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Abstract

Plasticity models are commonly used to represent the behavior of real ma-
terials subjected to extreme loading conditions. Classical plasticity involves
a set of linear incremental relations and hardening may be included as an
isotropic or a kinematic model. Many finite element implementations for
plasticity use linear or piece-wise linear hardening rules, which do not lead
to accurate representations of experiments on real materials, especially under
cyclic loading conditions.

To generate more realistic constitutive models, a non-linear stress-strain
relation is needed. In this paper we focus on two different methods that may
be adopted to achieve this goal: the first is based on a non-linear kinematic
hardening mechanism; the second on a non-linear plastic strain constitutive
equation, as given by a generalized plasticity model.

The two models are reviewed and discussed from both a continuous and
a discrete time point of view. Their implementation in the realm of a radial
return mapping algorithm is also addressed. The form of the elasto-plastic
tangent tensor consistent with the continuous and the discrete models is
discussed; in particular, the latter guarantees quadratic convergence for a
Newton method, frequently adopted in the incremental solution of finite ele-
ment schemes. Finally, some numerical examples for uni-axial and multi-axial
(tension-shear) cyclic loading condition under displacement and load control
are presented.
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1 INTRODUCTION

In one of its most widely used forms, the plasticity theory involves a linear
incremental relation between the stress and the plastic strain; moreover, it al-
lows only for linear or piece-wise linear hardening mechanisms. Accordingly,
it shows the well known piece-wise linear elasto-plastic stress-strain relation,
which is far from being able to simulate experiments on real materials, espe-
cially under cyclic loading conditions. Hence, some modifications should be
made to improve this model, to which we refer as classical plasticity.

Many authors have tried to design material models, showing more realistic
non-linear stress-strain relations. We would like to cite few of them: Phillips,
Eisenberg and Sierakowski [40, 42, 17, 18, 16], Lubahn [27] Armstrong and
Frederick [1] Mroz [34, 35, 36], Dafalias and Popov [12, 13, 10, 11], Lamba
and Sidebottom [24, 25], Drucker and Palgen [15], Naghdi and Nikkel [37],
McDowell [32, 33], Hassam and Kyriakides [21, 20], Chaboche et al. (4, 5,7, 8,
6, 9] Chaboche and Lemaitre [26], Doghri [14], Lubliner [29], Lubliner, Taylor
and Auricchio [30, 3]. In the cited literature, two basic methods are adopted
to generate realistic constitutive theories: the first approach is based on the
use of sophisticated (non-linear and/or non-associative) kinematic hardening
rules; the second approach is based on the use of non-linear evolutionary
equations for the plastic strain in terms of the stress. In the present paper,
we focus on two specific models: a non-linear kinematic hardening model
within the first approach [1, 5] and a generalized plasticity model within the
second approach [30, 3].

The paper is organized as follow. In Section 2, after recalling our defi-
nition for an inelastic body within an internal variable plasticity theory, we
present the hypothesis underlying the paper, which mainly are an associative
flow rule and a J2 material. In Sections 3 and 4 we study from a continu-
ous and a discrete time point of view any material model fitting within the
framework of Section 2, outlining also an algorithmic implementation within
a radial return mapping algorithm. The forms of the elasto-plastic tensor
consistent with the continuous and the discrete model are presented. There-
after, we specialize the discussion to three specific material models: classical
plasticity (CP), non-linear kinematic hardening plasticity (NLK) and gener-
alized plasticity (GP). Each one is analyzed from both a continuous and a
discrete point of view and particular attention is paid to their algorithmic
implementation; the consistent continuous and discrete elasto-plastic tensors
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are also addressed for each model. Specialization of the models to the case
of uni-axial states is briefly discussed in Section 8. We conclude the paper
with some numerical examples for uni-axial and multi-axial cyclic loading
condition under displacement and load control.

We would like to close this introduction stressing that the discussion is
restricted to the realm of plasticity (i.e. to theories with a yield surface)
and this is the reason for omitting so far any reference to another fruitful
approach for the development of constitutive models, the endochronic theory.
Introduced originally by Valanis in 1971 [47, 48] and with a major modifica-
tion in 1980 [49], the endochronic theory is based on an intrinsic time, related
to the deformation history of the material point, the relation being a mate-
rial property. In its general form, the theory does not require the existence
of a yield function, which however can be obtained by introducing a Dirac
delta function. Within this approach, as discussed by Watanabe and Atluri
[51, 50] and by Engelstad et al. [19], a kinematic hardening rule can be de-
rived in the form of a hereditary integral. Expressed in differential form, this
rule closely resembles the non-linear hardening rule proposed by Armstrong
and Frederick [1]. Therefore, our discussion of the NLK model may be easily
extended to include this special case of the endochronic theory.

2 BASIC ASSUMPTIONS

In this section, after recalling our definition for an inelastic body within an
internal variable plasticity theory, we present the hypothesis underlying the
paper, which mainly are an associative flow rule and a J2 material.

An inelastic body is one in which the strain is determined by the stress
and by some additional variables, usually named internal or hidden [28]. We
assume that the inelastic behavior can be treated within the framework of a
general plasticity theory, as described in Reference [29]. Accordingly, there
exists a continuous yield function f, which separates the elastic region (for
which f < 0 and no inelastic effects are present) from the plastic region (for
which f > 0 and inelastic deformations occur); furthermore, there exists
a continuous limit function F, which delimits the domain of all admissible
stress states (a stress is admissible only if F < 0). ! In our analysis, we do

1The yield function f and the limit function F are assumed to be defined in stress
space, but corresponding surfaces in strain space can be easily constructed as shown in
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not require that the limit function F and the yield function f coincide.

Confining the discussion to a small deformation regime, at any time ¢ the
strain € may be additively decomposed into an elastic and a plastic part, €°
and €? respectively:

(21) € =€+ €
where € can be computed in terms of the stress only:
(2.2) e€=Clo

C being the fourth order elastic modulus tensor. By convention, to simplify
the notation, the dependence of the variables on the time ¢ is not explicitly
stated. For a linear elastic response, C is independent of strain.

The internal variables are assumed to be the plastic strain €?, the back
stress a and the accumulative plastic strain é?. The back stress a represents
the location of the center of the yield surface, which may shift as a result of the
kinematic hardening mechanism, while €” is an accumulative measure of the
plastic strain, used here to model an isotropic hardening mechanism. The
presence of additional variables requires additional constitutive equations,
that for now we express in the form:

9]

e =g(o,e’, a,e?)
ip

¢ =e(o,€’,a,€)
& =h(o, €, a,c)
where a superpose dot indicates a time derivative. Further, we assume the
existence of a flow potential g, function of the stress, such that:
9g
oo
The 4 is a non negative scalar quantity, embodying the plastic rate char-
acteristic of the material and is called the consistency parameter, since it is

computed requiring the satisfaction of a specific plasticity model. According
to the existence of an elastic region, we require:

& =¥

4=0 when f<0
420 when f20

References [39] and [22].
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Furthermore, we consider only the case of a flow rule associated with the
yield function f, or briefly an associative flow rule; as a result, ¢ = f and:

Consequently, the governing equations are:

(o) B )
O e N e ST N e T

MY W e e
S’

e e T T T S e SN

o = Ce =Cle— €
bY -«
f = f(o,€ a,¢é)
F = F(o,e%,a,¢,f,%)
P — ﬁﬂ
Jo
& = e(o,€” a,é)
a = ho, e, a,¢e)

4 > 0, F<0, 4F=0

where:

Equation 2.3 is the linear elastic relation between the stress o and the
elastic strain €€, which is also expressed in terms of total and plastic
strain by the additive decomposition presented in equation 2.1.

Equation 2.4 is merely the definition of the relative stress X.

Equation 2.5 is the yield function, where an explicit dependence on
the stress, the plastic strain and the back stress is stated. Further, a
dependence on the scalar accumulative measure of the plastic strain,
€P, is included to model an isotropic hardening mechanism.

Equation 2.6 is the limit function, which may explicitly depend also on
the yield function f and the consistency parameter 9. Observe once
more that the functions F' and f are not required to be the same,
although they may coincide for some specific model, such as classical
plasticity.

