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ABSTRACT

We present a feedback or recurrent, auto-associative model
that captures several important aspects of causal learning
and causal reasoning that cannot be handled by feedforward
models. First, our model learns asymmetric relations
between cause and effect, and can reason in both directions
between cause and effect. As a result it can represent an
important distinction in causal reasoning, that between
necessary and sufficient causes. Second, it predicts cue
competition among effects and provides a mechanism for
them, something which can only be done with feedforward
models by assuming that two separate networks are learned,
a highly non parsimonious assumption. Finally, we show
that contrary to previous claims, a feedforward model
cannot handle Discounting and Augmenting in causal
reasoning, although a feedback model can. The success of
our feedback model argues for a greater focus on such
models of causal learning and reasoning.

Introduction

Connectionist models of causal learning and reasoning have
relied on feedforward networks (e.g., Gluck & Bower, 1988;
Shanks, 1991; Van Overwalle, 1998). However, as we have
recently shown, feedforward networks have serious
limitations as models of causal learning and reasoning (Read
& Montoya, in press). In that paper, we outlined an
alternative, a feedback or recurrent model, that can handle
phenomena that a feedforward model cannot. In the current
paper we examine further implications of this kind of model
for phenomena that feedforward models cannot handle, such
as asymmetries in causal learning and reasoning, and cue
competition for consequences or effects.

In previous work we have examined how this kind of
model can handle a number of phenomena in causal learning
and causal reasoning. Read and Montoya (in press) have
demonstrated that it can successfully simulate many of the
classic phenomena from the animal and human causal
learning literature, such as blocking and conditioned
inhibition, to which the Rescorla-Wagner model (Rescorla
& Wagner, 1972) and feedforward models with delta-rule
learning (e.g., Gluck & Bower, 1988; Shanks, 1991), have
been applied. Read and Montoya also demonstrated that this
auto-associative model, which is a parallel constraint
satisfaction model, deals with the principles of explanatory
coherence discussed by Thagard (1989, 1992) and
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experimentally demonstrated by Read and Marcus-Newhall
(1993) and Read and Lincer-Hill (1998) (see also Ranney, in
press; Schank & Ranney, 1991, 1992). Finally, several
papers (Montoya & Read, 1998; Read & Miller, 1993) have
shown that this kind of model can simulate the Discounting
and Augmenting principles in causal reasoning (Kelley,
1971), as well as the role of factors, such as construct
accessibility and causal strength, that may underlie the
closely related Correspondence Bias or Fundamental
Attribution Error (Jones, 1990; Ross, 1977).

In the current paper, we focus on the implications for
causal learning and reasoning of a central aspect of this
model: all nodes are completely interconnected, with an
independent link going in each direction between each pair of
nodes. This has three implications which we will examine.
First, because each pair of nodes is joined by two links, one
in each direction, it is possible to reason both from cause to
effect and from effect to cause. In contrast, with the
feedforward models previously investigated in causal learning
and reasoning, it is only possible to learn and reason in one
direction, typically from cause to effect. Second, because
each member of the pair of links can have different
strengths, the link from cause to effect can have a different
strength than the link from effect to cause. As a result, with
this model one can learn asymmetric relations between cause
and effect, and use these asymmetric relations in causal
reasoning. Third, because the network is totally
interconnected, it can learn relations among possible causes
of an event. In contrast, in the feedforward networks used in
this domain the only links are forward, from cause to effect.
It is not possible to learn links among causes. One
implication of this, we will argue, is that the standard
feedforward model is incapable of handling either discounting
or augmenting in causal reasoning, whereas our model can
handle both phenomena.

An Auto associative Model.

Our model is based on McClelland and Rumelhart's (1988)
auto-associator, which is a single layer auto-associative
network with all units completely interconnected. Each unit
receives input from other nodes and simultaneously sends
activation to other nodes. Because of the feedback relations,
this network functions as a parallel constraint satisfaction
system, acting to satisfy multiple simultaneous constraints
among elements in the network. Links are modified by delta-
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rule learning and each link in a pair can end up with a
different weight. All of the nodes can receive input from
both the environment and other nodes. Thus, both cause and
effect nodes can be activated by environmental cues.
(Although Thagard's ECHO model is also a feedback model,
it assumes that both links between pairs of nodes have
identical weights. Thus, there is no way (o represent
asymmetric causal relations in ECHO and no way to
examine the role of differences in links from cause to effect
and effect to cause. Further, because ECHO has no learning
mechanism, it cannot learn causal links (however, see
Wang, Johnson, and Zhang (1997) who have recently added
delta rule learning to ECHO). )

