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Abstract

Advances In Explainable Artificial Intelligence, Fair Machine Learning, And The

Intersections Thereof

Artificial intelligence (Al), if used correctly, has the capacity to improve human life by automat-
ing procedures that previously required human expertise and precision, particularly those that may
have a great impact on people’s lives and where the cost of a mistake is high. Unfortunately, the
use of machine learning (ML) algorithms carries with it certain risks that may limit their applica-
bility in such sensitive domains. Particularly, ML algorithms solve tasks by optimizing a complex
non-linear mapping between an input and output space. While the automated process of tuning
this function is powerful, it ultimately renders these learners uninterpretable and subject to error,
misuse, or harmful bias.

The fields of explainable artificial intelligence (XAI) and fair machine learning exist to combat
these issues. XAI seeks to explain how ML agents operate in human-interpretable terms, while
fairness aims to correct or avoid potential unfair outcomes. While existing work has laid promising
groundwork toward these ends, there are several limitations in both domains that should be rectified
before Al can be trusted for particularly sensitive tasks.

This dissertation aims to extend XAI and fair machine learning by making headway on these
limitations. For XAI, we create approaches that explain the entire model, not just individual
actions, we develop techniques tailored towards ML tasks beyond supervised learning, and we
examine alternatives to input space as the means of providing that explanation. For fairness, we
look to the literature in social sciences to create fair ML algorithms that match the models of how
unfairness and discrimination occur, which we argue are superior to existing techniques that do not
leverage this theory. Finally, we introduce the novel concept of machine-to-machine explanation:
the idea that explanation technology can be used for additional computational tasks, enabling

collaboration among ML models to improve their performance.
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CHAPTER 1

Introduction

The field of artificial intelligence (AI) has proven to be incredibly powerful for many complex
tasks from neural machine translation [1] to playing video games [2], often surpassing human
abilities. Increasingly, researchers and practitioners alike have attempted to leverage the success of
deep learning for highly sensitive, high-risk tasks that impact human lives, such as medical Al [3,4],
autonomous vehicles [5], and criminal justice [6]. Despite strong performance in traditional Al
tasks, the use of Al in these sensitive areas carries inherent risks. Humans typically approach
tasks with multiple high-level goals, while machines optimize a single, complex non-linear function
to meet specific mathematical objectives. This discrepancy leads to challenges, such as powerful
neural networks failing to generalize to novel data [7, 8], latching onto spurious features in the
training data [9], or having their objectives exploited by malicious actors [10].

Ensuring that the goals of machine learning algorithms align with those of humans is one of the
major challenges of the field, often referred to as the alignment problem [11]. Unfortunately, many
of the most powerful machine learning models are inherently black-box algorithms, meaning there
is no obvious method of interrogating these algorithms to determine if such shortcomings will exist
in any particular network. Consequently, research addressing the alignment problem has taken two
major forms: explainable artificial intelligence (XAI) and fair machine learning.

The field of explainable artificial intelligence seeks to provide a layer of interpretability to
these otherwise opaque models [12]. Interpretability is challenging to rigorously define, as what is
interpretable to one person may not be interpretable to another. Existing work has approached
this challenge in several ways [13] such as highlighting the features responsible for prediction
[14, 15], creating inherently interpretable models [16], or providing greater context to how the
model operates [17]. Explanations can be post-hoc, explaining an existing uninterpretable model
[15,17,18], or in-situ, creating models that are inherently interpretable [10,16,19].

A similar but distinct field is fairness in machine learning, which seeks to mitigate potential
biases that machine learning algorithms may exploit to achieve lower loss [20]. This is typically

1



done by interrogating an algorithm’s output with respect to the protected status variable(s) (PSV)
of the data [21] and a chosen fairness metric, of which many are used in the literature [22]. Fairness
interventions address these concerns by post-processing the output of an unfair network to make
it fairer, modifying aspects of the network to improve fairness in the future, or employing online
methods to train models to be fair [23].

Many techniques for adding interpretability and increasing fairness existed in the literature prior
to the work compiled in this dissertation. However, I argue that this work was either insufficient for
handling the challenges they set out to address, or that there are unexplored aspects of these fields
which, when exploited, have the potential to provide much more equitable systems. Acknowledging
these limitations and extending these techniques, as done in this work, is essential for calibrating

trust in machine learning models.

1.1. Limitations Of Existing Explainable AI

In 2019, a DARPA initiative sought to develop a series of critical questions that must be
addressed before Al can be trusted in highly sensitive domains. Those questions are: ”Why did
[the model] do that?”, "why not something else?”, "When doles the model] succeed/fail?” and
"How can I correct a mistake” [24]. Existing work in XAI has primarily focused on the first two
questions, often overlooking the others, and this dissertation aims to expand the exploration of
these topics.

While existing work has significantly advanced the accountability and transparency of otherwise
black-box machine learning algorithms, the stringent requirements of sensitive environments where
Al is deployed necessitate a broader range of explanation techniques. In this section, we discuss
some of the major limitations of current XAl methods. I also acknowledge that some research has
already been conducted in these areas, and I do not claim to be the first to explore these ideas.
However, I believe these topics are understudied and worthy of further investigation.

I argue that one of the greatest limitations of XAl is the focus on local explanations for providing
interpretability, that is, an explanation for a single prediction [13]. The issue with such explanations
is that they may be incredibly misleading when trying to calibrate our trust in a model [25]. The
authors of LIME [14] demonstrate that, for instance, a network meant to distinguish huskies and

wolves tended to focus on the distinction between indoor versus outdoor settings for huskies and
2



wolves respectively. While the implications for understanding the generalizability of a model are
clear from this example, it relies on the user not only having queried LIME enough such that they
could notice the trend but it also has the potential to ignore issues that the user failed to imagine
during their testing. How would the network react to seeing husky or wolf puppies, for instance?
Further, any insights gained would have to be interpreted by the user. What if, for example, it is
not the outdoor setting that tricks the network into thinking that a husky is a wolf, but rather the
presence of trees?

Local XAl is valuable, particularly in settings where individual decisions may require additional
transparency for legal concerns [26,27] or when such decisions may require action beyond classifi-
cation, however this does not negate the need for global explanations, those which seek to provide
greater interpretability for the model as a whole [13]. This aspect of explanation is understudied
but explored in more detail here.

Additionally, XAI research predominantly focuses on supervised learning environments, with
the expectation that these methods will transfer to unsupervised learning scenarios. However, this
assumption may not always be valid. For instance, in supervised learning, multiple distinct classes
each have unique characteristics. In contrast, anomaly detection operates under the premise of
a single type of data—mormal data—with some instances deviating from this norm. Here, the
objective shifts from identifying what is unique about a specific instance or class to understanding
how it differs from the normal data.

Finally, XAI tends to ground its explanations in the input space [14,15,17]. While this is a
natural choice, with the rise of embedding structures [28] and in particular transformer embedding
structures [29], the input to a neural network may no longer have the interpretable semantic
meaning as deep embedding features may not be, on their own, disentangled [30]. Despite this, the
need for explanation in such systems still exists, and therefore the need for XAl techniques that do

not assume interpretability of the input space are required.

1.2. Limitations Of Existing Fair Machine Learning

Existing fairness research typically works by enforcing fairness with respect to individual di-
mensions of identity, or multiple dimensions of identity individually [31] under the theory that

bias against particular groups may exist in the underlying data and that this bias can be exerted
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through the interaction between the PSVs and the label space [6]. Despite machine learning models
not typically having direct access to PSVs, a network can still pick up on the bias of the data and
find surrogate values for PSVs [21,32].

While this may address some forms of overt bias in machine learning, it does not align with the
prevailing theories in the social sciences about how discrimination occurs, particularly concerning
the theory of intersectionality which posits that dimensions of identity meaningfully intersect in
ways different than the sum of their parts [33] e.g. the experience of a transgender man is not
equivalent to the experience of being transgender plus the experience of being a man, but rather
the intersections of these dimensions influence his overall experience. Some work has addressed
these concerns [31,34], though it remains understudied.

Further, I believe that the existing approach to fairness ignores the mathematical reality of
the fairness problem. To assert that fairness is fundamentally a data problem ignores the reality
that a network’s decisions are based on an interaction between data and an algorithm. In the
case of artificial neural networks, for instance, a network will generally converge around some local
minimum with respect to the loss of the model, and that local minimum may hold bias towards
(a) particular group(s). Decisions such as the architecture or other hyperparameters may influence
where these local minima are, therefore how likely one is to arrive at a particular minima, and
therefore which groups, if any, the algorithm may hold bias against.

Finally, the idea that labeling bias is the sole or main cause of unfairness is also unjustified, with
empirical evidence suggesting that even unsupervised learners may behave unfairly with respect to
certain groups [32]. Therefore, the mechanisms under which a network may become unfair in the

absence of labeling bias require further investigation.

1.3. Our Contributions

To address the aforementioned limitations of XAl and fair machine learning, this dissertation

makes the following contributions:

e We explore understudied areas of XAI, particularly with respect to:
— Creating better global models of explanation (Chapters 4, 5)
— Extending XAI beyond supervised learning tailored to the specific requirements of

those types of learning (Chapters 3, 4)
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TABLE 1.1. Relation between the explanation chapters & the limitations discussed
in Section 1.1.

Beyond Beyond Not Reliant Machine-To-
Chapter Local Supervised On Input-Space Machine
Explanation Learning Interpretability Explanation

Cooperative Counterfactual-
Based Knowledge

Distillation: A Learner v v
Agnostic Approach

Model Agnostic Relative

Explanations for Anomaly Y Y

Detection Using Diverse
Counterfactuals

An Exemplars-Based
Approach for Explainable
Clustering: Complexity v v v v
and Efficient
Approximation Algorithms

Identification and Uses of
Deep Learning Backbones v v v
via Pattern Mining

— Without the assumption of an interpretable input space (Chapters 2, 4, 5)

e We propose the novel concept of machine-to-machine explanation, and demonstrate that
both new and existing XAI techniques can be used for tasks beyond interpretability to
humans, particularly for additional computational tasks.

e We demonstrate that the existing approach to fair machine learning is fundamentally
insufficient to handle how unfairness and discrimination are theorized to occur in the
social sciences and mathematics, particularly with regard to:

— Intersectionality (Chapters 6, 9)

— Bias in data beyond labeling bias (Chapters 7, 8, 9)

— Bias caused by the interaction between algorithm and data, rather than data alone
(Chapters 7, 8, 9)

e We explore the intersection between explainability and fairness. Using our idea of machine-
to-machine explanation, we demonstrate that machines can explain how they act unfairly

and these explanations can be used to rectify such issues.
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1.4. Summary Of The Dissertation

1.4.1. Cooperative Counterfactual Based Knowledge Distillation: A Learner Ag-
nostic Approach. Here, we explore using an existing explanation approach, counterfactual ex-
planations [35], for a task beyond interpretability to humans, specifically knowledge distillation.
Counterfactual explanations are a paradigm in XAI that seeks to ask the question of how an in-
stance would need to change in order for the prediction to be something different. For example,
how would an image of a dog need to change for the model to believe it was a cat? If the fea-
tures removed in the image are the most ”doglike” features (eg snout, dog ears) and the features
added are the most ”catlike” (eg whiskers, cat ears), then this perhaps indicates that the model
understands these concepts well and we can calibrate our trust in the model accordingly.

Rather than using this algorithm for a human interpretable explanation, we use this for the
task of knowledge distillation - attempting to encode learned knowledge from one model and pass
it to another. Here, the teacher uses a counterfactual optimization algorithm not to change the
label of the instance, but to make it look more like the actual class label. Therefore, the teacher
encodes learned information about the specifics of each class before passing the virtual instance to
the student. In the chapter, we demonstrate that this introduces a focus mechanism where any
model can act as either a student or teacher wherever appropriate and can be completed without
sharing data.

This section functions as our purest version of machine-to-machine explanation and is the only
technique to not introduce a new form of explanation. A previous version of this paper is

published in proceedings of AAAI24 [36]

1.4.2. Model Agnositc Relative Explanations For Anomaly Detection Using Diverse
Counterfactuals. To say that an instance is anomalous is to say that it differs from normality for
some aspect(s). To explain why something is an anomaly is therefore a contrastive question - what
is different about this instance from other instances? Further, since there may be many distinct
ways to be considered normal, we argue that this explanation must be grounded relative to a set
of nearby normal instances.

Here we develop a model-agnostic framework specifically tailored to the needs of explainable

anomaly detection. We accomplish this by creating many different counterfactual explanations
6



for a single anomaly to turn it normal and mining distinct patterns among them and present
the explanation as a small number of delta-vectors that, when added, would change the anomaly
into a normal instance and, when subtracted, would turn nearby normal points into anomalies.
We demonstrate that this technique works well for different types of anomalies, algorithms, and
datasets.

This technique is not only used for explanation beyond supervised learning but it is also used
for the machine-to-machine explanation task of self-supervised learning, in which the explanations

are used to create virtual instances for a novel class.

1.4.3. An Exemplars-Based Approach for Explainable Clustering: Complexity and
Efficient Approximation ALgorithms. Here, we develop a technique for simultaneous cluster-
ing and an explanation for that clustering. Borrowing the idea of exemplars from concept theory
in psychology [37], we argue that an explanation can be crafted by selecting a series of important
instances - the exemplars. We argue that this format of explanation is superior to naive exem-
plars (ie cluster centers) and demonstrates their practical utility. We prove that the simultaneous
clustering and explanation problem is intractable but develop two approximation schemes, both of
which create linear/logarithmic estimations of the original problem in polynomial time.

Further, many of our experiments rely on data that is not interpretable on its own, for example
image and sentence embeddings. Here, LIME [14] style explanations would not be useful since the
semantic meaning of the dimensions of the embedding is unknown. Every embedding, however,
corresponds to some interpretable instance (eg the image/sentence which created that embedding).
In this way, we are crafting a global explanation - an explanation for the entire clustering - and
we do not rely on the interpretability of the feature space. Further, we demonstrate machine-to-
machine explanation by showing that the exemplars can be used for instance transfer learning and
outperforming simpler implementations. A previous version of this paper is published in

the proceedings of STAM SDM24 [38].

1.4.4. Identification And Uses Of Deep Learning Backbones via Pattern Mining.
In this work, we construct a framework for mining meaningful subgraphs out of a neural network’s
feed-forward hidden layers that activate for a particular user-defined concept but do not activate

for others. Here, a concept is defined as any group of instances the user would like to explain as a
7



TABLE 1.2. Relation between the fairness chapters & the limitations discussed in

Section 1.2.
Handles Beyond Label Towards Algorithmic
Chapter . . .
Intersections Bias Bias
An Empirical Investigation v
Of Intersectional Fairness
Causes Of Unfairness v v
In Outlier Detection
Beyond Data Bias: A Proof
Of Algorithmic Fairness v v
Challenges
(Un)Fair Backbones
In Neural Networks v v v

series of subgraphs in the network. We craft this problem as a tricriterion ILP, prove it intractable,
and then develop a heuristic solution that exhibits Pareto optimality with respect to the three
criteria.

Further, we demonstrate that these backbones can be used for many additional computational
tasks. Most notably, we generate backbone explanations for how the model makes correct predic-
tions and how it makes mistakes and develop a pipeline for rectifying these mistakes. In this way,
we tackle the more complex XAl questions of ”When do you succeed”, ”When do you fail”, and
"How can I correct an error?” [24].

This paper answers the above questions by creating a global explanation of the user-defined
concepts. Because our explanation is not rooted in the input space, but rather in the activation
space of the hidden units, this work may be of particular interest to those working with uninter-
pretable features. A previous version of this paper is published in the proceedings of

SIAM SDM24 [38].

1.4.5. The Intersectional Unfairness Paradox: An Empirical Investigation Of In-
tersectional Fairness. In Section 1.2, we argue that the main approach of fair machine learning
- examining dimensions of identity individually - does not align with existing theories of intersec-
tionality [33]. Here, we empirically investigate the consequences of this decision. We use multiple
fair ML intervention algorithms and all eight datasets listed in a recent survey on the datasets used
in fair machine learning [39] that contain two protected status variables. We create models fair

with respect to either PSV or both PSVs individually and measure unfairness across three metrics
8



for both PSVs and the intersection of those PSVs. We demonstrate that even when models are
made fair with respect to both PSVs, they are frequently made less fair with respect to intersec-
tions of PSVs, and often even less fair than the baseline of training without fairness interventions.
These results indicate that the approach of optimizing fairness with respect to PSVs individually

is fundamentally insufficient for creating equitable Al systems.

1.4.6. Beyond Data Bias: Proof of Algorithmic Fairness Challenges in Neural Net-
works. Fairness is often positioned as primarily a data problem - all data contains bias and an
AT algorithm can exploit this bias to minimize loss [6]. However, this paper demonstrates that
data alone cannot explain how unfairness occurs in models. Specifically, we prove that machine
learning algorithms will develop their own biases outside that of the data influenced by factors such
as model architecture and hyperparameter selection. We also demonstrate that the expected value
for fairness can be calculated before training either exactly via an integral over parameter space or

approximated by a dimensionality reduction over parameter space.

1.4.7. Foundations of Unfairness in Anomaly Detection - Case Studies in Facial
Imaging Data. Here we seek to provide a model of how unfairness occurs in the absence of label
bias, specifically for anomaly detection. This model is based on four factors: incompressibility,
sample size bias, label attribute noise, and spurious feature variance. We demonstrate through
hypothesis testing that no single cause of unfairness is sufficient to explain the phenomenon alone,
the combination of all factors is sufficient, and that no factors are redundant. This work serves
as a model for how unfairness can occur in these settings, and future work can deal with how to

overcome it.

1.4.8. (Un)Fair Backbones In Neural Networks. Here we extend our work on backbone
explanations to the fairness domain. As discussed in the description for the backbone section, a
backbone can be created to explain any concepts the user would like so long as they can find a
group of instances that define that concept. In this case, we create backbones for the concepts
of fair vs unfair actions and explore several uses for these backbones. Specifically, we examine a
post-hoc method of decision adjustment, a post-hoc zero-shot learning approach to maintain the
majority of performance while reducing unfairness, and an in-situ focused dropout approach to

train fairer models.



CHAPTER 2

Cooperative Knowledge Distillation: A Learner Agnostic

Approach

Abstract

Knowledge distillation is a simple but powerful way to transfer knowledge between a teacher
model to a student model. Existing work suffers from at least one of the following key limitations
in terms of direction and scope of transfer which restrict its use: all knowledge is transferred from
teacher to student regardless of whether or not that knowledge is useful, the student is the only one
learning in this exchange, and typically distillation transfers knowledge only from a single teacher
to a single student. We formulate a novel form of knowledge distillation in which many models
can act as both students and teachers which we call cooperative distillation. The models cooperate
as follows: a model (the student) identifies specific deficiencies in its performance and searches for
another model (the teacher) that encodes learned knowledge into instructional virtual instances
via counterfactual instance generation. Because different models may have different strengths
and weaknesses, all models can act as either students or teachers (cooperation) when appropriate
and only distill knowledge in areas specific to their strengths (focus). Since counterfactuals as a
paradigm are not tied to any specific algorithm, we can use this method to distill knowledge between
learners of different architectures, algorithms, and even feature spaces. We demonstrate that our
approach not only outperforms baselines such as transfer learning, self-supervised learning, and
multiple knowledge distillation algorithms on several datasets but it can also be used in settings

where the aforementioned techniques cannot.

2.1. Introduction

NOTE: A previous version of this paper is published in AAAI24 [36,40] with co-
authors Ian Davidson and Stephen Wong
Knowledge distillation is a simple and elegant approach that allows one machine (the teacher)

to instruct another machine (the student). Typically, the teacher model is more complex than the
10



student model, and knowledge distillation compresses models for efficiency [41], though more recent
work explores improving performance as well [42]. However, existing knowledge distillation has its
limitations. First, offline knowledge distillation, that is, a trained teacher teaching an untrained
student, assumes that all of the teacher’s knowledge is good and should be learned by the student
even if the teacher performs worse than the student. Second, it is unidirectional and singular; one
teacher informs one student, and students do not inform teachers.

In this work, we extend knowledge distillation to novel settings by creating what we call coop-
erative distillation. This is useful in domains where there are multiple learners, each of which can
be considered a semi-expert deficient in one or more particular aspect(s) of a task, and can help
overcome each other’s limitations. This setting is not covered by existing distillation work. Con-
sider our FashionMNIST dataset experiment. Here, we create ten classifiers (one for each class)
trained with one class being undersampled by 95% to induce a conceptual deficiency. A model
might understand the majority of clothes it sees, but since it hasn’t seen many, say, ankle boots,
it struggles to classify them correctly and will rely on other models to teach it this concept. This
will require targeted and multidirectional transfer: this model needs to be taught only about ankle
boots and can be a teacher for other classes.

In the tradition of knowledge distillation simplicity, we propose a learner-agnostic, counterfactual-
based cooperative approach. Consider an instance  which model ¢ can predict correctly, but model
j cannot. We say that model 7 is a qualified teacher to model j for the specific instance x. Our
method will have model ¢ teach model j about x by generating a new type of quintessential counter-
factual 2’ which can be added to j’s training set. We call this type of counterfactual quintessential
because instead of modifying the instance to change its label, we have the model ¢ make this in-
stance look even more like the true class. Counterfactuals were chosen as the method to generate
virtual instances since they are both model agnostic and virtual instance generation is driven by
the model. Our approach is multidirectional as any model can teach any other and focused as we
transfer only some instances between models via counterfactuals.

Our work can be viewed as being in a similar setting to domain adaptation and transfer learning
but has notable differences. Typically, domain adaptation is from a chosen single expert source

to a single novice target, whereas our work is cooperative between semi-experts with no need to
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choose a target/source. Further in our work, the domain of the teacher and student models are the

same which is not the case for transfer learning. Our contributions are:

e New Style of Distillation. We propose a simple yet powerful approach to a new form of
distillation we call cooperative distillation. This is achieved using a novel type (quintes-
sential) and use of counterfactuals.

e Robust Across Learners. Experimental results are promising for a variety of basic (i.e., de-
cision trees) and complex learners (i.e., convolutional neural networks) (see Experimental
Section, particularly Table 2.2).

e Robust Across Settings. We demonstrate our method’s good performance under various
settings, including distilling between different architectures/algorithms, high-performance
models, low-performance models, mixtures of high and low-performance models, and vary-
ing degrees of feature overlap.

e Qutperforms Baselines. Our approach can significantly outperform multiple state-of-the-
art and state-of-the-practice baselines in transfer learning, self-supervised learning, and

knowledge distillation. (see Table 2.2 which summarizes all our experiments).

We begin this paper by outlining related work and describing our approach. We then provide
experimental results for various learners, followed by a discussion on our method’s strengths and

weaknesses including our hypotheses about why our method works, after which we conclude.

2.2. Related Work

The field of knowledge distillation exists to transfer learned information from one learner to
another, typically a more costly high-performance model to a lightweight model [41] [43] [44] in
the same task. This is distinct from transfer learning which, by definition, uses a learner in a

related but different source domain to assist in the training of a learner in the target domain [45].

Our work is further differentiated by distilling knowledge between semi-experts in a multidirectional
fashion, as opposed to an expert to a novice.

Knowledge distillation literature can be categorized by two main factors: what is considered
knowledge and the distillation scheme [44]. We first discuss how these questions have been answered

by previous work and then present our novel knowledge paradigm.
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TABLE 2.1. An overview of the knowledge distillation paradigms where L is the
loss function, £ is a function to calculate the differences between the teacher (¢) and
student (s), and ® and ¥ are comparison functions between different activations
and relations, respectively.

Name Knowledge Loss Corresponding
Works

Response The teacher annotates instances | L(z, z5) = L(2¢, 25) [41,42]
Distillation | using its logits for the student
Feature Student is trained to replicate | L(fi(x), fs(z)) [46,47,48|
Distillation | teacher’s hidden layer activa- | £L(®¢(fi(z)), Ps(fs(x)))

tions for training instances
Relation Students are trained to have | L(fi, fs) [49,50]
Distillation | similar relations between multi- | L(W¢(fy,, ft;), Ws(fs;, fs;))

ple aspects of the model com-

pared to the teacher
Counter- Training data is encoded with | L(X U X') = L(X) + L(X’) | Ours
factual information from the teacher
Distillation | to teach the student about the

class

Knowledge Distillation Paradigms. There are three general categories of knowledge distil-

lation algorithms: response/output distillation in which a student learns to replicate the output

of the learner by calculating loss between the student’s logits and those of the teacher [41] [51],

feature distillation which trains a student to mimic the teacher’s parameters, such as hidden layer

weights and biases, [46] [48] [52], and relation distillation, which is concerned with the relations

between multiple parts of the model such as multiple feature maps [53] [50], feature maps and
logits [49], or pairwise similarities between the input data and output distribution [54].
Distillation schemes are also important to categorize the different forms of knowledge distilla-
tion. Knowledge can be distilled from a learned teacher model to a student in offline knowledge
distillation [41] [43] [50], or while the learned model is being trained in online distillation [55] [56].
It is important to note that some of these approaches do consider multiple learners both students
and teachers [57] (one of our contributions), however, the task for those approaches is to distill
knowledge during the lurking process, whereas we are distilling knowledge between trained models,

which is novel for this setting.
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FiGURE 2.1. Pipeline for our method. Each model and its corresponding datasets
are color-coded. Given k 4+ 1 models fy through f; and datasets Xy through Xj,
we find which instances among the training sets each model can correctly predict
(rows colored in green), creating a set of indices for each model (step 1). For all
permutations of groups of two of these sets (S;, Sj), we find R;,; = S; — S;:
instances for which model i is a teacher for model j (rows highlighted in yellow,
step 2). We then create counterfactuals using the appropriate teacher models and

instances, labeled X/, 1or_ student (Step 3), shuffle the new, augmented instances

into the training sets of each group, and retrain the models to create augmented
models fj to f] (step 4).

A New Use for Counterfactuals - Cooperative Distillation Rather than encoding knowledge
into output logits, parameters, or relationships, our work embeds learned information in the data
itself by creating virtual instances (counterfactuals) and passing them on to the training sets of
other models. Further, it should be noted that the distillation scheme is also a special case of offline
knowledge distillation, as instead of a student learning from a teacher, each model will act as both
teacher and student simultaneously, something not explored in offline knowledge distillation. This
is distinct from both self-distillation [58], in which a single model acts as both teacher and student,
as our method uses multiple models, and online distillation [55] in which models distill knowledge

during training, as our method leverages trained models.

2.3. Our Approach: Cooperative Distillation

Our method is a form of offline knowledge distillation but with two important enhancements.
First, it considers distillation across multiple models where each model can act as both a teacher
and student, rather than distilling from a single teacher to a student. Our second innovation
uses counterfactuals to generate targeted instances to transfer rather than distilling knowledge

across all instances as in traditional knowledge distillation. This is a form of cooperation as the
14



student identifies instances it performs poorly on and the teacher creates an easier-to-understand
counterfactual.

Our approach takes three fundamental steps:

(1) Expertise Identification: Model ¢ selects instances (I) it can accurately predict.

(2) Deficiency Identification: From I, every other model j finds instances it cannot predict
R, C1.

(3) Cooperative Distillation: For each instance x € R;_,;, i creates counterfactual z’ to be

added to j’s training set.

2.3.1. Expertise and Deficiency Identification. Since each model may have limited knowl-
edge of the domain, it is crucial that models acting as teachers only do so in settings where they
are ”qualified” teachers. A model 7 is considered qualified to teach a student model j about an
instance x if and only if model ¢ correctly predicts instance z and model j does not. In this way,
students are only taught concepts they fail to understand and only from qualified teachers.

To decide which models act as students and which act as teachers for different instances, we
first pass all of the training data X (this can be done without sharing data, see Figure 2.2) to each
of the models and collect sets of indices of the instances that model can predict correctly. Let .S; be
the set of instance indices correctly predicted by model 7. Let R;_.; be the set of instance indices

that model ¢ correctly predicts that j does not. Formally:

(2.1) Ri_>j = Sl — Sj
1. A B 2 A B 3. A B
fa o fb fa fb fal fb
&_/
fo “fa ‘fb fa
1 1 1
Xa E Xo Xa 1 | Xp Xa E Xp
C O > COC O O ) CC >
X Xa XX XX, XX,

FiGURE 2.2. Non-Data Sharing Scenario: Our approach for deploying the approach
while maintaining data privacy. Institutions may share models, but not data. Mod-
els are exchanged (step 1), our technique is applied to create a subset of the virtual
instances (step 2), those virtual instances are shared, and the models are retrained
(step 3).
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This can be accomplished even if datasets cannot be shared. Consider two groups/organizations/sites

who can share models, but not data. After sharing models, they can use our approach to generate
virtual instances on their respective datasets and only share those virtual instances. This process
can be visualized in Figure 2.2. Equation 2.1 must be computed for every permutation of two
models. Therefore for k models, the complexity of this subroutine is O(P¥|X|), where |X| is the

size of the training data.

2.3.2. Quintessential Counterfactual Generation. Counterfactual algorithms generate a
virtual instance z’ given three pieces of information: the model f, an instance z, and desired output
y' such that 2’ is similar to z and f(z) = ¢/ [59]. Most work creates contrastive counterfactuals
which “flip” the label, (f(x) # f(2')) whereas our method generates quintessential counterfactuals
- those which the existing prediction is made greater.

The instance selection mechanism previously described finds the appropriate instance-teacher
pair (f,z). We chose to set y = fi(z)+a(y— fi(z)), where a encodes the teacher model’s influence.
The closer « is to 1 the closer ¢’ is to y (the true class label), and the closer « is to 0, the closer
is to fi(z). This allows the teacher model to inject knowledge about the class into the instances.
All experiments in this paper set « to 0.5, as this is an even balance between the original instance
and a theoretical instance of perfect certainty. Conceptually, our counterfactual generation process

can be visualized in Figure 2.3.

FiGure 2.3. Quintessential counterfactual generation illustrative example. Each
model’s decision surface is a contour map with each circle representing 20% con-
fidence of the correct class. The orange model (teacher) predicts instance x with
60% confidence, and the blue model (student) mispredicts x as its confidence in the
correct class is only 40%. The teacher model creates a virtual instance 2’ it believes
is more typical of the class.
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The counterfactuals are assigned the correct label for the original instance (y), the augmented
instances are added to the training set of the student, and the model is retrained. This process is
described in Figure 2.1 and Algorithm 1. Counterfactuals for model j from model i are generated

as below:

(2.2) Vr € Ry argming d(z',x) + N f;i(2) — y/|?

where R;_,; are the instances model i can teach model j.

Here, d is a distance metric, in our case Manhattan distance, and X is a balance term. As
is standard [12], we set A to the maximum value for which a solution will converge. For models
with differentiable parameters, such as neural networks, we use gradient descent via Adam, and for
models without differentiable parameters, the non-gradient-based particle swarm optimization [60].
The complexity of generating a counterfactual is constant, making the cost O(k|X]|) for k models.

Assuming the cost to train k£ models is proportional to the data size, the algorithm’s time

complexity is O(P¥|X| + k| X|), or with a constant number of learners O(|X|).

Algorithm 1 Cooperative knowledge distillation

Require: £k + 1 trained models F = {fo, f1,..., fr}, respective datasets D =
(Xo, Y0), (X1,Y1), ..., (Xk, Y%) and balance term a.
Ensure: k retrained models
: S := new list of sets
: for all (X;,y;) € D do
for all f € F do
S; = f.scorePredictions(X;, y;)
. AugmentedInstances := new list of instances
: for all (SZ,SJ) € Sdo
R; := S;—S; (Eq. 2.1)
for all (z,y) € D[R;] do
y' = filz) +ax(y— fi(z))
cf := GenerateCFs(f;,z,y") (Eq. 2.2)
AugmentedInstances[j].append(cf)
: for i =0 to k do
newDataset := AugmentedInstances|i] + D;
fitrain(newDataset)

© 0N DT W

e e e
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2.3.3. Extensions for Mismatched Feature Sets. Some practical situations exist where

the feature sets are not identical but overlap. This can occur for a variety of reasons including
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Transfer Data-

Learning ‘ SSL ‘ Knowledge Distillation Pollution

Approach\Bxperiment  Baseline Ours | il | GAN  Misxup | postter BRI BT | Data Togettier
Exp. 1 CL MLP 60.98% 68.68% N/A 65.13% 52.56% 59.29% 52.43% 61.24% 67.01%
Exp. 1 AE MLP 86.04% 87.74% N/A 86.58% 62.71%  60.00% 85.87% N/A 84.43%
Exp. 2 CL 1 D-Tree 63.41% 67.58% N/A 62.41% 55.63% 58.99% N/A 62.53% 69.29%
Exp. 2 AE MLP 86.04% 87.32% N/A 86.58% 62.71% 58.03% 86.72% N/A 84.43%
Exp. 3 Model 1 D-Tree 56.71% 57.44% N/A 56.38% 53.38% 54.55% N/A N/A 60.72%
Exp. 3 Model 2 D-Tree 43.45% 62.36% N/A 51.49% 57.16% 55.45% N/A N/A 62.54%
Exp. 3 Model 3 D-Tree 53.47% 63.04% N/A 55.45% 58.22% 62.27% N/A N/A 55.17%
Exp. 4 Model 1 D-Tree 56.71% 66.24% N/A 56.38% 60.89% 54.55% N/A N/A 60.72%
Exp. 4 Model 2 NB 62.37% 77.56% N/A 64.69% 70.41% 54.13% N/A N/A 64.03%
Exp. 4 Model 3 SVM 54.45% 59.08% N/A 55.78% 52.96% 54.13% N/A N/A 58.42%
Exp. 5 Median CNN 76% 83% 82% 81% 79% 73% 86% 80% 86%

TABLE 2.2. Median results from 10 to 90 experiments. Methods that cannot be
used for a particular dataset are marked with N/A. In all four of the main ex-
periments (1-4) our method outperforms all baselines and competitors. The stress
test in Experiment 5 designed to test our method’s ability to handle many models
achieves the second highest performance, with knowledge distillation as pretraining
performing best. The baselines are models are trained without any augmentation.

if data is collected from different locations or sites. All models are tested on the same test set,
which also comes from a different dataset from another site containing no instances from any
training or validation sets. Consequently, some datasets may have different features, and we must
therefore pass instances into training sets of incompatible feature spaces. To deal with this, we
normalize continuous ratio and interval data between zero and one, and one-hot encode categorical

and discrete interval data, setting missing features to zero, as suggested in [61] [62].

