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ABSTRACT OF THE THESIS

Adversarial Privacy Auditing of

Synthetically Generated Data produced by Large Language Models

using the TAPAS Toolbox

by

Krishna Dave

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Guang Cheng, Chair

In today’s world with ever increasing need for data collection, there is a rise in demand for

privacy-preserving synthetic data generation and privacy auditing techniques to safeguard

sensitive user information and data from privacy attacks. This paper explores the adversarial

privacy auditing of synthetically generated data produced by Large Language Models (LLMs)

using the TAPAS “Toolbox for Adversarial Privacy Auditing of Synthetic Data” framework.

This paper uses a healthcare dataset with sensitive user information of Breast Cancer to

evaluate the privacy of the data using adversarial techniques. The paper compares and

contrasts the data quality, data distributions and privacy-preserving metrics of the real

dataset with synthetically generated datasets from several sources including LLMs such as

the GReaT framework and OpenAI’s GPT4, Generative Adversarial Networks (GANs), and

an AI-generated dataset produced using a proprietary technique from an industry startup,

mostly.ai.
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CHAPTER 1

Introduction

As the demand for big data increases for data analysis and machine learning, new tools

and techniques are emerging for generating synthetic data that mimic real datasets since

they are cheaper and quicker to produce and scale. As such, there is an emergence in need

for protecting sensitive user information and evaluating whether the synthetically generated

datasets are truly privacy preserving while also being useful for model training and data

analysis. The traditional synthetic tabular data generation methods are mainly based on

probability models, and using LLMs to generate synthetic data is a very new attempt. As

such, limited research has gone into the evaluation and auditing of the privacy-preserving

aspects of tabular synthetic datasets generated using LLMs. This paper explores the adver-

sarial privacy auditing of synthetically generated data produced by LLMs using the TAPAS

framework presented in the paper “TAPAS: a Toolbox for Adversarial Privacy Auditing of

Synthetic Data” [11].

This paper uses a healthcare dataset with sensitive user information of Breast Can-

cer from The Breast Cancer Wisconsin Diagnostic Database to evaluate the privacy of the

dataset using adversarial techniques. Privacy attacks and evaluations are conducted on the

real dataset and compared with synthetically generated datasets from several LLMs such

as the GReaT framework and OpenAI’s GPT4. Additionally, privacy auditing and evalu-

ation is conducted on an AI-generated dataset from a synthetic data startup, mostly.ai, to

compare the LLMs’ results with privacy preserving aspects of an example start-of-the-art

proprietary industry solution. The privacy metrics and results of the synthetically generated
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data from LLMs are compared and contrasted with the privacy metrics and reports gener-

ated from a popular status-quo method of generator using Generative Adversarial Networks

(GANs). The purpose of these experiments is to understand the data quality, data distri-

butions and privacy preserving metrics of the synthetically generated datasets compared to

the real dataset.

In Chapter 2, the mathematical definition of Differential Privacy (DP) is explained with

the formal privacy guarantees it presents for privacy auditing. Subsequently, the concept of

privacy budget is explained which is quantified with parameter ”epsilon” (ε) which represents

the amount of privacy loss an algorithm allows during its execution. The chapter also reviews

the trade-off between utility and precision in differentially private algorithms which includes

the trade-off between maintaining the data utility and quality at the expense of compromising

privacy by adjusting the privacy budget. Finally, we examine the definition of Composition

Theorem with relation to DP and explore the applications of Differential Privacy in real

world applications and industry [8].

In Chapter 3, the methodologies and statistical techniques used in synthetic data gener-

ation are reviewed. First, we review the basics of tabular datasets which are commonly used

during synthetic data generation. We review the popular generation models based on Gen-

erative Adversarial Networks (GANs) used to produce synthetic data with generators such

as CTGAN, DPCTGAN and PATEGAN [33]. We summarize how to use LLMs to generate

tabular synthetic data. Finally, we provide a summary on market research of techniques

used in various industry startups for AI-generated synthetic data.

In Chapter 4, we introduce the state-of-the-art Large Language Models as a class of

deep learning algorithms designed to understand and generate data in a way that is contex-

tually relevant and mimics human interpretation and language understanding. Since most

traditional methods of synthetic data generation utilize probability models, LLMs provide

a new way of synthesizing tabular synthetic data while maintaining privacy and statistical

properties of the data distributions. We review the architecture of LLMs based on Trans-
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former Models as a departure from previous sequence-based models like RNNs (Recurrent

Neural Networks) and LSTMs (Long Short-Term Memory Networks) [27]. We review the

applications of LLMs particularly in relation to generating synthetic data. Next, we re-

view the GReaT (Generation of Realistic Tabular data) framework’s method which uses an

auto-regressive LLM to sample synthetic data to produce highly realistic distributions [4].

In Chapter 5, we introduce Adversarial Privacy Auditing techniques from a software

toolbox called TAPAS from the paper ”TAPAS: A Toolbox for Adversarial Privacy Auditing

of Synthetic Data” and the role that it plays in assessing the privacy of synthetic datasets.

The different privacy attacks in the toolbox are explained such as shadow-modeling attack,

local neighborhood attack and inference-on-synthetic attack. We describe what it means for

the attacker to have the knowledge of the generator, the common attacker goals, and methods

of evaluating the attacks and generated reports with the privacy-preserving metrics. We also

define a threat model which forms the foundation of the adversarial evaluation of synthetic

data using the TAPAS toolbox [11].

In Chapter 6, the Breast Cancer dataset from the Breast Cancer Wisconsin Diagnostic

Database is presented and summarized [31]. The unique variables of the dataset are listed

out and explained from the data source. Moreover, results from the Exploratory Data Anal-

ysis (EDA) for the real dataset and the synthetic datasets are summarized to understand

the similarities and differences in the data distributions produced. The experimental de-

sign is explained with the threat model implementation for the experimental attacks. The

resultant reports generated by the TAPAS toolbox are discussed including comparison of

different generators on random targets, and random vs. outlier targets metrics from the

different datasets. Finally, in Chapter 7, the Summary of Results are presented for the

different generator types. The metrics such as accuracy, true positive rate, false positive

rate, mia advantage, privacy gain, auc value and effective epsilon values from the different

generator methods are compared and contrasted. In Chapter 8, conclusion from the analysis

is described as well as future work and next steps are discussed.
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CHAPTER 2

Differential Privacy

As the world becomes increasingly data-oriented and more data than ever is collected and

stored, there is a need to evaluate whether the datasets we use and the algorithms that

produce them are truly privacy preserving or not for an individual whose data is collected.

The main goal of data privacy is to enable data analysis and the usage of data for model

training without revealing specific information about the individual instances present in the

data. As such, to evaluate data privacy, there is a necessity for a mathematical definition

that formalizes the notion of privacy, which can be used for privacy auditing. Differential

Privacy (DP) is the formal mathematical notion of privacy. Simply put, differential privacy

is a property for auditing privacy of an algorithm that produces data — so, if the algorithm

satisfies the mathematical guarantees posed by DP, the dataset produced by it also satisfies

DP. In this section, we review the historical context of the development of DP by reviewing

the limitations of the traditional methods of privacy preservation such as de-identification

attacks, linkage attacks, k -Anonymity, the properties of differential privacy, privacy budget

and epsilon, utility precision trade-off in data release mechanisms, Composition theorem and

the applications of differential privacy [17].

2.1 Background on Privacy Attacks

The challenge of privacy-preserving data analysis spans and affects many disciplines and in-

dustry fields. A simple and traditional way of privacy preservation is called de-identification,

sometimes called anonymization. There is no formal definition for identifying information,
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but generally, it is the information of an individual that can be used to uniquely identify

a person from the data collected such as their name, zip code, social security number, cell

number etc. So, the notion of personally identifiable information (PII) comes from infor-

mation that can be identifying of the person. De-identification is the term used to describe

removing PII from the dataset during data pre-processing. However, this method is not quite

effective because the removed data can be used as auxiliary data by attackers to perform a

re-identification attack which can be as simple as using a join on two tables [17].

An example of re-identification attack is a linkage attack. Linkage attacks are performed

by overlapping data columns between the de-identified dataset we are trying to attack and

the auxiliary data. This method is quite straightforward to perform if the attacker gets

their hands on the auxiliary data. According to a data privacy research done at Carnegie

Mellon University called ”Simple Demographics Often Identify People Uniquely” by Latanya

S. [24], staggering 87% of people in the US can be uniquely re-identified by auxiliary data

combinations including their birth day, gender and zip.

Another common way of preserving privacy is using aggregations and summary statistics.

Many times, aggregate statistics are calculated by dividing the larger dataset into smaller

ones. The purpose of this method is that aggregation on smaller groups is supposed to

preserve privacy of the individual but also allow for real insights from the data analysis.

However, the problem this method poses is in the division into smaller groups in the cases

where the group size contains only one instance or few instances of the data. In this case,

the individual’s info can be easily revealed through the summary statistics. A larger group

sizes are not fully privacy-preserving as well because methods like calculating difference on

multiple aggregate statistics over the same data can reveal individual’s information. When

these datasets and summary statistics are made public, it is not quite possible to determine

the maliciousness or intent of the client in the cases where they are performing multiple

queries over the same dataset [17].

k -Anonymity is a formal privacy definition which states that auxiliary information should
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not narrow down the set of possible instances or records to a specific individual. In simpler

terms, this formalizes the intuition that an individual can blend into the data population.

