for this analysis, the result set for a block characterizes properties

which hold immediately before the block is evaluated.

1
Parameters: unit, temperature
if (unit == "fahrenheit")

2
temperature = (temperature - 32) * 5 / 9

3
else

4
temperature + 273.15

TRUE FALSE

Figure 1.4: The control flow graph for the code in Listing 1.9.

Consider basic block 1. The parameters temperature and unit are implicitly defined when

the function is called, so their definitions should be in the result set for this block. We’ll

generally record definitions as assignment expressions, but for these two implicit definitions,

we’ll simply record the parameter names. No other parameters or variables are already defined

at the beginning of block 1. Thus we can conclude:

ReachesIn(1) = {temperature, unit}

Now consider the sets ReachesOut(b) of definitions which can reach each variable at the

end of a block b rather than the beginning. We’ll need these sets to compute the result sets.

There are two different ways a definition can reach a variable at the end of a block:

1. The definition is the last definition of that variable in the block. Let the set LastDef(b)

contain the last definition of each variable in the block b.

2. The definition reaches the variable at the beginning of the block, and the variable is not

redefined in the block. Let the set Replaced(b) contain definitions which are replaced by

new definitions in the block.

28

For instance, since there are no definitions within block 1,

LastDef(1) = ∅

Replaced(1) = ∅.

On the other hand, temperature is redefined in block 2, so

LastDef(2) = {temperature = (temperature - 32) * 5 / 8}

Replaced(2) = {temperature},

where temperature in the second set refers to the parameter’s implicit definition.

We can translate the discussion of the preceding paragraphs into an equation:

ReachesOut(b) = LastDef(b) ∪
(
ReachesIn(b) \ Replaced(b)

)

From this equation, it follows that:

ReachesOut(1) = {temperature, unit}

That is, the implicit parameter definitions from the beginning of block 1 reach the end of block 1,

because block 1 does not redefine either parameter.

The definitions which reach a variable at the beginning of a block b are exactly the definitions

which reach that variable at the end of all of that block’s immediate predecessors. This

observation leads to the transfer equation for the reaching definitions analysis:

ReachesIn(b) =
⋃

a ∈ pred(b)
ReachesOut(a)

=
⋃

a ∈ pred(b)
LastDef(a) ∪

(
ReachesIn(a) \ Replaced(a)

)

29

Compare this to Equation 1.1. For a reaching definitions analysis:

t := ∪

Ab := pred(b), the immediate predecessors of block b

Gen(b) := LastDef(b)

Kill(b) := Replaced(b)

These will differ for other analyses.

Now we can compute the results set for block 2:

ReachesIn(2) =
⋃

a ∈ {1}
ReachesOut(a)

= ReachesOut(1)

= {temperature, unit}

This is also the result set for block 3, since blocks 2 and 3 have the same predecessors in the

CFG. Since temperature is redefined in block 2, it follows that:

ReachesOut(2) = LastDef(2) ∪
(
ReachesIn(2) \ Replaced(2)

)
= {temperature = (temperature - 32) * 5 / 8, unit}.

There are no definitions in block 3, so:

ReachesOut(3) = LastDef(3) ∪
(
ReachesIn(3) \ Replaced(3)

)
= ∅ ∪

(
ReachesIn(3) \ ∅

)
= {temperature, unit}.

Finally, we can compute the result set for block 4:

ReachesIn(4) =
⋃

a ∈ {2, 3}
ReachesOut(a)

= ReachesOut(2) ∪ ReachesOut(3)

= {temperature = (temperature - 32) * 5 / 8, temperature, unit}

30

In words, at the beginning of block 4, the value of temperature can come from either the implicit

parameter definition or the definition in block 2. The value of unit will come from the implicit

parameter definition. This completes the example.

Now that we’ve seen an example of result sets and a transfer equation, we turn to the iterative

algorithm for computing the result sets. Before using the algorithm, it’s necessary to determine

several details specific to the analysis:

1. The Result sets:

• What properties the elements represent.

• Whether they correspond to the beginning or end of each block. If they correspond to

the beginning, then the analysis is called a forward analysis and the transfer equation

uses immediate predecessors, Ab = pred(b). If they correspond to the end, then

the analysis is called a backward analysis and the transfer equation uses immediate

successors, Ab = succ(b).

2. The Gen sets. For a block b, the set Gen(b) contains properties which come into effect in

that block.

3. The Kill sets. For a block b, the set Kill(b) contains properties which cease to be in

effect in that block.

4. The t operation. If a property is in effect for block b when it’s in effect for any adjacent

block in Ab, then t = ∪. If a property is in effect for block b only when it’s in effect for all

adjacent blocks in Ab, then t = ∩.

Listing 1.10 shows the iterative data flow analysis algorithm. The initial values for the result

sets depend on the analysis, but are generally the empty set ∅ or the set Ω of all possible result

set elements. For analyses where t = ∩, the sizes of the result sets monotonically decrease

with each iteration, so the algorithm always terminates. For analyses where t = ∪, the sizes of

the result sets monotonically increase with each iteration, so the algorithm always terminates

provided that Ω is finite. Nielson et al. (2010) prove these properties of the algorithm.

31

1. Compute the Gen and Kill sets for each block.

2. Set initial values for the result sets.

3. While changed:

a) changed = FALSE

b) For each block b in the CFG:

i. Use the transfer equation to compute the result set for block b.

ii. If the new result set differs from the old result set, changed = TRUE.

Listing 1.10: The iterative data flow analysis algorithm (Cooper and Torczon 2012).

In the reaching definitions analysis in Example 7, we computed the result sets in a single

iteration. This is because for each result set we computed, we first computed all of the result

sets on which it depends. For code which does not contain any loops, such as the code from

that example (Listing 1.9), the CFG will not contain any cycles, so it’s possible to compute the

result sets in this order. If the result sets are computed in a different order or the code does

contain loops, then more iterations are usually necessary.

The next example provides an overview of how to use the rstatic package and iterative data

flow analysis to implement a static analysis.

Example 8. The redundant calls analysis from Example 5 is a version of a classic data flow

analysis called available expressions analysis. An available expressions analysis finds the set of

available expressions—expressions computed by the preceding code—at the beginning of each

basic block. The goal of this example is to use the iterative data flow analysis algorithm to

implement an available calls analysis (in R, most expressions which compute a result are calls).

By using the algorithm, the analysis will handle all forms of control flow correctly and only

require a few lines of custom code to implement.

The transfer equation for the available calls analysis is:

AvailIn(b) =
⋂

a ∈ pred (b)
AvailGen(a) ∪

(
AvailIn(a) \ AvailKill(a)

)

We want to use the results from the analysis to determine which calls are redundant, so we need

to know which calls are available at the beginning of each block. Thus this is a forward analysis

32

and Ab = pred (b). In order for a call to be available at the beginning of a block, it must be

available by the end of each of the block’s immediate predecessors, so t = ∩.

For a block b, AvailKill(b) is the set of all calls which are no longer available at the end of

the block. A call is no longer available if some of its arguments are variables, and those variables

are defined in the block. One way to compute this set is to start from the set Ω of all calls in

the code and then remove all calls which do not contain variables defined in the block. The code

to compute Ω for a CFG named cfg is:

1 all_calls = ast_find_all(cfg, is, "Call")

Next, we need to remove the calls which do not contain variables defined in the block. The

rstatic helper function ast_defs returns a list of all variables defined in an AST, CFG, block,

or expression. The rstatic helper function contains checks whether each expression in one

list contains (possibly as subexpressions) any of the expressions in another. Thus the code to

compute AvailKill(b) for one block block is:

1 defs = ast_defs(block)

2 avail_kill = all_calls[contains(all_calls, defs)]

Listing 1.11: The code to compute the AvailKill set for one block in the CFG.

We can apply this code to each block in the CFG in order to compute all of the AvailKill sets.

For a block b, AvailGen(b) is the set of all calls made in the block which are still available

at the end of the block. One way to compute the set is expression by expression. When

an expression redefines a variable, any calls which use that variable are removed. When an

expression makes a call, that call is added to the set. The code to compute AvailGen(b) for

one block block is:

1 avail_gen = list()

2 for (expr in block$contents) {

3 # Remove any calls killed by this expression.

4 defs = ast_defs(expr)

5 avail_gen = avail_gen[!contains(avail_gen, defs)]

6 # Add all calls made by this expression.

7 calls = ast_find_all(expr, is, "Call")

8 avail_gen = append(avail_gen, calls)

9 }

33

Listing 1.12: The code to compute the AvailGen set for one block in the CFG.

We can apply this code to each block in the CFG in order to compute all of the AvailGen sets.

The initial values for the AvailIn sets depend on the block. For the entry block, no calls are

available before the block is evaluated because it’s the entry block. Thus the initial (and final)

result set for the entry block is the empty set ∅. For all other blocks, we can use Ω, the set of all

calls, as the initial result set. Since t = ∩, the iterative data flow analysis algorithm will shrink

these result sets to their actual values.

The rstatic function dfa_solve is an implementation of the iterative data flow analysis

algorithm. Suppose cfg is the CFG to analyze, initial is the list of initial result sets,

avail_kill_list is the list of kill sets, and avail_gen_list is the list of gen sets. Then the

code to compute the result sets with the iterative data flow analysis algorithm is:

1 avail_in = dfa_solve(cfg,

2 initial = initial, universe = all_calls,

3 kill = avail_kill_list, gen = avail_gen_list,

4 forward = TRUE, meet = "intersect")

Listing 1.13: The code to compute the AvailIn result sets for the available calls
analysis.

The parameter forward controls whether the sets Ab in the transfer equation contain pre-

decessors or successors. The parameter meet controls whether the operation t in the transfer

equation is union or intersection.

We can test the analysis with the Shasta dam water flow simulation code from Listing 1.8 in

Example 5. Figure 1.5 shows the control flow graph for this code. Table 1.2 shows the AvailKill

and AvailGen sets for each block. Table 1.3 shows the AvailIn result sets computed by the

iterative data flow analysis algorithm. This version of the analysis returns correct results

regardless of which control flow expressions the code contains and how they are arranged, unlike

the redundant calls analysis in Example 5. While it was necessary to understand CFGs and the

iterative data flow algorithm in order to implement this version of the analysis, the actual code

to implement the analysis with rstatic is short and straightforward.

Note that the results of an iterative data flow analysis at the level of basic blocks can

be propagated to the level of expressions. Suppose block b contains nb expressions indexed

e = 1, . . . , nb. Compute Kill and Gen sets for each expression. Call these sets KillExpb(e)

34

1
spillRdisc = Vdiscretize(spillRc, spillRw)

2
Loop setup code...
for (i in seq_along(spillRopts))

3
Loop increment code...
if (continue_looping)

4
if (break_condition)

7
spillRc = spillRc + 1
break

5
else

6
...
spillRopts[[i]] = Vdiscretize(spillRc, spillRw)[i,])

8
Exit block

TRUE

FALSE TRUE

FALSE

Figure 1.5: The control flow graph for the code in Listing 1.8 from Example 5. This
figure is the same as Figure 1.3.

b AvailKill(b) AvailGen(b)

1 – Vdiscretize(spillRc, spillRw)
2 Vdiscretize(spillRc, spillRw)[i,] seq_along(spillRopts)
3 Vdiscretize(spillRc, spillRw)[i,] –
4 – –
5 – –
6 seq_along(spillRopts) Vdiscretize(spillRc, spillRw)

Vdiscretize(spillRc, spillRw)[i,]

7 Vdiscretize(spillRc, spillRw)
Vdiscretize(spillRc, spillRw)[i,]
spillRc + 1

spillRc + 1

8 – –

Table 1.2: The AvailKill and AvailGen sets for the available calls analysis on the
CFG in Figure 1.5. The call to seq_along is evaluated in block 2 as part
of the loop setup code.

35

b AvailIn(b)

1 –
2 Vdiscretize(spillRc, spillRw)
3 Vdiscretize(spillRc, spillRw)

Vdiscretize(spillRc, spillRw)[i,]

4 Vdiscretize(spillRc, spillRw)
5 Vdiscretize(spillRc, spillRw)
6 Vdiscretize(spillRc, spillRw)
7 Vdiscretize(spillRc, spillRw)
8 spillRc + 1

Table 1.3: The AvailIn sets for the available calls analysis on the CFG in Figure 1.5.

and GenExpb(e), respectively. Then use the block-level result set and the transfer equation to

compute:

ResExpb(0) = Result(b)

ResExpb(e) = GenExpb(e − 1) ∪
(
ResExpb(e − 1) \ KillExpb(e − 1)

) (1.2)

The ResExpb sets are the expression-level result sets. This process can be repeated for each

block in the CFG.

The next example shows one way to use the results from an iterative data flow analysis to

transform code.

Example 9. The motivation for the available calls analyses in Example 8 (and originally

Example 5) is to identify redundant calls and transform the code to eliminate them. The strategy

to transform the code is to create a variable the first time a call is made, and then replace all

subsequent, redundant calls with that variable. The goal of this example is to give an overview

of how to implement such a transformation for the code reperesented by the CFG in Figure 1.5,

using rstatic and the AvailIn sets from Example 8.

For the code in Figure 1.5, a call is redundant if it is in the AvailIn set for its block. For

instance, the first call to Vdiscretize is in block 1. The AvailIn(1) set is empty (see Table 1.3),

so the call is not redundant. On the other hand, the second call to Vdiscretize is in block 6

and is redundant, because the call is in the AvailIn(6) set.

There are two different cases for how to transform calls:

1. If the call is not redundant, create a new variable and insert an assignment expression to

store the result of the call in the new variable. Replace the call with the new variable.

36

2. If the call is redundant, replace the call with the variable created in case 1.

Creating a new variable in case 1 rather than reusing existing variables when possible ensures

that the variable will not be reassigned at some point later in the code. It’s possible that the

new variable will never be used as a replacement anywhere, but because of R’s copy-on-write

semantics, the run-time and memory cost of creating unnecessary variables is minimal. It’s also

possible to have a subsequent analysis and transformation eliminate unnecessary variables.

The transformation is simpler to implement if we create names for the new variables beforehand.

Let all_calls be the set of all calls in the code, which can be computed with the find_nodes

function. Then compute a vector new_vars of new variable names—one for each call—making

sure they do not conflict with any variable names in the code.

We can use the rstatic function block_transform to apply the transformation. The

block_transform function applies a transformation function to each top-level expression in

each block in the CFG. The transformation function must have four parameters:

• expr, the expression to transform.

• index, the index of the expression within the block.

• block_index, the index of the block within the CFG.

• ..., for passing additional arguments

The transformation function must return an expression or list of expressions to replace expr in

the block.

Let replace_redundant be the transformation function. The set all_calls of all calls in

the code, the vector new_vars of new variable names, and the avail_in sets from Example 8

are additional arguments to the function. So the code to remove redundant calls from a CFG

(after carrying out an available calls analysis) is:

1 block_transform(cfg, replace_redundant,

2 all_calls = all_calls,

3 avail_in = avail_in,

4 new_vars = new_vars)

The first thing the replace_redundant function does is create a list of results and extract all

of the calls in the expression expr:

37

1 result = list(expr)

2 calls = find_nodes(expr, is, "Call")

Next, the function loops over each call. For each call, it computes the position of the call in the

all_calls set. It does this using the rstatic helper function match_object, an implementation

of R’s match function for lists of objects:

1 for (call in calls) {

2 m = match_object(call, all_calls, 0L, match_fun = `==`)

Next, the function creates a new Symbol object for the variable and replaces the call with the

new object. This uses the rstatic function replace_in, which replaces a subexpression in an

expression:

1 new_var = Symbol$new(new_vars[m])

2 replace_in(call$parent, call, new_var)

Finally, the function checks whether the call is in the avail_in set for the block. If it’s not, the

call is not redundant, so the function creates an assignment expression to assign the result of

the call to the new variable:

1 avail_in_b = avail_in[[block_index]]

2 m = match_object(call, avail_in_b, 0L, match_fun = `==`)

3 if (m != 0) {

4 assignment = Assignment$new(copy(new_var), copy(call))

5 result = append(result, assignment, 0)

6 }

7 }

The function returns result, a list of top-level expressions. The block_transform function

replaces expr in the block with these expressions. This completes the transformation.

The available calls analysis of Example 8 and transformation of Example 9 show one way to

remove redundant calls which works correctly regardless of the control flow expressions in the

code being analyzed. Achieving this goal was made simpler by separating the analysis from the

transformation and by using the iterative data flow analysis algorithm to compute the analysis

results. The rstatic package provides an implementation of the algorithm and also many helper

functions which facilitate implementing analyses and transformations such as this one.

38

1.4.2 The Static Single Assignment Form

Static single assignment (SSA) form is a form of the control flow graph where variables are

renamed so that they satisfy two properties (Cooper and Torczon 2012):

1. Each definition of a variable has a unique name (no redefinitions).

2. Each use of a variable refers to a single, specific definition.

The purpose of these properties is to eliminate ambiguity about the flow of data in code. The

SSA form makes explicit which definitions of a variable reach each use, and conversely, which

uses of a variable depend on each definition. These relationships, called use-definition chains,

characterize which expressions in the code depend on each other and how. This information is

relevant for:

• Transformations which rearrange or parallelize expressions.

• Inferences about values of variables, such as constant propagation, type inference, and

dimension inference.

• Making sense of unfamiliar code, as a human reader.

The SSA form is an essential component of the type inference strategy described in Chapter 2.

As we explained in Section 1.4, a variable can have multiple definitions. The definition that

reaches expressions which use the variable depends on which evaluation path in the CFG is

taken at run-time. However, the SSA form requires that each use refers to a single definition.

The SSA form addresses this by introducing an artificial function called ϕ (denoted by PHI in

code). The ϕ-function selects the appropriate version of a variable based on the evaluation path

taken at run-time. ϕ-functions are always placed at the beginning of a block, so that there is no

ambiguity about variables used within the block. The order of the ϕ-functions at the beginning

of a block doesn’t matter, since each only interacts with one variable. Example 10 shows how

the SSA form uses ϕ-functions in practice.

The SSA form is strictly a tool for analyses and transformations. We will never run code

in SSA form, so an implementation of the ϕ-function is not necessary. After analyses and

transformations that use SSA form are complete, we can transform the code back into an

ordinary CFG, AST, or parse tree.

This subsection presents three examples. The first example introduces the SSA form, while

the other two show applications.

39

1
if (lowres)

2
bin = 10^4

3
bin = 10^6

4
Vcinitial = bin

TRUE FALSE

Figure 1.6: The control flow graph for the code in Listing 1.14.

1
if (lowres)

2
bin_1 = 10^4

3
bin_2 = 10^6

4
bin_3 = PHI(bin_1, bin_2)
Vcinitial_1 = bin_3

TRUE FALSE

Figure 1.7: The SSA form of the control flow graph for the code in Listing 1.14.

Example 10. This example demonstrates the SSA form and the role of ϕ-functions. Consider

this initialization code from the Shasta Dam water flow simulation (Adams 2018):

1 if (lowres)

2 bin = 10^4

3 else

4 bin = 10^6

5 Vcinitial = bin

Listing 1.14: An excerpt of the initialization code from the Shasta Dam water flow
simulation (Adams 2018).

Figure 1.6 shows the CFG for the code, and Figure 1.7 shows the SSA form of the CFG for the

code. The rstatic function to_ssa converts a CFG into SSA form.

In the CFG, block 2 and block 3 both contain definitions of the bin variable. The SSA form

attaches a subscript to each of these definitions so that they can be uniquely identified. In code,

we denote the subscript by appending _n to the end of the variable name, where n is replaced

by the subscript. Then the assignment in block 2 defines bin_1, and the assignment in block 3

defines bin_2.

The expression in block 4 uses the bin variable, but the definition of bin in block 4 depends

40

on which evaluation path the code takes at run-time. If the condition in the if-statement is TRUE,

then the definition is bin_1. If the condition is FALSE, then the definition is bin_2.

The SSA form uses a ϕ-function to indicate that the definition depends on which evaluation

path is taken. The ϕ-function will return bin_1 if block 2 is evaluated before block 4 at run-time,

and will return bin_2 if block 3 is evaluated before block 4 at run-time. The SSA form creates

a new subscripted variable bin_3 for the result of the ϕ-function. This variable replaces bin in

block 4.

For the remainder of this chapter, we display SSA forms of code as code listings rather than

CFGs. For example, the SSA form as a code listing for Listing 1.14 is:

1 if (lowres)

2 bin_1 = 10^4

3 else

4 bin_2 = 10^6

5 bin_3 = PHI(bin_1, bin_2)

6 Vcinitial_1 = bin_3

Listing 1.15: The SSA form of the code from Listing 1.14.

We do this to make the chapter text easier to read, with the understanding that static code

analyses which use the SSA form use the SSA form of the CFG.

The ϕ-function embodies a point in the code where there is more than one possible definition

for a variable. The evaluation path taken at run-time determines which definition reaches

subsequent uses. It is only necessary to add ϕ-functions to basic blocks in a CFG with more than

one incoming edge. For instance, block 4 in Example 10 has two two incoming edges because

the if-expression in the code.

The next example shows an application of the SSA form.

Example 11. An alias is a variable assigned the value of another variable. The purpose of

this example is to show that the SSA form facilities creating an analysis which detects aliases.

Detecting aliases is useful because static analyses can share information between aliases if they

are known to be aliases.

Aliases are created by assignments where both the left and right-hand side are variables. Thus

one way to find all assignment expressions which create aliases in a CFG cfg is:

41

1 is_alias = function(node) {

2 is(node, "Assignment") && is(node$write, "Symbol") &&

3 is(node$read, "Symbol")

4 }

5 aliases = ast_find_all(cfg, is_alias)

Listing 1.16: An analysis to find assignment expressions which create aliases.

If two variables are aliases for one another and one is reassigned, they are no longer aliases

in the subsequent code. For instance, in this code based on the Shasta Dam water simulation

(Adams 2018), the variables k and Vcinitial are aliases for one another until line 5:

1 k = 4.5 * 10^6

2 Vcinitial = k

3 Vinitial = Vcinitial + Vwinitial

4 # ...

5 k = 0.2 * 10^3

6 MaxV = 1.5 * (Vcinitial + Vwinitial)

Listing 1.17: A modified excerpt of the initialization code from the Shasta Dam
water flow simulation (Adams 2018). The ... comment indicates code
was omitted.

For the code in Listing 1.17, the alias analysis in Listing 1.16 returns the assignment expression

Vcinitial = k, meaning that Vcinitial and k are aliases. The analysis does not detect that

they stop being aliases for one another after line 5 of Listing 1.17. We could address this by

changing the analysis to provide more precise information about regions of code where aliases

are active, but by instead using the SSA form we can get this information without any extra

implementation effort.

The SSA form of the code in Listing 1.17 is:

1 k_1 = 4.5 * 10^6

2 Vcinitial_1 = k_1

3 Vinitial_1 = Vcinitial_1 + Vwinitial_1

4 # ...

5 k_2 = 0.2 * 10^3

6 MaxV_1 = 1.5 * (Vcinitial_1 + Vwinitial_1)

42

Listing 1.18: The SSA form of the code in Listing 1.17. The ... comment indicates
code was omitted.

For this code, the result of the alias analysis in Listing 1.16 is the assignment expression

Vcinitial_1 = k_1, meaning Vcinitial_1 and k_1 are aliases. Since the SSA form does not

contain redefinitions, these variables are aliased for the entirety of the code. In other words,

using the SSA form ensures that the results from the alias analysis are applicable to all of the

code, thus making them simpler for subsequent analyses to use.

The main benefit of the SSA form for the alias analysis in Example 11 is that it gives a unique

identifier to every definition and does not allow redefinitions. This property is useful for most

analyses which collect information about values of variables, because they can use the identifiers

to unambiguously associate information with the values of variables at specific points in the

code.

The next example demonstrates another application of the SSA form, one which foreshadows

how we use the SSA form for type inference Chapter 2.

Example 12. A variable is constant if its value is the same every time the code is evaluated. If

a variable is constant and we can determine its value with static analysis, then we can transform

the code, replacing all instances of the variable with its value. This transformation is called

constant propagation.

Constant propagation is beneficial because literal values are more informative than variables—

their type, dimensions, and value-dependent properties (whether the value is the missing value,

for example) are all exposed. Subsequent static analyses can use this information, as can human

readers trying to understand the code. This example discusses two cases where the SSA form

facilitates constant propagation.

As the first case, consider this version of the initialization code for the Shasta Dam water flow

simulation (Adams 2018):

1 bin = 10^6

2 Vcinitial = bin

3 # ...

4 if (Vcinitial >= bin)

5 Vwinitial = 0

6 else

43

7 Vwinitial = 10^4

8 Vinitial = Vcinitial + Vwinitial

Listing 1.19: An excerpt of the initialziation code for the Shasta Dam water flow sim-
ulation (Adams 2018), with modifications. The ... comment indicates
omitted code.

The variable Vwinitial is assigned different values depending on the condition in the if-expression.

Since condition is written in terms of constants, we can see that the condition will always be

TRUE. The code in the body of the else expression is dead code, code that never runs. We want

the constant propagation analysis to detect that the else expression is dead code, so Vwinitial

is constant.

As the second case, consider a different version of the code where the if-expression depends on

a setting loaded from a file:

1 settings = readRDS("default_settings.rds")

2 bin = 10^6

3 # ...

4 if (settings[["lowres"]])

5 Vwinitial = 10^6 - bin

6 else

7 Vwinitial = 0

8 Vinitial = Vcinitial + Vwinitial

Listing 1.20: A version of the code from Listing 1.19 where the condition is not
constant, but Vwinitial is still constant.

In this case, a static analysis can’t determine whether the if-expression’s condition will be TRUE

or FALSE at run-time. Nevertheless, since bin is the constant 10^6, we can see that Vwinitial

is assigned the same value on both branches of the if-statement. This is another scenario we’d

like our constant propagation analysis to be able to handle. The analysis should compare the

potential assignments for each variable. If they are all the same, then the variable is a constant,

as Vwinitial is here.

Both cases are addressed by the sparse conditional constant propagation (SCCP) algorithm

(Wegman and Zadeck 1991). The algorithm uses the SSA form of the CFG to identify blocks

of dead code and to determine where different assignments of a variable have the same value.

Without the SSA form for R code, we would not be able to use this algorithm. We won’t describe

the entire algorithm here, but the remainder of this example discusses how the algorithm uses

44

the SSA form to handle the two cases.

Consider the SSA form of the code from Listing 1.19:

1 bin_1 = 10^6

2 Vcinitial_1 = bin_1

3 # ...

4 if (Vcinitial_1 >= bin_1)

5 Vwinitial_1 = 0

6 else

7 Vwinitial_2 = 10^4

8 Vwinitial_3 = PHI(Vwinitial_1, Vwinitial_2)

9 Vinitial_1 = Vcinitial_1 + Vwinitial_3

Listing 1.21: The SSA form of the code from Listing 1.19.

The SCCP algorithm propagates constants from defintions to uses. The ϕ-function on line 8

specifies that the value of Vwinitial_3 can be either Vwinitial_1 or Vwinitial_2, depending

on which evaluation path is selected at run-time. Both Vwinitial_1 and Vwinitial_2 are

constants, so the algorithm can propagate their values into the ϕ-function:

7 Vwinitial_3 = PHI(0, 10^4)

Similarly, since bin_1 and Vcinitial_1 are constants, the SCCP algorithm can propagate their

values into the condition for the if-expression:

3 if (10^6 >= 10^6)

Then the algorithm can deduce that the condition is TRUE, so the code in the body of the

if-expression will always be evaluated rather than the code in the body of the else-expression.

Thus the ϕ-function will always return 0, and the analysis determines that Vwinitial_3 is

constant.

Now consider the second case, in Listing 1.20. The SSA form of the code is:

1 settings_1 = readRDS("default_settings.rds")

2 bin_1 = 10^6

3 # ...

4 if (settings_1[["lowres"]])

5 Vwinitial_1 = 10^6 - bin_1

45

6 else

7 Vwinitial_2 = 0

8 Vwinitial_3 = PHI(Vwinitial_1, Vwinitial_2)

9 Vinitial_1 = Vcinitial_1 + Vwinitial_3

Listing 1.22: The SSA form of the code from Listing 1.20.

Again the SCCP algorithm propagates constants from definitions to uses. Since bin_1 is a

constant, the assignment on line 4 becomes:

4 Vwinitial_1 = 0 # 10^6 - 10^6

Thus Vwinitial_1 is a constant, and propagating its value to the ϕ-function on line 7 produces:

7 Vwinitial_3 = PHI(0, 0)

Since both of the values in the ϕ-function are the same, the value of Vwinitial_3 is the same

no matter which evaluation path is selected at run-time. Thus the analysis can conclude that

Vwinitial_3 is constant.

By using the SSA form, the SCCP algorithm is simple and handles control flow expressions

correctly, even when they are nested or contain multiple assignment expressions. Also note

that when the code is in SSA form, we can think of constant propagation as an analysis which

maps as many SSA names as possible to literal values. The resulting mapping can be used to

transform the code by substitution, but can also be used without transforming the code. As

in the alias analysis in Example 11, the fact that the SSA form provides names for specific

assignments rather than for variables is crucial to avoid ambiguity.

The SSA form makes the results of a reaching definitions analysis explicit in the CFG, so that

subsequent analyses can use this information. In particular, analyses can check which definitions

are associated with an expression which uses a variable, or which expressions depend on a given

definition. Since definitions have unique names in the SSA form, the form also makes it simple

to associate information with the value of a variable over a particular region of code, even if

that variable is reassigned in the code.

1.4.3 Related Work

The CodeDepends package (Temple Lang, Peng, et al. 2018) provides tools for analyzing

dependencies between blocks of R code. The package was the primary inspiration for rstatic,

46

and there is some overlap in functionality. The centerpiece of the CodeDepends package is the

function getInputs, which analyzes expressions to determine their inputs and outputs (in terms

of variables, files, and side effects). While rstatic provides functions to find variables that are

defined by or used in expressions, they are more narrowly focused than the getInputs function.

The other functions in the CodeDepends package are thorough implementations of specific

code analyses. Many of these can be built from the functions in rstatic (and some are examples

in this chapter), but the focus of rstatic is on providing reusable operations for building code

analyses, rather than providing complete analyses.

The R Optimizations with Static Analysis (ROSA) project (Sen et al. 2017) is a research

project that investigates applying textbook compiler optimizations to R code. Many of these

optimizations rely on information collected through data flow analyses, similar to the data flow

analyses provided in rstatic. Unlike rstatic, ROSA is not an R package, is not developed in

R, and is not intended to facilitate experimentation with and development of new analyses by

the R community. The ROSA software can also compile a subset of R code to C++ code that

manipulates R objects.

1.5 Conclusion

This chapter presented a framework for static analysis and transformation of R code. The

framework is based on modern code analysis techniques and implemented in the package rstatic.

The framework provides strategies for handling three different characteristics of code:

• For analyzing the code’s syntax and structure, the abstract syntax tree is the simplest

and most appropriate representation to use. The AST is also a building block for all

other analysis techniques. The rstatic package provides its own hierarchy of classes to

represent ASTs. These classes make it possible to access the parent of any expression in

the AST and to attach arbitrary metadata to expressions. The classes are organized into a

hierarchy based on the meanings of expressions, so that analysis implementors can use

generic functions and specialized methods to handle specific kinds of expressions. The

rstatic package also provides several functions, such as ast_find_all, for searching and

transforming ASTs.

• For analyzing properties of the code which depend on control flow, the control flow graph

is a more appropriate representation than the AST. Each node in the graph is a basic

47

block, a sequence of expressions which do not affect control flow. Each edge in the graph

represents control flow from one basic block to others. Consequently, the edges of the CFG

are an explicit representation of the different ways in which the code can be evaluated

at run-time. This is convenient for traversing the expressions in the code in order of

evaluation. Most analyses which depend on control flow also depend on data flow, so we

generally do not use the CFG on its own, but instead as a foundation for data flow analysis

techniques. The rstatic package provides data structures and functions to convert R code

to and from CFG form.

• For analyzing how data flows between expressions, we presented two different approaches,

both based on the CFG. The iterative data flow analysis algorithm is a general algorithm for

computing sets of information about the basic blocks or expressions in a CFG. The rstatic

function dfa_solve implements the algorithm for R code. The static single assignment

form is a form of the CFG which explicitly indicates which definitions of variables can

reach uses of those variables. The key feature of the SSA form is that it gives a unique

name to each variable definition, so that there is no ambiguity in expressions which use

variables. The SSA form is useful for analyses which collect information related to the

values of variables or how expressions depend on one another. The rstatic package provides

functions to convert R code to SSA form.

This framework is useful for a wide variety of different analyses, such as detecting and removing

redundant expressions, detecting aliases, propagating constants, and determining the lifetimes of

variables. It is also the foundation for the type inference strategy described in Chapter 2.

48

Chapter 2

Type Inference for R Code

2.1 Introduction

A type is a category for data values in a programming language. Values of the same type have

properties in common, such as their functionality and representation in memory (Cooper and

Torczon 2012). For instance, in R the values TRUE and FALSE have type logical, and quoted

strings have type character.

This chapter presents a type inference strategy for R code. Type inference is a static analysis

which examines code in order to infer a type for every expression. R does not provide a

mechanism to declare or annotate the types of expressions in code, so type inference is necessary

if one wants to recover the types without running the code.

The applications for types which motivate this chapter are:

• Reasoning about and summarizing code. A value’s type characterizes the operations

with which it is compatible, so type information facilitates reasoning about code. For

instance, a function’s type signature specifies the types of arguments the function accepts

and the type of result the function returns. Type signatures are helpful for identifying the

appropriate function to solve a problem, and for using functions and their results correctly.

• Checking code for errors. Code can be checked programatically for type errors—errors

caused by applying an operation to an incompatible type of value. R checks for type

errors at run-time, but inferring the types and checking for errors before run-time prevents

wasting time and compute resources on erroneous code.

• Transforming or translating code. A value’s type characterizes its size and representa-

tion (for example, integer, floating point, or double-precision floating point) in memory.

49

This information is necessary in order to translate code into hardware instructions, because

most hardware instructions assume specific sizes and representations for their operands.

