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Metagenomics has enabled accessing the genetic repertoire of natural microbial
communities. Metagenome shotgun sequencing has become the method of
choice for studying and classifying microorganisms from various environments.
To this end, several methods have been developed to process and analyze the
sequence data from raw reads to end-products such as predicted protein
sequences or families. In this article, we provide a thorough review to simplify
such processes and discuss the alternative methodologies that can be followed in
order to explore biodiversity at the protein family level. We provide details for
analysis tools and we comment on their scalability as well as their advantages and
disadvantages. Finally, we report the available data repositories and recommend
various approaches for protein family annotation related to phylogenetic
distribution, structure prediction and metadata enrichment.

KEYWORDS
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1 Introduction

Microbes are the most abundant and diverse life forms on the planet, occupying all
possible metabolic niches. Cellular organisms such as bacteria, archaea and protista, as well
as non-cellular entities such as viruses, can be found in all types of diverse ecosystems, from
soils, rivers and oceans to extreme environments such as deserts, hot springs and glaciers, or
as parasites inmulticellular organisms such as humans andmammals, fish, insects and plants
(Keller and Zengler, 2004; Thompson et al., 2017; Seshadri et al., 2018; Nayfach et al., 2021).
The number of microorganisms surpasses by far the number of all other life forms; in fact, it
is estimated that the number of microbes in a handful of soil exceeds the number of stars in
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theMilkyWay galaxy (Whitman et al., 1998; Mukherjee et al., 2017).
Microorganism communities, also known as microbiomes, play
crucial roles in all ecosystems, from regulating carbon fixation
and nutrient cycles to influencing the health, physiology,
behavior, and ecology of their host organisms. As a result, the
study of microorganisms and microbial communities is crucial, with
applications in biomedicine, biotechnology, ecology and the study of
biodiversity. Despite their importance, the vast majority of
microorganisms and their genetic contents remain unannotated.
The genomes of less than half a million microbes have been
sequenced (Mukherjee et al., 2022), and only ~30,000 bacterial
and archaeal species have been cultivated (Parte et al., 2020),
representing less than 1% of the total number of microbial taxa
on Earth. Instead, the vast majority of microbial life remains
taxonomically and functionally unknown (Locey and Lennon,
2016), often referred to as the “microbial dark matter”.

A central approach in exploring the functional diversity of the
microbiome is through metagenomics, defined as the total amount
of sequenced genetic material from an environmental sample (Oulas
et al., 2015). Metagenomic shotgun sequencing has emerged as the
most prevalent way of studying and classifying microorganisms
from various habitats (Escobar-Zepeda et al., 2015; Quince et al.,
2017; Liu et al., 2021). The latest advances in high-throughput
shotgun sequencing technologies have improved the quality and
reduced the cost of the method, resulting in a very large increase in
the volume of available metagenomic sequences, which provide a
great resource for new findings and novelty (Oulas et al., 2015;
Pérez-Cobas et al., 2020).

Extracting the genetic composition in a metagenomic sample
usually follows one of the following paths (Figure 1):

• The genetic material is processed for marker gene detection
(Rotimi et al., 2018) or characteristic genomic regions (e.g., 16S
and 18S (Karst et al., 2018), Internal Transcribed Spacers
(ITS), COI based on the SILVA (Pruesse et al., 2007; Porter
and Hajibabaei, 2020), UNITE (Nilsson et al., 2019), PR2 (Del

Campo et al., 2018) and MIDORI (Leray et al., 2018) database
information respectively). This method can be used to describe
the microbial composition based on the taxonomic groups
present in the sample and is frequently used to analyze the
biodiversity of microbial ecosystems.

• The reads produced by a sequencer can be accurately mapped
to multiple known and annotated reference genomes or
metatranscriptomes, providing information about genes,
proteins and the available functions thereof.

• In the case of zero matches to a reference genome, the reads are
assembled into contiguous sequences known as contigs which
are sets of overlapping DNA segments that together represent
a consensus DNA region. The contigs can be further assembled
into sets with gaps of known lengths, forming scaffolds. This
process is called de novo assembly.

Once reads have been aligned to a reference genome,
functional annotation can be straightforward if the reference
genome is well annotated and one can identify the functions
based on the genomic regions to which the reads are aligned. On
the other hand, functional annotation of assembled scaffolds, e.g.,
open reading frame calling or protein function prediction, can be
tricky, as reference information is often limited or unavailable.
Clustering predicted proteins into groups (families) can both
shed light on putative protein functions and, more practically,
reduce the number of proteins present in metagenomic datasets
into more manageable chunks.

Going beyond the available literature, in this review we provide a
step-by-step methodology on how to explore diversity at the protein
family level with the use of metagenomic data. We discuss the
available data repositories and their contents, pipelines related to
read mapping, assembly and end-product (e.g., protein sequences)
generation, as well as graph-based and non-graph-based clustering
techniques (Zaslavsky et al., 2016; Pavlopoulos, 2017). Finally, we
recommend ways to annotate the protein clusters with information
on function, environment, and geography.

FIGURE 1
Illustration of a typical metagenomic analysis. (A) Sample collection, (B) Marker gene detection and taxonomic assignment. (C) DNA reads are
mapped to a reference genome. (D) DNA reads are assembled into contigs using de novo assembly.
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2 Data repositories

The analyzed metagenomic and metatranscriptomic data and
metadata, including their datasets, sequencing scaffolds, predicted
genes and annotations, are hosted in a number of publicly available
databases and repositories. This section presents the most important
hubs of metagenomic data, including their data contents and offered
metagenome analysis services.

The Integrated Microbial Genomes and Microbiomes (IMG/M)
database (Chen et al., 2018; Chen et al., 2022) is a user-driven
repository hosted by the Joint Genome Institute (JGI) of the US
Department of Energy (DOE) (Chen et al., 2018; Chen et al., 2022).
It includes genomes of cultivated and uncultivated taxa from all
domains of life (Archaea, Bacteria, Eukarya and Viruses), plasmids,
genome fragments of interest generated by targeted sequencing,
amplicons, metagenomes and metatranscriptomes. In its current
version (v. 7.0 February 2023 data), the database contains
172,782 datasets, 47,113 of which are metagenomic
(39,610 metagenomes and 7,503 metatranscriptomes). IMG/M’s
datasets contain 23.29 trillion base pairs, 11.94 trillion of which
are protein-coding and correspond to 70.18 billion protein
sequences. Metagenomes and metatranscriptomes are the main
contributors to these figures, containing 22.81 trillion base pairs
(11.55 trillion protein-coding) that encode 69.77 billion proteins.
While a portion of these sequences are retrieved from other
repositories, namely, GenBank (Sayers et al., 2022) and the
Sequence Read Archive (SRA) (Kodama et al., 2012), the
majority of IMG/M’s content comes from datasets sequenced at
the JGI itself, as well as datasets submitted by external users through
the IMG submission system. The database features a well-
established, continuously updated metagenome analysis pipeline
(DOE JGI Metagenome workflow), allowing users to submit their
own genome, metagenome and metatranscriptome datasets, and
automatically perform several types of analyses, including gene
calling, taxonomic assignment and functional annotation (Clum
et al., 2021).

Similar to IMG/M, MGnify, previously known as EBI
Metagenomics (Mitchell et al., 2018), is a freely available
database for the archiving, exploring and analyzing metagenomic
data, hosted by the European Bioinformatics Institute (EBI)
(Mitchell et al., 2019). The database accepts user-submitted data
and provides a versatile, standardized pipeline (EBI metagenomics
pipeline) to cover the analysis of a wide range of dataset types, from
studies targeting taxonomic markers (e.g., amplicon studies) to
shotgun sequencing of metagenomes and metatranscriptomes, as
well as metagenome-assembled genomes (MAGs). The pipeline
offers various types of analyses (gene calling, functional
annotation, taxonomic assignment) for user-submitted assembled
sequence data, as well as the option to provide assembly for user-
submitted, raw reads upon request. In its current version (February
2023 data), MGnify hosts 444,172 analysis datasets coming from
4,444 studies, including, among others, 33,827 metagenomes,
2,205 metatranscriptomes, and 301,808 MAGs from seven major
MAG catalogs. The aforementioned datasets encode a total of
~2.5 billion protein sequences, grouped into ~620 million clusters
with a 90% sequence identity threshold. All sequence data deposited
in MGnify are automatically submitted to the European Nucleotide
Archive (ENA) catalog, in compliance with the International

Nucleotide Sequence Database Collaboration (INSDC) standards
(Cummins et al., 2022). Notably, MGnify hosts data from seven
super studies, organized by large microbiome research groups and
consortia. These include the Tara Oceans (Sunagawa et al., 2015),
Malaspina 2010 and AtlantECO projects (collecting microbiome
data from ocean expeditions), the Earth Microbiome Project (an
effort to organize microbiome datasets from around the globe)
(Thompson et al., 2017), Project MANGO from the NASA
GeneLab database (collecting data on how microbial
communities adapt to spaceflight and related terrestrial stresses)
(Berrios et al., 2021), HoloFood (microbiome data from farmed
animals and food production systems) and FindingPheno (studying
the impact of host-microbiome interactions).

Besides IMG/M and MGnify, two other notable metagenome
repositories are MG-RAST (Meyer et al., 2019) and gcMeta (Shi
et al., 2019). The Metagenomes RAST service (MG-RAST),
maintained by the Argonne National Laboratory at the
University of Chicago, is one of the earliest approaches to
providing an integrated platform for the automated analysis and
annotation of metagenomic samples (Meyer et al., 2019). In contrast
to IMG/M and MGnify, which operate as publicly available
databases offering analysis pipelines alongside their data, MG-
RAST acts primarily as a metagenome annotation pipeline, with
access to its database restricted to its registered users. In addition,
MG-RAST is limited to analyzing user-submitted metagenome
reads and mapping them to reference genomes, rather than also
analyzing full genomes, amplicons, assembled contigs/scaffolds or
MAGs. In its current version (v. 4.0.3 February 2023 data) MG-
RAST hosts 510,609 metagenomes, containing 2,266 billion
sequences; however, only ~16% of these (81,196 datasets) are
publicly available to researchers. In contrast to MG-RAST,
gcMeta (Shi et al., 2019) is a publicly available metagenome
annotation platform and associated database, maintained by the
Chinese Academy of Sciences Initiative of Microbiome (CAS-CMI).
It utilizes a pipeline similar to IMG/M and MGnify in terms of
sequence analysis and annotation, which primarily focuses on
datasets submitted by members of CAS-CMI. In its current
version (February 2023 data), gcMeta contains a total of
146,672 datasets, including 42,628 metagenomes,
1,431 metatranscriptomes, 3,980 genomes and 98,723 amplicons,
that encode a total of 153,352 sequences. Although its data content is
significantly smaller than that of MG-RAST, the majority of these
datasets are publicly available, with only 2,305 studies held as private
due to confidentiality restrictions.

Apart from the aforementioned major repositories, a number of
smaller, more specialized databases have been made available, each
focusing on different types of microbiome samples, or different
approaches in metagenome analysis. A notable example is IMG/VR
(Roux et al., 2021; Camargo et al., 2022), a subset of IMG/M focusing
exclusively on viral genomes and metagenomes (Paez-Espino et al.,
2017a). IMG/VR uses the DOE JGI Metagenome workflow to
analyze its samples, coupled with additional analysis and
annotation tools taking into account specialized aspects of viral
samples, such as gene structure. Other databases host metagenomic
samples based on their source ecosystems or biome types.
TerrestrialMetagenomeDB (Corrêa et al., 2019),
MarineMetagenomeDB (Nata’ala et al., 2022) and
HumanMetagenomeDB (Kasmanas et al., 2021), hosted by the
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Helmholtz Center for Environmental Research, annotate SRA and
MG-RAST metagenomes obtained from soil, marine and human
microbiome samples, respectively. The Marine Metagenomics
Portal (MMP) also holds and annotates a number of marine-
oriented metagenomic datasets (Klemetsen et al., 2018), obtained
fromMGnify. Finally, the NIH Human Microbiome Project (Lloyd-
Price et al., 2017) and MetaGeneBank (Shao et al., 2021) are two
repositories focusing on metagenomes from human host-associated
systems, such as the lung and gut microbiota. Notably, the majority
of these resources do not contain directly submitted data; instead,
they provide additional annotation and analysis for publicly
available datasets coming from major resources such as IMG/M,
MG-RAST or MGnify.

In addition to metagenome-focused databases, described above,
metagenomic data have also been compiled into datasets containing
clustered sets of metagenomic sequences, either DNA or proteins,
usually at varying levels of sequence identity. One of the earliest
examples in this category was UniMES (ANNOTATING UniProt
METAGENOMIC AND ENVIRONMENTAL SEQUENCES IN
UniMES, 2011), a metagenomic protein sequence repository that
was maintained by UniProt. UniMES’s sequences were primarily
collected from the Global Ocean Sampling (GOS) expedition and
included translated protein sequences from more than 26 million
microbiome samples. The repository was eventually retired in favor
of MGnify; however, its sequences have been integrated into the
UniParc archive, a non-redundant database that contains most of
the publicly available protein sequences in the world. Another
related sequence repository is hosted by the Tara Oceans
expedition in collaboration with the European Molecular Biology
Laboratory (EMBL) (Sunagawa et al., 2015), containing sequence
sets clustered with CD-HIT (Li and Godzik, 2006). However, the
most comprehensive set of clustered sequences in metagenomics is
currently metaClust, a collection of more than 1.5 billion
metagenomic protein sequences, clustered using MMseqs2
(Steinegger and Söding, 2018). The metaClust set contains
sequences from IMG/M, MGnify, the Tara Oceans repository
and UniParc, organized at various levels of redundancy.