Equation 2.7 is the constitutive equation (flow rule) for the plastic
strain, in the framework of associative plasticity.
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e Equation 2.8 is the constitutive equation for the accumulative plastic
strain €’.

e Equation 2.9 is the constitutive equation for the kinematic hardening
mechanism.

e Equations 2.10 are the Kuhn-Tucker conditions, which reduce the plas-
tic problem to a constrained optimization problem.

Finally;, we limit our discussion to the case of isotropic materials whose in-
elastic behavior is controlled only by the second invariant of the deviatoric
stress, J,, and we shall refer to this general class as von Mises or J2 materials.
Accordingly, the evolution equations involve only the deviatoric stress and
strain, s and e respectively, given by:

s = a'—gtr(a')l
e = € -—%tr(e)l

1 being the second order identity tensor and tr(:) the trace operator. We

note that:
lIsll = y/2J2

since the linear vector space of second order tensors is equipped with the
natural (Euclidean) inner product, defined by the trace of the product:

lall = [a: a]* = [tx(a- a)]*
a being any second order tensor; moreover:

da |l

Blall _ =

o+l

, &l =1

Due to the assumption of J2 material and excluding a direct dependence of
the yield and the limit functions on the plastic strain, the governing equations
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reduce to:
(2.11) p = K6
(2.12) s 2Ge® = 2G [e — €F]
(2.13) Y = s—a
(2.14) [ = f(Z,&)=|Z] - oy(e”)
(2.15) F o= F(Z,¢,f,9)

, .of . of .
9 Poo= — A e =
(2.16) e 135 = Tas =11
(2.17) g o= |
(218) a = Hk,'nép - Hnlépa
(2.19) 4 > 0, FS0, 4F=0
where:

e Equation 2.11 is the linear elastic relation between the volumetric part
of the stress (the pressure p = tr(e)/3) and the volumetric part of the
strain ( 6 = tr(e) ), K being the bulk modulus.

e Equation 2.12 is the linear elastic relation between the deviatoric stress
s and the elastic deviatoric strain e, which involves the shear modulus
G; e and e’ are respectively the deviatoric part of the total and the
plastic strain.

e Equation 2.13 is the relative stress ¥, in terms of the deviatoric stress
s and the deviatoric back stress a.

e Equation 2.14 is the von Mises yield function, expressed in terms of the
relative stress norm and the radius of the yield surface o,. The radius
of the yield function is variable in time, due to an isotropic hardening
mechanism, which is given in the simplest form by:

(220) Oy = 0y0 + Hiso e’
oy0 being the initial yield stress.

e Equation 2.15 is the limit function.
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e Equation 2.16 is the constitutive equation for the deviatoric plastic
strain. We note that, due to the specific form of the yield function 7,
the tensor n normal to f has unit norm.

o Equation 2.17 is the constitutive equation for the accumulative plastic
strain &® and using equation 2.16 it can be rewritten as:

(2.21) &P =4

e Equation 2.18 is the constitutive equation for the kinematic hardening
mechanism. Note that, starting from the general equation 2.9, we re-
strict its form, still allowing for a non-associative non-linear rule, as the
one proposed by Armstrong and Frederick in Reference [1]. Moreover,
note that equation 2.18 can be rewritten as:

(222) a = Hkmﬁ’n - Hnr'ya
taking advantage of equations 2.16 and 2.21.

e Equations 2.19 are the Kuhn-Tucker conditions.

In Sections 5,6 and 7 we consider three specific material models, which
fit within the above general framework. They differ in terms of the limit
functions and of the kinematic hardening rules, as summarized in Table 1.
For the generalized plasticity model h(f) is a non-linear function, discussed in
Section 7. Specialization of the models to uni-axial states is briefly discussed
in Section 8.

Material model Limit function Kinematic mech.

Classical plasticity (CP) F=f=|%]|-0, |&=Hun , Hu=0
Non-linear kin.hard.(NLK) | F = f = ||2|| -0, | & = Hiinyn — Hyyax
Generalized plasticity (GP) | F=h(f)[n: o] =% | &= Hrnin , Hu =0

Table 1: Limit functions and kinematic mechanisms for the material models
discussed

3 CONTINUOUS TIME MODEL

In this section we discuss from a continuous time point of view any material
model fitting in the framework presented in Section 2.
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3.1 Continuous constitutive equation for the plastic
strain

Recalling equation 2.16, the evolution of the plastic strain is governed by:
e’ = 9n

where the unit tensor n and the scalar parameter 4 provide the direction
and the magnitude of the plastic flow, respectively. Given a yield function f
and a state of stress, the tensor n is uniquely determined, while the ¥ must
be computed by requiring the satisfaction of the limit equation. We assume
that the consistency parameter may be expressed as:

(3.1) Y = Acont[n : €]

Acont being a scalar parameter, depending on the particular material model,
for the three models discussed-in the paper, we will present an explicit ex-
pression for A.n:. Note that if the limit function F involves an explicit
dependence on the consistency parameter (see Table 1), equation 3.1 can be
obtained directly from the condition F = 0; if F' does not involve % explicitly,
we use the condition F = 0.

3.2 Continuous elasto-plastic tangent tensor

To compute the elasto-plastic tangent tensor for the continuous mode] we
start from the rate form of the linear elastic relation between s and e (equa-
tion 2.12) and the evolution equation for the back stress (equation 2.22),
which are rewritten in matrix form as:

I 0 2Gn ol _foce
0 I — [Hkmn — Hn1a] . - 0
v
I being the fourth order identity tensor. Recalling equation 3.1, we obtain:

o [3 )= {aim e T e

Expansion of the first row yields:

é = QG [I - Acont(n ® n)] e
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which can be transformed to obtain a rate relation between the total stress
o and the total strain e:
o= Dcomﬁé

where:
(33) Dcont - {]{ (1 ® 1) + 2G [Ideu - Acont(n ® n)]}

1., being a rank four tensor defined as:

L.. =I—%(1®1)

In equation 3.3, Do is the elasto-plastic tangent tensor, consistent with
the continuous model discussed in Section 2. Note that the symmetry of the
tensor is not destroyed by a non-associative kinematic hardening rule, since
the two sets of equations in 3.2 are decoupled.

4 DISCRETE TIME MODEL AND ALGO-
RITHMIC IMPLEMENTATION

We now present the discrete time counterpart for the analysis performed in
Sections 2 and 3, paying particular attention to an implementation of the
model within a radial return map algorithm. The form of the elasto-plastic
tangent tensor consistent with the discrete model is also addressed.

4.1 Discrete equations and integration algorithm

From a computational standpoint we treat the non-linear behavior of a ma-
terial as a strain driven problem, since in a finite element implementation
the stress history is computed from the strain history by an integration tech-
nique, such as a return mapping algorithm. Accordingly, we introduce a
discrete counterpart of the equations presented in Section 2 and review the
integration algorithm.

Let [0,7] € R be the time interval of interest and consider two time
values within it, say t, and t,41 > t,, such that tn4; is the first time value
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of interest after ¢,,. To minimize the appearance of subscripts (to make the
equations more readable), we introduce the convention:

a,=a(t,), a=a(tnt1)

where a is any generic quantity. Accordingly, in the discrete time setting
the subscript n indicates a quantity evaluated at time t,, while no subscript
indicates a quantity evaluated at time t,4;.