Translating R code into hardware instructions is desirable because doing so can reduce

run-times by orders of magnitude and makes it possible to run R code on new platforms

and hardware, such as graphical processing units (Temple Lang 2014).

The first example demonstrates the basic idea of type inference.

Example 13. Suppose we want to infer the type of the variable y in this code to generate

observations from a linear model:

1 b0 = 10.2

2 b1 = 4

3 n = 100

4 x = runif(n)

5 e = rnorm(n)

6 y = b0 + b1 * x + e

Listing 2.1: Code to generate 100 observations from a linear model.

The value of y is the result of the expression b0 + b1 * x + e. The type of this value depends

on the functions the expression calls (+ and *) and their arguments (b0, b1, x, and e).

Following R’s order of operations, first consider the arguments in the multiplication b1 * x.

The variable b1 is assigned the literal value 4. In R, the literal value 4 is a numeric vector,

which corresponds to type double (R also has an integer type, but literal numbers default to

the double type even if they are integer-valued). The variable x—the other argument in the

multiplication—is assigned the result of the call runif(n). The runif function always returns

a numeric vector. Thus b1 * x returns a numeric vector, since the multiplication operator *

returns a numeric vector if both of its operands are numeric vectors.

Next, consider the expression b0 + b1 * x. The variable b0 is assigned the literal value 10.2,

which is a numeric vector. Thus b0 + b1 * x returns a numeric vector, since the addition

operator + also returns a numeric vector if both of its operands are numeric vectors.

Finally, consider again the entire expression b0 + b1 * x + e. The variable e is assigned

the result of the call rnorm(n). Like the runif function, the rnorm function always returns a

numeric vector. It follows that the entire expression b0 + b1 * x + e returns a numeric vector.

Therefore the inferred type for y is double.

50

In addition to inferring the type of y, the analysis can also infer the dimensions. The sequence

of steps is the same, but each step depends on the restrictions expressions place on dimensions

rather than types. For instance, the variable b1 is a scalar since it is assigned the scalar 4. The

variable x is a vector with n elements, because the length of the value returned by runif is

equal to the value of its first argument. By R’s rules for vectorized operations, it follows that

the result of b1 * x is a vector with length n. Continuing this analysis eventually leads to the

conclusion that y is a vector with length n.

Furthermore, the variable n is assigned the literal value 100, so the analysis can infer than y

has length 100. If n was not assigned a literal value, it would not be possible to determine the

exact length of y, but the symbolic length n is nevertheless an insight into how y is related to

other variables such as x and e (which also have length n).

The design of the type inference strategy described in this chapter is guided by several

observations—the first three of which were alluded to in Example 13:

• Type inference depends on knowledge about the restrictions functions place on types—

especially R’s built-in functions. A baseline of knowledge must be built into the type

inference strategy. Additional knowledge can be collected programatically by analyzing

function definitions. The type inference strategy described in this chapter can only analyze

functions written in R, but Chapter 3 presents a type inference strategy for calls from R

to routines written in C.

• Combining information across the entirety of code can reveal properties that are not

evident from analyzing expressions in isolation. The type inference strategy described in

this chapter combines information by using a constraint system based on the investigations

of Heeren et al. (2002) into type inference for ML code.

• The steps to infer dimensions are similar to the steps to infer types, to the extent that the

two can be done simultaneously as components of one analysis. The type inference strategy

described in this chapter only infers dimensions for expressions where the dimensions

depend on a single value or variable, but can be extended to handle more complex cases.

• The type and classes of an R object are both necessary for the applications described at the

beginning of this chapter, because these provide a richer characterization of an object than

the type alone. In particular, R makes extensive use of generic functions which dispatch

51

specialized methods based on the classes of their arguments. The type inference strategy

described in this chapter is designed to infer classes in addition to types where possible.

Here’s how the remainder of this chapter is organized:

• Section 2.2 describes conventions for how code is represented in the chapter and during

type inference. In particular, the type inference strategy depends on the static single

assignment (SSA) form for R code introduced in Chapter 1.

• Section 2.3 describes the Damas-Milner type inference strategy (Damas and Milner 1982),

which is the foundation for our own type inference strategy.

• Section 2.4, our primary contribution, describes cases where the original Damas-Milner

type inference strategy is insufficient to infer types for R code, identifies whether static

type inference is still possible, and where it is, suggests how to adapt the strategy.

• Section 2.5 is a brief overview of two R packages we created for type inference on R

code. Subsection 2.5.1 describes the typesys package, which provides data structures

to represent types and functions to compute on them. Subsection 2.5.2 describes the

RTypeInference package, a prototype implementation of the type inference strategy

described in this chapter.

• Section 2.6 describes related work by other researchers.

2.2 Background on How We Represent Code

The type inference strategy described in this chapter is designed to operate on the static single

assignment (SSA) form of R code. The SSA form was introduced in Chapter 1; see Section 1.4.2

for an overview of the SSA form and its trade-offs compared to other representations for code.

The rstatic package, which was also introduced in Chapter 1, provides data structures and

functions to convert R code into SSA form. The package also provides a function to convert from

SSA form back into ordinary R code given that no transformations were applied to the SSA form.

Simple algorithms to convert from SSA form back into ordinary code even if transformations

were applied exist (Cooper and Torczon 2012), and one of these could be implemented for the

rstatic package if necessary.

52

The motivation for using SSA form is that it explicitly indicates which definitions can reach a

variable at any given point in the code. To see why this matters, consider that a variable can

be redefined at any point in R code. If the code also contains if-statements and loops, which

definition will reach the variable can depend on run-time conditions. For example, in the code

below, the definition of the variable problems depends on the value of is_converged:

1 problems = NULL

2 if (!is_converged) {

3 is_problem = sapply(fit$Rhat, max, na.rm = TRUE) > 1.1

4 problems = names(fit$Rhat)[is_problem]

5 }

6 result = list(activity = activity, problems = problems)

This example is simple, so it’s apparent that either definition (line 1 or line 4) could reach

problems at line 6. In general, a non-trivial static analysis is necessary to programatically

determine which definitions can reach each variable at each point in code. This analysis is one

of the analyses carried out when code is converted into SSA form, and the results are explicitly

indicated in the form.

In other words, in SSA form, each variable corresponds to a single definition. Where the R

code redefines a variable, the SSA form gives the variable a new name. Where two or more

definitions can reach a variable in the R code, the SSA form inserts a new variable defined by

a call to the ϕ-function. The call to the ϕ-function indicates all definitions which can reach

that variable. As a result, the type of a variable in SSA form is the type of the definition. If

the definition is a ϕ-function, the type is a combination of the types of the arguments (this is

defined more precisely in Section 2.4).

The SSA form also provides a simple way to handle one of R’s unique features: replacement

functions. A replacement function is a function which returns a modified copy of its first

argument and has a name ending with <-. For instance, the length<- function returns a copy

of its first argument with the length changed (based on other arguments). R provides syntactic

sugar for calling replacement functions, so the code to call length<- on a vector x and replace

x with a copy that has length 8 is:

1 length(x) = 8

53

Listing 2.2: Syntactic sugar to call the length<- function. The value of x is replaced
with the result of the call, a copy of x which has length 8.

According to the R Language Definition (R Core Team 2019a), the expression is equivalent to:

1 `*tmp*` = x

2 x = "length<-"(`*tmp*`, value = 8)

3 rm(`*tmp*`)

Listing 2.3: The meaning of the code in Listing 2.2.

In SSA form, there’s no need for the temporary variable *tmp*. The replacement expression can

be written as:

1 x_2 = "length<-"(x_1, value = 8)

Listing 2.4: The SSA form of the code from Listing 2.2.

The SSA form makes it explicit that the value of the variable x is changed by the replacement

expression. This is important for type inference, since replacement expressions can change the

type, class, or dimensions of an object.

Where relevant, the examples in this chapter indicate whether or not the code is in SSA form.

2.3 The Damas-Milner Type Inference Strategy

The type inference strategy for R is based on Damas-Milner (DM) type inference, a type inference

strategy invented by Damas and Milner for the ML programming language (1982). We chose DM

type inference as a foundation because ML and R are both functional programming languages and

have several characteristics in common. In both, most objects do not have reference semantics

(where modifying the object affects all variables which refer to the object) and most functions

do not have side effects. This section describes the DM type inference strategy, in preparation

for the modifications presented in Section 2.4.

Heeren et al. (2002) recommend dividing the DM type inference strategy into two steps: a

constraint generation step where information is collected from individual expressions, and a

constraint resolution step where the collected information is combined in order to draw conclusions

about the types in the code. The main benefits of this division are that the type inference

algorithm can provide more precise information about which expressions cause type errors and

that it simplifies the implementation by separating concerns. Subsection 2.3.1 describes the

constraint generation step, and Subsection 2.3.2 describes the constraint resolution step.

54

Source Code
(SSA Form)

Constraint Generation

Equality Constraints
Instance Constraints

Constraint Resolution

Types

Types
Type Variables

composed of

Figure 2.1: The type inference strategy is composed of two steps: constraint gen-
eration and constraint resolution. The constraint generation step takes
source code in SSA form as input, generates a type variable for each
non-literal expression in the code, and generates constraints on those
type variables based on how the results of expressions are used in sub-
sequent code. The constraints are written in terms of types and type
variables. The constraint resolution step unifies each constraint to find a
substitution of type variables so that the constraint is satified. The end
result is a type for the result of each expression.

55

2.3.1 Constraint Generation

The goal of type inference is to determine the type of the result of every expression (including

subexpressions) in the code. At the beginning of inference, these types are unknown for all

expressions except literal values. As a placeholder for this unknown information, the type

inference strategy generates a type variable for each expression that isn’t a literal value.

Type variables are analogous to mathematical variables—just as one solves for the values of

variables in a mathematics problem, the type inference strategy solves for the values (which

are types) of type variables. In this chapter, type variables are denoted by lowercase Greek

letters, and the notation e : τ means the result of the expression e has type τ . An assumption

set records which expression in the code corresponds to each type variable.

The constraint generation step of type inference analyzes each expression in the code in order

to determine constraints on the types of results the expressions can return without causing an

error. For instance, the condition in an if-expression must return a logical scalar or else the code

will raise an error. Constraints are recorded in terms of the type variables which correspond to

the expressions.

This section is divided into two subsections. The first explains the different kinds of constraints

produced by the constraint generation step, while the second explains the rules for generating

the constraints from expressions.

The Kinds of Constraints

The type inference strategy uses two different kinds of constraints: equality constraints and

instance constraints. This subsection explains these two kinds of constraints.

An equality constraint, denoted α ≡ β, means that the type α must equal the type β. The

next example demonstrates an equality constraint.

Example 14. Consider the expression if (y > 4) y else y^2 and suppose the type inference

strategy generated the type variable τ as a placeholder for the type of the result of y > 4. We

denote this by y > 4 : τ . The condition in an if-expression must be a logical scalar, so based on

the if-expression, the strategy can generate a constraint τ ≡ integer.

Note that τ ≡ integer is a constraint on τ , not a definition of τ . If the code contains type

errors, then τ can also appear in other, contradictory constraints.

Equality constraints are too restrictive for constraining the type signatures of functions. The

56

type inference strategy can infer a type signature for a function based on its definition and can

also infer a type signature for a function based on a call. The strategy can combine information

from these two sources by putting a constraint between them. However, an equality constraint

would mean that the function only accepts the types of arguments in the call.

There are many functions which can accept different argument types at different call sites.

These functions are called polymorphic functions. For example, R’s length function is polymor-

phic. A function can be polymorphic in one or multiple arguments.

In addition to the use already described, the type inference strategy uses type variables in

the type signatures of functions to represent arguments that can have any type. This is a

natural result of how the type inference strategy works. If a function’s definition doesn’t put

any restrictions on the type of an argument, then applying the type inference strategy to the

definition will return a type variable for that argument. In other words, the type inference

strategy will not be able infer a type for the argument because there are no restrictions on

its type. The next example shows how the strategy uses type variables to represent the type

signatures of polymorphic functions.

Example 15. The length function is polymorphic and always returns an integer, so it can be

typed as α → integer. The arrow → denotes a function type, which maps a list of argument

types (here just the single argument type α) to a return type (integer).

Instead of equality constraints, the type inference strategy uses instance constraints to combine

information from calls and function definitions. An instance constraint means that one type

is an instance of another—a one-way relationship. During constraint resolution, information

in an instance constraint is propagated from the type signature for the definition to the type

signature for the call, but not vice-versa. This way the strategy can accommodate polymorphic

functions that have different type signatures at different call sites.

A constraint that type α is an instance of a type β is denoted α ≤ β. During constraint

resolution, information is passed one way from β to α by replacing the type variables in β with

new type variables and then treating the constraint as an equality constraint. Section 2.3.2

describes the constraint resolution step in detail.

When the code being analyzed contains nested function defintions, handling instance constraints

correctly requires extra information. For example, suppose we apply type inference to this code,

which is based on an example from Milner (1978):

57

1 tag_two = function(a) {

2 tag = function(x) list(x, a)

3 list(tag(1), tag("hi"))

4 }

During the constraint generation step, the strategy creates a type variable α for the parameter

a. It also creates a type variable ξ for x. The tag function returns a list which contains a, so

the type signature inferred from the definition of tag contains the type variable α:

ξ → list(ξ, α)

The strategy creates instance constraints for each of the two calls to tag on line 3. When the

instance constraints are resolved during constraint resolution, it is correct to replace ξ with a

new type variable for each call, since tag is polymorphic in x (so ξ can be replaced by different

types at different call sites). On the other hand, it is not correct to replace α with a new type

variable for each call—α is the same type for both calls. More generally, if an instance constraint

contains type variables associated with parameters of an enclosing function, they should not be

replaced with new type variables during constraint resolution. Thus instance constraints are

usually accompanied by a set of monomorphic type variables—type variables which should not

be replaced during constraint resolution.

We denote the set of monomorphic type variables for an instance constraint by M or by

showing the actual set. Moreover, we denote a constraint that α is an instance of β accompanied

by the monomorphic set M by α ≤M β. The monomorphic sets can be computed during the

constraint generation step using a simple analysis that collects the parameters of all enclosing

functions for each expression (Heeren et al. 2002).

The next example reiterates why the DM type inference strategy uses instance constraints.

Example 16. Suppose two call expressions, length(TRUE) and length(3i), are in the code

being analyzed. Assign a type variable to each expression and to each length subexpression:

length(TRUE) : β1 and length : τ1

length(3i) : β2 and length : τ2

(2.1)

Based on the first call, length is a function which accepts a single logical argument. Based on

the second call, length is a function which accept a single complex argument. We can represent

58

this information with two equality constraints:

τ1 ≡ Logical → β1 and τ2 ≡ Complex → β2 (2.2)

Suppose we also know that length is a polymorphic function with type α → integer, where

the type variable α indicates that the function accepts any type—so α is not an unknown for

which to solve, but will be replaced with a specific type at each call site. We could (incorrectly)

try to use this information by generating two more equality constraints:

τ1 ≡ α → integer and τ2 ≡ α → integer (2.3)

The problem is that (2.2) and (2.3) together are contradictory, since they imply α = Logical

but also α = Complex. Instance constraints provide enough flexibility to avoid a contradiction:

τ1 ≤∅ α → integer and τ2 ≤∅ α → integer (2.4)

During constraint resolution, each instance constraint is rewritten as an equality constraint,

and the type variables on the right-hand side are replaced with new type variables. So the two

constraints in (2.4) become:

τ1 ≡ α1 → integer and τ2 ≡ α2 → integer (2.5)

Then α1 = Logical and α2 = Complex, so there is no contradiction. The type inference strategy

can’t generate the constraints in (2.5) from the beginning, because it’s not always possible to

determine which types correspond to polymorphic functions before constraint resolution.

Example 16 assumes the code being analyzed is not part of a function definition, so the set

M = ∅ for both constraints in Statement 2.4. Example 18 demonstrates code where constraint

generation produces instance constraints with a non-empty set M .

The Constraint Generation Rules

During constraint generation, expressions are analyzed from last to first. Heeren et al. (2002)

describe constraint generation rules for five different kinds of expressions. Here are the five rules,

adapted to R’s syntax but otherwise left as-is:

59

1. Literal Values. Do not generate any new type variables or constraints. The type of the

result of the expression is the type of the literal value.

2. Symbols (including variable names, parameters, and function names). Generate a new

type variable τ for the expression and add it to the assumption set. The type of the result

of the expression is τ .

3. Calls. Recursively apply the constraint generation rules to the subexpressions. Suppose τ

is the type variable generated for the called function and α1, . . . , αn are the type variables

generated for the arguments. Generate a new type variable β for the call, and add it to

the assumption set. Generate a new equality constraint:

τ ≡ (α1, . . . , αn) → β (2.6)

In words, the type of the called object must be a function type which accepts the argument

types and returns the return type. The type of the result of the expression is β.

4. Assignments. Recursively apply the constraint generation rules to the subexpression on

the right-hand side. Suppose τ is the type variable generated for the expression on the

right-hand side. For each type variable τe in the assumption set which corresponds to an

expression e of the symbol on the left-hand side, generate a new instance constraint:

τe ≤Me
τ (2.7)

Where Me contains all type variables which correspond to parameters at expression e in

the code. The type of the result of the assignment expression is τ .

5. Function Definitions. Recursively apply the constraint generation rules to the body of

the function. Suppose n is the number of parameters and β is the type variable generated

for the result of the function. For each parameter from p = 1, . . . , n:

a) Generate a new type variable αp and add it to the assumption set.

b) For each type variable τe in the assumption set which corresponds to an expression e

of the parameter p, generate a new equality constraint:

τe ≡ αp (2.8)

60

Note that this step is similar to the rule for assignments but generates equality

constraints instead of instance constraints (so the type of a parameter is not an

instance of another type, so parameters cannot be polymorphic functions).

The type of the result of the function definition is (α1, . . . , αn) → β.

The next example shows how the type inference strategy applies rules 1–4 to R code. Exam-

ple 18 shows how the type inference strategy applies rule 5 to R code.

Example 17. Recall the code from Listing 2.1 in Example 13, which generates observations

from a linear model:

1 b0 = 10.2

2 b1 = 4

3 n = 100

4 x = runif(n)

5 e = rnorm(n)

6 y = b0 + b1 * x + e

Listing 2.5: Code to generate 100 observations from a linear model, originally shown
in Listing 2.1.

The constraint generation analysis begins at the expression y = b0 + b1 * x + e. In the

order of operations, b1 * x is the first call evaluated. The analysis applies the rule for symbols

to the subexpressions b1, x, and *, generating a new type variable for each:

b1 : τ1 x : τ2 * : τ3 (2.9)

Next, the analysis applies the rule for calls—which has two parts—to b1 * x. First, the

analysis generates a new type variable β1 for the result of the call:

b1 * x : β1 (2.10)

Second, the analysis generates an equality constraint on the type (τ3) of the called function (∗),

based on the types of the arguments (τ1, τ2) and return type (β1) for the call:

τ3 ≡ (τ1, τ2) → β1 (2.11)

61

The analysis proceeds to the call b0 + (b1 * x); we use parentheses to indicate that the

analysis already visited b1 * x. The analysis generates new type variables for the symbols b0

and +, as well as for the result of the call:

b0 : τ4 + : τ5 b0 + b1 * x : β2 (2.12)

The analysis also generates an equality constraint on the type of the called function +:

τ5 ≡ (τ4, β1) → β2 (2.13)

Next, the analysis proceeds to the call (b0 + b1 * x) + e. The analysis creates new type

variables for + and e, as well as for the result of the call:

e : τ6 + : τ7 b0 + b1 * x + e : β3 (2.14)

Note that + : τ7 does not conflict with Statement 2.12, since type variables correspond to

expressions, not to R variables. The analysis also generates an equality constraint on the called

function +:

τ7 ≡ (β2, τ6) → β3 (2.15)

The analysis proceeds to the overall expression y = b0 + b1 * x + e and applies the rule for

assignments. No new type variables are generated. There are no type variables in the assumption

set bound to a symbol that matches y, so no constraints are generated either.

Next, the analysis moves to the expression e = rnorm(n). For the right-hand side of the

expression, the analyses creates new type variables for the symbols and the result of the call:

n : τ8 rnorm : τ9 rnorm(n) : β4 (2.16)

The analysis also generates a constraint for the call:

τ9 ≡ τ8 → β4 (2.17)

The overall expression e = rnorm(n) is an assignment, and in this case, e : τ6 is in the assumption

set (Statement 2.14), so the analysis removes τ6 from the assumption set and generates this

62

instance constraint:

τ6 ≤∅ β4 (2.18)

That is, the type (τ6) of the expression e on line 6 of Listing 2.5 must be an instance of the type

(β4) of the expression rnorm(n) on line 5. The instance constraint is subject to the empty set ∅

since this code is not part of a function definition.

For the next expression, x = runif(n), the analysis again applies the rule for symbols, the

rule for calls, and the rule for assignments. The analysis generates these three type variables:

n : τ10 runif : τ11 runif(n) : β5 (2.19)

The analysis also generates these two constraints:

τ11 ≡ τ10 → β5 τ2 ≤∅ β5 (2.20)

Next, the analysis proceeds to the expression n = 100. The analysis applies the rule for

literal values to 100, which has type double, and does not generate any new type variables

or constraints. Then the analysis applies the rule for assignments to the overall expression.

This leads to two instance constraints, since there are two type variables which correspond to

expressions of n:

τ8 ≤∅ double τ10 ≤∅ double (2.21)

The expressions b1 = 4 and b0 = 10.2 follow the same pattern of analysis as n = 100. For

each, the analysis applies the rule for literal values and the rule for assignments. This leads to

two constraints:

τ1 ≤∅ double τ4 ≤∅ double (2.22)

The constraint generation analysis is complete. Figure 2.2 shows a summary of the type

variables and constraints generated. Example 19 presents the constraint resolution step for these

constraints.

Example 17 showed the application of the DM type inference rules 1–4. The last rule, rule 5,

is for function definitions. The next example shows a case where the type inference strategy

applies rule 5.

Example 18. Suppose code from Listing 2.1 is rewritten as a function with parameters for the

63

y = b0 + b1 * x + e

b1 : τ1, x : τ2, * : τ3, b0 : τ4, + : τ5, e : τ6, + : τ7

b1 * x : β1, b0 + b1 * x : β2, b0 + b1 * x + e : β3

τ3 ≡ (τ1, τ2) → β1

τ5 ≡ (τ4, β1) → β2

τ7 ≡ (β2, τ6) → β3

e = rnorm(n)

n : τ8, rnorm : τ9

rnorm(n) : β4

τ9 ≡ τ8 → β4

τ6 ≤∅ β4

x = runif(n)

n : τ10, runif : τ11

runif(n) : β5

τ11 ≡ τ10 → β5

τ2 ≤∅ β5

n = 100

{
τ8 ≤∅ double
τ10 ≤∅ double

b1 = 4
{

τ1 ≤∅ double

b0 = 10.2
{

τ4 ≤∅ double

Figure 2.2: The type variables and constraints generated by the analysis for each
expression in Listing 2.5.

64

covariate and the function which generates the error term. Here’s the code after rewriting:

1 function(x, errfun) {

2 b0 = 10.2

3 b1 = 4

4 n = length(x)

5 e = errfun(n)

6 b0 + b1 * x + e

7 }

Listing 2.6: The code from Listing 2.5 to generate 100 observations from a linear
model, rewritten as a function.

This example examines how this change in the code changes the constraints the type inference

strategy generates. Since constraint generation rules 1–4 were described in detail in Example 17,

we only point out differences and the application of rule 5. Figure 2.3 shows all of the generated

type variables and constraints, with the differences indicated.

Before applying the rule for function definitions, the type inference strategy analyzes the code

in the body of the function. As usual, the analysis proceeds from last to first expression and

analyzes each expression in the order of operations. Thus constraint generation begins with the

expression b0 + b1 * x + e (and its subexpressions), which produces the same constraints as

in Example 17.

The first difference is the expression e = errfun(n) on line 5. The constraint generation rules

for symbols, calls, and assignments all apply as seen before. The generated type variables are:

n : τ8 errfun : τ9 errfun(n) : β4 (2.23)

The original had rnorm : τ9 and rnorm(n) : β4. The generated constraints are:

τ9 ≡ τ8 → β4 τ6 ≤M1
β4 (2.24)

Since this expression is inside of a function definition, the instance constraint on τ6 is subject

to a nonempty set M1. The type inference strategy will determine the contents of M1 when it

analyzes the function definition.

The next difference is the expression n = length(x) on line 4. The type inference strategy

65

b0 + b1 * x + e

b1 : τ1, x : τ2, * : τ3, b0 : τ4, + : τ5, e : τ6, + : τ7

b1 * x : β1, b0 + b1 * x : β2, b0 + b1 * x + e : β3

τ3 ≡ (τ1, τ2) → β1

τ5 ≡ (τ4, β1) → β2

τ7 ≡ (β2, τ6) → β3

e = errfun(n)

n : τ8, errfun : τ9

errfun(n) : β4

τ9 ≡ τ8 → β4

τ6 ≤{α1, α2} β4

n = length(x)

x : τ12, length : τ13

length(x) : β6

τ13 ≡ τ12 → β6

τ8 ≤{α1, α2} β6

b1 = 4
{

τ1 ≤∅ double

b0 = 10.2
{

τ4 ≤∅ double

function(x, errfun)

x : α1, errfun : α2

α1 ≡ τ2

α1 ≡ τ12

α2 ≡ τ9

Figure 2.3: The type variables and constraints generated by the analysis for each
expression in Listing 2.6. Differences in the type variables and constraints
compared to Figure 2.2 are shown in black. The type variables and
constraints on τ10, τ11, and β5 (from a call to rnorm) are no longer
generated.

66

generates three new type variables:

x : τ12 length : τ13 length(n) : β6 (2.25)

These type variables are named τ12, τ13, and β6 to avoid confusion with τ10, τ11, and β5, which

appeared in Example 17 but do not appear in this example. The type inference strategy also

generates these constraints:

τ13 ≡ τ12 → β6 τ8 ≤M2
β6 (2.26)

Again, the instance constraint is subject to a set (M2) which will be determined when the type

inference strategy analyzes the function definition.

The remaining expressions in the body of the function are the same as in the original, so we do

not repeat the details here. Finally, the type inference strategy analyzes the function definition

function(x, errfun) and applies the corresponding rule. First, the strategy generates a type

variable for each of the parameters:

x : α1 errfun : α2 (2.27)

The type inference strategy also adds these type variables to the sets M1 and M2 for the two

instance constraints generated for expressions in the body of the function. This ensures that

α1 and α2 cannot be replaced with fresh type variables in the instance constraints, so they can

each only have one type throughout the body of the function. Then the strategy generates an

equality constraint for each type variable that corresponds to an expression of x (τ2, τ12) and an

expression of errfun (τ9):

α1 ≡ τ2 α1 ≡ τ12 α2 ≡ τ9 (2.28)

With that done, the constraint generation step is complete.

2.3.2 Constraint Resolution

The constraint resolution step uses the generated constraints to solve the type inference problem

by replacing as many type variables as possible with more specific types. A crucial part of

constraint resolution is unification, which finds a substitution that maintains the equality of two

terms containing variables while eliminating as many variables from each as possible (Robinson

1965). We denote a substitution that substitutes β for α by α := β.

67

Constraint resolution consists of three substeps, which repeat until the constraint set is empty:

1. Unify the two terms of an eligible constraint to find a substitution.

Equality constraints are always eligible.

Eligibility for instance constraints is more complicated. For an instance constraint τ ≤M β,

the type variables in β but not M are said to be free. Just before unification, free type

variables are replaced with new type variables and the constraint is converted to an equality

constraint, so that τ is unified with an instance of β rather than β itself. An instance

constraint is only eligible after all other constraints on the free type variables have been

unified.

Formally, an instance constraint τ ≤M β is eligible if the free variables are not active in

any other constraints. For an equality constraint, all type variables in the constraint are

active. For an instance constraint τ ≤M β, all type variables in τ and all type variables in

both β and M (that is, the non-free type variables) are active.

2. Remove the unified constraint from the set of constraints.

3. Apply the substitution from step 1 to the remaining constraints and to the existing

substitution from previous iterations.

For constraints generated by the rules listed in Section 2.3.1, this process always terminates

(Heeren et al. 2002).

The substitution from constraint resolution can be applied to the assumption sets from

constraint generation to see the type inferred for each expression in the code being analyzed.

For expressions where the constraints don’t provide enough information to determine a specific

type, the inferred type is a type variable. For parameters in function definitions, leftover type

variables can also indicate that the function is polymorphic in that parameter.

The next example demonstrates the constraint resolution process.

Example 19. Example 17 described the constraint generation step for code to generate

68

observations from a linear process (Listing 2.5). Recall that the constraints generated were:

τ3 ≡ (τ1, τ2) → β1 τ2 ≤∅ β5

τ5 ≡ (τ4, β1) → β2 τ6 ≤∅ β4

τ7 ≡ (β2, τ6) → β3 τ8 ≤∅ double

τ9 ≡ τ8 → β4 τ10 ≤∅ double

τ11 ≡ τ10 → β5 τ1 ≤∅ double

τ4 ≤∅ double

The goal of this example is to resolve these constraints. Figure 2.2 shows how the type variables

in the constraints correspond to expressions in the code.

The code being analyzed calls the functions * (associated with type τ3), + (τ5 and τ7), rnorm

(τ9), and runif (τ11). The type inference strategy needs information about the type signatures

of these functions in order to resolve the constraints correctly. For R’s built-in functions, this

information can be recorded in a table built into the type inference system. The table can be

generated manually, or generated programmatically using the techniques described in Chapter 3.

For functions which are not built in, this information can be collected by running type inference

on their definitions. Here are the types for the four functions:

* : (double, double) → double

+ : (double, double) → double

rnorm : double → double

runif : double → double

Technically, all of these functions are polymorphic for specific sets of types. We address this in

Section 2.4, but for now we use monomorphic type signatures to keep the focus on how constraint

resolution works. For the same reason, we disregard the parameters of rnorm and runif which

have default arguments.

The type inference strategy treats the additional information about the called functions as

though it comes from assignments. Thus the strategy adds several more instance constraints to

69

the constraint set:
τ3 ≤∅ (double, double) → double

τ5 ≤∅ (double, double) → double

τ7 ≤∅ (double, double) → double

τ9 ≤∅ double → double

τ11 ≤∅ double → double

Since equality constraints are always eligible for unification, they are a good starting point for

constraint resolution. The constraint τ3 ≡ (τ1, τ2) → β leads to the substitution:

τ3 := (τ1, τ2) → β1

This means replace τ3 with (τ1, τ2) → β1 everywhere τ3 appears. Now the constraint can be

removed from the constraint set. After applying the substitution, the constraint set is:

τ2 ≤∅ β5 (τ1, τ2) → β1 ≤∅ (double, double) → double

τ5 ≡ (τ4, β1) → β2 τ6 ≤∅ β4 τ5 ≤∅ (double, double) → double

τ7 ≡ (β2, τ6) → β3 τ8 ≤∅ double τ7 ≤∅ (double, double) → double

τ9 ≡ τ8 → β4 τ10 ≤∅ double τ9 ≤∅ double → double

τ11 ≡ τ10 → β5 τ1 ≤∅ double τ11 ≤∅ double → double

τ4 ≤∅ double

Constraint resolution can move on to the next constraint.

The remaining four equality constraints can be processed in exactly the same way, so that the

substitution becomes:
τ3 := (τ1, τ2) → β1

τ5 := (τ4, β1) → β2

τ7 := (β2, τ6) → β3

τ9 := τ8 → β4

τ11 := τ10 → β5

70

After these substitutions, the constraint set becomes:

τ2 ≤∅ β5 (τ1, τ2) → β1 ≤∅ (double, double) → double

τ6 ≤∅ β4 (τ4, β1) → β2 ≤∅ (double, double) → double

τ8 ≤∅ double (β2, τ6) → β3 ≤∅ (double, double) → double

τ10 ≤∅ double τ8 → β4 ≤∅ double → double

τ1 ≤∅ double τ10 → β5 ≤∅ double → double

τ4 ≤∅ double

Except for the first two, none of the instance constraints have free type variables, so they

are eligible for unification. Consider τ8 ≤∅ double. The type inference strategy converts this

constraint to the equality constraint τ8 ≡ double and then unifies the terms. The result is the

substitution:

τ8 := double

The type inference strategy applies this substitution to the existing substitution, replacing τ8

where it appears. So the substitution becomes:

τ3 := (τ1, τ2) → β1 τ8 := double

τ5 := (τ4, β1) → β2

τ7 := (β2, τ6) → β3

τ9 := double → β4

τ11 := τ10 → β5

After repeating this process for the other three instance constraints with double as the second

term, the substitution becomes:

τ3 := (double, τ2) → β1 τ8 := double

τ5 := (double, β1) → β2 τ10 := double

τ7 := (β2, τ6) → β3 τ1 := double

τ9 := double → β4 τ4 := double

τ11 := double → β5

71

The remaining constraints are:

τ2 ≤∅ β5 (double, τ2) → β1 ≤∅ (double, double) → double

τ6 ≤∅ β4 (double, β1) → β2 ≤∅ (double, double) → double

(β2, τ6) → β3 ≤∅ (double, double) → double

double → β4 ≤∅ double → double

double → β5 ≤∅ double → double

Consider the first instance constraint on the left, τ2 ≤∅ β5. This constraint is not eligible for

unification, because the type variable β5 also appears in another constraint. The same is true

for the second instance constraint on the left, τ6 ≤∅ β4.

On the other hand, all of the instance constraints on the right are eligible for unification, since

they do not have any free type variables. Consider the first one:

(double, τ2) → β1 ≤∅ (double, double) → double

The type inference strategy converts this to an equality constraint, and then unifies it, matching

each term on the left to one on the right. The resulting substitution is:

τ2 := double β1 := double

This substitution is applied to the remaining constraints and the previous substitution. The

type inference strategy repeats this process for all of the instance constranits on the right, and

the final substitution becomes:

τ3 := (double, double) → double τ8 := double β1 := double

τ5 := (double, double) → double τ10 := double β2 := double

τ7 := (double, double) → double τ1 := double β3 := double

τ9 := double → double τ4 := double β4 := double

τ11 := double → double τ2 := double β5 := double

72

The remaining constraints are:

double ≤∅ double double ≤∅ double

These two constraints are both satisified (that is, type inference can unify them), but do not

provide any additional information. Applying the final substitution to the assumption sets in

Figure 2.2 yields the inferred type for each expression in the code.