The sheer volume of the data hosted by the database and
repositories described above demonstrates the level of
metagenomic contributions in the DNA and protein sequence
space. In IMG/M alone, roughly 47,000 metagenomes and
metatranscriptomes correspond to ~23 trillion base pairs (bps)
and ~61.7 billion contigs, amounting to dozens of petabytes of
data; by comparison, the equivalent measurements from IMG’s
reference (isolate) genomes (IMG-NR) report only ~478 billion
bps and 12.4 million contigs. At the protein level, metagenome-
derived protein sequences constitute 99.4% (69.77 billion sequences)
of the repository’s content, exceeding the equivalent sequences from
isolate genomes (~413 million) by multiple orders of magnitude. A
similar trend is observed in MGnify, despite the vast differences in
the amount of data between the latter and IMG. For reference
purposes, the combined non-metagenomic datasets of the INSDC
[GenBank (Sayers et al., 2022), ENA (Cummins et al., 2022) and
DDBJ (Okido et al., 2022)] constitute less than 2 billion entries
(assembled sequences), while the UniParc archive contains
542.15 million protein sequences, only a fraction of which come
frommetagenomes. These numbers are further reduced when taking
sequence annotation into account. In its current release (2022_05,

retrieved February 2023), UniProtKB contains a total of 230, 149,
489 sequences (568,744manually annotated entries in SwissProt and
229, 580, 745 computationally annotated entries in TrEMBL) (The
UniProt Consortium et al., 2021). InterPro, a collection of protein
classification databases based on sequence similarity that includes,
among others, Pfam (Mistry et al., 2021), CATH-Gene3D (Sillitoe
et al., 2021), PROSITE (Sigrist et al., 2013) etc., hosts approximately
38,349 families (clusters), describing ~193.6 million sequences
(February 2023 data). Finally, the Clusters of Orthologous Genes
(COG) database (Galperin et al., 2021) contains 4,877 functional
classes for roughly 3.2 million protein sequences.

This tremendous discrepancy between sequences derived from
standard methods and metagenomic sequencing showcases the
importance of metagenomes in unveiling the functional dark
matter. It also clearly highlights the need for developing highly
scalable and parallelizable methods for parsing and analyzing such
enormous volumes of data.

3 Metagenomic analysis and workflows

3.1 Assembly—Mapping and binning

Metagenomics studies are widely applied to investigate both
known and novel genomes that exist within an environmental
sample. To analyze such a sample, shorter reads are assembled
into genomic contigs through the mapping process and
subsequently into scaffolds to better understand the investigated
organisms. During read mapping, reads are aligned to reference
genomes from known organisms. This can be used to profile taxa
present in the metagenomic samples, or to quantify the gene
expression levels in metatranscriptomes. A short presentation of
the approaches utilized in metagenome assemblies are given in this
section. A more detailed description can be found in the review by
Sedlazeck et al. (2018).

Before reads are assembled, a preprocessing analysis step is
required. The specifics of this analysis heavily depend on the
methods used for sequencing, and no consensus exists that can
fully cover all different sequencing approaches. However, this step
generally involves merging paired reads and performing a quality
control (QC) analysis. These tasks are usually conducted using
standard sequencing analysis tools. Merging can be conducted
with dedicated, commercially available tools such as Real Time
Analysis (RTA) from Illumina’s NovaSeq, or with open-source
solutions such as SeqPrep and BBmerge (Bushnell et al., 2017).
QC analysis can be performed using dedicated tools like FastQC and
the FastX toolkit or, alternatively, with in-house scripts using
popular programming languages such as Python (Biopython)
(Cock et al., 2009) or R (Bioconductor) (Gentleman et al., 2004).
Another notable example of a metagenome-focused QC analysis
method is DRISEE, designed to detect high or varying levels of
sequencing errors that may confound downstream analyses (Keegan
et al., 2012). Based on the QC results, the analyzed reads may need to
undergo a number of refinements, including the detection and
removal of adapter sequences and the trimming of low-quality
regions. Depending on the nature of the source samples,
additional preprocessing may also be required, such as masking
reads that can be mapped to host organisms (e.g., human) or known
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contaminants with a significant degree of sequence similarity (>93%
identity) (Clum et al., 2021), or detecting and removing low
complexity regions. Popular trimming tools include Skewer (Jiang
et al., 2014) or Trimmomatic (Bolger et al., 2014), while low
complexity regions can be detected and removed with tools such
as DUST (Morgulis et al., 2006), Tantan (Frith, 2011) or TRhist (Doi
et al., 2014). These tools can be used on their own, or in combination
with additional methods through the data submission pipelines of
repositories such as IMG/M or MGnify.

Following quality control, the reads can then be mapped to a
reference genome, de novo assembled into scaffolds, or, if enough
content is available, assembled into MAGs. Mapping to reference
genomes can be performed using a wide range of different
approaches. Notable examples for short read mapping include
Stampy (Lunter and Goodson, 2011), Bowtie (Langmead and
Salzberg, 2012), SOAP3 (Liu et al., 2012), MAQ (Li et al., 2008)
and MOM (Eaves and Gao, 2009). For longer read mapping, BWA-
SWA/BWA-MEM (Houtgast et al., 2018) and Bowtie 2 (Langmead
and Salzberg, 2012) are currently the most widely used choices.
Other mapping methods include MicroRazerS (Emde et al., 2010),
which specializes in aligning short RNA-seq reads, X-mate, an
integrated pipeline capable of aligning both DNA and RNA-seq
datasets (Wood et al., 2011) and BBtools (Bushnell et al., 2017),
which is a collection of tools, currently used by the IMG/M database,
that was designed for handling paired-end shotgun reads from high-
throughput sequencing platforms. Reference genomes can be
accessed through databases such as NCBI RefSeq (Li et al., 2021),
UCSC (Tyner et al., 2017), Ensembl (Zerbino et al., 2018) and the
International Genome Sample Resource (IGSR) (Fairley et al., 2020).

Binning is the process of grouping reads or contigs into
individual genomes and assigning each group to a specific
species, subspecies, or genus, where possible. An environmental
sample may contain reads or contigs originating from many
different microorganisms. By grouping the reads into bins that
characterize unique taxonomic lineages, the assembly process is
better facilitated and allows for more accurate contigs to be
generated. Established binning tools are discussed in-depth
elsewhere (Wang et al., 2017). Some of these tools include:
MetaBAT2 (Kang et al., 2019), GroopM (Imelfort et al., 2014),
MaxBin 2.0 (Wu et al., 2016), COCACOLA (Lu et al., 2016),
CONCOCT (Alneberg et al., 2013), Autometa (Miller et al.,
2019), MetaWatt (Strous et al., 2012), SCIMM (Kelley and
Salzberg, 2010), Metacluster 5.0 (Wang et al., 2012), LikelyBin
(Kislyuk et al., 2009), AbundanceBin (Wu and Ye, 2011),
SolidBin (Wang Z. et al., 2019), Vamb (Nissen et al., 2018),
Binsanity (Graham et al., 2017), BMC3C (Yu et al., 2018) and
MyCC (Lin and Liao, 2016). The review of Mande et al. (2012) also
provides more in-depth information regarding binning
methodologies and their advantages and limitations. In a recent
paper (Yue et al., 2020), 15 binning tools were compared on a
chicken gut metagenome dataset. In general, MetaBat,
Groopm2 and Autometa outperformed the rest of the tools
(Borderes et al., 2021).

Following the binning process, contigs can be further assembled
into scaffolds. Assembling a genome de novo from contigs and
scaffolds, by utilizing paired-end reads to avoid repetitions,
produces MAGs (Lapidus and Korobeynikov, 2021). Tools that
are used for metagenomic assembly are divided into two groups,

utilizing either short- or long-read sequences respectively (Yang C.
et al., 2021). Short-read metagenomic assembly software includes
tools such as metaSPAdes (Nurk et al., 2017), MetaviralSPAdes (a
variant of the former for viral metagenomes) (Antipov et al., 2020),
Plass (Steinegger et al., 2019b), MEGAHIT (Li et al., 2015),
MetaVelvet (Namiki et al., 2012), Omega (Haider et al., 2014),
Ray Meta (Boisvert et al., 2012) and IDBA-UD (Peng et al., 2012).
Long-read assemblers include Athena (Bishara et al., 2018),
cloudSPAdes (Tolstoganov et al., 2019), Nanoscope (Kuleshov
et al., 2016), Canu (Koren et al., 2017), NECAT (Chen et al.,
2021), wtdbg2 (Ruan and Li, 2020) and metaFlye (Kolmogorov
et al., 2020). Similarly to standard reference genomes, MAGs are also
deposited into dedicated repositories. Some established MAG
catalogs include the Genomes from Earth’s Microbiomes (GEM)
catalog (Nayfach et al., 2021) (~52KMAGs - where all public MAGs
are also uploaded in GenBank (Benson et al., 2018)); the European
Nucleotide Archive (ENA) (~37K MAGs) (Cummins et al., 2022);
MGnify (~10K genomes in four MAG catalogs) (Mitchell et al.,
2019), which is both a MAG resource as well as an analysis pipeline
for MAGs from ENA; the OceanDNAMAG catalog, which contains
52,325 prokaryotic MAGs from marine environments submitted to
the DNAData Bank of Japan (DDBJ) (Mashima et al., 2016); and the
integrated mouse gut metagenome catalog (iMGMC) (660 MAGs)
(Lesker et al., 2020).

3.2 Gene calling and annotation

Following the successful assembly of the sample reads, the next
step is annotation. This stage involves identifying genes (both
protein-coding and non-protein coding) and other sequence or
genomic structure features [e.g., CRISPR arrays (Mohamadi
et al., 2020)], and providing each feature with a meaningful list
of hints about its possible biological function. However, what sets
annotation apart from other computational steps in processing
metagenomic data is that no reliable benchmarks for annotation
tools exist (Dong and Strous, 2019). Thus, choosing an appropriate
workflow depends on the nature of the data, the available
computational resources and the researcher’s background and
preferences in analysis methods. In theory, metagenomic data
can be analyzed with any combination of sequence analysis tools.
In practice, the most employed methods for annotation usually
come in the form of automated pipelines, either standalone or
integrated into databases, and other online services. Notable
online examples include the DOE JGI Metagenome workflow
(Clum et al., 2021) (used by IMG/M and other associated
resources), EBI Metagenomics (Mitchell et al., 2019) (used by
MGnify), MG-RAST (Meyer et al., 2019), MicroScope (Vallenet
et al., 2017) and MetaErg (Dong and Strous, 2019). Commonly used
standalone packages are the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (Tatusova et al., 2016), Prokka (Seemann, 2014)
and DFAST (Tanizawa et al., 2018).

For the purposes of this review, we will focus on the methods
and tools employed by the three most commonly used metagenome
repositories: the DOE JGI Metagenome (IMG/M), EBI
Metagenomics (MGnify) and MG-RAST pipelines. A simplified
view of their annotation workflows is given in Figure 2. The
procedures followed are presented from the scope of analyzing
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assembled contigs; however, the pipelines also support the
annotation of amplicons, fragments, and, in the case of MGnify,
unassembled reads, by using most of the same tools. Some specific
details differentiate among the workflows, as each may use different
tools for the same type of annotation, or perform additional
analyses; for example, the DOE JGI pipeline also searches for
CRISPR elements (Anzalone et al., 2020; Makarova et al., 2020;
Nidhi et al., 2021; Chavez et al., 2022; Katti et al., 2022; Wang et al.,
2022) with CRT-CLI (Bland et al., 2007; Clum et al., 2021). However,
all three workflows follow, more or less, the same procedure, which

consists of the following stages: i) the detection of non-coding RNA
(ncRNA) genes, ii) the prediction of protein-coding genes, and iii)
functional annotation of proteins and taxonomic assignment.

The first step in annotating the assembled reads is detecting
non-coding RNAs (ncRNAs). These primarily include ribosomal
RNAs (rRNAs), transfer RNAs (tRNAs) and other categories such as
antisense RNAs, transfer-messenger RNAs (tmRNAs), etc.
Detecting ncRNAs can provide an initial taxonomic annotation
of the assembled reads that can then be used to correctly identify
protein-coding genes. In addition, identifying and masking the

FIGURE 2
Gene calling and annotation in IMG/M (A), MGnify (B) and MG-RAST (C). Simplified overviews of the three workflows are shown. Gene calling
operations (RNA or protein) are colored salmon pink, while gene annotation operations are colored light green. The tools used in eachworkflow are given
in the graph and described in the main text. The workflows are based on themethodology described in Clum et al. (2021), Mitchell et al. (2019) and Meyer
et al. (2019).
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position of ncRNAs can help reduce the number of falsely translated
protein sequences by discarding potential open reading frames
(ORFs) that overlap with ncRNA coordinates. Detection is
typically performed by running DNA or RNA sequence queries
against one or more RNA family databases. The most prominent
database in this category is Rfam (Kalvari et al., 2021), a manually
curated collection of RNA families. In its current version (November
2022, retrieved February 2023), Rfam contains 4,108 families, each
represented by multiple sequence alignments, consensus secondary
structures and Covariance Models (CMs). The latter are
probabilistic models of the conserved sequence and secondary
structure for an RNA family, analogous to the Hidden Markov
Model (HMM) profiles commonly used for protein sequence
analysis (Nawrocki and Eddy, 2013).

Currently, the most robust RNA detection method is
INFERNAL (INFERence of RNA ALignment), which can
perform DNA sequence searches against RNA reference
databases using CM profiles (Nawrocki and Eddy, 2013). The
cmsearch utility of INFERNAL and the Rfam database are used
by both IMG/M and MGnify to detect non-coding RNAs in
metagenome assemblies. The IMG/M workflow also uses
tRNAscan-SE, a tool specifically designed to detect tRNAs using
CMs and perform basic taxonomic assignment (Chan et al., 2021).
Contrary to the above, MG-RAST performs sequence-based rRNA
searches against M5RNA, a subset of the M5NR database (Wilke
et al., 2012) containing non-redundant rRNA sequences, using
VSEARCH (Rognes et al., 2016), an open-source alternative of
the usearch tool (Edgar, 2010). Another useful tool is MapSeq
(Matias Rodrigues et al., 2017), a k-mer based rRNA sequence
search and analysis tool that is used by MGnify to analyze
cmsearch results and provide SSU and LSU taxonomy
assignment. Finally, the identified RNA genes can be used to
establish a generalized functional profile for the analyzed sample,
using functional annotations from reference genomes with matches
to the detected marker regions. One notable tool performing this
functionality is PICRUSt, designed for the functional profiling of
microbial communities using 16S rRNA marker gene sequences
(Langille et al., 2013).