This network can learn associations among all the
elements that co-occur. That is, not only can it learn the
relation between the effect X and potential causes A and B, it
can also learn the association between the two potential
causes. In contrast, in feedforward networks, there are links
in only one direction, from input nodes to output nodes.
Output nodes only receive activation from the input nodes,
and cannot be directly activated by the environment. Also,
there are no links among the nodes in a layer; the only links
are between layers. Thus, it cannot learn associations
between causes.

Processing in the auto associative network proceeds as
follows. After input is received, all the units in the network
are synchronously updated at each cycle by an activation
function that is essentially the same as that employed in
ECHO (Thagard, 1989; 1992) and in Rumelhart and
McClelland’s (1986) interactive-activation and competition
model, as well as in a handful of other models they have
explored. This activation function is:

aj (t+1) = aj(t) (1-d) + {netj (max-aj (1)) if netj > 0
{netj (aj (t)-min) ifne!j <0
where netj = (istr) [Zwjiaj] + (estr)ext

The only minor difference in this activation function for
the auto-associative architecture, compared to other models
in which it has been used, is that the total input netj is now
determined by external input from the pattern vector exi, as
well as the sum of weighted inputs from other units within
the network with activations from the previous cycle,
E“’jiai- Note that the internal input and the external input
are scaled, by istr and estr, respectively.

After the system completes a number of processing cycles
(defined by the user), the delta rule (or Widrow-Hoff rule)
(Widrow & Hoff, 1960) is applied to the network to
compare the external input pattern to the internal inputs to
units. This learning regime reduces the difference between
internal and external inputs to units, by modifying the
weights among the nodes, so that the internal input comes
to reproduce or match the external input to the units. Hence,
the desired activation of a unit is determined by the set of
external inputs to that unit. The discrepancy between the
desired and actual activation of a unit is the measure of
error used in delta rule learning. Weight change is given by:

Aweightji = Irate (t- &) aj,

where Irate is the learning rate, t is the target or external
activation, a; is the internal or actual activation, and a; is the
activation of the node sending activation to aj.

Learns and Uses Asymmetries in Causal Relations.

Onc advantage of this model is that separate links exist from
cause to effect and from effect to cause. As a result, this
model is able to learn any asymmetries that might exist in
these relationships.  Further, having leamed these
asymmetries, they can be used in causal reasoning.

In contrast, neither current associative models (e.g., Gluck
& Bower, 1988; Shanks, 1991; Van Overwalle, 1998) nor
Cheng's (Cheng & Novick, 1990, 1992) probabilistic
contrast model can learn separate relations for cause to effect
and effect to cause. In fact, both capture the relationship
from cause to effect, but not the reverse relationship. Thus,
these models cannot learn asymmetries in cause-effect and
effect-cause relations. Further, these models do not allow for
reasoning in both directions.

Several authors (e.g., Shanks, Lopez, Darby, &
Dickinson, 1996) suggest that one could capture the two
different directions of causal learning by using two
feedforward networks, one with causes as inputs and the
other with effects as inputs. However, with recurrent
networks, such as the present model, only one network is
required. This is much more parsimonious than assuming
that an individual would require two separate networks to
capture bi-directionality in causal learning and reasoning.

Table 1 gives a set of learning trials that result in
asymmetric learning of links, such that cause A has a
stronger forward link to X than does cause B, whereas effect
X has a stronger backward link to cause B than to cause A.
In this example, assume that we are learning and reasoning
about possible causes of a forest fire (X). One possibility is
lightning (A) while another is a campfire (B).

Table 1: Learning History for Asymmetry in Causes

Simulation Unit Learning history Epochs
Asymmetry A #olou oo s o owow o ocar k)

B I i 4 I e

X + o+ o+ o+ o+

Because of the pattern of covariation, asymmetric causal
relations are learned. The model learns that if it occurs,
lightning is more likely to cause a forest fire, than is a
campfire. However, it also learns that if there is a forest fire
it was more likely preceded by a campfire then by lightning.
This asymmetry is apparent in both the activations when
causes and effects are separately tested and in the patterns of
weights that are learned.