We can say that a dataset is k -Anonymized if each instance in the dataset is part of a group

size of at least k size such that each member of the group shares a selected few data columns

called quasi-identifiers with other members of the group. So, the goal is to deter from privacy

attacks such that it maybe possible to narrow down an individual instance to a group, but

not the target group member itself. However, k -Anonymity is not immune to privacy attack

by a class of attacks called homogeneity attack. This attack leverages the similarities of the

quasi-identifiers within a group and exploits the similarity among the attributes making it

challenging to achieve privacy for an individual instance. The attack vector is defined based

on the degree of similarity in the data’s quasi-identifiers and sensitive information is inferred

using determination of group membership. In this attack, if the attacker has a background

knowledge on the individual, k -Anonymity becomes highly susceptible to attacks [17].

A more robust anonymization technique to improve privacy preservation while also being

immune to the presence of background knowledge is differential privacy.

2.2 Formalizing Differential Privacy

Differential privacy is a formalized notion of privacy. A function which satisfies differential

privacy is referred by the term, a mechanism. A mechanism F satisfies differential privacy

if for all neighboring datasets x and x′, and all possible sets of outputs S,

Pr[F (x) ∈ S]

Pr[F (x′) ∈ S]
≤ eε (2.1)

This can be re-written as the following equation. A randomized mechanism M : X×Ω →

S over datasets provides (ε, δ)-Differential Privacy if, for all x ≈ x′ ∈ X and all S ⊆ S,

Pr[F (x) ∈ S] ≤ eε Pr[F (x′) ∈ S] + δ (2.2)

where the equation requires distributions inducted by F to be close to each other when

6



datasets vary by addition or deletion of one record [11]. The δ value means that with a

probability of 1− δ the mechanism/algorithm will be successful. As mentioned earlier in the

introduction of the chapter, differential privacy is a property of the algorithm and so, if the

algorithm is differentially private, than the data distribution produced by it is also going to

be differentially private. This property can be explained in post-processing such that if F is

(ε, δ)-DP, then for any random operation N : Ω × O → O′ the composition of F and N is

also (ε, δ)-DP. Therefore, this provides privacy guarantees that can not be broken with any

operation [11].

In simpler terms, this definition formally defines an algorithm as differentially private if

the outcome of the algorithm does not significantly change, regardless of whether any indi-

vidual’s data is included or excluded from the dataset. In other words, mathematically, the

probability of any output is almost the same, with or without the presence of any individual’s

data. This is accomplished by addition of controlled noise to the output, providing strong

privacy guarantees.

2.3 Privacy Budget and Epsilon

The concept of privacy budget, also known as privacy parameter, is quantified with parameter

”epsilon” (ε), which represents the amount of privacy loss an algorithm allows during its

execution. A smaller ε indicates a higher chance of preserving privacy of individual records,

but it may result in noisier query results. Generally, in practice, ε is supposed to be less

than or equal to 1, and values of ε over 10 do not guarantee much privacy [17].

2.4 Utility-Precision Trade-off in Data Release Mechanisms

While discussing differential privacy, it is important to review the trade-off between utility

and precision in differentially private algorithms. Increasing the privacy budget (larger ε) can
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improve data utility but may compromise privacy. On the other hand, decreasing the privacy

budget (smaller ε) provides stronger privacy but may lead to less accurate analysis results.

There are various algorithms and privacy data release mechanisms that achieve differential

privacy, such as Laplace mechanism, exponential mechanism, and smooth sensitivity-based

approaches. Each mechanism is tailored to specific types of queries and data structures,

resulting in a balance between privacy and utility [17].

2.5 Composition Theorem

Composition Theorem for differential privacy states that multiple differentially private al-

gorithms can be combined while preserving privacy guarantees. This theorem is essential as

it enables the execution of complex privacy-preserving data analysis [8]. In simpler terms,

this theorem explains how the privacy guarantees change when a series of operations, each

providing a certain level of differential privacy, are performed on a dataset. For instance,

if two mechanisms with privacy guarantees of ε1 and ε2 are applied sequentially, the Com-

position Theorem helps us in understanding the overall privacy loss, which is generally a

function of ε1 and ε2. This theorem is crucial in the field of data privacy because it enables

us to quantify and manage the privacy budget in complex analyses with multiple operations.

There are two main types of composition in differential privacy including sequential and par-

allel. Sequential composition applies when the mechanisms depend on each other or operate

on the same dataset, whereas parallel composition applies when the mechanisms operate on

disjoint subsets of the dataset. As such, Composition Theorem provides a clear framework

for balancing the trade-off between utility and privacy in the analysis of sensitive data built

from multiple mechanisms [17].
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2.6 Applications of Differential Privacy

There are many applications of differential privacy with utilities ranging for tasks like count-

ing queries, classification, clustering and regression, synthetic data generation, to name a few,

with differentially private algorithms. For synthetic data generation, an example use case is

when we make algorithms that produce synthetic data representations and tabular datasets

differentially private by adding noise. The ultimate goal of differential privacy is to provide a

rigorous approach to privacy protection to protect individual privacy without sacrificing the

overall utility of the data [21]. There are many potential applications of differential privacy

in industry domains such as preserving privacy of users of social networks that collect user

information for analysis, healthcare data analysis, census and demographics analysis, social

science research, online advertising, recommender systems, ride sharing and location data of

passengers used for optimizing routes, privacy preserving machine learning techniques used

to train models on sensitive user data, financial data analysis to detect fraudulent activities

in banking, and genome data analysis for highly sensitive individual genetic data, to name a

few [19]. For the particular use case of synthetic data as it is relevant to this paper, we will

cover the role of differential privacy in synthetic data generation in the upcoming chapter.

9



CHAPTER 3

Synthetic Data Generation

Synthetic data is dataset that is produced/generated artificially to mimic a real dataset.

There are several techniques and algorithms employed to generate synthetic or artificial

data. The primary goal of synthetic data generation is to provide an alternative for sensi-

tive user data, allowing the data analysis without revealing the real individual’s sensitive or

private information and identity. In this chapter, we will cover the synthetic data genera-

tion methodology, tabular datasets which are the typical data structure of synthetic data,

overview of statistical techniques and different types of generators such as Generative Ad-

versarial Networks (GANs), LLMs and overview of industry techniques used for synthetic

data generation by startups and companies.

3.1 Synthetic Data Generation Methodology

Suppose we have a real dataset with sensitive user information with a set of instances called

S. Mathematically, we can define the set of finite instances by the following expression taken

from S:

D =
⋃

N∈N∪{0}

SN (3.1)

A synthetic data generation model or generator would be a random function F : Ω×D →

D that would take the real dataset as an input and return the synthetic dataset with the

same dimensions. This generator function can be mathematically expressed by the following
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equation:

D(s) = F (D(r)) (3.2)

where (s) denotes synthetic and (r) denotes real data. The purpose of this function

or algorithm is to produce synthetic data that can be used in lieu of the real data but

still maintain the same patterns, distribution, correlations and statistical properties of the

original dataset. Synthetic data generation algorithms usually have a training step and then,

a sampling step. The training step involves a parameter θ ∈ Θ which is learnt based on the

real dataset and a sampling step where the synthetic instances are sampled independently

and identically distributed (iid) from a distribution pθ on S. So, the goal is that once the

synthetic data generator model is trained, it can produce identical datasets to the real one.

As a result, same insights and conclusions can be derived from both datasets [11].

3.2 Tabular Synthetic Dataset

The typical data type for synthetic data is a tabular dataset. A tabular dataset is a data

structured as a table with rows and columns, as opposed to an unstructured dataset consist-

ing of images or videos. This data type is one of the most commonly used in data analysis

and model training. A challenge with this data type for synthetic data generation is to main-

tain and retain the original data’s statistical properties especially with the correlation and

patterns that are dependent or present between the columns. In the next section, we will go

over the statistical techniques used to retain the original data’s characteristics for a tabular

dataset in synthetic data generation. Formally, a tabular dataset T can be represented as

such:

T = T1 × T2 × · · · × Tn (3.3)

where |Tn| is finite.
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3.3 Overview of Statistical Techniques in Synthetic Data Gener-

ation

Synthetic data generation techniques span a host of different models and methods. However,

the ultimate purpose of these generation techniques is the same. The goal is the creation of

a dataset that is realistic and mirrors the original dataset without revealing individual infor-

mation and identity. A large category of models achieve this goal by adding controlled noise

or perturbation, and data masking that replace or remove sensitive information. However,

there is a trade off between adding noise and how useful the produced dataset will be for

analysis. A standard mechanism used in differential privacy to allow us to determine how

much noise to add is called Laplace mechanism. Based on the mathematical definition of

Laplace mechanism, for a function l(x) which returns a value, the following can be defined

L(x) that satisfies ε-differential privacy:

L(x) = l(x) + Lap
(s
ε

)
where s is the sensitivity of l, and Lap(s) signifies sampling from the Laplace distribution

with center 0 and scale s. The sensitivity of a function can simply be defined by how much an

output amount changes when its input is modified by a value of 1. Other common techniques

to add noise to a distribution is called Gaussian mechanism which adds Gaussian noise to a

distribution [17].

In an earlier section, we described the issue with tabular datasets and the difficulty

synthetic generators have with keeping the statistical properties of the original dataset.

Some popular statistical techniques utilized to capture the data distribution, correlations

and inter-dependencies within the real datasets are Gaussian copulas and Bayesian networks.

These methods enable the generation of synthetic data to closely mirror the real dataset’s

properties.

Some other approaches for synthetic data generation include using Generative Adver-

sarial Networks (GANs), Variational Auto-Encoders (VAEs), Diffusion Models, rule-based
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approaches based on business policies, entity cloning which involves extracting sensitive data

and replicating it, random sampling from a distribution with methods such as Monte Carlo,

and another is data masking or anonymization that anonymizes personally identifiable infor-

mation to generate synthetic and compliant data. Usually, a combination of these techniques

are utilized in industry. A newer and more upcoming technique is using Large Language

Models (LLMs) such as Generative Pre-trained Transformer (GPT) to generate synthetic

data. We will review a few of the generation techniques in detail that we use for experiments

in the upcoming sections [6][13][26][5].