2.4. Experiments

To demonstrate our claims we conduct six experiments, using models generated from five dif-
ferent algorithms trained on nine datasets for four tasks. Recall that we claimed that our model
agnostic cooperative distillation involves focused and multi-way distillation. Each experiment is
meant to examine one particular aspect of these claims and compare them to other relevant state-
of-the-art and state-of-the-practice methods. We next discuss the implications of each experiment

and provide detail in subsequent subsections.!

ITo aid in reproducibility, code is  provided on GitHub
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e Experiments 1 and 2 examine how our approach handles distilling between different ar-
chitectures (Experiment 1) and algorithms (Experiment 2), as well as differing amounts
of data and performance. This asymmetrical setting leads to different numbers of coun-
terfactuals generated for each model (see Figure 2.6).

e Experiments 3 and 4 use three models to test our model’s multidirectional claim as each
model has a small amount of training data and all need to cooperate to master the domain.
Further, these models start at a relatively weak performance, meaning we are also testing
our focus mechanism to ensure that only relevant knowledge is distilled. Experiment 4
pushes the limits on our model-agnostic claim as we have a decision tree, Naive Bayes
classifier, and SVM cooperating via our method.

e Experiment 5 tests many aspects of our claims at once: the ability to distill between many
semi-expert models doing focused transfer. We create a situation where the training data
is made deficient in exactly one class for each of the ten convolutional neural networks.

e Our last experiment addresses our claim that our method can be used in settings with
different amounts of overlapping features by starting with perfect feature overlap and
iteratively removing features to test the correlation between feature overlap and accuracy
increase. See Figure 2.7.

e Notably, with the exception of Experiment 5, no two datasets have a single instance
in common with each other, instead relying on the process outlined in Figure 2.2 to

accomplish our technique without sharing data.

The results of our experiments are summarized in Table 2.2. An important aspect of the results
is that our method improves all 20 models trained, which did not occur with any competitor. The
rest of this section will discuss the results and implications of each experiment individually.

All models discussed trained to convergence, and hyperparameter selection maximized valida-
tion set accuracy.

Baselines and Competitors. Each experiment tests against several competitors: parameter
transfer [63], self-supervised learning techniques including generative adversarial networks (Deep
Convolutional GAN (DCGAN) [64] for image datasets and TabGan [65] for tabular datasets) and
mixup [66], and knowledge distillation, including response-based offline knowledge distillation [41],

response-based knowledge distillation which achieved state-of-the-art accuracy on the Imagenet
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dataset [42], and finally a recent, state-of-the-art feature-based knowledge distillation [47] algo-
rithm. We also compare against a baseline of the original model’s accuracy (without distillation)
and an idealized setting in which all training data is combined. This last setting may be unrealistic
due to data proprietary, privacy, or availability and is thus compared separately.

Experiments 1 & 2: Cross-Architecture/Algorithm Distillation. These experiments use
three different datasets to predict if a used car is expensive (>$20,000) or inexpensive (<$20,000).
Each dataset comes from a different website curated between 2020 and 2021. Datasets 1 and 2 come
from Craigslist [67] and Auction Export [68] respectively, and are used for training and validating
models. A test set from Car Guru [69] simulates a future distribution all models will have to
predict. We expect that each data set covers different types of cars (eg makes, models, years) in
different depths.

Experiment 1 examines how our technique can distill knowledge between models of different
architectures that were tuned for the different data sets. The Craigslist (CL) and Auction Export
(AucEx) models use neural networks of different architectures: the former with one hidden layer
with 512 neurons, the latter with one hidden layer with 1024 neurons, both with leaky ReLU
activation functions for hidden layers and sigmoid for the output layer. These architectures create
models with test set accuracies of 60.98% and 86.04% for the CL and AucEx models respectively,
and our method improves this to 68.68% and 87.74%. These results not only demonstrate a

boost to both model’s performances but also show that a low-performance model can teach an

high-performance model - a result that no other distillation technique could replicate. In the case

of the AucEx model, our method performed even better than the idealized case of training using all
available instances. A total of 18923 instances were distilled to the CL model and 1613 to AucEx.

In Experiment 2, the AucEx model is the same neural network, and the CL model is now
a decision tree (minimum samples leaf set to 20) to explore how well knowledge can be distilled
between different algorithms. The AucEx model’s baseline performance is identical to the above
experiment, and the CL model achieves baseline test accuracy of 63.41%. Our method successfully
elevates the performance of the models to 67.01% and 87.32% for the CL and AucEx models,
respectively, again surpassing all competitors. A total of 30842 instances were distilled to the CL

model and 1817 to the AucEx model.
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Experiment 3 & 4: Small Data Distillation. Experiment 3 tests how well knowledge can
be distilled between three low-performance models built from small datasets. Four datasets are
used, each predicting the presence or absence of heart disease from hospitals at different locations:
Long Beach (Model 1), Switzerland (Model 2), Hungary (Model 3), and Cleveland [70], all sourced
from [71]. The Cleveland was chosen as the test set since it contained all of the features of the
previous three, making the evaluation fairer. We remove features from each dataset individually if
at least 25% of instances are not reported and train decision trees for each dataset. Baseline test set
accuracies for each model are 56.71%, 43.45%, and 53.47%, which are improved to 60.72%, 62.54%,
and 55.17%, respectively by our method, greater than all applicable competitors, and in the third
case, beating the idealized scenario of adding all instances. This demonstrates our method’s ability
to distill knowledge even between low-performance learners.

Experiment 4 uses the same datasets, however instead of using models from the same algorithm,
knowledge will be distilled between several different algorithms: a decision tree, naive Bayes, and
support vector machine classifier. Model 1 is the same decision tree as in experiment 3, and mod-
els 2 and 3’s baseline performances stand at 62.37%, and 54.45%, respectively. With comparably
stronger baselines, our method elevates performance to 66.24%, 77.56%, and 59.08%, surpassing all
competitors and the idealized scenario of pooling together all instances. This experiment provides
further evidence to suggest that our method not only can handle distilling between different algo-
rithms but is largely invariant to algorithm choice and that stronger teacher models tend to help

more than weaker ones.

Feature
FIGURE 2.4. Heatmap for the knowledge distilled into different models of Experi-
ment 4. Columns are features, and the rows represent the average change (yellow is
positive, blue is negative) to move an instance to the diseased class. For example,
the bottom left tile shows an increase in age (first column) is associated with heart

disease whilst the middle top row indicates a reduction in ST-Depression (ninth row)
decreases heart disease.
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FiGURE 2.5. Heatmap to visualize the number of counterfactuals distilled to each
model. Rows are students and columns teachers, with yellow implying more in-
stances and blue less.

Experiment 5: Many Model Distillation Between Semi-Experts. We create ten datasets
from the grayscale image dataset FashionMNIST [72], each of which is undersampled (by 95%)
in one particular (and different) class. This creates a scenario in which all models are deficient at
predicting a particular class but other models are proficient in that class. This is a rigorous test
of our claims of multi-way and selective distillation. To produce higher quality counterfactuals, we
optimize images only over the 50% most variable pixels of their class.

The median baseline accuracy for the ten models rests at 76%. Since each model acts as a
teacher to the other models, each model would receive thousands of new counterfactuals for the
under-represented class, resulting in redundant counterfactuals that elevate performance to 79%.
After removing similar counterfactuals via geometric set-cover, we improve median accuracy of
83%, approaching our topline (no undersampling) accuracy of 86%. Since all models are networks
of the same architecture, we could apply a greater range of competitors such as parameter transfer.
This is the only experiment in which one of the competitors (knowledge distillation pretraining)
surpasses our technique.

Experiment 6: Sensitivity to Feature Overlap. Three random and non-overlapping subsets
are extracted from the Statlog German Credit dataset with 400, 400, and 200 instances. We
generate two models from the larger subsets and test on the third. Since we are using the same
dataset, there is a perfect overlap between the features. Iteratively, we remove different features at
random from both datasets until they only have two in common. This sensitivity test examines the

effect of feature overlap on our method’s performance and is repeated five times due to the random
22



Dataset 1-Real
Dataset 2-Real
Dataset 1-CF

Dataset 2-CF

(a) Distribution of original (b) Original and augmented in- (¢) Original and augmented in-

datasets for datasets 1 and 2 stances for dataset 1 stances for dataset 2
- Dataset 1 - Real
o Dataset 2 - Real
o = R ) iy
3 , =1 U ;7 paset2-cF
- - o 3 ot s < Dataset 3 - CF

-

-t

(e) Distribution of original datasets and added aug-
(d) Distribution of original datasets mented instances

FiGURE 2.6. All data points, original and augmented, for both datasets of Exper-
iment 1 (top; subfigures a-c) and Experiment 4 (bottom; subfigures d,e), projected
into two dimensions using t-SNE. Each model creates instances similar to their own
data while being distinct from the original data points.

nature of feature removal. Since the datasets are random samples from the same distribution,
performance increase is small compared to other algorithms but largely invariant to feature overlap,
with correlation coefficients of —9.45+107% and 1.17% 1072 for each model (Figure 2.7), averaging a
very small (2.25%107%) correlation between increase in accuracy and difference in feature space. We
speculate that perhaps this is due to the data distributions becoming more diverse as features are
removed, allowing for more distillation between the models. This indicates that data similarity may

be an important indicator of success, and differences between datasets can overcome the feature

overlap problem.
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FIGURE 2.7. Improvement in accuracy over the number of features removed (fea-
ture overlap becomes smaller along the X-axis). There is no significant correlation
between feature overlap and performance gain, as demonstrated by the trendlines
which average a slope of 2.25 x 1074,

2.5. Understanding The Mechanisms of Distillation

We test two hypotheses to explain our previous successful experiments. First, we believe our
method introduces novel virtual instances to a learners’ dataset increasing diversity and allowing
better generalization. To test this, we visualize the counterfactuals our method creates using t-SNE
(Figure 2.6) and find that counterfactuals, while being distinct from original data, create a similar
distribution to it.

Our second hypothesis is that the teacher encodes information it believes to be important for
classification into each instance. To test this hypothesis, we examine the average modification to
original instances and separate them into counterfactuals of the positive (d;) and negative (J_)
classes. Subtracting d_ from d4 provides a vector that details the changes made to features to move
them from one class to another. Figure 2.4 demonstrates such knowledge distilled for Experiment
4. Here, models receive different information learned from their teachers. For instance, models 2
and 3 are provided with the information that someone is more at risk for heart disease given an
increase in age, while the counterfactuals generated for model 1 produce relatively small changes
to age. The diversity of these vectors illustrates how different models have discovered different

patterns which may explain the models’ performance increase.
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The datasets of Experiment 2 have hundreds of features, making a visualization such as Figure
2.4 uninterpretable. Instead, how features were to move the output closer to the ’expensive’ class.
Features that decreased the most were mileage (by an average of 3660 miles), years prior to 2005,
and models such as Prius, Outback, and Range Rover Sport, and makes Toyota and Smart. Coun-
terfactuals had the strongest positive association with years above 2013, models F-450 Super Duty,
GX, and LX 570, and makes Maserati and Porsche. The CL dataset had few Toyota listings with no
exposure to Porsche or LX 570 vehicles, indicating that the AucEx model successfully introduced

such instances to the Cl model, partially explaining the performance increase.

2.6. Discussion & Conclusion

Our experiments demonstrate our approach can distill knowledge between two or more models
regardless of architecture, algorithm, feature overlap, and under small or large data settings. Since
our method targets specific weaknesses of each model, we can distill knowledge between any com-
bination of high and/or low-performance models, compared to traditional knowledge distillation
techniques which tend to only distill knowledge from a single high-performance model to a low-
performance model [41] [44]. Though our method performed well on real-world data sets it does
have some assumptions. It assumes there is some overlap between the features of the data sets
and most importantly, our method works best when the distribution of the datasets used to train
models are significantly different from each other. Further, our method is fundamentally limited
by the strength of counterfactual generation. Counterfactual explanations are easy to compute on
tabular data but their performance on more complex data, such as images is more challenging.
However, more recent approaches have found success in more basic image networks [73] [74], so as
research progresses, we believe this limitation will be removed.

We show in Figure 2.5 the number of instances each model teaches to the others. Interestingly,
this quantity is asymmetrical which will motivate future work to better understand the mechanisms
of how each model teaches the others.

Conclusion We present a novel form of knowledge distillation that can be used between multiple
models, in multiple directions and is focused. Each model simultaneously acts as teacher and stu-

dent, distilling knowledge to the other by encoding learned information into virtual counterfactual
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instances and passing them into the training sets of other models. Unlike other knowledge distil-
lation algorithms, which always distill knowledge from the teacher to student, we use a targeting
mechanism to ensure that teachers only distill correct knowledge tailored to a student’s deficiencies.

In our four main experiments, our method beats the competitors studied, including state-of-the-
art knowledge distillation algorithms. In a stress test to determine if knowledge could be distilled
between many (10) models, our model surpasses all but one competitor and remains competitive.
We find our method particularly useful in the setting where models can be freely shared, but
raw data cannot, and the data sets share some features. This is common in medical imaging
or finance communities where data is confidential. Given our method’s strong performance on
experiments simulating the aforementioned setting, we believe this to be a viable approach to

knowledge distillation under such circumstances.
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CHAPTER 3

Model Agnostic Relative Explanations for Anomaly Detection

Using Diverse Counterfactuals

Abstract

Anomaly detection (AD) algorithms are frequently deployed in challenging environments in
which the algorithm must identify instances for investigation, policing, and scrutiny. The high-
stakes nature of applications such as fraud detection and the sensitivity of deploying AD on humans
means transparency into how decisions are made is paramount. However, most AD algorithms can
only identify which instances are anomalous and offer nothing about why these particular instances
are anomalous. This is true not just for deep AD algorithms but even those non-deep methods
particularly those that are property (i.e. density) based. In this paper, we generate a new style of
explanation we call relative explanations which is well suited for AD. Rather than explaining why
an instance is an anomaly by looking at solely its properties, we instead generate counterfactuals
from the anomaly to explain why it is not a normal instance. To our knowledge, our work is the
first work on model agnostic, task agnostic contrastive relative explanations for AD. We show this
leads to both additive and subtractive explanations which is important for high-impact applications

where shallower explanations would be insufficient.

3.1. Introduction

Anomaly detection (AD) is perhaps the most controversial of data analytic tasks given its
typical purpose of identifying entities for investigation, policing, and scrutiny. Given a set of
points, a subset of them are identified as anomalous and further investigated. Hence generating
an explanation for AD algorithms is paramount if it is to be used on a wider variety of problems
particularly those where the entities are people. Applications of AD in knowledge management
view the anomalies as both noise (such as its use to remove hate speech) and signal (such as its

application to target individuals for further investigation).
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Explainable artificial intelligence (XAI) exists to provide human-interpretable justification for
a machine’s decision, however, most XAI work has been developed for supervised learning and
clustering tasks and is not specifically designed to address the challenges of AD. Here, we propose
a novel framework for explainable anomaly detection (XAD) that uses nearby normal points to

generate relative explanations.

Additive Explanation o Subtractive Explanation

HEl Ell

FiGure 3.1. Experiment with MNIST dataset. Our method discovers that the
anomalous numeral 9 (top) can be made normal by an additive explanation (bot-
tom left) which completes the loop to make an eight. Alternatively, a subtractive
explanation (bottom right) removes the elongated tail to make a more traditional
nine. The addition/subtraction vectors can be visualized on the outside of the re-
sultant image: blue indicates the addition of pixels and orange the subtraction.

The Need For AD Specific Explanations. Supervised learning XAl methods inherently ask
the question, “Why does this instance belong to this class?”. Methods like LIME [14], Anchor [75],
and Shapley [76] produce attribution vectors highlighting the features that indicate inclusion in
the class. In contrast, AD finds a group of normal points, and the anomalies are those that do not
belong. Hence the key XAI question is “Why does the anomaly not belong to the normal group?”.

For this reason, we advocate for the use of constrastive relative explanations. Rather than trying

to compare an instance to the learner’s representation of normality as a whole, an explanation must
be grounded relative to some nearby neighborhood(s) of normal points, and we highlight in what
way(s) the anomaly contrasts with this nearby normal points.

Consider the illustrative example of the anomalous numeral in Figure 3.1 from the MNIST
handwritten digits dataset [77]. One reason that this is anomalous is because, relative to a nearby
neighborhood of nines, the extended loop at the tail is strange. Therefore subtracting/removing

the end of the loop (highlighted in orange) will make it normal. However, this instance is also
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anomalous relative to a nearby cluster of eights, and the contrasting feature of this neighborhood
is the lack of a closed tail (highlighted in blue).

We argue that contrastive relative explanations are the most appropriate form of explanation
because they address the underlying assumptions of anomaly detection and allow for multiple
distinct explanations, all of which are necessary for a complete understanding of why the instance

is anomalous.

The Need For Model Agnostic Explanations. A unique aspect of AD is the plethora of
fundamentally different algorithms. Techniques such as local outlier factor (LOF) [78] even do not
directly optimize a function like most learning tasks but rather look for data properties and hence
are model-less. Deep learning methods such as autoencoder-based (AD) assume that instances that
have high reconstruction error are likely anomalous. Because of the diversity in assumptions and

underlying techniques used in AD algorithms, we focus on a model-agnostic framework.
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FiGUurE 3.2. Explanations for a simple dataset of dog breeds considering their me-
dian height and weight and our explanations for why some points are considered
anomalous. The Great Dane is anomalous because it is significantly taller and heav-
ier than the other breeds, whereas multiple explanations exist for dogs such as the
bull terrier and Bolognese using either height or weight or combinations of the two.

Our work makes the following contributions:

e We explore the understudied (eXplainable Anomaly Detection) XAD problem for both
popular classic AD methods and deep AD methods. (See Section 3.3).

e We create a framework with three well-defined steps to create diverse relative explanations
as to why the instance is anomalous (See Section 3.4).

e We use our framework for two core tasks: Generating explanations for humans (Table 1)

and generating explanations for machines to improve performance (Figures 4, 5).
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TABLE 3.1. Comparison of different techniques against our approach. Unlike ex-
isting work, our technique is model and task-agnostic and creates explanations that
are both contrastive and relative, which we argue is superior for anomaly detection.

Task Algorithm

Technique Agnostic Agnostic Contrastive Relative
Sipple & Youssef 2022 [80] v v
Clever Hans (Kauffmann et al 2020) [81] v v

Diverse Counterfactuals For AD in v v v
Time Series. (Sulem et al 2022) [82]

Taylor Decomposition Of One- v

Class Models (Kauffmann et al 2020) [83]

PUPAE for Time Series (Der et al 2024) [84] v v v
Shapley Additive Explanations v

For AD (Antwarg et al 2021) [85]

Ours v v v v

e We empirically demonstrate that our technique creates good explanations for a variety of
anomaly detection algorithms, datasets, type of anomaly (global vs contextual, outlier vs

novelty), and anomaly score (Figure 3.7).

Our paper is organized as follows: first, we overview existing XAl techniques and why they are
not ideal for explaining anomalies and place our work into the context of existing XAD methods.
We then discuss desired characteristics for XAD, build a framework to create such explanations, and
create an algorithm that uses this framework. We apply our algorithm to the fifteen datasets of the
ODDS anomaly detection benchmark dataset collection [79] and demonstrate that the algorithm
achieves very little error regardless of the anomaly detection algorithm, anomaly score, or dataset.
We further demonstrate our framework’s utility through ten simulated user experiments which

demonstrate its practicality. Finally, we discuss these results and conclude.

3.2. Related Work & The Need For XAD

Here we overview related work with the intent to highlight the need for a relative explainable
anomaly detection framework. We summarize the differences between our work and the existing

state of the art in Table 2.1.
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Insufficiency of Classic Supervised XAI Methods. Existing XAl for supervised learning, such
as LIME [14] and Anchor [75] are popular methods to explain multiclass prediction problems. These
methods could be applied to some AD methods that generate an explicit classification function
but are unsuitable for the plethora of property-based AD methods. These include many density-
based approaches such as LOF [78], Parzen windows, and graph-based methods [86]. Even if
XAl-supervised learning methods can be applied to an AD method, the style of explanation is not
conducive to explaining anomalies. The classic examples used to justify LIME style explanation are
inherently focused on explaining why something belongs to a particular category (i.e. a frog). This
makes sense since there are many instances for each category that share an underlying common set
of attributes, but when explaining anomalies, these assumptions do not hold. Instead, we typically
assume each outlier is unique and there are few of them. This motivates our premise of relative
explanations to explain why something is an anomaly by explaining how it differs from normal

instances.

Potentially Applicable Supervised XAI Methods. Not all XAI methods explain the output
in relation to a heatmap or set of relevant features. Counterfactual explanations [12] directly
answer the question of how an instance needs to change to reach some desired output. However, a
single counterfactual is ill-suited for the task of explaining anomalies. Consider the bull terrier in
the example of Figure 3.2. Here, three explanations can be given for why this breed is anomalous:
it is either too heavy for its height, too short for its weight, or some more modest combination of
those two factors. No single explanation is sufficient for explaining its anomalous nature, but when

considered together the user has a clear understanding of why exactly the bull terrier is anomalous.

Existing XAD Techniques & The Need For Post Hoc Explanation The aforementioned
limitations of supervised XAl motivate the study of XAD [87]. Non-relative explanation in anomaly
detection tends to use general-purpose XAl techniques for their goals. Chalapathy [88], for instance,
cites two attention-map algorithms - algorithms that highlight the most relevant part of the feature
space for a particular decision. Other work focused on creating inherently interpretable algorithms
[88] [89] [90], rather than providing post hoc explanation. These methods might be appealing
in many circumstances, but not all. If other anomaly detection algorithms perform better at
a specific task practitioners would be forced to choose between transparency and performance.

Further, a group might be interested in explaining the output of an existing AD system where
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implementing and testing a new algorithm might be too costly. Other techniques, recognizing the
utility of contrastive and/or relative explanations, ground their explanation to a local neighborhood
of normal points, however these techniques are either developed for a specific algorithm [83, 85]
(most commonly autoencoder-based AD) or for a specific task [82, 84] (time-series data). Our
method, by contrast, is the first technique to employ model and task-agnostic while providing
contrastive relative explanations. The differences between our technique and existing state-of-the-
art XAD are summarized in Table 2.1.

Finally the recent survey on XAD [87] assesses XAD along six dimensions: i) When explanation
occurs, i) What level of granularity is the explanation applied to, iii) Model agnostic or model
specific and iv) Feature or sample-based, v) Computation technique used and vi) Applicable to
static or streaming data. Our work is an example of a post-hoc, local-level, and agnostic approach
to explanation. However, it is quite different from existing work for several reasons. Firstly, unlike
existing methods that use the underlying features to explain the anomaly, our work can be applied
to entire instances. This means our work can be applied to the results of deep learning methods

relatively easily.

3.3. Problem Overview & Definition

FIGURE 3.3. Visualization of the Definitions 3.3.1 - when the vector is added to the
anomaly (orange) it turns normal - and 3.3.2 when the vector is subtracted from
the relative normal instance (blue) it turns anomalous. When both of these factors
are present, this is a solution to Definition 3.3.3.

A relative explanation attempts to isolate the relevant combination of features that cause an

instance to be classified as an anomaly. Specifically, we find a diverse set of changes to the anomaly
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such that if those changes are applied to the anomaly it would be considered a normal instance.
These changes can be both additive or subtractive modeled as the function g and g_, respec-
tively. Importantly a positive explanation changes an outlier to a normal point whilst a negative

explanation changes a normal point to an outlier.

DEFINITION 3.3.1. Positive Relative Explanation Problem. Given an instance x, an
anomaly detection function f and an anomaly threshold e, let x be an anomaly i.e. f(x) > e.

A positive relative finds a function g+ which has the following property f(g+(x)) <e.

DEFINITION 3.3.2. Negative Relative Explanation Problem. Given an instance x, an
anomaly detection function f and an anomaly threshold €, let x be an inlier i.e. f(x) < e A
negative relation explanation finds a function g_ such that for a given anomaly detection function

fO) we have f(g—(z)) > € where € is the anomaly threshold.

In our work, rather than search for g4 () and g_() separately, we search for an explanation

vector (E) that satisfies both the positive and negative explanation qualities. Formally:

DEFINITION 3.3.3. Explanatory Vector Problem. Given an anomaly x and a set of close

normal points .. x! . an anomaly detection function f an explanatory vector E for x satisfies

L

the condition f(x + E) < € and f(z} — E) > € Yi. That is E is a positive relative explanation for

the anomaly x and a negative relative explanation for the nearby normal points .

That is, we find a vector that is a good positive relative explanation when added to the anomaly
and a good negative relative explanation when subtracted from nearby normal points. How we

construct explanatory vectors is shown in Figure 3.3.
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FIGURE 3.4. Pipeline for explanation. First, an anomaly (x, in the picture) is de-
tected by the anomaly detection algorithm (step 0). Then, a diverse set of counter-
factual instances (x’0 through x’11) are generated such that they are simultaneously
close to the decision boundary, close to the original instance, and distinct from each
other (step 2). Finally, patterns are minded from the counterfactuals to extract a
set of diverse changes which serve as the final explanation (step 3).

3.4. Our Approach To Finding Explanation Vectors
Our approach has the following steps illustrated in Figure 3.4:

e Selection: Identify the anomaly x to explain.

e Generation: Create a set of n diverse counterfactuals X’ to represent the decision bound-
ary for the AD function f around z. (see Section 4.1)

e Summarization: Approximate the decision boundary of f with a subset of representative
counterfactuals X* (see Section 4.2)

e Generation: Create multiple explanation vectors Fj ... Ej via choosing an appropriate

sub-space from the summary X* (see Subsection 4.2).

The remainder of this section will detail the precise algorithms and optimizations used for each
step.

After we are given an anomaly z from any anomaly detection algorithm our approach has
three main steps which can be visualized in Figure 3.4. First, we generate diverse counterfactual
explanations for the anomaly which are points close to = but not anomalies. This involves a
novel counterfactual generation step that comprises a multi-faceted optimization objection shown in
equation 3.1. This will generate many counterfactuals, so to avoid overloading the user with possibly
redundant explanations we summarize them. To choose a representative set of counterfactuals we
formulate and solve a dispersion problem. Finally, we generate a relative explanation from the

reduced set of counterfactuals.
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3.4.1. Generating Diverse Counterfactuals. Our aim in this step is to take a given anom-
aly = and produce many diverse counterfactuals. Each counterfactual balances its viability (prox-
imity to the decision boundary, colored blue in equation 3.1), plausibility (distance to the original
instance, orange), and diversity (average distance to all other previously generated counterfactu-
als, magenta). Balance terms are added to the latter two options. Formally, given an anomaly
x, an anomaly detection algorithm f, the anomaly threshold score €, and all previously generated

counterfactuals CFs, we compute the following:

maz((f(z') —€),0)
+

(3.1) argming +)\227/€(‘(f;j‘<l LN, |CFs| >0

maz((f(z') —€),0)

+ otherwise

This equation is used in an iterative (one counterfactual at a time) manner and is similar in style
to the iterative Gonzalez’s Farthest-first traversal algorithm [91]. The term in blue is proximity,
orange plausibility, and magenta diversity. Diversity is omitted on the first iteration as a single
point cannot be diverse.

All counterfactuals are generated via particle swarm optimization [60] (number of particles set
to 200) as this is a non-gradient-based optimization technique meaning that it can easily encode the
diversity criterion and be used when gradients do not exist, such as in non-neural network-based

AD algorithms.

3.4.2. Summarizing and Explaining. The output of the previous step is a set of coun-

/

m of which there may be many. In practice, this could be hundreds or even

terfactuals ) ...z
thousands of counterfactual instances. Our next step summarizes them into a set of representative
counterfactuals z7] ...z where n << m and the final step is to generate an explanation vector
between x and each representative counterfactual.

We can formulate the representative counterfactual problem as an instance of the classic com-

puter science dispersion problem [92]. The maximum m-dispersion problem is as follows: given
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a collection of points, choose a subset of n points such that the distance between all pairs of
chosen points is maximized. Well-known heuristics exist for it that guarantees a constant factor
approximation. This effectively takes a large collection of points and summarizes them with n

representatives.

The Dispersion Problem.
A given collection of m counterfactuals X’ = { ...z} } chose a subset X* = {a]... 25} n << m,
X* C X' such that S =3, . D(z7,27), (v7,27) € X* where D is some distance function.

In essence, this summarizes the boundary by grouping counterfactuals such that groups are all

different, and the resulting explanation vectors are those that point in the most different directions.

Pattern Mining via Clustering. One can mine frequent patterns in the counterfactuals to
find several common trends among the counterfactuals. Because of the continuous state space of
most datasets, patterns are mined via KMeans clustering [93], and the explanatory vectors are

determined by subtracting the anomaly by the centroid of a cluster.

The Sub-Space Explanation Problem. Given a collection of n representative counterfactuals
X* = {z]...23} solve the optimization problem argmazg S =3_, ; Dr(z,z}), x; € X* where R
is a subset of features and Dp is some distance function defined on the subspace defined by these
features.

In this paper, we examine the validity of all three of these approaches by trying each of them

for every anomaly we explain.

3.4.3. Setting Hyperparameters. The optimization of Equation 3.1 uses two balance terms.
The first referred to as A\; prioritizes similarities between counterfactuals and the original instance
and the second, As, prioritizes the diversity of counterfactuals. We propose a principled manner
in which one can set these parameters based on common practice in counterfactual research [12].
First, Ay is set such that a desired number of diverse explanations exist. Here, two patterns are
considered diverse if a certain number of features among the top 10 features changed in both the
positive and negative direction are different from one another. Then, tune A; to be the largest
value such that at least 95% of counterfactuals generated are considered normal. In this way,

the boundaries created by the counterfactual are both accurate and as plausible as possible while
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still generating the desired number of diverse explanations. This method provides the freedom for

practitioners to gain whatever insights they feel are needed for their particular purpose.

3.5. Experimental Design

3.5.1. A Taxonomy of Anomalies. Before discussing our experiments, we overview the
taxonomy of anomaly types [86], and demonstrate that our technique can handle most of these

forms of anomalies. Instances are typically considered anomalies if they are either global, exhibiting

a particular feature outside of its normal range (ie an eight-foot tall person), or contextual if the
values of a particular combination of features together are uncommon [86], such as a five foot
tall four-year-old. A global anomaly is typically easier to identify and may not require much in
terms of explanation, however, the latter is nontrivial, as high dimensional data will contain many
possible combinations of features of various sizes. Here, we leverage innovations in the field of XAI
(counterfactual instance generation) to explore how to isolate these features and present them to
the user.

As well as being global or contextual, anomalies can also be classified as outliers, anomalies, or

novelties [88]. While related, each of these terms describes something different. To illustrate this
point, consider a theoretical dataset of dogs with two features per instance: length from tail to nose,
and weight. The term “Outlier” is typically used to describe an instance from a population that
has distinctive features. Using the dog example from Figure 3.2, an outlier may be a particularly
large dog. “Novelty” refers to a new type of instance in a dataset that evolves the distribution over
time; for instance, the introduction of a novel dog mix between two breeds which is anomalous at
the moment, but will eventually shift the distribution and become the norm. “Anomaly”, on the
other hand, refers to an instance that comes from a different population from the data sampled
and appears different than the normal population, such as a Dachshund if Dachshunds were not
well represented in the data, as they are abnormally light for their length. “Anomaly” is also often

used as a universal term for these three terms.