2.4 Adapting the Type Inference Strategy to R

Damas and Milner designed the DM type inference strategy for a simplified version of the

ML programming language. While ML and R have some common features (as explained in

Section 2.3), they also have many differences. For instance, vectors are a primitive data structure

in R.

This section discusses features of R which are not addressed by the original Damas-Milner

type inference strategy or for which the strategy infers incorrect types. We propose modifications

to the strategy for features which can be handled with static analysis, and point out features

which cannot. The section is divided into subsections which address individual features.

2.4.1 The Grammar of Types

The type inference strategy uses a grammar of types to represent the information it collects.

The grammar must be able to represent all of the types used in R. In fact, the grammar must

be more expressive than R’s built-in type system, because it must:

• Distinguish between scalars and vectors. Many code optimizations are specialized only for

scalars or only for vectors, and can provide significant improvement in the performance

of R code (Temple Lang 2014). These optimizations are a major motivation for type

inference.

• Represent incomplete information. For example, if the type inference strategy can determine

that an object is a vector, but not the type of its elements, that’s still useful information

and needs to be represented somehow.

• Represent type signatures of functions, including their argument types and return type.

Section 2.3 provided an example of how the type inference strategy uses type signatures

73

during the constraint resolution step. Inferred type signatures are also a useful aid for

code comprehension.

This section provides a brief overview of the type inference strategy’s grammar of types for

R. The grammar is informed by Damas and Milner’s grammar of types for ML and our own

observations about R and its built-in type system. Table 2.1 shows examples of the types

in the grammar. Names of types in the grammar are always capitalized so that they can be

distinguished from types in R’s built-in type system; in cases where there’s still ambiguity, we’ll

specify which is meant.

Type Associated R Type

Scalars Logical logical
Integer integer
Numeric double
Complex complex
String character
Raw raw
Null NULL

Data Structures Vector[τ] Depends on τ
Matrix[τ] Depends on τ
Array[τ] Depends on τ
List[τ1, . . . , τn] list
DataFrame[τ1, . . . , τn] list
Environment[τ1, . . . , τn] environment

Functions (α1, . . . , αn) → β closure, special, builtin

Table 2.1: Examples of the types in the type inference strategy’s grammar of types,
and the types they correspond to in R’s built-in type system. Greek
letters denote parameters which can be replaced by types.

The grammar provides a set of scalar types to represent scalar versions of R’s atomic types.

For instance, the Logical type represents the type of a length-1 logical vector. The scalar

types generally have the same name as their R counterpart, with the exception of Numeric

(which corresponds to double) and String (which corresponds to character).

The grammar provides type variables as placeholders for types. A type variable is valid in any

term where a type is valid. The grammar also provides bounded type variables, type variables

for which the value is restricted to a specific set of types. Bounded type variables are necessary

to represent the type signatures of many R functions. For instance, the rnorm function requires

that its first argument is logical, integer, or numeric. The type inference strategy can also use

bounded type variables to provide information about an object even if it cannot determine the

exact type. As in Section 2.3, we use Greek letters to denote type variables.

74

The grammar represents types of data structures as composite types—types which contain

other types as components. For instance:

• The Vector type represents a generic vector and has the element type as a component.

Thus Vector[Integer] specifically represents an integer vector. If the type inference

strategy determines a Vector has length 1, the strategy converts the Vector to its element

type during constraint resolution.

• The List type represents a generic list and can have multiple components, since each

element of a list can have a different type.

The composite types provided by the grammar include some data structures, such as matrices

and data frames, which are characterized by their S3 class rather than their type in R’s built-in

type system. Section 2.4.2 explains why these are treated as types in the grammar.

The type inference strategy can represent incomplete information by using type variables

as components of composite types. For example, the Vector[τ] type represents a vector with

element type τ .

The grammar also represents function types as composite types, where the argument types

and return type are components. For example, the nchar function, which counts the number of

characters in each element of a character vector is:

(Vector[String], String, Logical, Logical) → Vector[Integer]

The four argument types correspond to the four parameters of the function: x, type, allowNA,

and keepNA.

The subsequent sections provide additional examples of how the type inference strategy uses

the various types in the grammar, and introduces new terms to handle specific features of R.

2.4.2 The Relationship Between Types and S3 Classes

The S3 class system is the most prevalent of several object-oriented programming systems built

into R. Every R object has one or more S3 classes. R uses S3 classes for method dispatch: when

a generic function is called, R checks the class of one argument—by default, the first—and

dispatches the call to the method which corresponds to that class. In other words, how a call to

a generic function will be evaluated at run-time depends on the S3 class of one of its arguments.

75

In order to effectively analyze calls to generic functions, the type inference strategy must infer

S3 classes in addition to types. This is because even though the methods of a generic function

all have the same parameters, the expected argument types for the parameters can differ, as

can the return types. As a result, the strategy will be able to infer more specific types if it can

statically determine which method will be called at each call to a generic function.

With information about S3 classes, one can also transform code to use static dispatch,

where calls to generic functions are replaced by direct calls to the appropriate method. This

transformation reduces or eliminates the overhead of method dispatch at run-time, and is also

useful for static analyses which depend on knowing the specific functions called by the code.

The type inference strategy uses two different approaches to handle S3 classes:

1. The type inference strategy treats many classes built into R as distinct types in the

grammar of types. For instance, the Matrix and DataFrame types represent matrices and

data frames, respectively.

The strategy must still accept these types anywhere their underlying R type (as returned

by typeof) would be accepted. For example, a data frame is a valid argument to a function

which requires a list. The strategy can handle this by having each type store a list of types

with which they can be unified.

The advantage of this approach is that it leverages the existing capabilities of the strategy

to infer types. One drawback is that different instances of an R class can have different

types, and this approach will generally only infer the class, not the class and type. For

classes known to have multiple types, such as the matrix class, this disadvantage can be

mitigated by making the class a composite type in the grammar of types (see Section 2.4.1

for more about composite types). Another drawback is that each class must be individually

implemented in the grammar of types.

2. The type inference strategy stores a class vector as a component of each type. When the

strategy unifies two types during constraint resolution, it sets the class vector of both to

the union of their class vectors. Taking the union ensures that class information is not lost

during constraint resolution.

As an example, suppose τ1 and τ2 are two type variables, and τ1 has the class queue. If

the type inference strategy makes the substitution τ1 := τ2, then the class queue must be

added to τ2 or information is lost.

76

The advantage of this approach is that the type inference strategy can provide basic

support for any class, even those which the strategy does not know about ahead of time.

The main drawback of this approach is that by taking unions of class vectors, the strategy

will not necessarily infer classes in the correct order, which matters for method dispatch.

An additional drawback is that for classes inferred with this approach, the strategy does

not check that the code uses the classes correctly.

During constraint generation, the type inference strategy can determine classes from literal

values and constructor functions (see Section 2.4.3 for more about constructor functions) in the

same way that types can be determined. The strategy must also handle cases where the code

changes the class of an object.

We introduce a new form of constraint, a class constraint, denoted τ1 ≡class τ2, to represent

that τ1 and τ2 have the same class vector. We also allow either side of the constraint to be an

actual class vector. For example,

τ1 ≡class (data.frame, list)

means that the class vector of τ1 is the vector ("data.frame", "list"). The next example

demonstrates how the strategy can use class constraints to handle code which uses the class

function to change the class of an object.

Example 20. The class function gets or sets the class attribute of an R object. Consider this

code (in SSA form) to create an object with the custom S3 class counter:

1 count_1 = c(a = 3, b = 2)

2 # class(count) = "counter"

3 count_2 = "class<-"(count_1, value = "counter")

Listing 2.7: Code to set the class of an object to counter. See Section 2.2 for more
about how replacement expressions are represented in SSA form.

We can handle this by changing how the type inference strategy handles calls to the class<-

function during constraint generation. Suppose the type inference strategy generates the type

variable β1 such that

"class<-"(count_1, value = "counter") : β1.

77

Then we can modify the strategy to retrieve the class attribute from the value parameter in the

call and store it with β1.

Now consider this code, based on Listing 2.7, to set the class of an R object to counter but

also keep all classes already on the object:

1 count_1 = c(a = 3, b = 2)

2 count_2 = "class<-"(count_1, value = c("counter", class(count_1)))

Listing 2.8: The code from Listing 2.7 modified to set the class to counter but keep
existing classes on the object.

The class of count_2 depends on the class of count_1.

During constraint generation, the type inference strategy will generate type variables for the

expressions in line 2. Suppose τ1 corresponds to count_1 in the subexpression class(count_1).

Suppose also that β1 corresponds to the result of the call to the class<- function. The strategy

can generate a class constraint to record that the class of β1 depends on the class of τ1:

β1 ≡class (counter, τ1)

The strategy will determine the type and class of τ1 when it generates constraints for line 1.

During constraint resolution, the strategy can resolve class constraints immediately after it

resolves equality constraints. This propagates the information about the class of τ1 to β1.

More generally, the argument to the value parameter in a call to class<- can be an expression

which is not solely composed of literals and calls to c or class. For this we rely on constant

propagation—a code transformation described in Chapter 1 which replaces variables and some

calls with their literal values, provided those values can be determined statically. If the value

of the argument cannot be determined statically, then the type inference strategy is unable to

determine the class.

Finally, note that the class function is not the only way to set the class attribute on an

object. The structure function and the attr<- function provide two additional ways to set

the class attribute:

1 count_1 = c(a = 3, b = 2)

2 # With structure

3 count_2 = structure(count_1, class = "counter")

4 # With attr

78

5 count_2 = "attr<-"(count_1, "class", value = "counter")

Listing 2.9: Two additional ways to set the class attribute on an R object, for
comparison to using the class function, as in Listing 2.7.

These are syntactically similar to a call to class<-, so the same strategy can be applied. In

the case of the structure function, the type inference strategy must check whether the class

parameter is set. In the case of the attr<- function, the strategy must check that argument to

the second parameter, which, is "class". Applying constant propagation to the code before

type inference helps to ensure that this check is possible.

The primary purpose of inferring S3 classes is to enable the type inference strategy to infer

more specific types for calls to generic functions. There’s a call to R’s built-in UseMethod

function in the body of every generic function, so we can use a simple static analysis which

searches for calls to UseMethod to identify generic functions before type inference. The call to

UseMethod also specifies which argument the function checks the class of for method dispatch.

The methods of a generic function are required to follow a specific naming convention: the

name of the generic, a dot, and then the name of the class of the argument. For instance, the

mean function is a generic function and mean.Date is its method for objects with class Date.

Thus it’s possible to statically identify the methods for a generic and the classes to which they

correspond. We can generate a type signature for each method by applying the type inference

procedure to each method. For R’s built-in methods, we can also define the type signatures

manually in order to provide greater accuracy.

We include a Generic type in the grammar of types to represent the type of a generic function.

The Generic type is composite, and its components are the type signatures of the methods

of the associated generic function. For instance, one component of the generic type signature

for the mean function is the type signature of the mean.Date function. The Generic type also

stores the name of the parameter for dispatch and the class associated with each method.

The type inference strategy generates an instance constraint for each call to a defined function,

due to the assignment rule described in Section 2.3. The type signature on the right-hand side

of the instance constraint comes from the called function’s definition. For a call to a generic

function, the right-hand side of the instance constraint will be a Generic type. The left-hand

side of the instance constraint comes from the call site. The type inference strategy delays

resolution of instance constraints which contain the Generic type until the class of the argument

used for dispatch has been inferred (that is, until there is a concrete class for the argument on

79

the left-hand side of the constraint).

In cases where the class of an argument used for dispatch cannot be determined, the type

inference strategy can instead replace the Generic type with a function type →, since the

methods must all have the same parameters. The return type for this function type is a bounded

type variable, where the bounding set contains each method’s return type. Likewise, each

argument type is a bounded type variable, where the bounding set contains each method’s

type for that argument. This ensures that the type inference strategy can still resolve other

constraints.

2.4.3 Constructor Functions

R provides a variety of functions for constructing vectors, as well as other kinds of objects. The

return type for many of these functions is fixed or depends only on the type of one argument.

For instance, the logical function always returns a Vector with Logical elements, and the

matrix function returns a Matrix where the element type is the same as the element type of the

argument to the data parameter. Table 2.2 shows a selection of these functions and their return

types. This section presents a few examples of the constructor functions where the relationship

between the arguments and the return type is more complicated, and discusses how the type

inference strategy can handle these.

Example 21. The vector function constructs a vector where the element type and length are

specified by arguments to the parameters mode and length, respectively. The argument to mode

is the name of the element type as a string. For instance, this is the code to create a numeric

vector with length p:

1 vector(mode = "numeric", p)

During constraint generation, the type inference strategy can detect calls to vector and check

the value of the mode argument to determine the element type of the result. Applying constant

propagation to the code before type inference facilitates this by ensuring that the value of the

mode argument will be literal if it can be determined statically. If the value of the mode argument

cannot be determined statically, the strategy can still conclude that the result is a Vector and

attempt to infer the element type from expressions which use the result.

The : operator and the seq family of functions construct vectors by generating an Integer

or Numeric sequence. The seq function provides a great deal of flexibility in terms of how

80

Return Type

Function Object Elements Dimensions

logical Vector Logical length
integer

...

Integer

...

single Numeric
double Numeric
numeric Numeric
complex Complex
character Character
raw Raw
vector Vector Depends on mode length

α1:α2 Vector α1
seq

...
Depends on arguments

seq_len Integer length.out
seq_along(along = α) Integer length(α)
seq.int Vector Integer length.out

rep(x = α) α
rep.int(x = α) α length(α) · times
rep_len(x = α) α length.out

matrix(data = α) Matrix α nrow × ncol
array(data = α) Array α dim
list(α1, . . . , αn) List α1, . . . , αn n

c(α1, . . . , αn) Vector or List ∨n
i=1αi Σn

i=1 length(αi)

Table 2.2: Return types for some of R’s built-in functions for constructing vectors,
matrices, arrays, and lists. Greek letters denote the type of an argument,
so for example in the expression α1:α2, the α1 and α2 denote the type of
the first and second argument, respectively. Section 2.4.4 discusses the
return type of the c function in greater detail. The operator ∨ selects
the greatest type among its operands according to R’s order of implicit
coercion (Figure 2.4). Names in monospace in the Dimensions column
refer to parameters of the function.

81

the sequence is generated, so the type of the result depends on multiple arguments. The next

example documents how the arguments to seq affect the type of its result.

Example 22. The seq function has five named parameters which fall into three categories:

• from and to control the first and last value in the sequence, respectively.

• by controls the step size of the sequence.

• length.out and along.with control the length of the sequence. The along.with param-

eter sets the length of the sequence to the length of its argument.

The function accepts arguments to any combination of these parameters which characterizes

a sequence. For instance, a call to the function with arguments to to, by, and length.out

is valid. Adding a fourth argument to along.with is not valid, since then the sequence is

overdetermined—the length is provided in two different ways. The function provides default

arguments for all of the parameters, so calling the function with less than three parameters is

also valid.

The function returns an Integer vector in four different cases:

1. The length of the sequence is 0.

Example: seq(1.8, 3.5, length.out = 0).

2. Only from or from and to have arguments, and from is integer-valued (not necessarily

type Integer).

Examples: seq(10) and seq(1, 3.1)

3. All of from, to, by, and length.out have no argument or an Integer argument. In

addition, if length.out has an argument, it must be small enough that the sequence can

have an integer-valued step of 1 or more. Likewise, if along.with has an argument, the

length of the argument must be small enough that the sequence can have an integer-valued

step of 1 or more.

Examples: seq(1L, 5L, 1L) andseq(1L, 5L, length.out = 2L).

4. Only length.out or along.with has an argument.

Example: seq(length.out = 3.1) or seq(along.with = letters)

82

The function returns a Numeric vector in all other cases.

Cases 1 and 2 depend on the values of the arguments, so the type inference strategy can only

infer the type when the arguments are constant. There’s an exception to this for case 2: if the

argument to from has type Integer, then the type inference strategy can infer that the function

will return an Integer vector even if the argument is not constant.

Case 3 depends only on the types of the arguments if length.out and along.with do not

have arguments. Then the type inference strategy can infer that the function will return an

Integer vector. Otherwise, the argument to length.out must be constant or it must be possible

to determine the length of the argument to along.with statically in order to determine whether

the function will return an Integer vector.

Case 4 does not depend on the values or types of the arguments, so the type inference strategy

can infer that the function will return an Integer vector.

For cases where the return type depends on the values of the arguments and the arguments

are not constant, the type inference strategy can only conclude that the result can be either an

Integer or Numeric vector.

2.4.4 Implicit and Explicit Coercions

R automatically and silently coerces objects from less general types to more general types in

order to satisfy the requirements of functions. This kind of coercion is called implicit coercion.

As an example, R computes the expression 3 + TRUE by implicitly coercing the logical value

TRUE to the numeric value 1. R also provides a variety of functions to explicitly coerce objects

to specific types and classes. This section describes R’s implicit coercion rules, documents the

functions R provides for explicit coercion, and discusses how the type inference strategy can

handle these.

logical ≺ integer ≺ double ≺ complex ≺ character

Figure 2.4: The order of implicit coercion in R. Read the notation ≺ as, “is less
general than” or “can be implicitly coerced to.” For example, a logical
value can be implicitly coerced to an integer value.

Figure 2.4 shows R’s vector types in order from least to most general. This order determines

which types can be coerced to other types. For example, as the least general type, logical, can

be implicitly coerced to any other vector type.

One way the type inference strategy can accommodate implicit coercion is by allowing less

83

general types on the right-hand side of an instance constraint to be unified with more general

types on the left-hand side. For example, suppose the function f has type Integer → Complex,

and the code contains the call f(TRUE). First consider what happens during constraint generation.

For the call, the strategy will generate two type variables and an equality constraint:

f : τ, f(TRUE) : β, τ ≡ Logical → β

For the function definition, the strategy will generate an instance constraint:

τ ≤M Integer → Complex, where M depends on the context.

The left-hand side of the instance constraint corresponds information from the call, while the

right-hand side corresponds to information from the function definition. Now consider what

happens during constraint resolution. The function type Logical → β will be substituted for

the type variable τ because of the equality constraint. As a result, the instance constraint will

become:

Logical → β ≤M Integer → Complex

The DM type inference strategy reports a type error for this constraint, because Logical and

Integer are different types. The modified type inference strategy instead unifies this constraint

without error, because the type on the left (Logical) can be implicitly coerced to the type on

the right (Integer).

Specific functions can also perform implicit coercion which differs from the order in Figure 2.4.

For instance, the first argument to the runif function controls the number of randomly sampled

observations returned by the function, so it should be an integer value, but the function will

also accept a numeric value. The type inference strategy can handle these functions by using

bounded type variables to represent the argument types. For each argument, the bounding set

is the set of all accepted types.

The next example discusses the c function, for which the return type depends on how the

arguments can be implicitly coerced.

Example 23. The c function attempts to construct a vector by coercing all of its arguments

to a common type and then combining them. If it’s not possible to coerce the arguments to a

common type, then the function combines its arguments into a list instead of a vector. The c

84

function provides a simple way to construct vectors from literal values, but we discuss it here

rather than in the section about constructor functions (Section 2.4.3) because it coerces its

arguments.

This example explores how the type inference strategy can handle the c function. Consider

this expression to create a vector of university course codes:

1 course_numbers = c(141, "141A", c("141B", "141C"), other_stats)

The result from the inner call to c is a character vector, since both of the arguments are strings.

For the outer call, the first three arguments are all scalars or vectors, and can be implicitly

coerced to a character vector based on Figure 2.4. It follows that the outer call returns character

vector or a list depending on the type of the fourth argument, other_stats.

If other_stats is a vector or NULL, then the result of the outer call is a character vector. The

element type of other_stats doesn’t matter, because the other arguments require the result to

be a character vector if it is a vector.

If other_stats is not a vector or NULL, then the result of the call is a list. The types of the

list elements come from the types of the arguments, so the first element, for instance, is numeric.

In general, the type of the result from c is the most general type (in the sense of Figure 2.4)

among the arguments if all of the arguments are vectors or NULL, and a list if any of the arguments

are not.

A limitation of the DM type inference strategy is that it can only infer the relationship between

the argument types and return type of a function when the return type only depends on one

of the argument types. Nevertheless, we can adapt the strategy to handle the c function by

including a ListJoin operator in the grammar of types. The ListJoin operator selects the

most general type among its operands, so for instance ListJoin(Integer, Numeric) is equal

to Numeric. If any of the operands are not scalar or vector types, then the result is instead a

List where the components are the operands. Then the return type of the c function can be

described as ListJoin(α1, . . . , αn), where α1, . . . , αn are the argument types. The strategy can

resolve ListJoins as early as possible during the constraint resolution step. The drawback of

this approach is that it depends on manually specifying the type signature for the c function.

R objects can also be coerced explicitly, by calling a coercion functions. Table 2.3 shows

the return types for some of R’s built-in coercion functions. As the table shows, most of these

functions have a fixed return type or a return type with a simple relationship to one of the

85

argument types. The exception is the as function.

Return Type

Function Object Elements

as.logical Vector Logical
as.integer

...

Integer
as.single Numeric
as.double Numeric
as.numeric Numeric
as.complex Complex
as.character Character
as.raw Raw
as.vector Vector Depends on mode

as.matrix(x = α) Matrix Element type of α
as.array(x = α) Array Element type of α
as.list(x = α) List Element type of α
as.null Null

as Depends on Class

Table 2.3: Return types for some of R’s built-in functions for coercing objects to
specific types or classes. Greek letters denote the type of an argument.

The as function coerces an R object to a type or class specified in a string argument to the

function’s Class parameter. Thus determining the return type for a call to as depends on the

argument being constant, similar to what we saw for the vector function in Example 21. When

the value of the argument to the Class parameter cannot be determined statically, a call to as

does not provide the type inference strategy with any information about its return type.

2.4.5 Indexing

R provides a variety of functions for indexing vectors, matrices, arrays, lists, data frames, and

other data structures. Indexing functions can return objects with a different type or class than

the object being indexed. This section presents examples of cases where indexing can potentially

cause problems for the type inference strategy, and where possible, describes ways the strategy

can be modified to handle them.

One way to use indexing is to assign a new value to an element of a vector, matrix, or array. If

the new value’s type is less general than the original element type, then R implicitly coerces the

new value to the element type. If the new value’s type is more general, then R implicitly coerces

the element type to the new value’s type. Thus setting an element of a vector, matrix, or array

can change the type of all the elements. The first example examines how the type inference

86

strategy can handle this feature.

Example 24. Consider the following code, which constructs a numeric vector x and then assigns

a string to the third element. The code is in SSA form:

1 x_1 = c(10, 20, 21)

2 # x[3] = "30"

3 x_2 = "[<-"(x_1, 3, value = "30")

Listing 2.10: The SSA form distinguishes between x before the element is changed
(x_1) and after the element is changed (x_2). The value of x_2 is
the result of coercing x_1 from a numeric vector to a character vector
and changing the third element. The comment on line 2 shows the
expression on line 3 before the code was converted to SSA form. See
Section 2.2 for more about the SSA form.

The type of "30" (character) is more general than the type of x_1 (numeric), so R coerces

x_1 into a character vector in the call to [<-. Thus x_2 is a character vector.

The problem for the type inference strategy is to correctly infer the type of the result returned

by the [<- function. Suppose the new value is a vector, matrix, or array. This is the case shown

in Listing 2.10. The overall type of the result is the same as the indexed object: a vector if it’s

vector, a matrix if it’s a matrix, and an array if it’s an array. The element type is whichever is

more general between the element type of the indexed object and the element type of the new

value.

Suppose instead that the new value is a list. Then the result returned by [<- is a list. The

elements of the indexed object are not coerced, nor are the elements of the list.

The type inference strategy must handle calls to [<- on a case-by-case basis since the behavior

of the function changes depending on the types of its arguments. We include a TypeDependent

type in the grammar of types in order to represent the type signature of this function and other

functions where the behavior varies depending on the argument types.

The TypeDependent type is a composite type that follows the same design as the Generic

type we introduced to handle generic functions in Section 2.4.2. Each component is a type

signature associated with one possible behavior of the function corresponding to a specific set

of argument types. During constraint resolution, the type inference strategy delays resolution

of instance constraints which contain the TypeDependent type until sufficient information has

been inferred about the types of the arguments at the call site. With this approach, the type

inference strategy can represent the type of the [<- function.

87

This example highlights that the SSA form is important for the type inference strategy because

it allows the strategy to associate different types with the same variable at different points in

the code. It would not be correct to infer a single type for the original variable x across all of

the code. Quiroga and Ortin (2017) provide additional details about using the SSA form of code

to improve the precision of type inference for dynamically typed languages.

A general rule is that indexing an object with R’s [indexing operator returns an object with

the same overall type. An exception to this rule occurs when indexing multidimensional objects

such as matrices, arrays, and data frames. When the [indexing operator’s parameter drop is

TRUE (the default), then if the result from indexing a multidimensional object is one-dimensional,

it’s converted to a vector.

Whether the result of indexing is one-dimensional depends on the value and type of the indices.

Each dimension of an object can be indexed with the [operator in four different ways:

1. By position. This case corresponds to an integer or numeric vector index argument.

A dimension is dropped for each scalar index argument. For instance, suppose x is a

three-dimensional array. Then x[1, , 10] drops the first and third dimension. If the

index argument is negative, the elements at the positions in the argument are dropped

instead of kept; if all except one element of a dimension are dropped, then that dimension

is dropped.

2. By name. This case corresponds to a character vector index argument. As with the by

position case, a dimension is dropped for each scalar index argument.

3. By condition. This case corresponds to a logical vector index argument. A dimension is

dropped if the index argument only contains one TRUE value. For example, if x is a 3 × 2

matrix, then x[c(T, F, F),] drops the first dimension.

4. With an empty index. In this case the entire dimension is returned, so there is no change

in type.

Since the cases correspond to types, the type inference strategy can generally determine which

case each index argument corresponds to by inferring the type of the argument.

In cases 1 and 2, the type inference strategy needs to know whether or not the index is a scalar

in order to determine whether dimensions will be dropped. In other words, the type inference

strategy must also infer dimensions, or at least scalar versus non-scalar, for each expression. Our

88

type inference strategy provides limited support for inferring dimensions; see Section 2.4.9 for

details.

For a negative index in case 1, the type inference strategy needs to know the value of the

index. Constant propagation replaces variables with values where it’s possible to do so with

static analysis. If the value of an index cannot be determined statically, it is not possible to

infer the exact type of the result from the indexing expression alone.

Case 3 is similar to a negative index in case 1: the type inference strategy needs to know the

value of the index in order to determine whether dimensions will be dropped. Once again, if

constant propagation cannot determine the index’s value, then the indexing expression alone

does not provide enough information to determine the exact type.

For both negative indexes and logical indexes (case 3), an indexing expression provides some

information about type of its result even if the values of the indexes cannot be determined

statically. For instance, indexing a numeric matrix will always return a numeric matrix or a

numeric vector. Thus the type inference strategy can always put a bound on the type variable

associated with the result of an indexing operation. Depending on the code, the type inference

strategy may also be able to infer the type of the result from other expressions which use the

result. For instance, if a subsequent expression indexes the result, the number of indexes can

reveal the number of dimensions and thereby the type. On the other hand, it is not necessarily

possible to infer the type of the result from other calls in the code, since most R functions will

implicitly coerce matrices and arrays to vectors or will accept either. For instance, all of R’s

basic mathematical functions accept vectors, matrices, or arrays.

The next example discusses the different ways to index a matrix by position.

Example 25. Consider this code to extract one row from a matrix:

1 x = diag(5)

2 x[1,]

Listing 2.11: Code to extract the first row of a 5 × 5 matrix. The result is simplified
to a vector.

Since only one row is selected here, a dimension is dropped and the value returned by the [

indexing operator is simplified to a vector. When multiple rows are selected, no dimensions

are dropped and the result is a matrix. This same reasoning applies to columns, and for

higher-dimensional arrays, to all dimensions.

Now consider a different way to extract the same row from the matrix:

89

1 x[-(2:5),]

Listing 2.12: Another way to extract the first row of a 5 × 5 matrix.

Again the result is simplified to a vector. For a matrix with n rows, the negative index must

contain exactly n − 1 distinct values in order for the first dimension to be dropped. Since the

values must be distinct, knowing the length of the index is not sufficient to determine whether a

dimension will be dropped. For instance, consider this code, which is yet another way to extract

the first row of the matrix:

1 x[-c(2, 3, 4, 5, 2),]

Listing 2.13: Yet another way to extract the first row of a 5 × 5 matrix. Notice that
2 is repeated in the first index.

Here the first index contains five values, but because the value 2 is repeated, it has the same

effect as the length-4 index in Listing 2.12, and the result is a vector. Similarly, for any matrix

or array we can construct an index with length n − 1 that behaves like a shorter index because

of repeated elements, and returns a matrix rather than a vector.

When drop = FALSE, the [indexing operator always returns an object of the same type as

the object being indexed, so this case does not pose a problem for type inference.

Packages which extend matrices, arrays, and data frames don’t always follow the default

drop = TRUE. For instance, the tibble package (Müller and Wickham 2019) breaks compatibility

with ordinary data frames by defaulting to drop = FALSE. As a result, we expect the type

inference strategy can provide more specific results for code which data structures from uses

these packages.

Finally, it is important that the type inference system tracks the names of elements, even

if their position is not known. For lists, where each element can have a different type, it’s

sometimes possible to infer the type for a named element whose position is not clear from the

code. The next example discusses this situation.

Example 26. Consider this assignment to an element of the list progress:

1 progress["a"] = 1

Listing 2.14: Code to assign an element by name. It may not be possible to infer
the position of the changed element.

From this code, we can infer that the element "a" of the list is numeric. Even with a larger

sample of code, it will not necessarily be possible to infer the position of the element "a" in the

list.

90

If subsetting in the code always uses names rather than positions, the position of the elements

in the list is irrelevant for type inference and for code transformations. For instance, the code in

Listing 2.20 of Example 30 reads a data frame from disk and then accesses columns from the

data frame by name only. Lack of information about positions did not pose any difficulty for

type inference in that example.

In code that uses a mix of names and positions for subsetting, it may not be possible to match

names to positions. Typical cases where it is possible is when the named list is created with the

list function or renamed in the code. When it is not possible to match names and positions,

the type inference system should instead infer types for names and positions independently,

using whatever information is available.

2.4.6 Characteristics of Lists and Data Frames

In order to infer complete type information for a list, the type inference strategy must infer the

type of each element, because the elements can have heterogeneous types. This is also true for

data frames, since data frames are lists where each element is a vector and corresponds to one

column. This section begins with some examples of functions which create lists and data frames,

then discusses the $ operator as a way to identify lists and data frames.

Table 2.4 lists some of the functions which create lists and data frames in R. Type inference for

calls to the list and data.frame constructor functions is relatively straightforward. For both

functions, the arguments become the elements of the resulting list or data frame. Thus if type

inference strategy can infer the types of the arguments, it can infer complete type information

for the result of the call.

Return Type Function

List list
lapply

DataFrame data.frame
read.table
read.csv
read.fwf
read.delim

Table 2.4: Examples of functions which create lists and data frames.

Another entry point for data frames in code is through functions such as read.csv, which

read tabular data from a file. Most of R’s built-in functions for reading tabular data have a

91

colClasses parameter so that the user can specify the S3 classes of the columns. When the

argument to colClasses is constant, the type inference strategy can use the information it

provides about the classes of the columns to infer their types as well. This is because each of R’s

vector types corresponds to a different class, usually with the same name (except type double,

which corresponds to class numeric). The next example demonstrates how the type inference

strategy can use the argument to colClasses in a call to a reader function.

Example 27. Consider this code to read a data set from a comma-separated values (CSV) file:

1 cols = c("character", "factor", "numeric", "integer")

2 dogs = read.csv("dogs.csv", colClasses = cols)

Listing 2.15: Code to read data from a CSV file, with the S3 classes of the first four
columns specified in the argument to colClasses.

Based on the argument to colClasses, the type inference strategy can conclude that the first

four columns of the data frame returned by the call to read.csv are a character vector, a factor,

a numeric vector, and an integer vector.

In the argument to colClasses, the string "NULL" indicates that a column should be skipped

when the file is read. Thus the type inference strategy should ignore "NULL" elements when

using the argument to infer column types.

If there are fewer elements in the argument to colClasses than there are columns in the

data set, R recycles the elements in the argument. In practice, the argument often contains

an element for each column if it’s provided at all. As an optional heuristic, we can make the

type inference strategy assume that the argument always contains a class for every column, and

thereby determine the number of columns.

When no argument is set for the colClasses parameter in a call to a reader function, it is

usually not possible to statically infer the types of the columns from the call alone. Depending

on the code, the type inference strategy may still be able to infer the types of the columns from

how the data frame is used in other expressions. The next example demonstrates this.

Example 28. The following code (not in SSA form) is an excerpt from an R script that collects

online classified advertisements and organizes them into a data frame. The code coerces multiple

columns of the data frame posts to specific types:

1 cols = c("latitude", "longitude", "price", "sqft")

2 posts[cols] = lapply(posts[cols], as.numeric)

92

3 cols = c("city", "pets", "laundry", "parking")

4 posts[cols] = lapply(posts[cols], factor)

5 posts$house_date = as.Date(posts$house_date)

Listing 2.16: Code to coerce the columns of the data frame posts.

Lines 1-2 and 3-4 follow the same pattern: cols is assigned a set of column names, and then

each of those columns is replaced with the result of applying a function to the column.

For instance, line 2 applies the as.numeric function to the latitude, longitude, price,

and sqft columns. Since the as.numeric function always returns a numeric vector, the type

inference strategy can infer that these four columns are numeric vectors.