We assume that the solution is known at time ¢, and given by the state:

{sn.en. €}, €, an}

We wish to compute the solution at time ¢,41, given the strain e. Using a
backward Euler integration formula for the plastic strain, the accumulative
plastic strain flow and the back stress rules (equations 2.16, 2.21 and 2.22),
we obtain:

(4.1) e’ =¢e’ +An
(4.2) &= & 4\
(4.3) Ra =a, + Hudn or a=T a,+ HinT*An
where:
tngl
A= Adt

tn

is the discrete consistency parameter and:

1

R/\-:l n/\ /\:.__..__—_
+4 I , T 1+ ]JnIA

From now on, the presence of a superscript A indicates a dependence on
the consistency parameter. Substitution of equation 4.1 into equation 2.12
yields:

(44) s=2G [e—el]—2G' An
and subtraction of equation 4.3 gives:

(4.5) Y=s—-a=2Gle—e?’]-T"a,~U'n
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where:

U = [QG + HkinT’\] A

In the above, ) is an unknown quantity and is computed by means of an in-
tegration algorithm, such as a return mapping procedure. Initially suggested
by Maenchen and Sack [31] and Wilkins [52], the return mapping algorithm
provides an efficient and robust integration scheme, based on a discrete en-
forcement of the limit equation. It belongs to the family of elastic-predictor
plastic-corrector algorithms and, hence, is a two part algorithm. In the first
part, a purely elastic trial state is computed; in the second, if the trial state
violates the material model constitutive equation, a correction is computed
using the trial state as initial condition and applied such that the final state
is fully consistent with the discrete model. The algorithm has been widely
studied [38, 45, 44] as has its stability [23, 43]. Recalling that the incremental
elasto-plastic initial value problem formulated as a constrained convex min-
imization problem is equivalent to the classical mazimum plastic dissipation
postulate, the return mapping algorithm can be shown to be equivalent to
a closest point projection of the trial state onto the limit surface F' = 0.
Additional discussion of the algorithm and its theoretical implication can be
found in Reference [44].
We shall now discuss the two steps of the algorithm in more details.

o Trial state: we assume that in the interval [t,,tn4+1] no plastic deforma-
tion occurs (i.e. ® = e?, which implies: A =0, @ =, ). Asa result,
we have as trial values:

AR =0
ePTH e’
eTh = e
QTR = Qg
sTR = 2G[e — e”]
$TR _ TR _ TR _ TR _ o

If the elastic trial state is admissible, i.e. it does not violate the limit
equation F, then it represents the new solution at t.4 and the sec-
ond part of the algorithm is skipped. If the elastic trial state is not
admissible, a correction has to be performed.
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e Plastic correction: enforcing the satisfaction of the limit equation, the
consistency parameter A may be computed, as shown for various mate-
rial model in Sections 5, 6 and 7. Equations 4.1, 4.2, 4.35, 4.4 and 4.5
can be now rewritten in terms of the trial state and A:

e = e’R4n

e = grTR

a = T*a™+ H.,, T*)n
s = s'®—-2G An

v = TR_ T3 TR _ Pp

which allow us to compute and update the solution.

For all the models discussed in the paper, and more generally for all J2
materials with an associative flow rule and a non-linear kinematic hardening,

we now show how the closest point projection of the trial state onto the limit

surface ' = 0 reduces to a radial return projection. Consequently, the

consistency parameter A may be computed by solving only a scalar equation.

First we note that the relative stress ¥ can be decomposed as:

(4.6) X=X, -0Un
where:
Efx - [STR _ T/\aTR]
Secondly, we observe that ¥ is in the n-direction, i.e. ¥ = ||X|| n, since:
of _ofox _ of

do 9% 90 9%
oz ) )

82 dev = _HEH dev — ”2“

Hence, from equation 4.6, we may conclude that E;\, must be also in the
direction of n, i.e. 3 = ||=}|| n. Consequently, a scalar relation between
the norms of ¥ and £} may be generated:

(4.7) =] = 1= - U
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This situation differs from the standard return mapping algorithm (i.e., the
one obtained for classical plasticity) for which the direction n is determined
by £T, which is a quantity independent from A. In the more general setting
here discussed, n is also function of A; this makes the return algorithm slightly
more complicated, but still a radial return may be performed.

4.2 Discrete constitutive equation for the plastic strain

The general form of the discrete constitutive equation for the plastic strain
has already been introduced in equation 4.1, obtained from the corresponding
continuous constitutive equation through integration. The missing ingredi-
ent is the value of the discrete parameter A, which should be computed by
requiring the satisfaction of the material model in a discrete setting.

We assume that from the discrete limit equation, an analogous discrete
counterpart of equation 3.1 can be obtained:

d\ = Adisc‘r [n : de]

Agiser being a scalar quantity depending on the material model. Starting
from Section 5, we discuss how A and Ay;s.r can be computed for the material

models of Table 1.

4.3 Discrete elasto-plastic tangent tensor

We address a simple and efficient approach for constructing the elasto-plastic
tangent tensor, consistent with the discrete model. The use of a consistent
tangent tensor preserves the quadratic convergence of a Newton method,
which we adopt in Section 8 for the incremental solution of a finite element
scheme. Following the same approach of Section 3.2 but within a discrete
time setting, we start from the linear elastic relation between s and e and
from the discrete evolution equation for a:

s = 2G[e—e€l]—2GAn
RAa = C!n-}-Hk;n/\h

and by linearization we obtain:

(4.8) ds = 2Gde — 2Gd\ n — 2GA dn
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(49) RMa + Hyd) a = Hiid)d n 4+ Hipp A dn

Keeping in mind that:

n— I z
=1~ = )]
we can compute its variation:
dn ! [I——(n@n)]dZ:-—N—dE

~ =l =]

where the fourth order tensor N is the orthogonal projection operator on the
plane with unit normal n, such that:

Nn=0 and NN =N

Accordingly, equations 4.8 and 4.9 can be recast in matrix form in terms of
the unknown ds , da, dA:

I+aN —aN 2Gn ji [ 2Gde
—bN RM+bHN -Hiymm+ Hyo d) - 0

where:

. 2GA _ Hyin
(]I 1%

Since dX\ = Agiser [0 : de], the previous system of equations simplifies to:

I+aN —alN ds _ 2G [(1 + Adiscr)I - AdiscrN] de
—bN RM+ N da | 7 | Agiser [Hk,-n(n ® 1’1) —_ an(a ® n)] de

Inverting the coefficient matrix, we may solve for ds and da:
{ ds } _ I+ o;N 1 —azN
da '—CYQN EXI + QQN

2G [(1 + Adiscr )I - AdiscrN] de
Adiscr [Hkin (n ® n) - Hnl(a ® n)] de
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where:
o = aR
V7 b+ R +aR
b
2T TV YR 1R
a (831
Qg =

P+ R +aeR R

Expanding the first row and performing some manipulations, we yield the
relation:

ds = {2G(1 — C)I+ [2G(C = Agiser) + B(n: )] (n ®@n) — B(a ©® n)} de

where:
(4.10) B = Ad,-schACHnl
A
_ 1341

Finally, we can get the incremental relation between the total stress o and
the total strain €, consistent with the discrete model presented in Section
4.1:

do = Ddimdé

where the algorithmic elasto-plastic tangent tensor is given by:

(4.12) Ddiscr =K (1@1)+QG (1 -—C) Idev
+[2G(C — Agiser) + B(n:a)](n®n) - B(a ®n)

We recall that the coefficients B and C are defined in equations 4.10 and
4.11, respectively, while Ag;s.r comes from the linearized limit equation for
the specific material model.

We conclude pointing out that a straightforward approach for the con-
struction of the consistent elasto-plastic tangent tensor has been shown for
any material model that fits in the framework discussed in Section 2; however,
this tensor is non-symmetric, in the presence of a non-associative kinematic
hardening mechanism, such as the one proposed by Armstrong and Frederick
in Reference [1].
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5 CLASSICAL PLASTICITY MODEL

We now specializes the discussion of Sections 3 and 4 to a simple and well
established classical plasticity model. The model is obtained by setting the
limit function F' to coincide with the yield function f and choosing a linear
evolution equation for the kinematic hardening mechanism:

F=f=|Z|-R
a = Hipn , Hy=0
As a result, we have:

R'=1, T'=1, U=[2G+ Hin]

5.1 Continuous model

Since the limit function F' does not depend explicitly on %, as discussed in
Section 3.1, we use the condition F' = 0 to compute an expression for the
consistency parameter. By the chain rule we have:

. oFr oF .
F=os "
= oy Tt

= n:s—-n:a—H,e =0
where we noted that:
o _ oo,
ger  ger
Substitution of equation 2.21 and use of the rate of equation 2.12 yield:

= _Hiso

F =2G[n:é]—[2G + Hiyo + Hyin] 7 = 0
which can be solved in terms of #:

=A% [n: ¢

cont

where:

cP G

cont — —év—l—
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with:
2Gl = 2G + Hiso + Hkin

Once the scalar quantity AS?, is computed, a mere substitution into equa-

tion 3.3 returns the continuous elasto-plastic tangent tensor relative to this
specific model:

cont

DCP. = {K (1®1)+2G [Idev ~Ag(n® n)]}

5.2 Discrete algorithmic model

As a result of H,; = 0, the following simplifications occur:

a = aTR+Hkm)\n

z);\1 — ETR:STR—QTR

Y = TR _[2G 4+ Hpin) dn

Looking at the last relation, we may conclude that now £7% and ¥ are par-
allel and consequently a scalar relation between their norms may be derived:

1=l = 1377 - [2G + Han] X

Recalling equation 2.20, the radius of the yield surface o, may be expressed
as:
Oy = 0Oyo + Hisoép
= Jy0 + Hiso(éﬁ + )\)
= Oym + Hiso A
such that the discrete form of the limit equation can be enforced:

F=f=[ISTR| - (2G + Hin) A] = (0yn + Hiso)) = 0

and solved for A: TR
\CP _ |77 = oyn
2G4
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From the linearization of the discrete limit equation, we get:

JF oF
— e » — AzP
dF = 5 dX A+ aéPde
_ of . f
= 75 d¥ + 65Pd6

= n:ds—n:da— H;,de’ =0
and using equations 4.8 and 4.9, with H, = 0 and R* = 1, dF reduces to:
dF = 2G[n : de] — [2G + Hiyo + Hyin]dA =0
This last relation can be solved for d), obtaining:

d\ = ASE [n: de]

discr

where: .
AC>P —- e = ACP
discr Gl
Finally, from equation 4.12, noting that B = 0, we can write the elasto-plastic
tangent tensor consistent with the discrete form of the classical plasticity
model:
DL, = {K (191)+26 (1-CF) Ly + 26 (CF - AG,)] (n@n)}

discr

where:

= IsTRy|(

[p2a
Note that the continuous form of the tangent tensor coincides with the case
C®F = 0, which is also the values attained as the load step reduces to zero.

5.3 Remarks on the classical plasticity model

Classical plasticity is a well known and widely used model, especially in the
simple form discussed here, relative to a J2 material.

The model is based on linear evolutionary rules for both the plastic strain
and the kinematic hardening; as a result, only piece-wise linear stress strain
relation can be obtained. In figures 1 and 2 two typical & — € curves are
represented, relative to a uni-axial tension problem. Note that if the model
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is unloaded from the plastic range and reloaded before the occurrence of
plasticity in the reverse direction, it renews plasticity at the same stress where
unloading began. This behavior is in contrast with experimental evidence for
many materials, such as aluminum and copper, which renew plasticity at a
lower value of the stress under this type of unloading-reloading path, as
discussed in References [40, 42, 27]. Typical responses of the model under
cyclic loading conditions are reported in figures 3 and 4.

On the other hand, from the previous discussion, it is clear that the
model has a simple and straightforward algorithmic implementation; in fact,
the condition F' = 0 yields a linear equation in A and the consistent elasto-
plastic tangent tensor is symmetric, for both the continuous and the discrete
model.

We may conclude noting that, despite its simple algorithmic implemen-
tation, the classical plasticity is unable to closely simulate the behavior of
real materials; hence, some improvements are needed.

6 NON-LINEAR KINEMATIC HARDENING
MODEL

For the NLK model the constitutive equations specialize as:
F=f=|2]-o,
& = Hynyn + Hypya

where the first equation clearly states that the limit and the yield functions
coincide, while the second equation is the non-linear evolutionary equation
for the kinematic hardening, initially proposed by Armstrong and Frederick
[1]. In the last decade, the model has been extensively studied by several
authors; in particular Chaboche et al. showed that the model performs well
in simulating the behavior of some real materials [4, 5, 7, 8, 6, 9, 26].

6.1 Continuous model

Recalling the discussion of Sections 3.1 and 5.1, the consistency condition
yields:

F =2G[n:é] - {2G + Hiso + Hpin — Hun: o]} =0
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which can be solved in terms of 4, obtaining:

5= ANEK[n : ¢]

cont

where:
ANLK _ 2G
cont 2G, — Hyn : a
Hence, a direct application of equation 3.3 returns the consistent contin-
uous elasto-plastic tangent tensor:

DY = (K (191) +26 [T — A¥K(n o n)]}

cont

6.2 Discrete algorithmic model

As discussed in Section 4.1, a radial return mapping algorithm may be per-
formed also for the NLK model. In fact, recalling equation 4.7, the discrete
limit equation can be written as:

=3l - U =0y, =0

Noting that:

== =) sy

_ [(STR TAaTR):(STR TAaTR)]%

— [(STR STR) QT/\(QTR STR)+(TA)2(QTR aTR)}%

=[S = 28T + Sual T

wheré:

S” _ (STR STR)
Sm — (STR TR)
Saa — aTR aTR)

the limit equation becomes:

Sys(RY)? = 25,0 R + Saa = [2GARY + Hynh + R0y + HiohRY] = 0
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Reordering for A, a quartic equation is obtained:

g(/\) = C]/\4 + Cz)\3 + Cg/\2 + 04/\ + Cs = O

where:
Cl = 4Hn12G(2)
CZ = 4Hn12GOUy,n + 8G0G1Hnl
Cs = Hy®[(0yn)? = Ses] +4G2 + 4H0y, [Go + Gi]
C4 = 2Hnl [(O'y,n)2 + Ssa - Sss] + 40y,nGl
CS = (Uy,n)2 — Saa + 253a - Sss
with:

2Gy = 2G + Hi,,

The solution of this equation, i.e. the search of the minimum positive root, is
not an easy task, due to the order of the polynomial and to the dependence
of the coeflicients on the trial state. An iterative algorithm of the Newton
type may be easily implemented:

)\H—l — )‘i + A/\z
. X
Ax = -2
g (X)
where: the superscript ¢ refers to the i-th iteration, the superscript / indicates
first derivative; and where a starting value of A° = 0 may be adopted. Un-
fortunately, this approach does not guarantee the convergence to an existing
or positive root; in fact:

ANO) = -T2

ETR . ZTR _ (Uy,n)2
2H,, [ETR c pTR (ay,n)z] + 2H (XTR a’h) ~ 40, ,.G,

and the sign of A) at zero depends on the sign of the denominator, which
clearly depends on the trial state and on the previous solution. Consequently,
it may happen that AA(0) < 0 and the Newton algorithm returns a negative
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value for A. Attempts of starting the Newton iteration algorithm with differ-
ent values of A (such as A% = ),) have been explored but generate the same
pathology. Once the Newton algorithm has failed, the only robust approach
is to perform a synthetic division of the quartic polynomial and compute in
closed form the roots of the resulting cubic [41]; the smallest positive root
computed root so founded should be filtered through a Newton algorithm,
since the synthetic division is sensitive to roundofl.

Recalling equations 4.8 and 4.9 and the discussion of Section 5.2, we have:

n:ds = 2G[n:de]—2GdX
n:da = T'\Hk,‘nd/\ - TAHnl[n : a]d/\

such that the discrete consistency condition can be formulated as:
dF = 2G[n : de] — {2G + Hiso + T*Hiin = T*Hu[n : al}dr =0
Solving for dA, we obtain:

d\ = AYEE[n : de)

discr

where:

ANLK _ 2G
discr 2G, + T Hpin — TAan[n : a]

Recalling the discussion of Section 4.3, the elasto-plastic tangent tensor con-
sistent with the discrete model can be computed:

DN = K (1®1)+2G (1 = C0) L
+[26 (C — ANEE) + B(n: a)| (n@n) - Bla@n)

discr
where:

B = ANEETACH,

discr

260
=41
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6.3 Remarks on the model

The NLK model represents an improvement with respect to the CP model.
In fact, as qualitatively shown in figure 5 for the case of uni-axial tension,
the model has the property of smoothly reaching an asymptotic stress value.
Moreover, it retains the capacity of smooth transition between elastic and
plastic behavior also under cyclic loading condition, as qualitatively shown
in figure 6. However, the asymptote can be only horizontal and, if unloaded
from the plastic range and reloaded before the occurrence of reverse plasticity,
the model renews plasticity exactly at the same stress where unloading began
(see figure 5). This behavior is in contrast with some experimental results,
such as the ones presented in Reference [27].