3.4 Synthetic Data Generation Models

3.4.1 Generative Adversarial Networks (GANs)

An approach for synthetic data generation is using Generative Adversarial Networks (GANs)

that are deep learning models containing a generator and a discriminator. This approach cre-

ates synthetic data which is indistinguishable from real dataset through adversarial training.

Following is a review of different types of GANs that can be used for synthetic data genera-

tion [10], one of which we use for generating synthetic dataset and running experiments on

the breast cancer dataset.

An interesting approach to producing tabular synthetic dataset which is an extension

of the traditional GAN is Conditional Tabular Generative Adversarial Network (CTGAN).

Traditional GANs excel in image and text generation. CTGAN, however, addresses the

challenge posed by tabular data such as imbalanced classes and mixed variable types. It

functions via a dual-network architecture where one network generates synthetic data and

the other discriminates between real and synthetic data. CTGAN is able to handle different

data types including continuous, discrete and categorical variables quite well. This is because

it uses a conditional generation strategy which allows it to generate data samples conditioned

on specific attributes. By training networks in an adversarial manner, CTGAN effectively
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learns the complex distributions of real tabular data making the data it generates similar to

real datasets. The generated dataset can be used for tasks like data augmentation, privacy

preserving data sharing and machine learning model training. This is particularly useful in

situations where the real data is scare, biased, private and sensitive [32].

Another extension of GAN is Differentially Private Conditional Tabular Generative Ad-

versarial Network (DPCTGAN). This is one of the approaches we use in our experiments

to generate synthetic data with epsilon values of 0.1 and 1. This is an advanced framework

designed to generate synthetic tabular data with emphasis on differential privacy and privacy

preserving properties. DPCTGAN builds upon CTGAN by adding differential privacy stan-

dard that ensure that the output of a data analysis does not reveal the privacy or identity

of individual people or instances in the dataset. This is achieved by adding controlled noise

to the data and the model parameters during training. The architecture of DPCTGAN is

fundamentally similar to a GAN with a generator to generate data samples and a discrim-

inator for evaluation of those samples. The distinguishing factor about DPCTGAN is that

both networks are trained with differential privacy constraints [25].

Another special approach to using GAN is Private Aggregation of Teacher Ensembles

Generative Adversarial Network (PATEGAN). The objective of PATEGAN is similiar to

DPCTGAN such that it generates synthetic data that closely resembles real data which

ensures the privacy of individual instances in the dataset. The distinction in the implemen-

tation of PATEGAN is that the differential privacy is applied through PATE. This approach

involves splitting the original, sensitive dataset into multiple disjoint subsets and training

an ensemble of ”teacher” models, each on a different subset of the real dataset. Then, the

model is trained to predict the output for a given input with any type of classifier. Then,

the predictions of each ”teacher” model or subset model are aggregated. Subsequently, the

”student” model is trained on the aggregated outputs. This aggregating process typically

involves techniques such as noisy voting ensuring that the student model learns from the

ensemble without gaining access to any specific individual instance in the dataset ensuring
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privacy. With the GAN architecture, the student model functions as the generator produc-

ing synthetic data, while the discriminator evaluates the validity of the generated data. In

essence, the discriminator differentiates between real and synthetic data thereby guiding the

generator to produce more realistic synthetic data samples. The key benefit of using PATE-

GAN is that it is able to generate highly realistic synthetic data without compromising the

privacy of individuals in the original dataset [33].

In the next section, we will cover some market research as well as overview of techniques

and use cases of synthetic data generation in industry.

3.4.2 Market Research on Techniques for AI-generated Synthetic Data in In-

dustry

There are many use cases of synthetic data in industry including generating synthetic data

for software testing and integrating the data production step into the CI/CD workflows,

generating datasets for machine learning model training, privacy regulations compliant data

sharing of datasets containing sensitive private information of users, product design to test

user flows with data that mimics user data, and generating representative and unbiased data

for behavioral simulations, to name a few [20][3][30].

Some industries where synthetic data generation is particularly useful is healthcare with

highly sensitive patient datasets, fraud and anomaly detection using synthetic time series

data, computer vision and object detection in agriculture and manufacturing, banking and

finance models training, disaster prediction and risk management, tech software testing and

simulations, automotive and robotics trainings. Several data generation startups and tools

have emerged in industry to meet these needs such as mostly.ai, gretel.ai, tonic.ai, Datomize,

rendered.ai, Oneview, MDClone, Hazy, K2view, CVEDIA, to name the top players [26].

Synthetic data generation is used by larger companies like Apple Inc. to augment real

datasets and obfuscate real user’s data with local differential privacy techniques [1]. The

common techniques used in industry are deep learning models such as GANs, Variational
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Autoencoder (VAE), Diffusion Models, Stochastic Processes and Rules Engines [20].

In the experiments with synthesizing breast cancer data for this paper, we use mostly.ai’s

platform to generate a dataset from the original data using their proprietary tool (the details

of which they refused to reveal) which likely involves an ensemble of generation methods

mentioned earlier.

3.4.3 Using LLMs to Generate Tabular Synthetic Data

The emergence of Large Language Models (LLMs) accompanies the possibility of another

synthetic data generation method and represents a significant potential in the field of data

science and artificial intelligence. Traditionally, generating synthetic tabular datasets have

been challenging due their complexity and the need of maintaining statistical properties.

LLMs offer a novel solution to applying their natural language processing capabilities to the

domain of tabular data since they can analyze and comprehend the underlying patterns and

relationships within data with their large textual data processing capability. By leveraging

their generative capabilities, LLMs can produce synthetic data that not only mimics the

statistical properties of the original dataset but also respects the constraints and correlations

inherent in tabular data such as dependencies between columns and data type specificities

[30].

Compared to GANs, LLMs have different strengths and weaknesses. GANs are more

effective and efficient than LLMs in generating image data and learning complex time-series

data. However, difficulty is introduced in GANs for the step of performing optimizations in

training. In this case, LLMs can outperform GANs on text generation and other general

datasets due to their high performance and scale. Between these two models, LLMs are

generally able to generate datasets quicker but at a higher computational cost [30].

We will review the architecture of LLMs and the details of generating synthetic data

using LLMs in the next chapter.
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3.5 Limitations and Challenges with Synthetic Data

A challenge with synthetic data generation involves reliability of the data source. If the real

or original data quality is not good or representative, then the quality of the synthetic data

will suffer as well with bias or an unrepresentative generated dataset. Another challenge

is replicating outliers from the real datasets which synthetic data generators usually miss.

Therefore, diversity in data and outliers are critical pieces of information from real datasets

we want to gather to avoid data homogenization, unpredictable loss in data utility and

variable privacy gain [23]. Other limitation includes the requirements of expertise, time

and effort in data science teams to produce robust generator models and data pipelines to

generate reliable data. In addition to time and expertise requirements, this change in status

quo data workflows would necessitate investments in quality checks and output control to

ensure the correctness of the data distributions before passing them into machine learning

and deep learning models. Lastly, user acceptance in industry and companies is another

gap that needs to be filled by educating employees, executives and decision makers on the

use cases and reliability of synthetic data in their companies’ normal data workflows and

analysis processes [26] [5].

17



CHAPTER 4

Large Language Models

The traditional synthetic tabular data generation methods are mainly based on probability

models, and using LLMs to generate synthetic data is a growing field of research. As such,

limited research has gone into the evaluation and auditing of the privacy-preserving aspects

of tabular synthetic datasets generated using LLMs. In this paper, the purpose is to compare

and contrast the data quality, data distributions and privacy-preserving metrics of the real

dataset with synthetically generated datasets from LLMs. Therefore, we will review Large

Language Models in this chapter. In this chapter, we introduce LLMs, review their archi-

tecture based on Transformer Models as a departure from previous sequence-based models

like RNNs (Recurrent Neural Networks) and LSTMs (Long Short-Term Memory Networks)

[27]. We review the applications of LLMs particularly in relation to generating synthetic

data as well some of their limitations. Then, we review the GReaT (Generation of Realistic

Tabular data) framework’s method which uses an auto-regressive LLM to sample synthetic

data to produce highly realistic data distribution. Finally, we discuss using OpenAI’s GPT4

to produce synthetic dataset that mimics a real dataset.

4.1 Introduction to Large Language Models

In the field of artificial intelligence, large language models (LLMs) have emerged as a pivotal

technology, marking a significant leap in the ability of machines to process and generate

human language. LLMs are a class of deep learning algorithms specifically designed to un-

derstand, interpret, and generate text with in-context learning and understanding which is
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often indistinguishable from human-written content. These models are trained on a vast

corpora of text data, encompassing a wide array of topics, styles and structures, enabling

them to capture the complexities, intricacies, colloquialism and nuances of natural language.

The development of LLMs represents a paradigm shift in natural language processing (NLP),

transitioning from rule-based and statistical methods to more sophisticated, data-driven ap-

proaches. As a result, LLMs have found applications in diverse areas including but not

limited to language translation, content creation, computational biology, robotics, creative

work creation, conversational agents, information extraction as well as synthetic data gen-

eration. One of the features of LLMs is their scale, both in terms of the size of the models

and the data on which they are trained. These models created from architectures like Trans-

former are characterized by a large number of parameters in the order of billions and trillions.

This massive scale allows LLMs to learn complex patterns and relationships within the text

data, leading to more accurate and contextually appropriate outputs [14].