Experimental Overview. To test the validity of our approach, we created two experiments to
test various aspects of the approach. We must ensure that the desired characteristics outlined in
Section 3.3 are satisfied and robust to the choice of anomaly detection algorithm, dataset, and

anomaly score. Further, we validate that our explanations are useful to practitioners through a
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simulated user experiment in which we demonstrate that the simulated user can identify novelties

better after seeing our explanations for them (see Figure 3.8a and Figure 3.8b).

3.5.2. Experiment 1 Design: How Accurate Are The Explanations. Here, we apply
our method to four different anomaly detection algorithms, including both classic and deep anom-
aly detection methods: isolation forest, local outlier factor (LOF), autoencoder-based anomaly

detection, and GAN-discriminator-based anomaly detection. We apply each of these techniques to

the fifteen publicly available datasets (Lymphography [94], Wisconsin Breast Cancer [95], Cardio-
graphy [96], Glass Identification [97], Letter Recognition [98], Mammography [99], Musk [100],
Statlog [101], Satlog Shuttle [102], Speech Identification [103], Seismic Bumps [104], and Wine
[105] [71]) of the ODDS collection, a standard collection of anomaly detection datasets [79]. Note

the ODDs collection gives ground truth for the outliers. For each algorithm and each dataset, we
consider the 10 outliers with the highest anomaly score, and the 10 outliers with the lowest anom-
aly score to demonstrate that our approach can handle both extreme anomalies and borderline
anomalies. This implies the creation of 3600 explanations (four algorithms, fifteen data sets, three
summarization techniques, and 20 anomalies) for 1200 different anomalies. To measure success, we
examine two metrics based on the desired characteristics: anomaly-loss, if or how close the anomaly
is to being an inlier after the pattern is applied to it (positive relative explanation), and inlier-loss,
if or how close the inlier counterfactuals become to anomalies when the patterns are subtracted

from them (negative relative explanation). Anomaly loss is:

(3.2) loss(xq, f,t) = maz(e — f(zq4),0)
And, similarly, inlier loss:

(3.3) loss(c, f,t) = maz(f(c) —€,0),Vee C
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FiGURE 3.5. Visualization of different types of loss. In this example, the explana-
tion vector provided will have some anomaly loss as adding it to the anomaly does
not cross the threshold to become normal. The three lower local inliers have some
inlier loss because the subtraction of the explanation vector does not turn them all
anomalous. The top inlier has zero loss because subtracting the vector from the
inlier crosses the anomaly threshold

Where x, is the anomaly, C is the set of counterfactuals along the decision boundary, f is the
anomaly detection function, and € is the threshold for a point to be considered anomalous. This
is represented graphically in Figure 3.5. In this way, a method will have zero loss if, when added
to any of its patterns, the anomaly is considered normal and, when subtracted from the patterns,
inliers are considered outliers, as is claimed in the desired characteristics. These results are shown
in Figure 3.7. Further, we present several of these explanations as examples (see Figure 3.9 and

Table 3.2) to demonstrate the explainable power of our algorithm.

- ,{ )
0. Identify instances 1. Create explanations 2. Subtract explanations 3. Retrain models,
of the novel class for each instance of the from instances of the novel comparing accuracy and
novel class class, label virtual instances F-Score with respect to
as the novel class the novel class

FI1GURE 3.6. Pipeline for explaining novelties and measuring explainability. A base-
line model is created, anomalies are identified and explainable vectors are generated.
Virtual instances are added by subtracting the counterfactuals by their respective
vectors, labeled in a self-supervised fashion, and the model is retrained.

3.5.3. Experiment 2 Design: Utility For Novelties. In this simulated user experiment,

we demonstrate that our explanations are useful for understanding a novel class. To test this, we
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simulate a setting in which we have a series of normal points, but a few new, novel points are then
added. We then measure how well our explanations can explain how the novel class differs from
the regular class.

To accomplish these tests, we use four datasets (Banknote Authentification [106], Rice Identi-
fication [107], Heart Disease [70], and Wifi Localization [108]) with relative class balance (no class
has more than 60% representation). We partition the dataset into training and testing sets such
that the test set is perfectly balanced, and undersample the "novel” class such that it only com-
prises 5% of training instances. We bolster the datasets in a self-supervised manner by creating our
explanations, adding our explanation vectors to counterfactual instances on the decision boundary,
and retraining the models. This process can be visualized in Figure 3.6.

A simulated user in this experiment is a simple decision tree classifier, and to measure our
explanation’s interpretability, we take a baseline measurement of the simulated user’s accuracy and
F1 score (with the novel instance being the positive class and all others the negative), a topline
of the dataset without undersampling, and record our results training the user on the bolstered
dataset. To grant greater validity to our results, we perform the split and the under-sampling five
times each, and examine each of the classes as the novel class for a total of 25 trials for each class
of each dataset.

Because it is useful to have a topline of a balanced dataset in this experiment, none of the
outlier detection datasets listed above would be sufficient for our purposes. Instead, we use the
four aforementioned datasets which provide 10 classes. For each trial, we consider one class to be

"novel” and the other class(es) to be normal. Only the novel class is undersampled.

3.5.4. Experiment 3 Design: Visualizing Explanations. In experiment 3, we apply our
method to an illustrative computer vision problem using the MNIST [77] handwritten digits dataset.
Here, we use a supervised deep anomaly detection technique to graph a manifold for each class and
measure anomaly score based on the proximity of the instance to that manifold. This is determined
by training a classifier for all ten digits, and the distance from the manifold is calculated by the
output logits. If the instance is predicted weakly, that is, two or more logits are highly activated
(i.e. it belongs strongly to more than one class), this instance is considered to be between two local

manifolds and therefore anomalous.
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We use our technique to graph the decision boundary on the manifolds the instance is projected
near. Then, we summarize this boundary via the dispersion problem described in Section 3.4.1. The
main differences between this experiment and Experiment 1 is that this is used for a computer vision
problem and, because we know the anomaly detection algorithm is a deep learner, we optimize via

backpropagation to the input space rather than PSO.

3.6. Experimental Results
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(a) Average (across 20 outliers) loss with respect to (b) Average (across 300 outliers) loss with respect

each of the fifteen datasets. to each of the four anomaly detection algorithms.
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(c) Average (across 1800 explanations) loss with re- (d) Average (across 1200 explanations) loss, sepa-
spect to anomaly score - the 10 most borderline out- rated into additive and subtractive loss.
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FIGURE 3.7. Average loss with respect to different algorithms (a), anomaly detec-
tion algorithm (b), and anomaly score (c), along with the proportion of loss that
is additive vs subtractive (d). Loss is near zero in any case, and no particular
case induces very much error. Note that between the time of experimentation and
publication, the Pima Indians Diabetes Dataset has been removed, rendering this
particular experiment (but only this experiment) irreproducible.
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(a) Accuracy of the simulated user before and af-
ter it is provided with our explanation. Accuracy (b) F1 score of the simulated user with respect to
consistently improves towards the topline. the novel class across 10 random samples.

FiGUurE 3.8. Experimental results demonstrating the simulated user experiment.
Each candlestick represents a trial, which is repeated 10 times. The body of each
candlestick represents the lower (25%) and upper (75%) quartiles, and upper and
lower shadows represent the minimum and maximum values, respectively.

RI Na Mg Al Si K Ca Ba Fe

Mean 152 134 268 144 727 0497 162 0.175 0.057
Standard 0.003 0.817 1.44 0499 0.774 0.652 860 0.497 0.0974
Diviation

Anomaly 1 0.297 0.372 0.775 0.349 0.505 0.095 0.279 0 0
Explanation 1 0 0 1.26 0.931 0 0 0 0 0
Explanation 2 0 0 0 0 0 0 6.1 0.20 O
Anomaly 2 152 141 0 288 726 0.08 891 106 O
0
0
0

Explanation 1 0 0 0 0 0 0 0 0.29

Explanation 2 0 0 0 0 0 0 0 -0.21
Anomaly 3 1.52 129 161 217 722 024 9.7 0.24 bl
Explanation 1 0 0 0 0 0 0 0 0 -0.18

TABLE 3.2. Feature statistics, examples of anomalies, and their explanation(s) for
the glass identification dataset.

In this section, we evaluate our method’s interpretability through three experiments detailed

in section 3.5. Specifically, we address the following questions:

e Experiment 1: By evaluating 3600 explanations from 300 outliers across 15 datasets 4

anomaly detection datasets, and different anomaly scores, we demonstrate that our method
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is sufficient to handle any such setting (see Figure 4). Further, we empirically demonstrate
several of our explanations and discuss how they are useful to end-users.

e Experiment 2: In 10 trials over four datasets, we quantify the utility of our algorithm
through a simulated user experiment in which the simulated user is tasked with classifying
novelties, and is demonstrated to perform better when provided with explanations from
our method.

e Experiment 3: We present some of our explanation vectors for our vision experiment on

the MNIST dataset.

3.6.1. Experiment 1: How Accurate Are The Explanations. As described earlier, an
explanation for an outlier is useful if the patterns returned can turn an inlier into an outlier when
subtracted (negative relative explanation) and likewise turn an outlier into an inlier when added
(positive relative explanation). Here, we judge our algorithm’s capacity to create such explanations
by calculating two kinds of error - additive error, that is, the pattern’s ability to turn an outlier to
an inlier when added, and subtractive error, the ability for a pattern to turn an inlier into an outlier
when subtracted (see previous sections and Equations 3.2 and 3.3). To quantify this, we examine
our approach using four different anomaly detection algorithms, including two shallow methods
(random forest [109] and local outlier factor (LOF) [78]) and two deep methods (autoencoder-
based AD [110] and GAN discriminator-based AD [111]) on the fifteen multidimensional datasets
of the ODDs dataset collection, a standard outlier detection dataset for benchmarking [79].

As demonstrated in Figure 3.7, the subtractive and additive error is very small irrespective of
algorithm, loss, or anomaly score. Even in cases where the loss is highest, such as the letter dataset
or under the random forest algorithm, the actual value for loss is very small (less than 0.0015),
indicating our method’s ability to consistently craft explanations congruent with our desiderata.
To put this into perspective, if the anomaly threshold ¢ is set to 0.3, then 0.0015 is within 0.5% of

the decision boundary.

Example Explanation Vectors. Here, we examine some of our explanations to determine their
interpretability on the glass identification dataset [97]. We examine this dataset specifically because
its feature space is easy to understand (RI is the refractive index of the glass, and the other categories
indicate the presence of certain chemical elements). Table 1 shows the mean and standard deviation

of each feature, along with three anomalies and our method’s explanation. The third case is perhaps
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the most simple. Here, while most features are roughly in line with regular values, the iron (Fe)
levels are extremely high. This instance has the largest value for iron by a wide margin (the second
largest having only 0.37), and the explanation brings the instance close to a group of normal
high-iron glass samples. The second is perhaps the most interesting. One may notice that the
barium levels are significantly larger than other samples, however, the explanation is not a simple
subtraction. It includes both a subtraction to barium and an addition. Upon further investigation,
there exists a local neighborhood of glass samples (labeled headlamps) that contain high levels of
barium. While most instances exist with significantly less barium and a smaller pocket exists with
more barium, the anomaly was in a lonely middle ground. Finally, anomaly 1 has two explanations
relying on two different sets of features which bring it closer to two different local neighborhoods
of points. Our technique not only finds explanations that conform to the general trends of the
data but also provides us with insights to understand the full context of why these instances
were considered anomalous. This demonstrates that our explanations can explain both contextual
anomalies (anomalies 1 and 2) and global anomalies (anomaly 3).

Further results of this experiment can be seen in Figure 3.7, and demonstrate that our ex-
planations can achieve the desired characteristics with near-zero error on any of these datasets
irrespective of the base algorithm. Median error across all datasets is less than 2 * 10~%, and on
some algorithms, the median error is zero. Even on the datasets with the highest error, the error

is consistently less than 0.0015.

Hyperparameter Settings and Computation Time. We set hyperparameters for this task
according to the method presented in Section 3.4.3, and use 100 counterfactuals to graph the
boundary. We run these experiments on the anomalies with the top 10 anomaly scores (very
anomalous instances) and the 10 anomalies closest to the threshold (borderline anomalous instances)
to ensure that our method can handle either case. These anomalies were determined by the four
aforementioned algorithms and three different types of explanation (pattern mining, dispersion,
and subspace) were generated for each. Therefore, this experiment examines 3600 explanations
generated from 1200 anomalies over 15 datasets, and calculates the error for each of them. This
was accomplished on a cluster of five Intel Xeon 2.20GHz processors averaging 14 seconds per

explanation, for a total compute of 14 CPU hours.
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3.6.2. Experiment 2: Explaining Novelties and Data Augmentation. While Exper-
iment 1 demonstrates that our method consistently satisfies our definition of a good explanation re-

gardless of dataset, anomaly detection algorithm, or anomaly score, Experiment 2 quantifies the utility

of our explanations and demonstrates their ability to explain novelties.

In this simulated user experiment, we use a decision tree to classify a novel class. While each
dataset is initially balanced, we consider one class to be novel and the other(s) normal. The
dataset is partitioned into random training and test sets with balanced test sets, and the novel

class is undersampled in the training set? until it only comprises 5% of the data. A baseline model

is created, the dataset is augmented using our explanation vectors, and the classifier is retrained.
Figure 3.8a demonstrates that our method can successfully explain a novel class to a simulated
user to a degree very similar to if the simulated user was presented with real instances. Figure 3.8b
demonstrates that the novelty is being explained well and completely, whereas 3.8a demonstrates

that this is not done at the expense of accuracy in the other classes.

3.6.3. Experiment 3 - Vision. Figure 3.9 demonstrates several explanations for MNIST
anomalies, as described in Section 5.4. This provides a visual representation of the explanation
vectors explored in the preceding subsections. As one can see from these instances, our technique
can find explanations by either removing or adding certain groups of pixels (the explanation vector)
such that the image is normal relative to a nearby neighborhood of normal points. Sometimes, as
is the case for Figures 3.9f and 3.9h, this requires explanation across multiple neighborhoods for

the same instance.
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(a) An anomalous
nine which looks
like a four

(e) An anomalous
nine with a loop-
ing tail.

(b) Our technique
subtracts the un-
closed loop of the
nine to make it
look more like a
normal four.

(f) Our technique
removes the loop
making it look

(¢) An anomalous
five with a nearly
looping tail mak-
ing it look like a
six.

(g) The

anomalous  nine

same

with a looping

(d) Our technique
completes the tail
and smooths out
the head to make
the image more
like a normal six.

(h) Our technique
completes the loop
making it look like

more normal. tail. a normal eight.

FIGURE 3.9. Several anomalies (left) and their visual explanation (right). The
most relevant part of the explanation vector is highlighted: orange/blue for sub-
tracted /added pixels.

3.7. Conclusion and Future Work

XAI is an important direction as algorithms replace humans in decision-making as it allows ex-
plaining the algorithm’s decision. However, existing XAI work for supervised unsupervised learning
is not a good fit for AD as these algorithms assume many instances for each category/cluster and
each instance in a category/cluster has something in common. However, in AD by definition anom-
alies are rare and typically each anomaly is unique. Instead, the fundamental question to address
in XAD is why is this instance not an anomaly.

To find relative explanations as a driving premise we create an algorithm-invariant approach
that finds explanatory vectors for each outlier. An explanatory vector has the property that if it
is added to the outlier it converts the outlier to a normal point according to the AD algorithm.

Further, if the explanatory vector is subtracted from some normal point it makes them anomalous.
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We propose a three-step approach as follows. Step 1 finds diverse counterfactuals which in
Step 2 are simplified into a representative set of counterfactuals. Step 3 then generates the relative
explanations by comparing the representative counterfactuals.

We have demonstrated the use and flexibility of our approach in two experimental settings. The
first shows the effectiveness of our explanatory vectors by measuring the accuracy of the claim that
adding and subtracting them from outlier and normal points flip the AD algorithm’s prediction
on them. The second explores the novel area of machine-to-machine explanation by creating new
instances to improve upon performance.

Future work will be divided along two lines: algorithmically and application-wise. Our current
framework instantiates each step in a given way, we will explore more efficient and useful ways of
achieving each step such as geometric-set cover approaches for the representative counterfactual
selection problem and new forms of relative explanation. Application-wise we would like to better
explore the area of machine-to-machine explanation for uses of active learning and self-supervised

learning.
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CHAPTER 4

An Exemplars-Base Approach for Explainable Clustering:

Complexity and Efficient Approximation Algorithms

Abstract Explainable Al (XAI) is an important area but remains relatively understudied for
clustering. We propose an explainable-by-design clustering approach that not only finds clusters
but also exemplars to explain each cluster. The use of exemplars for understanding is supported
by the exemplar-based school of concept definition in psychology. We show that finding a small
set of exemplars to explain even a single cluster is computationally intractable; hence, the overall
problem is challenging. We develop an approximation algorithm that provides provable performance
guarantees with respect to clustering quality as well as the number of exemplars used. This basic
algorithm explains all the instances in every cluster whilst another approximation algorithm uses a
bounded number of exemplars to allow simpler explanations and provably covers a large fraction of
all the instances. Experimental results show that our work is useful in domains involving difficult

to understand deep embeddings of images and text.

4.1. Introduction

NOTE: A previous version of this paper is published in STAM SDM24 [38, |
with co-authors Ian Davidson, Antoine Gourru, Julien Velcin, Peter Walker, and S.S.
Ravi.

The area of explainable AT (XAI) tries to make the complex results of an algorithm interpretable
by humans. Most work has focused on supervised learning [113], and in particular, instance-level
explanations such as which parts of an image resulted in a certain prediction [114]. Our work differs
from most XAI work in several ways. Firstly, we explore unsupervised learning, and in particular,
clustering. Secondly, we seek higher level explanations of the entire clustering and not just why
an instance was placed in a particular cluster. This is not only an understudied problem, but one
where explanation is most needed due to the lack of ground truth annotations (i.e., classes) around

which explanations can be built.
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Existing work on explainable clustering generates explanations in terms of the underlying features

used in the clustering [115, ) |. These methods are not suitable for modern settings that
use non-interpretable features such as the two settings which we use to demonstrate our work:
clustering of deep embeddings of sentences and images. Our own post-hoc explanation methods

also require human interpretable tags [118].

Core Idea. We address the need for explanation by creating an exemplar-based approach to
clustering that simultaneously finds clusters of points and exemplars that characterize the clusters.
We say that an instance = explains another instance y (or instance x serves as an exemplar for
instance y) if y falls within e distance of = (i.e., y is within the ball of radius € centered at x).

Figure 4.1 provides a simple example of the exemplars for a single cluster.

X X /

(a) (b)

FIGURE 4.1. A simple example of a cluster (a) and the corresponding exemplars
(in red) for the cluster (b).

Exemplars are a natural mechanism for the explanation of concepts [37] by enumerating the
different variations of the concept. Cognitive science literature (e.g., [119]) indicates that exem-
plars are ideal for explaining complex concepts/clusters by providing distinct variations of the same
concept. However, exemplars cannot be created from existing clustering algorithms. Simply in-
creasing k and using the resultant centroids or finding sub-clusters within clusters [120] does not
address this challenge as in many situations there is a natural number of clusters (e.g., Figure 4.3).

Further, the variations of the concept need not be dense sub-clusters as shown in Figure 4.3.

Contributions. Our contributions are as follows.
(1) We formulate the novel explainable clustering via exemplars problem and show that even ex-

plaining a single cluster is an intractable problem (Theorem 4.4.1).
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(2) Our setting is naturally a bi-objective clustering problem with respect to cluster quality and
explanation quality but we simplify parameter choice by binding both objectives together with
the same parameter e.

(3) We propose a polynomial time clustering algorithm (Algorithm 2) that provides provable per-
formance guarantees with respect to both the maximum cluster diameter and the minimum
number of exemplars. More precisely, the maximum cluster diameter is 2(D* + €), where D* is
the optimal diameter whilst using at most O(N*logn) exemplars, where N* is the minimum
number of exemplars needed for the dataset of size n (Theorem 4.4.2). We also present a re-
laxed version of the algorithm (see Algorithm 3) that upper bounds the number of exemplars
by relaxing the requirement to explain every instance.

(4) We experimentally evaluate our methods on several domains involving deep embeddings of
images (Faces in the wild), text (a Harry Potter novel) and on MNIST digits. We also begin
to explore the novel direction of using exemplars for machine to machine explanation/transfer.

For space reasons, most of the proofs are omitted. They can be found in [112].

4.2. Overview of Our Approach

The input to our method is a collection of instances that we wish to both cluster and explain.
Hence, our method is an example of an explainable-by-design clustering algorithm, unlike our
previous work that attempts to find an explanation for a given clustering [118]. Further, unlike
prior work on conceptual clustering, we do not use the features used to cluster in developing an
explanation; for instance, the work discussed in [115] simultaneously builds a clustering and a
decision tree using the same features. Here, we instead find a clustering and a suitable subset of
the instances (which we call exemplars) within each cluster to explain it. We say an exemplar
explains a set of instances that are within e distance of it. In practice, exemplars are significantly

different from cluster centroids; see Figure 4.2 for an example.

Trading Off Explanation Complexity Against Clustering Quality. We design clustering
algorithms that ensure that the maximum diameter of the clustering found is within a small constant
factor of the optimal diameter and e (the radius of an exemplar’s coverage). Hence, the parameter e
provides a natural way to trade off explanation complexity against cluster compactness. If we make

€ small, we naturally will require more exemplars but will find more compact clusters. Conversely,
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if we make € large, we will create simpler explanations but at the cost of a larger cluster diameter.
We present efficient approximation algorithms that provide provable performance guarantees with

respect to both the maximum diameter and the number of exemplars used.

Exemplars for Explanation and Their Benefits. Our work can be considered as a quantifi-
cation of the exemplar-based school of concepts [37] as we are discovering concepts (the clusters)
and the exemplars that typify/explain them. This contrasts with feature based explanations (e.g.,
using the attributes/properties of the face) as described earlier. In this paper, we argue that us-

ing exemplars has pragmatic and pedagogical benefits. As ML/DM progresses to more complex

representations of complex objects, using features as the basis for explanation is no longer always
valid, even though there is excellent work in this area [115]. In settings where features are not
interpretable (e.g., deep embeddings of image data), one pragmatic explanation mechanism is ex-
emplars. The pedagogical benefit stems from cognitive psychology’s experimentally-verified rich
literature on how humans understand and comprehend the world; this literature comes under a

topic known as Concept Theory [37,121].
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FIGURE 4.2. An illustrative example of generating clusters (color) and selecting exemplars
(stars). The exemplars form a prototypical explanation of a cluster in that they cover all
instances in the cluster. Note the exemplars need not be (and rarely are) close to the
centroids.
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Difficulty of the Problem. Our computational problem inherently has two intertwined tasks:
(i) finding compact clusters and (ii) finding a minimal set of exemplars to represent each cluster.
This is a challenging problem as the first problem is known to be NP-hard [122] and additionally
we show that even for a single cluster, finding a minimal set of exemplars to represent the cluster is
NP-hard (Theorem 4.4.1). Solving these tasks separately could yield sub-optimal results; instead,
we bind them together using a single parameter € (the exemplar coverage distance) to simulta-
neously perform clustering and exemplar selection. Our algorithms provide provable performance

guarantees.

4.3. Definitions

4.3.1. Basic Definitions. Let X = {x1,x9,...,2,} be a set of n instances. We assume that
for each pair of instances x; and z;, we have a (symmetric) distance d(z;, ;). The distance function
d is assumed to be a metric; it may be the distance in some embedding space. We are also given a
value € > 0 which is set by a domain expert and naturally trades off explanation complexity against

cluster compactness as discussed earlier.

Notion of Explanation. Given two instances z; and x;, where d(z;, ;) < €, we say that z;
covers z; and that z; is an exemplar for x; and vice versa (since d is symmetric). For convenience,
we will also say that x; is an e-neighbor of x; (and vice versa). We now generalize this definition to
clusters. Given a subset Y C X of instances and another subset £ C X of exemplars, we say that
€ covers Y if for every instance x; € Y, there is an instance x; € £ such that x; covers z; (i.e., z;
is an exemplar for x;). When a subset £ C X of exemplars covers a set Y C X, we say that & is
an exemplar set for Y and that Y U & forms a cluster and its explanation.

For any instance x;, let S; € X consist of all the instances that are e neighbors of x; (d(x;, ;) <

€). We refer to S; as the e-neighborhood of x;.

Clustering to Minimize the Maximum Diameter. For clustering a set X of instances, a
common objective is to minimize the maximum diameter [122]. For the reader’s convenience, we
provide the associated definitions. The diameter of any cluster is the maximum distance between
any pair of instances in that cluster. The diameter of a clustering is the largest cluster diameter.
It is known that finding a clustering with £ > 3 clusters that minimizes the maximum diameter

is NP-hard [123]. When the distance function is a metric, a well-known approximation algorithm
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due to Gonzalez [122] provides a clustering whose maximum diameter is at most twice the optimal
diameter. This paper by Gonzalez also shows that unless P = NP, no efficient algorithm can

provide a better performance guarantee.

Minimum Set Cover (MSC) Problem. In this problem [123], the input consists of a base set
U = {ui,ua,...,up}, acollection Y = {¥1,Ys,..., Y}, where each Yj is a subset of U (1 < j <m)
and an integer bound 8 < m. The goal is to choose a subcollection Y/ of Y with |Y/] < 8 such
that the union of the sets in Y’ is equal to U (i.e., the union covers all the elements in U). This
problem is NP-Complete and a natural greedy approximation algorithm (which picks a new set
in each iteration such that the set covers as many new elements as possible) is known to give
a performance guarantee of O(logn) for the problem [124]. It is also known that under well
accepted hypotheses in complexity theory, there can be no better polynomial time approximation

algorithm [125]. One of our results (Section 4.4.3) uses this greedy approximation algorithm.

Budgeted Maximum Coverage Problem. We also use a known approximation algorithm for
the Budgeted Maximum Coverage (BMC) problem, which is closely related to the Minimum Set
Cover (MSC) problem [123]. The input to the BMC problem is a base set U = {u1,ua,...,u,},
a collection Y = {¥7,Y5,...,Y,,}, where each Yj is a subset of U (1 < j < m) and a budget
B < m. The goal is to choose a subcollection Y’ of Y with |Y’| = 8 such that the union of the
sets in Y’ covers the maximum number of elements of U. This problem is also NP-hard and a
natural greedy approximation algorithm (which picks a new set in each iteration such that the
set covers as many new elements as possible) has been shown to give a performance guarantee of
(1 —1/e) for the problem [126], with e being the base of the natural logarithm. We use this result
in Section 4.4.3. It is also known that under well accepted hypotheses in complexity theory, the
performance guarantee of (1 — 1/e) cannot be improved [125].

We also use some standard graph theoretic notions (such as dominating sets and unit disk

graphs). These definitions can be found in [112].

4.3.2. Main Problem Formulations. We now provide rigorous formulations of the problems
considered in this paper. We begin with the problem of finding a small set of exemplars for a given

set of instances.

(a) Minimum Set of Exemplars for a Cluster (MSEC)
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Given: A cluster X = {z1,x9,...,z,} of n instances, a value e > 0, an integer 8 < | X]|.

Question: Is there a subset £ C X, with |£] < 3, such that & is an exemplar set for X7

We note that the MSEC problem requires an exemplar set for all the instances in the set X.
We now develop formulations where the set X must be partitioned into clusters and exemplar sets
must be found for each cluster. We first provide a formulation where each instance must have an

exemplar.

(b) Simultaneous Construction of Clusters and Exemplars (SCCE)

Given: A set X = {z1,%9,...,2,} of n instances to be clustered, integer k, where 2 < k < n (the

number of clusters), and a value € > 0.

Requirement: Find a partition of X into k clusters C1, Cy, ..., Cj and an exemplar set mathcal E;
for each cluster C;, 1 < j <k, such that all the following conditions hold:

e Compactness of Clustering and Explanation: (i) the maximum diameter of the clusters is as small

as possible, (ii) 2521 |mathcal Ej| (i.e., the total number of exemplars used) is as small as possible.

e Distinctness of Explanations: (iii) mathcal Eq N mathcalEy, = () for all 1 < a,b < k and a # b

(i.e., the exemplar sets are pairwise disjoint), and

e Completeness of Explanations: (iv) for each instance x € X, there is an exemplar y such that z

and y are in the same cluster.

We present an approximation algorithm for SCCE in Section 4.4. However, this solution may
use a large number of exemplars due to the completeness requirement. This can make it difficult
for a user to interpret the explanation. To address this, we next explore a relaxed version of the
problem where not all instances are explained. (Our approximation algorithm for this problem

allows us to get a lower bound on the number of instances that are explained.)

(c¢) Simultaneous Construction of Clusters and $-Bounded Exemplars (SCCRB)

Given: A set X = {x1,29,...,2,} of n instances to be clustered, integer k, where 2 < k < n (the
number of clusters), a value € > 0 and integer 5 (upper bound the total number of exemplars for

all clusters).

Requirement: Find a partition X into at most k clusters Cq,Co,...,Cy, and the corresponding

exemplar sets mathcal E1, mathcalFEs, ..., mathcalE), as in the SCCE problem above with the
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requirements for compactness of clusters (Condition (i)), distinctness of explanation (Condition
(iii)) but now:

e Upper Bound on the Number of Exemplars: (ii) Z?:l |mathcal E;| < 3, and

e Relaxing the Condition that Every Instance be Explained: (v) The number of instances which

have an exemplar in the same cluster is as large as possible.
We present an approximation algorithm for SCCRB in Section 4.4. Note that compared to SCCE,
not every instance will be explained (i.e., covered by an exemplar). The algorithm can identify

unexplained instances; this could be useful since such instances may represent anomalies.

4.4. Algorithmic Results

4.4.1. Finding a Minimum Set of Exemplars For A Single Cluster. We begin with a
complexity result for the Minimum Set of Exemplars (MSEC) problem for a single cluster. As can
be seen from our proof in | ], this complexity result holds even when the given set of instances

X consists of points in 2D-Euclidean space.

THEOREM 4.4.1. The MSE problem is NP-hard even when the set of instances X consists of

points in 2D-FEuclidean space and the distance between any two points is their Fuclidean distance.

4.4.2. An Approximation Algorithm for SCCE. The SCCE problem requires us to find a
clustering where the diameter of each cluster and the number of exemplars are as small as possible.
Recall that each of these problems is computationally intractable. We present an algorithm that

provides a provable performance guarantee for each of these measures.

Overview of the algorithm. First, the algorithm takes the set X and produces pairwise dis-
joint blocks By, Ba, ..., By to minimize the maximum diameter [122]. It then uses a greedy
approximation algorithm for the Minimum Set Cover (MSC) problem [124] to find a near-minimal
set of exemplars A for the set X. For each cluster Cj, the exemplar set mathcalE; is given by
mathcal E; = B; N A, 1 < j < k. Finally, each cluster C; consists of the exemplar set mathcal E;
and all the non-exemplars covered by mathcalE;. This ensures that the exemplars are pairwise
disjoint and that each non-exemplar is covered by an exemplar in the same cluster. Note that we
only move non-exemplars from their original blocks (i.e., By, Ba, ..., By) to new clusters (i.e., Cy,

Cy, ..., Ck). This is crucial to ensure the performance guarantee on the maximum diameter. An
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Algorithm 2 Approximation Alg. for SCCE
1: procedure APPROXSCCE(X, k, €)

2: Input: A set of instances X, the number of clusters k, and the exemplar distance bound e.

3: Output: A clustering of X into k clusters and a set of exemplars for each cluster to satisfy the
requirements of the SCCE problem.

4: Block Creation. Use Gonzalez’s approximation algorithm [122] to obtain k (disjoint) blocks

Bl,BQ,...,Bk of X.

5: Exemplar Neighborhood Set Construction. For each x; € X, find 5;, the set of all instances
xj € X such that d(x;,z;) < e. (Thus, z; can serve as the exemplar for each instance in S;.)

6: Exemplar Selection. Construct the Minimum Set Cover (MSC) problem consisting of the base set
X and the set collection S = {51, S,...,5,}. Use a greedy approximation algorithm for MSC [124]
to construct a near-optimal set cover given by the subcollection §; C S. Obtain the exemplar set A as
follows: for each S; € S, add z; to A.

7 Cluster Creation. Create k empty clusters C1,Cs, ..., Cy.

8: Exemplar Assignment. For each cluster Cj, the set £; of exemplars is given by £, = B;NA. Add

(c,‘j to CJ

9: Non-Exemplar Assignment. Consider each cluster C;. For each exemplar z; € C;, add each
instance in S; — A (i.e., each non-exemplar in S;) to Cj.

10: Output the set of clusters Cq, Cs, ..., Cf and the corresponding exemplars &1, &, ..., E.

outline of our approximation procedure is shown as Algorithm 2. Note that if an instance x is
covered by multiple exemplars, it can be assigned to any cluster that has an exemplar for z. The

following theorem shows the performance guarantee provides by Algorithm 2.