Similarly, the type inference strategy can infer from line 3 and 4 that the columns city, pets,

laundry, and parking are factors. The type inference strategy treats factor as a type, even

though it is technically an S3 class in R (see Section 2.4.2 for why we treat some S3 classes as

types).

Finally, the call to as.Date on line 7 returns a Date object, so the type inference strategy can

infer the type of the house_date column.

Another approach to determine column types is to create a separate analysis which reads

the first few rows of each tabular data loaded in the code and checks the types of the columns.

This is a dynamic approach, since it depends on running (an approximation of) the code. The

data files may not be available before run-time, but if they are, this approach always produces

the correct types. The information can then be passed on to type inference (for instance, by

inserting the colClasses in the code).

R’s functions for reading tabular data also have other parameters that can be informative

about the returned data frame. For example, the col.names parameter controls the names

of the columns in the data frame. When this parameter has a constant argument, the type

inference strategy can use the argument to determine the names of the columns in the data

frame.

The examples so far have focused on data frames; now we consider lists. One way lists can

arise in code is from calls to the apply-family of functions, particularly lapply and sapply.

The lapply function always returns a list, but the type inference strategy must also infer the

types of the elements in the list. If the return type of the applied function is always the same,

this is straightforward. If the return type of the applied function depends on its arguments, it

is not always possible to statically infer the element types from a call to lapply, although it

93

is possible to infer a set of potential element types. The next example demonstrates how the

applied function affects what the type inference strategy can infer from a call to lapply.

Example 29. Consider this code to compute lengths of two samples:

1 lengths = lapply(samples, length)

Listing 2.17: Code to compute the lengths of the elements of a list.

The length function always returns a scalar integer, the each element of the list returned by

the call to lapply will be a scalar integer.

Now suppose that instead of computing lengths, the code computes medians:

1 n = 100

2 samples = list(x = rnorm(n), y = rnorm(n) + rnorm(n) * 1i)

3 medians = lapply(samples, median)

Listing 2.18: Code to compute the medians of the elements of a list.

In this case, the types of the elements in the list returned by lapply depend on the types of

the elements in the list samples. This is because the median function returns a numeric result

when given a numeric argument (or an argument which can be implicitly coerced to a numeric

vector), and returns a complex result when given a complex argument. Since the list samples

is defined by a call to list in the code, the type inference strategy can determine the number

and types of its elements. As a result, the strategy can also determine the complete type of the

result from the call to lapply.

When the type inference strategy cannot infer complete type information for the first argument

(for the X parameter) in a call to lapply, then the strategy can still bound the type variables

for the elements of the returned list. For instance, suppose it’s not possible to determine the

types of the elements of samples in Listing 2.18. The strategy can still infer that the types of

the elements in the result from the call to lapply must be numeric or complex scalars, since the

median function only returns numeric or complex scalars.

Finally, consider this code to load a list of data sets from files:

1 files = list.files(pattern = "[.]rds$")

2 data = lapply(files, readRDS)

Listing 2.19: In the worst case, it is not possible to determine the element types.

94

In this case, it is not possible to statically determine the types of the elements in the list returned

by lapply from the call alone. The problem is that the readRDS function can return any type.

In general, the information the type inference strategy can infer from a call to lapply is only as

good as the type information the strategy has about the arguments.

How an object is used can also reveal that the object is a list. For instance, the typical use for

the $ operator is to extract named list elements (including data frame columns). The operator

is not valid for vectors, even if the elements are named. As a result, the type inference strategy

can use calls to the $ operator to conclude that the target object is a list or data frame. The

next example demonstrates this.

Example 30. Consider this sample of code from an analysis of data about universities in the

United States:

1 colleges = readRDS("college_scorecard_2013.rds")

2 table(colleges$ownership)

3 ug_avg = mean(colleges$undergrad_pop, na.rm = TRUE)

4 plot(density(colleges$undergrad_pop, na.rm = TRUE))

5 populous = colleges[colleges$state %in% c("CA", "TX", "FL", "NY"),]

6 populous$state = droplevels(populous$state)

Listing 2.20: A sample of code from a data analysis.

As discussed previously, the call to readRDS on line 1 is not informative for type inference.

However, for this code it’s possible to infer the type of the result from the call based on how the

colleges variable is used in other expressions.

The $ operator’s first argument must be a list, data frame, or environment, so the type

inference strategy can infer that the value of the colleges variable must have one of these types.

Moreover, the type inference strategy can infer from the [indexing operation on line 5 that

colleges is multidimensional. Lists and environments are one-dimensional, so colleges must

be a data frame.

The code also provides information about the names and types of the columns in the data frame.

For instance, the type inference strategy can infer from the expression colleges$ownership

on line 2 that the data frame has a column whose name begins with ownership. From other

calls to $, the strategy can also infer columns undergrad_pop and state. The $ operator does

95

partial matching of element names, so there is no guarantee that these are the full names of the

columns.

Partial matching is a potential source of bugs, so it’s good practice to use full column names

in non-interactive code. As an optional heuristic, the type inference strategy can assume that

code being analyzed will not use partial matching.

The type inference strategy can infer a set of potential types for the undergrad_pop column

from line 4. The density function coerces its first argument to a numeric vector, so the

undergrad_pop column must be a logical, integer, or numeric vector.

The type inference strategy can infer the type of the state column from line 6. The first

argument to the droplevels function must be a factor, so the state column must be a factor.

Thus by examining how a list or data frame is used in expressions, the type inference strategy

can infer a substantial amount about the element types. This is especially important for data

frames, because data frames are often loaded from files rather than constructed in the code.

2.4.7 Assertions

An idiom to prevent bugs in code is to test the type and class of an object before using it.

Table 2.4.7 shows some of the functions R provides to test the type or class of an object. If

the tested object has a type or class incompatible with subsequent code, then the code can call

the stop function to raise an error. R also provides a stopifnot function as a shortcut for

testing a condition and calling stop if the condition does not hold. These kinds of tests are

called assertions. Assertions are a source of type and class information. This section discusses

how the type inference strategy can use assertions for inference.

Assertions can be detected in code with a static analysis pass which runs before type inference.

The typical form of an assertion is an if-expression where the condition checks the type or class

of an object and the body contains a call to stop. Once each assertion in the code has been

identified, the call to the type or class test function can be annotated with the type or class

the object must have for the assertion to succeed (so no error is raised). The type inference

strategy can then use the annotations during constraint generation in order to generate additional

constraints. The next example shows the typical structure of an assertion and further discusses

this approach.

Example 31. The body of the toTitleCase function in R’s built-in tools package contains an

assertion:

96

Tests For…

Function Object Elements

is.logical Vector Logical
is.integer

...

Integer
is.single Numeric
is.double Numeric
is.numeric Numeric
is.complex Complex
is.character Character
is.raw Vector Raw

is.atomic Vector or Null
is.vector Vector or List

is.matrix Matrix
is.array Array
is.list List
is.data.frame DataFrame
is.null Null
is.factor Factor

is Depends on class2
inherits Depends on what

typeof
class

Table 2.5: Some of R’s built-in functions for testing the type or class of an object.
The typeof and class functions return the type and class of an object,
respectively, so they are often used in tests of type and class.

1 if(typeof(text) != "character")

2 stop("'text' must be a character vector")

Listing 2.21: Code from the toTitleCase function to ensure that text is a character
vector.

The assertion checks that the function’s parameter text is a character vector.

We can use the ast_find_all function from the rstatic package to create an analysis which

finds most assertions in code. The test function should return TRUE for if-expressions which

contain a call to a function for testing type or class in the condition and contain a call to stop in

the body. Then for each assertion, we can extract the object the assertion targets and the class or

type the object must have. Finally, we can store this information in the .data field of the call to

the type or class test function, for the type inference strategy to use during constraint generation.

For the code in the listing, the analysis records that text must have type Vector[String] in

the .data field of the call to typeof.

The type inference strategy must check the .data field on calls for information about assertions.

97

During constraint resolution, the strategy will generate an additional constraint that the type

variable for text in the call to typeof must have type Vector[String].

Thus we have a general strategy for using type and class information from assertions. The

analysis to find assertions described in this example will not find all assertions, but can be

improved. For instance, the analysis will only recover the top-level condition if the call to stop

is inside of nested if-expressions, and the analysis does not detect calls to stopifnot.

Instead of using assertions to raise an error if an object doesn’t have a specific type or class,

code can use if-expressions in order to carry out different computations depending on the type or

class of the object. In this case, the code typically indicates the type of the object for each branch

of the if-expression. Using this information effectively is a problem for the DM type inference

strategy, since the information corresponds to specific regions of the code (the different branches

of the if-expression), but the strategy shares information across all instances of a variable.

For example, consider this code pattern:

1 if (is.numeric(x)) {

2 # ...

3 } else if (is.character(x)) {

4 # ...

5 } else {

6 stop("Invalid type for x!")

7 }

The pattern suggests that x can be either a numeric vector or a character vector. During

constraint resolution, any information collected about x in one branch of the if-expression will be

propagated to all type variables associated with x. Thus if we make the type inference strategy

assume that x is a numeric vector in the TRUE branch, this type information will be propagated

to other parts of the code (such as the FALSE branch) where it is not correct to assume.

One potential solution to this problem is to use the static single information (SSI) form of

the code instead of the SSA form. The SSI form is an extension of SSA form where variables

are provided with unique names for each branch in control flow in the code (Ananian 2001).

By using the SSI form, the type inference strategy would be able to infer different types for a

variable on different branches even if the variable is not redefined.

98

2.4.8 Scope and Environments

A variable’s scope is the region of code where the variable is defined and therefore can be used.

R provides a system of scoping rules so that variable names can be reused for different purposes

in different contexts. For instance, the code in the body of a function can define a variable

with the same name as one defined elsewhere, and modifying one will not affect the other. This

section provides a brief overview of how variable scope and lookup works in R, and then discusses

why handling scope poses a problem for the type inference strategy.

The data structure R uses to keep track of variables is called an environment. Each environment

consists of a frame, which is a list of name-value pairs, and an enclosure, which is a reference to

another environment (R Core Team 2019a). Assigning a value to a variable inserts or updates the

variable’s name and value in the frame of the current environment. For example, evaluating the

expression x = 1 inserts the value 1 under the name x in the frame of the current environment.

When R looks up the value of a variable, it first checks the frame of the current environment.

If there is an entry for the variable’s name, R returns the paired value. If there is not, then

R repeats this process for the enclosure of the current environment. If R is unable to find the

variable in any enclosing environment, it emits an error stating that the variable is not defined.

The global environment is where R evaluates top-level expressions entered at the R prompt or

in scripts. Each call to a function implicitly creates a new environment in which to evaluate the

code in the body of the function. R uses lexical scoping, so the enclosure for the new environment

is the environment where the function was defined (rather than where it was called). This means

code in the body of a function can use non-local variables, variables from the environment where

the function was defined or its enclosing environments.

For instance, this is valid R code and the result of the last line is 15:

1 x = 10

2 add_x = function(y) x + y

3 add_x(5)

The code defines both the variable x and the function add_x in the global environment. When the

code calls add_x, R creates a new environment for which the enclosure is the global environment.

When R looks up the variable x in order to evaluate x + y, it searches the environment for

the call first. There’s no variable x defined in that environment, so R searches the enclosing

environment and finds that x is 10.

99

An important nuance is that when a function uses a non-local variable, the definition (and

therefore value) of that variable can change between calls. For instance, consider this code,

where the result of each call to add_x is shown as a comment:

1 x = 10

2 add_x(5) # 15

3 x = 20

4 add_x(5) # 25

The point is that if the code in the body of a function uses a non-local variable, that variable

can refer to a different definition each time the function is called. As a result, we say that

R’s variable lookup is dynamic. The value of a non-local variable depends on the state of its

environment at run-time.

Dynamic variable lookup poses a problem for the type inference strategy, since the strategy

only analyzes code in the body of a function once—not once per call to the function—and the

type of a non-local variable can be different at different call sites. Note that the SSA form does

not solve this problem, since the SSA form is computed separately for each function and does

not provide a representation of data flow for non-local variables.

One potential solution to this problem is to use interprocedural static single assignment (ISSA)

form. This is an extension of SSA form which transforms functions so that non-local variables

are parameters, and the appropriate variable is inserted as an argument for the parameter at

each call site (Staiger et al. 2007). The type inference strategy can already handle parameters, so

it is likely that no other modifications would be necessary. However, we have not implemented

the ISSA form or tested this approach (yet). It is also unclear how to combine the ISSA form

with other SSA forms that address problems for the type inference strategy, such as the static

single information form mentioned in Section 2.4.7. Without the ISSA form, the type inference

strategy assumes by default that non-local variables will not be redefined between calls.

2.4.9 Dimensions, Recycling, and Loops

The DM type inference strategy does not attempt to infer the dimensions of objects in the

code. Nonetheless, for many R expressions it is possible to infer the dimensions of the result.

Information about dimensions has several applications:

• To apply optimizing transformations for scalars and vectors to the code.

100

• To detect errors before run-time, by checking that indexes are not out of bounds and that

the operands for matrix multiplication or other linear algebra operations are conformable.

• As an aid to readers trying to understand code, particularly scientific computations (in

which linear algebra is common).

This section provides examples of cases where it is possible to infer the dimensions of objects,

either as exact values or as symbolic relationships to other objects.

Dimension inference can be carried out simultaneously with type inference, or as a separate

analysis. The advantage of combining the two analyses is that they can share information. For

instance, the type inference strategy already infers a lower bound on the number of elements in

each list, since it infers a type for each element it detects in the code (see Section 2.4.6), so a

separate dimension inference analysis is redundant for lists. On the other hand, separating the

two analyses provides greater flexibility in terms of the strategy that can be used. If the two

analyses are simultaneous, then the dimension inference analysis must traverse the code in the

same way as the type inference analysis.

It’s possible to infer the exact dimensions of literal values, and it’s often possible to infer the

dimensions of objects returned by constructor functions as well. Table 2.2, from the section about

constructor functions, shows the dimensions of the result for many of R’s built-in constructor

functions. Where the dimensions depend on an argument, it’s possible to infer an exact value

if the argument is constant. For example, logical(3) returns a vector with 3 elements. If

the argument is not constant, it is still possible to keep track of the dimensions symbolically.

For instance, from a call y = character(n) we can infer that the result has length n. If the

definition of n is n = length(x), then we can further infer that x and y have the same length.

Besides constructor functions, functions for reading tabular data sets from files, such as

those in Table 2.4, are another entry point for multidimensional objects. These functions

provide parameters such as nrows, row.names, col.names, and colClasses whose arguments

can indicate the dimensions of the loaded object. The next example demonstrates this.

Example 32. Consider this code to read part of a tabular data set:

1 dogs100 = read.csv("dogs.csv", nrows = 100,

2 col.names = c("breed", "size", "avg_lifespan", "avg_cost"))

Listing 2.22: Code to read the first 100 rows from a CSV file.

101

Based on the argument to the nrows parameter, we can conclude that the data frame resulting

from the call will have exactly 100 rows. Based on the argument to the col.names parameter,

we can conclude that the data frame will have 4 columns, since the argument must have the

same number of elements as there are columns in the data set.

Arguments to the row.names parameter can be used to infer the number of rows in a data

frame by checking the number of names (similar to col.names for columns). Arguments to the

colClasses parameter are not required to contain an element for every column. However, the

number of elements in the argument is a lower bound on the number of columns. Furthermore,

if subsequent code only accesses the columns named in the argument to colClasses, then as a

heuristic, we can assume that this lower bound is the exact number of columns.

R recycles vector elements, which means that shorter vectors are extended by repeating the

elements in order to match the length of longer vectors in vectorized (elementwise) computations.

For instance, to evaluate the expression c(1, 2) + c(3, 4, 5, 6), R repeats the elements

1 and 2 of the first operand and then computes the elementwise sum of c(1, 2, 1, 2) and

c(3, 4, 5, 6). As a result of recycling, it is not correct for dimension inference to assume that

two operands to a binary operator must have the same length.

Loops and other forms of iteration are often necessary in code that deals with multidimensional

objects. Dimension inference can extract two kinds of information from loops:

1. The number of iterations in the loop and how this number corresponds to objects in the

loop. This is important because it can reveal the dimensions of objects, either symbolically

or exactly. For example, if a loop accesses x[i] in every iteration, where i is a loop

variable that increases by 1 in every iteration, then the number of iterations is a lower

bound on the length of x.

In a for-loop, the length of the object being iterated over is an upper bound on the

number of iterations. The length is the exact number of iterations if the body of the

loop does not contain a break statement or other expression which exits the loop early.

Dimension inference can determine the relationship between the dimensions of the object

being iterated over and other objects used within the loop if the indexes used are constant

or follow a simple pattern (such as counting up by 1 from 1 to the number of iterations).

In a while-loop, the number of iterations will not necessarily correspond to an object created

before the loop. However, dimension inference can still create a symbolic placeholder for

102

the number of iterations, as a lower bound for the sizes of objects indexed in the loop.

2. Which variables are used as indexes and how they are updated in each iteration. These

variables are important because they are the link between the number of iterations and

the dimensions of objects used or modified in the loop. Dimension inference can attempt

to identify ranges and patterns in index variables. In for-loops, the loop variable is often

an index, and the object being iterated over is often created by calling a sequence function

(see Section 2.4.3). Dimension inference can also check for common non-automatic index

updates, such as an increment by one (a = a + 1).

The DM type inference strategy does not provide a way to handle loops, so the type inference

strategy must also be adapted for loops. In for-loops, the loop variable is modified at every

iteration, and its type is determined by the element type(s) of the object the loop iterates over.

In the case of a list with heterogeneous element types, the type of the loop variable changes

across the iterations. In this case, it may not be possible to determine the exact type of the

loop variable (or any objects based on it) at the end of the loop, unless the exact number of

iterations is known.

The next example discusses dimension and type inference for a while-loop. While-loops are

less structured than for-loops, so they provide less information for static analyses to use.

Example 33. Consider this code for a rejection sampler which generates n samples from a

truncated normal distribution:

1 samp = numeric(n)

2 accepted = 0

3 while (accepted < n) {

4 x = runif(1, -2, 1)

5 y = runif(1, 0, dtrunc(0) + 0.1)

6 if (y < dtrunc(x)) {

7 accepted = accepted + 1

8 samp[accepted] = x

9 }

10 }

Listing 2.23: Code for a univariate rejection sampler.

103

The samp vector is initially a vector of n zeros. We can infer that both before and after the loop

runs, samp will have n elements—this is important to check because R automatically extends

vectors if elements are assigned to positions beyond the length. We can make this conclusion

because samp is indexed by accepted, and:

• Initially, accepted is 0.

• Each iteration increases accepted by 0 or 1.

• The loop terminates when accepted >= n.

As a result, accepted will take all integer values from 0 to n over the course of the loop.

Dimension inference for the loop must collect and combine these pieces of information in order

to determine the final size of samp. The variable accepted must be identified as an index. Then

a lower bound, upper bound, and step size for samp must be established. If any of these pieces

of information cannot be inferred, it may not be possible to infer the size of samp after the loop.

This process generalizes to other loops, and the same information is necessary to determine the

final dimensions of objects modified by the loops.

Based on our earlier discussion of constructor functions (Section 2.4.3), the type inference

strategy can infer that samp is a numeric vector, since it is constructed with numeric and since

the values assigned to samp in the loop are also numeric.

2.4.10 Value-based Types

An R variable can be assigned an object of any type, so it’s possible for the type of a variable to

depend on a value computed at run-time. For instance, the following code is valid:

1 val = rnorm(1)

2 x = if (val >= 0) val^2 else "negative"

In this case, it is not possible for a static analysis to determine the exact type of the result from

the if-expression. However, it is apparent from the code that the result will be either a numeric

value or a string. The type inference strategy handles types which depend on values, such as

the result here, by bounding the associated type variable with the set of possible types. So for

this code, the type inference strategy bounds the type variable associated with the if-expression

with Numeric and String. This way the type inference strategy provides as much information

about the type as is apparent in the code. A potential extension to the strategy is to collect the

104

conditions for each possible type from the code. Then if more information about the run-time

values becomes available, the type can be refined.

2.4.11 Non-standard Evaluation

R provides functions to intercept and modify expressions passed to functions as arguments before

they are evaluated, a feature known as non-standard evaluation. The library function is an

example of a function which uses non-standard evaluation. In a call to library, the name of

the package to load does not have to be a quoted string. For instance, library(lattice) is a

valid expression to load the lattice package. The function interprets the argument lattice as

a string, even though it would ordinarily be interpreted as a variable. The popular tidyverse

packages (Wickham, Averick, et al. 2019) make extensive use of non-standard evaluation.

The type inference strategy assumes expressions follow standard evaluation rules. The strategy

can be modified to handle non-standard evaluation for specific functions by changing how

constraints are generated for calls to those functions. In some cases it is also be possible to

use an analysis and transformation before type inference in order to rewrite code which uses

non-standard evaluation as code which uses standard evaluation. For example, the %>% pipe

operator provided by the magrittr package (Bache and Wickham 2020) inserts the expression

in its first operand as the first argument of the expression in its second operand. That is,

x %>% f() is equivalent to f(x). Since this is effectively a syntactic transformation, we can

create a transformation pass which rewrites code that uses the pipe operator as ordinary calls.

R also provides functions to parse or construct and to evaluate expressions at run-time, a

process called metaprogramming. For example, the following code constructs the call sum(1, 2)

and evaluates it:

1 ex = call("sum", 1, 2)

2 eval(ex)

As it does for any call, the type inference strategy will attempt to infer the type of the result

from a call to eval based on how it’s used in subsequent code. However, the strategy does not

use any information from the arguments to the call—it does not attempt inference on code

which is constructed at run-time.

105

2.5 The Type Inference Packages

We implemented a prototype of the type inference strategy as two R packages. The typesys

package provides data structures to represent terms in the grammar of types (Section 2.4.1)

and functions to unify types (unification is explained in Section 2.3). The RTypeInference

package provides functions to generate constraints from R code and to resolve constraints

(Section 2.3). The RTypeInference package depends on both typesys and rstatic (see

Chapter 1). This modular design is intended to make it convenient to use rstatic and typesys

in other applications.

This section contains two subsections. Section 2.5.1 introduces the typesys package, while

Section 2.5.2 introduces the basics of the RTypeInference package.

2.5.1 The typesys Package

The typesys package provides S4 classes to represent terms in the grammar of types. It also

provides functions to unify terms. This section briefly describes the classes in the package, and

then provides a few examples of creating and unifying terms.

Using S4 classes to represent terms has safety, extensibility, and organizational benefits. S4

ensures that constructed objects have valid components, and users can create their own terms in

the grammar by extending the classes provided by the package.

The classes are organized into a hierarchy with the Term class at the root. The Term class

is a virtual class which represents a general term in the grammar. It has slots class and dim

for storing information collected during type inference about class and dimensions, respectively.

Classes which correspond to concrete R types have names that begin with R. Important subclasses

of Term are:

• The Scalar class, which represents atomic scalar types in the grammar. The package

provides a subclass of Scalar for each of R’s atomic types. For instance, its subclass

RInteger represents the Integer type.

• The Composite class, which represents terms that contain other terms as components. The

class has a slot components for storing components. Important subclasses of Composite

are:

– The RVector class, which represents an R vector. As a convention, the element type

of the vector is the first and only component.

106

– The RList class, which represents an R list. Since list elements can have heterogeneous

types, the class uses a component for each element. The class has a slot indexes for

the inferred position of each element. Example 35 examines this class in more detail.

– The RFunction class, which represents an R function. As a convention, the return

type is the first component. Subsequent components are the argument types.

• The Variable class represents a type variable. Since this class inherits Term, type variables

can be used in any expression of the grammar where types can be used. The Variable

class has a slot bound for a list of types the variable is restricted to, and a slot name for

the unique name of the type variable. The package provides functions to generate unique

names for type variables.

Creating Terms

Now we turn to some examples of creating terms with typesys.

Example 34. The code to create the type Vector[Numeric] is:

1 ty = RVector(RNumeric)

The element type of an RVector can be accessed with the [[indexing operator. So ty[[1]]

returns the element type for the vector. The element type can also be accessed directly through

the components slot.

Example 35. Consider this list:

1 list(1.1, TRUE, list("hi", "hello"))

The code to construct the type of this list is:

1 RList(RNumeric, RLogical, RList(RString, RString))

The positions of the element types in the components slot do not correspond to the positions

of the elements in the list. Instead, the index slot stores a vector with the position to which

each element type corresponds. This is necessary for type inference because the positions of the

elements cannot always be determined statically. In that case, the element type is still recorded

in the components, but its entry in the index slot is NA.

In a named list, element types are associated with names rather than or in addition to positions.

The RList class can represent named lists. For example, the code to create a list type with an

integer element named “a” and string element named “b” is:

107

1 RList(a = RInteger, b = RString)

Types for elements at unknown positions can also optionally be named. The code to create a

list type with an unnamed integer element and a string element named “hi”, both at unknown

positions, is:

1 RList(.na_index = list(RInteger, hi = RString))

Listing 2.24: Use the .na_index parameter to add element types at unspecified
positions in the list.

The index for this type is NA NA, since the positions are unknown.

Example 36. Consider the type signature of the sin function. The function has exactly one

parameter, x. The argument to x can be numeric, complex, or any type that can be coerced to

numeric. The return type is numeric if the argument is numeric, and complex if it’s complex.

We can represent the type signature by creating a bounded type variable. The variable is

bounded by the Vector[RNumeric] and Vector[RComplex] types, meaning it cannot assume

any other types. The code to create the bounded type variable is:

1 bound = list(RVector(RNumeric), RVector(RComplex))

2 t1 = Variable("t1", bound = bound)

Then the code to construct the type signature for the function is:

1 sig = RFunction(t1, t1)

The RVector type is valid for length-1 vectors, so this type signature is appropriate for the sin

function even if the argument might be a scalar.

Since R’s implicit coercion rule is built into how typesys unifies terms, it is not necessary to

represent types that can be coerced to numeric in the type signature.

Unification

The typesys package’s unify function unifies two terms, returning a substitution which makes

them equal. This subsection provides a brief example of the unify function.

Example 37. Suppose we know that the type RVector(RComplex) is equal to the type variable

t1 based on an expression in the source code being analyzed. Since RVector(RComplex) does

not contain any type variables and is (trivially) equivalent to itself, we can conclude that all

108

instances of t1 can be replaced by RVector(RComplex). That is, the substitution to make

is t1 := RVector(RComplex).

The typesys code to find the substitution in this example is:

1 ty = RVector(RComplex)

2 tvar = Variable("t1")

3 result = unify(ty, tvar)

Listing 2.25: The entry point for unification in typesys is the generic unify function.

The result from the unify function is an S4 Substitution object, which represents a substitution

of zero or more type variables.

Generally, we want a substitution so that we can apply it to terms in the type language. We

can apply a Substitution to a term by calling the object on the term (like a function). For

instance, the code to apply the substitution to tvar is result(tvar), and this call returns

the type RVector(RComplex). Applying the substitution to a term that does not contain the

substituted type variable t1 returns the term unchanged. Substitutions can also be composed

by applying one substitution to another.

2.5.2 The RTypeInference Package

The RTypeInference package is a prototype implementation of the type inference strat-

egy described in Sections 2.3 and 2.4. This section provides a brief overview of how to use

RTypeInference.

The two steps in the type inference strategy, constraint generation and constraint resolution,

correspond to two functions provided by the package:

1. The generate_constraints function performs the constraint generation step. The input

to the function is source code—as an rstatic control flow graph in SSA form—and

optionally a named list of type signatures for functions called in the code.

2. The resolve_constraints function performs the constraint resolution step. The input

to the function is the output from the generate_constraints function—a Constraints

object.

The next example shows the details of using these two functions.

109

Example 38. The goal of this example is to infer types for the code to generate observations

from a linear model (Example 13 at the beginning of the chapter). The code is:

1 b0 = 10.2

2 b1 = 4

3 n = 100

4 x = runif(n)

5 e = rnorm(n)

6 y = b0 + b1 * x + e

Listing 2.26: The code from Example 13, to generate 100 observations from a linear
model.

We can use the rstatic function quote_cfg to convert this code into a CFG in SSA form.

Then we can call the RTypeInference function generate_constraints on the CFG in order

to generate type variables and constraints. As described in Section 2.3, the constraint generation

step creates an assumption set to keep track of the type variables associated with expressions in

the code and a list of constraints on those type variables.

The generate_constraints function returns the assumption set and list of constraints as

a Constraints object. The S4 class Constraints has a slot map for the assumption set and a

slot constraints for the list of constraints.

The assumption set is represented by the S4 class SymbolMap, which is a list-like data structure.

The structure of this class differs from the assumption sets described in Section 2.3: each element

corresponds to one SSA name from the code instead of one expression. This is a design decision

intended to make it easier to look up types for specific variables. Each element stores information

about all type variables associated with that SSA name, and also the type of the definition

associated with the SSA name (if the definition is included the target code).

The assumption set for the code in Listing 2.26 is:

1 <RTypeInference::SymbolMap>

2 `b0_1` defined as RNumeric

3 used as t9

4 `b1_1` defined as RNumeric

5 used as t11

6 `n_1` defined as RNumeric

7 used as t2; t5

110

8 `runif` no definition

9 used as t1

10 `x_1` defined as t3

11 used as t12

Listing 2.27: The assumption set from calling generate_constraints on the code
in Listing 2.26.

As an example of how to interpet the assumption set, this assumption set indicates b0_1 is

defined as a numeric scalar. Since only one type variable (t9) is associated with b0_1, we can

conclude that b0_1 is only used once in the code.

The list of constraints is an ordinary R list. Each element is one constraint, represented

by the S4 classes Equivalence (for equality constraints) and ImplicitInstance (for instance

constraints). The constraints constrain the type variables in the assumption set. Note that

the generate_constraints function automatically converts instance constraints to equality

constraints if the right-hand side is a concrete type (that is, does not contain any type variables).

The list of constraints for the code in Listing 2.26 is:

1 ...

2 [[4]]

3 t4 == (t5) → t6

4 from rnorm(n_1)

5 [[5]]

6 t9 == RNumeric

7 from b0_1

8 [[6]]

9 t11 == RNumeric

10 from b1_1

11 [[7]]

12 t12 instance of t3

13 from x_1

14 [[8]]

15 t10 == (t11, t12) → t13

16 from b1_1 * x_1

17 ...

111

Equivalence constraints are denoted by ==, while instance constraints are denoted by instance of.

Each constraint includes a reference (in the src slot) to the expression in the code that caused

the constraint to be generated.

For example, the last constraint shown means that the type variable t10 is equal to a function

with argument types t11 and t12 and return type t13. This constraint is generated from the

expression b1_1 * x_1. In the assuption set, t11 is a type variable for b1_1, and t12 is a type

variable for x_1. So this constraint is on the type of the multiplication operator * at this call

site.

The generate_constraints function does not make any assumptions about symbols that are

not defined in the target code, and does not attempt to look up their definitions externally. For

the code in Listing 2.26, the symbols runif, rnorm, +, and * are defined elsewhere (they are

built-in R functions). Notice that these are listed as having no definition in the assuption set in

Listing 2.27. This lack of information does not prevent type inference, but the results will be

more precise if we provide the generate_constraints function with an initial assumption set

which contains the type signatures for these functions.

We can call resolve_constraints on the Constraints object in order to resolve the con-

straints. The result is a substitution (a typesys Substitution object) that solves the system

of constraints, so that as many type variables as possible are eliminated or mapped to concrete

types. The substitution can be applied to the assumption set to determine which types were

found for each SSA name in the code. The assumption set for the code in Listing 2.26 after

applying the substitution is:

1 <RTypeInference::SymbolMap>

2 `b0_1` defined as RNumeric

3 used as RNumeric

4 `b1_1` defined as RNumeric

5 used as RNumeric

6 `n_1` defined as RNumeric

7 used as RNumeric; RNumeric

8 `runif` no definition

9 used as (RNumeric) → t3

10 `x_1` defined as t3

11 used as t19

112

12 `rnorm` no definition

13 used as (RNumeric) → t6

14 `e_1` defined as t6

15 used as t20

16 `+` no definition

17 used as (t14, t20) → t16; (RNumeric, t13) → t14

18 `*` no definition

19 used as (RNumeric, t19) → t13

20 `y_1` defined as t16

21 used as t21

The type inference strategy inferred the exact type for the constants b0, b1, and n, and also

inferred that runif, rnorm, +, and * are functions. Since we did not provide type signatures for

these functions, the types for the other SSA names are mostly still type variables, which means

they are unknown. For instance, the type inference strategy was unable to determine the type

of y.

The type inference functions will produce better results if we provide better initial information.

In particular, we need to provide type signatures for the built-in functions. We can define the

type signatures manually using typesys and pass them to the generate_constraints function.

Adding a database of type signatures for R’s built-in functions is one way the RTypeInference

package could be improved in the future. The database would likely have to be created manually

because many of R’s built-in functions are not written in R code. It may be possible to apply

the type inference strategy for C code from Chapter 3 to create the database. However, unlike

the foreign routines discussed in that chapter, R’s built-in routines call private routines that are

not part of the R Internals programming interface, and the strategy would have to be adapted

to handle these.

Example 39. The results from Example 38 improve if we specifying type signatures for the

built-in functions called by the code in Listing 2.26. We can pass type signatures into the

generate_constraints function by defining an initial assumption set which contains an entry

for each of the functions. Here’s the code to create an empty assumption set and add the type

signature (called runif_sig) for runif:

1 map = SymbolMap()

113

2 map$runif = runif_sig

The generate_constraints function accepts an initial assumption set as its second argument.

The rest of the type inference process remains the same as described in Example 38.