The NLK model has been frequently used by several authors to simu-
late the behavior of real materials. In particular, Chaboche has presented
interesting applications as well as extensions of the model to include strain
range memory, visco-plastic recovery properties, ratcheting effects [4, 5, 7, 8,
6,9, 26]. This clearly makes the NLK widely used in the modelling of metals
under cyclic loading paths and a high degree of accuracy in the simulation
may be achieved.

It is however clear from the previous discussion that difficulties arise to
implement the model in a return mapping framework and they are all directly
related to the form of the non-linear kinematic hardening rule. In fact, the
discrete consistency condition yields a quartic equation, whose coefficients
are function of the trial state and the previous solution, which makes dif-
ficult the search of the minimum positive root. A robust approach based
on a combination of Newton’s algorithm and synthetic division is presented,
which is computationally quite expensive. Moreover, the elasto-plastic tan-
gent tensor consistent with the discrete model is non-symmetric and, as a
result, an appropriate solver must be used, plus the required memory storage

is doubled.

7 GENERALIZED PLASTICITY MODEL

A simple model for generalized plasticity was introduced by Lubliner and the
authors in References [30] and [3]. Referring to the notation of Reference (3],
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the limit equation and the evolutionary equation for a are respectively:

F h(f)[n:o]-7%
a = Hkm‘yn y Hn1 =0

il

where:

M) = gt n=2L
5G-N1HF " oo
with 8 and é two positive constants with dimensions of stress and H =
His, + Hyin. In particular 3 is a scalar measure of the distance between the
asymptotic and the current radius of the yield function o, while § measures
the speed of the model in approaching the asymptotic behavior (see figure 7
and 8).
Recalling the discussion in Section 2, we have:

n:oc = n:é:n:S—i»n:c'x:n:)i—{»‘kam
d d
= - ) in — 37 by ) in
n dt(HEH“)Jr’er dt“ | + Y Hx
where it has been noted that:
n:n=1 = n:n=n:n=290

As a result, the limit equation can also be rewritten as:
d . :
F=h| 212l + 9 Hin| —4

which is a form particularly suitable for an algorithmic implementation of
the model.

7.1 Continuous model
Requiring the satisfaction of the continuous limit function F = 0, we get:
F = hn:s]-4%
= h[2Gn:&)-2G4]-4=0

Solving for 4, we obtain:
=A% In: ¢

cont
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where:
AGP 2G

cont = 1
2G + —=
h(f)

Note that in the limiting case f — S, h(f) — (1/H), and we regain the
classical plasticity model. Moreover, the elasto-plastic stress-strain curve
has a continuous slope at the transition point between the elastic and the
plastic behavior.

7.2 Discrete algorithmic model

Integrating the continuous limit function over the time interval [¢,,¢,41], we
obtain the discrete limit condition:

A=RIZN = N1Zall + A Hein] = 0

If we set:
Ay = ||IETR) = oy
Ao = ISR = T
A3 == (S—QG

Ay = (6+H)p

we obtain the quadratic equation:

(7.1) aX? +bA+c=0
where:
a = 2G1A3
= Ay — A1A3 +2G1 A,
c = —AlAz

The physically correct solution corresponds to the smallest positive root.
Note that for 8 = 0 the model reduces to classical plasticity, as expected. In
fact, § = 0 implies A4 = 0, while ||2,,|| < 0,,, implies A; > A;. Accordingly,
equation 7.1 simplifies to:

(QG]/\ - Al) (Ag)\ + Ag) = 0
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which has the roots: Ay = —A2/A3, Ay = A1/(2G;). The first root never
represents the correct one: in fact for § > 2G it is negative; for 0 < 6 < 2G,
we have A\; > );. On the other hand, the second root is always physically
correct and coincides with the root of the classical plasticity model.

If 6 and the hardening are both zero, equation 7.1 reduces to:

(2GX — A;) (=2G\ + A;) = 0

which has the roots: A\; = A;/(2G) and A\, = A;1/(2G). Again ), coincides
with the classical plasticity root and A; > A;; hence, it is the correct solution.
Upon clearing fractions, the discrete limit equation becomes:

(68— f)+ HBIA = fIIZ] = [I1Zall + HyinA]
Linearizing and noting that:

d|Z]| = n:dT =2G[n:de] - (2G + Hyi)dA
df = d|||| - Hisd)

we get:
d\ = ASF [n: de]
where:
diser = 9Gy By + (2G = 6)B, + B
with:

B IZ] = 1Bl + (Hkin + 6) A
B, = ”E” - (Uy,n + Hiso)\) = f
By = (6+H)p

Recalling the discussion of Section 4.3, the elasto-plastic tangent tensor
consistent with the discrete model can be computed:

DS, ={K (1©1)+26 (1-C%) L, + [26 (C°F - AL,)] (n @ n)}

discr

where:
GP 2G )\

T IR

This is a symmetric tensor and for § = 0 (which implies B, = Bz = 0) it
returns the classical plasticity tangent tensor.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 27

7.3 Remarks on the model

From a point of view of constitutive behavior, the main features of the gen-
eralized plasticity are:

o after initial yield, it shows a smooth transition before reaching an
asymptotic value for the stress. The asymptote is horizontal for zero
hardening, is not horizontal for non-zero hardening (see figures 7 and

9).

e the speed of the model in reaching the asymptote is controlled by the
parameter 6 (see figure 8).

e the elasto-plastic stress-strain curve is continuous with its first deriva-
tive at the transition point between the elastic and the plastic behavior.

e if unloaded from the plastic range, upon reloading, it renews plasticity
before the attainment of the stress where unloading began (see figures

7 and 9).

We wish to stress that this last feature is unique to the GP model and the
way in which the model renews plasticity may be easily modified to take
into account the behavior of specific real materials. For example, if repeated
unloading-loading occurs, without plastic deformation in the reverse direc-
tion, for each new loading action an increased value of é can be progressively
used. Depending on the material simulated, the updating formula may be
expressed in terms of the distance and the angle between the stresses in
correspondence of the successive unloading and reloading (clearly in an ap-
propriate norm). Note that no modification to the discrete algorithm and
to the elasto-plastic tangent tensor should be made since the parameter é
is kept constant during all the loading action. Consequently, stress-strain
curves of the type represented in figure 10 can be produced; note also that,
using update values for §, the GP model does not collapse toward the perfect
plasticity behavior (f = 0), when starting from a plastic state with f > 0 and
a large number of small unloading-reloading are imposed under displacement
control.

From an algorithmic point of view, the GP model has a simple implemen-
tation; in fact:
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e the discrete consistency condition generates a quadratic equation, which
can be solved in closed form and for which it is possible to delineate
the properties of the roots;

e the elasto-plastic tangent tensor consistent with the discrete model is
symmetric.

We wish to conclude stressing that the GP seems to be an extremely
versatile model, involving parameters with clear physical meaning. Its al-
gorithmic implementation within a return mapping algorithm is simple and
straightforward; in particular, only a few lines of extra code must be added
to convert an already implemented CP routine (mainly a specific root for
a quadratic equation must be computed). Moreover, the symmetry of the
consistent algorithmic elasto-plastic tangent tensor is retained in the discrete
setting. Hence, the authors believe that the GP can be successfully used in
the simulation of real materials.

8 SPECIALIZATION TO UNI-AXIAL MOD-
 ELS

All the model discussed so far are three-dimensional, which means that they
are defined in terms of general states of stress and strain. Accordingly,
the material parameters involved in the constitutive equations (such as the
hardening parameters, the yielding stress, etc. ) are relative to a three-
dimensional setting.