When we separately activate the two causes, A (lightning)
alone leads to a higher activation for X (forest fire) than does
B (campfire), .35 versus .16. However, if effect X alone
(forest fire) is activated then cause B (campfire) is more
highly activated, .37, than is cause A (lightning), .27.

The connection strengths leads to the same conclusion.
The connection from A (lightning) to X (forest fire) is
stronger than the connection from B (campfire) to X (forest
fire), 1.58 versus .74. However, the connection from
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X(forest fire) to B(campfire) is stronger than the connection
from X(forest fire) to A (lightning), 1.88 versus .94. The
model has learned that the occurrence of lightning is more
likely to cause a forest fire than is the occurrence of a
campfire. However, it has also learned that if a forest fire
occurs that it is more likely to be caused by a campfire.

Such asymmetries seem to be an important part of human
causal reasoning, and our model easily captures them. Yet a
feedforward model, because links only go from input to
output, is completely unable to learn such asymmetries and
thus 1s unable to reason asymmetrically.

Captures the Distinction between Necessary and
Sufficient Causes

Our ability to model asymmetries in causal learning and
reasoning also allows us to capture what has been identified
as a central distinction in causal reasoning, the difference
between necessary and sufficient causes. For instance, a lit
match is sufficient to set gasoline on fire, but 1t is not
necessary because there are other ways in which the gasoline
can be ignited. This can be captured in our network by
assuming that the strength of a link from cause to effect
captures the sufficiency of a cause; the stronger this link the
more likely the cause is to bring the effect about. In
contrast, the link from effect to cause captures the necessity
of a cause; the stronger the link, the more likely it is that
the cause preceded the effect. A very strong link from effect
to cause suggests that the effect is almost always preceded
by that cause, suggesting that the cause is necessary for the
effect to come about. Because it cannot learn such
asymmetries, having links that only run from cause to
effect, a feedforward model cannot learn or use information
about this fundamental distinction between necessary and
sufficient causes.

Cue competition among effects

In the human and animal causal learning literature, there is
considerable evidence for cue competition among causes.
One example of such cue competition is Blocking, where
first learning that cue A strongly predicts an effect prevents
the later learning of the relation between cue B and the
effect, even if cue B is highly predictive of the effect. The
standard explanation is that cues compete for predictive
strength and that when cue A is learned to strongly predict
the effect, this essentially captures all the available
predictive strength, leaving none for B. Both the Rescorla-
Wagner rule and feedforward networks with delta rule
learning can capture such cue competition for causes.

But does cue competition for effects also occur, when a
single cause predicts multiple effects? Waldmann (1996)
points out that the Rescorla-Wagner model strongly predicts
such effects and that their absence would create serious
problems for this model. However, Waldmann argues that
his causal-model theory predicts that cue competition for
effects should not occur. And across several studies, he found
no evidence for cue competition for effects.

However, other researchers (e.g., Chapman, 1991;
Shanks, 1991; Shanks, Lopez, Darby, & Dickinson, 1996)
have provided evidence for cue competition for effects.
Miller and Matute (1996) have argued that the discrepancy in
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results among various researchers might be attributable to
differences in the questions used to assess causal strength.

This possibility is particularly clear in terms of our
model, which suggests that whether one gets cue
competition for effects may depend strongly on the type of
question that is asked to assess causal strength. That is, does
the question ask subjects to assess the strength from cause
to effect or from effect to cause? Waldmann (1996), among
others, has characterized this difference as between asking
predictive questions and asking diagnostic questions. A
predictive question asks subjects to assess the extent to
which the cause predicts potential effects. In terms of our
model, such a question asks subjects to assess the strength
of the link from the causes forward to the effect. In contrast,
a diagnostic question asks subjects to assess the extent to
which the effect is diagnostic of the cause, that is, to what
extent the existence of the effect provides evidence for the
cause. In terms of our model, this question asks subjects to
assess the strength of the link from the effect to the cause.

Cue competition for causes is typically demonstrated
when two or more causes predict a single effect, and
researchers ask a predictive question about the extent to
which the causes predict the effects. Our model suggests that
cue competition for effects should be demonstrated when a
single cause predicts two or more effects, and subjects are
asked a diagnostic question, for which they must assess the
strength of the link from the effect back to the cause.