With the type signatures, the type inference functions are able to compute correct types for

more expressions:

1 <RTypeInference::SymbolMap>

2 `b0_1` defined as RNumeric

3 used as RNumeric

4 `b1_1` defined as RNumeric

5 used as RNumeric

6 `n_1` defined as RNumeric

7 used as RNumeric; RNumeric

8 `runif` defined as (RInteger, RNumeric, RNumeric) → RNumeric

9 used as (RNumeric, RNumeric, RNumeric) → RNumeric

10 `x_1` defined as RNumeric

11 used as RNumeric

12 `rnorm` defined as (RInteger, RNumeric, RNumeric) → RNumeric

13 used as (RNumeric, RNumeric, RNumeric) → RNumeric

14 `e_1` defined as RNumeric

15 used as RNumeric

16 `+` defined as (RNumeric, RNumeric) → RNumeric

17 used as (RNumeric, RNumeric) → RNumeric; (RNumeric, RNumeric) → RNumeric

18 `*` defined as (RNumeric, RNumeric) → RNumeric

19 used as (RNumeric, RNumeric) → RNumeric

20 `y_1` defined as RNumeric

21 used as RNumeric

Definitions in the assumption set automatically override definitions in the code, so we can

also use the assumption set to override the type associated with a specific SSA name. This is

especially important for accommodating type annotations.

As of writing there is no official standard for annotating types in R code, but several

annotation syntaxes have been proposed as extensions (rather than additions) to the language.

114

Type annotations can be handled by a separate analysis pass that populates an assumption

before constraint generation. This way the type inference strategy can support several different

kinds of annotations, provided someone develops an analysis pass to generate the assupmtion set

for each.

2.6 Related Work

Temple Lang (2014) was the first to propose compiling R code using the LLVM Compiler

Infrastructure. He identified type inference as a key requirement for compiling R code, and took

initial steps to explore type inference for R. His work is the main motivation for our own.

Sen et al. (2017) investigated using static analysis and type inference to improve the perfor-

mance of R code. They developed a software system, ROSA, that can analyze R code, apply

optimizations, and translate the result into C++ code that uses the Rcpp package. The system

focuses on a specific set of optimizations the authors identified as likely to improve performance,

and only translates a subset of the language. ROSA provides improvements in run-times and

memory usage over the R interpreter in a variety of benchmark examples. ROSA is implemented

in C++, which makes it more difficult to understand, extend, and adapt. The type inference

rules for R functions are hard-coded, so adding new rules to the system (for example, for other

functions) is relatively difficult. Their type inference system is not designed for translating R

objects into native C types, which is part of why they rely on Rcpp.

Damas-Milner type inference is one of the two major branches of type inference research.

The original Damas-Milner type inference strategy was designed for functional languages with

immutable data structures. These characteristics are why we choose the Damas-Milner strategy

as a basis for our type inference strategy. One of the key innovations of the Damas-Milner

strategy at the time it was published is the way it represents polymorphism with type variables

that can be filled in with any possible type.

The strategies from other branch of type inference research generally do not use type variables;

instead, they traverse the code and collect a set of possible types for each expression. An early

example of this approach is the Cartesian Product Algorithm (CPA), which was proposed by

Agesen (1995). Concrete types are especially relevant to object-oriented languages, since method

dispatch depends on argument types. Moreover, a compiler can use concrete types to select

specialized methods during compilation. R is relatively unique in how it blends functional and

115

object-oriented programming: idiomatic R code uses map operations (apply functions) and

closures, but also uses (S3) classes and method dispatch. It is unclear whether CPA-based type

inference would be more effective than Damas-Milner type inference for R, but there is a clear

need for concrete type information.

Recent type inference research focuses on dynamically typed programming languages. Soft

typing (Aiken et al. 1994) extends the Damas-Milner type system to include types that are

conditional on control flow in the code. This makes it possible to eliminate type checks selectively,

so that checks are only made for objects whose type is truly dynamic. Since this is an extension

of the Damas-Milner type system, it is feasible to modify RTypeInference to use this approach.

However, the solver is relatively complicated compared to unification, and we are not aware of

any type inference software based on soft typing in widespread use.

Even more recently, Siek and Taha (2006) proposed gradual typing, where a dynamically

typed language has optional type annotations, but type checks are seamlessly and transparently

eliminated anywhere annotations and inference provide sufficient information. In other words,

gradual typing puts control over whether code is dynamically or statically typed in the hands of

the programmer. This approach is notable because it was implemented for Python as Reticulated

Python (Vitousek et al. 2014), which in turn led to the officially-supported mypy type checker

package (Lehtosalo et al. 2015). Gradual typing is an interesting option for R, since it is designed

for dynamically typed languages, accommodates old code without type annotations, and allows

for static type checking and performance improvements for new code. Turcotte and Vitek (2019)

have signaled they are investigating gradual typing for R and may use it in forthcoming work.

2.7 Conclusion

Type inference is a static analysis which attempts to determine the type of the result of

each expression in the target code. This type information is essential for code translation or

compilation, and can also be used for checking for errors before run-time and summarizing code.

Type inference is necessary to get type information for R code because R code does not contain

type annotations.

The type inference strategy presented in this chapter is based on the Damas-Milner type

inference strategy, which was originally designed for the ML programming language. We chose

to use DM type inference as the basis for our strategy because both ML and R are functional

116

programming languages where functions typically do not have side effects most objects are

immutable.

The strategy is divided into two steps: constraint generation and constraint resolution. During

the constraint generation step, the strategy creates a type variable for each expression in the

code, and then generates constraints on the type variables based on the kind of expression and

how the result of the expression is used in other expressions. Constraint resolution solves for the

values of the type variables and thereby produces a type for each expression in the code.

Many changes are necessary to make the Damas-Milner type inference strategy work on R code.

Our strategy uses R code in static single assignment form, which was described in Chapter 1.

The SSA form is important because it enables the type inference strategy to associate different

types with different definitions of the same variable. Our strategy also uses a grammar of types

designed specifically for R. The grammar includes all of R’s built-in types, and also includes

many of R’s built-in S3 classes and special terms to handle specific language features. The

type inference strategy attempts to infer S3 classes in addition to types, because information

about classes is necessary to determine which methods will be called by S3 generic functions at

run-time. The type inference strategy also builds R’s implicit coercion rules into how it handles

one kind of constraint. Because many R functions can accept many different types as arguments

or return many different types, it is not always possible to infer a single, specific type for every

expression. When it is not, the type inference strategy still attempts to produce a bounding set

of potential types for each expresssion.

We created two R packages, typesys and RTypeInference, as a prototype implementation of

the type inference strategy. The typesys package provides data structures to represent types in

the grammar of types and to represent constraints. The package also provides functions to unify

types by finding a substitution of type variables which makes them equal. The RTypeInference

package uses rstatic and typesys to implement the constraint generation and constraint

resolution steps.

117

Chapter 3

Type Inference for the R API

3.1 Introduction

The type inference system presented in Chapter 2 is designed to analyze R code, but R code can

make calls to foreign routines written in C, C++, and Fortran. The specific parameter types

and return types of these foreign routines can provide information about types in the calling

R code (to be clear, by parameter types we mean the assumptions a routine makes about the

types of its arguments, in contrast to argument types, the actual types of the arguments at a

specific call site). We’d like to collect the parameter types and return types for foreign routines

in order to incorporate them into the type inference system. This chapter describes one strategy

for doing so, but first we’ll see why doing so is non-trivial.

R provides five different interfaces with which to call foreign routines: .C, .Fortran, .Call,

.External, and .External2. The latter three are designed specifically for calling routines that

accept R objects as arguments and return R objects as results. In these routines (and in the R

interperter itself), each R object is represented by a SEXP, a pointer to a SEXPREC data structure

that contains the object’s value and metadata. As a consequence, even though C and C++

require explicit type annotations, the annotation for an R object will be SEXP, regardless of the

object’s underlying R type. Thus for routines called with .Call, .External, or .External2,

recovering the type information requires type inference on the routine’s code. The next example

demonstrates this with a C routine suitable for the .Call interface.

Example 40. The out routine, which computes the outer product of two vectors, is a canonical

example of a computation worth writing in C for efficiency, taken from the Writing R Extensions

manual (R Core Team 2019b). Here’s the code for the routine:

118

1 #include <R.h>

2 #include <Rinternals.h>

3 SEXP out(SEXP x, SEXP y)

4 {

5 int nx = length(x), ny = length(y);

6 SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));

7 double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

8 for(int i = 0; i < nx; i++) {

9 double tmp = rx[i];

10 for(int j = 0; j < ny; j++)

11 rans[i + nx*j] = tmp * ry[j];

12 }

13 UNPROTECT(1);

14 return ans;

15 }

Listing 3.1: The out routine computes the outer product of two numeric vectors (R
Core Team 2019b). The calling R code is responsible for ensuring the
arguments are numeric vectors.

The routine’s two parameters and return value all have C type SEXP, meaning they are R objects.

Their R type (or SEXPTYPE), the result of calling typeof on them in R, is not explicitly declared

in the C code. Until we examine more of the code, we can’t tell whether they are numeric

vectors, character vectors, lists, or other types of R objects. That is, if we want the R types, we

must infer them.

As we’ll see throughout this chapter, the key to type inference for R objects in foreign code

is inspecting the call where the object is defined and all calls where the object is used as an

argument. We’ll refer to these as definitions and uses, respectively.

The R Internals programming interface, included in R and declared by the header file

Rinternals.h, is the primary mechanism for creating and manipulating R objects in C-

compatible code. Many of its routines require that their arguments have specific R types,

so when they are called on an object, they refine the set of possible types for the object. In

addition, many of the routines return a result with a specific R type, so they also provide type

information when they are used in a definition.

As a demonstration, consider the variable ans. We can see that ans is defined by a call to

119

the allocMatrix routine (we ignore the PROTECT macro, since it does not affect R types). This

routine is provided by the R Internals interface. It returns a matrix, but the element type

depends on the first argument. In this case, the first argument is the constant REALSXP, which

is part of an enumeration in the Rinternals.h header file. This constant is the SEXPTYPE that

corresponds to numeric vectors. Thus we can infer that ans is a numeric matrix, and therefore

the out routine returns a numeric matrix.

We can also use type inference to deduce the parameter types for the parameters x and y.

Let’s take x as an example; the process for y is identical up to the parameter name. Since x is a

parameter, there is no definition to provide type information, so we focus exclusively on how x

is used. The first use of x is in a call to the length routine. The length routine accepts any R

object as its argument, similar to the length function in R, so this use doesn’t help us infer the

type. The next use of x is in a call to the REAL routine. This is much more useful—the REAL

routine expects its argument to be an R object with type numeric. So we can infer that out

expects the argument for the parameter x to be numeric. Likewise, the argument for y is also

expected to be numeric.

The example shows that type inference is necessary for routines called with the .Call,

.External, and .External2 interfaces, because the R types are not explicitly declared in the

code. It also shows that type inference is, in fact, feasible for such routines. In order to automate

this process, we need a robust type inference algorithm.

Calls to foreign routines play an important role in R programming, so augmenting the type

inference system of Chapter 2 to handle them is important. Routines written in C, C++, and

Fortran typically run orders of magnitude faster and consume less memory than equivalent

functions written entirely in R (Morandat et al. 2012). Moreover, R code can call routines in

preexisting software libraries, so that the functionality of these libraries does not have to be

reimplemented specifically for R.

In 2020, we found that 23.5% (or 4004) of the 16,987 packages on the Comprehensive R

Archive Network (CRAN) contained C, C++, or Fortran source code. Of those, about 54%

contained C code and 62% contained C++ code (some contained both). Less than 1% (137

packages) contained Fortran code.

This chapter develops a strategy to infer the types of R objects in C code. We chose to focus

on C code for this initial investigation because the syntax and semantics are relatively simpler

than C++ code, and C code is substantially more popular in CRAN packages than Fortran

120

code. We also discuss the potential for extending the strategy to C++ and Fortran.

Type inference is not necessary for foreign routines called with the .C and .Fortran interfaces.

These interfaces are designed for calling routines that do not operate directly on R objects.

Instead, the interfaces unbox R objects into standard C types to pass to routines. Nevertheless,

this chapter also documents how to collect the type information provided by calls made with

these interfaces.

Here is how the chapter is organized:

• Section 3.2 provides additional necessary background information. In particular, this

section discusses the relative merits of two different but related tools for analyzing C and

C++ code: LibClang and the LLVM Compiler Infrastructure. It also provides a brief

introduction to the LLVM intermediate representation for code.

• Section 3.3 describes a strategy to collect information from foreign routines called with the

.C and .Fortran interfaces. Since routines designed for these interfaces do not directly

manipulate R objects, type inference is not necessary, but they still provide type information

we’d like to collect.

• Section 3.4, our primary contribution, describes an algorithm for type inference on C

routines called with the .Call, .External, and .External2 interfaces. The algorithm is

developed gradually by way of examples that expose necessary features.

• Section 3.5 describes how to connect results from this chapter to the type inference for

R code described in Chapter 2. The types we infer for R objects in foreign routines are

the same as the types we infer for R objects in R code, so we can reuse the vocabulary of

types and type variables developed in Chapter 2 and provided by the typesys package.

• Section 3.6 describes related work by other researchers.

3.2 Background

The type collection and inference strategies described in this chapter are implemented in R. The

main reason is that this allows us to build on and integrate with existing packages, particularly

the packages described in Chapter 2. A language like C or C++ would provide better run-time

performance, but prevent us from using R packages and act as a barrier to entry for other

121

members of the R community interested in contributing. Tools implemented in R are anecdotally

easier to debug, modify, and extend.

We considered two different R packages as candidates for analyzing C code. Subsection 3.2.1

provides an overview of both and explains which we chose to use and why. Following that,

Subsection 3.2.2 briefly introduces the LLVM intermediate representation, the medium for code

analysis in our strategy.

3.2.1 Packages for C Code Analysis

The first candidate for analyzing C code from R is the RCIndex package (Temple Lang 2011).

The package is a binding to LibClang, the source code analysis library that powers the Clang C

compiler. The LibClang library provides routines for parsing and navigating C and C++ code

as abstract syntax trees (ASTs). This data structure was explained in Chapter 1 for R code; see

Section 1.2 for an overview.

Abstract syntax trees emphasize the syntactic structure of source code, but for type inference

we are more interested in the flow of control (branches and loops) and the flow of data (definitions

and uses) in the code. We already saw the importance of the latter in Example 40. In an AST,

control flow expressions and their contents appear in the same order as the original code, so

additional analysis is necessary to determine whether and where variables are conditionally

defined or redefined (including in loops). The LibClang library does not provide routines to do

this analysis, nor does it provide routines to find the definitions and uses of variables. Thus we

would need to develop our own, for instance by traversing the AST with a recursive function or

a loop and stack.

On the other hand, ASTs retain the syntactic structure of the original source code, so they

are relatively easy to understand and begin using, provided one has a thorough understanding

of the represented source language.

The second candidate for analyzing C code from R is the Rllvm package (Temple Lang 2014).

The package is a binding to the LLVM compiler infrastructure. LLVM is a complete set of tools

for constructing a compiler, and is used in popular compilers for a variety of languages, including

C, C++, and Fortran. LLVM provides routines for navigating and extracting information from

the LLVM intermediate representation (IR). The LLVM IR is a low-level, language-agnostic

format that represents code as a control flow graph (CFG) in static single assignment (SSA)

form. CFGs and SSA form were described in Sections 1.3 and 1.4.2 for R code, but we also

122

explain more about the LLVM IR specifically in Subsection 3.2.2.

Control flow graphs emphasize the control flow in the source code, and SSA form adds explicit

data flow information. In particular, in SSA form, each variable name corresponds to a single

definition in the source code. If a variable is redefined at some point, a different name is assigned

to the second definition. As a consequence, any use of a variable can be correctly matched to

its specific definition by name. Additional analysis to check for redefinitions is not necessary.

LLVM even provides routines to find the definition and all uses of a given variable. Moreover,

instructions in the LLVM IR are less complex than expressions in an AST, since they cannot

contain other instructions.

The drawbacks of the LLVM IR are that the structure and variable names often differ

significantly from the original source code, and that it is relatively difficult to understand and

begin using without prior experience with CFGs and SSA form.

Unlike LibClang, LLVM provides routines and shell tools to optimize code. These optimizations

reduce the size and complexity of the IR without changing its effect, usually at the cost of

making it more difficult to match instructions in the IR to expressions in the original source

code. Some of these optimizations are helpful for type inference. For instance, constant folding

replaces constant variables with their literal value, and literals have known types.

We believe the benefits of LLVM outweigh the upfront cost of learning to work with the IR,

so we chose to use Rllvm to implement the type inference strategy.

3.2.2 The LLVM Intermediate Representation

This section shows how to generate the LLVM intermediate representation from source code and

explains its overall structure.

Example 41. Let’s revisit the out routine from Example 40. Suppose the code is stored in the

file out.c. In order to use LLVM (and Rllvm) to analyze the code, we must first convert the

code into LLVM IR. We can do this with the clang compiler. In a UNIX shell, the command is:

1 clang -fno-discard-value-names -S -emit-llvm out.c

Listing 3.2: The clang command to run in a UNIX shell in order to generate LLVM
IR from a C source file.

The -fno-discard-value-names flag instructs clang to preserve the original variable names

from the C code where possible. The -S flag instructs clang to emit the IR as human-readable

123

“assembly” code, which we’ll learn more about later in this example (without the -S flag, clang

emits the IR as bitcode, a binary format). Finally, the -emit-llvm flag instructs clang to

generate IR rather than a compiled executable or library. The command produces the file

out.ll, which contains the IR code.

In the LLVM IR, a module is a top-level container for all other code objects. A module can

contain routines, global variables, data structures, and other information. For C and C++ code,

a module corresponds to one or more translation units, the combined code after processing all

preprocessor instructions in a source file. The out.ll file is a single module.

In a module, each routine’s code is arranged into blocks. Each block contains a sequence of

instructions that run uninterrupted, without branching. The last instruction in each block is

always a terminator instruction that branches to another block or exits the routine. The IR’s

structure is very similar to the control flow graphs for R code described in Section 1.3.

Within a block, instructions can call routines, carry out arithmetic, make comparisons, access

memory, and perform other primitive operations. Only terminator instructions can branch to

other blocks.

For every instruction that produces a result, the LLVM IR automatically defines a variable

to refer to that result. Since the IR is in static single assignment form, each variable name is

unique, and cannot be redefined. Local variables are always prefixed with %, and global variables

are always prefixed with @.

Let’s look at a single instruction from the out.ll file:

1 %call1 = tail call i32 @Rf_length(%struct.SEXPREC* %y) #2

This instruction returns a result, which is assigned to a local variable, %call1. The instruction

itself (on the right-hand side of the equal sign) begins with tail call, so it is a call instruction.

Call instructions call another routine and return its result. The prefix tail indicates a possible

optimization, but can be safely ignored for our purposes. The name of the instruction is followed

by arguments. For a call instruction, the first argument is the type of result returned by

the routine to be called. In this case, it’s i32, a 32-bit integer. The second argument is the

name of the routine to call and its arguments. This instruction calls the @Rf_length routine

with the variable %y as the only argument. The #2 at the end of the instruction indicates that

this instruction is subject to attributes defined elsewhere in the module; we generally won’t

need these attributes for type inference. Other instructions follow the same pattern: a variable

124

definition, the instruction’s name, and then the instruction’s arguments. For instructions that

do not return a result, the variable definition is omitted.

Now consider the type signature and entire first block of the out routine. The first block is

called the entry block, since it’s the entry point to the routine. In the IR, blocks always begin

with their name and a colon:

1 define %struct.SEXPREC* @out(

2 %struct.SEXPREC* %x, %struct.SEXPREC* %y) local_unnamed_addr #0 {

3

4 entry:

5 %call = tail call i32 @Rf_length(%struct.SEXPREC* %x) #2

6 %call1 = tail call i32 @Rf_length(%struct.SEXPREC* %y) #2

7 %call2 = tail call %struct.SEXPREC* @Rf_allocMatrix(

8 i32 14, i32 %call, i32 %call1) #2

9 %call3 = tail call %struct.SEXPREC* @Rf_protect(

10 %struct.SEXPREC* %call2) #2

11 %call4 = tail call double* @REAL(%struct.SEXPREC* %x) #2

12 %call5 = tail call double* @REAL(%struct.SEXPREC* %y) #2

13 %call6 = tail call double* @REAL(%struct.SEXPREC* %call3) #2

14 %cmp42 = icmp sgt i32 %call, 0

15 br i1 %cmp42, label %for.body.lr.ph, label %for.cond.cleanup

Listing 3.3: The type signature and first block of the LLVM IR for the out routine
from Example 40.

The entry block contains several call instructions, as well as an icmp instruction and a br

instruction. The br instruction is an example of a terminator instruction that specifies which

block to branch to next. The branch can depend on a condition. If-statements, loops, and other

conditional control flow structures are translated into the IR as multiple blocks connected by

conditional branch instructions. Here the br instruction depends on the value of the variable

%cmp42. When the value is true, the program branches to the for.body.lr.ph block. When

the value is false, the program branches to the for.cond.cleanup block.

By default, clang does not apply any optimizations to the emitted LLVM IR. We can enable

optimizations by adding the -O flag to the command in Listing 3.2. The flag should be followed

by a number that indicates the level of optimization from 0 (no optimization) to 4. Higher

125

levels of optimization tend to reduce the size of the generated IR, but also produce IR that

is structurally less like the original source code. The effect of the code remains the same, but

computations may be rearranged and unnecessary computations eliminated. We recommend

using at least optimization level 1, because clang annotates the code with additional information

collected during optimization. For instance, with optimizations on, clang attaches a readonly

attribute to parameters in routines that are not modified by the code in the routine (we’ll see

why this information is important in Section 3.3).

We will explain more details of the LLVM IR as needed in the examples in this chapter. For a

longer introduction to the IR, see LLVM Essentials (Sarda and Pandey 2015), and for a complete

reference, see the LLVM documentation (https://llvm.org/docs/).

3.3 The .C and .Fortran Interfaces

The .C and .Fortran interfaces are intended for calls to C and Fortran routines, respectively,

that do not operate directly on R objects. The .C interface can also be used with other languages

that are C-compatible, such as C++. This section describes how to collect type information

from foreign routines called with the two interfaces and provides an example. Subsection 3.3.1

addresses the .C interface, and Subsection 3.3.2 addresses the .Fortran interface.

When one calls a foreign routine with either interface, the interface automatically unboxes

the R objects passed as arguments into C and Fortran types. The mapping from R types to C

and Fortran types is shown in Table 3.1. It is possible to pass other types of R objects, but is

only supported for backwards compatibility with old code (R Core Team 2019b). Since R does

not distinguish between scalar and vector types, the .C interface maps all R types to C pointer

types. Additionally, complex numbers are mapped into the RComplex type, which is defined by

a header file provided with R. Like R, Fortran does not distinguish between scalar and vector

types.

The type inference strategy from Chapter 1 can usually infer the actual argument types for a

call to a foreign routine from the surrounding R code. However, this approach assumes that the

arguments are correctly specified, rather than checking the signature of the foreign routine for

its parameter types. Since the .C and .Fortran interfaces do not check the parameter types at

run-time either, it is considered good practice to explicitly check or coerce the arguments in the

R code preceding the call. When checks or coercions are present, they reduce the likelihood of a

126

https://llvm.org/docs/

R Type C Type Fortran Type

logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER(255)
raw unsigned char * none

Table 3.1: Mapping from R types to C types for the .C interface and Fortran types
for the .Fortran interface. This table was originally published in Writing
R Extensions (R Core Team 2019b).

type error and provide additional information for type inference.

Examining the type signature and source code for foreign routines is a simpler and more direct

approach which avoids making any assumptions. After extracting the type signature for a foreign

routine with Rllvm, we can statically type check arguments by comparing their inferred types

to the parameter types. On the other hand, if the R code does not provide enough information

to infer the actual argument types, we can use the parameter types as an approximation. Finally,

the type signature is useful information even for someone that isn’t interested in type inference.

For example, a code transformation could use the parameter types to programmatically insert

checks and coercions into the R code. This prevents type errors, which can cause bugs that are

difficult to diagnose.

The .C and .Fortran interfaces require that foreign routines return results by modifying their

arguments rather than by built-in return mechanisms. As a result, collecting the return type

from these routines is not useful. However, it is useful to collect information about whether

each argument is read from, written to, or both. This information allows us to determine

which arguments contain return values, avoid copying arguments that will not be modified, and

potentially to statically detect incorrect usage of a routine. Thus we will collect this information

in addition to type signatures.

3.3.1 The .C Interface

This section documents how to collect the type signature and information about which arguments

are modified from C routines called with the .C interface. The steps to do this with the Rllvm

package are shown in Listing 3.4.

127

1. Convert the C code to LLVM IR with clang.

2. Parse the IR with the parseIR function and get the target routine within the module.

Then get the parameters from the routine with the getParameters function.

3. For each parameter, get the C type with the getType function, translate the C type

into an R type, and get the readonly flag.

Listing 3.4: The steps to collect the type signature and information about which
arguments are modified from a C routine.

The next example illustrates these steps.

Example 42. The convolve routine, which convolves two numeric vectors, is another example

of a computation one might want to write in C rather than R for efficiency reasons, again from

the Writing R Extensions manual (R Core Team 2019b). Here’s the code:

1 void convolve(double *a, int *na, double *b, int *nb, double *ab)

2 {

3 int nab = *na + *nb - 1;

4 for(int i = 0; i < nab; i++)

5 ab[i] = 0.0;

6 for(int i = 0; i < *na; i++)

7 for(int j = 0; j < *nb; j++)

8 ab[i + j] += a[i] * b[j];

9 }

Listing 3.5: The convolve routine convolves of two numeric vectors (R Core Team
2019b).

Before we can use Rllvm to analyze the code, we must compile the code into LLVM IR.

Example 41 provides an example of how to do this. Suppose the resulting IR file is named

convolve.ll.

Next, we use Rllvm to parse the IR in convolve.ll, get the routine within the parsed

module, and then get the routine’s parameters. Once we have the parameters, we get the C

type of each one. Here’s the code for these steps:

1 library(Rllvm)

2 m = parseIR("convolve.ll")

128

3 convolve = m$convolve

4 parameters = getParameters(convolve)

5 param_types = lapply(parameters, getType)

Listing 3.6: Code to get the type signature for the convolve routine.

The next step is to use the mapping in Table 3.1 in reverse in order to find the R types. To

do this, we need some way to represent the R types (Rllvm provides a representation for the C

types). The simplest approach is to use strings to represent the types, the same as in R itself.

For type inference or other analyses that already use the typesys package, it is more convenient

to use the representations provided by that package. The advantages of typesys are described

in Section 2.5.1.

Once we’ve selected a representation, the actual process of translating the C types to R types

is a straightforward lookup of the C type in Table 3.1. In the convolve routine, the parameters

a, b, and ab have C type double *, so their equivalent R type is double. The parameters na

and nb have C type int *, so their equivalent R type is integer. We always translate the C

type int * into the R type integer, even though int * also corresponds to the R type logical.

In R, logical vectors can be implicitly coerced into an integer vectors, so translating to type

integer allows for both possibilities.

The final step is to collect information about which arguments are modified by the routine. If

the code is compiled into LLVM IR with any level of optimization enabled (see Section 3.2.2),

then clang annotates each parameter that is not modified by its parent routine with a readonly

flag. We can check for this flag with Rllvm. Here’s the code:

1 param_readonly = sapply(parameters, onlyReadsMemory)

For the convolve routine, all of the parameters except for ab are read-only. Based on this, we

can conclude that the routine returns its result by modifying the argument to the ab parameter.

The other parameters are only inputs. A limitation of this approach is that it does not tell us

whether the routine reads from ab before writing to ab.

By analyzing the LLVM IR instructions in a routine, it’s possible to overcome the limitation

of using the readonly flag described in Example 42. One strategy is to check the uses of

the parameter in the routine for instructions that read from the parameter. The examples in

Section 3.4.2 use a similar approach to infer R types for parameters with C type SEXP. We chose

129

not to investigate this approach further for the .C interface since we do not have any immediate

applications for information about which parameters are read by a foreign routine.

3.3.2 The .Fortran Interface

At the time of writing, there are no stable Fortran compilers based on the LLVM compiler

infrastructure, so it is not yet possible to compile Fortran code into LLVM IR. However, the

Flang compiler (Flang 2021) and the LFortran compiler (LFortran 2021), both in the early

stages of development, are based on LLVM. The LFortran compiler development team plans to

release a viable compiler by Fall 2021.

Once there is software available to compile Fortran code into LLVM IR, we expect that

routines called with the .Fortran interface can be analyzed with the strategy in Listing 3.4.

One aspect that is not yet clear is how Fortran types will be represented in the LLVM IR. It

may be necessary to modify the strategy to take this into account.

3.4 The .Call, .External, and .External2 Interfaces

The .Call, .External, and .External2 interfaces are intended for calls to foreign routines that

use the R Internals programming interface. The routines can be written in C, C++, or any

other C-compatible language. The routines must return an R object and accept R objects as

arguments. The R types of these objects are not explicitly annotated in the code. Nevertheless,

we can infer them from the code—as we saw in Example 40—by examining how parameters are

used and how variables are defined and used.

Taking a divide-and-conquer approach, we split the type inference problem into two parts:

the return type and the parameter types. The strategy for the return type is to examine how

the returned value is defined and used prior to being returned. As we’ll see, in some cases it’s

necessary to repeat this process recursively for parameters or variables used in the definition of

the return value. On the other hand, the strategy for the parameter types is to search for uses

of each parameter in calls to other routines that require specific types. Both strategies rely on

LLVM to find definitions and uses.

Both strategies also rely on a database of type signatures for the C routines that compose the

R Internals programming interface. Temple Lang (2021) found that CRAN packages use 395 of

the provided routines. We manually inspected the source code for 235 of those routines in order

130

to create the database. Of the remaining 160 routines, none are used more than 6 times across

all CRAN packages, and most do not return R objects nor accept R objects as arguments.

Subsection 3.4.1 describes inference for return types. Subsection 3.4.2 describes inference

for parameter types. Both of those subsections focus on the .Call interface and C routines

for clarity of exposition. Subsection 3.4.3 addresses differences that arise for routines designed

to be called with the .External or .External2 interfaces. Finally, Subsection 3.4.4 discusses

difficulties that might arise in extending the strategy to C++ routines, especially those that use

the Rcpp package.

3.4.1 Return Types

This subsection describes the strategy to infer the R return type of a routine. The core strategy

is to work backwards from where the routine’s result is returned, in order to infer its type. To do

this, we use LLVM to get the definition and uses of variables. We refine the strategy up gradually

in subsequent subsections. Each introduces examples of situations where the core strategy is

unable to infer the correct type, and describes improvements to address those situations.

Example 43. This example demonstrates the core strategy. For clarity of exposition, the target

routine for type inference is deliberately simple—it always returns the integer 42. Here’s the C

code for the routine:

1 SEXP return42()

2 {

3 SEXP ans = PROTECT(allocVector(INTSXP, 1));

4 INTEGER(ans)[0] = 42;

5 UNPROTECT(1);

6 return ans;

7 }

We’ll carry out the actual analysis on the LLVM IR. Thus compiling the C code into LLVM IR

is a prerequisite—see Example 41 for how to do so.

In LLVM IR, the ret instruction exits a routine and returns a value. LLVM arranges the

control flow graph so that there is a single exit block that contains a ret instruction as the

terminator instruction.

131

The ret instruction is always the starting point for inferring the return type. First we need

to find the ret instruction. We can use the Rllvm functions getBlocks and getTerminator

to get the list of basic blocks in the routine and get the terminator instruction for each block,

respectively. Then we can search the terminators to find the ret instruction. The ret instruction

for the return42 routine is:

1 ret %struct.SEXPREC* %call1

The return instruction contains two pieces of information: the C return type (a SEXPREC struct),

and the value to return (the variable %call1). When the C return type is SEXP, that doesn’t

tell us the R specific type, so we need to collect more information from the rest of the code. The

most important information in the instruction is the variable %call1. In order to determine the

return type of the routine, we must determine the R type of this variable.

The next step is to get the instruction where %call1 is defined. To do this, we can use the

Rllvm function getOperand to get the %call1 from the ret instruction. It is the 1st operand.

The Rllvm package represents variables as a reference to their definition, so getting a variable

also gets the definition. Here’s the definition for %call1:

1 %call1 = call %struct.SEXPREC* @Rf_protect(%struct.SEXPREC* %call) #2

This instruction is a call to the Rf_protect routine, which is provided by the R Internals

programming interface. This routine is related to R’s memory management, and returns its

argument. So the definition for %call1 is in terms of another variable, the argument %call.

At this point, we recursively apply the type inference procedure to the variable %call. That

means the next step is to examine its definition, which is:

1 %call = call %struct.SEXPREC* @Rf_allocVector(i32 13, i64 1) #2

The Rf_allocVector routine is another routine provided by the R Internals programming

interface. The routine creates a new R vector with the element type and length specified by the

first and second arguments, respectively.

The first argument, 13, comes from an enumeration of SEXPTYPEs also defined by the R

Internals programming interface. The enumeration is shown in Table 3.2. Looking up 13 in the

table, we see that it means INTSXP, so this call creates an integer vector. In practice, we can do

this lookup programmatically provided we first extract the enumeration from the Rinternals.h

file—either manually or programmatically.

132

Enum Type Description

0 NIL nil = NULL
1 SYM symbols
2 LIST lists of dotted pairs
3 CLO closures
4 ENV environments
5 PROM promises: [un]evaluated closure arguments
6 LANG language constructs (special lists)
7 SPECIAL special forms
8 BUILTIN builtin non-special forms
9 CHAR scalar string type (internal only)

10 LGL logical vectors
13 INT integer vectors
14 REAL real variables
15 CPLX complex variables
16 STR string vectors
17 DOT dot-dot-dot object
18 ANY make ”any” args work
19 VEC generic vectors
20 EXPR expressions vectors
21 BCODE byte code
22 EXTPTR external pointer
23 WEAKREF weak reference
24 RAW raw bytes
25 S4 S4, non-vector
30 NEW fresh node created in new page
31 FREE node released by GC
99 FUN closure or builtin or special

Table 3.2: All SEXPTYPEs enumerated in the Rinternals.h header file of the R source
code. The descriptions here are also from the source code. All SEXPTYPEs
are written without the suffix SXP here.

The second argument, 1, is the length of the new vector. Thus the instruction reveals that

%call is a scalar integer. It follows that %call1 is a scalar integer, so the return42 routine

always returns a scalar integer.