If the reduction of the models to the case of uni-axial states of stress and
strain is needed, then the constitutive equations should involve the corre-
sponding one-dimensional quantities, which may be easily computed through

the relations:
u 3 U 3 u 3

-2 2 2
H, = §Hiso y Hin = '3'Hkin , Hy= §Hn1
Just to give an example, note that f measures the distance between the
asymptotic and the current radius of the yield function o, (for a generic three-
dimensional state), while 5% measures the distance between the asymptotic

uni-axial stress and 0.
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The material parameters used in the next section for the numerical ex-
amples are always expressed in terms of the one-dimensional quantities since
they have an easier interpretation.

9 NUMERICAL EXAMPLES

In this section we present some numerical simulations performed to test the
models, discussed above; in particular, we concentrate on non-linear kine-
matic hardening (NLK) and generalized plasticity (GP). All the results are
obtained using a three dimensional finite element, based on a mized approach
[46] and implemented into the Finite Element Analysis Program (FEAP)
(53, 54].

The numerical simulations are organized as follow:
e Cyclic uni-axial test under displacement control: zero mean strain

e Cyclic uni-axial test under displacement control: non-zero mean strain

Cyclic uni-axial test under force control: zero mean stress

Cyclic uni-axial test under force control: non-zero mean stress

e Tension-cyclic shear test under displacement control
e Tension-cyclic shear test under force control

For each numerical simulation basically three figures are presented; in the
first the stress-strain curve for the NLK model is presented, in the second the
same curve for the GP model and in the third one the two previous curves
are reported together for the purpose of a direct comparison.

The tests are performed on a cubic specimen of side length equal to
10, with boundary and loading conditions set to produce the appropriate
stress/strain state. The sample is modeled with only one element and the
material properties are:

E=100, v=03, o',=15

The tests under force control are performed using a special arc-length
type algorithm to control the time-stepping increments [2].
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9.1 Cyclic uni-axial test under displacement control:
zero mean strain

The specimen undergoes a cyclic loading history, producing a uni-axial stress
(tension-compression). The load is applied controlling the displacements and
a zero mean strain is required.

In figure 12 we report the stress-strain curve for the NLK model with

parameters:
Hy =100, HY=10, H4, =0

For comparison, with dotted lines we present also the solutions of the classical
plasticity model for Hf,, = 0 and H;, = 100.

In figure 13 we report the stress-strain curve for the GP model, relatively
to the same test, with material parameter:

B =10, 6*=50, H: =0, H: =0

180

while in figure 14 the curves for both models are reported together for com-
parison purpose.

9.2 Cyclic uni-axial test under displacement control:
non-zero mean strain

Again, the specimen is in a uni-axial state of stress (tension-compression)
and undergoes a cyclic loading history, controlled through the displacement.
But this time, a non-zero mean strain is imposed. The material parameters

are the same as in the previous example.
In figures 15, 16 and 17 we report the stress-strain curves for the two

models.

9.3 Cyclic uni-axial test under force control: zero mean
stress

The specimen undergoes a cyclic loading history, producing a uni-axial state
of stress (tension-compression). The load is applied controlling the forces

and a zero mean stress is required.
In figure 18 we report the stress-strain curve for the NLK model with

parameters:
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Hr =100, Hy=10, Hi, =0

180

In figure 19 we report the stress-strain curve for the GP model, with
material parameters:

pgr =10, 6&“=30, Hy, =0, Hi, =0

while in figure 20 the curves for both models are reported together for com-
parison purpose.

9.4 Cyclic uni-axial test under force control: non-zero
mean stress

For this test the specimenisin a uni-axial state of stress (tension—compression)
and undergoes a cyclic loading history, controlled through the applied forces;
this time a non-zero mean stress is imposed. The parameter are:

H}tfin = 100 5 H;LI = 10 5 HZ;O - 0
for the NLK model, and:
pe=20, 6" =5, Hy. =5, H: =0

for the GP model.
In figures 21, 22 and 23 we report the stress-strain curves for the two

models.

9.5 Tension-cyclic shear test under displacement con-
trol

We now want to study the behavior of the two material models for a more
complex loading pattern. Therefore, the specimen is subjected first to a uni-
axial extension in direction 1 (see figure 24), which produces an axial strain
of 0.2. Then a cyclic shear load 1s applied in direction 2. All the degrees of
freedom along the 1 and 2 directions are prescribed during the analysis and
the load is applied controlling the displacements.

The parameter are:

Hy =100, H4y=10, Hi =0

180
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for the NLK model, and:
pgr =10, 6“=50, Hy, =0, Hi =0
for the GP model. The shear stress-strain curves are presented in figures 25,

26 and 27.

9.6 Tension-cyclic shear test under force control

The test is conceptually identical to the previous one, except that the speci-
men is under force control. The only restrained degrees of freedom are those
to prevent rigid body motions. The applied tension load produces an axial
stress of 4. The parameter are:

Hy =100, HYy =10, Hi =0
for the NLK model, and:
pr=10, 6*=50, Hy, =0, Hi,=0

for the GP model. The shear stress-strain curves are presented in figures 28,

29 and 30.

10 SUMMARY

In this Section we summarize the basic equations and results of the paper.
Continuous model

o= Dconté
Dcont - {I( (1 @ 1) + 2G [Ideu - Acont(n ® n)]}
'3’ - Acont [n : e]
Discrete model
do = Dyjscrde

Ddiscr. =K (1 & 1) + 2G (1 - C) Idev
+ [2G (C = Agiser) + B(n: a)](n ®@n) — B(a @ n)
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= Adisch/\CHnl
. 2G)
Il

d\ =

Adiser [ @ de]

Material model

Continuous version

Discrete version

2G 2G
cp _ T cr _ 77
CP Acont - 2G1 Ad:scr QCT;}?
wor _ IETRI = 0,0
2G4
B=20
. 2G . 2G
NLK _. NLK _
NLI< Acont = 2G1 — Hnl[n R a] Adzscr 2610 + T/)‘Hkin — TAHnI(n : a)
2G 2G(B, + B
GP ACP =TT it = it B
‘)G ]_ QGl Bl ‘+‘ (QG - é)Bz + B3
)
Recall that:
2G0 = 2G + Hiso
2Gy = 2G+ Hiy, + Hyip

11

CLOSURE

In this paper we present a comparative study between the non-linear kine-
matic hardening (NLK) model and the generalized plasticity (GP) model,
which are both capable of simulation of real material behavior under cyclic

loading conditions.

We discuss the models from a continuous and a discrete time point of
view, presenting their algorithmic implementation within a return mapping
framework. The form of the elasto-plastic tangent tensor consistent with the
continuous and the discrete versions of the model is also presented.

The NLK has already been used in the simulation of the behavior of some
metals under cyclic loading paths, achieving an high degree of accuracy. Ex-
tensions of the model have been presented to include strain range memory,
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visco-plastic recovery properties, ratcheting effects [4, 5, 7, 8, 6, 9, 26]. How-
ever, difficulties arise to consistently implement the model in a return map-
ping framework. The discrete consistency condition yields a quartic equation,
with coefficients a function of the trial state and the previous solution, which
makes the search for the minimum positive root difficult. A robust approach
based on a combination of a Newton algorithm and a synthetic division is
presented, which makes the model computationally expensive, compared to
generalized plasticity. Moreover, the elasto-plastic tangent tensor consistent
with the discrete model is non-symmetric and, consequently, an appropriate
solver must be used, plus the required array storage is doubled.

On the other hand, if compared to the NLK, the generalized plasticity is
a fairly new model. It possesses interesting features, such as: the presence
of two different parameter (8 and §) with clear physical meaning, measuring
respectively the limiting values of reachable stress and the speed in reaching
this ultimate value. Moreover, if unloaded from a plastic state and reloaded
before the occurrence of plastic deformation in the reverse direction, the GP
can renew plasticity at a value of the stress lower than the one at which the
unload began. This last feature is unique to the GP and can be properly
modified to closely simulate specific materials. Algorithmically, the model
has a simple and straightforward implementation since the discrete consis-
tency condition generates a quadratic equation and the elasto-plastic tangent
tensor consistent with the discrete model is symmetric. These features make
the authors believing that the GP can be successfully used in the simulation
of real materials.