The architecture of LLMs is predominantly based on the Transformer model from the pa-

per called “Attention is All You Need” authored by Vaswani et al. in 2017 [27]. The Trans-

former architecture marked a departure from previous sequence-based models like RNNs

(Recurrent Neural Networks) and LSTMs (Long Short-Term Memory networks) by relying

solely on attention mechanisms to weigh the significance in the input data. This architecture

allows LLMs to process words in parallel which significantly speeds up training and improves

the ability to capture long-range dependencies in textual data. As a result, LLMs demon-

strate superior performance in understanding context and generating coherent, contextually

relevant text over extended passages. Moreover, the scalability of the Transformer archi-

tecture allows for incremental improvements in model performance as more computational

resources are employed, leading to the development of increasingly sophisticated and robust

models.

There are many applications of LLMs impacting various sectors including technology,

healthcare, education, and finance. In the technology sector, LLMs are utilized to improve
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efficiency and intuitiveness of search engines, voice assistants and chatbots. In healthcare,

LLMs assist in information extraction from medical texts, and aiding in diagnostics and

research [15]. For education, they are used to develop personalized learning tools and con-

tent generation. Despite their capabilities, LLMs also pose significant challenges and ethical

considerations. The scale of these models poses several challenges such as dearth in compu-

tational resources and machines needed for training such large models, as well as concerns

regarding environmental impact due to high power requirements and accessibility to orga-

nizations and areas with limited resources. The quality of the training data can introduce

biases and ethical considerations in these models. Therefore, questions about fairness, trans-

parency, trustworthiness and accountability in AI become important [28].

Large Language Models (LLMs) like GPT-4 and BeGReaT framework are new powerful

tools to generate synthetic data. LLMs offer a wide range of potential applications across

various industries that require synthetic data. This capability is quite valuable in scenarios

where real data is scarce, sensitive or expensive to acquire. LLMs can also aid in imputing

datasets which includes filling out missing instances or values in a dataset by inference and

data augmentation with synthesized variations. As such, LLMs can help enrich the existing

datasets by producing realistic synthetic data and improve the robustness of machine learning

models with larger and bigger training datasets. In the next two sections, we will review the

GReaT framework methodology for producing realistic tabular synthetic datasets and using

OpenAI’s GPT4 to produce data that mimics real datasets [16].

4.2 GReaT Framework

Tabular datasets are notably challenging to synthesize due to the diverse types of features

and size ranges while maintaining statistical properties of the distribution and correlations

between columns. Although generative models like variational autoencoders or generative

adversarial networks have been adapted for the purpose of synthesizing tabular datasets,
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there has been less focus on utilizing the generative capabilities of recent transformer-based

large language models (LLMs). The framework GReaT (Generation of Realistic Tabular

data) employs an auto-regressive generative LLM to generate synthetic data. This method’s

effectiveness is proven through a series of rigorous experiments in the paper “Language

Models are Realistic Tabular Data Generators” by Vadim et al [4].

The GReaT framework’s method leverages advanced pretrained Transformer language

models to produce high-quality synthetic tabular data that closely resembles real datasets.

The GReaT framework models the distribution of tabular data by conditioning on a subset of

data and sampling the rest of the features. The effectiveness of GReaT is validated through

various experiments that assess the validity and quality of the generated data. The paper’s

findings indicate that GReaT achieves high performance on various real-world and synthetic

datasets [4].

To utilize the GReaT framework to generate new data samples of the breast cancer

dataset, we installed the GReaT framework using pip install be-great. We used their

API which uses the large language model called ‘distilgpt2‘ with batch size of 16 and set

the number of epochs to be 100 for model training. After the model training, we sampled

synthetic data from the model’s distribution and saved it in a tabular form. This LLM

model in the GReaT API was run on a GPU since the model training doesn’t work on a Mac

CPU. The table 4.1 shows the training loss values from the training phase of the GReaT’s

model to generate synthetic data distribution. These values of training loss represent the

error/difference between the predicted output and the actual target values during the training

steps of the model that generated the synthetic data distribution.

4.3 OpenAI’s GPT4 to Generate Synthetic Data

OpenAI’s GPT-4 is one of the most popular LLMs used widely around the world during the

last year. The latest language model GPT-4 represents a significant evolution from its pre-
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Step Training Loss

500 1.126

1000 1.006

1500 0.973

2000 0.951

2500 0.935

3000 0.924

3500 0.917

Table 4.1: Training loss during GReaT’s LLM ‘distilgpt2‘ model training

decessor GPT-3 [7]. The evolution from OpenAI’s GPT-3 to GPT-4 marks a significant leap

in the domain of synthetic data generation as well. GPT-3 with its 175 billion parameters

has a remarkable capability of understanding inputted data, performing in-context learning

and interpreting language to generate realistic data as an output. However, with synthetic

data generation, it possesses limitations around the size of the data it can intake and main-

taining statistical properties in the generated datasets [29]. On the other hand, GPT-4 with

1.76 trillion parameters can further produce more contextually accurate and nuanced data

while maintaining statistical properties, distributions and correlations. It can also introduce

randomness and maintain quality and coherence of the data due to its ability to reflect on

and have deeper understanding of the context of data, its subject, text/language, statistical

properties and data types. OpenAI’s GPT-4 available as a chat which takes in attachments

of datasets in csv formats to generate synthetic datasets or their API is also available which

allows for the same in programming [18].

A limitation of using GPT-2, GPT-3(.5) and GPT-4 that the paper ”The Curse of Recur-

sion: Training on Generated Data Makes Models Forget” highlights is the case of hallucinated

distributions. In this paper, they describe how the LLM models trained on synthetic data

cause irreversible defects in the resultant learned generative models. A resulting defect is
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where the tails of the original data distributions disappear during model training. This effect

is referred to as Model Collapse and it only takes place in Variational Autoencoders, Gaus-

sian Mixture Models and LLMs. This issue results in unrepresentative data distributions

produced by the LLMs which affect the quality of synthetic data generated from the model.

So, the authors emphasize the importance using credible and reliable data sources to train

these models and taking this issue seriously to sustain the benefits and credibility of outputs

produced by LLMs typically trained from large scale datasets scraped from the web [22].

23



CHAPTER 5

Privacy Auditing with the TAPAS Toolbox

In this chapter, we will review the adversarial evaluation framework proposed by the paper,

”TAPAS: A Toolbox for Adversarial Privacy Auditing of Synthetic Data” [11]. This frame-

work introduces threat modeling with a library of privacy attacks to perform on synthetic

datasets. We use their toolbox to evaluate the privacy of the synthetic datasets generated

discussed in the experiments in the next chapter. In this chapter, we will go over the threat

modeling framework, attacker knowledge and the metrics and reports to evaluate the privacy

of the generators.

5.1 Threat Modeling Framework

A threat model or attack model defines a framework in which a privacy attack is conducted

on a dataset with the assumption that the attacker has some knowledge of the data and

the generator. We can formally define this intuition in computation to evaluate and assess

whether a synthetic data generating mechanism meets the privacy guarantees posed by

differential privacy. We will review the pseudo-code of a threat modeling framework with

attack training and testing in the next Chapter called Experiments.

5.2 Data and Generator Knowledge of the Attacker

While defining a threat model, we can make some assumptions about the knowledge an

attacker has of the real dataset. The TAPAS toolbox supports two types of attacker data
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knowledge including auxiliary data knowledge and exact data knowledge. Auxiliary data

knowledge can be defined as knowledge an attacker has of a random subset of the real

dataset, while exact data knowledge means that the attacker has full knowledge of the

dataset. Mathematically, we can define exact data knowledge as follows:

D(r) ∼ πD (5.1)

where D(r) signifies the real dataset and the prior over the dataset and πD, denotes the

knowledge or information of the dataset the attacker maintains [11].

The TAPAS framework performs attack on the dataset by attacking one record at a time.

This is the unit of privacy we defined earlier in the section of Differential Privacy. Formally,

this attack can be reduced to one specific record by combining the prior knowledge of the

dataset excluding that one record x, and the knowledge of the target x. We can define

auxiliary data knowledge as the following:

D(r)
−x ∼ πd′ (5.2)

Here if the attacker makes an assumption about the record x, it is replaced by another

record x′ and the remaining data samples in D−x are sampled from the prior πd′ [11].

For the knowledge of the generator, the TAPAS toolbox presents four possibilities in-

cluding No-box, Black-box, White-box and Uncertain-box. No-box is when the attacker has

no information about the generator. Black-box is when the attacker has the exact knowl-

edge of the generator. White-box is when the attacker not only has the exact knowledge

of the generator but also some parameters of the generator model. Uncertain-box is when

the attacker has some knowledge of the generator and uncertain or partial knowledge of the

generator model parameters [11].

In the experiments for this paper, we assume auxiliary data knowledge and black-box

knowledge of the generator by the attacker.
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5.3 Goals and Intentions of the Attacker

The attacker’s primary goal for launching the attacks is to reveal sensitive and private

information from the original dataset. Mathematically, we can define this intention by a

function f mapping the data D to a decision/intention of the attacker I as such:

f : D → I (5.3)

A type of attacker goal is called Targeted Membership Inference (MIA). In this type, for

a target record x, the attacker tries to figure out whether the target x is in the real dataset

D(r). This can be represented formally as such:

f : D(r) → I{x∈D(r)} (5.4)

Another type of attacker goal is called the Targeted Attribute Inference (AIA). For this

type of attack, the attacker’s goal is to figure out and reveal the attributes for target in-

stances/records of individuals [9]. Formally, with an attribute y and incomplete knowledge

of the target record x−y, the attacker wants to reveal the value v of attribute y in a way that

the completed record x−y|v is in the dataset. This can be represented by:

f : D(r) → v{xv
−y∈D(r)} (5.5)

Lastly, the most maliciously intentioned attack is called Reconstruction. In this type of

attack, the attacker tries to know the entire original dataset. This can be mathematically

denoted by:

f : D(r) → D(r) (5.6)

Out of these attackers’ goals, MIA and AIA are the most common types of attacker goals

and the TAPAS toolbox provides support for testing these two types of attackers [11].
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5.4 Library of Attacks in the TAPAS Toolbox

Some examples of attacks provided by the TAPAS toolbox include Shadow Modeling at-

tack, Groundhog attack, Probability Estimation attack, Synthetic Predictor attack, Closest

Distance AIA attack, Closest Distance MIA attack, Local Neighborhood attack and Direct

Linkage attack.