As is the case here, examining definitions is often sufficient to infer the return type of a

routine. Nevertheless, the type inference strategy also inspects instructions that use the variables

of interest for any additional information they can provide. We can use the Rllvm function

getAllUsers to get these uses. The variable %call1 is only used once, as an argument in a call

to the INTEGER routine:

1 %call2 = call i32* @INTEGER(%struct.SEXPREC* %call1) #2

Provided by the R Internals programming interface, the INTEGER routine is used to access an

INTSXP object as an ordinary C int array. Consequently, this instruction confirms that the

133

variable %call1 is an R integer vector, but doesn’t provide any new information.

Identify the return value—the only operand of the ret instruction—and apply this type

inference procedure:

1. Inspect the definition. If the operand is not a parameter, inspect its definition for

type information. For SEXPs, the definition will usually be a call to an R Internals

routine. Look up the called routine in the database of routines. If the called routine’s

return type depends on the types of its arguments, repeat the type inference procedure

for the arguments.

2. Inspect the uses. For each other instruction that uses the operand: if the instruction

is a call to an R Internals routine, look up the called routine in the database of routines.

The routine may put restrictions on the types of its arguments and thus the type of

the operand.

Listing 3.7: The core strategy to infer a routine’s return type. Subsequent sections
of this chapter refine and expand upon the strategy.

The example demonstrates the core strategy to infer return types: start from the routine’s

result, inspect the definition and uses for more type information, and repeat as necessary if the

type of the result depends on other variables. An outline of the strategy is shown in Listing 3.7.

Note that routines called with the .C, .External, and .External2 interfaces must return an R

object, so for these routines the ret instruction will always have a variable or parameter as its

operand.

Fundamental to this strategy is the fact that a routine can only get an R object through

its arguments or by calling other routines—typically the ones provided by the R Internals

programming interface. The majority of the routines provided by the programming interface to

construct R objects only return specific types of objects; these routines are shown in Table 3.3.

When these are used to define an R object, we can infer its type.

For routines in Table 3.3 that accept length or dimension arguments, such as Rf_allocVector,

we can also infer the dimensions of the new R object, provided that these arguments are constants.

Where they are not constants, it is still sometimes possible to relate the dimensions of the new

object to other objects. For instance, if b is defined by a call to Rf_allocVector where the

length argument is LENGTH(a), then a and b are the same length. Furthermore, if a is parameter,

134

then we can conclude that b is the same length as the argument to a. It may then be possible

to infer the length of b at a given call site based on the calling R code.

Routine Argument(s) Return Return Dimensions

Rf_ScalarLogical int LGL 1
Rf_ScalarInteger int INT 1
Rf_ScalarString CHAR STR 1
Rf_ScalarReal double REAL 1
Rf_ScalarComplex Rcomplex CPLX 1
Rf_ScalarRaw Rbyte RAW 1

Rf_allocList int LIST 1
Rf_install char * SYM 1
Rf_installTrChar CHAR SYM 1
Rf_mkString char * STR 1

Rf_allocSExp T τ 1
Rf_allocVector T , R_len_t n τ n
Rf_allocMatrix T , int m, int n τ m × n
Rf_alloc3DArray T , int m, int n, int p τ m × n × p
Rf_allocArray T , INT k τ k1 × k2 × . . .
Rf_mkNamed T , char ** τ

Table 3.3: Routines provided by the R Internals programming interface to construct
SEXPs of specific types. Some routines that are not called by any CRAN
packages are omitted. T denotes any SEXPTYPE, while τ denotes a SEXP
with SEXPTYPE T . All SEXPTYPEs are written without the suffix SXP here.

The strategy also examines uses of the result and any parameters or variables on which it

depends. The uses serve as a secondary source of information should definitions prove insufficient

to infer the type. It is especially informative when a parameter or variable is used as an argument

in a call to a routine provided by the R Internals programming interface. Several frequently-used

routines require that their arguments have specific SEXPTYPEs. These are shown in Table 3.4.

Now we turn our attention to situations where the core strategy cannot correctly infer the

return type, and extensions to the strategy to handle these.

Containers, Conditionals, and Loops

Containers such as lists (VECSXPs) can have elements with heterogeneous types which must be

inferred in addition to the overall type. This section describes how to modify the type inference

strategy to infer the element types. The basic idea is to apply the type inference procedure

recursively for each element, but variable indexing and elements which depend on a condition

introduce subtleties. We begin with an example of the simplest case, to emphasize the basic

idea.

135

Routine Argument(s)

LOGICAL LGL
LOGICAL0 LGL
LOGICAL_RO LGL
LOGICAL_ELT LGL
SET_LOGICAL_ELT LGL

INTEGER INT
INTEGER0 INT
INTEGER_RO INT
INTEGER_ELT INT
SET_INTEGER_ELT INT

REAL REAL
REAL0 REAL
REAL_RO REAL
REAL_ELT REAL
SET_REAL_ELT REAL

COMPLEX CPLX
COMPLEX0 CPLX
COMPLEX_RO CPLX
COMPLEX_ELT CPLX

RAW RAW
RAW0 RAW
RAW_RO RAW
RAW_ELT RAW

SET_STRING_ELT STR, R_xlen_t, CHAR
STRING_ELT STR, R_xlen_t
STRING_PTR STR

Table 3.4: Routines from the R Internals programming interface that require argu-
ments with specific SEXPTYPEs. All SEXPTYPEs are written without the
suffix SXP here.

136

Example 44. The nloptr package (Johnson and Ypma 2020) provides an interface to the

nonlinear optimization library NLopt. In the package, the optimization function nloptr calls

the routine NLoptR_Optimize. The routine returns a named list. This example uses the core

strategy to infer the type of the result, and presents a modification of the strategy to infer its

element types.

The C source code from NLoptR_Optimize that deals directly with the return value is:

1 int num_return_elements = 8;

2 SEXP R_result_list;

3 PROTECT(R_result_list = allocVector(VECSXP, num_return_elements));

4 // ...

5 SEXP names;

6 PROTECT(names = allocVector(STRSXP, num_return_elements));

7

8 SET_STRING_ELT(names, 0, mkChar("status"));

9 SET_STRING_ELT(names, 1, mkChar("message"));

10 // ... for all 8 elements

11 SET_STRING_ELT(names, 7, mkChar("version_bugfix"));

12 setAttrib(R_result_list, R_NamesSymbol, names);

13 // ...

14 SET_VECTOR_ELT(R_result_list, 0, R_status);

15 SET_VECTOR_ELT(R_result_list, 1, R_status_message);

16 // ... for all 8 elements

17 SET_VECTOR_ELT(R_result_list, 7, R_version_bugfix);

18

19 return(R_result_list);

Listing 3.8: The C code for NLoptR_Optimize related to the return value.

Based on the C code, the length and element names of the list are fixed. Of course, for

programmatic analysis we will use the LLVM IR rather than the C code.

As in the previous example (Example 43), the first step for type inference is to inspect

the definition of the variable returned by the routine’s ret instruction. Here are the relevant

instructions:

137

Routine Argument(s) Return

Rf_copyMostAttrib α α
Rf_duplicate α α
Rf_protect α α
Rf_shallow_duplicate α α

LENGTH α int
LENGTH_EX α, int, char * int
Rf_length α R_len_t
Rf_xlength α R_len_t
SETLENGTH α int
XLENGTH α int
XLENGTH_EX α R_len_t
XTRUELENGTH α R_len_t

Table 3.5: Routines provided by the R Internals programming interface that accept
or return SEXPs of arbitrary types, but do not provide new information
about types (some do provide information about dimensions). Routines
that are not called by any CRAN packages are omitted. α denotes a SEXP
with any SEXPTYPE.

1 %call127 = call %struct.SEXPREC* @Rf_allocVector(i32 19, i64 8) #4

2 ; ...

3 ret %struct.SEXPREC* %call127

The call to Rf_allocVector establishes that %call127 is a list, because 19 corresponds to the

list type VECSXP in the SEXPTYPE enumeration (Table 3.2). We can also see that this list has

exactly eight elements, but the definition doesn’t indicate the types or names of the elements.

This example focuses on finding the element types and defers finding the element names to

Example 50.

To find the element types, we need to analyze the instructions that use the returned variable

%call127—especially calls that modify the variable or its elements. The first of these is a

call to Rf_protect, which doesn’t yield any useful type information because it doesn’t modify

its arguments and doesn’t require arguments with specific SEXPTYPEs. Table 3.5 lists several

routines provided by the R Internals programming interface which, like this one, do not yield

new type information.

Next, %call127 is used in a call to Rf_setAttrib, which sets an attribute on an R object. In

this case, the attribute being set is the element names, so we’ll skip over this call as well until

Example 50.

Continuing on, the next instruction that uses %call127 is a call to SET_VECTOR_ELT, the

primary routine for setting list elements. The subsequent seven instructions that use %call127

138

are also calls to this routine. Here’s the IR for a few of them:

1 %call183 = call %struct.SEXPREC* @SET_VECTOR_ELT(

2 %struct.SEXPREC* %call127, i64 0, %struct.SEXPREC* %call141) #4

3 %call184 = call %struct.SEXPREC* @SET_VECTOR_ELT(

4 %struct.SEXPREC* %call127, i64 1, %struct.SEXPREC* %call145) #4

5 ; ... for all 8 elements

6 %call190 = call %struct.SEXPREC* @SET_VECTOR_ELT(

7 %struct.SEXPREC* %call127, i64 7, %struct.SEXPREC* %call179) #4

Listing 3.9: Calls to SET_VECTOR_ELT to set elements of the list.

The first argument to SET_VECTOR_ELT is the list to modify, the second argument is the element

position, and the third argument is the new value for the element. These eight instructions set

all eight elements (positions 0–7) of %call127.

Calls to SET_VECTOR_ELT are where we modify the core type inference strategy. Since these

calls set elements of the list %call127, the strategy should use the information in each call to

infer the type of the respective element.

For instance, consider the first call:

1 %call183 = call %struct.SEXPREC* @SET_VECTOR_ELT(

2 %struct.SEXPREC* %call127, i64 0, %struct.SEXPREC* %call141) #4

This call sets the first element (position 0) to the value of %call141. The core strategy would

normally ignore %call141, but instead, it should infer its type. This can be done by applying

type inference recursively, as with any other variable.

The variable %call141 is defined by a call to the Rf_allocVector routine:

1 %call141 = call %struct.SEXPREC* @Rf_allocVector(i32 13, i64 1) #4

This definition is sufficient to conclude that %call141 is an integer vector with one element (by

similar reasoning as Example 43), and therefore so is the first element of the list %call127.

By following the same process for the other list elements, we can fully determine the element

types for the list. Without the modification to the type inference strategy, the strategy would

still find that the return type is list, but would not find the element types.

139

Routine Index

SET_VECTOR_ELT Position
Rf_defineVar Name
R_do_slot_assign Name

SETCAR 1
SETCADR 2
SETCADDR 3
SETCADDDR 4
SETCAD4R 5

SETCDR Tail elements

Table 3.6: Routines provided by the R Internals programming interface that modify
the elements of a heterogeneous container.

The modified strategy correctly handles ordinary lists, as well as data frames and other

classes that extend lists. Furthermore, we can generalize the modified strategy to handle other

element-setting routines and heterogeneous container types. Table 3.6 lists the element-setting

routines provided by the R Internals interface. These are discussed in the subsequent paragraphs,

and Listing 3.10 shows the modified strategy.

Identify the return value—the only operand of the ret instruction—and apply this type

inference procedure:

1. Inspect the definition. If the operand is not a parameter, inspect its definition for

type information. For SEXPs, the definition will usually be a call to an R Internals

routine. Look up the called routine in the database of routines. If the called routine’s

return type depends on the types of its arguments, repeat the type inference procedure

for the arguments.

2. Inspect the uses. For each other instruction that uses the operand: if the instruction

is a call to an R Internals routine, look up the called routine in the database of routines.

The routine may put restrictions on the types of its arguments and thus the type of

the operand. If the routine is an element-setting routine (Table 3.6), collect the index

and type of the element by repeating the type inference procedure on the value to

which the element is set.

Listing 3.10: The new strategy to infer a routine’s return type. Modifications of
Listing 3.7 to take into account list elements are shown in black.

The Rf_defineVar routine sets an element of an environment (ENVSXP). Likewise, the

140

R_do_slot_assign routine sets a slot of an S4 object (any SEXP with the S4 flag set). The only

important difference between these routines and SET_VECTOR_ELT is that they select the element

by name rather than position.

The SETCAR routine sets the first element of any SEXP structured as a linked list. For such

objects, each element has two fields: CAR and CDR. The CAR field holds the value of the element,

while the CDR field holds a reference to the next element. The pairlist (LISTSXP) is the canonical

example of a SEXP strucured as a linked list (R Core Team 2019a). The related SETCADR routine

sets the second element of a linked list object. Table 3.6 shows additional routines to set specific

elements. The SETCDR routine differs from the others because it sets the CDR field, and thereby

replaces the entire tail of the linked list. Despite these differences compared to SET_VECTOR_ELT,

the modified strategy remains appropriate.

In Example 44, the calls to SET_VECTOR_ELT all had literal index arguments. Literal indices

are a common pattern for setting the elements of a fixed-size container. Another common

pattern is to use a counter variable, incrementing it each time a container element is set. If

the counter’s initial value is static and it is incremented unconditionally—the same way along

all paths through the code—then it is effectively a sequence of constants. With any level of

optimization enabled, LLVM carries out constant-folding, which replaces constants with their

literal value. As a result, the modified type inference strategy also correctly infers element

types when the index arguments are constant or an unconditional counter. The next example

demonstrates the counter variable case.

Example 45. The clv package (Nieweglowski 2020) provides functions to assess the validity

and stability of results from clustering algorithms. The clusterScatterMeasures routine is

provided in the package’s C code and returns a list of results. This list is constructed with

calls to SET_VECTOR_ELT, but in this case the position of each element is specified by a counter

variable. Here’s the relevant C code from the routine:

1 int clv_ind = 11;

2 PROTECT(return_list = allocVector(VECSXP, clv_ind));

3 pos = 0;

4 SET_VECTOR_ELT(return_list, pos++, max_intracluster_sxp);

5 SET_VECTOR_ELT(return_list, pos++, average_intracluster_sxp);

6 // ... for all 11 elements

141

7 SET_VECTOR_ELT(return_list, pos++, cluster_size_sxp);

With optimization enabled, LLVM optimizes out the counter variable, so the calls to

SET_VECTOR_ELT contain constant indices. Here’s the IR at optimization level 2:

1 %call433 = tail call %struct.SEXPREC* @Rf_allocVector(i32 19, i64 11) #3

2 %call476 = tail call %struct.SEXPREC* @SET_VECTOR_ELT(

3 %struct.SEXPREC* %call433, i64 0, %struct.SEXPREC* %call18) #3

4 %call479 = tail call %struct.SEXPREC* @SET_VECTOR_ELT(

5 %struct.SEXPREC* %call433, i64 1, %struct.SEXPREC* %call22) #3

6 ; ... for all 11 elements

7 %call506 = tail call %struct.SEXPREC* @SET_VECTOR_ELT(

8 %struct.SEXPREC* %call433, i64 10, %struct.SEXPREC* %call68) #3

As a result of the optimization, the strategy from Example 44 can correctly infer the element

types of the returned list. The constant clv_ind in the C code is also optimized out in the IR,

so the strategy can also infer the length of the returned list.

The counter variable pattern in the example (Example 45) also applies to other routines

provided by the R Internals programming interface. One of these is the SET_STRING_ELT routine,

which sets an element of a character vector. Since the elements of a vector must all have the

same type, the SET_STRING_ELT routine doesn’t provide new information about element types.

Nonetheless, as we’ll see later in Example 50, calls to this routine can provide information about

element names. Regardless of the routine, LLVM can optimize out any unconditional counter

variable. Moreover, if a counter variable is unconditional only up to some specific point in the

code, then LLVM can optimize it out up to that point.

Sometimes containers vary in length and element type depending on run-time conditions.

These containers may still be limited to a static set of potential lengths and element types. This

situation does not appear to be common: in a programmatic analysis of all CRAN packages,

Temple Lang (2021) found only 14 routines that return lists for which the length varies within

a static set. Nonetheless, for containers that vary this way, the type inference strategy should

identify the set of potential lengths and element types.

Example 46. This example describes how to adapt the type inference strategy to correctly

handle containers for which length and element type vary within a static set. The idea generalizes

142

to any R object for which the type varies within a static set, such as the returned result of the

example routine.

The package cluster (Maechler et al. 2021) provides functions for unsupervised learning

methods. The package’s pam function, an implementation of the k-mediods clustering algorithm,

calls the routine cl_Pam. In normal usage, the cl_Pam routine returns a list which varies in

length and element type depending on the arguments. If the clustering algorithm fails, the

routine returns an integer error code instead of a list.

We begin by describing potential configurations for the returned list. The list can have 8

or 9 elements depending on whether the variable keep_diss is false or true, respectively. The

variable keep_diss is the result of coercing the parameter keep_diss_ to a logical value. The

cl_Pam routine coerces many parameters this way, and in this example we will refer to the

resulting variables as coerced parameters. As one would expect, the ninth element of the list is

only set if keep_diss is true. The relevant C code from the routine for these steps is:

1 const Rboolean keep_diss = asLogical(keep_diss_);

2 ans = PROTECT(allocVector(VECSXP, keep_diss ? 9 : 8));

3 if(keep_diss) SET_VECTOR_ELT(ans, 8, dys_);

Listing 3.11: Code from cl_Pam to define the returned list and set its ninth element.

The dimensions of the fifth and sixth element of the list depend on the coerced parameter

all_stats. For the sixth element, the class also depends on this parameter. Here’s the relevant

C code:

1 const Rboolean all_stats = asLogical(all_stats_);

2 SET_VECTOR_ELT(ans, 4, allocVector(INTSXP, all_stats ? kk : 1));

3 SET_VECTOR_ELT(ans, 5, all_stats ? allocMatrix(REALSXP, kk, 5)

4 : allocVector(REALSXP, 1));

Listing 3.12: Code from cl_Pam to set the fifth and sixth elements of the returned
list.

The third and eighth element of the list are only set if the variable do_syl is true. List elements

are initialized to the R NULL value, which has type NILSXP. So when the third and eighth

element are not set, their type is NILSXP. The do_syl variable is computed from several coerced

parameters, including all_stats. Here’s the relevant C code:

143

1 const Rboolean do_syl = all_stats && (1 < kk && kk < n);

2 if(do_syl) {

3 SET_VECTOR_ELT(ans, 2, allocMatrix(REALSXP, n, 4));

4 SET_VECTOR_ELT(ans, 7, allocVector(REALSXP, 1));

5 }

Listing 3.13: Code from cl_Pam to set the third and eighth elements of the returned
list. The code shown here is simplified from the original to remove
details unrelated to type inference.

In summary, there are six possible configurations for the list depending on keep_diss, all_stats,

and do_syl. Four in the case where all_stats is true, and two in the case where all_stats

is false (since then do_syl must also be false). Type inference should collect each of the six

possible configurations and the conditions on which they depend. Collecting the conditions is

useful in case the arguments to the routine at a specific call site are constant, so the specific

return type can be deduced. We can also use the potential lengths and element types as a bound

in other analyses (for instance, to check for out-of-bounds errors).

Now we turn to the LLVM IR. As in previous examples, type inference begins at the return

instruction:

1 cleanup241: ; preds = %cleanup, %if.end240

2 %retval.1 = phi %struct.SEXPREC* [%call56, %if.end240],

3 [%call146, %cleanup]

4 ; ...

5 ret %struct.SEXPREC* %retval.1

Listing 3.14: The cl_Pam routine’s return instruction and the phi instruction which
defines the return value, both of which are in the cleanup241 block.

The return value is in the variable %retval.1, which is defined by a phi instruction. A phi

instruction indicates that a variable can take two different values depending on which path is

taken through the code at run-time. Each value corresponds to a different immediate predecessor

of the block that contains the phi instruction. These instructions are necessary because the

LLVM IR is in static single assignment form, and they are analogous to the ϕ-functions described

in Chapter 1.

In Listing 3.14, if the cleanup241 block is reached via the if.end240 block, the phi instruction

defines %retval.1 as %call56. If the block is reached via the cleanup block, the phi instruction

144

defines %retval.1 as %call146. The variables %call56 and %call146 correspond to the list

and the integer error code, respectively, that can be returned by the routine.

We can apply the type inference strategy recursively to each of the possible values %call56

and %call146 for %retval.1. The inferred type for %retval.1—and therefore the routine’s

result—is the union (in the sense of Section 2.5.1) of the types for the two values. Taking the

union ensures that the strategy collects all possible return types. Moreover, this approach applies

to any phi function encountered in the course of type inference.

The variable %call146 corresponds to the integer case, which is simpler, so we consider it

first. The type existing inference strategy in Listing 3.10 infers that this variable is a scalar

integer, since it is defined by a call to Rf_ScalarInteger (see Table 3.3).

Now consider the variable %call56, which corresponds to the list case. The existing type

inference strategy in Listing 3.10 infers that this variable is a list, since the variable is ultimately

defined by a call to Rf_allocVector with SEXPTYPE argument 19, which corresponds to a list

(see Table 3.2). Here are the instructions that define the variable:

1 %call55 = tail call %struct.SEXPREC* @Rf_allocVector(

2 i32 19, i64 %cond53) #10

3 %call56 = tail call %struct.SEXPREC* @Rf_protect(

4 %struct.SEXPREC* %call55) #10

The call to Rf_protect does not affect the type (see Table 3.5).

Unlike previous examples, the length argument in the call to Rf_allocVector is a variable

rather than a literal value. When a dimension is set by a variable, the type inference strategy

should attempt to infer potential values for that variable or trace its value back to a parameter.

The key is to inspect the variable’s definition.

The length argument %cond53 is defined by a select instruction:

1 %cond53 = select i1 %tobool52.not, i64 8, i64 9

Listing 3.15

A select instruction selects a value based on its first operand, without branching. If the first

operand is 1 (true), the second operand is selected; otherwise the third operand is selected. Thus

the length of the list is 8 if %tobool52.not is 1, and is 9 otherwise.

The next step in the type inference strategy is to analyze the uses of the list %call56 in

order to determine the types of its elements. Example 44 already showed that the strategy in

145

Listing 3.10 correctly infers the types of elements for which the type and dimensions do not vary.

Consequently, we will focus on the third, fifth, sixth, and eighth element, where the type and

dimensions do vary. We will also consider the ninth element, which is only set when the list

has 9 elements.

For the fifth element of the list, the type is static but the length depends on the coerced

parameters all_stats and kk (see Listing 3.12 for the C code). The type inference strategy in

Listing 3.10 finds that the element is an integer vector. The length of the element is defined by

a select instruction, which we saw how to handle earlier in this example:

1 %cond98 = select i1 %tobool.not, i32 1, i32 %call

The variable %call is the coerced parameter kk in the C code. Thus the length of the fifth

element is either 1 or the value of a parameter.

For the sixth element of the list, the class depends on the coerced parameters all_stats and

kk (see Listing 3.12). Depending on all_stats, the element is constructed by a call to either

Rf_allocMatrix or Rf_allocVector. As a result, in the IR the value of the element is defined

by a phi instruction:

1 %cond109 = phi %struct.SEXPREC* [%call105, %cond.true104],

2 [%call107, %cond.false106]

3 %call110 = tail call %struct.SEXPREC* @SET_VECTOR_ELT(

4 %struct.SEXPREC* %call56, i64 5, %struct.SEXPREC* %cond109) #10

As with the phi instruction earlier in this example, we modify the type inference strategy to

recursively infer the type for each of the instruction’s operands. From there, the strategy in

Listing 3.10 correctly infers that the sixth element is either a kk by 5 numeric matrix or a

numeric scalar. The inferred type is the union of these.

For the third and eighth element of the list, the type depends on the variable do_syl (see

Listing 3.13). If do_syl is false (not 1), then the elements retain their initial NULL values. If

do_syl is true, then elements are set by a call to SET_VECTOR_ELT. Here’s the block where the

eighth element is set:

1 if.then117: ; preds = %cond.end108

2 %call118 = tail call %struct.SEXPREC* @Rf_allocVector(

3 i32 14, i64 1) #10

146

4 %call119 = tail call %struct.SEXPREC* @SET_VECTOR_ELT(

5 %struct.SEXPREC* %call56, i64 7, %struct.SEXPREC* %call118) #10

6 br label %if.end120

The type inference strategy in Listing 3.10 infers that the eighth element can be a numeric

scalar, but not that it can be NULL. We need to modify the strategy to detect that the call to

SET_VECTOR_ELT is not always executed after the list is defined.

If an instruction is not always executed, then there must be a path through the control flow

graph that does not visit the block that contains the instruction. Figure 3.1 shows a subgraph

of the control flow graph for the cl_Pam routine. The returned list is defined in the if.end50

block, and the call to SET_VECTOR_ELT for the eighth element is in the if.then117 block. There

is clearly a path from if.end50 to the exit which does not visit if.then117, so the call to

SET_VECTOR_ELT is not always executed after the list is defined.

Formally, if block A in a control flow graph must be visited in order to reach the exit from block

B, we say that A post-dominates B (Cooper and Torczon 2012). For example, in Figure 3.1,

the block if.end120 post-dominates the block if.end50, but the block if.then117 does not.

The type inference strategy can determine whether calls that modify an R object are always

executed by checking whether the block that contains the call post-dominates the block where

the object was defined. LLVM provides routines to inspect dominance relations between blocks

in the IR. In Rllvm, the postDominates function checks whether one block post-dominates

another.

The type inference strategy should check post-dominance for every call that modifies an R

object (such as SET_VECTOR_ELT). For the list returned by cl_Pam, the call to SET_VECTOR_ELT

for the eighth element does not post-dominate the definition. Thus the eighth element is a

numeric scalar or NULL. The inferred type is the union of these two types.

The third element of the list follows the same pattern as the eighth. The element is set to

an n by 4 numeric matrix in a call to SET_VECTOR_ELT. The call does not post-dominate the

definition of the list, so again, the element can also be NULL. As with the eighth element, the

inferred type is the union of the two possibilities.

Finally, consider the ninth element of the list. This element is only set when the coerced

parameter keep_diss is true, which coincides with when the list has 9 elements (see Listing 3.11).

The call to SET_VECTOR_ELT for the ninth element does not post-dominate the definition of the

list. However, because the condition for the call is the same as the condition for the list to have

147

entry

if.end50

cond.end108

if.then117

if.end120

if.then122

if.end125

exit

Figure 3.1: The control flow graph for the cl_Pam routine around the block
if.then117 (in gray). The list returned by the routine is defined in the
block if.end50. Dotted edges indicate some intermediate blocks are not
shown.

148

9 elements, we can tell that the call is always made when the list has 9 elements. In order for the

type inference strategy to detect this, it must not only check post-dominance, but also collect

the associated condition for calls that do not post-dominate the definition of the object they

modify. We defer collecting conditions to Example 47.

The example modifies the type inference strategy to handle R objects—especially lists and

other containers—for which the type, class, or length vary within a static set. The example

demonstrates that variation can occur at the definition of or at calls that modify an object.

Here’s a summary of these two cases:

1. Definitions. An object defined by a phi instruction, or defined by a call instruction where

some of the arguments are defined by select or phi instructions.

2. Modifying calls. An object modified by a call that does not post-dominate the object’s

definition, meaning the call is not always executed.

These two cases correspond to changes in the definitions and uses cases, respectively, of the type

inference strategy from Listing 3.10. The updated strategy is shown in Listing 3.16.

149

Identify the return value—the only operand of the ret instruction—and apply this type

inference procedure:

1. Inspect the definition. If the operand is not a parameter, inspect its definition for

type information. If the definition is:

• A call to an R Internals routine. Look up the called routine in the database of

routines. If the called routine’s return type depends on the types of its arguments,

repeat the type inference procedure for the arguments. If an argument that sets a

dimension is defined by a select instruction, collect both operands as potential

values for the dimension.

• A phi instruction. Repeat the type inference procedure for each of the operands.

The type is the union of the two types from the operands.

2. Inspect the uses. For each other instruction that uses the operand: if the instruction

is a call to an R Internals routine, look up the called routine in the database of routines.

The routine may put restrictions on the types of its arguments and thus the type of

the operand. If the routine is an element-setting routine (Table 3.6):

a) Collect the index and type of the element by repeating the type inference procedure

on the value to which the element is set.

b) Check whether the call post-dominates the definition of the object. If it does not,

the type is the union of the initial type and the collected type.

Listing 3.16: The updated strategy to infer a routine’s return type. Modifications of
Listing 3.10 to take into account objects for which the type, class, or
length vary are shown in black.

The updated type inference strategy is missing one important piece: how to collect the

conditions on R objects that vary. The next example is a continuation of Example 46 to show

how to do this.

Example 47. The list returned by the cl_Pam routine in Example 46 can have 8 or 9 elements.

When the list has 9 elements, the ninth element is always set by a call to SET_VECTOR_ELT.

However, the call does not post-dominate the definition of the list. In order to detect that the

element is always set, the type inference strategy must collect the conditions for both the length

of the list and the call to SET_VECTOR_ELT. Then the strategy can compare them to see that

150

they are the same. This example describes this process.

First consider the length of the list. In the IR, the length is set by the variable %cond53,

which is defined by a select instruction:

1 %call7 = tail call i32 @Rf_asLogical(%struct.SEXPREC* %keep_diss_) #10

2 %tobool52.not = icmp eq i32 %call7, 0

3 %cond53 = select i1 %tobool52.not, i64 8, i64 9

The result of the select instruction depends on the variable %tobool52.not. This variable

is defined by an icmp instruction, which compares two integers. The instruction includes a

keyword that indicates the type of the comparison. In this case, the instruction checks whether

%call7 is equal (keyword eq) to 0. Since %call7 is an integer that represents a logical value,

this instruction amounts to a logical inversion.

In turn, the variable %call7 is defined by a call to the R Internals routine Rf_asLogical.

This routine coerces an R object into an integer representation where 1 means true and 0 means

false. The argument to the routine is %keep_diss_, one of the parameters of the cl_Pam routine.

The type inference strategy should combine the information from the call to Rf_asLogical

and the icmp instruction into a single condition for the select instruction. The length of the list

is 8 when the parameter %keep_diss_ is false, and 9 otherwise. LLVM provides several different

instructions for elementary logic operations and comparisons, all of which must be handled.

These instructions are listed in the LLVM documentation (https://llvm.org/docs/).

Next, consider the call to SET_VECTOR_ELT to set the ninth list element. The call is in the

block if.then122, which does not post-dominate the block where the list is defined, if.end50.

Figure 3.1 shows these blocks in the control flow graph for the routine. To find the condition

for the call, the type inference strategy must search backwards through the control flow graph

from if.then122 to the nearest block which does post-dominate if.end50. The nearest post-

dominator block is if.end120, which contains this branch instruction:

1 br i1 %tobool52.not, label %if.end125, label %if.then122

The branch instruction depends on %tobool52.not, just like the length of the list. By comparing

the two conditions, the type inference strategy can infer that the the call to set the ninth element

is always executed when the list has 9 elements.

In practice, the nearest post-dominator block will not necessarily be the immediate predecessor

of the call block. Figure 3.2 shows one example. For the call block, condition1 is the nearest

151

https://llvm.org/docs/

entry

definition

condition1

condition2

exit

call

Figure 3.2: A control flow graph where execution of the block which contains the call
depends on two conditions. Edges on the path between the call block
and the nearest post-dominator of the definition block are shown in
black. This CFG is based on structures in the actual CFG for the cl_Pam
routine.

152

block which post-dominates the definition block. The type inference strategy should collect

the branch condition from condition1. However, the intermediate block condition2 is also

important. Since the condition2 block is not post-dominated by the call block, it must contain

another condition necessary for the call block to execute. Listing 3.17 shows a general strategy

to identify the conditions for a call based on these observations.

1. Identify the nearest predecessor of the call block which also post-dominates the

definition block. Collect the branch condition.

2. For each other block B along the path from the nearest predecessor to the call block:

if B contains a conditional branch and B is not post-dominated by the call block,

collect the branch condition.
Listing 3.17: A strategy to collect the conditions for a call which modifies an R

object.

Another pattern for setting elements of a list or other container is to set them in a loop. The

next example describes a modification of the type inference strategy to collect information about

elements set in loops.

Example 48. Consider the package stringdist, which provides a variety of functions for

approximate string matching. One of these, the phonetic function, calls the R_soundex routine

in the package’s C code. The routine returns either a character vector or a list, depending on

its arguments. The character vector case is correctly inferred by the strategy in Listing 3.16.

In contrast, the strategy requires modifications to infer the correct element types for the list,

because the list elements are set in a loop. Here’s the code from the routine to construct the list:

1 SEXP y = allocVector(VECSXP, n);

2 unsigned int nfail = 0;

3 int len_s, isna_s;

4 for (int i = 0; i < n; ++i) {

5 get_elem(x, i, bytes, 0L, &len_s, &isna_s, s);

6 if (isna_s) {

7 SEXP sndx = allocVector(INTSXP, 1);

8 INTEGER(sndx)[0] = NA_INTEGER;

9 SET_VECTOR_ELT(y, i, sndx);

153

10 } else {

11 SEXP sndx = allocVector(INTSXP, 4);

12 nfail += soundex(s, len_s, (unsigned int *)INTEGER(sndx));

13 SET_VECTOR_ELT(y, i, sndx);

14 }

15 }

16 return y;

Listing 3.18: An excerpt of the code from the R_soundex routine which constructs
the returned list. Most statements unrelated to the element types have
been removed.

The length of the list, n, is defined elsewhere in the routine as the length of the parameter x.

All of the list elements are integer vectors (INTSXP), but the length varies. The length is 1 for

some and 4 for others. The specific length for each element depends on run-time conditions and

thus cannot be determined statically.

The loop calls sets every element of the list. This is apparent from examining the loop’s

induction variable. An induction variable is a variable that increases or decreases by a constant

amount, called the step, in each iteration of a loop (Cooper and Torczon 2012). For this loop,

the induction variable is i, its initial value is 0, the step is 1, and its final value is n - 1. Thus

i will take every value from 0 to n - 1 (inclusive) as the loop iterates. This variable i is also

the index argument in the call to SET_VECTOR_ELT.