Having identified the positions of ncRNA genes, the next step in
the analysis is the prediction of protein-coding genes. Generally, this
is performed by identifying and translating potential ORFs and
selecting the highest confidence results. However, compared to
standard genomics analysis, this particular step poses a number
of challenges for metagenomes, many of which are directly related to
the nature of the metagenomic data themselves. Since the source
organism of a metagenomic sequence is typically not known, special
care must be taken in selecting the proper genetic code for
translating the sequence. Another problem arises from the GC
content of the samples. Standard gene recognition methods
perform relatively well in low GC-content genomes, but their
accuracy drops considerably in high GC-content sequences. The
latter contain fewer stop codons and more spurious ORFs, often
resulting in false protein translations (Chen and Pachter, 2005).
Finally, one important issue to address is metagenome
fragmentation, which can lead to incomplete genes (fragments)
and sequencing errors such as frameshifts, further complicating
gene prediction. Early metagenomic studies addressed these issues
by utilizing homology-based methods, i.e., searching the input

sequences against reference databases with tools such as BLAST
(Altschul et al., 1990). Notably, MG-RAST utilized this method in its
initial version (Meyer et al., 2008). Still, homology-based methods
cannot predict novel genes, even though their discovery is a key
focus of metagenomics. For this reason, a number of specialized gene
calling methods have been developed, based on various types of
statistical models. Early examples of metagenome-related gene
prediction tools included MetaGene (Noguchi et al., 2006) and
MetaGeneAnnotator (Noguchi et al., 2008), which detected
prokaryotic gene structure using self-training logistic regression
models based on start/stop codon distance and GC content.
Another example was GeneMark.hmm (Besemer and
Borodovsky, 1999) and its successor, GeneMarkS (version 1)
(Besemer, 2001), both of which used heuristic approaches.
However, the accuracy of these methods has been found to
significantly decrease as the sequencing error rate increases (Hoff,
2009; Zhu et al., 2010).

More recently, gene prediction methods have been developed
that are based on machine learning. The most popular tools in this
category are FragGeneScan (Rho et al., 2010), Prodigal (Hyatt et al.,
2010) and GeneMarkS-2 (Lomsadze et al., 2018). FragGeneScan
utilizes two-level representation Hidden Markov Models (HMMs)
to detect and translate protein genes on both strands for short and
error-prone sequencing reads. It operates by detecting the best path
of hidden states that is most likely to generate the observed
nucleotide sequence. FragGeneScan reports genes if they meet the
following three conditions: i) the length of each gene is longer than
60 bp, ii) the genes start in a start state (start codon) or in a match
state (internal region of genes) and iii) the genes end in a stop state
(stop codon) or in a match state (internal region of genes). As such,
it is particularly useful for detecting partial (fragmented) genes
without start or stop codons, alongside complete sequences (Rho
et al., 2010). Another popular tool is Prodigal, which is based on
dynamic programming (Hyatt et al., 2010) and can be used both for
complete genomes and for metagenomic sequences (Hyatt et al.,
2012). Prodigal has been trained in an unsupervised fashion using
reference genomes from the JGI ORNL pipeline, to recognize
general features including start codon usage, ribosomal binding
site motifs, GC bias and other information necessary to build a
complete training profile. Based on these features, it assigns a
preliminary coding score for each potential gene and performs
multiple types of dynamic programming across the whole
sequence to detect the most probable gene model (Hyatt et al.,
2010). Finally, GeneMarkS-2, a re-implementation of GeneMarkS,
uses a multiple iteration approach based on Markov chains that
combines the original, typical prokaryotic model with 41 atypical
bacterial and archaeal models (Lomsadze et al., 2018).

The final step in the analysis is functional annotation. This is
largely performed by searching the predicted proteins against
reference databases and identifying potentially homologous
sequences. Sequence-based tools, such as BLAST (Altschul et al.,
1990), BLAT (Kent, 2002), LAST (Edgar, 2010), MMseqs-2
(Steinegger and Söding, 2017) and DIAMOND (Buchfink et al.,
2015), or HMM-based implementations, such as HMMER
(hmmsearch/hmmscan) (Eddy, 2011) and HH-suite (hhblits/
hhsearch), (Steinegger et al., 2019a), can perform searches against
RefSeq (Li et al., 2021), IMG-NR (Chen et al., 2018), UniProt
(UniProt Consortium, 2018), Uniref, M5NR (Wilke et al., 2012)
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and other reference sequence repositories. Structural and domain
annotation can also be performed by searching protein family
databases such as Pfam (Mistry et al., 2021), TIGRFAMS (Haft
et al., 2003) and others with HMM-based searches. Notably, the
InterPro database has evolved to include profiles for all major
protein family databases (Pfam, TIGRFAMS, etc.), allowing the
simultaneous search of the above with a single operation through
InterProScan (Jones et al., 2014; Blum et al., 2021). Through the
results of the aforementioned searches, the functions of
metagenomic sequences can be further annotated by matching
them to KEGG orthologs and pathways, COG and eggNOG
categories, enzyme reactions, secondary metabolites or Gene
Ontology terms with dedicated tools such as KEGG Mapper
(Kanehisa and Sato, 2020), eggNOG-mapper (Cantalapiedra
et al., 2021) or antiSMASH (Blin et al., 2021). Topological
features can be annotated through the use of prediction
algorithms, such as SignalP (Teufel et al., 2022) for signal
peptides, and TMHMM (Krogh et al., 2001) or Phobius (Käll
et al., 2007) for transmembrane segments. Finally, the top most
significant results of sequence homology searches can be used
alongside data obtained from ncRNA gene calling (rRNA, tRNA,
etc.) to provide taxonomic assignment for the assembled contigs.

3.3 Taxonomy assignment and phylogenetic
distribution

Characterizing a contig at different taxonomic levels (domain,
kingdom, phylum, class, order, family, genus, and species) is a very
important and, at the same time, challenging task. Proper
identification of a contig’s taxonomy is crucial for establishing its
phylogenetic distribution, elucidating the phylogenetic content of a
metagenomic sample and, ultimately, establishing the sample’s
microbial diversity. As it was described in the previous section,
major annotation pipelines such as those used by IMG/M, MGnify
and MG-RAST, can perform an initial taxonomic assignment
during gene calling; this is typically performed by searching for
marker RNA genes and, if applicable, by evaluating the identity of
predicted protein sequence hits to reference datasets. However, this
annotation is not always adequate, resulting in a generalized
taxonomy assignment (e.g., to the level of kingdom, phylum or
class), rather than specific assignment to an order, family, genus or
species. At the same time, a lot of metagenomic contigs often lack
ncRNA genes or other marker regions and remain unclassified by
the annotation pipelines. As a result, more specialized approaches
need to be used. In this section, we analyze the most commonly used
taxonomy assignment and phylogenetic distribution methods, in
order to get an in-depth understanding of the procedures used to
determine a metagenome’s phylogenetic content, as well as the
evolutionary connection between the different lineages.

Several tools have been implemented for the taxonomic
annotation of metagenomic reads and contigs. Most of these
methods rely on one of three approaches: machine learning,
alignment-based mapping or k-mers identification. The Naive
Bayes Classifier tool (NBC) is a Bayesian statistics-based machine
learning implementation to classify genomes and contigs by
analyzing sequence motif frequencies (Rosen et al., 2011).
Another machine learning-based tool, PhymmBL, utilizes

Interpolated Markov Models (IMMs), with Markov chains using
a variable number of states to compute the probability of the next
state. The IMMs of the tool can be used to classify sequences based
on patterns of DNA unique to a clade, which can be a species, genus,
or higher-level phylogenetic group (Brady and Salzberg, 2009).
Other methods take advantage of high quality sequence
alignment algorithms, such as Bowtie (Langmead and Salzberg,
2012), BWA (Li and Durbin, 2009), MMseqs-2 (Steinegger and
Söding, 2017) and DIAMOND (Buchfink et al., 2015), to identify
contig regions that match with bacterial, archaeal, eukaryotic, or
viral sequences. Combining this information with the alignment
coverage, these tools can then recommend a lineage classification.
MGmapper (Petersen et al., 2017) is one notable pipeline in this
category, utilizing BWA-mem for aligning sequencing reads to
reference databases and keeping the results with the highest sum
of alignment scores. A similar tool, MetaPhlAn, uses bowtie2 to
taxonomically map metagenomic shotgun sequencing data against
an extensive database of ~5.1 million unique clade-specific marker
genes, identified from ~1 million microbial genomes (Segata et al.,
2012; Truong et al., 2015, 2; Blanco-Miguez et al., 2022). Other
approaches perform gene calling and map the produced predicted
genes to reference datasets to infer taxonomy. A popular method
with this implementation is Kaiju (Menzel et al., 2016), which
translates all potential ORFs with a generalized model and maps
the predicted sequences to a user-defined reference protein database
with a Burrows-Wheeler algorithm. Another example is the CAT
(Contig Annotation Tool) and BAT (Bin Annotation Tool) set of
classifiers (von Meijenfeldt et al., 2019), which use Prodigal to
perform gene calling and compare the results against the NCBI
BLAST-nr database with DIAMOND. The MMseqs-2.0 package
also contains a taxonomy assignment tool (mmseqs taxonomy) for
metagenomic contigs that functions by extracting all possible
protein fragments from each contig, retaining only those that can
contribute to taxonomic annotation and assigning their taxonomic
identity through weighted voting (Mirdita et al., 2021). Finally,
k-mer methods classify by identifying subsequences or “words” of
length k (k-mers) contained in the contig sequences that can serve as
a species-unique signature. So far, k-mer based tools such as Kraken
2 (Wood et al., 2019) and Centrifuge (Kim et al., 2016) have been the
most successful in taxonomically classifying bacterial contigs.

One important limitation of all aforementioned classification
methods is that they were largely designed with prokaryotic
(bacterial and archaeal) samples in mind. Alignment-based and
k-mer-based methods are generally capable of assigning taxonomy
to eukaryotic contigs, often up to the species level; however, their
success depends on the existence of reference databases.
Furthermore, some of these methods depend on accurate gene
prediction, which, paradoxically, requires knowledge of at least
the kingdom level to produce reliable results (Pronk and
Medema, 2022). For this reason, a number of tools have been
developed that try to distinguish between prokaryotes and
eukaryotes in metagenomic scaffolds. A popular method in this
category is EukRep, a k-mer-based Support Vector Machine (SVM)
classifier trained on binned data, that can be used to annotate binned
metagenomes (West et al., 2018). Another example is EukDetect,
which uses bowtie2 to align reads to a specially designed, extensive
eukaryotic reference database (Lind and Pollard, 2021). Tiara, a
machine-learning approach trained to detect organelle sequences, is
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capable of distinguishing between bacterial, archaeal, mitochondrial
and eukaryotic samples (Karlicki et al., 2021). Finally, Whokaryote is
a random forest classifier that uses manually selected features based
on fundamental differences in gene structure between eukaryotes
and prokaryotes, such as intergenic distance, contig gene density and
the existence of ribosome-binding motifs (Pronk and Medema,
2022).

Identifying viral sequences from metagenomic samples is
another category that requires the use of specialized tools. Viral
genome structures are markedly different from that of cellular
genomes, and are very diverse (DNA or RNA-based, single- or
double-stranded etc.) (Chaitanya, 2019). While some of the
aforementioned taxonomy assignment methods, such as Kraken
2 or MetaPhlAn, can rapidly map reads to known viral reference
genome databases, the latter are biased towards those that have been
isolated in the lab, leaving out the vast majority of the viral diversity
(Paez-Espino et al., 2016; Paez-Espino et al., 2019). For this reason,
the identification and annotation of viral content in metagenomic
samples requires the use of specialized predictors. Early efforts in the
field utilized prophage and provirus identification tools, designed to
detect inactive viral genomes that have been integrated into the
genome of a host cell. Notable examples in this category include
Phage_Finder (Fouts, 2006), Prophinder (Lima-Mendez et al.,
2008), Prophage HUNTER (Song et al., 2019), and PHAST/
PHASTER (Arndt et al., 2016). These predictors primarily
operate by detecting microbial gene regions with hits to isolated
viral sequences; meaning that their ability to detect free-living lytic
viruses from uncharacterized samples is limited. More recently, a
number of metagenome-focused viral taxonomy tools and pipelines
have been implemented; these are capable of handling fragmented
and larger-scale microbial genomic datasets, and detecting viral
components beyond prophages or close matches to reference
datasets. Most of these methods rely on a combination of gene
content and genomic structural features to distinguish viral from
microbial sequences. A notable example in this category is the Earth
Virome workflow (Paez-Espino et al., 2017b), an automated pipeline
for the accurate detection and grouping of viral sequences from
microbiome samples. The pipeline uses an expanded and curated set
of viral protein families as “bait” to identify viral sequences directly
frommetagenomic assemblies. Notably, the Earth Virome workflow
is used by the IMG/VR database for the identification and
annotation of viral contigs from metagenomic samples (Roux
et al., 2021; Camargo et al., 2022). Other tools include
viralVerify, a component of MetaviralSPAdes that uses HMM-
based searches and the NBC classifier to characterize Prodigal
gene predictions (Antipov et al., 2020); MARVEL, which uses a
random forest machine learning approach (Amgarten et al., 2018);
VIBRANT, a pipeline combining HMM profile searches with neural
networks and a unique metric to detect both free and integrated
viruses (Kieft et al., 2020); MetaPhinder, an alignment-based
method oriented towards detecting bacteriophages in assembled
contigs (Jurtz et al., 2016); PhiSpy, which uses both similarity and
composition strategies (Akhter et al., 2012); VirSorter2 (Guo et al.,
2021), which combines a collection of customized automatic
classifiers to evaluate sequence hits to viral reference datasets;
and VirFinder, a k-mer based machine learning approach for
viral contig identification that entirely avoids gene-based
similarity searches (Ren et al., 2017). The latter has been used as

the basis for DeepVirFinder (Ren et al., 2020), a deep learning
method that uses convolutional neural networks, capable of
detecting viral signals in very short contigs (<5,000 bps). Other
recently developed deep learning tools include 3CAC (Pu and
Shamir, 2022), a combined predictor of phages and bacterial
plasmids, the bacteriophage-specific INHERIT (Bai et al., 2022),
virSearcher (Liu et al., 2022), PHAMB (Johansen et al., 2022), Seeker
(Auslander et al., 2020) and PhaMer (Shang et al., 2022) predictors
and DeepMicrobeFinder (Hou et al., 2021), which classifies
metagenomic contigs into five sequence classes (prokaryotic
genomes, eukaryotic genomes, plasmids, prokaryotic-infecting
viruses and eukaryotic-infecting viruses) with a reported accuracy
of over 90% for viral contigs.