One obvious implication of this is that the learner must
be able to separately encode the link from cause to effect,
and the link from the effect back to the cause. Several
researchers (e.g., Shanks, Lopez, Darby, & Dickinson,
1996) have suggested that this can be captured by assuming
two feedforward networks, one that learns the relations from
causes to effects and the other which learns the relations
from effects back to cause. However, such a solution seems
inelegant. With the current model, such an assumption is
unnecessary, as a basic part of its architecture is that it can
learn separate weights for the two links from cause to effect,
and from effect to cause.

Table 2: Learning History for Simulation of Cue
Competition

Simulation  Unit Learning history Epochs
Phase | A +++++ 10
X i
Y +++++
Phase I1 A +++++
X ++4++4+ 10
Y +++++

We have successfully simulated cue competition for
effects when a single cause predicts multiple effects and the
right question is asked. In the simulation, there are two
alternative stimulus presentations (See Table 2). In the first,
a single cause (A) is presented that predicts two effects (X
and Y) (Phase II alone). In the second, the network is first
presented with a number of instances of one effect (Y)
predicted by a single cause (A) (Phase I), followed by two
effects (X and Y) predicted by the same cause (A) (Phase II).



In this model, separate links are learned from cause to
effect, and from effect to cause. And as can be seen in Figure
1, there is an asymmetry in the learned links for the learning
sequence of Phase I followed by Phase II. Morcover, il is
clear from the links that in this model whether one should
expect to get cue competition for effects, depends upon the
direction of reasoning. For Phase II alone, equal weights are
learned among all the causes and effects (.76). However,
when Phase 1 is presented first, followed by Phase 11, the
results are quite different, predicting a cue competition effect
for effects or consequences. First, there are strong weights
from the cause A to both effects X and Y, although the
weight is twice as strong from A to Y (1.53 vs. .76).
However, in the reverse direction, the weight from X to A is
0, while the weight from Y to A is 1.53. And when we
examine the resulting activations (See Table 3) when each of
the causes and effects are tested, we get strong evidence for
cue competition in backward reasoning from effects to
causes, but not in forward reasoning from causes to effects.
When effect X is turned on, neither cause A nor effect Y is
activated at all. In contrast, when effect Y is turned on, both
cause A and effect X are activated. Further, when cause A is
activated, effects X and Y have almost identical activations,
although Y is slightly higher. Thus, there is strong evidence
for cue competition when reasoning backward, from effect to
cause, but not when reasoning forward, from cause to effect.
Thus, this model suggests that whether one gets cue
competition for effects will depend on the direction of
reasoning.

76 .76
76 .00
16 .76 76 .1.53
76 .76 .00 1.53

Phase I alone Phase [, then Phase II

Figure 1: Weights for Cue Competition Simulation

Table 3: Output Activations for Cue Competition
Simulation

Simulation Units  Resulting activations for:
Tested A X Y
Phase II alone A A3 29 .29
X .29 .55 .29
Y .29 .29 .55
Phase | followed A .58 32 .39
by Phase II X .00 .48 .00
Y .39 B 52, 58

Represents Learning of and Reasoning with
Relations between Causes.

As we noted above, Rescorla-Wagner and feedforward models
cannot directly capture relations between causes, but only
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rzlations between cause and effect. As a result, we argue that
feedforward models are unable to capture Discounting and
Augmenting (Jones & Davis, 1965; Kelley, 1971), although
feedback models can,

A number of authors (e.g., Baker, Mercier, Vallée-
Tourangeau, Frank, & Pan, 1993; Shanks, 1985, 1991;
Vallée-Tourangeau, Baker, & Mercier, 1994; Van Overwalle
& Van Rooy, 1998) have suggested that a feedforward model
with delta rule learning can handle the Discounting and
Augmenting principles identified by Kelley (1971) and Jones
and Davis (1965). The claim is that Discounting is the same
as Blocking found in studies of animal learning, and
Augmenting is the same as Super-conditioning. However,
despite their apparent similarity the underlying processing
mechanisms for the two sets of phenomena are quite
different. Moreover, feedforward models lack the necessary
mechanism for capturing discounting and augmenting, as
they lack the ability to represent relations among causes,
which we argue is critical for capturing these effects..