THEOREM 4.4.2. The solution produced by Algorithm 2 satisfies the following properties: (i) The
diameter of each cluster is at most 2(D* + €), where D* is the optimal diameter for a k-clustering
of X and e is the exemplar distance. (ii) Every instance in X has an exemplar within the same
cluster. (iii) The sets of exemplars for the k clusters are pairwise disjoint. (iv) The total number
of exemplars generated by the algorithm is at most O(N*logn), where N* is the minimum number

of exemplars needed to cover all the instances in X.

Proof: See [112].

Remark: Since Step 3 in Algorithm 2 uses an approximation algorithm for MSC, the performance
guarantee with respect to the number of exemplars is O(logn), where n = | X|. Theoretically, one
can get a better performance guarantee (namely, (1 4+ J) for any fixed § > 0) with respect to the
number of exemplars while ensuring that the maximum diameter is at most 2(D* +¢€). This is done
by transforming the Exemplar Selection steps (i.e., Steps 2 and 3 of the algorithm) into that of
finding a near-optimal dominating set for unit disk graphs in an Euclidean space whose dimension

¢ is the same as that of the points in X. However, this approximation algorithm (whose running
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time includes the factor O(n(!/9”) [127]) is impractical even for data sets of moderate size. For
example, if § = 0.5, the running time of the algorithm includes the factor O(n*). For this reason,

we decided to use the MSC-based approximation algorithm in our experiments.

Running time of Algorithm 2: The overall running time of Algorithm 2 can be shown to be

O(n?). Please see [112] for details.

4.4.3. An Approximation Algorithm for SCCRB. When ¢ is small, our approximation
algorithm for SCCE generates a solution with a small cluster diameter; however, it may yield a large
number of exemplars leading to an overly complicated explanation. The goal of SCCRB is also to
find a clustering with a small maximum diameter but we relax the requirement to have exemplars
for all the instances. Instead, we are given an upper bound on the total number of exemplars for
all clusters, and we want to maximize the number of instances with exemplars subject to the bound
on the number of exemplars.

We now present an approximation algorithm that provides a provable performance guarantee
for the diameter as well as the number of instances covered by exemplars in each cluster. This
algorithm is similar to the one for the SCCE problem (Algorithm 2) except that it uses a known
approximation algorithm for the Budgeted Maximum Coverage (BMC) problem [126] in Step 3
instead of the approximation algorithm for the MSC problem. The steps of this approximation
algorithm are shown as Algorithm 3. The following theorem (proved in [112]) establishes the

performance guarantee provided by the Algorithm 3.

THEOREM 4.4.3. The solution produced by Algorithm 3 satisfies the following properties: (i)
The diameter of each cluster is at most 2(D* + €), where D* is the optimal diameter for a k-
clustering of X and € is the exemplar distance. (ii) The sets of exemplars for the k clusters are
pairwise disjoint. (iii) The total number of instances with exemplars is at least (1 —1/e)Q*, where
e is the base of the natural logarithm and Q* is the maximum number of instances in X that can

have exemplars under the constraint that the total number of exemplars is at most (.

Running time of Algorithm 3: The running time of Algorithm 3 can be shown to be O(n?).

The details appear in [112].
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Algorithm 3 Approximation Alg. for SCCRB
1: procedure APPROXSCCRE(X, k, €, )

2: Input: A set of instances X, the number of clusters k, the exemplar distance bound €, and an upper
bound f on the total number of exemplars for all clusters.
3: Output: A clustering of X into k clusters and a set of exemplars for each cluster to satisfy the

requirements of the SCCRB problem.

4: Block Creation. Same as Algorithm 1.

Exemplar Neighborhood Set Construction. Same as Algorithm 1.

6: Exemplar Selection. Construct the Budgeted Maximum Coverage (BMC) problem consisting of
the base set X, the set collection & = {S1,Ss, ..., S, }, and the budget 5. Use the greedy approximation

o

algorithm for BMC | | to construct a subcollection §; C S. Obtain the exemplar set A as follows: for
each S; € S, add z; to A.

7 Cluster Creation. Same as Algorithm 1.

8: Exemplar Assignment. Same as Algorithm 1.

9: Non-Exemplar Assignment. Consider each cluster C;. For each exemplar z; € C;, add each
instance in S; — A (i.e., each non-exemplar in S;) to C;. The set of instances X’ which don’t have
exemplars is given by X' = X — g <5, Si-

10: Output the set of clusters Cy, Cs, ..., C; and the corresponding exemplars &1, &, ..., E.

4.5. Experiments

Code and data to reproduce and document the experiments are available! with the exception
of the Harry Potter novel data which is not in the public domain but is freely available. We have
tried to quantitatively and qualitatively evaluate our approach’s usefulness for explanation to a
human. We explore several directions including generating summaries of a novel which we compare
against human written summaries. Similarly, we explore quantitative measures on human faces in
the wild data, and for completeness, a qualitative analysis of a standard digit data set. Finally, in
an emerging direction of using explanation for machines (not humans), we explore using exemplars

for SVM transfer learning.
A discussion on the time used by our algorithms on some data sets is provided in [112].

4.5.1. Qualitative Experiments on Digits Data. Here, we take the standard MNIST data
set consisting of 10,000 written digits. We embed them using tSNE [128] and use our algorithm to
cluster them and generate exemplars. Our hope is that the exemplars will be a varied representation
of the different ways of writing each digit. The clusters found by our methods and approximate
centroids (not exemplars) are shown in Figure 4.3. (A larger version of the figure appears in [112].)
For each cluster, we present the exemplars found in Table 4.1. Of course, the clustering does not

have 100% accuracy but we see that for well separated clusters (0, 5, 6, 7, 8 and 9), the exemplars

LURL: . All code and public data are located at the site.
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do indeed capture a variety of ways that the digits are written. Quite surprisingly, many are
fundamentally different from the centroid. Take for example the digit 7. The centroid has the top
line pointing downwards but the exemplars show examples where the top line is up and the vertical

line is crossed.
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FIGURE 4.3. Clusters and centroids (not exemplars) found by our method when applied
to the MNIST dataset. A larger version of the figure appears in [112].

4.5.2. Quantitative Experiments on Textual Data. In this section, we evaluate the abil-
ity of exemplars to simplify a corpus by summarizing content. In particular, we take the sentences
in the first Harry Potter (HP) book, embed them using deep learning, apply Algorithms 2 and 3
and concatenate the resultant exemplars to form a summary. This is compared with a ranking
based approach [129,130] which can be viewed as choosing exemplars from a list based on impor-
tance. These ranking methods are known to produce superior results for HP books [131] compared
to recent methods. We measure results by comparing against four human written summaries.?
Results (Table 4.2) show that our method performs better than these ranking methods by 12.8%
and the baseline of random selection of sentences by over 20%. Most importantly, our method’s
summary score is almost comparable (on average) to the similarity between the human summaries
themselves (Table 4.2).

We measure performance using the ROUGE score [132] which is a standard method of evalu-
ating the similarities between computer generated summaries and human written summaries. We

2yww.britannica. com, en.wikipedia.org, harrypotter.fandom.com, content.time.com
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TABLE 4.1. The clusters and exemplars found by our method on the MNIST data set.
Note that the exemplars provide a variety of ways that the digits are written and most
importantly are quite different from the centroids shown in Figure 4.3.

represent each sentence in the first HP book using the state-of-the-art language model BERT [133].
Hence, the exemplars generated by our method will be sentences in the book. Specifically, we used
a fine-tuned pre-trained BERT-base model ( ).

We compared our two methods against two approaches. The first one is a random subset of
sentences used as a control. We repeat this random selection process 20 times. The second baseline
is the widely used ranking approach for extracting summaries | , |. These methods require a
graph which we construct from pairwise cosine similarities using the sentence embedding obtained
with our fine-tuned BERT model. This is a time tested method with thousands of citations and
in 2020 still produces state of the art results for the HP literature [131]. For all methods except
for SCCE, we fix the number of sentences extracted to be equal to the number of sentences in the
ground truth summaries. We use 6 clusters chosen after hyper-parameter tuning to find the stablest

clusters. See [112] for an example summary.
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Methods Relative Performance
SCCE SCCRB Ranking Random Other To To Other
(Ours) (Ours)  [130] Summaries || Ranking Summaries
Sum-1 31.65 33.81 28.86 23.69 38.09 +17% -11%
Sum-2 29.58 31.26 28.73 25.89 25.82 +9% +21.1%
Sum-3 27.08 28.78 26.58 22.68 31.32 +8.3%  -8.1%
Sum-4 33.33 34.11 28.31 24.29 36.08 +17% -5.5%

TABLE 4.2. The ROUGE-1 Fl-scores (the larger the better) measuring the similarity of
our two methods, one state of the art (Ranking), one baseline (Random) to four human
written summaries (one per row) of the first Harry Potter novel. For each summary, we also
report the the average similarity to the remaining three summaries (Human Summaries).
Each computational method (except SCCE) generates the same number of sentences as the
summary against which it is compared.

’ Clustering Artifact Used ‘ Accuracy ‘

Exemplars 48.33
Cluster centers 44.00

All Points 42.00
Random Points in cluster 44.66

TABLE 4.3. Measuring the effectiveness of exemplars to explain/predict a person from
images. Competing methods use the same clustering we find but instead use k-Nearest-
Neighbor for prediction with different aspects/artifacts of the cluster. The value € is tuned
and set to 0.6 to maximize the stability of clusters.

4.5.3. Quantitative Experiments on Facial Data. One way to determine whether an
explanation is useful is to check if it helps a human to understand the underlying concepts which
are the clusters. A typical test of exemplar theory given to humans [37] is the task of identifying
several people they have never seen before using only a small set of exemplars of the people. We
make the task challenging by choosing three similar men (Gerhard Schréder, Jacques Chirac and
Tony Blair) and use just 40 images of each person with rest used for testing. See [112] for these

results.

4.5.4. Exemplars for Machine To Machine Explanation. Our exemplar and clustering
discovery method can also help to explain a problem to a machine. Essentially, our method identifies
clusters of points and important examples of each cluster. Here we use those important examples to
do instance transfer learning for support vector machines (SVMs). Transfer learning uses a source
task to help a target task. We use the well known pendigits dataset [134] to transfer the task of

predicting between two digits to help another task of predicting between two very similar digits.
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(Source) Target | No Transfer | Transfer
Transfer | Support | Exem-
Vectors | plars

(1vs9) Lvs7 0.79 0.83 0.91
(2vs 8) 2 vs 3 0.78 0.81 0.89
(3vs8)3vs9 0.81 0.84 0.88
(1vs7)1vs9 0.82 0.83 0.90
(2vs 3) 2 vs 8 0.80 0.81 0.91
(3vs9) 3 vs 8 0.73 0.70 0.89
(1vs9) Lvs7 0.63 0.72 0.80
(2vs 8) 2 vs 3 0.64 0.73 0.81
(3vs8)3vs9 0.66 0.72 0.81
(1vs7)1vs9 0.62 0.71 0.79
(2vs 3) 2 vs 8 0.61 0.69 0.83
(3vs9)3vs 8 0.59 0.63 0.77

TABLE 4.4. Accuracy for Transfer Learning. 350 training instances of each digit were
randomly chosen for both source and target problems. The 3rd column shows transferring
the support vectors and the 4th column shows transferring the exemplars from our work.
Results are averaged over 100 random trials. Results above (below) the double lines use all
8 pairs (first 4 pairs) of coordinates. Using just half the features produces nearly twice as
many support vectors.

For example, we can learn the source task of 1 vs 9 and transfer it to help the 1 vs 7 task as
shown in Table 4.4.

Recall that with an SVM, the vector w implicitly defines the hyperplane and a constraint to
separate the two classes as shown below in Equation (4.1). A common method of performing SVM
transfer learning is to add another constraint to the problem that requires the hyperplane to also
separate the classes in the source problem. Note the last constraint of Equation (4.1) has (xf,y;)
which are the support vectors from the previously solved SVM for the source problem. In our
experiments, we instead transfer the exemplars. We use the bounded version of our formulation to
transfer over the same number of instances as support vectors in the source problem. Results in

Table 4.4 show promise and a future direction of exemplars augmenting existing ML tasks.

1

(4.1) argming, 2||W||2
st yi(wlx;+wo) > +1Viand
yj-(WT.x; +wy) > +1Vj
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4.6. Related Work

Explanation and Clustering. The machine learning community has studied explaining
clusters from two perspectives. The one-view approach of conceptual clustering [ , , ]
proposes a task that is similar to our own (i.e., finding a clustering and its description), but requires
that the features used to perform clustering are human interpretable. More recent work | , ]
has explored post-hoc explaining a given clustering using a set of auxiliary tags; it does not find a

clustering itself.

Comparison to DBSCAN and Other Density Based Clustering Methods. Superficially,
our method may seem to be similar to DBSCAN [136] and other similar algorithms as it uses
notions such as e-neighbors. However, there are several fundamental differences. Firstly, our
method is guaranteed to use the specified number or near-minimum number of exemplars, where

as DBSCAN, while being a very useful method, does not provide such guarantees. Similarly, our

method has an explicit clustering objective (i.e., to minimize the maximum cluster diameter) where
as DBSCAN does not. Finally, DBSCAN is a not designed so that the core points can be considered
explanations of the clusters. As a consequence, it is not meaningful to compare our method with
DBSCAN.

The work on multiple centroid methods (e.g., [120, ]) may appear to be similar; however,

they are not explanation focused methods. For more details, see [112].

4.7. Conclusions

XAI for clustering is an under-studied problem compared to supervised learning. Here we
explore a style of explainable-by-design algorithm that simultaneously finds clusters and exemplars
to describe those clusters. The idea of using exemplars has several benefits. Firstly, it has pedagogic
benefits in that humans are known to naturally understand concepts in terms of exemplars [37].
How humans naturally cluster and then organize these exemplars into hierarchical structures will
motivate future work. Secondly, the use of exemplars is perhaps the only way to explain data
when it is clustered in high dimensional uninterpretable spaces such as deep embeddings. We show
that finding a small set of exemplars for just one cluster is NP-hard and design approximation
algorithms with provable performance guarantees. We demonstrate their usefulness in four tasks:

(i) to generate a summary of a book which is compared to a human summary, (ii) to generate
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exemplars for the classic MNIST data set, (iii) to generate exemplars that can be used to identify
people and (iv) to perform instance transfer learning. Our approach is based on classic computations
(e.g., minimum set cover) but the combination of the methods is novel. This has the advantage of
being able to leverage known results and implementations of these classic algorithms; see code in

the following repository:

This has other advantages such as ease of parallel implementation. Like most ML methods, our
methods also need parameter tuning. Most clustering algorithms need to tune k£ (the number of
clusters) and our method adds another parameter € (the coverage of an exemplar). The relationship
between € and the number of exemplars allows for a natural trade off between the complexity of
the explanation and cluster compactness as per our bounds. If the data to be clustered is human
interpretable, then other methods of explanation are also suitable [ , | but exemplars are a

natural and pragmatic way to explain complex data.
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CHAPTER 5

Identification and Uses of Deep Learning Backbones via Pattern
Mining

Abstract Deep learning is extensively used in many areas of data mining as a black-box
method with impressive results. However, understanding the core mechanism of how deep learning
makes predictions is a relatively understudied problem. Here we explore the notion of identifying
a backbone of deep learning for a given group of instances. A group here can be instances of the
same class or even misclassified instances of the same class. We view each instance for a given
group as activating a subset of neurons and attempt to find a subgraph of neurons associated
with a given concept/group. We formulate this problem as a set cover style problem and show
it is intractable and presents a highly constrained integer linear programming (ILP) formulation.
As an alternative, we explore a coverage-based heuristic approach related to pattern mining, and
show it converges to a Pareto equilibrium point of the ILP formulation. Experimentally we explore
these backbones to identify mistakes and improve performance, explanation, and visualization. We
demonstrate application-based results using several challenging data sets, including Bird Audio
Detection (BAD) Challenge and Labeled Faces in the Wild (LFW), as well as the classic MNIST

data.

5.1. Introduction

NOTE: A previous version of this paper is published in SIAM SDM24 [ [38, 1]
with co-author Ian Davidson

As models are deployed to tasks traditionally only trusted to humans, understanding a model’s
behavior is often required. This is particularly true for methods such as deep learning (DL), as
their decision-making mechanisms are inherently opaque. Existing work in explainable artificial
intelligence (XAI) provides interpretability by explaining a prediction decision on a single instance.
While this provides some insight into a particular prediction, it does not demystify the more general

decision-making process of the learner. Further, such explanation mechanisms also suffer from an
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TABLE 5.1. Taxonomy of XAI into three categories, each with distinct goals and
definitions of interpretability.

Interpretability
Category Defintion Examples
Explaining Justify a model’s LIME [16]
Model action on a Counterfactual
Decisions particular instance | Explanations [22]
Create an inherently
Creating interpretable model | Distilling Networks
Interpretable | OR distill an opaque | into Decision Trees
Models model into an 6]
interpretable model
.. Provide deeper
Investigating . Feature
understanding of . .
Model Visualization [13]
. how the model
Mechanisms . Ours
processes 1nstance

overreliance on the input space. Such explanations are convenient for interpretable input spaces,
such as images or text, but may be useless for data with uninterpretable feature spaces, such as
embeddings or audio spectrograms as we study in Section 5.7.

In this paper, we explore the area of creating backbones of a deep learner. These backbones
can be used for a variety of tasks including identifying mistakes, improving prediction, and global
explanation.

Core Idea. A core insight is that any instance activates a subset of neurons in the network.
Hence, a concept backbone is a subgraph of hidden units that frequently co-activate for a subset of
instances associated with a concept such as a group of instances of a class incorrectly predicted, or
some other phenomenon we wish to explain. We can find a collection of concept backbones which

are for different concepts and are distinct/different from each other. We refer to this as a collective

backbone.

For example, given a network meant to distinguish dogs from cats, one can find a concept
backbone for the concept of mispredicting dogs as cats in order to identify future mispredictions
and another for correctly predicting dogs to better understand the model’s decision-making process.
Further, exploiting the distinction between these two provides a basis for accomplishing more
complex tasks such as correcting mistakes (Section 5.6).

Our approach is flexible enough to answer a variety of questions. We demonstrate our work

on three domains: Labeled Faces in the Wild (LFW) [139], the Bird Audio Detection Challenge
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(BAD) [140], and MNIST for visual explanations. In the more challenging LFW dataset, we
demonstrate the robustness of our method even when faced with small data, 12-way classification,
and class imbalance. We show the versatility of our method by also showing its utility on the
non-image datasets of the BAD challenge. Our backbones have high coverage distinctness (the
subgraph to cover minimally covers instances from other categories).

We make the following contributions with the last point being important, as justifying the

utility of an explanation is critical.

e We present the backbone identification problem for supervised prediction as a coverage
problem (See Problem Definition and Formulation), formulate it as an ILP, and prove
intractability (See Theorem 1).

e We provide a heuristic algorithm to find a completely connected subgraph covering many
instances for the novel concept of a concept-level backbone. A collection of these backbones
can explain an entire model (See Section 5.2).

e We prove that this algorithm will produce a solution that is Pareto optimal to the problem
in respect to the maximizing problem objective and minimizing relaxation. (See Theorem
2)

e We explore sixteen different networks in three domains (See Section 5.7). Specifically:

— We apply feature visualization to create explanations from our backbones for the
MNIST dataset.

— We use our backbones to identify mispredictions with high confidence in the LEW
and BAD datasets.

— We use multiple backbones to correct those mispredictions to a great deal of success

in the BAD networks.

The paper is organized as follows: we first discuss the core problem and show its intractability,
after which we describe our approach. We design and complete our experiments next and then

conclude.

1

n the interest of space, theorems, proofs, and algorithm 2 are provided in appendix REF
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5.2. Overview of Our Approach

Backbone Desiderata. The output of our approach is a concise subgraph of the deep learner
that activates with a particular concept/group. We begin by defining the characteristics of a good
collective backbone and then a high-level problem formulation.

Every concept-level backbone must:

(1) Describe all the members of the concept
(2) Be distinct from all opposing concepts

(3) Be concise in terms of size

To exemplify our reasoning, consider the following explanations of dogs. One explanation may
be “A domesticated four-legged animal with a tail”. This is unsatisfactory as this could describe
other animals. One can tailor this response to exclude other animals by including details such as
“a long snout”, however this may exclude some dogs such as pugs or bulldogs. Finally, consider
the response by the Oxford Languages Dictionary: “A domesticated carnivorous mammal that
typically has a long snout, an acute sense of smell, nonretractable claws, and a barking, howling,
or whining voice” [141]. While this is specific and inclusive, in certain contexts, the eloquence of a
smaller explanation may be desirable. In the same sense, backbones must be descriptive, exclusive,
and ideally concise.

Through this example, one can see that these criteria are at odds with each other. To make
an explanation general enough to apply to all members, one may need to sacrifice conciseness.
To ensure that the explanation is distinct from other related concepts, one may need to make
generalizations that exclude members of the group. This is why backbone discovery naturally lends
itself to an optimization setup.

Concept-Level backbone as Finding a Minimal Graph. We view each instance zj as acti-
vating a subset Nj of the model’s hidden layer neurons by creating an activation vector of each’s
nodes influence with each component corresponding to a hidden neuron in the network. Influence
is calculated as the absolute value of the neuron’s activation times the sum of the absolute value of
weights. We create a set of node activations C; = {Ny ... N, } for the ith concept for all m instances
associated with this concept. Naturally, these vectors can be viewed as graphs in the network or
transactions. We then investigate C ... C, to understand which neurons are quintessential for the

classification of concept i¢. The goal of a CL-backbone is to find a subgraph of the network such
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that the nodes in the subgraph are connected and cover many instances in the concept. This is a
challenging problem as the naive approach of taking the union or intersection of the transactions
for a given concept yields only trivial backbones (see Figure 5.1).

Below we formalize the problem for a single backbone, and later expand it to a collection of
backbones:
The Concept Summarization Problem. Given a set of graphs G;...G, of the DL node

influences for n instances, find a backbone (subgraph) G* such that Vi:

e Complete Coverage G* C G;
e Connected G* is a connected graph and

e Conciseness |G*| is minimal.

The extension to the Collective backbone problem is then to find multiple CL-summaries
(G7...GY) with the additional requirement of Distinctness from each other (GiNG3N...NG; =0
for k concepts). This problem can be easily translated to an ILP, however we prove this to be in-
tractable in Theorem 1, and in practice often infeasible to satisfy. Even relaxations of this ILP are
extremely computationally expensive. Instead, we design a coverage-based approach to efficiently
find such subgraphs which we prove produces an optimal result to the original formulation of this

problem.

5.3. Problem Definition and ILP Formulation

Let X be a set of n data points which, for clarity, are all instances in the same concept (e.g.
all incorrectly predicted instances of the same class). Let M be a learned DL model consisting of
fully connected nodes R where R, ; is the 4" hidden node at layer I. Further, let W be the weights
in the DL with W,,, ,, being the weight connecting node n; to ny. There is no need for M to be
trained from X, but this is the case in our experiments. Further, let xj be the k" instance of the
data which activates the subset of nodes Ny, that is Ny C R. We describe the requirements for
activation later. Then X has an analogous representation N = {Nj ... N, } which is a set of subsets
of node activations that can be represented as a binary n x |R| table, T', with the entry T} ; = 1
representing that instance k activates node j. This is naturally a transaction dataset with the items

being node activation. The threshold associated with node activation is application-specific and in
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our experiments we threshold so that the » most influential neurons are used. We lift the above

notation to any number of categories by using the superscript .

i

Union Intersection Coverage-Based

Compromise
|
]
X2 X3 X4 X5

FiGURE 5.1. Potential issues with taking the union and intersection of activation
vectors. In this example, there are eight neurons in the network and five instances
in the concept. Neurons ng, n4, ns, and ng form the clearest summaries, occurring in
80% of the instances and the other neurons in only 20%. The intersection is empty
since it requires neurons to be present in all instances, and the union is the whole
network since it requires neurons to be present in only once.

Definitions. Before discussing the ILP using notation, we provide definitions for some of the
concepts we hope to achieve. In the strict ILP, the backbone must cover all of the instances.
That is, the backbone must reflect the activation of all instances x; € X. This is referred to as
complete coverage. To create a collective backbone, we also enforce orthogonality, in that
no two backbones should share a common neuron. In the relaxed ILP, these constraints are no
longer strict, and instead, we use the terms coverage and diversity to refer to the idea that the
backbone should cover most, but not necessarily all, instances, and that there should be minimal
overlap between backbones.

Problem Statements. Our problem is to find a subset of nodes R’ which explains all instances in
concept i. A naive version of the problem is to find the largest (hence most descriptive) backbone,
which will be equivalent to taking the union of N? overall 4, that is, R} = U;N. ; However, this risks

creating a huge network, and likely produces high overlap between CL-Explanations. Similarly, the
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intersection over N* (R} = NN Jz) is likely to yield a very small subset of nodes unlikely to form a
connected subgraph.

Instead, we model this discovery problem as a set cover style problem. First, we describe the
formulation for a single-concept backbone and then extend it to the collective backbone by adding

an orthogonality requirement.

(5.1) argming, Z IR

%
(5.2) sit. RL C N; Vi, j Complete Coverage
(5.3) st. RRNRI =0 Vi, j, i #j Orthogonality
(5.4)

However, this will return a subset of nodes (R%) for each class i, each of which may not define
a connected sub-network, that is, they may not contain a node at each layer in the DL, and there
need not even be any connections between the nodes (i.e., non-zero weights). Hence we require any
sub-network we find as possessing two properties: i) Layer Inclusion: There is at least one node in
R* for each layer in the original network and ii) Connectivity: A path using non-zero edge weights
between every node in R’ exists. For simplicity, we define C Ri (7, k) as being the multiplication of
the absolute value of the weights that connect nodes j and k using only nodes in R:. Hence the
problem we attempt to solve in this paper is given below:

The Connected Concept-Level Backbone Problem.

(5.5) argming, Z IR

i
(5.6) sit. RL C N]Z: Vi, j Complete Coverage
(5.7) st. RRNRI=0Vi,j, i#j Orthogonality
(5.8) st.In€ RL:n € R;VjVi Layer Inclusion
(5.9) s.t. 3Cgi (j, k) > 0 Vj,k € RL Vi Connectivity
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A proof for intractability of this problem is provided in Theorem 1. Replacing the first two
constraints with relaxations may be a solution: not all instances need be covered/explained, but
instead, d; can be forgotten for concept i, and its description has up to 7; overlapping nodes with
other descriptions.

The Relaxed Connected Concept-Level Backbone Problem.

(5.10) argming, Z IR
i

(5.11) s.t. (NJ’ —RY) > 6" Vi,j Coverage
(5.12) s.t. (N; —RLx R >~"Vi,j, i#j Diversity
(5.13) s.t. Zé <p1 Coverage Relaxation
(5.14) s.t. ZW < p2 Support Relaxation
(5.15) st.In€R.:n€R;VjVi Layer Inclusion
(5.16) sit. 3Cpi (j,k) > 0 V), k € R, Vi Connectivity

Where p; and po are the maximum number of instances that can be forgotten and the number

of overlapping nodes, respectively.

5.4. Approach

In this section, we discuss our heuristic-based solution to the Connected Concept-Level back-
bone Problem. In later sections, we mathematically prove and empirically demonstrate that this
algorithm is guaranteed to provide an optimal result. We accomplish this through two simple
but efficient algorithms: Find Max Minsup (FMM) (Algorithm 4), which finds the connected
layer-inclusive subgraph with the highest support, and F-Score Thresholding (Algorithm 2), which
iteratively adds new neurons with the greatest support that either form or adds to a complete
graph, to the backbone which maximizes our heuristic.

FMM is a frequent subgraph mining algorithm that finds the most frequent subgraph that meets
the fully connected and inclusive layer constraints. Frequent subgraph mining requires a minimum
support threshold to be specified [142] [143], however there is no way to immediately know what

value of minsup will generate a frequent subgraph satisfying the constraints of the problem. To
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deal with this, minsup is first set to 100% of the data (the intersection of the transactions) and
decremented by a single instance each iteration until a complete (layer inclusive and connected)
graph is created, returning the value of support of that subgraph. While it may sound appealing to
perform binary search to find this value, frequent pattern mining algorithms tend to grow exponen-
tially in computational complexity as minsup becomes smaller [144], so the method presented is
more efficient. Furthermore, since minsup can be decremented to zero, and since each transaction
has at least one connected neuron from each layer, we are guaranteed to find the single subgraph

with the greatest support. We dub this subgraph the backbone.

Activated Neurons

»w ooV ~+~03 —

— E

FIGURE 5.2. A visualization of the matrix of node activations N as a series of trans-
actions with columns as different neurons and rows as instances. Color corresponds
to patterns, and groups of neurons are labeled. FMM only finds group A, but ig-
nores everything else. F-Score thresholding allows groups B and C to be included
in the backbone despite having lower support than max minsup. Groups D and E
have much lower support, so they will not be included.

The backbone only includes the most frequent complete graph, however, and will ignore patterns
that are nearly as frequent (see Figure 5.2). F-Score Thresholding finds a Pareto optimal solution
regarding the ILP’s objective and minimizing the relaxations. That is, the graph returned cannot
simultaneously have greater coverage, diversity, and/or be smaller (see Theorem 2).

We accomplish this by viewing the backbone as a predictive model for which neurons will
appear in a transaction and iteratively adding the next most frequent pattern until the change in
F-score after one iteration is negative. To calculate an F-Score, we define the true positives as the

simultaneous occurrence of a neuron in the backbone and transaction, a false positive as a neuron
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occurring in the backbone, but not the transaction, and a false negative as a neuron occurring
in a transaction contains a neuron. Precision and recall are determined in traditional ways, and
F-Score is the harmonic mean between the two. It is important to recognize that maximizing recall
maximizes the instances covered, whereas precision acts as a check, penalizing the heuristic for
adding infrequent neurons. In order to distinguish between the patterns, a weight is given to each

pattern in the backbone equal to that pattern’s support divided by max minsup.

Algorithm 4 Input: set of activation vectors N
Output: Value of minsup that produces a graph with the highest support

s <1 // Minimum Support
d <+ 1/len(N) // Support decrement
subgraph < patternMining(N, s)
while —completeGraph(subgraph) do
§s—d
subgraph < patternMining(N, s)

return s

Algorithm 5 Input: Max-minsup from Algorithm 4, activation vectors N, minimum coverage A
(optional)
Output: Weighted graph.
maxF < —1 > Maximum F' Score
sum < () > Backbone
d < 1/len(N)
s < maxMinsup
while True do

potentialGraphs < patternMining(N, minsup)

for graph in potentialGraphs do

if completeGraph(graph) then
sum U graph
F'Score < getFScore(N, graphs)
if F'Score < maxF & cov(sum,N) > A then
break

maxF < FScore

s s—d
R+ @
: for graph in graphs do
17: R + R U graph, (support(N, graph))
18: return R

—

e e e el
SO AN A v
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5.5. Models and Datasets

In order to demonstrate our technique’s invariance to domain and utility on very different types
of networks, we conducted experiments using sixteen different networks in three different domains,
raw image data from the MNIST dataset, audio data from the Bird Audio Detection Challenge, and
embeddings generated from Facenet of faces from the Labeled Faces in the Wild (LFW) dataset.
The Section 5.8 provides a description of the datasets, model architectures, and why each of these
networks is interesting. Each backbone is referred to by the dataset used to create them, with a
superscript + indicates that the backbone for correctly predicted instances of a given class and -

for incorrectly predicted instances. Unless + or - is given, it is assumed to be the + backbone.?

5.6. Experimental Design

These results are based on summaries generated from all folds for each network. Details on the

datasets, networks, and cross-fold validation are provided in Section 5.8.
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prediction ]
A

Yes No
Instances Network 1 I

Acti
—>

n1,n2,n3,..] .
X1 I ] Does this look Does this look.
X2 ML+ ¢ " ML- Explanation like a typical - Flag Model Confusion
X3 =] Predictor >like a typical SO Predictor > e Yes™ misprediction Explanation

. > L2 prediction?

Xn

— Prediction

L ] J

F1cURE 5.3. Flow diagram of the process of flagging mispredictions and correcting
them using the collective backbone and the prediction of the network.

Heuristic Approach Compared to ILP. Before demonstrating interpretability, we compare the
heuristic-based solution to that of the ILP. To compare the solutions of the two approaches, we
see how two metrics, coverage and overlap, change as new subgraphs are added to the backbone
and use relaxed formulations of the ILP as baselines. We say that an instance x is covered by a
backbone Cj if some complete connected subgraph exists in the activation vector of = that also
exists in C;. Overlap between two or more summaries is the number of neurons that both have in
common with each other divided by the size of the summaries. In the case of the BAD network,

the ILP is relaxed until solutions can be generated in 24 hours or less, and in the LFW network,

2Trained models, datasets, results, and intermediary results are included at
https://github.com/MLivanos/backbonesSDM24
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they are relaxed until Pareto optimality. Ideally, we would see coverage monotonically increase and
diversity minimally decrease as new patterns are added until it reaches a desirable point on the
Pareto front.
Backbone as a Predictive Device. If a backbone of a concept (such as a class) is robust enough,
one should identify the concept when they encounter it. Here, we compare the activation vector
for a given instance to each of the CL-summaries, and assign a prediction to the most similar one.
Since these are summaries of the concept, we do not expect the accuracy of the backbone to be as
high as that of the model, however we do expect a good backbone to have comparable results.
Predicting Mispredictions and Correcting Them. We create a pipeline for detecting and
correcting mispredictions of the model, summarized in Figure 5.3. As opposed to the previous
experiment, we consider both the activation vector for a given instance and the network’s prediction
of that instance. Using the same method described in the above experiment, we compare the
activation vector to the set of correctly predicted CL models, asking the question: ”Does this look
like a typical correct prediction of the predicted class?” If the prediction of the network and that
of the summaries differ, we repeat the process on the incorrectly predicted instances, asking the
question ”Does this look like a typical misprediction of this class?”. If the answer to the first
question is no and the second yes, the prediction is assumed a misprediction.