4 Sequence clustering strategies

Sequence clustering is the process of grouping biological
sequences based on their similarity. The produced clusters can
represent gene or protein families, containing members that are
highly related to each other in terms of sequence identity and,
therefore, may likely perform the same biological function. The
above can be especially crucial in the study of metagenomes. Large-
scale clustering can help reduce the large volume of metagenomic
sequence data (as described in Section 2 of this review), by
organizing sequences into groups and generating non-redundant
sequence datasets and databases. At the same time, the produced
clusters can be used to perform phylogenetic analysis and infer the
evolutionary history and relationships of their members. Finally,
clustering can be used as the basis for the functional annotation for
previously unknown sequences, further reducing the metagenomic
dark matter, either based on their coexistence in the same family as
known genes and proteins or through the use of clusters in more
advanced applications such as structure prediction. In this section of
the review, we present three distinct approaches to sequence
clustering, each with its own strengths and weaknesses, namely,
sequence-based (also known as k-mer based), graph-based and
hierarchical clustering.

4.1 Sequence-based clustering

Traditional applications such as BLAST (Altschul et al., 1990) or
LAST (Edgar, 2010) enable querying a set of sequences against a
protein database and subsequently allowing pairwise sequence
comparisons where the query and target sequences alternate.
However, the scalability of these applications is limited when
millions of sequences must be processed.

For this purpose, several sequence-based clustering applications
that efficiently overcome the all-against-all comparison bottleneck
have been introduced. Characteristic examples of such applications
are: CD-HIT (Li and Godzik, 2006), DIAMOND (Buchfink et al.,
2015), uclust/usearch (Edgar, 2010) and MMseqs2.0 (Steinegger and
Söding, 2017). While each of these follows a unique clustering and
sequence comparison approach, most of them allow sequence
comparisons only for sequences that share common k-mers, thus
skipping unnecessary calculations (Figures 3A, B). Notably, a k-mer
is a substring of length k contained within a biological sequence.
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Out of numerous available methods, MMseqs2.0 seems to be
gaining ground and has been integrated into many pipelines of
widely used databases [e.g., UniProt, UniParc (UniProt Consortium,
2018), MGnify (Mitchell et al., 2019)]. It uses MPI and OpenMP to
run on multiple-CPU shared memory systems and uses a clustering
methodology that is exhaustive, and thus time-consuming, but that
also incorporates a heuristic approach, making it time-efficient
[linclust (Steinegger and Söding, 2018)].

While the usability of most approaches is straightforward, taking
into account the alignment length coverage percentage is of great
importance when more uniform clusters are required. For example,
Figure 3C depicts four different types of alignment: a) only
sequences that have a sequence length overlap greater than x% of
the longer of the two sequences are clustered; b) only sequences that
have a sequence length overlap greater than x% of the target
sequence are clustered; c) only sequences that have a sequence
length overlap greater than x% of the query sequence are

clustered and d) only sequences that have an alignment length
overlap greater than x% bidirectionally are clustered.

Finally, a great advantage of MMseqs2.0 compared to its
competitors is that new sequences can either be assigned to
existing clusters (enrichment) or form new clusters without
having to rerun the clustering from scratch. This is great for
maintenance purposes when one wants to keep a database of
sequence clusters up-to-date.

4.2 Graph-based clustering

Prior to graph clustering (Pavlopoulos et al., 2011; Koutrouli
et al., 2020b), an all-versus-all sequence comparison is required to
construct a sequence similarity network (SSN) (Figure 4). In such a
network, nodes represent proteins or genes while edges represent the
similarity between two amino acid or nucleotide sequences. Tools

FIGURE 3
Sequence based Clustering. (A) A k-mer example, (B) Possible clusters based on common k-mers. (C) Different types of sequence assignment to
clusters based on the alignment length coverage.

FIGURE 4
Graph-based family generation. (A) Sample collection, (B) All-against-all comparison. (C) SSN creation after applying, for example, an edge
threshold of 50% identity, 50% alignment length. (D) Graph-based clustering.
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used for such comparisons are BLAST (Altschul et al., 1990), Last
(Edgar, 2010), MMseqs-2.0 (Steinegger and Söding, 2017), PASTIS
(Selvitopi et al., 2020; 2022) or dynamic programming approaches
(Needleman and Wunsch, 1970). While the latter, along with
BLAST, are the most exhaustive approaches, using them for large
datasets is discouraging. On the contrary, LAST application is orders
of magnitude faster than BLAST and, in the best case, one could
process large datasets in parallel after splitting them into chunks. On
the contrary, MMseqs can run on shared-memory distributed
systems with the help of MPI and OpenMP while PASTIS is
fully parallelized and optimized for purely distributed systems.
For reference, with the use of sparse matrices, PASTIS can
compare 313 million sequences on 2,000 nodes in ~4 h,
sustaining a rate of 320 million alignments per second.

Once an SSN has been created, one can apply a graph-based
clustering algorithm to group proteins into families. Despite the
great variety of graph-based clustering algorithms available today
(Xu and Wunsch, 2005; Brohée and van Helden, 2006;
Moschopoulos et al., 2011; Koutrouli et al., 2020b; Karatzas et al.,
2021b), only a few can cope with networks of millions of nodes and
edges. For example, SPICi (Jiang and Singh, 2010) is a fast, local
clustering algorithm that detects densely connected communities
within a network. It is one of the fastest graph-based clustering
algorithms with O(VlogV + E) time and O(E) memory asymptotic
performance, where V and E are the number of vertices and edges of
the network, respectively. While SPICi has great performance, it is
tailored to analyze dense networks. Louvain (Blondel et al., 2008) is a
greedy clustering method for identifying communities in large scale
networks and while the exact computational complexity of the
method is not known, evidence points to O(VlogV) time
performance. Molecular Complex Detection (MCODE) (Bader
and Hogue, 2003) finds densely connected regions in large
protein–protein interaction (PPI) networks with polynomial time
complexity O(VEd3), where d is the vertex size of the average vertex
neighborhood in the input graph. Restricted neighborhood search
clustering (RNSC) (Biswas and Mukhopadhyay, 2014) uses
stochastic local searching and tries to achieve an optimal
clustering cost by assigning cost functions to the set of clusters of
a graph, requiring O(V2) memory. Affinity-propagation (Frey and
Dueck, 2007) is a clustering algorithm based on the concept of
“message passing” between data points and is able to cluster
25.000 data points in a few hours, or 120.000 data points in less
than a day. The latter achieves performance ofO(kV2), where k is the
number of iterations.

Despite the continuously active research in the field and new
methods appearing in the literature, MCL has been one of the most
promising algorithms. MCL uses random walks to detect clustered
structures in graphs with a mathematical bootstrapping procedure
and was initially used to detect protein families and protein
interaction modules from sequence similarity information
(Pereira-Leal et al., 2004). HipMCL (Azad et al., 2018), is a
scalable distributed-memory parallel implementation of the MCL
algorithm that, in contrast to previous work, takes advantage of the
aggregate memory available in all computing nodes. The
unprecedented scalability of HipMCL stems from the use of
state-of-the-art parallel algorithms for sparse matrix
manipulation. HipMCL is written using the MPI and OpenMP
programming interfaces, with the principal aim to speed up graph

clustering and efficiently detect clusters on a very large scale.
Notably, MCL’s core has remained intact, making HipMCL a
state-of-the-art parallel implementation of the original MCL
algorithm. For reference, the HipMCL allowed a network
clustering of 300 million nodes and ~17 billion edges in only
~6 h using ~136,000 cores.

For higher quality clusters, users are encouraged to filter by
alignment length bidirectionally (query vs. target and target vs.
query) as well as by applying a similarity or identity threshold
during the SSN generation. Notably, homology is inferred based
on sequence similarity and homologous sequences usually can
have similar functions (Stormo, 2009), whereas more than 90% of
all protein pairs with a sequence identity larger than 30% are
found to be structurally similar (Rost, 1999). Finally filtering by
similarity or identity percentage as well as by alignment length
will make the SSN sparser as many of the edges will be discarded.
As a result, the SSN’s topology will be further defined in order for
the clustering algorithm to detect any densely connected regions.
Running a clustering algorithm in an unfiltered SSN would be
pointless as it will consider the network as a fully connected
graph (clique); thus the higher the similarity threshold, the
higher the probability of generating more but more
fragmented clusters.

4.3 Hierarchical clustering

Hierarchical clustering is a non-graph-based clustering
methodology that presents clusters in a hierarchy, often
visualized as a dendrogram (Pavlopoulos et al., 2010; Koutrouli
et al., 2020b). There are two main strategies to calculate the clusters;
i) the agglomerative approach, where all sequences start as
individual clusters, which are then merged in every iteration step,
and ii) the divisive approach [DIANA algorithm (Patnaik et al.,
2016)], where all sequences start as one cluster and iteratively break
into smaller groups. To calculate the various clusters, a full distance
matrix without gaps is required. The distance matrix is symmetric,
and is calculated as: 1-sequence similarity matrix and has size n(n-1)/
2 where n is the number of sequences.

Widely used agglomerative hierarchical clustering algorithms
include the single-, complete-, centroid- and average-linkage
methods, as well as neighbor joining (Saitou and Nei, 1987) and
the unweighted pair group method with arithmetic mean (UPGMA)
algorithms (Day and Edelsbrunner, 1984). The single-linkage
algorithm calculates the smallest distance among sequences in
each iteration step, whereas the complete-linkage algorithm
calculates the longest distance. Centroid linkage algorithms
calculate the distance between the centroids of clusters. Average-
linkage algorithms use the average distance among all sequence pairs
in every iteration step. Neighbor joining (mainly used for the
creation of phylogenetic trees) starts with sequences placed in a
star-like tree structure and then, at every iteration, a new virtual
node representing the two closest sequences is appended as a branch
to the tree. UPGMA utilizes the unweighted mean distance between
elements of each cluster, meaning that all distances contribute
equally to each computed average.

Each iteration of the agglomerative clustering algorithms
produces a new level to the output dendrogram (Pavlopoulos
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et al., 2010). The height at which this dendrogram will be cut is often
arbitrarily chosen by the user. However, there are some tools that
automate this procedure such as the Dynamic Tree Cut method
(Langfelder et al., 2008), which applies a dendrogram cutting
threshold according to the shape of the branches. More recently,
machine learning techniques such as the PAC Bayesian (McAllester,
1999) have also been applied on dendrogram cutting. Due to the
distance matrix necessity and the high running time complexity O
(n3), hierarchical clustering is not recommended for large-scale
analyses.

5 Structure prediction

The function of a protein is directly dependent on its three-
dimensional (3D) structure. Through their structures, proteins
perform their functions, which range from enzymatic activity and
signal transduction to immune responses, DNA replication and
transcription and even the mechanical support of the cell (Skolnick
et al., 2000). As a result, protein structure determination can be
crucial in elucidating the function of metagenome-derived protein
sequences, especially in the case of sequences of unknown function,

FIGURE 5
Schematic representation of different 3D modeling approaches. (A) Homology modeling. (B) Threading. (C) Sequence coevolution. (D) Deep
learning (the AlphaFold2 model is shown as an example).
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that have no hits to reference genomes or protein family databases.
Despite its importance, the experimental determination of protein
structures, using techniques such as X-ray crystallography, Nuclear
Magnetic Resonance (NMR) or Cryo-electron microscopy, is
challenging. In the absence of experimental evidence,
computational 3D modeling is a viable means for obtaining
mechanistic insight into protein function (Figure 5).

Homology modeling (also known as comparative modeling) is
generally the most straightforward approach, provided that template
structures with an acceptable sequence identity (>30%) and
alignment coverage (>70%) to the target exist (Rost, 1999). The
procedure generally involves four steps (Martí-Renom et al., 2000):
i) searching the query sequence against a database of templates,
typically a subset of the Protein Data Bank (PDB) (Berman et al.,
2000) and selecting a target with the best sequence identity and
coverage to the query, ii) creating a pairwise sequence alignment
between the query and target, iii) mapping the query sequence to the
target structure based on the alignment and the satisfaction of spatial
restraints (a method based on NMR spectroscopy) and iv), refining
the model and selecting the lowest energy conformation. Several
computational tools exist for this purpose, with MODELLER (Webb
and Sali, 2021), SwissModel (Biasini et al., 2014) and RosettaCM
(Song et al., 2013) being the most commonly used.