Acknowledgement

The authors would like to acknowledge Professor J.Lubliner for many useful
discussions on the generalized plasticity model and Professor P.Papadopoulos
for a discussion of the loading/unloading conditions of infinitesimal discrete
elasto-plasticity [39)].

References
[1] P.J. Armstrong and C.O. Frederick, A mathematical representation

of the multi-azial baushinger effect, Tech. Report C.E.G.B. Report
RD/B/N731, Berkeley Nuclear Laboratories, R&D Department, 1966.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 35

[2] F. Auricchio and R.L. Taylor, A simple automatic time-stepping algo-

rithm for cyclic non-linear problems, Report UCB/SEMM-93, Depart-
ment of Civil Engineering, University of California at Berkeley, 1993, to
be published.

F. Auricchio, R.L. Taylor, and J. Lubliner, Application of a return
map algorithm to plasticity models, COMPLAS Computational Plas-
ticity: Fundamentals and Applications (Barcelona) (D.R.J. Owen and
E. Onate, eds.), 1992, pp. 2229-2248.

J.L. Chaboche, Time independent constitutive theories for cyclic plas-
ticity, International Journal of Plasticity 2 (1986), 149-188.

. Constitutive equations for cyclic plasticity and cyclic visco-
plasticity, International Journal of Plasticity 5 (1989), 247-302.

, On some modifications of kinematic hardening to improve the
description of ratcheting effects, International Journal of Plasticity 7
(1991), 661-678.

J.L. Chaboche and D. Nouailhas, Constitutive modeling of ratcheting
effects - Part I: experimental facts and properties of the classical models,
Journal of Engineering Materials and Technology 111 (1989), 384-392.

, Constitutive modeling of ratcheting effects - Part I1: possibilities
of some additional kinematic rules, Journal of Engineering Materials and
Technology 111 (1989), 409-416.

J.L. Chaboche, D. Nouailhas, D. Pacou, and P. Paulmier, Modeling of
the cyclic response and ratcheting effects on Inconel-718 alloy, European
Journal of Mechanics - A:Solids 10 (1991), 101-121.

Y.F. Dafalias, Bounding surface plasticity. I: mathematical foundation
and hypoplasticity, Journal of Engineering Mechanics 112 (1986), 966-
987.

, Bounding surface plasticity model for steel under cyclic load-
ing, Cyclic buckling of steel structures and structural elements under
dynamic loading conditions (Osaka, Japan), U.S.-Japan Seminar, 1991,
pp- 1-12.



Material models for cyclic plasticity F.Auricchio and R.L.Taylor 36

[12]

[13]

[14]

[15]

[19]

23]

Y.F. Dafalias and E.P. Popov, A model of nonlinearly hardening mate-
rials for compler loading, Acta Mechanica 21 (1975), 173-192.

, Plastic internal variables formalism of cyclic plasticity, Journal

of Applied Mechanics 43 (1976), 645-651.

I. Doghri, Fully tmplicit integration and consistent tangent modulus in
elasto-plasticity, Private Communication, 1992.

D.C. Drucker and L. Palgen, On stress-strain relations suitable for cyclic
and other loading, Journal of Applied Mechanics 48 (1981), 479-485.

M.A. Eisenberg, A generalization of plastic flow theory with application
to cyclic hardening softening phenomena, Journal of Engineering Mate-
rials and Technology 98 (1976), 221-228.

M.A. Eisenberg and A. Phillips, On nonlinear kinematic hardening, Acta
Mechanica 5 (1968), 1-13.

, A theory of plasticity with non-cotncident yield and loading sur-
faces, Acta Mechanica 11 (1971), 247-260.

S.P. Engelstad, S.K. Jain, and J.N. Reddy, On the application of incre-
mental theory of plasticity with endochronic hardening rule, COMPLAS
Computational Plasticity: Fundamentals and Applications (Barcelona)

(D.R.J.Owen and E.Onate, eds.), 1992, pp. 271-282.

T. Hassam, E. Corona, and S. Kyriakides, Ratcheting in cyclic plasticity,
part I1: multi-arial behavior, International Journal of Plasticity 8 (1992),
117-146.

T. Hassam and S. Kyriakides, Ratcheting in cyclic plasticity, part I:
untarial behavior, International Journal of Plasticity 8 (1992), 91-116.

M. Klisinki, Z. Mroz, and K. Runesson, Structure of constitutive equa-
tions in plasticity for different choices of state and control variables,
International Journal of Plasticity 8 (1992), 221-243.

R.D. Krieg and D.B. Krieg, Accuracies of numerical solution methods for
the elastic-perfectly plastic model, Journal of Pressure Vessel Technology,
Transaction of ASME (1977), 510-515.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 37

[24] H.S. Lamba and O.M. Sidebottom, Cyclic plasticity for non-proportional
paths. Part 1: cyclic hardening, erasure of memory, and subsequent
strain hardening experiments, Journal of Engineering Materlals and
Technology 100 (1978), 96-103.

[25] , Cyclic plasticity for non-proportional paths. Part 2: compari-

son with predictions of three incremental plasticity models, Journal of
Engineering Materials and Technology 100 (1978), 104-111.

[26] J. Lemaitre and J.L. Chaboche, Mechanics of solid materials, Cambridge
University Press, 1990.

[27] J.D. Lubahn, Baushinger effect in creep and tensile tests on copper,
Journal of Metals (1955), 1031-1033.

[28] J. Lubliner, Plasticity theory, Macmillan, 1990.

, A simple model of generalized plasticity, International Journal
of Solids and Structures 28 (1991), 769-778.

[29]

[30] J. Lubliner, R.L. Taylor, and F. Auricchio, A new model of generalized
plasticity, submitted for publication.

[31] G. Maenchen and S. Sack, The tensor code, Methods in computational
physics (B. Alder, ed.), vol. 3, Academic Press, 1964, pp. 181-210.

[32] D.L. McDowell, An evaluation of recent developments in hardening and
flow rules for rate-independent non-proportional cyclic plasticity, Jour-
nal of Applied Mechanics 54 (1987), 323-334.

[33] , A non-linear kinematic hardening theory for cyclic thermo-
plasticity and thermo-visco-plasticity, International Journal of Plasticity

8 (1992), 695-728.

[34] Z. Mroz, On the description of anisotropic work-hardening, Journal of
the Mechanics and Physics of Solids 15 (1967), 163-175.

[35] , An attempt to describe the behavior of metals under cyclic loads
using a more general work hardening model, Acta Mechanica 7 (1969),

199-212.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 38

[36]

[44]

[45]

[46]

Z. Mroz, H.P. Shrivastava, and R.N. Dubey, A non-linear hardening
model and its application to cyclic loading, Acta Mechanica 25 (1976),
51-61.

P.M. Naghdi and D.J. Nikkel, Calculations for uniazial stress and strain
cycling in plasticity, Journal of Applied Mechanics 51 (1984), 481-493.

J.C. Nagtegaal, On the implementation of inelastic constitutive equa-
tions with special reference to large deformation problems, Computer
Methods in Applied Mechanics and Engineering 33 (1982), 469-484.

P. Papadopoulos and R.L. Taylor, On the loading/unloading conditions
of infinitesimal discrete elasto-plasticity, submitted for publication.

A. Phillips and R.L. Sierakowski, On the concept of yield surface, Acta
Mechanica 1 (1965), 29-35.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterliy, Nu-
merical recipes in C: the art of computing, Cambridge University Press,
1988.

R.L. Sierakowski and A. Phillips, The effect of repeated loading on the
yield surface, Acta Mechanica 6 (1968), 217-231.

J.C. Simo and S. Govindjee, Non-linear B-stability and symmetry pre-
serving return mapping algorithms for plasticity and visco-plasticity, In-
ternational Journal for Numerical Methods in Engineering 31 (1991),
151-176.

J.C. Simo and T.J.R. Hughes, Elasto-plasticity and visco-plasticity:
computational aspects, Springer-Verlag, 1993, to be published.

J.C. Simo and R.L. Taylor, Consistent tangent operators for rate-
independent elasto-plasticity, Computer Methods in Applied Mechanics
and Engineering 48 (1985), 101-118.