After being flagged, an alternative prediction is provided. For binary classification, this is trivial,
as the prediction is simply swapped to the other class. In the case of multi-class classification, a
model confusion backbone is provided, a CL backbone in which the concept is ”class x being
predicted as class 3” for all combinations of mispredictions, and this backbone is used to determine
the alternative prediction.
Subgraph Visualization. We perform feature visualization to create human interpretable expla-
nations to find virtual instances in the input space that most activate the subgraph returned from
our method. We use particle swarm optimization (PSO) [60] to minimize the euclidean distance
between the normalized activation vector and the backbone returned from our method. The result
is a virtual instance whose activation is high in the neurons of the backbone but not any other neu-
rons. Because it would be difficult to leverage the cost function gradient to optimize activation for
neurons on different layers, PSO was chosen as the algorithm for this task since it is a gradient-free

optimization algorithm.
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In order to focus the algorithm and produce crisper explanations, we create a pixel whitelist of
the top 40 percent of pixels found in each class. While this reduces and focuses the input space,

the optimization stays the same.

5.7. Experiments

Heuristic Approach vs ILP. Theorem 2 proves that our algorithm finds a non-trivial Pareto-
optimal solution with respect to minimizing the objective of the problem and the two relaxations,
however it is not immediately discernible where on the Pareto-front the solution will lie. Further,
while the ILP formulation of the problem is proven intractable in Theorem 1, we empirically
examine the speedup of the heuristic solution. In this experiment, we create 15 explanations via
our approach and compare them to that of an ILP to demonstrate the viability and efficiency of
our algorithm.

In the BAD network, the ILP must be relaxed greatly in order to return a solution within 24
hours. As shown in Figure 5.4, the heuristic solution achieves an initial 80% coverage, and after
adding 14 additional patterns, achieves nearly 100%, compared to the ILP’s 60%. Overlap starts
at about 2.8% and only increases to 3% at the end, compared to the ILP’s 30%. Not only does our
method substantially outperform the relaxed ILP on both metrics, it does so in an average of 12
minutes compared to the ILP’s 24 hours, speeding up the process by a factor of 120.

The LFW summaries also drastically increase in coverage as patterns are added to the backbone.
In this case, we see that the solution returned by the heuristic approach sacrifices some accuracy for
diversity. Five patterns are added before the algorithm terminates; increasing coverage increases
from 31.1% to 64.5%, compared to the ILP’s 72%. While there is a jump in overlap from the
first pattern added to the second, afterward overlap does not significantly increase, ending at 51%
compared to the ILPs 55%. Moreover, it takes 10 minutes, compared to the ILP’s required 30

minutes.
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Ficure 5.4. Quantifying coverage and overlap difference between the relaxed ILP
and heuristic. For both datasets, the top line represents the maximum (across folds)
for that metric, the middle the median, and the lower the minimum. Coverage
increases over iterations while overlap minimally increases.
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Ficure 5.5. The network, backbone as a predictive model, and the explanation
augmented predictor accuracy on BAD test data. When used as a predictive device,
the backbone underperforms the network, as expected, however when one considers
both the backbone and the output of the network, as one does in the EAP, accuracy
is increased significantly.

Predictive Device. We demonstrate the quality of our explanations by showing that they alone
can be used for classification and achieve similar results to that of the networks they explain. If
the explanation of the model’s behavior can be used in this way, then the explanation is good and
faithful to the model.

In both the LFW and the BAD summaries, predictive capabilities had lower but comparable

accuracy than their respective models. The median accuracy for the LFW summaries was 45%
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compared to the median model’s 60%, and the median accuracy for BAD summaries was 78.5%
compared to the model’s 85.2%. Interestingly, despite having lower accuracy, the predictive device
can correctly classify instances that the model could not. This observation was the impetus for
creating the explanation augmented predictor.

Explanation Augmented Prediction. To demonstrate the practical utility of our explanations,
we use them to identify when the models tend to fail and correct their predictions.

In the BAD Challenge dataset, we correctly flag nearly two-thirds of incorrectly predicted
instances while only incorrectly flagging 5% of correctly predicted instances as mispredictions. This
allowed us to create a model of greater predictive power than the original network, elevating the
median accuracy from 85.2% to 91.3%. In addition, all ten folds exhibited an increase in accuracy
ranging from 5 to 7.3%. See Figure 5.5.

In the LFW dataset, we correctly identify 21.4% of incorrectly predicted instances, and incor-
rectly flag 12.1% of correctly predicted instances. While 33% of mispredictions could be corrected
using the model confusion explanation, augmenting these networks would, on average, have lower
accuracy than the model on its own. While the LF'W explanations can identify when errors occur,
it cannot reliably correct them likely due to the small data nature of the problem.

Subgraph Visualization. The neuron visualization technique provides, in human interpretable
terms, the semantic meaning of the graphs returned in Algorithms 4 & 5. The results of this
approach are in Figure 5.6a. This provides insight and validity to the backbone, allowing the user
to understand how it is activated. Figure 5.6b shows the maximization of different subgraphs in
the backbone. This allows the user to see how the component subgraphs capture different parts of

the concept of each digit, such as the tail vs. the head of the five.

i). 0.97 ii). 0.97 iii). 0.97 iv). 0.88 v). 0.83

(b) Visualization of the semantic meaning of each
component subgraph of the CLE of the digit 5. Dif-
ferent parts of the digit are activated by different
subgraphs. For example, ii. focuses on the tail of
(a) Visualization of the semantic meaning for each the 5, whereas v. focuses on the head, and i. on the
concept (digit) in the collective for the MNIST middle section. Under each instance is the support
dataset, accomplished via activation maximization) that subgraph has over the instances.

FIGURE 5.6. Caption for the entire figure
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5.8. Reproducibility Details: Model Architecture and Dataset Selection

FaceNet Embeddings From Labeled Faces In The Wild. FaceNet was created by Schroff
et al 2015 to generate embeddings that have small Euclidian distance between two tight-cropped
faces of the same person, but have larger Euclidian distance between different people [28]. Scroff
et al show that embeddings have smaller distances comparing the same face from different angles
and lighting than a different face in the same angle and lighting.

We use a subset of the Labeled Faces In The Wild dataset to create a single 12-way classification
network trained on the embeddings for each individual. Those individuals were those who has
at least 50 images in the dataset. The dataset has significant class imbalance, with the least
represented individuals (Serena Williams and Jacques Chirac) having only 53 images, and the most
well-represented person (George W. Bush) having over 500. This network is composed of five fully
connected hidden layers with 80, 60, 40, 30, and 20 neurons respectively. We train five networks
using cross-fold validation with a class-balanced test set and median accuracy of 60% for the 12-way
classification task.

Since our approach requires at least one neuron per layer in the backbone, the network’s wide
design means that we will have long, spanning summaries. Further, the class imbalance in training,
low network accuracy, and lack of available data will pose challenges that our technique will need
to overcome. These challenges make explaining this network the hardest task.

Bulbul: Bird Audio Detection Challenge. Bulbul was developed by Grill et al 2017 as
part of the Bird Audio Detection (BAD) challenge. Mel spectrograms generated from raw WAV
files are given as input, most of them 10 seconds long. The training data comes from multiple
sources, each from different regions of the world, different recording equipment, and different class
balance. [140] Bulbul was the winning network of the challenge in 2018, achieving an area under
the curve (AUC) of 88.7% [145]. Here, we recreate bulbul using 10-fold cross validation and achieve
a median accuracy of 84% on the validation set. Two notable difference between the networks that
we trained and that of Grill et al is that, at the time of the experiments, The Machine Listening
Lab (the entity in charge of the BAD Challenge) has not published the labels of their testing data,
so we use a subset of the training dataset (that was not used for training of our network) as testing
data. Also, our model was trained on a fixed number of epochs, while Grill et al use a variable

training scheme. We also report our findings in terms of accuracy, rather than AUC as Grill et
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al did, and demonstrate that, using backbone to augment prediction, we can significantly improve
accuracy. Due to these differences, we do not claim superiority over Grill et al’s method, but we
do demonstrate that our method can surpass a similar network with the same architecture and
training data on the metric of accuracy.

Bulbul is a much shallower network, with only two dense layers with 256 and 32 neurons
respectively. This will create smaller summaries than the LFW summaries. Further, this network
is for binary classification and is trained on large datasets (over 10,000 training instances). Due
to these factors, we suspect that summaries for this network will work well with our experiments
and yield us better results. Finally, this network was chosen to showcase our technique’s result on
a network of high domain importance, as this was the top model of the 2018 BAD challenge.

MNIST The MNIST digit recognition network is trained directly from the MNIST training
set. It is composed of two convolutional layers, with 32 and 64 channels, respectively, each with a
3x3 sliding window. Following each of the convolutional layers is a max pooling layer with a 2x2

sliding window, connected to two fully connected layers of size 64 and 32 neurons.

5.9. Related Work

In the preceding sections, we have discussed our approach and demonstrated its utility on
complex XAI tasks. Here, we discuss other approaches and some of their deficiencies which our
approach has overcome. As opposed to our work, which provides category and model-level expla-
nations grounded in model architecture, most existing XAl methods explain a model’s behavior on
specific instances and/or ground their explanation in input space. In this section, we highlight the
need for our particular form of explanation in contrast to existing methods.

Many XAI methods provide local interpretability, that is, an explanation for a single instance
[146]. Popular techniques that provide this incredibility include those that isolate superpixels of
an instance [14], [147], or counterfactual explanations [148] which generate virtual instances to
explain why a different action was not taken. This provides limited insight to the future behavior
of the model because it only speaks for the instance that it is explaining and with no guarantee
that the model will behave the same way for future instances.

The input space is a natural choice for presenting an explanation, as it is often inherently in-

terpretable, facilitating human perceptive explanation [149]. However, numerous works towards in
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adversarial attacks demonstrate how engineered, imperceptible changes are drastically alter a net-
work’s prediction [150], [151]. Grounding an explanation in the architecture, by contrast, focuses
exclusively on how the network processes information, allowing a more complete examination of
the model’s behavior. One example of this deficiency exists in the field of feature visualization.
This model-level explanation technique grounds the semantic meaning of layers or neurons in the
input space [152]. Researchers note that semantically different images can achieve similar levels of

activation [153], demonstrating the volatile nature of input space as the basis for explanation.

5.10. Conclusion

We formulate the problem of discovering concept and collective backbones as subgraphs of a
deep learner, prove that the ILP formulation of this problem is intractable and expensive even with
relaxations. We propose a heuristic-based approach via frequent subgraph mining techniques and
prove that this method returns a Pareto optimal result with respect to maximizing the problem’s
objectives and minimizing relaxations and does so at a fraction of the runtime.

These summaries provide a basis for completing complex XAI tasks that existing methods
cannot. Our approach can determine patterns in model failure which can be used to determine
mispredictions, patterns in model success, and use the combination of those two to correct mispre-
dictions. For example, our method succeeded in boosting the performance of the BAD network and
could successfully identify errors in the LF'W network, although it could not correct them. This
indicates that our method performs best on high-performance and binary classification networks
trained; however, further investigation is required to understand which of these factors is most
pressing.

This work differs from most XAI research as it presents model level summaries grounded in
hidden-neuron space that can be used in ways to improve the trustworthiness of a model and

provide greater insight into how the learner makes decisions.
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CHAPTER 6

The Intersectional Unfairness Paradox: An Empirical

Investigation Of Intersectional Fairness

Abstract As machine learning is deployed in social contexts, addressing the biases an algo-
rithm can learn during training is increasingly important. Fairness in machine learning seeks to
solve this problem by training algorithms to be both performant and equitable across protected
statuses (eg gender or race). The majority of these algorithms tend only to consider these protected
statuses individually and do not consider or measure how machine learning models can be unfair
to intersections of these groups (e.g. combinations of particular genders and races). While there
has been some promising preliminary work toward addressing this deficiency, in this paper, we ex-
amine the effect of fairness interventions on both individual protected status variables (PSV) and
intersectional fairness on 8 of the most popular datasets used in fairness research using multiple
fairness metrics. We demonstrate the counterintuitive result that making an algorithm fair with

respect to individual PSVs tends to decrease intersectional unfairness involving those same PSVs.

6.1. Introduction

While the decisions of a machine may outwardly appear to be unbiased, research has consistently
shown that bias can be embedded into a model through its training data and/or learning. To address
these concerns, research in fair machine learning has sought to create models that actively combat
bias to produce more equitable outcomes. The vast majority of these works, however, only seek
to make a model fair with respect to protected status variables individually [154]. Even when
fairness is encoded for multiple protected statuses it is encoded separately. For example, one may
try to train a model to be fair with respect to gender, race, or both gender and race, but ignore
the intersections between them. This is in conflict with the decades of social science research into
intersectionality, the idea the combination of different dimensions of identity can create new forms

of bias that differ from the sum of their parts [155].
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To illustrate how unfairness can exist for intersections of PSVs even if the model is fair to
multiple PSVs simultaneously, we create an illustrative example in Figure 6.1. Before any fairness
intervention, the original model (bottom) is unfair by any fairness definition, with a bias favoring
triangles over squares and orange over blue. The upper left model is made fair with respect to
shape, though bias for color persists. The upper center model is made fair with respect to color,
though bias for shape persists. The upper right has been made fair with respect to both color and
shape individually, but intersections of color and shape are still treated unfairly - blue triangles and
orange squares now shoulder the burden of making the model appear fair even though the model
is clearly discriminatory to certain groups. While this model is considered perfectly fair in the eyes

of certain fairness algorithms, it is clearly not fair when intersectionality is considered.

Fair w.r.t. Shape Fair w.r.t. Color Fair w.r.t. Shape & Color
85 65 45 90 85 80 /' 10065 30
80 50 | 65 65 | 65 65 |
75 65 55 40 45 50 30 65100
90 75 60
|80 50

70 55 40

Unfair Base Model

FIGURE 6.1. A demonstration of how a machine’s output can be made fair with
respect to a single protected status variable (top, left and center) or multiple in-
dividual PSVs separately (top right) but be unfair to intersections of those PSVs
(Here, shape and color) We assume for simplicity that all intersections are equally
represented in the data. The number inside each box represents some fairness metric
(eg accuracy, false positive rate, positive class representation, etc) of a particular
intersection, and the bold numbers in between boxes are those metrics for individual
PSVs.

Our research empirically investigates how existing fairness algorithms that do not account
for the intersection of multiple PSVs, what we call intersectional-unaware fairness, affect fairness

metrics on the individual and intersectional basis. Our contributions are:

o We demonstrate that while one can typically successfully increase fairness with respect to
one PSV or multiple PSVs individually, there is no guarantee that intersectional fairness

will improve (see Table 6.1).
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Law School En.forcing Task Gender Race IIltC}‘—
Fairness w.r.t | Acc. section
SP EO PE SP EO PE SP EO PE
Trained w/o None 90.7% | 0.021 0.11 0.011 0.057 0.13 0.58 0.021 0.24 0.30
Fairness +6.8% | £0.017 | 4£0.018 | £0.018 | +0.0084 | £0.065 | £0.35 | £0.017 | +0.058 | +0.21
Fair - Fair Batch Gender 90.3% | 0.009 0.013 0.0058 0.047 0.13 0.36 0.026 0.18 0.35
+5.7% | £ 0.010 | £0.015 | £0.017 | + 0.0071 | £0.067 | £0.42 | £0.060 | +0.042 | £0.22
Race 88.5% | 0.028 0.33 0.019 0.028 0.092 0.18 0.047 0.31 0.53
+7.0% | £0.022 | £0.022 | £0.026 | £0.0065 | +0.052 | £0.26 | +0.061 | £0.057 | £0.44
Gender 86.2% | 0.011 0.09 0.012 0.022 0.11 0.32 0.034 0.30 0.38
& Race +9.7% | £0.024 | £0.024 | £0.015 | £0.0070 | +0.069 | + 0.30 | +0.062 | +0.041 | +0.20
Fair - Adversarial [ | Gender 88.3% | 0.0015 | 0.0011 0.0044 0.048 0.09 0.45 0.011 0.19 0.27
+3.8% | £0.011 | £0.015 | £0.0047 | +0.0062 | 40.056 | £0.18 | 40.055 | £0.048 | 4+-0.062
Race 88.3% | 0.022 0.22 0.013 0.018 0.058 0.22 0.032 0.35 0.58
+3.4% | £0.019 | £0.019 | £0.011 | 40.055 +0.055 | £0.17 | +£0.031 | £0.14 | £0.054
Gender 86.7% | 0.0018 | 0.0072 0.018 0.027 0.071 0.35 0.023 0.24 0.32
& Race +2.2% | £0.030 | £0.0053 | £0.066 | 40.081 +0.023 | £0.054 | £0.035 | £0.059 | £0.068

TABLE 6.1. Fairness and accuracy metrics for neural networks trained using the
Law School dataset. The protected statuses are gender (treated as binary) and race
(five discrete categories). Orange denotes a degradation in performance/fairness,
and blue an improvement compared to the baseline, with darker shades indicating
greater values. In all columns except ” Accuracy”, lower numbers are better (ie more
fair). This trend exists for other data sets listed in Section 6.2.

e Earlier work shows making algorithms fair to multiple PSVs either separately or in com-
bination is intractable [156].

e We find that existing algorithsm when encoding fairness tend to decrease intersectional
fairness.

e We hypothesize why this occurs and gives direction to our future work.

6.2. Approach

To truly understand the extent to which intersectional unaware algorithms impact intersectional
fairness, we chose a wide range of datasets, fairness metrics, and algorithms and test all combina-
tions of these factors. Using a recent survey on the datasets used in fair machine learning [158], we
use all datasets where intersectional fairness can be extracted (ie all those with two PSVs): KDD
Census Income, Bank Marketing, COMPAS Recidivism & Violent Recidivism, Students Math and
Portugese, and Law School datasets. A survey on fairness definitions [154] cite 20 distinct fairness
measures, we chose the three most popular statistical measures of fairness: statistical parity (SP,
Equation 1), equalized odds (EO, Equation 2), and predictive equity (PE, Equation 4). When
measuring how close any of these definitions are to being achieved, we take the absolute difference
between the right and left sides of the equality. For multiple PSV’s, we consider the average dif-

ference between all combinations of groups. Intersectional fairness is also measured with respect
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to these formulations, with every combination of protected status being considered their own PSV.
Finally, we use two fairness algorithms: fair-batches, in which the output of every batch is reor-
ganized so that the predictions are equal in proportion to particular PSV(s), and an adversarial

fairness approach presented in [157].

Py =+|PSV =a)=P(y =+|PSV =0) (1)

Py =ylY =y, PSV =a) =

Py =ylY =y, PSV = B)Vy € {+, -} (2)
FPR=FP/(FP+TN) (3)
FPRpsy=a = F'PRpgv=p (4)

Data is segmented into a train and test set via a random 80/20 split. The model is trained with
or without fairness-algorithm intervention, and the model’s test set accuracy and fairness metrics
are recorded. This process is repeated 30 times, and the mean result and standard deviation are

reported.

6.3. Results & Conclusion

While one can usually make a learner fairer with respect to a single PSV or multiple PSVs
individually, fairness algorithms are not guaranteed, nor tend to, be fair on any other metric.
Consider our example for the Law School dataset in Table 6.1. Generally, at the cost of accuracy,
a learner can become more fair to a single PSV when fairness is enforced with respect to that
PSV or, typically more modestly and at a greater cost to performance, to multiple PSVs. Fairness
metrics for intersections were almost always worse across all three metrics despite fairness being
encoded for each PSV individually. In the law school example, out of the 18 points of comparison,
(six networks and three metrics), 13 had lower intersectional fairness metrics. Out of the 144 total
comparisons across all 8 datasets, 142 yielded improved the fairness metrics they were optimized
for, although only 32 improvement in intersectional fairness.

The Law School dataset provides two protected statuses, gender (presented as a binary), and
race (White, Black, Asian, Hispanic, and Other), with the baseline model showing preference to
White men. When the models are made fair to both gender and race simultaneously, the groups
most commonly disadvantaged are White men, White Women, Black men, and Asian Men, the

latter three groups already disadvantaged in the baseline model. We hypothesize that, as in Figure
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6.1, the network favors certain combinations of identities and disfavors others to boosts the fairness
metric while minimally impacting the bias relied upon for accuracy.

Fairness exists to combat data biases and make more ethical Al, though the formulations and
assumptions of fairness research do not always align with social scientists’ theories about how bias
occurs. Here, we examine one example of this - a lack of intersectional-awareness encoded into
fairness algorithms. We demonstrate that even when fairness algorithms are successful, they do not
always ameliorate issues faced by certain groups of people, and metrics that do not consider such
groups mask biases. Given these results, we will explore the understudied area of intersectional-
aware fairness, and encourage Al researchers to work closer with social scientists who can potentially

identify similar issues in the area.
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CHAPTER 7

Foundations Of Unfairness in Anomaly Detection - Case Studies

in Facial Imaging Data

Abstract

Deep anomaly detection (AD) is perhaps the most controversial of data analytic tasks as it
identifies entities that are specifically targeted for further investigation or exclusion. Also contro-
versial is the application of Al to facial data, in particular facial recognition. This work explores
the intersection of these two areas to understand two core questions: Who these algorithms are
being unfair to and equally important Why. Recent work has shown that deep AD can be unfair to
different groups despite being unsupervised with a recent study showing that for portraits of people:
men of color are far more likely to be chosen to be outliers. We study the two main categories
of AD algorithms: autoencoder-based and single-class-based which effectively try to compress all
the instances and those that can not be easily compressed are deemed to be outliers. We exper-
imentally verify sources of unfairness such as the under-representation of a group (e.g people of
color are relatively rare), spurious group features (e.g. men are often photographed with hats) and
group labeling noise (e.g. race is subjective). We conjecture that lack of compressibility is the
main foundation and the others cause it but experimental results show otherwise and we present a

natural hierarchy amongst them.

7.1. Introduction

Anomaly detection (AD) is a central part of data analytics and perhaps the most controversial
given that it is employed for high impact applications that identifies individuals for intervention,
policing and investigation. It’s use is prevalent to identify unusual behavior in finance (transac-
tions) [159,160], social media (posting and account creation) [161, ], and government services
(medicare claims) [163,164].

Perhaps one of the most controversial applications of Al is to facial imaging. This is due to

our faces being uniquely identifying and personal. Further, the AI’s ability to identify us and make
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decisions on (without consent) crosses many cultural and legal barriers [165]. Existing work on
facial data has focused predominantly on facial recognition, that is, given a large collection of people
in a known database, identify if any of them occur in an image. Though legislation and progress has
been made towards regulating facial recognition technology [166] other technologies in particular
AD involving facial images are starting to emerge which gives rise to new ethical considerations
and understanding.

Previous work [167] has just begun to explore the unfairness at the intersection of AD applied
to facial imaging data. For example, this previous work showed that applying AD to a collection
of celebrity images overwhelmingly showed the anomalies being people of color and males (see
Figure 7.1). However, this previous work was mainly focused on making AD algorithms fairer. We
recreate their earlier results for not only the one-class AD method and the celebrity image dataset
the authors used but also for the popular auto-encoder AD method and a more challenging dataset
(Labeled Face In The Wild [139]).

Our experimental section attempts to address the “Who” and “Why” questions. We create a
measure of unfairness (anomaly DIR) which measures how over-represented is a protected group
(or it’s complement) in the anomaly set. We then experimentally investigate who these algorithms
are being unfair to and more nuanced questions such as is the same group always being treated
unfairly regardless of algorithm. We also explore why an unsupervised algorithm can be biased.
We conjecture four main foundations of unfairness, propose metrics to measure them and outline
a series of experiments to test a hypothesis on how they are structured.

The contributions of this work as are as follows:

e We study the intersection of anomaly detection and facial imaging data - a topic to our
knowledge has not been addressed before focusing on the “Who” and “Why” questions.

e Our experiments addressing the “Who” question show that unfairness is due to an inter-
action between the dataset and the algorithm.

e We conjecture four main reasons to the “Why” question: i) incompressibility, ii) sample
size bias (SSB), iii) spurious feature variance (SF'V) within a group and iv) attribute/group
labeling noise (ALN).

e We postulate an intuitive structure to our conjectured reasons, show it is not empirically

verified, and craft an alternative structure based on the results of our experiments.
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We begin by discussing background and related work. We then introduce how we measure
unfairness in AD and our four proposed foundations of unfairness. Next, our experimental results
addressing the “Who” and “Why” questions are presented after which we discuss and conclude our

work.

Ficure 7.1. Example of AD Being Unfair When Applied to Facial Imaging Data.
Reproduced from [167].

7.2. Background and Related Work

Applications of AD to Facial Data. AD algorithms have been used on imaging data for a
variety of reasons. Perhaps the most ubiquitous is for data cleaning where anomalies are viewed
as being “noise” [168] which are removed and then a downstream supervised algorithm is applied.
However, if the AD algorithm is biased this creates an under-representation in the down-stream
training tasks of the over-represented group in the outliers.

Another common use of AD is to view the outliers as “signal” and in doing so flag the outliers
for extra attention. Examples include using AD to identify facial expressions to recognize emotions
[169] such as surprise. However, if the AD is biased towards some groups this will over-predict

certain emotions for certain groups. Similarly, AD can be used to identify aggressive behavior [170].
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However, if the AD has a bias towards some groups this will incorrectly identify the group as being

overly aggressive.

Source of Bias. It has been well established that supervised learning algorithms can have bias
due to a variety of reasons. In particular class labeling bias has been extensively studied in the
context of the Compas dataset [171]. Even though features (e.g. race) associated with this bias
are removed deep learning offers the ability to learn surrogates (e.g. zip code) [172].

The work on fair AD starts in 2020 [173, ] and has shown that AD algorithms can cause
bias. Most work has focused on how to correct unfairness for a certain algorithm. This involves
understanding the limitations in the algorithm’s computation and then correcting for it. This has
been explored for classic density-based methods such as LOF [174] and deep learning methods
for autoencoder [175], one class [167] and multi-class deep AD methods. However, despite this
earlier body of work, there has been surprisingly little work discussing what produces unfairness in

unsupervised anomaly detection.

7.3. Four Reasons for Unfairness And Their Measurement

Here we outline our four premises for unfairness in AD and explain them at a conceptual level

using Figure 7.1. We then describe how we measure them.

7.3.1. Incompressability of Data. We begin by discussing how AD methods work in partic-
ular what causes an instance to be an outlier. Deep AD methods at their core employ compression
either directly or indirectly. Instances that cannot be compressed well are deemed outliers and if a
group is unusual in some sense it will be unfairly treated as it will be hard to compress and hence
overwhelmingly flagged as an outlier.

To understand this further, we present a common taxonomy of anomaly detection algorithms
[176].

Autoencoder for Anomaly Detection. Let ¢. be the encoding network which maps the data
X into the compressed latent space and ¢4 be the decoding network which maps the latent repre-
sentation ¢.(X) back to the original feature space [177]. Given the network parameters 6,60y the

standard reconstruction objective to train the autoencoder is:

(1) argming (jb > llzi = b, (¢a. @I + R)
=1
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The term R denotes the regularization to the encoder and decoder. The anomaly score s(x) for

instance z is calculated from the reconstruction error:

(7.2) s(x) = [l& — o, (0. (2))I”

Here clearly an outlier is defined as being an instance that the AE cannot easily compress and

hence cannot easily reconstruct [178].

One-Class/Cluster Anomaly Detection Next, consider one class anomaly detection which is
still unsupervised. Given the training data of instances X € R"*? one class AD method such as
the the popular deep SVDD [179] network is trained to map all the n instances close to a fixed
center c. Denote function ¢ as a neural network with parameters 8 the training objective function

is:

1l 5
7.3 — i) — R
(7.3) argmmen;H%(ﬂC) cf|” +

where the term R represents the regularization function. Then the anomaly score is naturally

the distance to c.

(7.4) s(x) = ||go(w) — ¢l

Here the aim is to compress all points to map onto a central point C' and those that cannot be

are deemed outliers.

Deep Clustering for Anomaly Detection Deep Embedded Clustering (DEC) [180] is one of the

earlier deep clustering methods that combines representation learning with clustering using a clever

self-supervision approach. Recently this work was extended to perform outlier detection [181].
The distance a point is from its closest centroid {ci,...cx} is naturally an anomaly score s(z):

mingen k) |6, () — cil?

7.5 s(x) =
(7:5) @) = et 196, @) — il

where m; = k denotes instance x; belongs to cluster c¢;, K denotes the total number of clusters,

and ¢, (x;) is the deep learner embedding function.
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The core idea here is an extension to the one-class AD method mentioned earlier but extended

to k clusters.

7.3.2. Causes Beyond Incompressibility. The above states that outliers are inherently
points that the deep learner cannot compress. Hence it is natural to consider reasons why a deep
learner cannot compress a group as being a key issue for unfairness. Here we conjecture three main

reasons with the view they are related to biased outliers as shown in Figure 7.2.

Unfairness
A
Hlncompressibilityi
A
Sample Size SJPUITELE Label Attribution
. Feature .
Bias - Noise
Variance

FIGURE 7.2. A Diagrammatic view of the expected reasons behind biased outlier
detection.

Group Underrepresentation. Here we have a group that is relatively rare in the dataset but
has some unique properties so the deep learner cannot compress it well. For example in Figure 7.1
many outliers are black but they only consist of under 15% of the dataset hence the deep learner
uses the limited encoding space to encode more populous features.

Spurious Features for Groups. In this situation, the group has a property that is not
critical for the outlier detection task but is highly variable. For example in Figure 7.1 many groups
who are over-represented in the outliers wear different styles of hat.

Group Labeling Noise. Here the labeling of the group is inaccurate and hence can be a
reason the group is labeled as being overly abundant in the outlier group. For example in Figure

7.1 the second to the bottom line of outliers all have the tag Male but this is erroneous.

7.3.3. Measurements of Unfairness and Four Properties. Before discussing our empir-
ical results, we first define how each of the properties and how anomaly unfairness is measured.
Many of these metrics are the maximum between some expression and their reciprocal. This is

because the presence of a tag is equally important as the absence of a tag: for example, disparate
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treatment of young people and disparate treatment of old (i.e. not young) people are equally im-
portant phenomena to study. We first describe how we measure unfairness for anomalies and then

how we measure our four properties.

Anomaly DIR: The unfairness of an AD algorithm’s output for particular group a is measured

by the disparate impact ratio (DIR), which is defined [182]:

B P(AD(X)=1|A=a)
DIR(X,AD,a)-max(P( (X) = 1A= —a)’
)

AD
(7.6)
AD(X) =1|A = ﬁa)>

P(
P(AD(X) = 1|A = a)

Here X is the dataset the AD algorithm (AD) has made predictions (normal vs anomaly) with
AD(xz) = 1 implying x is an anomaly, and a is the group in question. This is a natural choice
for anomaly detection as it compares the rate at which different attributes are being flagged as
anomalies, normalized by how often the rest of the data is considered anomalous. It is also the
most widely used metric in fair unsupervised learning [183]. The range for this metric is [1, c0)

with the larger the number the more unfairly group a is treated.

Incompressibility: To measure this feature, we extend the typical measure of reconstruction error

into the novel metric of reconstruction ratio, which is defined:

Lossyse(X, f(X)|A = a)
Lossysp(X, f(X)|A = —a)’

RR(X, f,a) = max(
(7.7)

Lossase(X, f(X)|A = ﬁa)>
Lossyse(X, f(X)]|A =a)

Here X and a are the data used for AD and group again, with f being the autoencoder model
(both encoder and decoder). The range of Equation 7.7 is therefore also [1,00), where a higher
number indicates that a group (or lack of a group) is harder to compress than the rest of the data.
For example, a RR of 2 indicates that the attribute/group (or absence of the attribute/group) is

twice as difficult to compress than the rest of the data.
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Sample Size Bias (SSB): SSB (sometimes referred to as representation bias) is determined by

the proportion of that tag or lack in the dataset X and is measured as [184]:
(7.8) SSB(X,a) =max(P(A =a|X),P(A=-a|X))

Where X and a are again the data and the group in question. Because all groups are binary
(or encoded as one-hot encoding), the range of this metric is [0.5,1], with 0.5 indicating perfect
balance of the group (i.e. males and females are equally likely) and 1 indicating that the group is

always on or always off. Clearly, most groups will fall between these two extremes.