An alternative to homology modeling, when no adequate
homologs exist, is sequence threading, in which prediction is
performed by searching the sequence against a library of
templates, and “threading” (i.e., placing) each amino acid in the
target sequence to a position in each template structure. The
template library can contain full-length structural domains, or
small fragments extracted from high quality PDB structures, each
representing a structural motif (e.g., helix-loop-helix). The best-fit
templates are then selected and the query sequence is mapped upon
the target structures. Multiple fragments are combined to produce
full length configurations, and the lowest energy representation is
selected as the final model. Due to this mix and match approach, the
derived models generally have a lot of conformation errors, and
often require extensive refinement to reach an acceptable state.
However, threading has been found to produce models for
several targets where no adequate sequence identity with known
structures exists, thus complementing homology modeling. Popular
tools, either focusing entirely on threading, or offering threading
capabilities alongside other modeling methods, include I-TASSER
(Yang et al., 2015), Rosetta (Leman et al., 2020), RaptorX (Källberg
et al., 2012) and Phyre (Kelley et al., 2015, 2).

Homology modeling and threading are based on two
fundamental assumptions: that the number of different folds in
nature is fairly small, and that most newly solved structures are likely
to have structural domains similar to known folds (Liu et al., 2004).
This, however, means that both approaches are unable to predict
novel structural folds, i.e., architectures that have not already been
determined experimentally. In addition, both methods rely on the
target sequence having at least a fraction of sequence similarity
(either global or partial) to its structural templates (Baker and Sali,
2001). Despite these limitations, both homology modeling and
sequence threading have successfully predicted 3D structural
models for metagenomic data. In 2018, Ruppé et al. used
homology modeling with MODELLER to produce 3D models for
6,095 antibacterial resistance proteins from the human intestinal

microbiome (Ruppé et al., 2019). In 2021, the developers of
I-TASSER recruited ~4.25 billion metagenome sequences from
four major biomes to enrich Pfam families, and used threading
to predict 3D models for 1,044 domains with unknown structures
(Yang P. et al., 2021).

When sequences are not similar to any known template, other de
novo approaches must be adopted. These include physical
interaction-based methods, sequence coevolution analysis and,
most recently, deep learning models. Physical interaction-based
methods utilize statistical mechanics methods, such as molecular
dynamics (MD) or Monte Carlo (MC) simulations (Kroese et al.,
2014) to model a protein’s folding path based on its sequence, the
physical interactions of the amino acids, and the surrounding
environment (e.g., the solvent). Simulating these interactions is
based on the use of a “force field,” i.e., a collection of parameters
for modeling bonded and non-bonded interactions, usually derived
either from high quality experimental measurements or from
Quantum Mechanics calculations. A large number of different
force fields exist (e.g., CHARMM, AMBER, OPLS, etc.)
(Robertson et al., 2015; Huang et al., 2017; Tian et al., 2020), and
simulations can be performed using high performance tools such as
GROMACS (Páll et al., 2020), Desmond (Bowers et al., 2006),
NAMD (Phillips et al., 2020) or OpenMM (Eastman et al., 2017),
which take advantage of modern hardware capabilities such as
parallelization and GPUs. A number of tools that implement
specialized MD and MC protocols to guide folding have also
been developed, such as QUARK (Xu and Zhang, 2012). Several
reports of such simulations successfully reproducing small to
medium-sized protein domains, and even a few large proteins,
have been reported [reviewed in (Gershenson et al., 2020)]. In
addition, MD simulations are the method of choice for Folding@
Home (Beberg et al., 2009), one of the largest volunteer-based
distributed computing projects for studying protein folding and
dynamics. However, while this approach is theoretically very
appealing, it can be challenging for large (>150 aa) domains or
multi-domain proteins, due to the computational load and the
magnitude of the simulation time required to achieve a stable
final conformation. What is more, folding simulations perform
poorly on categories such as transmembrane proteins, due to the
increased complexity of the simulated environment (lipid bilayer).
As a result, MD andMC simulations are mostly used in combination
with other modeling methods, either to refine and test the stability of
the generated 3D models or to explore their structural and
functional features under specific conditions (drug binding,
effects of mutations, etc.).

A complement to physical interaction models is the study of
sequence coevolution. The approach is based on the observation that
the conserved function of a protein family imposes strong
boundaries on sequence variation, and generally ensures a
structural similarity for all its members. This means that, in
order to maintain energetically favorable interactions, residues in
spatial proximity may coevolve across a protein family. Therefore,
the correlations of coevolving residues in a sequence alignment of
closely related proteins can be used to infer their 3D structure
(Altschuh et al., 1987), provided a suitable analysis has been
performed. The main input in coevolution modeling is a
Multiple Sequence Alignment (MSA), containing proteins
belonging to the same family. The alignment positions are
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scanned using a statistical model to identify correlated positions;
notable examples include Direct Coupling Analysis (DCA), mutual
information (MI), maximum entropy (ME) and others (Morcos
et al., 2011). The inferred positions are then used to generate
constraints in the form of a contact map. These constraints are
finally used to guide 3D model prediction using existing modeling/
threading tools or molecular simulations. Model predictions can be
based solely on the restraints of the contact map, or be supplemented
by additional analysis of the input sequences, such as secondary
structure (Buchan and Jones, 2019) or transmembrane topology
predictions (Käll et al., 2007; Hayat et al., 2016). Popular
coevolution-based methods primarily include EVfold (Marks
et al., 2011) and its successor, EVcouplings (Hopf et al., 2019), a
model based on DCA and ME that has been successfully used in
multiple case studies, including transmembrane proteins (Hopf
et al., 2012; Hayat et al., 2015). Another example is GREMLIN
(Ovchinnikov et al., 2014), a pseudo-likelihood maximization
(PLM) implementation of DCA that produces constraints
compatible with Rosetta. Finally, the C-QUARK pipeline
(Mortuza et al., 2021) combines the analysis of ten coevolution
algorithms to generate a consensus prediction and guide folding
simulations with QUARK.

The popularity of coevolution-based modeling methods has
increased during the last decade, mostly due to the increasing
number of available protein sequences, which enable generating
MSAs suitable for modeling. Especially in the case of metagenomes,
the large number of generated sequences has been used to predict the
previously unknown structures of several protein families. In 2017,
Ovchinnikov et al. successfully predicted the structures of 614 Pfam
domains by enriching their profiles with metagenomic sequences
from IMG/M and analyzing the enrichedMSAs with GREMLIN and
Rosetta (Ovchinnikov et al., 2017). Notably, 206 of these models
were membrane proteins, while 137 had folds that, at the time, did
not exist in the PDB. Similarly, in 2019, the Zhang group used
C-QUARK to also model the structures of Pfam domains, with
MSAs enriched by metagenomic sequences derived from marine
ecosystems (Wang Y. et al., 2019). In both cases, several of the
produced models were subsequently validated by experimentally
determined structures, demonstrating the validity of the methods.

While the coevolution approach has enabled the modeling of
structures that were previously impossible to predict, it is limited by
the features of the input alignment. The MSAs must contain an
adequate number of members (typically more than 100) with high
sequence identity (>90%) and alignment coverage (>75%), in order
to successfully infer the required residue correlations. In cases where
no such alignments can be provided, the modeling process can fail or
produce low quality models. However, a solution to this problem has
been recently provided by deep learning-based modeling,
i.e., methods utilizing artificial intelligence (A.I.) to de novo
predict and model 3D structures. This has been made possible
thanks to the rise of GPU computing and development of A.I.
packages that take advantage of modern hardware capabilities (e.g.,
TensorFlow) (TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015). Like coevolution modeling, the
basis of most deep learning methods is an input MSA of proteins
belonging to the same family. This can be provided by the user, or
automatically created by the method, by searching and retrieving
related sequences from databases. At the same time, the MSA’s

sequences are searched against a library of structural templates,
usually with a sensitive method such as HMMER or MMseqs2, to
detect potential remote homologs. The MSA is analyzed to infer
correlations between residues positions; however, in contrast to
standard coevolution analysis, these correlations are then fed as
input to several levels of deep learning modules that iteratively infer
structural correlations based on various aspects. This application of
A.I. has been found to surpass a lot of the limitations imposed by
standard coevolution calculations. The generated restraints are
finally used to model a structure, either fully de novo, or in
combination with restraints from any identified structure templates.

Deep learning models have achieved success at an
unprecedented rate compared to all other molecular modeling
methods; in fact, the last two Critical Assessment of protein
Structure Prediction (CASP) experiments, CASP13 and CASP14,
highlighted multiple deep learning models as the most capable de
novo structure predictors, rivaling experimental approaches
(Kryshtafovych et al., 2021). Perhaps the most famous example is
DeepMind’s AlphaFold, which, in its current version (AlphaFold2),
has achieved a success rate of over 90% in correctly modeling protein
structures in CASP14 (Jumper et al., 2021). AlphaFold2 has been
used to predict 3D structures for almost the entire human proteome,
resulting in more than 20,000 3D models (Tunyasuvunakool et al.,
2021). These efforts were later expanded to cover the entire UniProt
database. The results of these predictions are hosted in
AlphaFoldDB (Varadi et al., 2022), a collaboration between
DeepMind and EBI that covers all reference proteomes and
currently offers more than 200 million 3D models. The source
code of the method has also been made available with an open
source license, enabling the development of derivative pipelines. A
notable example is ColabFold, which tweaks the original
AlphaFold2 workflow to enable running predictions on user-
friendly Colab notebooks or local infrastructures rather than
large clusters or supercomputers (Mirdita et al., 2022). Other
implementations of deep learning methods include RoseTTAFold
(Baek et al., 2021) and DeepFold (Pearce et al., 2022). Notably, all of
the aforementioned methods utilize metagenomic sequences to
build and enrich MSAs during modeling; namely,
AlphaFold2 uses MGnify, while RoseTTAFold and DeepFold use
MetaClust. More recent developments have also resulted in deep
learning methods that predict 3D structures from single sequences,
without requiring the generation of an MSA. The premise of these
approaches is that since a protein will, typically, fold in a natural
setting from its primary amino acid sequence into its three-
dimensional structure, MSA analysis should not be required. To
achieve this, single-sequence methods are based on deep learning
models for natural language processing (NLP) in combination with
transformer modules (used by AlphaFold2 and other similar
approaches). The two most notable examples are OmegaFold
(Wu et al., 2022), developed by Helixon, and ESMfold (Lin et al.,
2022), developed by Meta AI Research. Both methods boast
comparable performance with AlphaFold2 and RoseTTAFold for
their test datasets. In addition, ESMfold was recently used to model
3D structures for more than 600 million metagenome sequences
from MGnify, the top 1 million of which are publicly offered
through the ESM Metagenomic Atlas database (Lin et al., 2022).
However, the soundness of ESMfold and the models hosted in the
ESM Atlas have been questioned, both on the accuracy of the
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method and on the overall quality of the input sequences and
produced models (Callaway, 2022).

6 Cluster analysis and annotation

6.1 Sequence alignments and profiles

The result of clustering is the organization of metagenomic
sequences into clusters based on their similarity. These clusters can
then be used to create Multiple Sequence Alignments (MSAs),
enabling more refined searches against databases, as well as
providing the clusters and their components with additional
annotation capabilities. MSAs can be created using a
combination of various approaches, such as dynamic
programming, hierarchical tree building, profile-profile
comparisons or Hidden Markov Models (HMMs). MUSCLE
(Edgar, 2004) is one of the first alignment tools to implement a
profile-profile alignment approach, resulting in high quality MSAs.
Clustal Omega (Sievers et al., 2011), the successor of ClustalW/
ClustalX, uses seeded guide trees and HMM-based profile-profile
alignments to generate alignments for thousands of sequences, and
is suitable for medium-length sequences and MSAs. The Kalign
algorithm (Lassmann and Sonnhammer, 2005) works by translating
protein sequences to a reduced alphabet, using a SIMD (single
instruction, multiple data) accelerated, bit-parallel string matching
algorithm to compute pairwise distances and applying a Clustal-like
approach to construct seeded guide trees. This combination makes
Kalign ideal for the fast, parallelizable alignment of distant (low
homology) sequences. MAFFT (Katoh and Standley, 2013) uses
Fast-Fourier transformations to align thousands of sequences within
a few hours, providing both a fast-greedy and an exhaustive mode.
PRANK (Löytynoja, 2014) is a phylogeny-aware multiple sequence
aligner which makes use of evolutionary information to help place
insertions and deletions using the PRANK method. Finally,
T-Coffee (Di Tommaso et al., 2011) takes into account structural
and homology information to align sequences and offers a number
of specialized implementations for specific case studies, such as
position-specific iteration (PSI) alignment (PSI-coffee) or
transmembrane protein-focused alignment (TM-coffee).

The resulting MSAs of the protein clusters need to be evaluated
on their quality in order to be usable. Features that need to be
estimated primarily include the MSA’s maximum sequence identity,
minimum alignment coverage, pairwise distance distribution and
column (position-specific) occupancy (i.e., the percentage of each
MSA column covered by sequence residues, not gaps). Additional
metrics that are also used in some situations, such as alignment
density or Shannon entropy, are derived from the aforementioned
features. A good quality MSA is expected to have high column
occupancy (and as a result, a high density) throughout its length, and
high (>70%) alignment coverage (Valdar, 2002). At the same time, it
is expected to have a reasonable maximum sequence identity, high
enough to accurately model the evolutionary relationships of the
sequences in the cluster (≥ ~30% typically indicates protein
homology) but not so high that it leads to overfitting. This is
especially important in cases where an MSA needs to be used as
input for analysis [e.g., molecular phylogenetic inference (Kapli
et al., 2020) or sequence coevolution (Altschuh et al., 1987)], to

train sequence profiles, or to predict 3D structure models (see
section “Structure Prediction”).

A reasonable rule, in this regard, is followed by Pfam, whose
profiles are represented by full MSAs (containing all sequences in
the family) and non-redundant subsets (“seed MSAs”), having a
maximum sequence identity of 80%; the latter are also used to
construct the families’ HMM profiles (see below). While different
aligners might come with slightly different results, one can use
alignment correctors to discard underrepresented columns or rows.
Characteristic applications for this task are ClipKIT (Steenwyk et al.,
2020), BMGE (Criscuolo and Gribaldo, 2010), Gblocks (Talavera
and Castresana, 2007), trimAl (Capella-Gutiérrez et al., 2009) and
Noisy (Dress et al., 2008). In addition, the HH-suite includes a
dedicated tool for MSA filtering and trimming (hhfilter) (Steinegger
et al., 2019a), capable of producing ready-to-useMSAs for tasks such
as phylogeny analysis or 3D structure prediction with deep learning
methods such as AlphaFold2.