J.C. Simo, R.L. Taylor, and K.S. Pister, Variational and projection
methods for the volume constraint in finite deformation elasto-plasticity,
Computer Methods in Applied Mechanics and Engineering 51 (1985),
177-208.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 39

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

K.C. Valanis, A theory of visco-plasticity without a yield surface. Part
I. general theory, Archives of Mechanics 23 (1971), 517-533.

, A theory of visco-plasticity without a yield surface. Part Il
application to mechanical behavior of metals, Archives of Mechanics 23
(1971), 535-551.

, Fundamental consequences of a new intrinsic time measure.
plasticity as a limit case of the endochronic theory, Archives of Mechan-

ics 32 (1980), 171-191.

O. Watanabe and S.N. Atluri, Constitutive modeling of cyclic plastic-
ity and creep, using an internal time concept, International Journal of
Plasticity 2 (1986), 107-134.

, Internal time, general internal variables and multi-yield-surface
theories of plasticity and creep: a unification of concepts, International

Journal of Plasticity 2 (1986), 37-57.

M.L. Wilkins, Calculation of elastic plastic flow, Methods in computa-
tional physics (B. Alder, ed.), vol. 3, Academic Press, 1964, pp. 211-263.

0O.C. Zienkiewicz and R.L. Taylor, The finite element method, fourth
ed., vol. I, McGraw Hill, New York, 1989.

, The finite element method, fourth ed., vol. II, McGraw Hill,
New York, 1991.



Material models for cyclic plasticity F.Auricchio and R.L.Taylor 40

u
Gy,o

A 4

Figure 1: Classical plasticity (CP) with no hardening. Uni-axial stress o
versus uni-axial strain e. If unloaded from the plastic range and reloaded
before occurrence of plasticity in the reverse direction, the model renews

plasticity at the same stress where unloading began.
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Figure 2: Classical plasticity (CP) with hardening. Uni-axial stress o versus
uni-axial strain e. If unloaded from the plastic range and reloaded before
occurrence of plasticity in the reverse direction, the model renews plasticity

at the same stress where unloading began.
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Figure 3: Classical plasticity (CP) with no hardening under cyclic loading
condition. Uni-axial stress ¢ versus uni-axial strain e.
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Figure 4: Classical plasticity (CP) with hardening under cyclic loading con-
dition. Uni-axial stress ¢ versus uni-axial strain e.



Material models for cyclic plasticity F.Auricchio and R.L.Taylor 44

Hy. /Hi

¥,0

Figure 5: Non-linear kinematic hardening model (NLK). Uni-axial stress o
versus uni-axial strain e. the model shows a smooth transition to a horizontal
asymptote and, if unloaded from the plastic range and reloaded before the
occurrence of reverse plasticity, it renews plasticity exactly at the same stress
where unloading began.
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Figure 6: Non-linear kinematic hardening model (NLK) under cyclic loading
condition. Uni-axial stress o versus uni-axial strain e. The model retains its
capacity of smooth transition between elastic and plastic behavior also under
cyclic load.
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Y

Figure 7: Generalized plasticity model (GP) with no hardening. Uni-axial
stress o versus uni-axial strain e. If unloaded from the plastic range and
reloaded before the occurrence of reverse plasticity, the model renews plas-
ticity before the attainment of the stress at which the unloading began.
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Figure 8: Generalized plasticity model (GP) with no hardening. Uni-axial
stress o versus uni-axial strain € for different values of the parameter 6

((5“’1 < 5“2).
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Figure 9: Generalized plasticity model (GP) with non-zero hardening. Uni-
axial stress o versus uni-axial strain e. The model reaches a non-horizontal
asymptote and, if unloaded from the plastic range and reloaded before the
occurrence of reverse plasticity, it renews plasticity before the attainment of
the stress at which the unloading began.
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Figure 10: Generalized plasticity model (GP) with no hardening and update
for the § parameter. Uni-axial stress o versus uni-axial strain e.
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Figure 11: Generalized plasticity model (GP) under cyclic loading condition.

Uni-axial stress o versus uni-axial strain e.
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Figure 12: Non-linear kinematic hardening model (NLK) under cyclic uni-
axial load (displacement control, zero mean strain). Uni-axial stress o versus
uni-axial strain €.

oty =15, HE, = 100, HY = 10, Hy, =0

For comparison, with dotted lines we present also the solutions of the classical
plasticity model for Hy,, = 0 and H};, = 100.
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Figure 13: Generalized plasticity (GP) under cyclic uni-axial load (displace-
ment control, zero mean strain). Uni-axial stress ¢ versus uni-axial strain e.

oty =15, B* = 10, §* = 50, H,, = 0, H:, = 0.
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Figure 14: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under cyclic uni-axial load (dis-
placement control, zero mean strain). Uni-axial stress ¢ versus uni-axial
strain e.
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Figure 15: Non-linear kinematic hardening model (NLK) under cyclic uni-
axial load (displacement control, non-zero mean strain). Uni-axial stress o
versus uni-axial strain €.

oty =15, HY, = 100, Hy =10, H;, =0

180
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Figure 16: Generalized plasticity (GP) under cyclic uni-axial load (displace-
ment control, non-zero mean strain). Uni-axial stress o versus uni-axial strain
€.

0';;,0 = 15, [Bu = 10, &Y = 50, H;:in — 0’ H* =0.

180
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Figure 17: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under cyclic uni-axial load (dis-
placement control, non-zero mean strain). Uni-axial stress ¢ versus uni-axial
strain e.
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Figure 18: Non-linear kinematic hardening model (NLK) under cyclic uni-
axial load (force control, zero mean stress). Uni-axial stress o versus uni-axial
strain .

1380
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Figure 19: Generalized plasticity (GP) under cyclic uni-axial load (force
control, zero mean stress). Uni-axial stress ¢ versus uni-axial strain e.
oyo =15, B* =10, 6* = 50, Hy,, = 0, HY,, = 0.
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Figure 20: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under cyclic uni-axial load (force
control, zero mean stress). Uni-axial stress o versus uni-axial strain e.




Material models for cyclic plasticity F.Auricchio and R.L.Taylor 60

25

nnoRson

-15 b

_25 I | i ] i |
-0.1 0.1 0.3 0.5 0.7 0.9

strain

Figure 21: Non-linear kinematic hardening model (NLK) under cyclic uni-
axial load (force control, non-zero mean stress). Uni-axial stress o versus
uni-axial strain e.

oo =15, Hy,,, = 100, H* =10, H:, =0

180
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Figure 22: Generalized plasticity (GP) under cyclic uni-axial load (force
control, non-zero mean stress). Uni-axial stress o versus uni-axial strain e.
oyo =135, f*=20,6"=5, H, =5, H: = 0.
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Figure 23: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under cyclic uni-axial load (force
control, non-zero mean stress). Uni-axial stress o versus uni-axial strain e.
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Figure 24: Specimen adopted for the tension-cyclic shear test. Tension ap-
plied in the 1-1 direction, shear applied in the 1-2 direction.
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Figure 25: Non-linear kinematic hardening model (NLK) under tension-cyclic {
shear (displacement control). Shear stress 7, versus shear strain ;5.
oty =15, HE, = 100, HY = 10, H:_ =0

180
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Figure 26: Generalized plasticity (GP) under tension-cyclic shear (displace-

ment control). Shear stress 712 versus shear strain 7i5.
o0 =15, 4% =10, 6" =50, H% =0, H:, = 0.
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Figure 27: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under tension-cyclic shear (displace-
ment control). Shear stress 712 versus shear strain ;2.
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Figure 28: Non-linear kinematic hardening model (NLK) under tension-cyclic
shear (force control). Shear stress 7y, versus shear strain 7i,.

oty =15, H, = 100, HY = 10, HE, =0
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Figure 29: Generalized plasticity (GP) under tension-cyclic shear (force con-
trol). Shear stress 71, versus shear strain 2.

oty =15, B* = 10, 6* = 50, HE, = 0, H, = 0.
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Figure 30: Generalized plasticity (GP) [continuous line] versus non-linear
kinematic hardening (NLK) [dotted line] under tension-cyclic shear (force
control). Shear stress 715 versus shear strain 7;2.