Spurious Feature Variance (SFV): SFV refers to the amount of variance in the background

objects in the image and is measured as a proportion of the reconstruction error of the image:

Lossysp(X[b], f(X)[b]|A = a)
Lossysp(X, f(X)|A=a)

SFV(X, f,a,b) =1 —max(
(7.9)

Lossysu(X[D], f(X)[b]|A = w))
Lossyse(X, f(X)|A = —a)
Where X is the data, f is the autoencoder, a the tag, and b is a bounding rectangle around
the foreground/focus of the image (i.e. the face), either provided by the data or estimated [185].
As the denominator is clearly always greater than or equal to the numerator, SFV ranges between

[0, 1], where higher values indicate that more error comes from spurious features.

Attribute Label Noise (ALN): This is a metric of how noisy the labeling of a particular group
is, as provided by the academic literature( [186] for CelebA and [185] for LEFW). Some groups such
as Gender tend to have very low ALN, whereas other tags have very high ALN such as Blurry [185].
We define ALN as:

(7.10) ALN(X,a,a*) = 1 — (P(a = a*|X) + P(~a = —a*| X))

Where X is the data, a the group in question, and a* the true label for the group. This property

has a range [0, 1] where the higher the value the less reliable the group labeling.
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7.4. Experimental Results - Who Is AD Unfair To?

Here we answer the question: Who are the groups of individuals most adversely affected.
Following this, we explore more nuanced inquiries, such as whether the unfairness is attributable
solely to the data, the algorithm, or a combination of both. In the subsequent section, we aim to
investigate the underlying reasons for the unfairness inherent in AD.

Our experiments consist of two core AD algorithms: A reconstruction-based autoencoder anom-
aly detection algorithm (hereby referred to as AE) and Deep one-class SVDD. As mentioned earlier,
clustering-based AD is a generalization of one-class algorithms and the AE methods. Our datasets
consist of the CelebFaces Attributes Dataset [187] (the 50,000 instance version to reduce compute)
which consists primarily of popular individuals in the movies, music, or arts whilst our Labeled
Faces in the Wild [139] consists of approximately 13,000 instances and includes a wider variety
types of popular individuals such as politicians, sports stars, and criminals. Attribution is provided
by [185]. These two datasets were chosen as they are well-annotated, including analyses of labeling
error, and have been extensively studied. Among all of our datasets, we test a total of 63,233 facial
images covering 111 attribute tags. We examine each algorithm individually for a total of 222 data
points.

For each dataset and algorithm, we determine the unfairness of each group using the Anomaly
DIR. Results are collected over five random-initializations of the network and the median results
for each property are reported. The list of all raw results is in the Appendix, but here we outline

some key insights.

The Algorithms are Overwhelming Fair to Most Groups. In total amongst both the
two algorithms and two datasets there are 222 groups and a frequency distribution shows that
overwhelming the algorithms are fair with respect to over 70% of the groups as shown in Figure
7.3. A score of less than 1.2 indicates that the ratio of the group in the anomalies is not more than
20% more than the rate of the other groups occurring in the anomalies.

However, there are significant examples of unfairness whose properties we now discuss.
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FIGURE 7.3. A frequency distribution of the Anomaly DIR, score versus how often
it occurs across all algorithms and datasets.

Few Groups Are Always Treated Unfairly. We found that there are several groups that
are always (regardless of algorithm or dataset) treated unfairly but they are relatively rare. These
include the groups centered around weight having the annotations Chubby, Double-Chin and those
centered around very unusual image properties such as Wearing-Hats. This is not unexpected
given a very rare group with unusual properties (not shared by other groups) are unlikely to be

well compressed. In total less than 2% of all groups are treated unfairly all the time.

Unfairness Varies Due to Both Algorithm and Dataset. A more likely occurrence is that
some groups are treated very unfairly but only for some datasets and some algorithms. Table 7.1
shows in bold groups treated unfairly (the Anomaly DIR is shown in parentheses) but only for that
dataset and algorithm combination. For other algorithm-dataset combinations, they are treated
fairly as the Table shows. This result is surprising and shows the strong interaction between the
algorithm and the data. Consider that the AE labeled the the —No Beard (reported as "Beard”) in
the CelebA dataset at a rate over 3 times greater than the other groups. Yet, the SVDD algorithm
on the very same dataset produced just a 1.27 DIR for the Beard group, and in the LFW dataset
both algorithms the DIR was below 1.2.

The More Focused The Dataset The More Likely Unfairness Can Occur. When we

aggregated all fairness DIR scores (see Appendix) for each group and all algorithms we found that
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CelebA LFW
Beard (3.244) Beard (1.061)

AL Senior (N/A) Senior (1.8)
Gray Hair (1.053) Gray Hair (1.028)
Unattractive (1.075) | Unattractive Man (1.158)
Beard (1.267) Beard (1.0876)
Senior (N/A) Senior (1.0018)

SVDD Gray Hair (2.449) | Gray Hair (1.197)
Unattractive (1.094) | Unattractive Man (1.566)

TABLE 7.1. Examples of groups treated unfairly only for a particular algorithm
and dataset interaction. The Fairness DIR is reported in parentheses and indicates
the relative over-abundance of the group in the anomalies. The tag being treated
unfairly in these cases is in bold. For example, people with a Beard are 3.224
times more likely to be an anomaly than a normal instance for the AE algorithm
applied to the CelebA dataset, though people with beards are treated relatively
fairly otherwise. Not that ”Senior” is not a tag in CelebA and is therefore absent
from the in these cells.

the CelebA dataset (DIR = 1.4) causes significantly more unfairness than the LFW dataset (DIR
= 1.13).

This is likely due to the CelebA dataset having a much more focused selection bias as it is
limited to people who are overwhelmingly in the arts (film, television, music) whereas the LFW
dataset consists of a larger representation of popular people. Hence, the definition of normality
learned is very specific and there are many ways to deviate from the norm.

Examples of groups that are found to be unfairly treated in the CelebA dataset but NOT the

LFW dataset are: Wearing Hat, Big Nose, Eye-Glasses, Goatee, Wavy-Hair.

The More Focused The Algorithm The More Likely Unfairness Can Occur.

Similarly, the way the algorithm defines normality is influential in who it identifies as an anom-
aly. The SVDD algorithm has the strictest definition of normality as it attempts to find just one
group of normal instances (centered around c¢ see equation 7.3) whereas the AE algorithm with
k encoding nodes can in practice (assuming perfect disentanglement) find at least k definitions of
normality. Hence not surprisingly the SVDD algorithm is more unfairer than the AE algorithm as

shown by the histogram of unfairness for both algorithms in Figure 7.4.

7.5. Experimental Results - Why is AD Unfair

Here we attempt to experimentally answer the following questions:
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e How strong are our four properties correlated to unfairness?

e How are our four properties related to each other and in particular is there a hierarchical
structure to them?

e How can these properties be combined to create a model to explain unfairness in anomaly

detection?

60
50
40

30
20 ‘
10
ldd. .. .

o

QTQ(LT(‘E’\%T?‘\QO’D\Q@\@@\ §<;>\%§qa\\9r\1>%(}s &(}\({lf%\% ?\b&?’\ﬁ’x
AE = SVDD

FIGURE 7.4. A frequency distribution of the Anomaly DIR score by algorithm. We
see that the AE with a more flexible definition of normality is more fair.
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FIGURE 7.5. Plot of different properties against their DIR (unfairness) with the
larger the value the more of the property/unfairness. Trendlines are created by
minimizing R? values. Each mark represents one group. Color denotes algorithm
(blue for the AE anomaly detector and orange for the SVDD anomaly detector) and
mark denotes dataset (circle for CelebA, triangle for LEW).

7.5.1. Relationship between Unfairness and Each Property. Our experiments (see Fig-
ure 7.5) demonstrate strong (Pearson) correlations and moderate to strong RSQ (R-squared values
of the regression trendline) for each of the properties studied. Each plot shows the results for
two datasets (CelebA and LFW) with each data point representing a group of individuals. A
positive trend line indicates positive Pearson correlation (see sub-titles of plots for exact values)
and we see that incompressability is the most strongest property correlated with unfairness, then
Spurious features, then Attribute label noise, and finally Sample Size Bias. This is an interesting
result as earlier seminal results showed that AD using facial images [167] was unfair due to an
under-representation of black people and males in the underlying datasets.

However, it is also clear that no individual property explains unfairness completely by itself.
This is shown as each graph has points that not only do not fit the trendline, but are contradictory
to the relationship implied by the overall data. Further investigation (see next subsection) reveals
that when one property fails to explain why that attribute is anomalous, another one typically will.

For example, the group Bags Under Eyes (from CelebA) under the AE model has a reconstruc-
tion ratio of only 1.077 (it is easy to compress), but a DIR of 1.31 (it is treated unfairly). Following
the trend, the expected reconstruction ratio at a group with this DIR would be approximately 1.17.

Further, this group has only 20.1% representation, though looking at the DIR one would expect
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only half that. This group, however, is explained by the spurious feature variance, as it sits nearly
perfectly on the trendline. Similarly, the group Gray Hair (from LFW) under Deep SVDD was
towards the far end of spurious feature variance at 0.180, but has extremely low anomaly DIR score
at 1.04 (i.e. was treated fairly), though it sits just above the trendline for attribute label noise at
1.05.

A full list of these attributes and their squared error for all trendlines is available in the Appen-
dix, and one can see that every tag can be explained by at least one of these properties with high
fidelity, with the average sum of square errors being only 0.00351 (std 0.006498), supporting our
claim that unfairness in anomaly detection setting can be explained by one of these four properties.

This claim is rigorously tested in Section 7.5.2.1.

7.5.2. Relationship between Multiple Properties. We also examine the correlation be-
tween the different properties. This analysis is useful in examining potential redundancies and
creating our model of unfairness for anomaly detection. Figure 7.6 examines these relationships.
Some features are, indeed, positively correlated with each other, though none have high enough
correlation to suggest that they are redundant with each other. In the subsequent subsection, we

examine this claim more rigorously via a hypothesis test.

Correlation Between Properties

Incomp. -

Incomp. 55B SPV ALN

FiGURE 7.6. Correlation matrix for all four properties of the model. Pearson cor-
relation is written in each box and is consistent with color (yellow is large, purple
is small).
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7.5.2.1. Hypothesis Testing of Relationship Claims. In order to test our claims, we create four

hypotheses that we verify through hypothesis significance-testing. Those are:

e H1: No individual property is sufficient to always explain unfairness.

e H2: The properties, when combined into a multiple regression, are sufficient to explain
unfairness.

e H3: No properties of the multiple regression are redundant and all are needed.

e H4: The results of H2 are significant in that when one property fails to predict unfairness,

another does.

Null hypothesised H1y — H4( are constructed straightforwardly. To create the significance test
for H1, we perform an F-test on individual regression models crafted from the relationship between
each property and DIR. The results of this F-Test (visualized in Figure 7.7) indicate that individual
properties are reasonable though comparably weak predictors of unfairness, with P-values ranging
from 0.0137-0.0986 for the AE model and 0.0279-0.0571 for Deep SVDD. Therefore, we reject the
null hypothesis Hlg and validate hypothesis H1.

To test hypotheses H2 and H3, we construct a multiple-regression model. Specifically, this is
a stacked multiple regression where the meta-function selects the best individual model for the
datum. To validate H2, we create such a multiple-regression using all four of the properties (the
"full” model). This yields P-Values of 0.00589 for the AE model and 0.0127 for Deep SVDD,
significantly lower than those of the respective single-regression models, and indicating that using
all four properties is sufficient to explain how unfairness occurs. We reject the null hypothesis H2g
and validate hypothesis H2.

For H3, we conduct a similar experiment except we leave one property out. In every case, the
resulting multiple regression models were worse than the full model, with P-Values ranging from
0.00674-0.0109 for the AE model and 0.0138-0.0164 for Deep SVDD, all greater than that of the
full model, indicating that every property is necessary and none are redundant. We reject the null

hypothesis H3g and validate hypothesis H3.
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P-Values Given Different Data (AE) P-Values Given Different Data (Deep SVDD)
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FI1GURE 7.7. P-Values for the hypotheses H1-H3. The leftmost bar demonstrates
that, when all properties are considered, unfairness can be predicted with a very
high degree of precision, rejecting the null hypothesis H2y. The next three rows
demonstrate that the model is not as powerful if one property was left out, reject-
ing the null hypothesis H3p. Finally, the higher P-values for the simple regressors
indicate that no single feature can be used as a model of unfairness, rejecting null
hypothesis H1g.

One may object to the multiple-regression models used above, given that the model as de-
scribed will monotonically increase in predictive power given more properties. It is important to
note that this model matches the central claim of this paper - that unfairness with respect to a
group occurs because of one of the four properties described, though one may still be wary of the
statistical significance of the reported results given the technique. To resolve these concerns, we
demonstrate that our model is not just combining the predictive power of four different already
powerful predictors, but rather when one model fails it is because it is explained by one of the other
properties.

To validate this claim, we construct fabricated distributions similar to those of Figure 7.5.
Specifically, unfairness is kept the same, and we create distributions of random fake data which has
the same correlation and RSQ as all of those shown. This is accomplished by, for each property,
finding random points (sampled across a uniform distribution) along the X-axis, giving them fabri-
cated values perfectly in line with the correlation, and then adding noise such that the correlation
is maintained and the RSQ matches that of the actual measured properties. Then, we create the
same full model of the multiple regression and measure the P-value. We repeat this process 10,000

times to get 10,000 such distributions.
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The distributions therefore should be statistically similar to our real data, but there is no
reason to believe that when one of the fabricated models fails, another will explain the unfairness.
To validate hypothesis H4, we measure the number of times the fake distributions produce P-values
under that of the real data. If the statically similar fabricated data cannot match the predictive
performance of our models, this would validate hypothesis H4.

In the case of the AE model, the fabricated data averaged a P-value of 0.0194 with a standard
deviation of 0.00629 and never beat the full model’s P-value of 0.00589. Similarly, the model
simulating Deep SVDD’s data yielded an average P-value of 0.0173 with a standard deviation of
0.00304. Out of the 10,000 trials, only 5 yielded lower P-values. Therefore, we reject the null
hypothesis H4y and validate hypothesis H4. Our model does not simply take four independent
good predictors of anomaly and get good statistical results but rather holds the property that

when one fails, another property explains it.

7.5.3. A Proposed Model Of Unsupervised Unfairness Relationships. Given the re-
sulting hypothesis tests, we craft our model of unfairness in unsupervised learning. Figure 7.8
provides a graphical representation of this model. Edges between properties indicate a relationship
(binarized to be correlated at > 0.15). This is supported by the high correlation between each of
these properties and unfairness (Figure 7.5), the result that the properties together form a uniquely
powerful multiple-regression to explain unfairness (H2, H4), that no single feature could do this

alone (H1), and that no property is redundant (H3).

7.6. Discussion and Conclusion

We study the intersection of the controversial deep AD algorithm with facial imaging data to
address the “Who” and “Why” questions. We found that overwhelmingly both auto-encoder and
one-class deep AD algorithms are fair to most groups. However, due to the compression-based
focus, they are unfair to some sub-groups.

With regard to the “Who” question we found that it was rare to be consistently unfair to the
one group and instead unfairness was due to the interaction of the data and the algorithm. In

particular, the more focused the dataset and algorithm the more unfairness was found.
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FI1GURE 7.8. Our model of unfairness determined from our stacked multi-regression
model. Compare with the expected model without any analysis in Figure 7.2.

Our study of the “Why” question aimed at developing a deeper understanding on the effect of
data related factors on the fairness as well as detection performance of OD algorithms. We postu-
lated four hypotheses and found all to be statistically significant by rejecting the null hypothesis.
The first hypothesis is that no single property alone is sufficient to explain unfairness. The second
hypothesis is when combined the properties can explain unfairness. The third hypothesis is that
all properties are relevant and none are redundant and finally, the fourth hypothesis is that the

combination of properties is meaningful beyond the predictive power of each individual property.

Limitations. The use of groups may have varying degrees of applicability to real-world fairness
scenarios. For example, some groups such as Male, Black and Young correspond to legally rec-
ognized protected classes [188, 189], while others such as Goatee, Wearing Hat and attractive
may not. However, we believe that this study still provides meaningful insights into the mechanism
of unfairness with respect to different people. Real-world protected attributes may be of varying

degrees of visibility, as do our groups, and our analysis reflects this.

Future work. Remediation strategies to improve fairness are left out of scope of our investigation.
We briefly discuss them here. Fairness interventions are typically grouped into three: pre-, post-,
and in-processing strategies, which respectively, modify the input data, modify the output scores

or decisions, and account for fairness during model training.
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As we showed, AD unfairness can stem from algorithmic bias alone in the face of natural
heterogeneities in the data among or within groups. When this is the case, pre-processing strategies
become voided as it is not clear how to modify organic, unbiased data. Post-processing could select
different thresholds for each group separately, as in [ , |, where the group-specific thresholds
could either be “natural” cut-off values, or selected to optimize demographic parity if it is a desired
fairness metric. Note that metrics that involve true labels cannot be optimized due to lack of
any ground truth during training. In-processing techniques are also limited to only enforcing
demographic parity, which as we showed, remains susceptible to unfairness. One such strategy that
has not been applied to OD is decoupling, as in | , |, where a different detector is trained for
each group, while optimizing a joint loss.

We remark that post-processing and decoupling exhibit treatment disparity as they both assume
it to be ethical and legal to use the sensitive attribute at test (decision) time - in particular, to
select which threshold or detector to employ on a given new sample. When there are differences
among groups, coming to terms with treatment disparity might be the only get-around to mitigating
disparate impact, as argued previously [194]. These solutions, however, do not address unfairness
against heterogeneous subpopulations within groups, i.e. within-group discrimination. Here, one
direction is to explore clustering-based OD algorithms. Alternatively, establishing a more nuanced

or granular sensitive attribute, labeling each subpopulation differently.
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CHAPTER 8

Beyond Data Bias: Proof of Algorithmic Fairness Challenges in

Neural Networks

Abstract As machine learning and data science are used in increasingly high-stakes domains
such as criminal justice, healthcare, and finance, it is pertinent that machines are not only ac-
curate but also equitable. In previous years, many hoped that machines would ameliorate issues
of prejudice in such critical decisions as machines are blind to identity and only see the relevant
data fed to them. Unfortunately, this is not true, as researchers note that machines can produce
bias against certain groups just as people do. This has led researchers to believe that while the
algorithms and machines themselves may not hold an inherent bias against a group, data collected
by humans may share the biases of those humans. While bias in data certainly exists, we believe
that this is only one part of the picture, and reject the idea that decisions about the algorithm such
as model architecture, hyperparameters, and optimizers cannot have bias in and of themselves. In
this paper, we provide a rigorous mathematical proof that demonstrates that even when all other
elements such as data, protected status breakdown, and target demographics are equal, bias still

exists and is inherent to these algorithms.

8.1. Proof

THEOREM 8.1.1. A regularized artificial neural network with a bounded loss function has bias
inherent to its architecture, optimizer, and/or hyperparameters, assuming that it will be allowed to

train to convergence.
COROLLARY 8.1.1. The bias inherent to a network is predictable and calculable.
PRrROOF.

LEMMA 8.1.1.1. The parameter space of a reqularized neural network is finite and bounded.
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ProOOF. Consider the loss function of a regularized neural network, given by:
(8.1) Loss = LosSerror + LOSSregularization
A parameter w is learned through the negative gradient of this loss function:
(8.2) w=w — aVLoss

Where « is the learning rate. From Equation 8.2, it is clear that a parameter will increase in
magnitude whenever the gradient of the cost function is negative. In the case of the gradient
of LosSerror being negative, the parameter w will increase in value if and only if the gradient of
the regularization term is also negative. That is, the parameter w can only grow in magnitude if
Losserror > L0SSpeguiarization- Typically (and stated as an explicit assumption of Theorem 8.1.1),
the error component of the loss function is bounded within some range. For example, for a binary
classification problem where output space is either 0 or 1, the greatest error possible for a single
instance is when the output of the network is 0 and the label is 1, or when the output of the
network is 1 and the label is 0, in either case LosSerror is bounded between [0, 1]. Without loss of
generality, let the maximum value of the gradient of the loss due to error be expressed as Fy,q, and
the minimum (most negative) by expressed as E,;,. Since the gradient of Losserror is bounded by
[Emaz, Emin] and the regularization term Lossyeguiarization is unbounded for some arbitrarily large

parameter w, the parameter w will necessarily decrease in magnitude if:

(8'3) Lossregularization > Enax
Or:
(84) Lossregularization < Emzn

For example, in the case of L2-regularization given by:
(8.5) Lossro = Aw?

The magnitude of the parameter w will necessarily decrease if:

E max
A

(8.6) w >
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Similarly, the lower bound can be calculated by inverting the inequality and replacing F,,q, with
E,nin, meaning that every parameter w is bounded between [\/E$i , \/@] Let the minimum
and maximum value for every parameter be labeled w;y;, and w,., respectively. Since one of the
assumptions of Theorem 8.1.1 is that the neural network is trained to convergence, every parameter
of the network will be between these bounds.

QED Lemma 8.1.1.1. O

LEMMA 8.1.1.2. Given a particular architecture, the mappings between input and output space

are bounded.

PROOF. Given a set of parameters 0, a neural network deterministically maps an input space

X to an output space Y by:
(8.7) f(X,0) Y

By Lemma 8.1.1.1, the possible values for each parameter w € 6 are finite and bounded, ergo all
mappings between input space and output space for a particular architecture of a neural network
are bounded.

QED Lemma 8.1.1.2. U

LEMMA 8.1.1.3. Neural networks will converge to a particular local minima by some probability.

PROOF. Let the function Loss(f, X, ) be defined as the loss for some data X given the network
f with parameters 6.

A local minima in parameter space is defined as a configuration of parameters 6,,;,, such that:

VO, Loss(f, X, Omin,) < Loss(f, X, 60)
(8.8)
$.t.]10n — Omin, || < €

For all arbitrarily small € where 6,, is some other set of parameters.

As proven in Lemma 8.1.1.2, mappings between input and output space is bounded for a
particular architecture. Therefore, for every mapping f(X,6;) — Y there exists a loss given by
Loss(f, X,0). Since the parameter space is finite, there exists either:

e A finite number of local minima O,in = {Oming: Ominy » ---Oming, }

110



e A finite number of local minima regions, that is, a set of bounds {wWming» Wmazgs -+ Wming s Wmaz, }
for all x parameters of the network’s architecture for which V0,,:y,s.t.Yw, € Opnin,w, €
[Winin, s Wimaz, s Omin; is a local minimum by Equation 8.8.

e Both of the above two conditions. A visual for both these types of minima is provided in

Figure 8.1.

Loss

a b ¢ d
Wmin Wmax

FiGURE 8.1. Example of the two types of minima with respect to a single parameter,
w. Here, minima occur when w € {wpmin, a,b} (individual local minima) or when
w € [¢,d] (local minima region).

For simplicity, we will use the notation of a set of local minima to represent the set of all local

minima and local minima regions: ©yin = {Omings Ominy s ---Oming, -

Given an initial parameterization and a deterministic optimizer, a neural network will converge

to some 6; € O, with either probability of 1 or 0. Given an initial parameterization and a

stochastic optimizer, the network will converge to some 6; € ©Omin with some probability between

[0, 1] based on the particular optimizer and loss landscape. In either case, the network will converge

to any one of the local minima in the set ©,,;,.

QED Lemma 8.1.1.3. U

LEMMA 8.1.1.4. The fairness of a neural network is finite and bounded.

PRrOOF. For some fixed population D with (a) protected status variable(s) PSV, fairness for a

particular algorithm and collection of parameters 6 can be given by:

Fair(f,D,PSV,0)

where the Fair() function is whichever fairness metric one chooses (e.g. disparate impact,

equalized odds, predictive equity, etc). By Lemma 8.1.1.3, the trained neural network has converged
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t0 some Opmin, € Omin. Yrmin, € Omin, IFair(f, D, PSV, Opmin,), .. the fairness of a network is
Fair(f, D7 PS‘/, emznz)]
QED Lemma 8.1.1.4 -

bounded between [argming, . Fair(f,D,PSV,0mn,),argmazg

min; min;

By Lemma 8.1.1.4, there are a finite number of values for fairness that a network can achieve
based on which local minima it converges to. By Lemma 8.1.1.3, every local minima can be
converged to with some probability. Therefore, one can calculate the expected value for fairness of

a network in the following way:

ExpectedFairness(f, D, PSV) =
n
(8.10) > Fair(f,D, PSV, Omin, )+
i=1
P (9f = gmmz)
Where P(0¢ = pin,) is the probability that the model f of converging on the local minima 6;.
This can be calculated by integrating across every dimension of parameter space for wyin t0 Wmnaz

(or the maximum and minimum values for a random initialization). That is, the expected fairness

of a particular neural network (before it is trained) is given by:

ExpectedFairness(f, D, PSV) =

> Fair(f, D, PSV, Omin,)*
=1

Wrp=Wmax W1=Wmax Wrp=Wmax
s TR S
PO = Omin;|Oinic = {wo, wl, .. wp})*
P(Oinit)
dwodwy ... dw,

Equation 8.11 demonstrates the predictability and calculability aspect of Corrolary 8.1.1.
Therefore, for two networks fo and f; of different architecture, optimizers, or hyperparame-

ters "L FExpected Fairness(fo, D, PSV) = ExpectedFairness(f1, D, PSV) (read as: ”the expected
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fairness of fj is not necessarily equal to that of f1”). In other words, all other variables being equal,
some of the bias of a learner is due to the specifics of the algorithm itself.

QED Theorem 8.1.1 & Corollary 8.1.1.

8.2. Approximation To Expected Fairness

As demonstrated in Theorem 8.1.1, Equation 8.11 calculates the expected fairness for a particu-
lar algorithm. Unfortunately, this equation is intractable with respect to the number of parameters
of the model, which tends to be quite high. In this section, we will discuss an approximation to this
equation that is far less computationally expensive. First, we consider the approximations from
two different perspectives: the search for the set ©,,;, of all local minima for the algorithm f (and,
as a consequence the fairness for each local minima) and the integration over parameter space for
finding the probability that one will end up in a particular local minima.

To simplify this process, we will break up Equation 8.11 into three parts, labeled a b, and c:

(812) a(gmznl) = FCLZT'(f,D,PS‘/, emml)
(8.13) b(Oinit) = P(Oinit)
(8.14) c(Oming > Oinit) = PO = Omin, |Oinit)

In the proceeding subsections, we will discuss how to approximate each of these and then

combine the two into an approximation algorithm.

8.2.1. Approximating The Number Of Local Minima & Fairness Landscapes. Equa-
tion 8.11 assumes that we perform an exhaustive search or mathematical optimization over param-
eter space to find all local minima. Instead, we propose approximating this search by constructing a
two-dimensional loss landscape for the network as presented in [195], then finding all local minima

with the simplified space. After constructing the loss landscape, we search for local minima by
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determining the set ©,,;, in the landscape satisfy Equation 8.8 within some small €. This also sim-
plifies the issue of minimal regions because it approximates those regions as a series of neighboring
minima.

From there, we propose creating a novel visualization: the fairness landscape. Every point in the
two-dimensional loss landscape represents a particular set of parameters 6;. Using the conventions
outlined in Equation 8.9, one can find the fairness for every point in the loss landscape and construct
a visualization of how fairness changes for different sets of parameters. Then, we can construct the

set

(8.15) Fairnessmin;, = {Fair(f, D, PSV, Omin, }V0min; € Omin

which is an approximation to the set of all fairness values that can be achieved by the network

if allowed to train to convergence.

8.2.2. Approximating The Probability of Arriving At Local Minima. Equation 8.11
also requires a large multiple integral, requiring one integral per parameter in the network. Se-
mantically, this integral finds the probability that the network ends up in a local minima given
an initialization, multiplied by the probability of that initialization. Instead, we propose ap-
proximating this integral by performing a hill-climbing search over the loss landscape found in
Section 8.2.1. Given the two-dimensional space, we sample initialization 6;,;; and perform hill-
climbing optimization until the optimization ends up at one of the local minima 60,,;,,. If we
are discussing a deterministic optimizer, we set the probability P(0f = 0in,|0ini) to 1, and
VOmin; € Omins.t.i # jP(0r = Omin;|0init) to 0. For a stochastic optimizer, we can set those
values to the fraction of times the network converged to the minima over the total number of
iterations for each minima in ©,,;,.

The final part of the equation, calculating P(6;y) is calculated exactly, and is dependent on
the particular initialization routine. Frequently, initializations are random weight vectors around
0 sampled uniformly [196]. In this case, one can calculate these values by taking & initializations

spaced uniformly in the two-dimensional loss landscape, and the probability is simply 1/k.
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8.2.3. An Algorithm For Approximating Fairness Of An Algorithm. We replace the

integral of Equation 8.11 with a summation, leading to the final approximation of:

n

(8.16) a(emml) * Z Z b(gimt:(:c,y))c(emima Oinit = (2,Y)
Ty

i=1
Where x and y are the dimensions of the parameter space in the loss landscape. From the

preceding subsections, we construct an algorithm to approximate 8.11.

e Construct a two-dimensional loss landscape to approximate parameter space and find all
local minima ©,,,;,

e Given the set of local minima, find the set Fairnessm, by Equation 8.15 to approximate
Equation 8.12.

e Calculate Equation 8.13 by the specifics of the network’s initialization procedure

e Sample k initializations and perform hill-climbing on the loss landscape to determine an
approximation to Equation 8.14

e Use the above three components to calculate the approximation by Equation 8.16.

8.3. Empirical Evaluation Of Integral

To empirically validate the results of our proof, we demonstrate that solving the integral in
Equation 8.11 can accurately predict the value of unfairness present in a network before training.
Here, we solve the full integral, rather than using the loss landscape approximation. In this sec-
tion, we discuss the runtime of the technique and demonstrate that our formula can accurately
approximate the fairness of neural networks before training them, and use this to predict which of
two neural networks will be more fair, demonstrating the correctness of the approach. The fairness
metric used for this evaluation is statistical parity [182].

The use of sparse grid integration also allows us to create a novel visualization: the fairness-loss
landscape. Similar to loss landscapes | ], the fairness-loss landscape presents the loss for the
network given the values for different parameters along a grid, however we also overlay this with

the value of fairness for each of those points.

8.3.1. Runtime Analysis. As Equation 8.11 is a multiple integrals that requires an addi-

tional integral for every parameter, the calculation is intractable, as the runtime for solving or
115



computationally approximating an integral is intractable, rising in complexity exponentially with
respect to the number of dimensions [197]. As such, we validate our results over small neural net-
works and solve the integral using sparse grid integration [198]. Assuming the grid is broken by an
interval i over an area where each dimension of that area is given by £, the runtime of computing

Equation 8.11 is O(£).

8.3.2. Datasets & Models. Because of the exponential complexity of solving the integral,
we intentionally use very small networks and low-dimensional data. Specifically, we estimate the
fairness for two networks, both trained on the Law School dataset [ ], one with two parameters
(one weight from each feature) f; and one with three (one weight from each parameter and a bias
term) fy. After the integration is performed, the expected value of fairness compared to the average

result of fairness for training the model roughly to convergence 100 times.

8.3.3. Results. Recall that to solve Equation 8.11, one needs three functions: Fair(f, D, PSV,0min,),
PO = Omin;|Oinit = {wo, wl, .. wy}), and P(Oini = {wo, wl, .. wi}).

As we are using sparse-grid integration, we estimate the function P(0f = Opin, |@inie = {wo, wl,...wi})
using the generated grid by taking the value of the loss at each position in the grid and using its
neighbors to approximate which local minimum a point initialized to that position would fall into.
Similarly, the Fair function is determined by the fairness value of the nearest element on the sparse
grid. Initialization is uniform over (J—Qlk, J—Zik) [200], so the probability of initializing at a certain
point is given by 1/P where P is the number of points on the grid within the initialization bounds
and 0 otherwise.

Using these three functions, sparse grid integration is performed. The expected fairness for the
model f; is 0.1134 and f5 is 0.1348, compared to the actual values of fairness 0.1107 and 0.1385,
respectively. These values are very close, only differing by about 2.5%. Table 8.1 summarizes these

results.
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FIGURE 8.2. Fairness-loss landscape for fi (top) and fa (bottom). Loss values are
presented in the cool color gradient and fairness values in autumn. Omne can see
that there are several local minima with respect to loss, each corresponding with a
different value for fairness.

TABLE 8.1. Demonstration of our calculated expected value for fairness compared
to the actual results.