Refined MSAs can be used as inputs to calculate specialized
models, enabling more refined sequence searches that can detect
remote homologs. The simplest form of these are sequence motifs,
usually formatted as PROSITE patterns (Sigrist et al., 2013) or
regular expression sequences. More refined models include
position-specific scoring matrices (PSSMs) and HMM profiles.
PSSMs can be created using in-house scripts, programming
language modules (e.g., Biopython) and even some sequence
alignment tools (e.g., T-coffee). The resulting models can be used
as input for more sensitive, PSI-based searches in sequence
databases with tools such as BLAST (Altschul et al., 1990) (PSI-
BLAST), replacing the default substitution matrices (BLOSUM,
PAM, etc.) to provide search results tailored to the input profile.

Contrary to PSSMs, in which probabilities are computed for
each MSA column individually, HMM profiles model MSAs as
Markov chains with hidden states, in which the condition of each
state is directly dependent on the condition of its previous state.
HMM states are annotated with a series of transition and emission
probabilities, accounting both for residue occurrences and for the
existence of alignment gaps. The latter is especially important as,
with HMMs, alignment scoring and gap penalties are tailored to the
underlying model itself, rather than being calculated by arbitrary
presets (i.e., substitution matrices and pre-defined gap costs). This
allows for even more sensitive sequence queries and enables the
detection of remotely similar homologous sequences
(identity <20%). MSAs, PSSMs and HMMs can also be used to
generate the cluster’s consensus sequence, i.e., a representative
sequence of the MSA, containing in each position the most
commonly found residue in the underlying model. Another
useful annotation that can be generated is the cluster’s Sequence
Logo, a graphical display of an MSA or HMM consisting of color-
coded stacks of letters representing amino acids at successive
positions. Sequence Logos provide a richer and more precise
description of sequence similarity than consensus sequences and
can rapidly reveal significant features of the alignment that could
otherwise be difficult to perceive. Popular tools that can generate
Sequence Logos from MSAs or profiles include WebLogo (Crooks
et al., 2004), HMMLogo (Eddy, 2011) and Skylign (Wheeler et al.,
2014).

The two most popular packages for the creation and use of
HMM profiles are HMMER (Finn et al., 2011) and HH-suite
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(Steinegger et al., 2019a). The HMMER package provides tools for
the training of HMMprofiles from input MSAs (hmmbuild), profile-
based multiple sequence alignment (hmmalign), sequence-sequence
(phmmer, jackhmmer) and sequence-HMM searches and tools to
generate annotations, including sequence logos (hmmlogo) and
consensus sequences (hmmemit). Notably, HMMER is the
standard tool used by most of the currently prominent protein
family databases (Pfam, InterPro, etc.), which adopt the package’s
file format as the native format of their models. Similar to HMMER,
the HH-suite provides tools for creating HMMs (hhmake) and
performing queries against reference databases (hhblits, hhsearch),
albeit in a different format than HMMER. However, in addition to
sequence-HMM queries, HH-suite also allows performing profile-
profile alignments, enabling even more sensitive sequence searches.
The generated HMM profiles from both tools can be used to search
and detect remote homologs in reference databases, including both
sequence databases such as UniProt or RefSeq and specialized
protein family collections such as Pfam (Mistry et al., 2021),
COG (Galperin et al., 2021), or InterPro (Blum et al., 2021).
Notably, InterPro provides its own dedicated search tool
[InterProScan (Jones et al., 2014)] for searching its database
components, which now include major protein family databases
such as Pfam, TIGRFAMS (Haft et al., 2003), CATH-Gene3D
(Sillitoe et al., 2021) and PROSITE (Sigrist et al., 2013). Database
hits detected through profile-based searches can be used to

functionally annotate the source sequence clusters; this enables
the functional characterization of clusters formed by unknown
sequences that had no hits during the gene calling and
annotation step. In addition, the derived HMMs can be further
used to search metagenomic sequence datasets and recruit
additional sequences for the underlying clusters; this can help
increase cluster size, and provide additional annotation to the
ever-increasing metagenome sequence space.

6.2 Structure searches and functional
annotation

The produced MSAs of the clusters can also be used as input for
the generation of 3D structure models. Various types of approaches
may be followed, described in detail in Section 5 (“Structure
Prediction”) of this review. Regardless of the method used, the
generated 3D structure models can then be searched against
repositories of 3D structures to identify potential matches. This
can be used to further annotate the functional role of the clusters,
particularly in cases with no strong sequence similarity hits, since it
is generally accepted that protein structure is more conserved than
protein sequence, and that the structure of a protein essentially
defines its function (Figure 6). The most prominent reference
database to be searched is the Protein Data Bank (PDB) (Berman

FIGURE 6
Example structure search and functional annotation for a set of predicted 3D structures. In the first step, the models are filtered to keep only high-
quality models, typically represented by a high predicted TM-score (pTM) value. The models are also clustered based on their structural similarity. The
high quality, non-redundant set of models can then be searched against databases of structural domains (e.g., CATH-Gene3D, SCOP and SCOPe) with a
fast, TM-score based method such as TM-align. Models with significant hits (TM-score ≥0.50) are functionally annotated based on their structural
homologs. Models with no hits (TM-score <0.50) are further searched against databases of full-length structures (containing one or multiple domains),
biological assemblies or protein-protein complexes (PDB, ModelArchive, AlphaFoldDB, etc.) with a multimeric complex-enabled search method such as
MM-align. Again, models with significant hits are functionally annotated based on their homologs. Finally, models with no hits to any structural database
can be considered as potential novel folds.
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et al., 2000), the collection of all experimentally determined protein
structures. In its current version (February 2023 data), the PDB
contains ~202,000 deposited 3D structures. In addition, the database
contains over 200,000 biological assemblies, i.e., multimeric
configurations based on the crystal symmetry of the
aforementioned data. In addition to the PDB, searches can be
performed against publicly available databases containing
theoretical 3D models. The most prominent examples of such
databases include AlphaFoldDB (Varadi et al., 2022), which
contains structure predictions performed by AlphaFold2 and the
ModelArchive (Schwede et al., 2009), a collection of predicted 3D
structure models from publications. It should be noted that the
structural data in these databases is redundant, meaning that a single
protein may be represented by multiple structures, determined for
multiple organisms, at varying levels of resolution, in different
conformational states or in complexes with different interacting
partners or chemical compounds. In addition, as the number of
unique protein structural folds in nature is fairly small, most
structural domains are present in a large number of structures,
and represented by multiple entries in the databases. For this reason,
it is faster and often more useful to perform searches against non-
redundant sets, either subsets of the PDB clusters at various levels of
sequence identity or structure family databases like CATH-Gene3D
(Sillitoe et al., 2021), SCOP (Andreeva et al., 2020) and SCOP
Extended (SCOPe) (Chandonia et al., 2022). The latter are non-
redundant collections of structural domains, clustered based on
structural architecture, with each CATH-Gene3D or SCOP/SCOPe
family represented by a single, high quality domain structure.

Structure-based searches are usually performed by structure
alignment or superposition, i.e., fitting the query structure against
its target in 3D space and evaluating the similarity of the two.
Similarity can be measured using two different criteria, the Root
Mean Square Deviation (RMSD) or the Template Modeling score
(TM-score). RMSD is the measure of the average distance between
the atoms (usually the backbone) of two superimposed proteins,
with higher RMSD values (typically measured in Å or nm)
indicating greater diversity. RMSD-based queries can be
performed using a large number of protein structure alignment
tools, notable examples of which are the Dali (Holm, 2022) and
FATCAT (Li et al., 2020) web servers. Dali works by splitting the
input query and target structures into hexapeptide fragments and
then calculating a distance matrix for each structure, through the
understanding of the contact pattern between successive fragments.
If two proteins’ distance matrices are the same or share similar
features in almost the same positions, they can be said to have
similar folds and length loops connecting the secondary structure
elements. FATCAT works by representing each structure as a
contact map and then comparing the two maps for the existence
of statistically significant similarities or differences. In addition, the
algorithm takes into consideration potential flexible protein
segments (e.g., hinges) that could result in conformational
transitions for otherwise similar proteins and produce high
RMSD values if the structures were considered as completely rigid.

However, because RMSD is computed with equal weight over all
residue pairs, a large local error on a few residue pairs can result in
quite large deviations, even when the global topologies of the
compared structures are actually similar. In addition, it is highly
dependent on protein length, meaning that RMSD comparisons

between proteins with significant length differences are essentially
meaningless. Finally, a lot of RMSD-based tools rely on preliminary
sequence alignments to guide structure superposition, meaning that
they cannot be used in cases where the query has no significant
sequence homologs. An alternative to RMSD is the TM-score,
defined as a variation of the Levitt-Gerstein (LG) score, which
weights shorter distances between corresponding residues more
strongly than longer distances (Zhang and Skolnick, 2004).
Therefore, it is more sensitive to the global topology rather than
local structural variations. In addition, its value is normalized so that
the score magnitude relative to random structures is not dependent
on the protein’s size. TM-score values range from 0.0 to 1.0, with
scores <0.2 corresponding to randomly chosen unrelated proteins,
whereas TM-score values >0.5 indicate proteins belonging to the
same structural family. The most prominent TM-score based
alignment method is TM-align (Zhang and Skolnick, 2005),
which relies on dynamic programming to align the secondary
structures of the query and target and does not depend upon
sequence similarity, meaning that it can be used to compare
distantly related proteins. TM-align is very fast and can be
integrated into user-made scripts or pipelines, so that it can be
executed in parallel to concurrently perform multiple pairwise
queries. Variants of TM-align have also been developed,
including MM-align (Mukherjee and Zhang, 2009), a variation
capable of performing alignments featuring multimeric complexes
as well as single structures, and mTM-align (Dong et al., 2018),
which can perform massive structure queries against reference
databases, as well as multiple structure alignments.

Finally, one recently developed structure search method that is
quickly gaining ground is FoldSeek (Kempen et al., 2022). Contrary
to the aforementioned tools, FoldSeek does not work through
standard structure superposition or RMSD and TM-score,
although it can compute both scores for consistency with other
methods. Instead, the FoldSeek approach works by representing
protein tertiary interactions as sequences over a structural alphabet
and comparing structures using sequence alignments with the
double-diagonal k-mer-based prefilter and gapless alignment
prefilter modules from MMseqs2 (Kempen et al., 2022).

6.3 Gene neighborhood inference

The vast majority of cellular functions are not conducted by one
protein alone but by multiple proteins, co-operating in various
manners. In the majority of genomes that have been studied, the
positions of the co-regulated genes encoding these proteins are not
random; instead, genes participating in the same process are almost
always co-localized and organized in various types of clusters,
collectively known as gene neighborhoods. This phenomenon is
especially prevalent in bacteria and archaea (Santangelo et al., 2008),
as well as some fungi such as yeast (Poyatos and Hurst, 2007), where
genes participating in the same function are organized in clusters
known as operons and are co-transcribed and co-translated (Jacob,
2011). However, organized gene clusters (both operon-like and
other forms) have also been observed in the genomes of
multicellular organisms (Lee and Sonnhammer, 2003), including
the human (Mégy et al., 2003), other mammalian (Fukuoka et al.,
2004; Carninci et al., 2005), insect (Boutanaev et al., 2002), worm
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(Blumenthal et al., 2002) and plant genomes (Tang et al., 2008).
Analyzing gene neighborhoods can help detect genes participating
in common processes, predict protein-protein interactions and, in
the case of novel, uncharacterized (“orphan”) genes, infer their
potential function by evaluating the functions of their
neighboring genes (Huynen et al., 2000). Gene neighborhood
analysis and the study of gene synteny is commonly used in
studying genomic structure (Wolf et al., 2001). More recently,
gene neighborhood analysis has been applied to the study of
metagenomes, enabling the construction and visualization of
functional gene networks (Aßhauer et al., 2014; Kim and Lee,
2017; Brown et al., 2020).

In its simplest form, identifying the neighbors of a metagenome
cluster representing a protein family can be performed simply by
identifying the neighboring genes of the cluster’s members, based on
their positions in the source metagenomic contigs and their distance
from the coordinates of the genes forming the cluster (Figure 7). By
compiling these neighbors, mapping them to reference databases
such as Pfam or COG and inferring their function, the gene
neighborhood of the cluster can be constructed, and provide
hints towards the cluster’s functional role. This can be especially
useful for the clusters of uncharacterized sequences, with no hits to
any reference database or known protein family. In addition, gene
neighborhood analysis can be used to predict biomolecular
interactions involving the proteins represented by the cluster in
various contexts (protein-protein, protein-chemical, host-pathogen,
gene-disease interactions, etc.), by linking the produced gene
neighborhood with annotation from various biomolecular
interaction databases [reviewed in (Baltoumas et al., 2021a)].
Simple distance based calculations can be performed using the
coding sequence coordinates of the contigs, produced during the
gene calling stage of a metagenomic analysis. More detailed
inference can also be performed using specialized tools designed
to analyze genomic structure and gene position patterns; examples
include general purpose tools such as G-NEST (Lemay et al., 2012)
and the JAX Synteny browser (Kolishovski et al., 2019), as well as

metagenome-focused implementations such as FeGenie (Garber
et al., 2020) and the EFI enzymology tools (Zallot et al., 2019).

6.4 Ecosystem annotation and distribution

Previous sections in this review have mostly focused on
analyzing and annotating the sequence, emphasizing structural
and functional aspects of metagenomic sequences and their
clusters. However, ecosystem annotation is equally important, as
a key feature of metagenomics is the study of biodiversity,
understood partly by examining the environmental properties of
the analyzed samples. In the context of protein family biodiversity
exploration, the protein space can be divided according to
metagenomic sample source environments. This can be beneficial
in a reciprocal fashion: i), protein families can be profiled according
to the environment from which their member proteins originate,
and ii), different types of environments can be characterized
according to their protein family richness.