We need to modify the type inference strategy to detect that SET_VECTOR_ELT is called in a

loop, and then check that it is called for every element of the list.

LLVM simplifies the two calls to SET_VECTOR_ELT in Listing 3.18 into one in the IR. Here’s

the instruction for the call, which is in the block for.inc70:

1 %call59 = call %struct.SEXPREC* @SET_VECTOR_ELT(

2 %struct.SEXPREC* %call39,

3 i64 %indvars.iv,

4 %struct.SEXPREC* %call54.sink) #9

Listing 3.19: The call to SET_VECTOR_ELT which sets the elements of the list returned
by R_soundex.

In a control flow graph, loops are represented by cycles. Figure 3.3 shows that the block

for.inc70 is part of a cycle in the control flow graph for the R_soundex routine, and therefore

part of a loop.

154

entry

if.then if.end

exit

if.else36

check.fail.exit131

for.body49

if.else60 if.then52

for.inc70

Figure 3.3: The control flow graph for the R_soundex routine around the loop which
sets the elements of the returned list. The call to SET_VECTOR_ELT is in
the block for.inc70 (in gray). Dotted edges indicate some intermediate
blocks are not shown. The if.then block (at top) has no descendants
because it raises an error.

155

LLVM provides routines to detect and analyze loops. In Rllvm, this is a three step process.

First, call runLoopPass on the module that contains the routine in order to transform loops in

the IR into a canonical form. Second, call loopAnalysis on the routine in order to detect the

loops in the routine. Finally, call getLoops on the routine to get a list of information about the

loops. For each loop, the information includes the component blocks, induction variable, step,

and bounds.

With the information from LLVM, the type inference strategy can check whether a block part

of a loop by comparing it against the component blocks for each loop. If it is, then this process

also identifies which loop, so the strategy can get the induction variable, step, and bounds.

The block for.inc70 is part of a loop with induction variable %indvars.iv. The lower bound

is 0 and the step is 1. The upper bound is the variable %wide.trip.count, which is the value of

the variable %call2. The variable %call2 is in turn defined by a call to the R Internals routine

Rf_length:

1 %call2 = tail call i32 @Rf_length(%struct.SEXPREC* %x) #9

This call returns the length of the routine’s parameter x. Thus the induction variable ranges

from 0 to the length of x minus 1.

Once the strategy determines that a call to SET_VECTOR_ELT is in a block which is part of

a loop, the next step is to determine the relationship between the index argument and the

loop induction variable. For the call to SET_VECTOR_ELT in Listing 3.19, the index argument is

%indvars.iv, which is the induction variable.

With the relationship between the index argument and loop induction variable established,

the next step is to determine which elements of the list are set by the loop. To do this, the

strategy must compare the range of values for the index argument to the length of the list. Since

%indvars.iv is the index argument, the indices range from 0 to the length of x minus 1. The

length of the list is in the list’s definition:

1 %conv38 = sext i32 %call2 to i64

2 %call39 = tail call %struct.SEXPREC* @Rf_allocVector(

3 i32 19, i64 %conv38) #9

The sext instruction preserves the value of its operand, so the length of the list is equal to

%call2, which is the length of the parameter x. It follows that every element of the list is set by

the call to SET_VECTOR_ELT.

156

Finally, to infer the types of the list elements, we apply the type inference strategy recursively

to the value argument in the call to SET_VECTOR_ELT. The strategy in Listing 3.16 infers that

the value argument is an integer vector, and that the length can be either 1 or 4.

Listing 3.20 shows the type inference strategy with all of the modifications for handling

containers described in this section.

157

Identify the return value—the only operand of the ret instruction—and apply this type

inference procedure:

1. Inspect the definition. If the operand is not a parameter, inspect its definition for

type information. If the definition is:

• A call to an R Internals routine. Look up the called routine in the database of

routines. If the called routine’s return type depends on the types of its arguments,

repeat the type inference procedure for the arguments. If an argument that sets a

dimension is defined by a select instruction, collect both operands as potential

values for the dimension, and collect the condition from the instruction.

• A phi instruction. Repeat the type inference procedure for each of the operands.

The type is the union of the two types from the operands. Collect the condition

from the nearest common predecessor block of the blocks mentioned in the phi

instruction.

2. Inspect the uses. For each other instruction that uses the operand: if the instruction

is a call to an R Internals routine, look up the called routine in the database of routines.

The routine may put restrictions on the types of its arguments and thus the type of

the operand. If the routine is an element-setting routine (Table 3.6):

a) Check whether the call to the routine is in a loop. If it is:

i. Collect the induction variable, step, and bounds.

ii. Check whether the index is the induction variable. If it is, check whether

the call is made in every iteration and every list element is set (compare the

range of the induction variable to the list’s length).

Otherwise, collect the index of the element literally or symbolically.

b) Collect the type of the element by repeating the type inference procedure on the

value to which the element is set.

c) Check whether the call post-dominates the definition of the object. If it does

not, the type is the union of the initial type and the collected type. Collect the

condition for the collected type by applying the procedure in Listing 3.17.

Listing 3.20: The type inference strategy from Listing 3.16 modified to collect condi-
tions and handle loops. The modifications are shown in black.

158

Calls to Other Routines

The type inference strategy in Listing 3.20 only handles calls to routines provided by the R

Internals programming interface. Since these routines are the only way to construct and modify

R objects in foreign code, they make up the majority of calls on R objects. Nevertheless, R

packages can include helper routines that manipulate R objects and are called from another

routine—instead of or in addition to being called from R.

The type inference strategy cannot rely on a database of type signatures for these routines, since

they vary across packages and package versions. Instead, we can apply the strategy recursively

to infer their type signatures on demand. In addition to inferring types, the strategy should also

determine if and how the arguments are modified (for example, with calls to SET_VECTOR_ELT),

since R objects are passed to these routines by reference.

Example 49. The NLoptR_Optimize routine from the nloptr (Johnson and Ypma 2020), first

presented in Example 44, contains a call to a helper routine. The routine returns a list, and

one of its elements, R_status_message in Listing 3.8, is defined by a call to the helper routine

convertStatusToMessage.

Suppose we apply the type inference strategy to the convertStatusToMessage routine,

even though it’s not called directly by .Call. The routine returns the value of the variable

R_status_message:

1 PROTECT(R_status_message = allocVector(STRSXP, 1));

2 return R_status_message;

Based on the corresponding LLVM IR, the type inference strategy in Listing 3.20 infers that the

routine returns a character vector (STRSXP) with length 1. The strategy can return this type

information to use in the overall type inference for the list elements in Example 44.

The point of the example is that the type inference strategy in Listing 3.20 works equally well

for routines called with .Call and for helper routines. Types inferred for a helper routine can

be used immediately in type inference for the calling routine.

The strategy in Listing 3.20 even infers the conditions for types that depend on a condition.

These conditions will usually be in terms of the helper routine’s parameters and local variables.

Thus to use them as part of a larger type inference procedure, it is important for context to

also record the helper routine’s name. When a call to the helper routine has literal arguments,

159

these can be substituted into the condition to deduce a specific type—provided the condition is

composed of elementary comparisons and logic operations.

The only necessary modification to the strategy in Listing 3.20 for helper routines is to check

whether the arguments to the routine are modified. There are two different ways to do this.

One way is to use LLVM’s built-in analysis of arguments that may be modified. We used

this analysis for routines called with the .C interface in Example 42. This is convenient, but in

testing we found that the analysis LLVM carries out is too conservative for R objects. Arguments

were flagged as possibly modified any time they were passed to an R Internals routine, even if

the routine did not actually modify the object.

The other way is to check the uses of the helper routine’s parameters for any calls to routines

which modify their arguments. These can be known R Internals routines (Table 3.6) or other

helper routines, which must be checked recursively. This is approach leverages specific knowledge

of the R Internals interface in order to get a more precise result, so it is preferable to relying on

LLVM’s built-in analysis.

Attributes

The attributes of an R object dictate its dimensions, class, and element names. Thus it is

important for the type inference strategy to collect information from calls to routines that set

attributes.

Routine Attribute Frequency

Rf_setAttrib Any 2078
SET_ATTRIB Any 31

Rf_namesgets R_NamesSymbol 103
Rf_lengthgets 102
Rf_classgets R_ClassSymbol 78
Rf_dimnamesgets R_DimNamesSymbol 27
Rf_dimgets R_DimSymbol 3

Table 3.7: Routines which set attributes on R objects, and how often they are called
in CRAN packages (Temple Lang 2021). The Rf_lengthgets routine
sets the length, which is not an attribute, but it is included here because
length is closely related to dimensions.

The R Internals programming interface only provides seven routines to set attributes. The

routine Rf_setAttrib, which sets a single attribute by name, makes up about 89% of calls to

these routines (Temple Lang 2021). Routines which set specific attributes (see Table 3.7) make

up a further 10%. The SET_ATTRIB routine, which can set multiple attributes on an object at

160

once, makes up the final 1%.

This section describes how to modify the type inference strategy of Listing 3.20 in order to

collect information from routines which set attributes. We are only interested in R’s built-in

attributes, shown in Table 3.8. Other attributes have no bearing on the class, dimensions, and

names of an object.

Example 50. Example 44 showed how to infer the element types in the list returned by the

NLoptR_Optimize routine in the nloptr package (Johnson and Ypma 2020). This example

shows how to modify the type inference strategy to infer the associated element names based

on calls to Rf_setAttrib. Recall the C code for the routine, which was originally shown in

Listing 3.8:

1 int num_return_elements = 8;

2 // ...

3 SEXP names;

4 PROTECT(names = allocVector(STRSXP, num_return_elements));

5

6 SET_STRING_ELT(names, 0, mkChar("status"));

7 SET_STRING_ELT(names, 1, mkChar("message"));

8 // ... for all 8 elements

9 SET_STRING_ELT(names, 7, mkChar("version_bugfix"));

10 setAttrib(R_result_list, R_NamesSymbol, names);

11 // ...

12 return(R_result_list);

Listing 3.21: The C code for NLoptR_Optimize related to the return value, abridged
from what was shown in Listing 3.8 to focus on the names.

This code sets the names attribute on the returned list R_result_list to the character vector

names. Each element of the vector becomes the name of the corresponding list element.

Here’s the corresponding call to Rf_setAttrib in the LLVM IR:

1 %call140 = call %struct.SEXPREC* @Rf_setAttrib(

2 %struct.SEXPREC* %call127, struct.SEXPREC* %34,

3 %struct.SEXPREC* %call130) #4

161

The first argument is the target object, the second argument specifies the name of the attribute

to set, and the third argument is the new value of the attribute. The variable %34 is loaded from

the global constant @R_NamesSymbol:

1 %34 = load %struct.SEXPREC*, %struct.SEXPREC** @R_NamesSymbol, align 8,

2 !tbaa !4

This global constant refers to the names attribute. It is one of six global constants defined

by the R Internals interface. Table 3.8 shows all of them. The type inference strategy can

use the table to determine which attribute is set by a given call to Rf_setAttrib and handle

the call appropriately. If call to Rf_setAttrib specifies the attribute name as a parameter or

non-constant variable, then the attribute is run-time dependent. In the case of a parameter, it

is still possible to recover the attribute name at specific call sites where the argument to the

parameter is a literal or constant.

Attribute Global Constant Frequency

names R_NamesSymbol 846
class R_ClassSymbol 269
dim R_DimSymbol 244
dimnames R_DimNamesSymbol 138
row.names R_RowNamesSymbol 52
levels R_LevelsSymbol 29

Local Variable 403
Parameter of Parent Routine 16

Table 3.8: R’s built-in attributes, organized by frequency of use in calls to
Rf_setAttrib in CRAN packages (Temple Lang 2021). Italicized rows
correspond to calls where the attribute argument was not a literal or a
global constant.

To determine what the names have been set to, we need to inspect the %call130 variable.

As usual, we inspect its definition and uses. The variable is defined as a character vector (see

Table 3.2) with 8 elements:

1 %call130 = call %struct.SEXPREC* @Rf_allocVector(i32 16, i64 8) #4

The %call130 variable is then used in multiple calls to the SET_STRING_ELT routine. Here’s an

example of one, along with a related instruction:

1 %call132 = call %struct.SEXPREC* @Rf_mkChar(i8* getelementptr inbounds (

2 [7 x i8], [7 x i8]* @.str.102, i64 0, i64 0)) #4

162

3 call void @SET_STRING_ELT(%struct.SEXPREC* %call130, i64 0,

4 %struct.SEXPREC* %call132) #4

The SET_STRING_ELT routine is similar to SET_VECTOR_ELT, but sets an element of a character

vector. The first argument is the character vector, the second is the position, and the third is

the new value, which must be a CHARSXP. Here the third argument, %call132, is defined by the

preceding instruction, a call to Rf_mkChar, which converts a C character array into a CHARSXP.

In this case, the character array is the global constant @.str.102, defined as the literal

"status" (in the LLVM IR, literal character arrays are always stored as global constants).

The nested getelementptr instruction retrieves a pointer to (the first character of) this array.

We can conclude that the combined result of these instructions is to set the first element of

%call130—the name of the first element in the returned list—to "status".

The same procedure correctly infers the names of the other seven list elements as well. This

procedure is the basis for modifying the type inference strategy. A version of this procedure

generalized to all of R’s built-in attributes is shown in Listing 3.22.

The example assumes that the value to which the attribute is set is constant. If the value

comes from a parameter, it cannot be determined statically, but the parameter can be recorded

symbolically as the source. This is noted in Listing 3.22. The case where inference doesn’t

work well is when the value comes from a local variable computed by one or more calls to other

routines. Even in this case, it may be possible to infer the value if the routines follow a regular

pattern, although we do not attempt to do so here.

The example and Listing 3.22 both assume that the call to Rf_setAttrib (or other attribute-

setting routine) itself is not conditional. This is a reasonable assumption for attributes pertaining

to names and classes, especially on returned objects, because these objects need to have a

predictable structure in order for programmers to use them. However, to handle calls that

do depend on a condition, we can further modify the strategy in Listing 3.22 to infer sets of

potential values and conditions for attributes. The approach is the same as the one Examples 46

and 47 used for object-modifying calls that depend on a condition. That is, for each call to set

the attribute, collect the potential value and its condition.

In about 20% of the calls to Rf_setAttrib in CRAN packages, the attribute name is passed

via a variable rather than a global constant (Temple Lang 2021). In almost all of these cases,

the variable is constant-valued, and type inference can inspect the value to determine which

163

attribute is set. There were only 16 cases where the attribute name depended on a parameter of

the calling routine, making it impossible to infer from the C code alone, but still possible to

infer if the parameter is assigned a constant argument in the calling R code.

1. Determine the attribute name.

• For calls to the routines which set specific attributes, look up the attribute name

in Table 3.7.

• For calls to Rf_setAttrib, if the third argument (the attribute name) is a global

constant, look it up in Table 3.8.

2. Find the value of the attribute. The exact strategy depends on the attribute:

• For the names, class, and row.names attributes, the value of the attribute is a

character vector. Collect the values of the elements from calls to SET_STRING_ELT.

• For the dimnames attribute, the value of the attribute is a list of scalar strings.

Collect the values of the elements from calls to SET_VECTOR_ELT.

• For the dim attribute, the value of the attribute is an integer vector. Collect the

values of the elements from assignments made after calling the INTEGER routine

to get an int pointer to the values of the vector.

Record the values literally when possible, or else symbolically.

Listing 3.22: A strategy to collect attributes, to supplement the type inference
strategy in Listing 3.20.

S3 Classes

R’s S3 class system is based on the class attribute. The strategy for collecting attributes in

Listing 3.22 already describes how to collect the class attribute, but in this section we turn to

an example to demonstrate that the stated strategy is effective.

Example 51. The pingr package (Csárdi 2020) provides tools to ping or otherwise check the

status of a remote server. The package’s function nsl, which performs a domain name server

query, calls the C routine r_nsl. From a code analysis perspective, this routine is interesting

because it constructs a data frame from scratch. Here’s the relevant C code:

1 const char *resnames[] = { "answer", "flags", "" };

2 const char *recnames[] = { "name", "class", "type", "ttl", "data", "" };

164

3 SEXP result = PROTECT(mkNamed(VECSXP, resnames));

4 SEXP records = PROTECT(mkNamed(VECSXP, recnames));

5 SEXP row_names = PROTECT(Rf_allocVector(INTSXP, 2));

6 Rf_setAttrib(records, R_ClassSymbol, mkString("data.frame"));

7 SET_VECTOR_ELT(result, 0, records);

8 // ...

9 SET_VECTOR_ELT(records, 0, Rf_allocVector(STRSXP, cnt));

10 SET_VECTOR_ELT(records, 1, Rf_allocVector(INTSXP, cnt));

11 SET_VECTOR_ELT(records, 2, Rf_allocVector(INTSXP, cnt));

12 SET_VECTOR_ELT(records, 3, Rf_allocVector(INTSXP, cnt));

13 SET_VECTOR_ELT(records, 4, Rf_allocVector(VECSXP, cnt));

14 INTEGER(row_names)[0] = NA_INTEGER;

15 INTEGER(row_names)[1] = -cnt;

16 Rf_setAttrib(records, R_RowNamesSymbol, row_names);

17 // ...

18 return result;

Listing 3.23: Code related to the first element of the list returned by the r_nsl
routine in the pingr package (Csárdi 2020). This element, called
records in the code, is a data frame. Most other code from the routine
is omitted.

The actual return value of the routine is a list. Type inference for the list follows the same

strategy outlined in earlier examples, so here we’ll focus exclusively on the first element of the

list, which is called records in the C code. The records object is a data frame; we know this

because the code sets the class attribute.

Let’s look at the LLVM IR for the routine. The records variable in the C code corresponds

to the %call3 and %call4 variables in the IR. Here’s how the variables are defined:

1 %4 = getelementptr inbounds [6 x i8*], [6 x i8*]* %recnames,

2 i64 0, i64 0

3 store i8* getelementptr inbounds ([5 x i8], [5 x i8]* @.str.3,

4 i64 0, i64 0), i8** %4, align 16

5 %call3 = call %struct.SEXPREC* @Rf_mkNamed(i32 19, i8** nonnull %4) #7

6 %call4 = call %struct.SEXPREC* @Rf_protect(%struct.SEXPREC* %call3) #7

165

The Rf_mkNamed routine constructs a named R object of a given type. In this case, the call

constructs a list (see Table 3.3). The element names are set by the variable %4, which is a pointer

to %recnames, a constant array of strings. Thus the type inference strategy can infer the type

and the element names from the call to Rf_mkNamed and its arguments.

The next step is to check the uses of %call4, in order to determine its element types and

attributes. The first use is a call to Rf_setAttrib:

1 %11 = load %struct.SEXPREC*, %struct.SEXPREC** @R_ClassSymbol,

2 align 8, !tbaa !4

3 %call7 = call %struct.SEXPREC* @Rf_mkString(

4 i8* getelementptr inbounds ([11 x i8], [11 x i8]* @.str.14,

5 i64 0, i64 0)) #7

6 %call8 = call %struct.SEXPREC* @Rf_setAttrib(

7 %struct.SEXPREC* %call4, %struct.SEXPREC* %11,

8 %struct.SEXPREC* %call7) #7

As we saw in Example 50, the first argument is the object, the second is the name of the attribute

to set, and the third is the new value. The variable %11 corresponds to the global variable

@R_ClassSymbol, so this instruction sets the class attribute. The value comes from the variable

%call7, which is defined by a call to Rf_mkString with the global variable @.str.14. This

global variable is a constant string with the value "data.frame". Thus we have the everything

we need to infer that the variable %call4 is a data frame.

With the class determined, type inference can proceed to inspect the rest of the uses. Through

calls to SET_VECTOR_ELT, they reveal the types of the columns in the data frame. Since this

process is the same as for inferring the element types of a list, we omit the details.

One additional point of interest here is that the class is not the only attribute set on the

%call4 object. The code also sets the row.names attribute. This is apparent in the C code, and

also in the IR. The attribute is deliberately set to an invalid vector (with two elements, where

the first is NA), so that R will automatically generate a sequence of integer row names. Since

this a specific pattern, we can detect it with type inference in order to infer the row names in

addition to the class.

166

S4 Classes

S4 classes are formal, which means the class, its slots (fields), and its slot types must all be

defined explicitly (in R code) before the class can be used. As a consequence, the name of an S4

class is usually sufficient to get complete type information for any instance of the class.

Example 52. This example shows how to modify the type inference strategy from Listing 3.20

to identify and collect the class name of S4 objects constructed with the R Internals interface.

Consider the float package (Schmidt n.d.), which provides a 32-bit floating point number type

for R. The type is represented by the S4 class float32. The package’s routine R_scale_spm

scales and centers a vector or matrix of floating point numbers, and returns the result in a new

float32 matrix.

Constructing an S4 object with the R Internals interface is a two step process, which is

exhibited in C code for R_scale_spm. First, the code gets a prototype for the class by calling

the MAKE_CLASS macro on the name of the class:

1 PROTECT(ret_s4_class = MAKE_CLASS("float32"));

The macro passes the name to the R_do_MAKE_CLASS routine, which returns the prototype.

Next, the code requests a new object by calling the NEW_OBJECT macro on the prototype:

1 PROTECT(ret_s4 = NEW_OBJECT(ret_s4_class));

The macro passes the prototype to the R_do_new_object routine, which returns the new object.

In the LLVM IR, both macros are translated into calls to the corresponding routines. Here

are the calls:

1 %call44 = tail call %struct.SEXPREC* @R_do_MAKE_CLASS(

2 i8* getelementptr inbounds (

3 [8 x i8], [8 x i8]* @.str, i64 0, i64 0)) #5

4 %call46 = tail call %struct.SEXPREC* @R_do_new_object(

5 %struct.SEXPREC* %call44) #5

When an R object is defined by a call to R_do_new_object, as %call44 is here, then the type

inference strategy should find the preceding call to R_do_MAKE_CLASS and collect the name of

the object’s S4 class. In this case the argument to R_do_MAKE_CLASS is the the global constant

@.str, which is the string "float32".

167

Once we have the class name for an S4 object, the types for the object’s slots can usually be

inferred from the class definition in the R code. However, S4 classes can be defined with slots

that accept more than one type or accept any type. To handle these cases, we can have the

type inference strategy in Listing 3.20 handle slots the same way other heterogeneous container

elements are handled. The R Internals routine R_do_slot_assign sets a slot by name. This is

noted in Table 3.6, which lists routines that set elements of heterogeneous containers.

3.4.2 Parameter Types

This subsection describes the strategy to infer the R parameter types of a routine. As with the

the strategy to infer return types (Section 3.4.1), we use LLVM to get the uses of the parameters

and analyze these to infer a type for each. Unlike that strategy, for parameters we cannot

consider definitions because parameters do not have any. Once again, we refine the strategy

gradually through examples, starting from a simple core strategy.

Example 53. This example demonstrates the core strategy to infer parameter types. Consider

the rpart package (Therneau and Atkinson 2019), which fits classification and regression tree

models. The primary model-fitting function in the package is the eponymous rpart function.

This function, in turn, calls the C routine rpart, which is also provided by the package. In the

C code, the type signature for the rpart routine is:

1 SEXP rpart(

2 SEXP ncat2, SEXP method2, SEXP opt2, SEXP parms2,

3 SEXP xvals2, SEXP xgrp2, SEXP ymat2, SEXP xmat2,

4 SEXP wt2, SEXP ny2, SEXP cost2)

We’ll do the analysis on the LLVM IR rather the the C code, but we’ll include snippets of C

code in this example for reference.

Let’s focus specifically on the first parameter ncat2. This parameter is used in two calls in

the C code:

1 ncat = INTEGER(ncat2);

2 // ...

3 rp.numcat = INTEGER(ncat2);

168

In the IR, the ncat2 parameter becomes %ncat2. We can use the Rllvm function getAllUsers

to get the two instructions where the parameter is used. Here’s the first:

1 %call = tail call i32* @INTEGER(%struct.SEXPREC* %ncat2) #6

The INTEGER routine requires an integer (INTSXP) argument (Table 3.4), so from this call the

type inference strategy can conclude that the ncat2 parameter is an integer vector. Since the

second use of ncat2 is another call to INTEGER, it doesn’t provide any additional information.

The type inference strategy can infer that the parameter xgrp2 is also an integer vector, since

it is also used in a call to INTEGER. Likewise, the parameters opt2, parms2, wt2, and cost2 are

each used in a call to REAL, and therefore must be numeric vectors.

In addition to type, the uses of a parameter can indicate its class or dimensions. Thus for

each parameter, the type inference strategy should check all of the uses. The xmat2 parameter

demonstrates this point. The combined uses of the parameter suggest it is a numeric matrix.

Note the calls to nrows, ncols, and REAL in the C code:

1 rp.n = nrows(xmat2);

2 rp.nvar = ncols(xmat2);

3 dptr = REAL(xmat2);

Listing 3.24: C code from the rpart routine that uses the parameter xmat2.

In the IR, the three calls are translated into these three instructions:

1 %call36 = tail call i32 @Rf_nrows(%struct.SEXPREC* %xmat2) #6

2 %call37 = tail call i32 @Rf_ncols(%struct.SEXPREC* %xmat2) #6

3 %call40 = tail call double* @REAL(%struct.SEXPREC* %xmat2) #6

The Rf_nrows and Rf_ncols routines return the number of rows and columns, respectively, of a

data frame, matrix, array, or other object with the dim attribute set. Thus xmat2 has at least

two dimensions. The call to REAL indicates that xmat2 is also numeric and has homogeneous

elements. Moreover, this call rules out the possibility that xmat2 is a data frame, because data

frames are lists, and lists are incompatible with the REAL routine. Thus the parameter xmat2 is

a matrix, array, or custom class; the code does not provide enough information to determine

which.

Finally, consider the ymat2 parameter. This parameter is only used in a call to REAL. However,

the pointer dptr returned by the call is used in a loop which suggests ymat2 is two-dimensional:

169

1 n = rp.n;

2 rp.num_y = asInteger(ny2);

3 rp.ydata = (double **) ALLOC(n, sizeof(double *));

4 dptr = REAL(ymat2);

5 for (i = 0; i < n; i++) {

6 rp.ydata[i] = dptr;

7 dptr += rp.num_y;

8 }

Listing 3.25: C code in the rpart routine that uses the parameter ymat2.

The loop iterates n times, the same as the number of rows in xmat2. In each iteration, the pointer

is advanced by the value of ny2. This loop follows a C programming pattern for iterating over the

first row of two-dimensional object stored in column-major order (R defaults to column-major

order). The type inference strategy we propose does not use this information and only infers

that ymat2 is numeric. However, one could extend the strategy to search for loops that use the

pointer returned by a call to REAL (or the other routines in Table 3.4) and match known patterns

of iteration. This would make the strategy more complex, but also improve the accuracy of the

inferred dimensions.

We defer type inference for the method2, xvals2, and ny2 parameters to Example 54.

The example demonstrates the core strategy to infer parameter types: for each parameter,

analyze the uses for calls to R Internals routines that restrict the range of possible types. Calls

to some routines—such as Rf_nrows—provide information about the class and dimensions of

their arguments instead of or in addition to the type. As a consequence, it is important to

inspect all of the uses of each parameter (rather than stopping at the first one to indicate the

type). Listing 3.26 shows the core strategy.

170

For each parameter, get all uses. For each use, if the instruction is a call to:

• An R internals routine with restrictions on the types of its arguments. Look up the

routine in the database of routines. Since the parameter is used as an argument, the

restrictions also apply to the parameter.

If more than one type is found for a parameter, the inferred type is the union of the types.

Collect the condition from the nearest common predecessor of the blocks which the contain

uses with different types.

Listing 3.26: The core strategy to infer a routine’s parameter types. Subsequent
sections of this chapter refine and expand upon the strategy.

Examining all uses of each parameter is also important for another reason. Different paths of

execution through a routine can assume different types for the parameters. For each parameter,

we want the strategy to find all possible types. When a parameter can have more than one type,

the inferred type should be the union, and the strategy should collect conditions on the potential

types. To do this, the strategy can use the same technique we used for collecting conditions on

return types in Listing 3.20. This step is included in the core strategy in Listing 3.26.

Coercions

The R Internals programming interface provides several routines to coerce R objects to specific

types. These are listed in Table 3.9. Most of these routines return the missing value NA if

coercion fails. When a parameter is coerced, we can think of the target type as the “natural”

type for that parameter, in the sense that the parameter must be or be compatible with that

type.

This section is about how to modify the type inference strategy for parameters in Listing 3.26

to collect type information from calls to coercion routines. The key idea is that the strategy

should check how routines handle parameters for which coercion fails. If failure to coerce a

parameter leads to an error, then that parameter must be coercible. If failure doesn’t lead to an

error, then the routine accepts other types of arguments for that parameter.

Example 54. Example 53 demonstrated type inference for all of the parameters of the rpart

routine in the rpart package (Therneau and Atkinson 2019) except for method2, xvals2, and

ny2. All three are coerced to ints in calls to the Rf_asInteger routine. We consider them in

this example in order to examine how to modify the type inference strategy to handle coercions.

171

Routine Argument(s) Coercion-free Type

Rf_asLogical τ LGL
Rf_asInteger τ INT
Rf_asReal τ REAL
Rf_asComplex τ CPLX
Rf_asChar τ STR

Rf_coerceVector τ, U U
Rf_asCharacterFactor factor factor

Table 3.9: Routines from the R Internals interface to coerce objects to specific types.
The coercion-free type (or class) is the natural way to represent the target
type as a SEXP. U denotes any SEXPTYPE and τ denotes any atomic vector
in the sense of the isVectorAtomic routine (see Table 3.10). The routines
return an error if the first argument is not an atomic vector, and return a
missing value if coercion fails.

We’ll begin with the parameter method2. The first call to Rf_asInteger on method2 is

translated into this instruction in the LLVM IR:

1 %call5 = tail call i32 @Rf_asInteger(%struct.SEXPREC* %method2) #6

The Rf_asInteger routine accepts any SEXP and attempts to coerce the underlying data to the

C type int. If the argument is an integer (INTSXP), no coercion actually occurs, and the effect

is the same as calling the INTEGER routine. However, the argument could instead be a logical,

numeric, complex, or character vector. In any of those cases, it’s possible that the coercion will

fail. On failure, Rf_asInteger returns a missing value rather than throwing an error.

The only other use of method2 in the routine is another call to Rf_asInteger. For context,

let’s look at the C code that produces these two call instructions:

1 if (asInteger(method2) <= NUM_METHODS) {

2 i = asInteger(method2) - 1;

3 \\ ...

4 } else

5 error(_("Invalid value for 'method'"));

Listing 3.27: The C code that generates the two call instructions that use method2.
The symbol asInteger is translated into Rf_asInteger by the C
preprocessor.

The comparison on the first line checks that the result from the call to asInteger is less than

or equal to the constant NUM_METHODS. Since R represents the missing value as a C NaN value

with specific bits set, and ordering checks against NaN values are always false, this condition is

172

also false if the coercion failed. When the condition is false, the routine raises an error. Thus

the routine expects that the argument for method2 must be coercible to an integer, and raises

an error if it is not.

In order to detect whether a routine raises an error if a coercion fails, the type inference

strategy should follow the result of each call to a coercion routine. Assuming the result is a

missing value, the strategy should check whether the code branches to a block that raises an

error. There are two different ways to identify these blocks:

1. By the unreachable terminator instruction, which means execution does not jump to any

other block after the block finishes executing. Since errors cause routines to exit early

without returning anything, code that raises an error always includes this instruction.

2. By calls to the error routines provided by the R Internals interface. The main routine for

raising errors is Rf_error, but there are also other routines that interact with R’s error

system. This approach has the advantage that the type inference system can recover the

error message if it is constant and can detect warnings in addition to errors.

Either approach works for this particular routine. The relevant instructions are:

1 %call5 = tail call i32 @Rf_asInteger(%struct.SEXPREC* %method2) #6

2 %cmp = icmp slt i32 %call5, 5

3 br i1 %cmp, label %if.then, label %if.else

4

5 if.else: ; preds = %entry

6 ; ...

7 tail call void (i8*, ...) @Rf_error(i8* %call14) #7

8 unreachable

Listing 3.28: IR instructions that show the rpart routine raises an error if the result
from calling Rf_asInteger on method2 is the missing value NA.

Key to the analysis here is that the result of the coercion, %call5, is used in a comparison

instruction (icmp). The comparison is always false if the result is the missing value, and the

target block when the comparison is false, if.else, raises an error. We can see this from the

call to Rf_error, or from the unreachable instruction.

Unlike the first call to Rf_asInteger on method2, the second call does not lead to an error,

regardless of its result. Nevertheless, the fact that the first call does lead to an error if coercion

173

fails is sufficient to conclude that the method2 parameter must be or be compatible with an

integer.

For the remaining two parameters, method2 and xvals2, there is no code to raise an error if

coercion fails. This suggests the routine can proceed normally and return a result even if these

parameters cannot be coerced. Thus it is not possible to infer a type for them through static

analysis. The type inference system should still record that the coercions appear in the routine,

since they indicate that in typical usage, these parameters should be integers, even though the

routine produces a result even if they are not.

Listing 3.29 shows a modified version of the type inference strategy based on the exam-

ple (Example 54). Calls to the coercion routines listed in Table 3.9 provide important type

information.

For each parameter, get all uses. For each use, if the instruction is a call to:

• An R internals routine with restrictions on the types of its arguments. Look up the

routine in the database of routines. Since the parameter is used as an argument, the

restrictions also apply to the parameter.

• A coercion routine. Check if the routine raises an error if the coercion fails (that is,

the result is a missing value). If the routined does, then the parameter must be or be

compatible with the target type. Otherwise, just record that the parameter is coerced

to the type indicated by the routine.

If more than one type is found for a parameter, the inferred type is the union of the types.

Collect the condition from the nearest common predecessor of the blocks which the contain

uses with different types.