# Parameters Expected Fairness Fairness After Training Difference Time For Integral

2 0.1134 0.1107 2.38% 41 minutes
3 0.1348 0.1385 —2.64% 2 hours 28 minutes

While the results calculating the expected value of fairness are close to the actual values, they
are not exactly on the mark. We propose a few reasons as to why this may be. First, we assume
that our neural network would be trained to convergence, though there in practice neural networks

only approach a local minimum, and may not ever reach there exactly.
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8.4. Conclusion

While the bias embedded into data has the capacity for harm, the fact of the matter is that
algorithmic bias is a product of the intersections between algorithm and data. While existing work
has focused primarily on examining the causes of bias from a data perspective, we prove that some
of the bias of a neural network can be attributed to the algorithm itself. We also demonstrate that
the expected bias for a neural network given a set of hyperparameters and a population over which
it will serve is calculable before training. We propose an integral over parameter space to find the
expected value of fairness and demonstrate that this integral is very similar to the actual values of
unfairness one gets from training the model, though the process is computationally expensive.

We argue that understanding fairness as not only a data issue, but also an algorithm issue is
essential for tackling the problem, and we propose a framework for this sort of analysis.

We propose an approximation scheme for larger networks that utilizes the relatively new frame-
work of loss landscapes to approximate this integral. Future work should be directed towards the
question of the fidelity of compressing a neural network’s parameter space in this way to determine

if such an approach is viable.
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CHAPTER 9

(Un)fair Backbones In Neural Network

Abstract

Fairness in machine learning is concerned with creating equitable outcomes for different sensitive
identities, though there are several limitations to the prevailing ways researchers have attempted
to create fair systems. One of these is the lack of consideration of intersections of identity, despite
the fact that social scientists have long argued that such intersections are more than the sum
of their parts. Here, we extend previous research done on neural network backbones, the idea
of mining meaningful subgraphs within a neural network’s structure. While previous work was
dedicated to mining patterns associated with misprediction, here we try to uncover subnetworks
associated with unfair prediction. We demonstrate that neural networks have distinct patterns for
when they are unfairly privileging, acting biased against, or acting fair to, certain groups, and we
consider three styles of leveraging this fact to ensure more equitable behavior: an in-situ approach
where networks train to become more fair, a post-hoc auditing approach where the unfair network’s
behavior is monitored with suspicious behavior being flagged, and a zero-shot approach of modifying
a network’s parameters without training such that the network will behave more fairly. We also
examine the implications of these findings to intersections of identity, and demonstrate that our

approach can significantly improve fairness with respect to such groups.

9.1. Introduction

Fair machine learning is concerned with ensuring that different protected classes are treated
equitably in some downstream task [20]. While this is true for all fair machine learning approaches,
techniques can be taxonomized in three different ways [23]: pre-processing techniques which try
to introduce fairness before modelling [201], in-processing (or in-situ) techniques which introduce
fairness during modelling [202,203], and post-processing (or post-hoc) techniques which are applied
after modelling [202, |. While each of these techniques has found some degree of success for the

task they study, one of the major limitations of many fair machine learning approaches is a lack
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of consideration to intersections of identity [204]. This is in spite of the fact that social scientists
have repeatedly demonstrated that dimensions of identity intersect in meaningful ways [33], ie the
experience of a transgender man cannot be modeled by the experience of being a man plus the
experience of being transgender in a more abstract sense.

Here, we create approaches which address this issue and stretch across the latter two sections
of the aforementioned taxonomy by leveraging deep learning backbones, a technique of mining
meaningful subgroups of neurons that are highly associated with a particular user defined concepts
and not associated with other concepts [138]. These have been studied with respect to model
performance. The original paper [138] examined if commonalities could be mined for how neural
networks make mistakes, and it was demonstrated that one could identify, with high precision, when
neural network was likely to make a mistake and correct that misprediction. Here, we hope to extend
this work for fairness: identifying how and when unfair predictions take place and correcting them
- either by modifying individual decisions or the network as a whole.

This paper also extends the novel idea of machine-to-machine explanation. Here, explanations
of unfair pathways are not meant to be meaningful to humans, but rather, they are meant to explain
to the neural network how unfairness is occurring in their hidden units, and attempting to correct
this issue. This paper serves as an exploration into the intersection between machine-to-machine
explanations and fair machine learning.

We make the following contributions:

e We demonstrate that the concept of deep learning backbones can be extended to fairness
settings, that is, neural networks often create unfair pathways that can be mined.
o We leverage these unfair pathways to create three techniques to alleviate unfairness in the
network, those being:
— A post-hoc technique for identifying individual unfair predictions
— An in-situ approach for training a fair model via a directed dropout
— A zero-shot fair machine learning technique in which a network is made more fair

without extra training by dropping unfair pathways
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We begin by explaining the previous framework of neural network backbones before discussing
the three approaches to fairness in more detail. We present our experimental results on the COM-
PAS dataset [171] and demonstrate how it can be scaled to intersections of identity without much

extra computational cost. Finally, we discuss insights gained though this approach and conclude.

9.2. Related Work & Backbones

The idea of neural network backbones is to consider the feed-forward layers of a network to be
a graph with edges connecting neurons from one layer to the next which is meaningful to some user
defined concept. Concepts are defined by a series of instances which activate when the concept
is present, but not for other concepts. For example, to explain the concept of dogs vs cats, the
neural network backbone for dogs would be activated when the network sees a dog but not a cat,
and the backbone for cats would activate when the network sees a cat but not a dog. Previous
work formulates the concept-level (CL) backbone identification problem as finding the minimum

sub-network that exhibits:

e Coverage: the subgraph covers the activations of the user-defined concept
e Layer-Inclusion: layers from the first fully-connected layer to the penultimate layer are
included in the subgraph

e Conected: Neurons from one layer are connected to the next by a non-zero weight

The last two constraints together are called the ”complete graph” constraint. A model-level
(ML) backbone is a series of CL-backbones which are distinct from each other. This problem
naturally lends itself to being an ILP, though this is proved intractable (NP-Hard), and an effi-
cient, polynomial-time heuristic which uses a novel frequent pattern mining is used to generate the
backbones [138].

There is reason to believe that neural network exhibit unfair sub-pathways which can be mined
and exploited. The study of adversarial fairness [32, | attempts to make networks more fair by
training an adversary on the intermediate layers of a neural network to classify an individual as
being part of a protected status group. If the adversary can do this, it implies that reasoning is
being done over the protected status space, even if the dimensions of identity are not specifically

provided to the network. These works train a network not only for their original task, but also
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to ensure that the adversary cannot determined protected status from the hidden unit activations,
implying that the network is no longer considering such information in its decisions.

This is, in effect, mining the hidden unit activation space to detect unfairness, however it is
much less complex than the proposed method, as the input to the adversary is typically a single

layer’s activations whereas we seek to mine a complete subgraph.

9.3. Approach

In this section, we discuss our approach to unfairness and the novel forms of intervention we

will explore.

9.3.1. Backbone Concepts. Here we use the same algorithm where the user defined concepts
are groups of people who are being treated unfairly and people who are being treated fairly. This
is accomplished by querying the network on different populations and sub-populations based to see
which groups are being treated fairly or unfairly. Here, fairness is defined as predictive-equity, that

is:

(9.1) Pd=1Y =0,P=a)=Pd=1Y =0,P =b)

Where d is the predicted value, Y is the label, and P is the protected attribute. That is, a
network is considered fair if we mistakenly allow people into the positive class at equal rates | .
While over 20 definitions of fairness exist, this is one of the most common definitions used in the
literature for supervised learning [22], which is the area we are studying in this paper. To get a
score of unfairness, we consider the false positive rate (FPR) of the specific population, subtract

this value by the FPR of the data overall, and normalize it by the overall FPR:

FPR(X,Y|P = p) — FPR(X,Y))

(9.2) Unfairness(X,Y,p) = FPR(X.Y)

That way, if a group is treated preferentially, they will have a higher FPR than the general
FPR and this value will be positive. If a group is treated with bias, they will have a negative value

for unfairness, and if a group is being treated equitably, they will have an unfariness value of 0.
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After this query is done, we will know which groups are being treated with the most bias
and privilege. The instances inside the populations are labeled the the biased group and the
privileged group, respectively. The groups are further sub-divided into fairly treated (ie they are
correctly predicted) or unfairly treated (ie they are mispredicted in a way that increases their bias
or privilege), and a model-level backbone is created to explain the difference between the unfairly
treated biased group and unfairly treated privileged group, and another is created to explain the

difference between fairly predicted privileged group and fairly predicted biased group.

9.3.2. Performance Desidrata. In order to evaluate how the different algorithms perform,

we have two desired characteristics for the approach.

(1) The model is made more fair than it otherwise would be

(2) The performance of the model is minimally affected

Performance-fairness tradeoffs are very common in fair machine learning [21, 23], though at
times a fair intervention may increase performance [32], particularly when the bias signal is greater
in the training set than the test set.

We say a technique dominates another if it is better on both criteria, and is pareto efficient if
one could not get better results from one criterion without sacrificing another.

Fairness is reported with three numbers for our case study, the COMPAS dataset [171]. We
report fairness with respect to gender, averaged across genders, fairness with respect to race aver-
aged across races, and fairness with respect to intersections of gender and race, averaged amongst

them.

9.3.3. Post-Hoc Auditing. For the first approach, we apply a technique very similar to the
original backbones paper [138]. In this work, both the hidden unit activations of an instance and a
network’s prediction of that instance are considered in an approach to relabel a prediction. In this,
a ML-backbone exists to explain how instances are commonly correctly predicted as a class (M Ly
backbone) and another is created to explain how instances are commonly incorrectly predicted as a
class (M L_ backbone). First, the Jaccard similarity between the activated neurons of the instance
is compared to each subgraph of the M L backbone. If the most similar backbone is the backbone
of the predicted class, the prediction is accepted. If not, it is compared to the subgraphs of the M L _

backbone. If the most similar backbone is that of the predicted class, the prediction is changed,
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otherwise it is accepted. Essentially, the pipeline asks the question ”does this look like a typical
correct prediction of this class?”, and then ”does this look like a typical mistake?”. If the answer
to the first question is no and the answer to the second is yes, this is flagged as a mispredition. In
that paper, this lead to significant performance increases for a state-of-the-art architecture for bird
audio detection.

The extension to fairness is straightforward. Using the same approach, if the prediciton is
positive, we ask the question ”does this look like a typical fair positive prediction?” if so, it is
accepted, otherwise we ask ”does this look like a typical unfair positive prediction?” and if it does
we flip the label of the prediction. Similarly, if the prediction is negative, we ask the compliment
of those questions. We also examine one other pipeline, in which we compare Jaccard similarity of
the network’s activations to the unfair privileged backbone and fair privileged backbone in the case
of a positive prediction, or the unfair biased backbone and fair biased backbone. If the instance

looks more like an unfair prediction that a fair prediction, the prediction’s label is flipped.

e

Accept <
Yes No

|

| 4
Activations Does this look Does this look

Instance |—> like a typical fair ——MNO=—>like a typical unfair =———YeSs—> Re]EC‘
Prediction rediction? prediction?
A

F1GURE 9.1. Pipeline for post-hoc auditing approach. An instance is passed
through the network, producing a binary activation vector and a prediction. These
are used to see if this looks like a typical fair prediction and not a typical unfair
prediction. If the pipeline deems the prediction suspicious, the predicted label is
flipped.

9.3.4. In-Situ Directed Dropout. In the next approach, we examine the idea of doing
a guided dropout of unfair subnetworks during training. In this approach, we mine backbones
for unfair predictions and perform dropout over those neurons during training. This way, as a
neural network learns to exploit protected statuses for performance, that learned information is

lost before it can be ingrained deeper into the model. We call this directed dropout because
124



instead of randomly dropping out the influence of certain neurons, we chose neurons by the ones
which are most contributing to unfair results.

We also experimented with the idea of moderating this search such that any overlap with the
fair network was maintained (ie we cannot dropout neurons if they exist in the fair pathway),

though we found that the aforementioned approach dominated this one.

—Dropout
—
—— 4
2 . No
Trainin : Unfair
Datag Train—> Network Backbone
Validation _rog | pss—s _ E2TY
Data Stopping?

FiGURE 9.2. Pipeline for the in-situ approach. The model is trained, unfair back-
bones are gathered, and that backbone is dropped out before training continues.
Training terminates with early stopping.

9.3.5. Post-Hoc Zero-Shot Learning. In the final approach, we explore a method of mod-
ifying a neural network’s parameters without training in hopes of making it more fair. In this
approach, we train a model as normal, but after training we isolate the unfair subgraphs and dim
their influence (multiply their parameters by some factor o € [0,1)). The hope is that by removing
such neurons we will be able to keep the majority of predictive power of the network while removing
the neurons responsible for unfairness. This is an application of explainable artificial intelligence
for the task of network pruning | , ], in which specific neurons are dropped out in the same
way to make the network more efficient, compact, or powerful.

We experiment with three different approaches: in the first, we remove all neurons from the

unfair biased backbone that are not in the fair biased backbone. In the second, we remove all
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neurons from the unfair privileged backbone that are not in the fair privileged backbone. Finally,

we remove all neurons which are in both the unfair backbones.

Prune

Training —Train—| Network >
Data 4

> Validation _poq; oss—s  E2MY . —Yes—>
Data Stopping? Unfair

Backbone

No |

FiGURE 9.3. Pipeline for the zero-shot learning approach. The network is trained
normally, unfair neurons are mined, and they are dropped out of the learner.

9.4. Experimental Results

The neural network used for experiments is a two-hidden-layer network with 256 and 128
neurons for the first and second layers, respectively. The network is trained via an Adam optimizer
[208] with early stopping if the network does not surpass its best validation set loss within three
epochs. Training and validation sets follow an 80-20 split. Networks are trained over five random
initialization, with training and validation sets being shuffled at each initialization. Median results
for the five initializations are provided. Recall that increases and decreases are percentages of their
original (before intervention) strategies, e.g. a change of -50% for unfairness may imply unfairness
went from 0.2 to 0.1.

Tables 9.1 and 9.2 provide an overview of how both criteria change relative to their base models.
As discussed in the preceding section, we come up with different formulations for these approaches.
Table 9.1 shows the approach that led to the fairest outcome, while 9.2 shows the approach that
provided the lowest error. As one can see, no approach dominates any other, and each has at least
one change better than all others.

The Post-Hoc auditing approach created the fairest models when we compared the activation
vector from an instance to both the fair and unfair model and relabeled if it was more similar to
the fair model. This created near equity for the racial group and reduced intersectional unfairness

by over 75%, however, this was at a much larger error increase (28.07%) than other models. While
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some predictive power is maintained, this may be too large of a cost for some people. The auditing
approach that yielded the lowest change in accuracy was the pipeline visualized in Figure 9.1. This
yielded much more subtle changes to gender unfairness but remained the best change to racial
fairness out of the group. Changes to intersectional unfairness were also quite large at -21.07%,
with a negligible increase in error of only +0.2026%.

The in-situ technique tended always to increase fairness, though less so than the other tech-
niques. Interestingly, it consistently decreased error when implemented, with a median decrease of
-1.28%. The in-situ strategy that worked the best was dropping out all unfair neurons, and this
technique dominated all others listed in the preceding section. Notably, the in-situ technique also
comes at the cost of increased training time, as new pathways must be mined each epoch. In our
experiments, they added six minutes to every epoch on average (the training time takes less than
one second per epoch, though finding deep learning backbones is not directly dependent on training
time. an O(k *n?) process where n is the number of transactions and k is the number of neurons).

Finally, the zero-shot learning approach also made the model significantly more fair with respect
to all metrics and a relatively low cost of error for fairness gained. The most fair version of this
approach was muting all neurons associated with unfairness (privileged and biased). This dropped
a comparable amount of racial and intersectional unfairness to the post-hoc auditing technique in
the same group but at a significantly less increase in error, allowing the model to become fairer
while maintaining the vast majority of the predictive power of the model. Further, if this error cost
is deemed too large by the user, this is the only technique that allows the user to moderate how
much error they are willing to gain for the amount of increased fairness they receive. Visualized in
Figure 9.4, one can see that error tends to increase with increasing values of a, while unfairness for
all aspects of the model tends to decrease. In this model, if the increase of error by 15.63% is too
steep for the user, they could walk this back to more moderate changes.

The version of this approach that yielded the minimal increase in error was muting the privileged
backbone. This increased error by a mere 3.99% while decreasing intersectional unfairness by

64.22%.

127



Mute Biased Backbone

= Error == Gendered Unfairness Racial Unfairness == Intersectional Unfairness

04

0.3

02 R,/\’x
—“—-__-—_———__“-_________'—__-___-__."_______________‘-‘

01

00

0.00 0.25 0.50 0.75 1.00
Muting

Mute Privileged Backbone

= Error == Gendered Unfairness Racial Unfairness == Intersectional Unfairness
04
03
02
/\__\-—-'-"_—_\_______" By
01
0.0
0.00 025 0.50 0.75 1.00
Muting

Mute Both Privileged and Biased Backbones

= Error == Gendered Unfairness Racial Unfairness == Intersectional Unfairness

04

03

02

0.1

0.00 0.25 0.50 0.75 1.00

Muting

FIGURE 9.4. Results of the zero-shot learning approach with varying levels of mut-
ing. Typically, unfairness goes down the more unfair pathways are muted, and
performance may also slightly degrade with higher values of «.
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TABLE 9.1. Changes in fairness and error for the different approaches, favoring
more fair models. The best metric for each criterion is in bold.

Change in Change in Change in Chanee in
Method Gender Racial Intersectional E g
Unfairness Unfairness Unfairness rror
iOSt.’I.{OC -31.89% -92.4% _75.45% +28.07%
uditing
In-Situ -23.14% -8.561% -13.00% -1.28%
Dropout
Post-Hoc -61.13% -81.19% -69.28% 115.63%
Zero-Shot

TABLE 9.2. Changes in fairness and error for the different approaches, favoring
more performant models. The best metric for each criterion is in bold.

Change in Change in Change in Ch .
Method Gender Racial Intersectional E ange in
Unfairness Unfairness Unfairness rror
Post-Hoc -2.207% -75.64% 221.07% 40.020%
Auditing
In-Situ -23.14% -8.561% -13.00% -1.28%
Dropout
Post-Hoc -38.62% -17.33% -64.22% +3.99%
Zero-Shot

9.5. Conclusion

Our results demonstrate that there may exist unfair pathways in trained neural networks that
may be reasoning over the protected status-space. These patterns can be mined, and that infor-
mation can be used in a variety of ways to increase the fairness of a model. In this paper, we
examined three such approaches: a post-hoc auditing approach where the activation of a test-set
instance is compared to different backbones and the prediction of the model can be overridden if
the activations seem unfair, an in-situ approach in which pathways associated with unfairness are
dropped after each epoch, and a post-hoc zero-shot approach in which these neurons are dropped
only after training.

Each technique excelled in different areas, though in our opinion the post-hoc zero-shot approach
yields the highest return for the error gained. Further, it is the only technique to include a parameter

to let the user decide how much of an increase in error is worth in terms of extra fairness. Another
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technique of note is in-situ dropout which not only made the network more fair (though, by more
moderate degree than all other techniques), but also decreased error.
Ultimately, this serves as a final example of machine-to-machine explanation and demonstrates

a meaningful intersection between explanation techniques and fair machine learning.
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CHAPTER 10

Conclusion

This dissertation demonstrates the power of the novel concept of machine-to-machine expla-
nation - leveraging explainable artificial intelligence for tasks beyond explaining a model to a
human. Specifically, we have demonstrated that counterfactual explanations can be used to embed
learned knowledge from one model to another (Chapter 2), our novel explainable anomaly detec-
tion algorithm can create virtual instances for self-supervised learning (Chapter 3), our explainable
clustering approach can be used for instance transfer learning (Chapter 4), and our formulation of
deep learning backbones can be used to predict errors and unfair predictions.

We also demonstrate that the existing body of fair machine learning has several key limitations,
namely, that most techniques in fair machine learning do not consider the intersections of iden-
tity as anything beyond two disentangled variables, while the research in social science indicates
that such intersections are meaningful [33]. Some of our work in machine-to-machine explanation
demonstrates techniques capable of handling intersections (Chapter 9). Further, one of the pre-
vailing attitudes is that fairness is, at its core, a data problem that can be addressed when or after
training algorithms. We demonstrate, however, that the fairness problem is a complex intersec-
tion between algorithm and data. Specifically, we examine the causes of unfairness and determine
that while some may be wholly data problems (eg sample size bias and labelling noise), others are
interactions between the data and algorithm (eg incompressibility) (Chapter 7). Finally, we also
mathematically prove and empirically demonstrate that some of the bias of a neural network can
be attributed to the model architecture and hyperparameters alone (Chapter 8).

I hope that these insights will help guide future research to recognize the potential for XAI
beyond explanation to humans and that future research will be dedicated to adding to these ap-

proaches which address major limitation in the existing work.
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APPENDIX A

An Exemplars-Base Approach for Explainable Clustering:
Complexity and Efficient Approximation Algorithms - Proofs,

Runtimes, & Exemplars

A.1. Additional Material for Section 4.3

Here, we present definitions of some graph theoretic concepts and combinatorial problems used

in our work.

Graph Theoretic Definitions: We use some graph theoretic concepts and a special class of
graphs in proving our results. Given an undirected graph G(V, E), a subset V' of nodes forms a
dominating set for G if for every node w € V — V', there is a node v € V' such that the edge
{v,w}isin E. Given a graph G(V, E), the goal of the minimum dominating set (MDS) problem
is to find a dominating set of minimum cardinality for G.

Given a set of disks (i.e., circles in two-dimensional space) each with the same radius r, one
can define an associated undirected graph as follows: there is one node for each disk; there is an
edge between two nodes if the corresponding disks touch or intersect (i.e., the distance between
the centers of the disks is at most 2r). Such a graph is called a unit disk graph [209]. Many
optimization problems, including the MDS problem, are known to be NP-hard even for unit disk
graphs | , |. We rely on the NP-hardness of the MDS problem for unit disk graphs in proving
Theorem 4.4.1.

Unit disk graphs can be defined in three or more dimensions where each object is a ball of unit
radius in an appropriate dimension. Each node of the corresponding graph represents a ball with

an edge between two nodes if their corresponding balls touch/intersect.

Minimum Set Cover (MSC) Problem: In this problem [123], the input consists of a base set
U = {ui,ua,...,un}, acollection Y = {¥1,Ys,..., Y}, where each Yj is a subset of U (1 < j < m)

and an integer bound 8 < m. The goal is to choose a subcollection Y’ of Y with |Y/] < 8 such
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that the union of the sets in Y’ is equal to U (i.e., the union covers all the elements in U). This
problem is NP-complete and a natural greedy approximation algorithm (which picks a new set
in each iteration such that the set covers as many new elements as possible) is known to give a
performance guarantee of O(logn) for the problem [124]. One of our results (Section 4.4.3) uses

this approximation algorithm.

Budgeted Maximum Coverage Problem: We also use a known approximation algorithm for
the Budgeted Maximum Coverage (BMC) problem, which is closely related to the Minimum Set
Cover (MSC) problem [123]. The input to the BMC problem is a base set U = {u1,ua,...,un}, a
collection Y = {¥1,Y5,...,Y,,}, where each Yj is a subset of U (1 < j < m) and a budget 8 < m.
The goal is to choose a subcollection Y’ of Y with |Y’| = 8 such that the union of the sets in Y’
covers the maximum number of elements of U. This problem is also NP-hard and a natural greedy
approximation algorithm (which picks a new set in each iteration such that the set covers as many
new elements as possible) has been shown to give a performance guarantee of (1 — 1/e) for the
problem [126], with e being the base of the natural logarithm. One of our results (Section 4.4.3)

uses this result.

A.2. Additional Material for Section 4.4

A.2.1. Statement and Proof of Proposition 4.4.1. Statement of Proposition 4.4.1: The

MSE problem is NP-hard even when the set of instances X consists of points in two-dimensional

Euclidean space and the distance between any two points is their Euclidean distance.

Proof: The proof is by a straightforward reduction from the minimum dominating set (MDS)
problem for unit disk graphs discussed in Section A.1. Let the MDS problem be specified by a unit
disk graph G(V, E'), where the radius of each disk is r, and let 8 < |V| be the given upper bound
on the size of a dominating set. We construct a set of instances X for the MSE problem as follows.
For the disk corresponding to each vertex v;, we create an instance x; € X, where the coordinates
of x; are those of the center of the disk corresponding to v;. The exemplar distance € is set to 2r
and the bound on the number of exemplars is set to 5. Obviously, this construction can be done

in polynomial time.
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Suppose V' is a dominating set for G with at most 8 nodes. We can show that the instances
corresponding to the nodes in V' form the exemplar set £ for X as follows. Consider any instance
x;j in X which is not an exemplar. Since V' is a dominating set and the node v; corresponding to
x; is not in V', there is a node v; € V' such that the edge {v;,v;} is in E. Since G is a unit disk
graph, the distance between the centers of the disks corresponding to v; and v; is at most 27 which
is equal to € by our construction; that is, the distance between x; and the exemplar x; is at most
€. Therefore, £ is a set of exemplars of size at most  for X.

Now, suppose € is a set of exemplars of size at most 8 for X. Let V' be the set of nodes of
G corresponding to the instances in £. We claim that V’ is a dominating set for G. To see this,
consider any node v; which is not in V’. The instance z; corresponding to v; has an exemplar
z; € £ and the distance between z; and x; is at most 2r. Since G is a unit disk graph, the edge

{vi,vj} is in E. In other words, V’ is a dominating set for G, and this completes the proof. QED

A.2.2. Statement and Proof of Theorem 4.4.2. Statement of Theorem 4.4.2: The solu-

tion produced by Algorithm 2 satisfies the following conditions: (i) The diameter of each cluster is
at most 2(D* + €), where D* is the optimal diameter for a k-clustering of X and e is the exemplar
distance. (ii) Every instance in X has an exemplar (at a distance of at most €) within the same
cluster. (iii) The sets of exemplars for the k clusters are pairwise disjoint. (iv) The total number of
exemplars generated by the algorithm is at most O(N*logn), where N* is the minimum number
of exemplars needed to cover all the instances in X.

Proof: To prove Part (i), we first note that the approximation algorithm used in Step 1 guarantees
that the maximum diameter of the clusters produced in that step is at most 2D*, where D* is the
optimal solution value for X. Step 6 of the algorithm moves only non-exemplars between clusters.
We need to show that after these moves, the maximum diameter is at most 2(D* 4+ €). To see this,
consider any cluster C; and any pair of instances x, and xp in C;. There are three cases to consider.
Case 1: Both x, and x; are exemplars. In this case, both x, and x; must be in B; since we chose
& = B;N A. Thus, at the end of Step 1, d(zq,zp) < 2D*.

Case 2: One of them, say x,, is an exemplar and the other (i.e., ) is a non-exemplar that got
moved into C;. In this case, C; contains an exemplar z, at a distance of at most € from ;. Since

d(zq,xq) < 2D* and d(zq, xp) < €, it follows from triangle inequality that d(zq,x) < 2D* + €.
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Case 3: Both x, and z, are non-exemplars which were moved into C;. In this case, C; contains
exemplars x, and x, such that d(z,,z,) < € and d(xp,z,) < €. Further, d(zp,z,) < 2D*. Now,
using triangle inequality, it follows that d(x4,xp) < 2(D* + €), and this completes our proof of
Part (i).

The result in Part (ii) follows since the set A constructed in Step 3 is an exemplar set for X and
each non-exemplar instance z; gets moved (in Step 6) to a cluster containing an exemplar for z;.
Since the blocks constructed in Step 1 are pairwise disjoint, so are the exemplar sets constructed in
Step 5; this proves Part (iii). Since Step 3 uses the greedy approximation algorithm for MSC and
this algorithm provides a performance guarantee of O(logn) [124], the total number of exemplars
produced in Step 3 is at most O(N*logn), where N* is the minimum number of exemplars needed

to cover all the instances in X. This establishes Part (iv) and the theorem follows. QED

Expanded version of the Remark in Section 4.4.2: The remark in Section 4.4.2 mentions
that one can theoretically get a better performance guarantee for the number of exemplars chosen
by Algorithm 2. Here, we explain how such an improvement can be obtained.

Since Step 3 in Algorithm 2 uses an approximation algorithm for MSC, the performance guar-
antee with respect to the number of exemplars is O(logn), where n = |X|. Theoretically, one
can get a better approximation by transforming the Exemplar Selection steps (i.e., Steps 2 and
3 of the algorithm) into that of finding a near-optimal dominating set for unit disk graphs in an
Fuclidean space whose dimension £ is the same as that of the points in X. This is done by placing
an (-dimensional ball of radius €/2 at each instance in X. The corresponding unit disk graph has
a node for each instance in X and there is an edge between two nodes if the corresponding balls
intersect or touch. It can be verified that any dominating set for this graph provides the necessary
set of exemplars. An approximation scheme which provides a performance guarantee of (1 + ¢) for
any fixed 0 > 0 is known for the minimum dominating set problem for such graphs [127]. Thus,
one can obtain a performance guarantee of (1 4 ¢§) for any fixed 6 > 0 with respect to the number
of exemplars. However, this approximation scheme is impractical even for data sets of moderate
size since its running time has the factor O(n(*/9”). (Thus, even when § = 0.5, the running time
has the factor O(n*).) For this reason, we decided to use the MSC-based approximation algorithm

in our experiments.
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Running time of Algorithm 2: We can estimate the asymptotic running time this approximation
algorithm as follows. Step 1 uses Gonzalez’s algorithm which has a running time of O(nk), where n
is the number of instances and & is the number of clusters [122]. Step 2 constructs the neighborhood
set for each instance and can be done in time O(n?). Step 3 runs the greedy set cover heuristic for
which the running time is O(W'), where W is the sum of the sizes of all the sets [210]. In our case,
since there are n sets and each set is of size at most n, W < n?; that is, Step 3 runs in time O(n?).
Step 4 runs in O(k) time. Using a bit vector representation for each set, Steps 5 and 6 can be

implemented to run in time O(nk). Since k < n, the overall running time of Algorithm 2 is O(n?).

A.2.3. Statement and Proof Theorem 4.4.3. Statement of Theorem 4.4.3; The solution

produced by Algorithm 3 satisfies the following properties: (i) The diameter of each cluster is at
most 2(D* + €), where D* is the optimal diameter for a k-clustering of X and € is the exemplar
distance. (ii) The sets of exemplars for the k clusters are pairwise disjoint. (iii) The total number
of instances with exemplars is at least (1 — 1/e)Q*, where e is the base of the natural logarithm
and Q* is the maximum number of instances in X that can have exemplars under the constraint

that the total number of exemplars is at most 3.

Proof: The proofs of Parts (i) and (ii) are identical to the ones given in the proof of Theorem 4.4.2.
Part (iii) follows from [126] that the greedy approximation algorithm for BMC covers at least
(1 —1/e)Q* elements, where Q* is the maximum number of elements that can be covered using at

most 3 sets. QED

Running time of Algorithm 3: The estimation of the asymptotic running time of Algorithm 3
is similar to that of Algorithm 2. The main difference between the two algorithms is that while
Algorithm 3 uses the greedy algorithm for the BMC problem in Step 3 while Algorithm 2 uses the
greedy algorithm for the Minimum Set Cover (MSC) problem. However, the asymptotic running
time of the greedy algorithm for BMC is also the same as that of the greedy algorithm for MSC [126].

Therefore, the running time of Algorithm 3 is also O(n?).
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A.3. Additional Material for Section 4.5

A.3.1. Time Complexity. Our approximation algorithms run in polynomial time (more pre-
cisely, in O(n?) time in the worst-case) and have strong performance guarantees in terms of clus-
tering quality and explanation complexity. The run times for our algorithms are as expected not
as fast as simple k-means style algorithms but our work comes with performance guarantees with
respect to optimal solutions and are much faster than state of the art domain specific methods.
For example in our work on explaining deep embeddings for text (Section 4.5.2), our SCCE and
SCCRB algorithms took 93 and 96 seconds respectively whilst the state of the art method took
700+ seconds and k-means style algorithms (which lack explanation) took under 10 seconds. Our
algorithm has just two parameters, namely k and e, where the latter parameter naturally trades

off clustering quality and explanation complexity.

A.3.2. Experimental Details of Harry Potter Explanation Experiments. We repre-
sent each sentence in the first HP book using the state-of-the-art language model BERT [133].
Hence, the exemplars generated by our method will be sentences in the book. Specifically, we
fine-tune a pre-trained BERT-base model ( ) in two steps. First, we add
to the vocabulary terms words that are unique to the Harry Potter universe (e.g., “quidditch”) and
train the model with a very low learning rate. Then, we fine-tune the model to produce a relevant
sentence embedding using the Sentence-BERT architecture [211] to create a HP Specific BERT

model. It is important to note that all methods and baselines use this embedding scheme.

A.3.3. Harry Potter Explanations By Our Method. Here we present the explanation

generated by our approach. We color code the exemplars by the cluster they belong to.