Prior to any computation, metagenomic sequences inherit the
contextual information of the sample from which they originated. A
sample’s isolation source, for example, describes the environment
from which a sample was collected. Spatial, temporal and other
characteristics of the sampling environment are key both in
interpreting unknown genes and in obtaining new insights about
known ones (Nayfach et al., 2021). The experimental procedures
through which metagenomic sequences have been obtained are also
key pieces of background information. The richer and more
comprehensive such contextual pieces of information are, the
stronger the link among a study and its sequences becomes. Such
a link can be used from a single-study search and retrieve operation,
to integrative queries and multiple-study comparative analyses.
However, in order for this annotation to be useful, it needs to be
formatted in a standardized, accessible and easy to use format,
preferably in line with established FAIR (Findability, Accessibility,
Interoperability, and Reusability) principles (Wilkinson et al., 2016).

FIGURE 7
Example of a gene neighborhood analysis for a cluster of unannotated metagenome sequences, represented as “M-gene”. (A) Simplified
visualization of a synteny analysis for sevenmetagenome scaffolds, containingmembers of theM-gene cluster. Each gene is represented by an arrow and
colored differently. The direction of the arrows represents the directionality of the ORFs in each scaffold. In the analyzed scaffolds, the M-gene ORF co-
occurs with a number of other protein-coding genes, each corresponding to a Pfam domain. (B)Gene co-occurrence network, based on the results
of the synteny analysis. Each node represents a protein-coding gene and is colored using the same scheme as in (A). Edges (interactions) between nodes
are derived based on the co-occurrence of their genes in the same scaffold. As it can be seen, the unannotatedmetagenomic cluster (M-gene) co-occurs
with a tightly connected group of Pfam domains (Phosphoesterase, Glyco_tran_WecG, Polysacc_deacc_1 and Glyco_hydro_39), which are all found in
the same scaffolds alongside M-genemembers. In addition, M-gene co-occurs with RmID_sub_bind. Notably, four of the co-occurring protein domains
are in the same functional category (Cell wall/membrane/envelope biogenesis), as indicated by their annotation in COG. This could mean that the
unannotated M-gene cluster may participate in this function as well. The network was constructed using NORMA (Karatzas et al., 2022b).
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For standardization to move from wishful thinking into reality,
accurate, well-structured and semantically concise metadata are key
for describing a metagenomic sample’s context. Environment
Ontology terms, for example, can describe a sample’s
environment both in a broad context (biome), its material, and
more fine-grained characteristics (feature). Taxonomy data
structures like the NCBI Taxonomy (Schoch et al., 2020; Sayers
et al., 2022) can describe host information in host-associated
metagenomic samples. In this case, anatomy ontologies like
Uberon (Mungall et al., 2012) and Brenda Tissue Ontology
(Gremse et al., 2011) can add collecting tissue descriptors.
Disease modeling knowledge structures like the Disease Ontology
(Schriml et al., 2012) can capture the health or disease host status.
Initiatives such as the National Microbiome Data Collaborative
(NMDC) (Yilmaz et al., 2011; Mirzayi et al., 2021; Vangay et al.,
2021) are promoting the uptake of standardized contextual metadata
by the community via detailed example-containing checklists and
best practice guidelines. Ontology annotation suggestion tools, such
as BioSamples/ZOOMA (Courtot et al., 2022) and EXTRACT
(Pafilis et al., 2016), can also assist metadata enrichment.
However, despite the existence, irrespective of any shortcomings,
of the related knowledge structures, software, and community
actions, incomplete or inaccurate sample metadata remain
(Nassar et al., 2022).

In metagenomics, the most used biome classification systems are
the GOLD database’s ecosystem classification (Ivanova et al., 2010),
the Environment Ontology (ENVO) (Buttigieg et al., 2016) and the
Earth Microbiome Project Ontology (EMPO) (Shaffer et al., 2022).
GOLD uses a five-level hierarchical system to organize
metagenomes based on their source biome (Ecosystem- >
Ecosystem Category- > Ecosystem Type- > Ecosystem Subtype- >
Specific Ecosystem). At the top level, metagenomic datasets are
grouped into three main ecosystems (“Environmental”, “Host-
associated” and “Engineered”), each of which is then further
divided into subcategories based on biome aspects, as well as
taking into account knowledge of key variables that influence
community composition. These have been defined using a
mixture of sources; specifically, the Environmental and Host-
associated top-level groups are based on the equivalent categories
used by GenBank (Ecological and Organismal). Environmental
communities are separated by the ecosystem category (aquatic,
terrestrial, air) and ecosystem type (e.g., freshwater, marine) with
more detailed categorizations based on specific features (e.g.,
salinity, pH). Host-associated datasets are defined by host
phylogeny, based on the NCBI taxonomy system, then sampling
site (e.g., digestive system, respiratory system). Finally, GOLD
includes a distinct category (“Engineered”) that separates
manipulated communities such as bioreactors or treatment plants;
this helps highlight the differences in metagenomic communities
that occur in these systems, compared to natural environmental
communities (Mukherjee et al., 2022).

The Environment Ontology (ENVO) is a community-led
ontology that represents environmental entities, features and
materials (Buttigieg et al., 2016). In its initial form, it started as a
relatively simple, controlled and structured vocabulary to support
the metadata checklists of the Genomics Standard Consortium
(GSC). However, it has matured into a fully-fledged, FAIR-
compliant ontology, offering representations of biomes,

environmental processes and entities relevant to environmental
health initiatives. Similar to other ontologies (e.g., GO), terms in
ENVO represent a controlled vocabulary and are organized in a
hierarchical manner. ENVO’s terms can describe a sample’s
environment both in a broad context (biome), its material, and
more fine-grained characteristics (feature). For this reason, ENVO
has become a recommended standard for the minimum information
on genomic, metagenomic and marker gene sequences (MIGS,
MIMS and MIMARKS) (Kottmann et al., 2008), as per the
instructions of the Genomics Standards Consortium (GSC).
ENVO broad scale terms are used to describe biomes (e.g., forest
biome, oceanic biome, etc.), local scales are used to describe features
(e.g., mountain, river), and mediums are used to describe materials
(e.g., soil, water) when annotating the biome of a submitted
metagenome.

The Earth Microbiome Project (EMP) is a collaborative effort
aimed at sampling Earth’s microbial communities at a large scale, to
construct a global gene atlas describing protein space,
environmental metabolic models for each biome, and a global
metabolic model (Thompson et al., 2017). The project has
delivered an analysis of approximately 500,000 reconstructed
microbial genomes and has provided the scientific community
with a number of metagenome sampling, processing and analysis
protocols, including a dedicated ontology (EMPO) for the biome
characterization of metagenomic samples. EMPO is organized into
four levels (Shaffer et al., 2022), the first three of which describe a
sample on the basis of host association (Free-living or Host-
associated), salinity (Saline or Non-saline), and host taxon/phase
(Solid, Aqueous, Plant, Animal, etc.), while the fourth, recently
added, annotates the precise source type of the dataset (e.g.,
Animal Gut). EMPO is a continuously evolving project, expected
to grow and expand as metagenomic datasets from more diverse
biomes become available.

A comparison of the GOLD, ENVO and EMPO classification
systems reveals that all three alternatives have their strengths and
weaknesses. GOLD is currently the most diverse and inclusive biome
classification system to date, and remains unique in integrating
environmental, host-associated, and engineered habitats in a single
ontology (Mukherjee et al., 2022). As a result, both IMG/M and
MGnify use GOLD as the main biome classification system for their
datasets. However, compared to ENVO, GOLD lacks several of the
standardized features of FAIR-compliant ontologies and is not as
adaptable. ENVO has a more structured organization that can be
easily adapted and expanded as needed; this is evidenced by the
already enormous evolution of the ontology (Buttigieg et al., 2016).
For this reason, ENVO terms are regularly used in the description of
environments in MGnify and MG-RAST, and efforts have been
made to map GOLD ecosystems to ENVO terms. A possible
complexity when working with ENVO is that it interoperates
with other ontologies. For example, withhost-associated samples,
the consideration of NCBI Taxonomy Identifiers in study MIxS host
fields, or of anatomy ontology terms (like ÜBERON ones) for the
anatomical part of the host might be needed. Finally, the EMPO
ontology appears as a compromise of the two; it adopts a
classification scheme somewhat similar to GOLD (although it
lacks a distinct group for Engineered biomes) and, at the same
time, a strict ontology format; in addition, EMPO terms have been
mapped to their ENVO counterparts since the very first
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implementation of the ontology. However, it remains limited,
having no deeper classification levels that could enable
annotating a sample to the level of detail offered by other ontologies.

In addition to environmental classification information,
available metadata can be retrieved upon sequence download
from the data repositories like MGnify (Mitchell et al., 2019),
SRA (Kodama et al., 2012), IMG/M (Chen et al., 2022), IMG/VR
(Camargo et al., 2022) and MG-RAST (Meyer et al., 2019).
Literature-extracted metagenomic study metadata, for studies
available in MGnify and linked-literature in EuroPMC, (Nassar
et al., 2022), can also be retrieved. Ad hoc mining of
metagenomic study literature and free-text metadata fields is also
possible with tools like EXTRACT (Pafilis et al., 2016), OnTheFly2.0
(Baltoumas et al., 2021b), Darling (Karatzas et al., 2022a), and
BioSamples/ZOOMA (for metadata fields) (Courtot et al., 2022).
Finally, the PREGO (Process, Environment, Organism) resource
(Zafeiropoulos et al., 2022) can be used to showcase, analyze, and
combine extracted pieces of environmental information to address
integrative molecular ecology questions.

6.5 Strategies for organizing families into
possible superfamilies

Following their annotation, protein family clusters can be
further grouped into larger superclusters or superfamilies. A
protein superfamily (also known as a clan, although the term is
usually applied to enzymes) is the largest grouping of proteins for
which common ancestry can be inferred. Superfamilies typically
contain several protein families that show sequence similarity within
each family. These families can be grouped together in the same
group by a number of features, such as: i) distant sequence
similarities (sequence-based), ii) phylogenetic relations, iii)
structural homology (structure-based) or iv) common function.

In its simplest form, sequence-based superfamily grouping is
performed using pairwise sequence or profile alignments. The first
can be done by using the families’ consensus sequences and
performing an all-against-all comparison. Alternatively, one can
perform the same task using profile-profile alignments, either at the
MSA level with MUSCLE (Edgar, 2004), or at the HMM level with
HH-suite (Steinegger et al., 2019a).

Simple sequence-based organization can be further enhanced by
exploring the evolutionary relations of the proteins through
phylogeny inference. By phylogenetic analysis, protein clusters
can be further organized into clades, reaching back to their most
distant common ancestor. Such an analysis can be performed using
statistical methods, such as Bayesian inference, both with standard
tools like MrBayes (Ronquist et al., 2012) and with metagenome-
focused pipelines such as BiomeNet (Shafiei et al., 2014).

Another more robust way to create superfamilies is to use
structure-based clustering, since protein structures are generally
more conserved than sequences and, therefore, sequences with
low sequence identity may actually adopt the same fold. By
performing structural alignments, and grouping structures based
on their similarity rather than sequence identity, structures
representing protein families can be grouped into higher order
categories. This is the basis for the organization of protein
structures in families and superfamilies in structural domain

databases such as CATH-Gene3D (Sillitoe et al., 2021) or SCOP
(Lo Conte, 2000; Andreeva et al., 2020); in addition, a number of
metagenome-enriched 3D structure modeling projects have applied
the same methodology (Ovchinnikov et al., 2017; Wang Y. et al.,
2019). In the concept of metagenome clusters, superfamily
organization can be performed by performing all vs. all structural
alignments, either manually or with tools such as TMalign or
MMalign, and selecting a metric capable of distinguishing
structural homology, such as the TM-score (typically, protein
structures with TM-score >0.50 are considered part of the same
structural family).

In contrast to the above options, which rely exclusively on
protein sequence/structure features, functional clustering refers to
grouping proteins in families or superfamilies based on their
functional annotation. This process is, to some extent, related to
structure-based clustering, as proteins sharing the same fold likely
perform similar functions. However, this is not always the case, as
some superfamilies may include functionally relevant but
structurally more diverse members. Functional clustering can be
performed bymatching cluster members to functional terms, usually
in the form of controlled vocabularies, such as Gene Ontology (GO)
terms (The Gene Ontology Consortium et al., 2021), KEGG
Orthology (KO) pathways (Kanehisa and Sato, 2020), or COG
functional categories (Galperin et al., 2021). This matching is
typically performed during the gene calling stage of a
metagenomic analysis; the clustered sequences can then be
analyzed to identify the most overrepresented functional terms of
their group, usually with statistical analyses offered by functional
enrichment tools (Subramanian et al., 2005; Schölz et al., 2015; Liao
et al., 2019; Thanati et al., 2021).

7 Visualization of metagenomic data at
a raw and family level

Data visualization is one of the most crucial and challenging
aspects of metagenomic research. Visualization tools can provide a
valuable complement to automated workflows and pipelines,
enabling researchers to derive scientific insight from large-scale
data sets. At the same time, effective visualization can be used to
compare datasets from different sources, derive associations
between components (e.g., metabolic pathways, signaling
mechanisms, etc.) and be used as the basis to conduct further,
more advanced analyses. In this sense, visualization is not only
concerned with the graphical representation of the data, it is also an
essential tool for exploratory analysis (Sudarikov et al., 2017).