Shadow Modeling attack simulates the data generation process using auxiliary data

knowledge of the attacker and trains a classifier to predict a property of the training dataset

from the synthetic dataset. A Groundhog attack is a derivative of the Shadow Modeling

attack where a Random Forest Classifier is used with n number of estimators and Gini Im-

purity split for the decision trees in the random forest [23]. Probability Estimation attack

falls under the class of Membership Inference Attack. In this attack, a statistical model

px of the distribution of synthetic records is estimated and then px(target record) is com-

puted as the score. Intuitively, the probability distribution of the synthetic data is defined

by the generator trained on the real data and the probability is likely to be high for the

records in the real data. Synthetic Predictor attack is a type of attribute inference attack

that trains a classifier C on the synthetic data to predict the value v of record x, then uses

C(target record) to predict the target record. The Closest Distance AIA is an attack that

finds the closest record to the target record and uses the value of a sensitive attribute of that

closest record as the outcome for this attack. The Closet Distance MIA is an attack that

looks for the closest record to a given target in the synthetic data to determine if the target

is in the training set. Local Neighborhood Attack makes a decision based on records similar

to the target record. It specifically takes into account records in a given radius for a specific

value of distance. Direct Linkage attack, as we went over it in section for Differential Privacy,

is an attack that checks if a target record is present or not in the synthetically generated

data [11].

In the experiments for this paper, we assume the goal of the attacker to be Targeted
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Membership Inference (MIA) with the Groundhog attack.

5.5 Evaluation Metrics for the Attacks

The TAPAS Toolbox provides several evaluation metrics to assess and audit the privacy

preservation of target records for the synthetic data generators in the experiments. The

metrics include:

• Accuracy: Differential Privacy guarantees safety against membership inference at-

tacks in which an attacker tries to figure out whether a target record x is present in

the real dataset, D(r). The accuracy metric signifies the success rate for the attacker

correctly classifying a record in or not in the training dataset [11].

• True Positive Rate: The True Positive Rate (TPR) is the proportion of the actual

positive target records that are correctly identified by the attack. Mathematically, a

random mechanism is defined asM : Ω×D → O that satisfies (ε, δ)-differential privacy

guarantees and d, d′ ∈ D as part of the neighboring datasets (d ≈ d′). Then, the True

Positive Rate can be defined by the randomized mechanism M, and a randomized

attacker A : Ω×O → {d, d′} as such:

TPA = Pr[A(M(d)) = d] (5.7)

• False Positive Rate: The False Positive Rate (FPR) is the probability of the records

that are incorrectly identified as positive target records by the attack. Formally, this

can be defined as the following:

FPA = Pr[A(M(d′)) = d] (5.8)

• Effective Epsilon: Based on the definitions of TPR and FPR, we can establish that:
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eε ≥ max

(
TPA − δ

FPA
,
1− FPA − δ

1− TPA

)
(5.9)

Based on this inequality, we can further define the effective εeff(δ; d, d′) as:

εeff(δ; d, d′) = log sup
A:Ω×O→{0,1}

max

(
TPA − δ

FPA
,
1− FPA − δ

1− TPA

)
(5.10)

In simpler terms, effective epsilon εeff value is a measure of the actual privacy loss that

occurs in practice when a differentially private mechanism is used, as opposed to a

theoretical measure of privacy loss. As we reviewed in Chapter 2, epsilon, ε, is used to

quantify the probability of an outcome when one instance or record of an individual

is added or removed from the dataset. Smaller the εeff value, stronger the privacy

guarantee of that mechanism. In the real world, when differential privacy techniques

are applied, and randomness and noise are added to the mechanisms in composition,

the DP theoretical guarantees may not be fully upheld. Therefore, εeff value is a

measure for a more realistic and quantitative privacy guarantee [11].

The TAPAS toolbox calculates the εeff by first greedily performing an attack on 10%

of the testing samples and performs estimation for statistically significant lower bound

on the εeff using the 90% of the remaining samples [12].

• MIA Advantage: MIA refers to the value of Membership Inference Attack (MIA)

Advantage. This metrics evaluates the success of the membership inference attacks.

The advantage refers the ability of the attacker to classify and reveal the target record

better than a random chance. Formally, MIA advantage is measured by the distance

between the attacker’s success probability and the probability of a random guess [11].

As an example, if a random guess has a 50% chance of being correct, and the attacker

has a success rate of 70%, the MIA advantage value is 10%. The MIA advantage can

be represented as:
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AdvantageMIA = AccuracyAttack − BaselineRandom Guess (5.11)

where AccuracyAttack is the attacker’s success rate for correctly identifying if a record is

in the training dataset and BaselineRandom Guess is the success rate of random guessing.

In the context of DP, a lower MIA value is preferred since it indicates that the model

does not leak much information about its data.

• Privacy Gain: Privacy gain is a metric to quantify the gain or improvement in privacy

after applying DP to a mechanism. In other words, this allows us to understand

how hard is it for an attacker to infer or reveal sensitive information after privacy-

enhancing methods have been applied. The gain refers to the increased uncertainty

for the attacker in revealing individual information. We can quantify privacy gain

by taking the difference between initial risk, which is the risk of privacy loss before

applying DP, and residual risk, which is the risk of privacy loss after applying DP

to a mechanism. In relation to the epsilon (ε) parameter, privacy gain is inversely

proportional. For instance, lower the value of epsilon, higher the privacy gain, since

the output of the mechanism is less dependent on in individual record [11].

• AUC: AUC refers to area under the ROC (Receiver Operating Characteristic) curve.

The ROC curve plots the TPR against the FPR at various thresholds for binary attacks.

The threshold denotes the point above which a data point is classified as positive in a

threat model. The area under the ROC curve signifies the quality of the classifier by

plotting FPR on the x-axis and TPR on the y-axis and the points on the curve represent

sensitivity (TPR) and specificity (1-TNR) corresponding to a particular threshold. If

the curve has an arc closer to the top-left corner, which indicates good performance of

the inference attacks and closer to the diagonal of the plot space indicates the lower

effectiveness of the attack. The AUC summarizes this using a single value which is

computed by calculating the area under the ROC curve. So, higher the value of the
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AUC suggests better performance of the attack, and thus, lower privacy preservation.

Lower the value of the AUC suggests worse performance of the attack, and thus, higher

privacy preservation [11].

31



CHAPTER 6

Experiments

6.1 Breast Cancer Data

Here are a list of unique variables in the Breast Cancer Wisconsin Diagnostic data [31] used

to generate the summary reports. Every instance of patient ID has three readings as separate

columns for each of the unique variables and one corresponding diagnosis as the dependent

variable.

Variable Name Description

ID ID of the patient

Diagnosis M=malignant, B=benign

radius Distances from center to points on the perimeter

texture Gray-scale values for the texture of the cell nucleus

perimeter Perimeter values of the cell nucleus

area Area of the cell nucleus

smoothness Smoothness values of the cell nucleus

compactness compactness values are calculated as perimeter2/area− 1.0

concavity Values of concavity for the concave portions of the contour

concave points Number of concave portions of the contour

symmetry Symmetry values of the cell nucleus

fractal dimension ”coastline approximation” - 1

Table 6.1: Breast Cancer Data.
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6.2 About the Data

Breast cancer is a malignant type of cancer and has been life threatening for women around

the world. With early detection as a non-metastatic disease, breast cancer is curable. Health-

care datasets such as these are highly confidential, but important for analysis and model

training that help with early detection. Therefore, exploring the use cases of synthetic data

generation for such a dataset is quite beneficial.

The real dataset from The Breast Cancer Wisconsin Diagnostic Data is used to generate

synthetic data with 569 record instances and 32 columns. For the dataset, the features or

each instance are computed from a digitized image of a fine needle aspirate (FNA) of a breast

mass. They describe characteristics of the cell nuclei present in the image. Ten real-valued

features computed from the raw data for each cell nucleus are as follows:

• radius (mean of distances from the center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter² / area – 1.0)

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation” – 1)
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6.3 Exploratory Data Analysis

Exploratory data analysis (EDA) is conducted on the real dataset and the synthetically

generated datasets from several sources (including GReaT, OpenAI’s GPT4, Mostly.AI). The

purpose is to understand the data quality and data distributions, and compare and contrast

between the real dataset and the synthetically generated ones. EDA includes checking for

data types, data previews, missing values, constant occurrences, duplicate rows, conducting

univariate analysis, bivariate analysis and multivariate analysis. An open-source Python

library called ”Edvart” is used to explore datasets and generate EDA reports. The EDA

notebooks, summary plots and html files for the EDA reports can be found in the Appendices

section [2].