In Blocking, if the organism first learns that A is strongly
associated with effect X, when it is later presented examples
of B and A covarying with X, the organism fails to learn
the new association between B and X. In terms of eror
correcting learning, such as the delta-rule, once X is strongly
predicted by A, when A and B are subsequently paired with
X, there is little discrepancy between the actual and predicted
value of X (no error) and therefore little change is made in
the weight from B to X.

Thus, Blocking clearly deals with competition in the
initial learning of the causal links. In contrast, Discounting
in the human literature clearly deals with competition
among already learned causal explanations. Kelley (1971)
and Jones and Davis (1965) were considering adults who
were relying on already learned and activated knowledge. For
instance, consider adults who are told that a woman wrote a
pro-abortion essay after being assigned to the position by
her debate coach. Because of the assignment, they should
discount a pro-abortion attitude as a cause of her behavior.
These adults already know that both a pro-abortion attitude
and the assignment by the coach are possible explanations
for the behavior. They are not learning these relationships
for the first time. Thus, in contrast to Blocking,
Discounting does not refer to the failure to learn a causal
link, but rather reasoning on the basis of already learned
causal knowledge.

What changes in the typical Discounting situation is
information about the availability or presence of a potential
causc in a particular situation. Both McClure (1998) and
Morris and Larrick (1996) have argued that the degree of
discounting between two causes is a function of the extent
to which they are positively or negatively related.
Discounting can be handled in an auto-associative model by
assuming that there is an inhibitory link between competing
explanations (Read & Miller, 1993; Read & Marcus-
Newhall, 1993) (This cannot be done in a feedforward
model). Because of the inhibitory link, increased availability
of a plausible alternative will reduce the activation of the
other explanation. Thus, we aren't looking at competition
for learning of links, but rather at competition for the
activation of concepts with previously learned causal links.



Now consider Super conditioning and its relation (o
Augmenting. If the organism learns that A is followed by
X, but A and B together are not followed by X, then B
develops a negative or inhibitory relationship with X, If the
organism then learns that D and B together are followed by
X, then the relationship between D and X becomes stronger
than it would have been if B had not first developed a
negative relationship with X. Again, although this
phenomena is similar to Augmenting, it i1s not the same
thing. Augmenting deals with inhibition between an already
learned cause and effect, whereas Super-conditioning is based
on inhibition in the initial learning of causal relationships.
For example, suppose we are told that someone got an A on
an extremely difficult exam. We use our preexisting causal
knowledge to infer that the individual must be quite smart.
We are clearly not learning for the first time that someone
who can overcome a major barrier must possess a
considerable amount of the relevant ability, which is what
Super-conditioning would be concerned with. Clearly, there
is a critical distinction between the initial acquisition of
information and the ways in which it is later used.

Morris and Larrick (1996) make a similar distinction.
They note that in models of causal reasoning, there is a
distinction between induction or the initial acquisition of
causal knowledge, and reasoning or attribution, the actual
use of that knowledge. For instance, Kelley's (1971)
ANOVA cube model is a model of the acquisition of causal
knowledge, whereas his causal schema model is a model of
the use of pre-existing knowledge for reasoning.

Thus, the two types of phenomena are fundamentally
different in terms of the underlying processing mechanisms.
Blocking and Super-conditioning deal with competition for
weight strength in the learning of new causal relations,
whereas Discounting and Augmenting deal with competition
for activation in the use of already learned causal relations.
These are quite different processes. And as we noted, a
feedforward model is unable to capture a situation in which
the causal mechanism depends on links among causes.

Summary

In this paper we have demonstrated that a feedback or
recurrent, auto-associative model can capture several
important aspects of causal learning and causal reasoning
that cannot be handled by the feedforward models that have
been the typical focus of investigation. First, our model can
learn asymmetric relations between cause and effect. Second,
it can reason in both directions between cause and effect. As
a result it can represent an important distinction in causal
reasoning, the difference between necessary and sufficient
causes. Third, because the nodes in the network are totally
interconnected, it can represent cue competition among
effects, something which can only be done with feedforward
models by assuming that two separate networks are learned,
a highly non parsimonious assumption. Finally, we argue
that contrary to previous claims, a feedforward model cannot
handle Discounting and Augmenting in causal reasoning.
However, a feedforward model can. The success of our
feedback model suggests that researchers should focus more
energy on the capabilities of such models of causal learning
and reasoning.
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