The choice of using a visualization scheme to display and
analyze metagenomic data heavily depends upon both the
number of the datasets to inspect and the type of visualization/
analysis that needs to be performed. Graphs such as pie charts, bar
plots, circos plots, Sankey diagrams or bubble charts can be used to
explore taxonomic abundances in metagenomic datasets and
compare features between multiple metagenomes, although their
visualization capabilities decrease as the number of datasets
increases. Similarly, venn diagrams can help plot the
relationships (unions, intersections, etc.) among a small number
of datasets (typically up to five or 6); for larger numbers of datasets,
UpSet plots can be a useful alternative. Rarefaction curves can help
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plot the richness (diversity) of a microbial community, or simulate
the growth rate for features such as gene/protein sequences or
clusters, based on a background reference. Tree diagrams and
dendroscopes can plot taxonomic ranks, phylogeny distribution
and even sequence clustering results (e.g., hierarchical clustering)
(Sudarikov et al., 2017). Finally, various types of interaction
networks can be used to plot and analyze features such as gene
co-occurrence, protein-protein interactions, sequence/cluster/
dataset-biome relationships, disease annotations and even
taxonomic distributions (Koutrouli et al., 2020b).

There are many solutions to generating visualizations such as
the ones referenced above. For instance, data plotting can be
performed using specialized visualization packages in
programming languages such as Python or R. These can be
general purpose, such as Plotly (Sievert, 2020) or Matplotlib
(Hunter, 2007), designed with biological data in mind, such as
the large number of tools offered by Bioconductor (Gentleman et al.,
2004) and Biopython (Cock et al., 2009), or even geared towards
metagenomes. Examples of the latter include gbtools, an R package
that implements methods to visualize metagenome bins by plotting
coverage (sequencing depth) and GC values of contigs, and also to
annotate the plots with taxonomic information (Seah and Gruber-
Vodicka, 2015). A similar tool is QIIME2, a fully functional Python
package enabling researchers to start an analysis with raw DNA
sequence data and finish with publication-quality figures and
statistical results (Bolyen et al., 2019). In contrast to the above
tools, which require the user to have at least elementary
programming skills, a number of ready-to-use solutions also
exist, offering visualization capabilities coupled with user-friendly
interfaces. For example, VICTOR is a pipeline enabling the
comparison of multiple sets (gene sets, clustering results, etc.)
with an abundance of visualization options (e.g., bar charts, heat
maps, Sankey plots, interaction networks) and statistical metrics
(mutual information, adjusted rand index, etc.) (Karatzas et al.,
2021b). Krona is a frequently used, web-based interactive
metagenome visualization platform. It allows the intuitive
exploration of relative abundances and confidences within the
complex hierarchies of metagenomic classifications. Its rich and
interactive displays facilitate more informed interpretations of
metagenomic analyses, while its implementation as a browser-
based application makes it extremely portable and easily adopted
into existing analysis packages (Ondov et al., 2011). Another
example is the Workflow Hub for Automated Metagenomic
Exploration (WHAM!), an interactive tool capable of user-
directed visualization and analysis for multidimensional, shotgun-
sequenced metagenome and metatranscriptome datasets (Devlin
et al., 2018). MetaG provides a pipeline for analyzing reads from
both targeted and whole genome sequencing, coupled with
visualization using intuitive, interactive graphs (Chowdhury et al.,
2016). MetaViz, an R and NodeJs-based platform, provides a novel
navigation tool for exploring hierarchical feature data that is coupled
with multiple data visualizations including heatmaps, stacked bar
charts, and scatter plots. It also supports a flexible plugin framework,
enabling users to develop and add their own visualization tools
(Vázquez-Ingelmo et al., 2022). Finally, MetaSee is a Java-based
platform, offering the interactive visualization of metagenomic
samples of interest at multiple levels (global view, phylogenetic
view, sample view and taxa view), and an Application

Programming Interface for the development of new analysis and
visualization plugins (Song et al., 2012).

In addition to the plotting tools referenced above, several
approaches for the visualization and analysis of metagenomes
involve the use of interaction networks (e.g., host-microbiome).
Multiple implementations for network visualization have been
developed and extensively reviewed in the literature (Pavlopoulos
et al., 2008; 2011; 2017; 2018; O’Donoghue et al., 2010; Saito et al.,
2012; Koutrouli et al., 2020b; 2020a; 2021; Baltoumas et al., 2021a;
Karatzas et al., 2022b). In the scope of metagenomics, interaction
networks can be used to visualize the relationships between
metagenomic components in the form of gene neighborhood
networks, metabolic paths and gene-disease associations.
Heterogeneous information with metadata from various sources
can also be visualized at a network level with the help of multilayered
graphs (Karatzas et al., 2021a; Kokoli et al., 2022; Zhou et al., 2022).

8 Limitations and challenges

The metagenome world offers a great space for discovering
novelty; however, despite the progress that has been made in
metagenomics-based investigations, the currently available
metagenomic analysis workflows suffer from a number of issues.
One crucial and potentially limiting factor is the choice of
sequencing technology which, essentially, defines the type of the
analysis and influences the quality and content of the results.
Amplicon sequencing approaches, such as 16s/18s/ITS rRNA
sequencing are established, low cost and low error solutions that
can efficiently screen for variants and target organisms, and describe
and compare the diversity of multiple complex environments. Such
technologies are routinely used in population and microbial
community studies and can help study the phylogenetic profiles
of the studied microbiomes. However, taxonomic assignment
through rRNA sequencing is inherently biased, as it heavily
depends on the selected primers and targeted variable regions.
Furthermore, the analysis is limited to bacteria and archaea (16s)
or fungi (18s and ITS), and only offers a broad taxonomic profile for
the samples, reaching, at best, the level of genus. Finally, as these
methods focus exclusively on marker RNA regions, they cannot
provide any functional profiles for the analyzed microbiomes, except
in the form of predicted general functionality, achieved through the
use of prediction tools such as PICRUSt (Langille et al., 2013). On
the other hand, shotgunmetagenomic sequencing, especially its high
throughput implementations, encompasses the sequencing of the
entire sample content, and offers the capability of advanced
taxonomic assignment (provided adequate marker regions or
characteristic genes are available), often to the level of species or
strain for all domains of life (bacteria, archaea, eukarya and viruses).
What is more, shotgun sequencing results can be assembled to
MAGs and used for gene calling and advanced functional
annotation of the underlying microbial communities, utilizing the
wide array of methods described in this review. However, the
methodology is prone to errors, resulting in problems such as
metagenome fragmentation or host DNA contamination. These,
in turn, can produce artifacts in subsequent analysis steps, including
taxonomic assignment, gene calling and functional annotation.
Despite their drawbacks, both approaches have their merits, and
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their application heavily depends upon the scope of each
metagenomic study (Rausch et al., 2019; Durazzi et al., 2021).

Another critical limitation is the dependence of gene calling on
taxonomy for properly choosing the correct translation table and
gene structure model. In cases where taxonomic assignment cannot
be performed (e.g., because the contigs do not contain any rRNA
genes), it is up to the capabilities of the chosen prediction tool to
correctly identify the ORFs. This can lead to translation errors and
misidentified ORFs, especially in cases of alternative-coded genomes
and metagenomes (Dimonaco et al., 2022). Dealing with this
limitation involves applying additional filters and prediction
tools. For example, IMG/VR re-analyzes metagenomic data with
VirFinder (Ren et al., 2017) and custom markers from the Earth
Virome workflow (Paez-Espino et al., 2017b) to identify viral contigs
(Paez-Espino et al., 2017a; Roux et al., 2021). In addition, a variation
of Prodigal, called Prodigal-gv has been recently developed, meant to
improve gene calling for giant viruses and viruses that use alternative
genetic codes. However, these practices are mostly limited to specific
cases and have not yet been adopted by generalized workflows. A
related challenge is that currently used gene calling methods are
primarily designed for prokaryotic genomes andmetagenomes. This
means that the quality of their predictions is significantly decreased
on eukaryotic sequences, which often contain introns and, generally,
have a vastly more complex structure. It should be noted that some
eukaryotic-focused gene prediction methods exist, such as
AUGUSTUS (Hoff and Stanke, 2019) or GeneMark-ES/ET
(Lomsadze et al., 2014), but their performance has mostly been
evaluated with regards to complete genomes, not metagenomes.
While some metagenome-specific eukaryotic gene predictors have
also recently appeared in the literature, such asMetaEuk (Levy Karin
et al., 2020) and EukMetaSanity (Neely et al., 2021), they are mostly
based on homology searches against reference databases or RNAseq
evidence, rather than actually modeling the eukaryotic gene
structure. As such, any predicted genes of eukaryotic
metagenomes that are not supported by transcriptomic or
metatranscriptomic data should be handled with caution.

An additional issue that needs to be considered is the
prediction of false gene length, leading to truncated sequences.
A significant portion of these incomplete sequences can be
detected by the lack of start or stop codons, though using only
genes with valid start and stop codons is not going to eliminate
the majority of potential gene fragments. Finding the correct start
site is a challenging task even when annotating complete
genomes, and when dealing with short, error-prone contigs,
gene predictors may pick incorrect start sites, oftentimes
downstream from the correct start codon. Therefore, unless
validation is provided through functional annotation, any gene
that does not have another ORF between its start/stop position
and the edges of the contig is suspect, and may actually be
truncated. Related to the above is the observation that, due to
the fragmented nature of metagenomes, protein sequences may
be clustered at the very beginning and end of some scaffolds.
While this may seem like an artifact, clusters above a certain
number of members (e.g., 50 or more) reduce the probability of
such a phenomenon to occur by chance. As these sequences are
located very close to the contig ends, they may actually be
truncated. However, a lot of these “suspect” proteins are often
found to have hits to reference protein families, or produce stable,

high quality 3D models (Lin et al., 2022). As a result, families
containing such sequences may actually represent protein
fragments or protein domains that are either parts of larger,
multi-domain sequences, or components of multimeric
complexes.

Apart from the issues discussed above, which mostly pertain to
the specifics of gene calling, an important drawback to the current
metagenomic analysis workflows is their over-reliance on sequence
homology-based annotation. Any sequences having no match to any
reference databases are typically dropped from subsequent analysis
in almost all metagenomic studies, which leaves the majority of the
functional dark matter unexplored. Eliminating this need for
reference datasets, can, in theory, be combated by performing all-
vs-all analyses and annotation with novel approaches such as large
scale clustering, deep learning-based structure prediction and
synteny analysis. However, the above often require significant
computational resources and scalability levels that are yet to be
achieved.

Finally, a problem that needs to be addressed is the low quality,
often incomplete metadata annotation for a large number of
currently available metagenomic datasets, including ecosystem,
geolocation and phylogeny associations. At the same time,
different databases and repositories use different, often conflicting
systems for assigning metadata to samples, leading to further
confusion. The above, may ultimately result in poorly annotated
contigs, MAGs and protein clusters. Some efforts have been made
towards establishing a set of guidelines for annotating metagenomic
samples (Kottmann et al., 2008; Vangay et al., 2021). However,
unless these guidelines become a prerequisite for metagenomic data
submission across multiple repositories, this issue will continue to
exist.

9 Conclusion

In this review, we have presented and analyzed state-of-the-art,
computational methods and approaches for analyzing metagenomic
data at every step towards producing reliable protein clusters and
annotating their function. Despite the limitations in the field, the
recent developments have greatly expanded the available protein
sequence space and provided novel tools for advances and
innovations in biomedicine, biotechnology and ecology. Overall,
we believe that this review can serve as a useful material and
guidebook in the field of metagenomics, both for wet lab
scientists and experienced bioinformaticians.
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Glossary

Microbiome A community of microorganisms that can be found
living together in any given habitat

Metagenome The total amount of sequenced genetic material
(DNA) from an environmental sample

Metatranscriptome The total amount of actively expressed genes
(RNA) from an environmental sample

Amplicon A piece of DNA or RNA that is the source and product of
amplification or replication events. It can be formed naturally through
gene duplication, or artificially with polymerase chain reactions

Contig A set of DNA segments or sequences that overlap in a way
that provides a contiguous representation of a genomic region

Scaffold A portion of a genome sequence reconstructed from end-
sequenced whole-genome shotgun clones. Scaffolds are composed of
contigs and gaps

Binning The process of grouping reads or contigs into individual
genomes and assigning each group to a specific taxon

Metagenome - assembled genome (MAG) A single-taxon assembly
based on binned metagenomes that represents an entire individual
genome

Paired-end shotgun sequencing Also known as double-barrelled
sequencing. Both ends of each fragment (5’ and 3′) are sequenced in
order to make the process of reassembling the original target
genome much faster, while also allowing for longer read lengths

Adapter sequences Short oligonucleotides ligated to the ends of
DNA fragments of interest, so that they can be combined with
primers for amplification

Low-complexity regions Sequence segments highly enriched in a
single nucleotide/amino acid residue, or containing simple repeats
(e.g., ATATATAT)

Sequence masking The process of identifying and removing adapter
sequences and low-complexity regions

Gene calling The prediction of valid open reading frames (ORFs) for
protein-coding genes in a sequence assembly

Non-coding RNAs (ncRNAs) Functional RNA molecules that are
not translated into proteins. Examples include rRNAs, tRNAs,
micro-RNAs etc.

CRISPR elements A family of DNA sequences found in the
genomes of prokaryotic organisms, derived from fragments of
bacteriophages that had previously infected the prokaryote. They are
used to detect and destroy similar bacteriophages during subsequent
infections

Covariance Model (CM) Probabilistic model of the conserved
sequence and secondary structure for an RNA family

Hidden Markov Model (HMM) A statistical Markov model in
which the system being modeled is assumed to be a Markov process
X) with unobservable (“hidden”) states, which influences an
observable process Y) in a known way

Interpolated Markov Model (IMM) Variable-order Markov model,
using a variable number of states to compute the probability of the
next state

k-mers Substrings of length k (e.g., 3-mers, 4-mers etc.) contained
within a sequence

Deep Learning A subset of AI and machine learning that uses
multi-layered artificial neural networks to deliver state-of-the-art
accuracy

Transformer module A type of deep learning architecture, based
primarily upon the self-attention module, designed for sequence-to-
sequence tasks. Multiple transformer modules can be combined to
process sequence information at various levels and derive its features
(e.g., 3D structure).
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