For the original dataset, the EDA revealed that there are no missing instances, rows with

missing values or duplicate rows. The univariate analysis revealed the most frequent values

for each of the categorical and numeric columns using descriptive and quantile statistics

such as the number of unique values, sum of the distribution, mean, mode, standard devia-

tion, men absolute standard deviation, coefficient of variation, kurtosis, skewness, minimum,

maximum, Q1, median, Q3, range and interquartile range. Overall, for each data column in

the original data set, we see a unimodal distribution with a trend of the distribution skewed

towards the left with some outliers for variables such as area, perimeter and radius. The

bivariate analysis utilized correlation plots such as Pearson Correlation, Spearman Corre-

lation, Kendall Correlation, Pairplot and Contingency table for analysis. Looking at the

Pearson Correlation in further detail which measures the strength of the linear relationship

between two variables with -1 signifying total negative linear correlation, 0 being no correla-

tion and +1 meaning a total positive correlation. We notice a significant positive correlation

amongst several numeric variables/columns in figure 9.14. For multivariate analysis, the

library performs principal component analysis, calculates explained variance ratio, parallel

coordinates and parallel categories. Examining the explained variance ratio, which signifies
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the percentage of variance that is attributed for principal components with 80% considered

high variance, 68.18% represents high data variance.

Examining the EDA of mostly.ai dataset reveals no missing instances, rows with miss-

ing values or duplicate rows. The univariate analysis reveals similar trends to the original

dataset of unimodal left skewed distributions with outliers. The bivariate analysis reveals an

interesting observation through the correlation plots that show all correlation values amongst

variables to be 0, signifying a drop in the correlation information after applying the synthetic

data generator to the original dataset. We can also notice that the explained variance ratio

has dropped to 9.58% signifying low data variance in the synthetic data compared to the

62.18% in original dataset. So, through this synthetic data generation process, we lost data

variability and correlations present in the original data.

Examining the EDA of the dataset generated by the GReaT framework, we notice in the

univariate analysis a trend of unimodal left skewed distribution with outliers quite similar to

the original dataset. The bivariate analysis reveals the observation of the correlation values

being between 0 to 1, with the correlations being conserved from the original dataset, which

is in contrast to the other generator models. We notice the explained variance ratio to be

around 46% which is quite higher than the other generators and display a medium data

variance compared to the original dataset’s value of around 68.18%.

Examining the EDA of the dataset generated through OpenAI’s GPT4, we see no missing

values or duplicate rows. We see unimodal distributions with zero skew with low numbers of

outliers. The correlation plots reveal no correlation amongst the columns signifying a drop in

correlation information after applying the synthetic generator. The explained variance ratio

is 9.68% which is similar to the mostl.ai’s value, signifying a drop in data variance. Compar-

ing with the GReaT framework’s generated dataset, we see a higher loss in representative

information such as outliers, correlations and data variance with GPT4’s data. So, it is less

representative of the original dataset than the data produced by the GReaT framework.

Overall, comparing the EDA of the original dataset with the EDA from the generators
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of GPT4, mostly.ai and the GReaT framework, we can observe that the GReaT framework

produced the most representative dataset conserving the outliers, skewness of the unimodal

distributions, correlations as well as data variance.

6.4 Experiment Design

6.4.1 Generators

The synthetic data generators for experiments in this paper come from several sources such

as LLMs from the GReaT framework and OpenAI’s GPT4, Generative Adversarial Networks

(GANs) as well as an AI-generated dataset produced using a proprietary technique from an

industry startup, mostly.ai.

6.4.2 Experimental Attack

For defining the attack, auxiliary data knowledge is assumed which means that the attacker

knowledge assumes access to some auxiliary dataset from which training datasets are sam-

pled as a random subset of the auxiliary data. For attacker knowledge on generator, the

recommended assumption by the TAPAS toolbox of the black-box knowledge is made. The

threat model is defined as a targeted MIA (membership inference attacks) on random records

with the defined attacker. The randomized target record indices are determined by an iso-

lation forest model and they are combined with an array of outlier indices. The attacker

of Groundhog attack with standard parameters is initialized with Random forest classifier

declared as the feature set classifier. With this attack setup, the threat model is trained

and tested on different generators, and the TAPAS toolbox produces resultant summary

reports of privacy metrics for each generator. For the differentially private mechanism of

DP-CTGAN, we use the ε values of 0.1 and 1 to compare the looser and stricter constraints

to the εeff value. The industry standard for ε is 1. The pseudo-codes for the attack function
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and the main threat model function are as follows. The GitHub link for the Jupyter Note-

book with Privacy Auditing of Synthetic Data using the TAPAS Toolbox can be found in

the Appendices.

Algorithm 1 Pseudo-code for the Attack Function

1: Initialize the attacker knowledge on data

2: Initialize the knowledge on generator

3: Create an array of target indices to target combining random indices selection using

an isolation forest model and outliers

4: Define a threat model for Membership Inference Attack on target records using TAPAS’s

threatModels.TargetedMIA(dataKnowledge, getRecords([targetIndex]), sdg-

Knowledge, standard parameters)

5: Initialize an attacker of Groundhog attack Attack.GroundhogAttack with standard

parameters

6: Train the attack with attacker.train(threatModel, numSamples)

7: Test the attack with attacker.test(threatModel, numSamples)

8: Return metrics with summary.getMetrics()

Algorithm 2 Pseudo-code for the main Threat Model Function

1: Initialize empty data frames for storing metrics and all summaries

2: Define an array of generators

3: Loop for generator in generators:

4: Nested loop for target in targets:

5: Call the attack function with attack(dataset, targetIndex, generator)

6: Return summary metrics
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6.5 Results

In Figure 6.1, we can analyze the plot comparing different generators on random targets

for the real Cancer dataset with DP-CTGAN with epsilon values of ε = 0.1 and ε = 1.

We can visually compare metrics like the effective epsilon, the classification accuracy, area

under the receiver operating characteristic curve (AUC) and the privacy gain (PG). Some

points are above the threshold of epsilon of 1 signaling that the privacy guarantee was not

upheld. For some of the target records, the values are not showing in the plot because the

epsilon value of ε = ∞ due to effective epsilon being beyond bounds or numerical issues

with floating point precision. Based on the AUC and privacy gain values, we can state that

DP-CTGAN (eps=0.1) performed the best for privacy preservation against the Groundhog

attack in comparison to DP-CTGAN (eps=1) and the real dataset.

Figure 6.1: Comparing different generators on random targets from real Cancer dataset.

Figure 6.2 shows comparison of metrics between random vs outlier targets for real Cancer

dataset. Generally, we see a trend of higher privacy for outliers than random targets. For

the real dataset, the AUC value and privacy gain values have a higher disparity between

random and outliers than DP-CTGAN (eps=0.1 and eps=1), which intuitively makes sense
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since synthetic data generators usually miss generating representative outliers and this is

still an active area of research and development.

Figure 6.2: Random vs. outlier targets from real Cancer dataset.

Figure 6.3 shows comparison between synthetically generated dataset from BeGReaT

and DP-CTGAN (eps=0.1 and eps=1). Here, we can see that the privacy gain of 0.8 and

auc value of 0.7 are similar to the results from DP-CTGAN. Overall, the averaged values for

auc and privacy gain are similar for the GAN based generator and the LLM based GReaT

framework generator.

Figure 6.4 portrays random vs outlier targets from synthetic data generated from the

BeGreaT framework. Here, the disparity between the outlier and random values for different

generators follow a similar trend to the values we see for the real dataset, with outlier targets

having higher privacy preservation than random target records.

Figure 6.5 shows comparison between synthetically generated dataset from GPT4 and

DP-CTGAN (eps=0.1 and eps=1). Here again, the LLM generator, GPT4, performs quite

similarly to the DP-CTGAN generator with privacy gain value around 0.7, AUC value around

0.6 and effective epsilon under the value of 1.

Figure 6.6 shows random vs outlier targets from synthetic data generated from GPT4.
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Figure 6.3: Comparing different generators on random targets from BeGReaT Cancer

dataset.

We see that outlier and random targets do not display high disparity in privacy gain and

AUC values, potentially indicating outliers records not being too representative of the real

dataset.

Figure 6.7 shows comparison between synthetically generated dataset from mostly.ai and

DP-CTGAN (eps=0.1 and eps=1). Here, we see privacy gain and auc in the ranges of

0.6 and 0.8, with DP-CTGAN performing slightly better in privacy preservation than the

counterpart.

Figure 6.8 shows random vs outlier targets from synthetic data generated from mostly.ai.

In this plot, we see an interesting trend with outlier targets having lower privacy gain and

higher AUC value indicating worse privacy preservation than random target records, which

is quite different and opposite from the trends in the plot for the original dataset. Further

examination and comparison amongst the actual outlier target record values would shed

light into this anomalous observation.

40



Figure 6.4: Random vs. outlier targets from BeGReaT Cancer dataset.

Figure 6.5: Comparing different generators on random targets from GPT4 Cancer dataset.
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Figure 6.6: Random vs. outlier targets from GPT4 Cancer dataset.

Figure 6.7: Comparing different generators on random targets from mostly.ai Cancer dataset.
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Figure 6.8: Random vs. outlier targets from mostly.ai Cancer dataset.
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CHAPTER 7

Summary of the Results

The table 7.1 summarizes the result metrics to compare the averaged parameters for privacy

preservation between the real dataset and synthetic data from different generators including

DP-CTGAN (eps=0.1), DP-CTGAN (eps=1), GReaT, GPT4 and mostly.ai. Starting with

comparison of the attack accuracy values, we see that the attack accuracy values for all

the synthetic data generators are relatively the same, around 0.6. We see that the attack

accuracy of the original dataset is the highest with a value of 0.7 signifying that it has

the lowest privacy preservation, which makes sense since it is the real dataset without a

differential privacy guarantee mechanism applied to it. The lowest accuracy value lies with

DP-CTGAN (eps=0.1), which again makes sense because it has a strict epsilon value of

0.1, guaranteeing higher privacy preservation. Based on comparison of the accuracy values

for synthetic data generator DP-CTGAN with LLM generators such as GReaT, GPT4 and

mostl.ai, we can state that LLMs are comparable in performance with the traditional GAN

based generator methods.