Listing 3.29: The modified strategy to infer a routine’s parameter types. Modifica-
tions of Listing 3.26 to handle coercion routines are shown in black.

Assertions

Tests and assertions about the type of a parameter are another source of information for type

inference. Table 3.10 lists routines provided by the R Internals programming interface to test

whether objects have specific types.

Assertions are a valuable source of information for type inference, because they essentially

174

Routine Type Notes

Rf_isNull NIL
Rf_isLogical LGL
Rf_isInteger INT
Rf_isReal REAL
Rf_isComplex CPLX
Rf_isString STR
Rf_isValidString STR Length at least 1
Rf_isSymbol SYM
Rf_isEnvironment ENV
Rf_isFunction CLO, BUILTIN, SPECIAL

Rf_isLanguage NIL, LANG
Rf_isList NIL, LIST
Rf_isPairList NIL, LIST LANG, DOT
Rf_isNewList NIL, VEC
Rf_isVectorList VEC, EXPR
Rf_isVectorAtomic LGL, INT, REAL, CPLX, STR, RAW
Rf_isVector isVectorAtomic, isVectorList

Rf_type2str Returns name of type
TYPEOF Returns SEXPTYPE

Table 3.10: Routines provided by the R Internals interface to test for specific
SEXPTYPEs. Where the type column lists a routine, the test is true
for all arguments for which that routine returns true. The last two rou-
tines return the name of their argument’s type as a string or SEXPTYPE
rather than true or false.

state the type (or some other characteristic) that a parameter must have. In this section, we

examine how to modify the type inference strategy in Listing 3.29 to identify assertions and

collect type information from them.

Example 55. The mco package provides functions to solve multiple criteria optimization

problems (Mersmann 2020). One of these functions, nsga2, calls the C routine do_nsga2. This

routine is notable for the many assertions it makes before computing anything. Here’s the type

signature for the routine and a sample of the assertions:

1 SEXP do_nsga2(SEXP s_function, SEXP s_constraint, SEXP s_env,

2 SEXP s_obj_dim, SEXP s_constr_dim, SEXP s_input_dim,

3 SEXP s_lower_bound, SEXP s_upper_bound, SEXP s_popsize,

4 SEXP s_generations, SEXP s_crossing_prob,

5 SEXP s_crossing_dist, SEXP s_mutation_prob,

6 SEXP s_mutation_dist) {

7 if (!isFunction(s_function))

175

8 error("Argument 's_function' is not a function.");

9 if (!isFunction(s_constraint))

10 error("Argument 's_constraint' is not a function.");

11 if (!isInteger(s_input_dim))

12 error("Argument 's_input_dim' is not an integer.");

13 if (!isInteger(s_constr_dim))

14 error("Argument 's_constr_dim' is not an integer.");

15 if (!isReal(s_lower_bound))

16 error("Argument 's_lower_bound' is not a real vector.");

17 if (!isReal(s_upper_bound))

18 // ...

19 if (!isInteger(s_mutation_dist))

20 error("Argument 's_mutation_dist' is not an integer.");

Listing 3.30: An excerpt of the C code for the do_nsga2 routine in the mco package
(Mersmann 2020).

For this routine, there is an assertion for every single parameter. If any assertion fails, an

error is raised immediately. For the parameters that require integer or numeric arguments, the

assertions provide complete information about the type. The other parameters require function

arguments; for these, the assertions narrow down the SEXPTYPE to R’s three different function

types (builtin, special, and closure), but no more. Inferring which of the three is correct

and the type signature still depends on inspecting the other uses. Nonetheless, the assertions

greatly limit the set of possible types.

Consider the parameter s_input_dim. In the LLVM IR, the assertion on s_input_dim is

translated into two blocks. The first block, if.end4, tests whether s_input_dim is an integer

(INTSXP) with a call to Rf_isInteger:

1 if.end4: ; preds = %if.end

2 %call5 = tail call i32 @Rf_isInteger(

3 %struct.SEXPREC* %s_input_dim) #10

4 %tobool6.not = icmp eq i32 %call5, 0

5 br i1 %tobool6.not, label %if.then7, label %if.end8

Since this is a call to one of the test routines listed in Table 3.10, the type inference strategy

176

should follow the result %call5 to see how it is used. In particular, the strategy should check

whether a false result leads to an error.

The value of %call5 is negated by a not instruction to get %tobool6.not, and this is then

used in a branch instruction. When s_input_dim is not an integer, %tobool6.not is true, and

the code branches to %if.then7.

Here’s the %if.then7 block:

1 if.then7: ; preds = %if.end4

2 tail call void (i8*, ...) @Rf_error(

3 i8* getelementptr inbounds ([42 x i8],

4 [42 x i8]* @.str.2, i64 0, i64 0)) #11

5 unreachable

As we saw in Example 54, we can identify errors either through the unreachable instruction

or a call to Rf_error (the latter implies the former, but not vice-versa, because other routines

can cause execution to abort). The if.then7 block has both. Thus whenever the original call

to Rf_isInteger returns false, the routine raises an error. This is the pattern of an assertion,

and it establishes that s_input_dim must be an integer vector.

The pattern for the other assertions is the same, so we do not inspect their IR code here.

The type inference strategy can use the same technique to collect type information from each.

After inspecting the assertions, the type inference can then proceed to inspect the other uses as

described in Listing 3.29.

Listing 3.31 shows the type inference strategy modified to handle assertions.

177

For each parameter, get all uses. For each use, if the instruction is a call to:

• A routine for testing types (Table 3.10). Check whether a false result leads to a block

that raises an error by calling Rf_error. If it does, the call to the test routine is part

of an assertion and indicates the type of the parameter.

• An R internals routine with restrictions on the types of its arguments. Look up the

routine in the database of routines. Since the parameter is used as an argument, the

restrictions also apply to the parameter.

• A coercion routine. Check if the routine raises an error if the coercion fails (that is,

the result is a missing value). If the routined does, then the parameter must be or be

compatible with the target type. Otherwise, just record that the parameter is coerced

to the type indicated by the routine.

If more than one type is found for a parameter, the inferred type is the union of the types.

Collect the condition from the nearest common predecessor of the blocks which the contain

uses with different types.

Listing 3.31: The modified strategy to infer a routine’s parameter types. Modifica-
tions of Listing 3.29 to handle assertions are shown in black.

The routines Rf_type2str and TYPEOF in Table 3.10 do not test for a specific type on their

own. Instead, they return the type of their argument as a string or a SEXPTYPE, respectively.

These routines are included in the table because they are frequently used to test for types.

Example 56. The RCurl package provides the base64 function to encode and decode strings

in base 64 (Temple Lang and CRAN Team 2021). For decoding, the function calls the routine

R_base64_decode. This routine is notable because it accepts either a raw vector (RAWSXP) or a

character vector (STRSXP) for its first argument. This example describes how the type inference

strategy in Listing 3.31 can be adapted to handle parameters with more than one allowed type,

and also demonstrates what type checks that use the TYPEOF routine look like.

The routine’s first parameter is called r_text. Here’s the C code that checks the type of

r_text and handles each case:

1 char *text;

2 size_t len;

178

3 if(TYPEOF(r_text) == STRSXP)

4 text = (char *) CHAR(STRING_ELT(r_text, 0));

5 else {

6 len = LENGTH(r_text);

7 text = R_alloc(len+1, 1); text[len] = '\0';

8 memcpy(text, RAW(r_text), len);

9 }

The calls to R Internals routines STRING_ELT and RAW indicate the type of r_text on each

branch. The condition in the if-statement also indicates the type on the true branch.

In the LLVM IR, the call to TYPEOF and if-statement become:

1 %call = tail call i32 @TYPEOF(%struct.SEXPREC* %r_text) #6

2 %cmp = icmp eq i32 %call, 16

3 br i1 %cmp, label %if.then, label %if.else

The icmp instruction compares the result from TYPEOF to 16, the enumeration value for STRSXP

(Table 3.2). The IR then branches to the %if.then block if r_text is a character vector, or

%if.else if it is not. These blocks correspond to the two branches of the if-statement in the C

code.

The type inference strategy should detect when a result from TYPEOF is compared to an integer

and look up the integer in Table 3.2 to determine which type is being checked. The strategy

must also check that this is not an assertion—meaning there is no call to Rf_error along either

branch. The type along the true branch is established by the condition, although the type

inference strategy should also detect that r_text is used in the routine STRING_ELT, which only

accepts character vectors.

Now consider the IR for the false branch, the block %if.else. It contains a call to the RAW

routine on r_text:

1 %call5 = tail call i8* @RAW(%struct.SEXPREC* %r_text) #6

By inspecting this call, the type inference strategy can infer that the r_text parameter can also

be a raw vector.

For this example, it is not actually necessary for the type inference strategy to analyze the call

to TYPEOF in order to determine that r_text can be either a character vector or a raw vector.

179

In fact, even the core type inference strategy in Listing 3.26 correctly infers the two types for

r_text. However, the example shows how the type inference strategy could use a call to TYPEOF,

and examining the call would be essential if this code did not include the call to STRING_ELT on

r_text.

Besides checking for types, assertions can also check for other properties of an object. Many

of these fall outside the immediate goals of type inference, but one exception is assertions about

S3 and S4 classes. Table 3.11 lists routines in the R programming interface that test for classes.

Although these routines check for classes instead of types, the strategy for detecting assertions

that use them is the same. In some cases, these routines also reveal something about the type.

Routine Type Class Notes

Rf_isNumeric LGL, INT, REAL Not factor
Rf_isMatrix isVector Length 2 INT dimensions
Rf_isArray isVector INT dimensions
Rf_isFactor INT factor
Rf_isFrame τ data.frame
Rf_inherits τ

Rf_isS4 τ S4 bit, not just S4SXP
IS_S4_OBJECT τ S4 bit, not just S4SXP

Table 3.11: Routines from the C interface related to testing for specific classed or
class-compatible objects.

3.4.3 The .External and .External2 Interfaces

Like .Call, the .External and .External2 interfaces are designed for calls to foreign routines

that use the R Internals programming interface. The primary difference is that routines called

with .External and .External2 must have exactly one parameter. The argument to this

parameter is a pairlist (LISTSXP) that contains one element for each argument to be passed to

the routine. The purpose of this design is to allow foreign routines to accept a variable number

of arguments. Use of these interfaces is relatively uncommon: a 2021 analysis of CRAN, Temple

Lang found that only 29 packages (of approximately 17,000) call .External or .External2.

Elements in the pairlist can be accessed with the CAR and CDR routines, as shown in Table 3.6.

As a result, the type inference strategy for parameter types (Listing 3.31) must be modified in

order to correctly infer types for with routines called with these interfaces. More specifically,

the strategy should count calls to CAR and CDR in order to determine the number of parameters

in the parameter list. Where the results from calling CAR on the parameter list are saved into

180

variables, the type inference strategy should treat those variables as the parameters of the

function, handling them the same way as parameters in a routine called with .Call.

The type inference strategy for return types (Listing 3.20) still applies without modification.

3.4.4 C++ Routines

The .Call, .External, and .External2 routines can also call C++ routines, and on CRAN in

2020, about 62% of packages with foreign routines contained C++ code. The clang compiler can

translate C++ code into LLVM IR, so for C++ routines that use the R Internals programming

interface, the type inference strategies described in Section 3.4.1 and 3.4.2 still apply.

There are, however, many C++ routines that use the Rcpp package (Eddelbuettel and

François 2011) instead of or in addition to the R Internals interface. The Rcpp package

provides C++ data types and routines to integrate R and C++. In other words, it provides a

programming interface for manipulating R objects in C++ which is distinct from the R Internals

interface. As a result, the strategies of Section 3.4 must be modified in order to correctly infer

types for routines which use Rcpp.

Like the routines provided by the R Internals interface, many of the routines provided by

Rcpp restrict their arguments or return value to specific types. Thus it is feasible to create a

database of these routines for use in type inference, either manually or programatically.

The Rcpp package also makes extensive use of templates. A template parameterizes the

types in a routine or class, so that the code can be reused for several different types. When a

template is compiled, the compiler repeats the code for each requested type. In Rcpp, there

are templated routines (such as sum) and classes (such as Vector) parameterized in terms of

SEXPTYPEs. A preliminary investigation by Temple Lang (2021) indicates that it is possible to

recover the template arguments from the LLVM IR, and use this information for type inference.

Extending the type inference strategies to support C++ routines which use Rcpp is an

important area for future work, because Rcpp is in widespread use.

3.5 Connecting to R Code

The motivation for type inference on foreign routines called from R—and thus for this chapter—is

to provide additional information to the type inference strategy for R code described in Chapter 2.

In order to provide the information, two things must be considered: how to represent types of

181

R objects in foreign routines, and where type inference for foreign routines fits into the type

inference strategy for R code.

Since SEXPTYPEs are R types, we can use the classes provided by the typesys package to

represent types for R objects in foreign routines. These classes were described in Section 2.5.1

of the previous chapter. Should it be necessary to distinguish between types found in foreign

routines and types found in R code, we can use subclasses of these classes. Due to the design of

the package, making these subclasses work with functions designed to handle the types provided

by the package does not require any additional effort.

In Section 3.4.1 and Section 3.4.2, we explained that type inference should not only collect

type information, but also information about coercions, conditions, classes, and dimensions. The

typesys package also provides facilities for recording these. One exception is that typesys does

not provide a way to represent conditions in LLVM IR code. There are various ways we can

approach this deficiency:

• Use strings to represent the code

• Translate the conditions into pseudo-R code

• Use file name and line numbers to refer to conditions

• Serialize the relevant LLVM IR code

We favor translating conditions into pseudo-R code. Users of the type inference system will

already be familiar with R, so pseudo-R code is likely to be easier for them to understand than

the other options. The drawback is that this requires an extra step during type inference. As of

writing, we have not implemented this system, so it bears further investigation.

The other issue is how type inference for foreign routines fits into the R type inference

strategy. As described in this chapter, the type inference strategy for foreign code can operate

independently of the type inference strategy for R code. However, sharing information from type

inference for R code can improve the accuracy of the results. This is illustrated in the following

example.

Example 57. Example 55 examined the do_nsga2 routine in the mco package (Mersmann

2020). That routine is called by the package’s nsga2 function through the .Call interface. In

the call to .Call, the R code uses coercions to marshal objects to appropriate types:

182

1 res <- .Call(do_nsga2,

2 ff, cf, sys.frame(),

3 as.integer(odim),

4 as.integer(cdim),

5 as.integer(idim),

6 lower.bounds, upper.bounds,

7 as.integer(popsize), as.integer(generations),

8 cprob, as.integer(cdist),

9 mprob, as.integer(mdist))

Listing 3.32: The .Call expression from the nsga2 function in the mco package
(Mersmann 2020). Most of the objects passed as arguments are wrapped
in calls to as.integer.

This practice is common in R packages that call foreign routines, and it provides valuable

information about the types the routine requires. Since these coercions are in the R code, the

type inference strategy for foreign routines does not normally take them into account. However,

we can make the strategy accept initial hints about the parameter types, or we can unify these

types with the results from independently carrying out type inference on the routine. Either

approach takes advantage of both sources of information to refine the overall result.

The example shows that the context of a call to a foreign routine can provide additional type

information about the routine. For some routines, the return type depends on one or more

argument types, so the type inference strategy can only infer a specific return type when the

argument types are known. Calls to foreign routines are not always preceded by coerctions

or type checks. Chapter 2 describes situations where it is or isn’t possible to infer types for

objects in R code. When the argument types can be inferred, the should be combined with the

inferred type signature of the routine in order to solve any dependence the return type has on

the argument types.

The most straightforward way to combine information from the type inference strategy for R

and the type inference strategy for foreign routines is to run the latter independently for each

call site, and then use the resulting information in the former. As described in Section 2.3.1

of the previous chapter, the first step of the type inference strategy for R code is constraint

generation. The strategy generates constraints on the types of objects in the code based on

how they are defined and used. Calls to R functions cause the strategy to generate constraints

183

on the types of the arguments and result, based on the type signature of the called function.

When provided with type signatures, the strategy can also generate these constraints for calls to

foreign routines.

Thus the approach we recommend is to provide handlers for the .C, .Fortran, .Call,

.External, and .External2 interfaces in constraint generation step of the type inference

strategy for R. Each handler should use the corresponding type inference strategy for foreign

routines to compute a type signature for the routine in question. The type inference strategy

for R can then generate constraints for the call in the same way as for a call to an R function.

The second step of the strategy—constraint solving—remains the same as it was described in

Chapter 2.

3.6 Related Work

As of writing, this appears to be the first research into static type inference across R’s foreign

function interface. Type inference as a subject has been studied extensively, but generally not for

code called via foreign function interfaces. Work related to type inference in general is discussed

in Section 2.6 of the previous chapter.

Furr and Foster explored type inference across the foreign function interface for both the

OCaml and Java programming languages (Furr and Foster 2005; Furr and Foster 2006). For

both languages, their primary goal was to detect type errors in the called C code. Moreover,

their type systems also model C types, since in the Java foreign function interface, these can

sometimes be assigned directly to Java objects. Their system supports inference for user defined

routines, including routines which are polymorphic. Their approach to type inference follows

a two-stage design similar to what we described for R code in Chapter 2, in contrast to the

one-stage code analysis strategy we’ve adopted for type inference for C code. In short, their

system is substantially richer, as necessitated by their type safety goal, and could provide a

useful reference for enhancing the system we described here.

Kalibera developed the rchk tool to analyze C code called from R in order to identify memory

protection errors (Kalibera 2014). The tool is written in C++, uses LLVM directly to analyze

code, and does not contain or interact with R code at all. Because R is a garbage collected

language, objects allocated in C code must be protected (by calling the Rf_protect routine) in

order to prevent accidental garbage collection. When they are no longer in use, the objects must

184

then be unprotected. The rchk tool programatically detects objects that should be protected but

aren’t, as well as imbalances in the protection stack. This is the only other tool we are aware of

for analysis of C code called from R.

3.7 Conclusion

The type inference strategies proposed in this chapter address all of R’s interfaces for calling

foreign routines: .C, .Fortran, .Call, .External, and .External2. All of the strategies rely

on the LLVM Compiler Infrastructure and its R binding, the Rllvm package, in order to analyze

foreign routines. LLVM provides a rich set of tools for extracting information from code.

Routines called via .C and .Fortran do not operate directly on R objects. The strategy for

these routines is to use the tools LLVM provides to collect the type signature. The .C and

.Fortran interfaces do not allow routines to return a result directly, so it is customary to return

results by manipulating the arguments to the routine. To determine which arguments are results,

the strategy also uses LLVM to check which arguments are modified.

Routines called via .Call, .External, or .External2 use the R Internals programming

interface and operate directly on R objects. Each R object is represented by a SEXP, and as a

result, even though C and C++ require explicit type annotations, the annotation for an R object

will be SEXP regardless of its underlying type. Thus type inference is necessary to determine

the types for R objects in these routines. The key idea of the type inference strategy that this

chapter proposes for R objects of interest in these routines is to analyze the definition and uses.

LLVM is especially important for this strategy, because it provides tools to find the definition

and uses of any variable. The proposed type inference strategy is designed to handle R’s atomic

types, containers with heterogeneous elements, conditionals, loops, attributes, S3 and S4 classes,

coercions, and assertions.

Type information collected from foreign routines is meant to be integrated into the type

inference strategy for R code. To do this, we suggest using the proposed strategies to infer a

type signature for each foreign routine called from R code. The type inference strategy for R

code can then use the type signature to generate constraints in the same way it would use a

type signature for an R function called in the code.

185

Bibliography

Adams, Lauren (2018). “Optimized Reservoir Management for Downstream Environmental

Purposes.” English. PhD thesis, p. 134. isbn: 978-0-438-93009-4. url: https://search.

proquest.com/docview/2191568383?accountid=14505.

Agesen, Ole (1995). “The Cartesian Product Algorithm. Simple and Precise Type Inference

Of Parametric Polymorphism.” In: Proceedings of the 9th European Conference on Object-

Oriented Programming. Ed. by Mario Tokoro and Remo Pareschi. ECOOP ’95. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 2–26. isbn: 978-3-540-49538-3. doi: 10.1007/3-

540-49538-x_2.

Aiken, Alexander, Edward L. Wimmers, and T. K. Lakshman (1994). “Soft Typing with

Conditional Types.” In: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on

Principles of programming languages - POPL ’94. ACM Press. doi: 10.1145/174675.

177847.

Ananian, C. Scott (2001). “The static single information form.” OCLC: 48072795. PhD thesis.

Bache, Stefan Milton and Hadley Wickham (2020). magrittr: A Forward-Pipe Operator for R. R

package version 2.0.1. url: https://CRAN.R-project.org/package=magrittr.

Bengtsson, Henrik (2018). globals: Identify Global Objects in R Expressions. url: https :

//CRAN.R-project.org/package=globals.

Chang, Winston (2021). R6: Encapsulated Classes with Reference Semantics. R package version

2.4.1. url: https://CRAN.R-project.org/package=R6.

Cooper, Keith D. and Linda Torczon (2012). Engineering a compiler. 2nd ed. Amsterdam ;

Boston: Elsevier/Morgan Kaufmann. 800 pp. isbn: 978-0-12-088478-0.

Csardi, Gabor (2016). cyclocomp: Cyclomatic Complexity of R Code. R package version 1.1.0.

url: https://CRAN.R-project.org/package=cyclocomp.

Csárdi, Gábor (2020). pingr: Check if a Remote Computer is Up. R package version 2.0.1. url:

https://CRAN.R-project.org/package=pingr.

186

https://search.proquest.com/docview/2191568383?accountid=14505
https://search.proquest.com/docview/2191568383?accountid=14505
https://doi.org/10.1007/3-540-49538-x_2
https://doi.org/10.1007/3-540-49538-x_2
https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/174675.177847
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=globals
https://CRAN.R-project.org/package=globals
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=cyclocomp
https://CRAN.R-project.org/package=pingr

Damas, Luis and Robin Milner (1982). “Principal type-schemes for functional programs.” In:

Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages - POPL ’82. ACM Press. doi: 10.1145/582153.582176.

Eddelbuettel, Dirk and Romain François (2011). “Rcpp: Seamless R and C++ Integration.”

In: Journal of Statistical Software 40.8, pp. 1–18. doi: 10.18637/jss.v040.i08. url:

https://www.jstatsoft.org/v40/i08/.

Flang (Jan. 1, 2021). url: https://releases.llvm.org/11.0.0/tools/flang/docs/ (visited

on 08/01/2021).

Furr, Michael and Jeffrey S. Foster (June 12, 2005). “Checking type safety of foreign function

calls.” In: ACM SIGPLAN Notices 40.6, pp. 62–72. issn: 0362-1340. doi: 10.1145/1064978.

1065019. url: https://doi.org/10.1145/1064978.1065019 (visited on 05/24/2021).

——. (2006). “Polymorphic Type Inference for the JNI.” In: Programming Languages and Systems.

Ed. by Peter Sestoft. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,

pp. 309–324. isbn: 978-3-540-33096-7. doi: 10.1007/11693024_21.

Heeren, Bastiaan, Jurriaan Hage, and Doaitse Swierstra (2002). Generalizing Hindley-Milner

Type Inference Algorithms. UU-CS-2002-031. Department of Information and Computing

Sciences, Utrecht University. url: http://www.cs.uu.nl/research/techreps/UU-CS-

2002-031.html.

Hester, Jim (2017). lintr: A ’Linter’ for R Code. R package version 1.0.2. url: https://CRAN.R-

project.org/package=lintr.

——. (2018). covr: Test Coverage for Packages. R package version 3.2.0. url: https://CRAN.R-

project.org/package=covr.

Johnson, Steven G. and Jelmer Ypma (2020). The NLopt nonlinear-optimization package. url:

https://CRAN.R-project.org/package=nloptr.

Kalibera, Tomas (2014). rchk. url: https://github.com/kalibera/rchk.

Lehtosalo, Jukka et al. (Jan. 8, 2015). python/mypy. original-date: 2012-12-07T13:30:23Z. url:

https://github.com/python/mypy (visited on 06/30/2021).

LFortran (Jan. 1, 2021). url: https://lfortran.org/ (visited on 08/01/2021).

Maechler, Martin et al. (2021). cluster: Cluster Analysis Basics and Extensions. R package

version 2.1.1 — For new features, see the ’Changelog’ file (in the package source). url:

https://CRAN.R-project.org/package=cluster.

187

https://doi.org/10.1145/582153.582176
https://doi.org/10.18637/jss.v040.i08
https://www.jstatsoft.org/v40/i08/
https://releases.llvm.org/11.0.0/tools/flang/docs/
https://doi.org/10.1145/1064978.1065019
https://doi.org/10.1145/1064978.1065019
https://doi.org/10.1145/1064978.1065019
https://doi.org/10.1007/11693024_21
http://www.cs.uu.nl/research/techreps/UU-CS-2002-031.html
http://www.cs.uu.nl/research/techreps/UU-CS-2002-031.html
https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=nloptr
https://github.com/kalibera/rchk
https://github.com/python/mypy
https://lfortran.org/
https://CRAN.R-project.org/package=cluster

Mersmann, Olaf (2020). mco: Multiple Criteria Optimization Algorithms and Related Functions.

R package version 1.15.6. url: https://CRAN.R-project.org/package=mco.

Milner, Robin (Dec. 1978). “A Theory of Type Polymorphism in Programming.” In: Journal of

Computer and System Sciences 17.3, pp. 348–375. doi: 10.1016/0022-0000(78)90014-4.

Morandat, Floréal et al. (June 11, 2012). “Evaluating the Design of the R Language.” In:

ECOOP 2012 – Object-Oriented Programming. European Conference on Object-Oriented

Programming. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 104–131.

doi: 10.1007/978-3-642-31057-7_6. url: https://link.springer.com/chapter/10.

1007/978-3-642-31057-7_6 (visited on 06/21/2018).

Müller, Kirill and Hadley Wickham (2019). tibble: Simple Data Frames. R package version 2.1.3.

url: https://CRAN.R-project.org/package=tibble.

Nielson, Flemming, Chris Hankin, and Hanne Riis Nielson (2010). Principles of Program Analysis.

OCLC: 711850939. Berlin: Springer Berlin. isbn: 978-3-642-08474-4.

Nieweglowski, Lukasz (2020). clv: Cluster Validation Techniques. url: https://CRAN.R-

project.org/package=clv.

Quiroga, Jose and Francisco Ortin (Jan. 2017). “SSA Transformations to Facilitate Type Inference

in Dynamically Typed Code.” In: The Computer Journal. doi: 10.1093/comjnl/bxw108.

R Core Team (2019a). R Language Definition. Vienna, Austria: R Foundation for Statistical

Computing. url: https://cran.r-project.org/doc/manuals/r-release/R-lang.html.

——. (2019b). Writing R Extensions. Vienna, Austria: R Foundation for Statistical Computing.

url: https://cran.r-project.org/doc/manuals/r-release/R-exts.html.

Robinson, John Alan (1965). “A Machine-Oriented Logic Based on the Resolution Principle.” In:

Automation of Reasoning. Springer Berlin Heidelberg, pp. 397–415. doi: 10.1007/978-3-

642-81952-0_26.

Sarda, Suyog and Mayur Pandey (Dec. 21, 2015). LLVM Essentials. Google-Books-ID: ZT-

blCwAAQBAJ. Packt Publishing Ltd. 166 pp. isbn: 978-1-78355-862-9.

Schmidt, Drew (n.d.). float: 32-Bit Floats. R package version 0.2-5. url: https://cran.r-

project.org/package=float.

Sen, Rathijit et al. (Apr. 10, 2017). “ROSA: R Optimizations with Static Analysis.” In:

arXiv:1704.02996 [cs]. arXiv: 1704.02996. url: http://arxiv.org/abs/1704.02996

(visited on 06/21/2018).

188

https://CRAN.R-project.org/package=mco
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/978-3-642-31057-7_6
https://link.springer.com/chapter/10.1007/978-3-642-31057-7_6
https://link.springer.com/chapter/10.1007/978-3-642-31057-7_6
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=clv
https://CRAN.R-project.org/package=clv
https://doi.org/10.1093/comjnl/bxw108
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://doi.org/10.1007/978-3-642-81952-0_26
https://doi.org/10.1007/978-3-642-81952-0_26
https://cran.r-project.org/package=float
https://cran.r-project.org/package=float
https://arxiv.org/abs/1704.02996
http://arxiv.org/abs/1704.02996

Siek, Jeremy G. and Walid Taha (2006). “Gradual typing for functional languages.” In: Scheme

and Functional Programming Workshop. Vol. 6, pp. 81–92.

Staiger, Stefan et al. (Oct. 2007). “Interprocedural Static Single Assignment Form.” In: IEEE,

pp. 1–10. isbn: 978-0-7695-3034-5. doi: 10.1109/WCRE.2007.31. url: http://ieeexplore.

ieee.org/document/4400146/ (visited on 06/21/2018).

Temple Lang, Duncan (2011). RCIndex: R Interface to the clang parser’s C API. R package

version 0.3-0. url: https://github.com/omegahat/RClangSimple.

——. (May 2014). “Enhancing R with Advanced Compilation Tools and Methods.” In: Statistical

Science 29.2, pp. 181–200. issn: 0883-4237, 2168-8745. doi: 10.1214/13-STS462. url:

https://projecteuclid.org/euclid.ss/1408368570 (visited on 06/21/2018).

——. (2021). “A Survey of CRAN Packages.”

Temple Lang, Duncan and CRAN Team (Aug. 17, 2021). RCurl. R package version 1.98-1.4.

url: https://cran.r-project.org/package=RCurl.

Temple Lang, Duncan, Roger Peng, et al. (2018). CodeDepends: Analysis of R Code for Repro-

ducible Research and Code Comprehension. R package version 0.6.5. url: https://CRAN.R-

project.org/package=CodeDepends.

Therneau, Terry and Beth Atkinson (2019). rpart: Recursive Partitioning and Regression Trees.

R package version 4.1-15. url: https://CRAN.R-project.org/package=rpart.

Tierney, Luke (2020). codetools: Code Analysis Tools for R. url: https://CRAN.R-project.

org/package=codetools.

Turcotte, Alexi and Jan Vitek (July 19, 2019). “Towards a Type System for R.” In: Proceedings

of the 14th Workshop on Implementation, Compilation, Optimization of Object-Oriented

Languages, Programs and Systems. ICOOOLPS ’19. New York, NY, USA: Association for

Computing Machinery, pp. 1–5. isbn: 978-1-4503-6862-9. doi: 10.1145/3340670.3342426.

url: https://doi.org/10.1145/3340670.3342426 (visited on 06/29/2021).

Vitousek, Michael M. et al. (2014). “Design and Evaluation of Gradual Typing for Python.” In:

Proceedings of the 10th ACM Symposium on Dynamic Languages. DLS ’14. New York, NY,

USA: ACM, pp. 45–56. isbn: 978-1-4503-3211-8. doi: 10.1145/2661088.2661101. url:

http://doi.acm.org/10.1145/2661088.2661101 (visited on 06/21/2018).

Wegman, Mark N. and F. Kenneth Zadeck (Apr. 1991). “Constant Propagation with Conditional

Branches.” In: ACM Trans. Program. Lang. Syst. 13.2, pp. 181–210. issn: 0164-0925. doi:

189

https://doi.org/10.1109/WCRE.2007.31
http://ieeexplore.ieee.org/document/4400146/
http://ieeexplore.ieee.org/document/4400146/
https://github.com/omegahat/RClangSimple
https://doi.org/10.1214/13-STS462
https://projecteuclid.org/euclid.ss/1408368570
https://cran.r-project.org/package=RCurl
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools
https://doi.org/10.1145/3340670.3342426
https://doi.org/10.1145/3340670.3342426
https://doi.org/10.1145/2661088.2661101
http://doi.acm.org/10.1145/2661088.2661101

10.1145/103135.103136. url: http://doi.acm.org/10.1145/103135.103136 (visited

on 09/27/2018).

Wickham, Hadley (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York. isbn: 978-3-319-24277-4. url: http://ggplot2.org.

Wickham, Hadley, Mara Averick, et al. (2019). “Welcome to the tidyverse.” In: Journal of Open

Source Software 4.43, p. 1686. doi: 10.21105/joss.01686.

Wickham, Hadley, Peter Danenberg, et al. (2021). roxygen2: In-Line Documentation for R. R

package version 7.1.2. url: https://CRAN.R-project.org/package=roxygen2.

190

https://doi.org/10.1145/103135.103136
http://doi.acm.org/10.1145/103135.103136
http://ggplot2.org
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=roxygen2

	Abstract
	Acknowledgements
	Introduction
	A Framework for Static Analysis of R Code
	Introduction
	Analyzing the Syntax and Structure of Code
	Using and Extending the AST Classes
	Related Work

	Representing the Control Flow of Code
	Related Work

	Analyzing How Data Flows Through Code
	Iterative Data Flow Analyses
	The Static Single Assignment Form
	Related Work

	Conclusion

	Type Inference for R Code
	Introduction
	Background on How We Represent Code
	The Damas-Milner Type Inference Strategy
	Constraint Generation
	Constraint Resolution

	Adapting the Type Inference Strategy to R
	The Grammar of Types
	The Relationship Between Types and S3 Classes
	Constructor Functions
	Implicit and Explicit Coercions
	Indexing
	Characteristics of Lists and Data Frames
	Assertions
	Scope and Environments
	Dimensions, Recycling, and Loops
	Value-based Types
	Non-standard Evaluation

	The Type Inference Packages
	The typesys Package
	The RTypeInference Package

	Related Work
	Conclusion

	Type Inference for the R API
	Introduction
	Background
	Packages for C Code Analysis
	The LLVM Intermediate Representation

	The [escapeinside=@@]text.C and [escapeinside=@@]text.Fortran Interfaces
	The [escapeinside=@@]text.C Interface
	The [escapeinside=@@]text.Fortran Interface

	The [escapeinside=@@]text.Call, [escapeinside=@@]text.External, and [escapeinside=@@]text.External2 Interfaces
	Return Types
	Parameter Types
	The [escapeinside=@@]text.External and [escapeinside=@@]text.External2 Interfaces
	C++ Routines

	Connecting to R Code
	Related Work
	Conclusion