Examining the TPR values, we can notice a similar trend in the distribution of the metrics

to the accuracy values, with the real dataset having the highest TPR value of 0.8 signifying

high rate of correct classification by the attacker of target records, followed by GReaT,

DT-CTGAN (eps=1), GPT4, mostl.ai, and finally, the lowest value of 0.4 for DT-CTGAN

(eps=0.1). For the FPR which denotes values that are incorrectly classified as target records,

the highest values of 0.5 belong to the real dataset and DP-CTGAN (eps=0.1), followed by

similar values between 0.4-0.3 for DP-CTGAN (eps=1), GReaT, GPT4 and mostly.ai. Due
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to similarity in the range of these values, we can conclude that LLMs perform comparably

and similarly to other GAN-based generators. The MIA advantage quantifies the success

of the attacks based on the attacker’s success probability calculated based on the difference

between the baseline accuracy of a random guess and accuracy of the attack. The highest

MIA advantage value belongs to the real dataset and mostl.ai synthetic dataset, and there

is comparable advantage for DP-CTGAN (eps=1), GReaT, GPT4 and finally, the lowest

advantage value for DP-CTGAN (eps=0.1) due to its stricter epsilon value.

Looking at the Privacy Gain value that quantifies the gain and improvement in privacy

after applying DP to a mechanism, the lowest privacy gain of 0.7 is associated with the real

dataset and mostly.ai’s data. Highest privacy gain belongs to DP-CTGAN (eps=0.1) because

of its stricter epsilon value and similar values can be noticed in the range of 0.8-0.9 for DP-

CTGAN (eps=1), GReaT and GPT4. Next, examining the AUC value, higher the value

of AUC suggests better performance of the attack, and lower the value of AUC suggests

worse performance of the attack. Looking at the AUC values, the real dataset, GReaT

and mostly.ai have values in the range of 0.75-0.80. DP-CTGAN (eps=0.1), DP-CTGAN

(eps=1) and GPT4 have similar AUC values with the range of 0.45-0.69, suggesting worse

performance of the attack compared to the group mentioned earlier, meaning higher privacy

preserving qualities. The effective epsilon value, εeff, portrays and quantifies a practical

measure of privacy guarantee in experiments, as opposed to the theoretical guarantee of ε.

Smaller the value of εeff, stronger the privacy guarantee of that generator. For the some of

the generators, the εeff does not exist signaling that the privacy promise is not being fully

upheld or numerical computation errors with floating point precision resulting in εeff = inf.

DP-CTGAN (eps=0.1) has the smallest value of εeff signifying a strong privacy guarantee,

followed by DP-CTGAN (eps=1) and GPT4 with values lower than 1, which is an acceptable

value according to DP standards.

Based on the observations of the summary table of metrics from privacy attacks on

different generators, we can conclude that the LLM-generated synthetic data performed
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Metrics Real DP-CTGAN DP-CTGAN GReaT GPT4 mostly.ai

(eps=0.1) (eps=1)

Accuracy 0.7 0.5 0.6 0.6 0.6 0.6

True Positive Rate 0.8 0.4 0.5 0.6 0.5 0.5

False Positive Rate 0.5 0.5 0.3 0.4 0.3 0.2

Mia Advantage 0.3 -0.1 0.1 0.2 0.2 0.3

Privacy Gain 0.7 1.1 0.9 0.8 0.8 0.7

Auc 0.75 0.45 0.59 0.80 0.69 0.77

Effective Epsilon inf -0.07 0.35 inf 0.70 inf

Table 7.1: Summary Metrics for Different Generators

relatively similarly, and at times, better to the other traditional generator of DP-CTGAN

and the synthetic data generator startup, mostly.ai. The best performing generator was

DP-CTGAN (eps=0.1) with a stricter epsilon value. Amongst the LLMs, GReaT and GPT4

performed relatively and overall better in privacy preservation than the alternatives 1. Both

LLM generators performed comparably well to DP-CTGAN (eps=1). In summary, we can

conclude that LLMs are a strong alternative to the traditional techniques of synthetic data

generation since they exhibit acceptable privacy guarantees based on the privacy gain, AUC,

MIA advantage, TPR/FPR, attack accuracy and εeff values.

1As can be observed in Table 7.1, for GReaT and mostly.ai, the fact that the εeff does not exist signals
that the privacy promise is not being fully upheld or numerical computation errors in the TAPAS model
with floating point precision resulting in εeff = inf, leads to concerns on the potential privacy leakage risks.
Further investigation is necessary to evaluate risks.
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CHAPTER 8

Conclusion

8.1 Conclusion and Future Work

In this paper, we used a healthcare dataset with sensitive user information of Breast Cancer

to evaluate the differential privacy preserving metrics with adversarial attacks from the

TAPAS toolbox. The paper compares and contrasts the data quality, data distributions and

privacy-preserving metrics of the real dataset with synthetically generated datasets from

several sources including LLMs from the GReaT framework and OpenAI’s GPT4, Generative

Adversarial Networks (GANs), and an AI-generated dataset produced using a proprietary

technique from an industry startup, mostly.ai. The EDA comparing the original dataset’s

distribution with the distributions of the generators revealed the GReaT framework to have

produced the most representative dataset conserving the outliers, skewness of the unimodal

distributions, correlations as well as data variance. In conclusion, the experimental findings

reveal that synthetic data generated from LLMs such as the GReaT framework and GPT4 is

on par with the differential privacy guarantees of other traditional generator methods such

as GANs.

For future work in privacy auditing techniques used in this paper, there is room for

advancement and permutations in threat modeling such as black box auditing with data

point canary, white box auditing with gradient canary and white box auditing with data

point canary. Furthermore, for privacy auditing of more realistic synthetically generated

data from LLMs, trying different attacks and different datasets with varying dimensions and
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data types to generate synthetic data is a potential area of future research as well. For

differential privacy as a field, there are many open questions and potential directions for

advancement such as improving the trade-off in utility-preservation by efficient allocation of

the privacy budget across multiple mechanisms in composition. For synthetic data generation

techniques and models, future investigation and research would be beneficial on producing

a representative set of outliers to generate highly realistic datasets. Moreover, research at

the interaction of public policy, privacy regulations, ethics, AI and fairness to bridge the

gap between theory and practical deployment of DP and synthetically generated datasets in

industry applications is another growing field of future work.
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CHAPTER 9

Appendices

• MASDS Thesis GitHub repository/README: link

• Privacy Auditing of Synthetic Data using TAPAS toolbox notebook: link

• Datasets directory: link

• Privacy Auditing Experiments reports: link

• BeGReaT framework data generation notebook: link

• EDA notebooks for real and synthetic datasets: link

• EDA HTML files: link
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iter target id generator acc true pos rate false neg rate

0 543 Raw 0.5 1.0 1.0

1 15 Raw 0.7 0.6 0.2

2 562 Raw 0.8 1.0 0.4

3 202 Raw 0.7 0.8 0.4

4 258 Raw 0.7 0.4 0.0

5 505 Raw 0.6 1.0 0.8

6 151 Raw 0.7 1.0 0.6

7 543 DP-CTGAN (eps=0.1) 0.5 0.2 0.2

8 15 DP-CTGAN (eps=0.1) 0.4 0.2 0.4

9 562 DP-CTGAN (eps=0.1) 0.6 0.6 0.4

10 202 DP-CTGAN (eps=0.1) 0.3 0.4 0.8

11 258 DP-CTGAN (eps=0.1) 0.7 0.8 0.4

12 505 DP-CTGAN (eps=0.1) 0.5 0.0 0.0

13 151 DP-CTGAN (eps=0.1) 0.3 0.6 1.0

14 543 DP-CTGAN (eps=1) 0.6 0.4 0.2

15 15 DP-CTGAN (eps=1) 0.5 0.4 0.4

16 562 DP-CTGAN (eps=1) 0.5 0.2 0.2

17 202 DP-CTGAN (eps=1) 0.8 0.8 0.2

18 258 DP-CTGAN (eps=1) 0.5 0.6 0.6

19 505 DP-CTGAN (eps=1) 0.6 0.2 0.0

20 151 DP-CTGAN (eps=1) 0.5 0.6 0.6

Table 9.1: Experiment metrics for the real Breast Cancer dataset with Groundhog attack
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iter mia advantage privacy gain auc effective epsilon

0 0.0 1.0 0.48 inf

1 0.4 0.6 0.60 inf

2 0.6 0.4 0.84 inf

3 0.4 0.6 0.72 inf

4 0.4 0.6 0.90 inf

5 0.2 0.8 0.80 inf

6 0.4 0.6 0.88 inf

7 0.0 1.0 0.28 0

8 -0.2 1.2 0.34 inf

9 0.2 0.8 0.78 inf

10 -0.4 1.4 0.22 0

11 0.4 0.6 0.72 inf

12 0.0 1.0 0.58 inf

13 -0.4 1.4 0.24 -0.223144

14 0.2 0.8 0.56 inf

15 0.0 1.0 0.74 inf

16 0.0 1.0 0.32 0

17 0.6 0.4 0.70 inf

18 0.0 1.0 0.68 inf

19 0.2 0.8 0.66 inf

20 0.0 1.0 0.46 0.693147

Table 9.2: Experiment metrics for the real Breast Cancer dataset with Groundhog attack

(continued)
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iter target id generator acc true pos rate false neg rate

0 430 Raw 0.6 0.6 0.4

1 471 Raw 0.5 0.4 0.4

2 288 Raw 0.5 0.0 0.0

3 366 Raw 0.7 1.0 0.6

4 506 Raw 0.5 0.0 0.0

5 73 Raw 0.8 0.8 0.2

6 48 Raw 0.7 0.4 0.0

7 430 DP-CTGAN (eps=0.1) 0.3 0.2 0.6

8 471 DP-CTGAN (eps=0.1) 0.5 0.6 0.6

9 288 DP-CTGAN (eps=0.1) 0.6 0.4 0.2

10 366 DP-CTGAN (eps=0.1) 0.7 0.6 0.2

11 506 DP-CTGAN (eps=0.1) 0.4 0.2 0.4

12 73 DP-CTGAN (eps=0.1) 0.4 0.0 0.2

13 48 DP-CTGAN (eps=0.1) 0.6 0.4 0.2

14 239 DP-CTGAN (eps=0.1) 0.6 0.8 0.6

15 430 DP-CTGAN (eps=1) 0.5 0.6 0.6

16 471 DP-CTGAN (eps=1) 0.4 0.0 0.2

17 288 DP-CTGAN (eps=1) 0.4 0.6 0.8

18 366 DP-CTGAN (eps=1) 0.4 0.8 1.0

19 506 DP-CTGAN (eps=1) 0.6 0.4 0.2

20 73 DP-CTGAN (eps=1) 0.6 0.8 0.6

Table 9.3: Experiment metrics for the synthetic Breast Cancer dataset from mostly.ai with

Groundhog attack
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iter mia advantage privacy gain auc effective epsilon

0 0.2 0.8 0.70 inf

1 0.0 1.0 0.62 inf

2 0.0 1.0 0.66 inf

3 0.4 0.6 0.68 inf

4 0.0 1.0 0.94 inf

5 0.6 0.4 0.82 inf

6 0.4 0.6 0.96 inf

7 -0.4 1.4 0.26 0

8 0.0 1.0 0.56 0.693147

9 0.2 0.8 0.86 inf

10 0.4 0.6 0.70 inf

11 -0.2 1.2 0.22 0

12 -0.2 1.2 0.30 inf

13 0.2 0.8 0.46 inf

14 -0.4 1.4 0.20 -0.223144

15 0.0 1.0 0.44 0

16 -0.2 1.2 0.58 0.693147

17 -0.2 1.2 0.38 inf

18 -0.2 1.2 0.66 1.098612

19 0.2 0.8 0.56 0.693147

20 0.2 0.8 0.48 inf

Table 9.4: Experiment metrics for the synthetic Breast Cancer dataset from mostly.ai with

Groundhog attack (continued)
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iter target id generator acc true pos rate false neg rate

0 370 Raw 0.6 0.2 0.0

1 400 Raw 0.6 0.8 0.6

2 438 Raw 0.5 0.2 0.2

3 496 Raw 0.6 0.6 0.4

4 496 Raw 0.8 1.0 0.4

5 172 Raw 0.6 0.8 0.6

6 265 Raw 0.6 0.2 0.0

7 370 DP-CTGAN (eps=0.1) 0.7 0.8 0.4

8 400 DP-CTGAN (eps=0.1) 0.2 0.2 0.8

9 438 DP-CTGAN (eps=0.1) 0.6 0.4 0.2

10 496 DP-CTGAN (eps=0.1) 0.4 0.4 0.6

11 496 DP-CTGAN (eps=0.1) 0.7 0.6 0.2

12 172 DP-CTGAN (eps=0.1) 0.4 0.8 1.0

13 265 DP-CTGAN (eps=0.1) 0.5 0.2 0.2

14 265 DP-CTGAN (eps=0.1) 0.4 0.2 0.4

15 370 DP-CTGAN (eps=1) 0.5 0.4 0.4

16 400 DP-CTGAN (eps=1) 0.5 0.8 0.8

17 438 DP-CTGAN (eps=1) 0.3 0.2 0.6

18 496 DP-CTGAN (eps=1) 0.6 0.2 0.0

19 496 DP-CTGAN (eps=1) 0.5 0.8 0.8

20 172 DP-CTGAN (eps=1) 0.5 0.4 0.4

Table 9.5: Experiment metrics for the synthetic Breast Cancer dataset from OpenAI’s GPT4

with Groundhog attack
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iter mia advantage privacy gain auc effective epsilon

0 0.2 0.8 0.72 inf

1 0.2 0.8 0.60 inf

2 0.0 1.0 0.52 0.693147

3 0.2 0.8 0.70 inf

4 0.6 0.4 0.72 inf

5 0.2 0.8 0.68 inf

6 0.2 0.8 0.76 inf

7 -0.6 1.6 0.18 0

8 0.2 0.8 0.70 inf

9 -0.2 1.2 0.26 0

10 0.4 0.6 0.66 inf

11 -0.2 1.2 0.46 0.693147

12 0.0 1.0 0.54 inf

13 -0.2 1.2 0.52 inf

14 0.0 1.0 0.52 0.693147

15 0.0 1.0 0.54 0.693147

16 -0.4 1.4 0.32 0

17 0.2 0.8 0.46 inf

18 0.0 1.0 0.52 0.693147

19 0.0 1.0 0.46 0

20 -0.4 1.4 0.46 0.287682

Table 9.6: Experiment metrics for the synthetic Breast Cancer dataset from OpenAI’s GPT4

with Groundhog attack (continued)
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iter target id generator acc true pos rate false neg rate

0 331 Raw 0.5 0.4 0.4

1 59 Raw 0.5 1.0 1.0

2 178 Raw 0.6 0.4 0.2

3 357 Raw 0.5 1.0 1.0

4 114 Raw 0.6 0.2 0.0

5 197 Raw 0.7 0.4 0.0

6 150 Raw 0.8 1.0 0.4

7 331 DP-CTGAN (eps=0.1) 0.3 0.6 1.0

8 59 DP-CTGAN (eps=0.1) 0.7 0.8 0.4

9 178 DP-CTGAN (eps=0.1) 0.6 1.0 0.8

10 357 DP-CTGAN (eps=0.1) 0.3 0.0 0.4

11 114 DP-CTGAN (eps=0.1) 0.5 0.4 0.4

12 197 DP-CTGAN (eps=0.1) 0.5 0.6 0.6

13 150 DP-CTGAN (eps=0.1) 0.7 0.6 0.2

14 331 DP-CTGAN (eps=1) 0.4 0.6 0.8

15 59 DP-CTGAN (eps=1) 0.4 0.4 0.6

16 178 DP-CTGAN (eps=1) 0.6 0.8 0.6

17 357 DP-CTGAN (eps=1) 0.7 0.6 0.2

18 114 DP-CTGAN (eps=1) 0.7 0.6 0.2

19 197 DP-CTGAN (eps=1) 0.6 0.2 0.0

20 150 DP-CTGAN (eps=1) 0.5 0.4 0.4

Table 9.7: Experiment metrics for the synthetic Breast Cancer dataset from GReaT frame-

work with Groundhog attack
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iter mia advantage privacy gain auc effective epsilon

0 0.0 1.0 0.58 inf

1 0.0 1.0 0.80 inf

2 0.2 0.8 0.66 inf

3 0.0 1.0 0.86 inf

4 0.2 0.8 0.82 inf

5 0.4 0.6 1.00 inf

6 0.6 0.4 0.86 inf

7 -0.4 1.4 0.34 0

8 0.4 0.6 0.58 inf

9 0.2 0.8 0.60 inf

10 -0.4 1.4 0.34 0

11 0.0 1.0 0.54 0.693147

12 0.0 1.0 0.32 inf

13 0.4 0.6 0.66 1.098612

14 -0.2 1.2 0.50 inf

15 -0.2 1.2 0.48 inf

16 0.2 0.8 0.74 inf

17 0.4 0.6 0.80 1.609438

18 0.4 0.6 0.60 1.098612

19 0.2 0.8 0.56 0.693147

20 0.0 1.0 0.32 0

Table 9.8: Experiment metrics for the synthetic Breast Cancer dataset from GReaT frame-

work with Groundhog attack (continued)
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Figure 9.1: Univariate Analysis for Real Dataset

Figure 9.2: Univariate Analysis for Synthetic Dataset from GPT4
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Figure 9.3: Univariate Analysis for Synthetic Dataset from GReaT framework
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Figure 9.4: Univariate Analysis for Synthetic Dataset from mostly.ai

Figure 9.5: Texture1 Summary Statistics for Real Dataset
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Figure 9.6: Texture1 Summary Statistics for Synthetic Dataset from GPT4

Figure 9.7: Texture1 Summary Statistics for Synthetic Dataset from GReaT framework
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Figure 9.8: Texture1 Summary Statistics for Synthetic Dataset from mostly.ai

Figure 9.9: Explained variance ratio vs. principal components for Real Dataset
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Figure 9.10: Explained variance ratio vs. principal components for Synthetic Dataset from

GPT4
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Figure 9.11: Explained variance ratio vs. principal components for Synthetic Dataset from

GReaT framework
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Figure 9.12: Explained variance ratio vs. principal components for Synthetic Dataset from

mostly.ai

Figure 9.13: Correlation Matrices between original and synthetic dataset for Synthetic

Dataset from mostly.ai
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Figure 9.14: Pearson Correlation Plot of the Real Dataset

Figure 9.15: Pearson Correlation Plot of the GReaT Dataset

66



Figure 9.16: Pearson Correlation Plot of the mostly.ai Dataset

Figure 9.17: Pearson Correlation Plot of the GPT4 Dataset
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