One small hand closed on the letter beside him and he slept
on not knowing he was special not knowing he was famous not knowing he would be woken in a
few hours’ time by Mrs Dursley’s scream as she opened the front door to put out the milk bottles

nor that he would spend the next few weeks being prodded and pinched by his cousin Dudley.
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practice three evenings a week on top of all his homework but Harry could hardly believe it when
he realized that he’d already been at Hogwarts two months. Don’ mention it said Hagrid gruffly.
Hagrid grinned at Harry. I was allowed ter do a bit ter follow yeh an’ get yer letters to yeh an’
stuff. There was only one room inside. he leapt to his feet and ran to the window. [t got to its
feet and came swiftly toward Harry. But he couldn’t do it. He sat up and felt around his eyes
not used to the gloom. But he never wanted you dead. Hermione had now started making study
schedules for Harry and Ron too. The Chasers throw the Quaffle and put it through the hoops to

score Harry recited

A.3.4. Quantitative Experiments on Facial Data - Details. We make the task challeng-
ing by choosing three similar men (Gerhard Schréder, Jacques Chirac and Tony Blair) and use just

40 images of each person, with half used for clustering and half for testing.

F1cURE A.1. Faces in the Wild Experiments. Exemplars found for our three clus-
ters correspond to the three people used in this experiment, Gerhard Schroder (left),
Jacques Chirac (middle) and Tony Blair (right). Note the exemplars of the same
person differ mainly by the position of the mouth.

For reproducibility, we simulate a person by the most simple learning algorithm, namely k-
nearest neighbor (k-NN). We cluster images of three well-represented individuals from the Labeled
Faces in the Wild dataset [212] using our method. Images are first processed into embeddings via
FaceNet, a deep embedding network. After clustering using our method, each cluster was assigned
the label of its most well-represented individual.

We created three baselines to predict the person in the hold out image: 1) Using a nearest
centroid approach, 2) Using a k-NN approach with all points and 3) Using a k-NN approach but
with random 20% of points from each cluster. After conducting this experiment five times with five
different training/testing splits, we obtained the results summarized in Table 4.3. This experiment
demonstrates that exemplars produced by our method are more useful than other artifacts of the
very same clustering namely centroids, all points and random subsets of points. A possible reason

for the improvement is that our method chooses a more diverse collection of instances (Figure A.1).
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A.4. Additional Material for Section 4.6

Comparison to DBSCAN and Other Density Based Clustering Methods. Superficially,
our method may seem to be similar to DBSCAN [136] and other similar algorithms as it uses
notions such as e-neighbors. However, there are several fundamental differences. Firstly, our
method is guaranteed to use the specified number or near-minimum number of exemplars, where

as DBSCAN, while being a very useful method, does not provide such guarantees. Similarly, our

method has an explicit clustering objective (i.e., to minimize the maximum cluster diameter) where
as DBSCAN does not. Finally, DBSCAN is a not designed so that the core points can be considered

explanations of the clusters. As a consequence, it is not meaningful to compare our method with

DBSCAN.

Comparison to Multiple Centroid Methods. An area that is superficially similar to our own
work is finding multiple centroids per cluster; these centroids are sometimes referred to exemplars.
However, there are significant differences with respect to the definition of an exemplar, the purpose
of the exemplars and the efficiency of the algorithms.

The multi-centroid /exemplar methods are specifically focused on identifying multiple centroids
in each cluster, where each centroid specifies a new sub-cluster (e.g., [120, ]). While these
methods allow a user to specify the number of clusters k, the algorithms may find more clusters,
that is, possible sub-clusters within each cluster [120]. One can view these are finding a one layer
hierarchy within each cluster and experimental results typically compare these algorithms against
hierarchical clustering methods.

In our work, an exemplar has a very precise definition: namely a point z is an exemplar for
another point y if and only if x is within a certain distance from y. The work on multiple centroid
clustering has no such definition. Further, the exemplars generated by our methods are motivated
by the need to explain clusters rather than to identify sub-clusters and hence yield fundamentally
different results. As an illustrative example, consider a cluster with points uniformly distributed
throughout it. Methods such as MEAP and K-MEAP [120, ] will return just one exemplar for
the entire cluster, as there are no distinct sub-clusters. However, our methods will return multiple

exemplars when e is small enough. Figure 4.3 provides such an example where the clusters are

tightly defined with no sub-clusters. Finally, while the methods in | , ] provide no formal
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performance guarantees with respect to either of the two objectives considered in our work (i.e.,
the cluster quality and the number of exemplars chosen), our methods have provable performance

guarantees for both of the objectives.
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APPENDIX B

Identification & uses of Deep Learning Backbones - Proofs

B.1. Proof of Intractability.

We now show that finding a satisfying assignment for the Concept-Level backbone Problem
(hence the more complex second formulation) is intractable. Hence, no exact solution can be
found in polynomial time for the optimization variant of the problem. This motivates the need
for a heuristic solution which we sketch in the next section. The remainder of this section can be

skipped on first reading of this paper.

THEOREM B.1.1. The CL-backbone problem is NP-complete even when the number of cate-

gories/class is just 2 and the number of node activations per instance is at most 3.

Proof: Membership in NP is obvious. We prove NP-hardness through a reduction from 3SAT, an
NP-Complete problem | |. Let x1, xo, ..., z; denote the [ variables and Y7, Ya, ..., ¥;, denote

the m clauses of the 3SAT instance. The reduction to the CL-backbone problem is as follows.

: (a) For each variable z;, we create two tags, denoted by a; and b;. (a; and b; correspond to the
positive and negative literals of x;). So, the node activation set
N ={ai,a2,...,a;,b1,ba,...,b;}, and |[N| = 2I.

: (b) For each variable z;, we create an item s; with node activation set n; = {a;,b;}, 1 < i <.
(Thus, |n;| =2,1<i<1.) Items sq, s, ..., s; constitute concept C.

: (c) For each clause Y}, we create an item s;4;, 1 < j < m. Suppose Y; contain literals x;, , 2, and
xj,. For each literal xj, in Y}, if z;, corresponds to positive literal z;, then n;; ; contains a;
and if xj, corresponds to the negative literal z;, then n;4; contains b;. (Thus, |n;4;| = 3,
1 <j <m.) Items s;11, Si+2, - .., Si+m constitute category Cs.

: (d) The set of items S = {s1,52,...,S14m}-

It can be seen that the tag set of each item produced by the above construction is of size at most

three.
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Suppose there is a solution to the 3SAT instance. we construct tag sets N1 and N for categories
C1 and (s as follows. For 1 <4 <[, if the given satisfying assignment sets variable x; to true, we
add a; to Co and b; to Cy; if the given satisfying assignment sets variable x; to true, we add b; to
C5 and a; to C1. It can be seen that C7 and C5 are disjoint. Since the truth assignment satisfies all
the clauses, Co has at least one item from each tag set ¢;;, 1 < j < m. So, C1 and C3 constitute

a solution to the CLB problem.

Now suppose that there is a solution to the CLB problem. We have the following claim.

Claim 1: For each 7, 1 < i <[, (5 contains at most one of a; and b;.

Proof of Claim 1: The proof is by contradiction. Suppose for some ¢, 1 < i <[, Cs contains both
a; and b;. Note that C; contains the item s; whose tag set is {a;, b;}. Thus, C1 must contain at
least one of a; and b;. Now, since C; contains both a; and b;, we conclude that C; and C5 are not
disjoint. This contradicts the assumption that we have a valid solution to the CLB problem, and

Claim 1 follows.

Given a solution to CLB, we construct a solution to SAT as follows. Consider each variable
xi, 1 <4 <. If tag a; € Coq, set x; to true. If b; € Cy or neither a; nor b; appears in Cs, set x;
to false. We claim that this is a valid satisfying assignment. First, using Claim 1, it is seen that
each variable is set to either true or false. Consider any clause C;. Ca contains at least one of the
tags from n;;, the tag set of item s;4; corresponding to €. Thus, the chosen assignment sets at
least one of the literals in C} to true; that is, the clause is satisfied. This completes the proof of

Theorem B.1.1. QED

B.2. Proof of Tight Bounds of Algorithm

While the above algorithms overcome the issue of intractability, it is not immediately obvious
how it relates to the objective and constraints of the problem. We prove that our approach will
always find a non-trivial (not extreme) valid solution to the problem that is pareto optimal to
three functions: the objective (minimizing backbone size), minimizing the coverage relaxation, and

minimizing the diversity relaxation. Formally:
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THEOREM B.2.1. The graph returned by our algorithm is guaranteed to be a non-trivial Pareto
optimal in respect to the Connected collective backbone Problem objective, and minimizing the two

relaxations.

The knowledge of non-trivial Pareto optimality is an important distinction, as it ensures that the
returned solution is one of the best possible, knowledge of where on the Pareto surface the answer
will lie remains a pressing practical concern. To address this, we allow an optional minimum

coverage term A to ensure that the final graph covers at least a proportion A of total instances.

B.3. Tight Bounds on Performance of Algorithm

We now demonstrate that our heuristic approximation to the original ILP is pareto optimal in
respect to minimizing the two relaxations of the ILP. The following theorem is composed of two
lemmas.

Theorem 2 The graph returned by our algorithm is guaranteed to be a non-trivial pareto optimal
in respect to the ILP’s objective, and minimizing the two relazations.

The proof is based on two lemmas shown below. The first shows that our algorithm maximizes
the F-Score whilst the second shows that a maximal F-Score is guranteed to produce a non-trivial
(non-extreme) point on the Pareto front of minimizing explanation (f), maximizing coverage (g)
and minimizing diversity (h).

Lemma 1: By iteratively adding frequent subgraphs to the solution, our algorithm finds a
valid solution to the ILP that maximizes F-Score.

Note that this is non-trivial, as our algorithm’s termination condition is that the change in
F-Score by the addition of (another) node(s) be negative, and does not directly test for a solution
which provides the maximum F-Score, as that is intractable.

For the following proof of lemma 1, we use the following notation:

Let n; denote the subgraph added to the solution with support m; for iteration i, and let
t be the iteration of the solution which immediately before that which causes the termination
condition. Further, allow T'F;, F'FP;, F'N;, and F; to be the true positive rate, false positive rate,
false negative rate, and F score for iteration i. First, all F}; > F;_, for any positive o by definition

of the termination condition, as the algorithm terminates the first time F-score decreases from one
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iteration to the next. Further, the validity of the solution returned by the algorithm is trivial, as
all subgraphs added to the solution must meet the same validity requirement as the ILP.

This is a proof by induction that F; ; Fii,, where o is any positive number, or, more simply,
that F} is the largest possible F-Score given the data.
Inductive Base Case

The inductive base case is trivial as the algorithm will terminate when the change in F-Score
from one iteration to the next is negative. Therefore, F} is strictly greater than Fy;1 by definition.
Inductive Hypothesis

F; > Fipq fori>t
Proof By Induction

The addition of a new subgraph n;4+1 implies that that T P11 = TP; + |n;| * m;, as |n;| neurons
which were previously not part of the graph are added, and a proportion m; of instances in the
data have that neuron activated. Further, FP;1; = FP; + |n;| *x (1 — m;), as a proportion 1 — m;
instances do not have the subgraph n;. Finally, FN;y; = FN; — |n;| * m;, as a proportion m; of

instances which had the neurons n; are now covered. Therefore, given that:
TP; TP,
F =2 <TPi+FPz‘)*<TP¢+FNi> —
L= =

TP, TP,
(TP#;’Pi >+<TP¢+}”N1'>
( 2T P,

TP+ P, +FN,

We can express Fj;; as:

Fip =

2+(TPi+|ni|xm;) _

2TP¢+2\ni|>kmi .
(2*TPi+2*|ni\*mi—i-FPt—i—\ni|—|ni|*mi+FNt—\ni|*m,- >
( 2T P;+2|n;|+m,; )

2*TPt+FPt+FNt+|n¢‘

And therefore:

oo — 2T Pi+2|nit1[*mit1+2|niyo|
+2 2T P+ F P+ FNi+|ng1]+[niq2]

Finally, since m;4+2 < m;y1 this implies that Fii1o < Fiy;.

Therefore, F; > Fj for any j > t, and F} is a valid solution.

This concludes the proof of lemma 1.

Lemma 2 The maximization of F-Score implies a pareto optimal result to the ILP’s (cite

number) objective (f), the coverage constraint (g) and the diversity constraint (h).
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Proof Of Lemma 2

We now discuss how this implies Pareto optimality in respect to the original problem’s objective
and the minimization of both of the relaxations. We formulate this as a series of three proofs by
contradiction demonstrating that by increasing the original problem’s objective, tightening the
coverage relaxation, or tightening the separability relaxation can only occur at the cost of one of

the other items.

e 1. Assume, for contradiction, that the graph can be made smaller without sacrificing
coverage or diversity. This implies that there exist a neuron or neurons which can be
removed and not disturb coverage. However, since each neuron is frequent, the removal of
a neuron necessarily implies a decrease in coverage.

e 2. Assume, for contradiction, that coverage could be greater without increasing the number
of neurons or decreasing diversity. This implies that replacing a neuron or neurons with
different neurons would increase coverage more than the neurons in the solution. However
this is not possible since the most frequent neurons are added first, which means that the
least frequent neuron in the solution provides greater coverage than the most frequent
neuron not in the solution, which implies that the only way to increase coverage is to
increase the number of neurons.

e 3. Assume, for contradiction, that diversity can be increased without decreasing coverage
or adding neurons. This implies that there exists some neuron or neurons which exist in
two or more CL-Summaries which can be replaced by an equal number of neurons in those
summaries and will not decrease coverage. However, since the added subgraphs maximally
increase coverage, as established above, this could only be accomplished by adding more

neurons than the backbone initially had, which is a contradiction.

This concludes the proof of this Lemma.

By proving the above two lemmas, we have proved Theorem 2. QED

145



APPENDIX C

Foundations for Unfairness in Anomaly Detection - Case Studies

in Facial Imaging Data - Model Details & Raw Data

C.1. Models

Both the AE and SVDD models use the same architecture, and this architecture is modeled off
those in [167]. The architecture is summarized below.

Datasets are in a random (reset for each initialization) 80-20 split and the model is trained
with early stopping if the model does not improve in test loss within three epochs. In practice, the

model took, on average 25 minutes to train on a 56-Core 16 GB Tesla P100 GPU.

C.2. Raw Data Results

This subsection of the appendix reports the raw values for DIR and the four properties for each
datum, separated by algorithm-dataset interaction. Table C.5 gives the raw sum of squared errors

for the individual property models and the entire models used to craft the hypothesis tests.
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Part Layer Details
Conv2d In: 3, Out: 16, Kernel: 3x3, Stride: 2,
Padding: 1, Bias: False
ReLU In-place: True
Conv2d In: 16, Out: 32, Kernel: 3x3, Stride: 2,
Encoder Padding: 1, Bias: False
BatchNorm2d Num Features: 32
ReLU In-place: True
Conv2d In: 32, Out: 64, Kernel: 3x3, Stride: 2,
Padding: 0, Bias: False
ReLU In-place: True
Flatten Start Dim: 1
Linear In: 38016, Out: 128, Bias: False
ReLU In-place: True
Linear In: 128, Out: Encoded Space Dim,
Bias: False
Linear In: Encoded Space Dim, Out: 128
ReLLU In-place: True
Linear In: 128, Out: 38016
ReLU In-place: True
Unflatten Dim: 1, Unflattened Size: (64, 22, 27)
ConvTranspose2d In: 64, Out: 32, Kernel: 3x3, Stride: 2,
Decoder Output Padding: 0
BatchNorm2d Num Features: 32
ReLU In-place: True
ConvTranspose2d In: 32, Out: 16, Kernel: 3x3, Stride: 2,
Padding: 1
BatchNorm2d Num Features: 16
ReLU In-place: True
ConvTranspose2d In: 16, Out: 3, Kernel: 3x3, Stride: 2,
Padding: 1, Output Padding: 1
Sigmoid
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TABLE C.1. Unfairness and property values for CelebA Attributes via Autoencoder

Attribute Unfairness (DIR) Reconstruction Ratio SSB ~ SFV  Label Noise
5_0_Clock_Shadow 1.118 1.183 0.8904 0.2252 0.4869
Arched_Eyebrows 1.124 1.0033 0.7252 0.2287 0.4869
Attractive 1.075 1.1356 0.5122  0.2339 0.486
Bags_Under_Eyes 1.308 1.077 0.799 0.2259 0.6119
Bald 1.164 1.1017 0.9766 0.2233 0.5019
Bangs 1.059 1.1121 0.8518 0.2414 0.5687
Big_Lips 1.219 1.1 0.7534 0.2262 0.2721
Big _Nose 1.457 1.1 0.7684 0.2247 0.4415
Black_Hair 1.007 1.15 0.7568 0.2248 0.5283
Blond_Hair 1.042 1.14 0.854 0.2276 0.4273
Blurry 1.128 1.19 0.946  0.2406 1.0181
Brown_Hair 1.080 1.11 0.7962 0.224 0.6281
Bushy_Eyebrows 1.088 1.17 0.859 0.2248 0.5107
Chubby 2.992 1.23 0.942 0.2236 0.6076
Double_Chin 1.413 1.26 0.9578 0.2244 0.709
Eyeglasses 1.600 1.35 0.937 0.2244 0.585
Goatee 1.479 1.27 0.9368 0.2346 0.4938
Gray_Hair 1.053 1.19 0.952 0.2247 0.5767
Heavy_Makeup 1.100 1 0.6148 0.229 0.3698
High_Cheekbones 1.547 1.06 0.5536  0.235 0.6822
Male 1.117 1.01 0.5834 0.2236 0.0211
Mouth_Slightly_Open 1.058 1.08 0.5222 0.2262 0.7859
Mustache 1.280 1.3 0.9616 0.2409 0.5055
Narrow_Eyes 1.017 1.18 0.8808 0.2252 0.7622
No_Beard 3.201 1.43 0.8322 0.231 0.355
Oval_Face 1.672 1.07 0.7296 0.2285 0.6119
Pale_Skin 1.491 1.17 0.9586 0.2367 0.8438
Pointy_Nose 1.301 1.08 0.732  0.2272 0.5454
Receding_Hairline 1.576 1.15 0.9228 0.2248 0.6595
Rosy_Cheeks 1.035 1.19 0.9382 0.2248 0.6718
Sideburns 1.553 1.27 0.9396 0.2286 0.5241
Smiling 1.317 1.07 0.5188 0.239 0.7449
Straight_Hair 1.118 1.17 0.7874 0.2268 0.6559
Wavy_Hair 1.488 1.02 0.69  0.2239 0.5728
Wearing_Earrings 1.052 1.11 0.8064 0.2269 0.6107
Wearing_Hat 1.645 1.32 0.9512 0.2269 0.7502
Wearing_Lipstick 1.213 1.07 0.5288 0.2286 0.2678
Wearing_Necklace 1.349 1.18 0.8686 0.2246 0.6887
Wearing_Necktie 1.077 1.18 0.9244 0.2260 0.7288
Young 1.997 1.36 0.7826 0.2250 0.164
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TABLE C.2. Unfairness and property values for LEFW Attributes via Autoencoder

Unfairness (DIR) Reconstruction Ratio SSB SFV Label Noise
Male 1.12200367380267 1.00535333156585 0.774632884425169 0.2031201482  0.07679999999999998
Asian 1.053645403248 1.1167961359024  0.92322909533592 0.2021178782
White 1.1264462529671 1.01018273830413  0.747926652971163  0.2088530302
Black 1.12365634206545 1.18320667743682  0.957391767480788  0.2025963485  0.08120000000000005
Baby 1.06544960186443 1.11203300952911  0.836643079966522 0.2036614358  0.09550000000000003
Child 1.12626262626262 1.12434077262878  0.898196758730883 0.2015907168  0.10470000000000002
Youth 1.1684570024365 1.09732460975646  0.786274062238453  0.2201078296  0.13770000000000004
Middle Aged 1.05672615298764 1.10370337963104  0.866316670470973  0.2059026539 0.0645
Senior 1.77747312898089 1.1931574344635 0.957467853610286 0.2064542949  0.16779999999999995
Black Hair 1.12004451070385 1.07356524467468  0.63349311420528 0.2042071939
Blond Hair 1.05108769459044 1.13573598861694 0.891653351594004 0.2307599187
Brown Hair 1.03576168696236 1.01701772212982 0.7891653351594  0.2089367867
Bald 1.00087648056866 1.13213109970092  0.824621471505744 0.2131045997  0.11350000000000005
No Eyewear 1.08863610960647 1.14704251289367 0.985087118618275 0.2012821913  0.06899999999999995
Eyeglasses 1.06348181302805 1.1471596956253  0.877729589895762 0.2019755244  0.19679999999999997
Sunglasses 1.05997138025237 1.06211602687835 0.586700144563646 0.2035428464  0.20889999999999997
Mustache 1.0421456164088 1.03791272640228  0.581298029369246 0.2034806907  0.21950000000000003
Smiling 1.14102186869087 1.07792913913726  0.641101727155139 0.2054580331 0.2974
Frowning 1.16748745804309 1.10730016231536  0.843262573232899  0.2032266498  0.07879999999999998
Chubby 1.08701997540087 1.08353006839752  0.683557787415354  0.2049415469  0.10560000000000003
Blurry 1.04091852227881 1.10518634319305 0.811154226584493 0.2110888839  0.27580000000000005
Harsh Lighting 1.05681504499685 1.02375900745391  0.695579395876131 0.2157218277  0.30279999999999996
Soft: Lighting 1.05644459380154 1.03066658973693  0.598417408506429 0.2086786151  0.15849999999999997
Outdoor 1.06132796694575 1.07666659355163  0.566613406376017  0.221262145  0.22760000000000002
Curly Hair 1.01377517221455 1.06283998489379  0.62375408962946 0.2088014245  0.14180000000000004
Wavy Hair 1.18200199173129 1.03124058246612  0.581830632275736 0.2119037926  0.04500000000000004
Straight Hair 1.25206733987405 1.16164600849151  0.835806132542037 0.2045027018  0.25670000000000004
Receding Hairline 1.132162388614 1.08063757419586  0.690329452940728 0.2026151061  0.31120000000000003
Bangs 1.16524283964575 1.00697135925292  0.672981815415049 0.2061040878  0.33009999999999995
Sideburns 1.12084015275504 1.16936266422271  0.939739785437114 0.2015084624  0.22319999999999995
Fully Visible Forehead 1.21900390887339 1.1811419725418 0.858784143650612 0.2038781226 0.2298
Partially Visible Forehead 1.05020804838356 1.04769682884216 0.536483299094575 0.2050496221  0.15200000000000002
Obstructed Forehead 1197095435684 1.09454452991485  0.73674199193487 0.2027293146  0.11260000000000003
Bushy Eyebrows 1.21132478772795 1.02557587623596  0.645286464277562 0.2025717795 0.0998
Arched Eyebrows 1.11604546137808 1.02139496803283 0.862360191737046 0.2056749165  0.15269999999999995
Narrow Eyes 1.01965937186759 1.00794005393981  0.69078596971772  0.2016550004  0.19099999999999995
Eyes Open 1.21624935631726 1.01386857032775 0.698166324279083  0.2054687798 0.2893
Big Nose 1.02608985048702 1.0604817867279 0.634406147759263  0.205928582  0.06599999999999995
Pointy Nose 1.19868957288718 1.07568454742431  0.622764969945978  0.2045042574  0.046699999999999964
Big Lips 1.06428433432607 1.06256353855133  0.663166704709731 0.2033233523  0.08440000000000003
Mouth Closed 1.01175554129597 1.12742841243743  0.904511907479266 0.2021872401  0.32189999999999996
Mouth Slightly Open 1.06630991503093 1.04525172710418 0.571102488016434 0.2044097185  0.07479999999999998
Mouth Wide Open 1.01637465524165 1.01459431648254  0.714981358898272  0.2013282001  0.18810000000000004
Teeth Not Visible 1.09729244959597 1.1062124967575 0.759796089172943 0.2011253536  0.27669999999999995
No Beard 1.0605139319402 1.01765537261962  0.869284029521418  0.2096437275 0.2319
Goatee 1.11854311102431 1.08315765857696  0.639351746176672 0.2126889467  0.04530000000000001
Round Jaw 1.12212437767378 1.15832161903381 0.860229780111085 0.2023314357 0.050899999999999945
Double Chin 1.01444585996835 1.04857730865478  0.519135661568896 0.2015054762 0.1965
Wearing Hat 1.31578440808469 1.13376498222351  0.950467929696416 0.2047562778  0.08360000000000001
Oval Face 1.227980920874 1.10575580596923  0.920718253062466 0.2021733284  0.12819999999999998
Square Face 1.08180300500834 1.03950214385986  0.957087422962793 0.2091827631  0.08360000000000001
Round Face 1.00385912356425 1.03282678127288 0.504983641482157  0.2034206629 0.2126
Color Photo 1.03475440467016 1.07052874565124  0.664764513429201  0.2038946807  0.10570000000000002
Posed Photo 1.05681639747742 1.10381340980529 0.848740774556798 0.2014933527  0.15300000000000002
Attractive Man 1.15967929714224 1.09643280506134  0.977098075020923 0.2019033909  0.35509999999999997
Attractive Woman 1.08906867243748 1.10497522354125  0.84105607547744  0.227733314  0.13529999999999998
Indian 1.01517435331474 1.03677427768707  0.588830556189606 0.2017122924  0.14029999999999998
Gray Hair 1.0282016857369 1.10868871212005 0.882523016054173 0.2012593031  0.18779999999999997
Bags Under Eyes 1.00131664057342 1.11418402194976  0.805143422354104 0.2055422544  0.13219999999999998
Heavy Makeup 1.14755164575804 1.11894488334655 0.879707829262725 0.2015730679  0.21609999999999996
Rosy Cheeks 1.02025763283369 1.05831480026245 0.507037966978619 0.2184995234  0.08520000000000005
Shiny Skin 1.09951096814278 1.06581234931945 0.591797915240051 0.2018399835  0.10729999999999995
Pale Skin 1.06768325049461 1.05000007152557  0.534428973598113  0.2011277676 0.1421
5 0’ Clock Shadow 1.16855307810665 1.09448540210723  0.84432777904588 0.2016790688
Strong Nose-Mouth Lines 1.03358017791439 1.10516810417175 0.866697101118466 0.2044023335
Wearing Lipstick 1.08893014058315 1.07446813583374  0.656471125313855 0.2032339275
Flushed Face 1.0144694850683 1.01248931884765 0.655482005630373 0.2137254417
High Cheekbones 1.00916172995591 1.12738478183746  0.860229780111085 0.2017118096
Brown Eyes 1.08648174717041 1.01540994644165 0.636384387126226 0.2055488884
Wearing Earrings 1.10247725115406 1.09833109378814  0.79563265616678 0.2028558612
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TABLE C.3. Unfairness and property values for CelebA Attributes via Deep SVDD

SVDD Reconstruction

SSB  Spurious Feature Variance

Label Noise

5_0_Clock_Shadow
Arched Eyebrows
Attractive
Bags_Under Eyes
Bald

Bangs

Big_Lips

Big Nose
Black_Hair
Blond_Hair
Blurry
Brown_Hair
Bushy_Eyebrows
Chubby
Double_Chin
Eyeglasses

Goatee

Gray Hair

Heavy _Makeup
High_Cheekbones
Male
Mouth_Slightly_ Open
Mustache
Narrow_Eyes
No_Beard
Oval_Face
Pale_Skin
Pointy_Nose
Receding _Hairline
Rosy_Cheeks
Sideburns
Smiling
Straight_Hair
Wavy_Hair
Wearing_Earrings
‘Wearing_Hat
‘Wearing_Lipstick
Wearing_Necklace
Wearing Necktie
Young

1.68123553498308 1.46047670114505
1.25764192139738 1.29294249928091
1.09368792760979 1.05381571022971

0.8904
0.7252
0.5122

1.06134410518395 1.12471149407601 0.798999999999999

2.352 1.02880658436214
1.39449541284403 1.32236633976589
1.70156624102154 1.08017998183669
1.30569948186528 1.16960464068483
1.00635593220339 1.10986682808716
1.03992089562244 1.29937377627469
1.35800508259212  1.12928843710292
1.07992104600792 1.00426740416926
1.26066424494032  1.1293009118541
1.15950659293917  1.0393457117595
1.46185598532334 1.24815246204514

1.4847619047619 1.13053239255933
1.30087633885102  1.29235531479741
2.44949494949494  1.63565217391304
1.37794331165961 1.21201795786807
1.41521739130434 1.07322226737098

0.9766
0.8518
0.7534
0.7684
0.7568
0.854
0.946
0.7962
0.859
0.942
0.9578
0.937
0.9368
0.952
0.6148
0.5536

1.16378620579292 1.12330668559143 0.583399999999999

1.47328992862486  1.01889931435045
1.28 1.04602510460251
1.3557779799818  1.08768131630222
1.26765068774848 1.32170279829207
1.00961538461538 1.05142857142857
1.49135109864422 1.06838387528924
1.28422782037239 1.26457127210139
1.10142050741269 1.33176813471502
1.153123680878 1.25196285352469
1.36525725929699 1.50509087726463

0.5222
0.9616
0.8808
0.8322
0.7296
0.9586

0.732
0.9228
0.9382
0.9396

1.11647331786542 1.01603413341645 0.518799999999999

1.13916759320035 1.16279926135717

1.6726155889433 1.30170504067402
1.08250497017892 1.01847107438016
5.03622577927548 1.54812552653748

0.7874

0.69
0.8064
0.9512

1.26436951774677 1.16687742370595 0.528799999999999

1.00260846420015 1.07914052831476
1.52579365079365 1.36231575963718
1.0892026578073 1.17668546526531

0.8686
0.9244
0.7826

0.1409505606
0.1452494413
0.1520317346
0.1400723457
0.1451713741
0.1576949656
0.1442556977
0.1389202923
0.1428498179
0.1420869976
0.1826313585
0.1399643421
0.1396305859

0.143850103
0.1393095106
0.1726125926

0.148198694
0.1400457323
0.1471818388

0.148946777
0.1411117315
0.1415492892
0.1618342251
0.1405434906
0.1428951621
0.1448870301
0.1604245007
0.1431550533
0.1404222101
0.1406327337
0.1386207491
0.1510140896
0.1428056359
0.1401683241
0.1419264823
0.2158842981
0.1471352577
0.1395401657
0.1407860667
0.1402778327

0.4869

0.4869

0.486

0.6119

0.5019

0.5687

0.2721

0.4415

0.5283

0.4273

1.0181

0.6281
0.5106999999999999
0.6075999999999999
0.7090000000000001
0.585

0.4938

0.5767

0.3698
0.6821999999999999
0.021100000000000008
0.7859
0.5055000000000001
0.7622

0.355

0.6119

0.8438

0.5454

0.6595

0.6718

0.5241

0.7449
0.6558999999999999
0.5728

0.6107

0.7502
0.26780000000000004
0.6887

0.7288
0.16400000000000003
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TABLE C.4. Unfairness and property values for LEW Attributes via Deep SVDD

DIR  Incompressibility SSB SFV Label Noise
Male 1.17931562745317  1.0924447774887 0.774632884425169 0.1429237619  0.07679999999999998
Asian 1.23055692048871  1.01016497611999  0.92322909533592 0.1415031001
White 1.00406917599186  1.08468961715698 0.747926652971163 0.1511053567
Black 1.34819532908704 1.03384220600128 0.957391767480788 0.1421764963  0.08120000000000005
Baby 1.06271364829537  1.03743159770965 0.836643079966522  0.143683949  0.09550000000000003
Child 1.13670569529881  1.03432464599609 0.898196758730883  0.140765438  0.10470000000000002
Youth 1.05082822021653 1.03086674213409 0.786274062238453 0.1678981342  0.13770000000000004
Middle Aged 1.10867550207333  1.02771830558776  0.866316670470973 0.1468662707 0.0645
Senior 1.00186866902908 1.04160547256469 0.957467853610286 0.1476565742  0.16779999999999995
Black Hair 1.02750194844192  1.04895257949829  0.63349311420528 0.1444525348
Blond Hair 1.08838038386602 1.01417303085327 0.891653351594004  0.184528688
Brown Hair 1.03209559606518  1.09958708286285 0.7891653351594  0.1512480983
Bald 1.00790551940226  1.00073754787445 0.824621471505744 0.1573695429  0.11350000000000005
No Eyewear 1.40606623336428 1.00252616405487 0.985087118618275 0.1403350747  0.06899999999999995
Eyeglasses 1.43913177607322 1.00310981273651 0.877729589895762 0.1413070618  0.19679999999999997
Sunglasses 1.12142575468585 1.05022633075714  0.586700144563646 0.1435135175  0.20889999999999997
Mustache 1.11839255634876  1.07019913196563 0.581298029369246 0.1434256518  0.21950000000000003
Smiling 1.07582623948232  1.03398072719573 0.641101727155139 0.1462316354 0.2974
Frowning 1.38021050679278 1.04254591464996 0.843262573232899 0.14306304  0.07879999999999998
Chubby 1.37894686222649 1.04961144924163 0.683557787415354 0.1454682116  0.10560000000000003
Blurry 1.07484216395665 1.01648831367492 0.811154226584493 0.1543799572  0.27580000000000005
Harsh Lighting 1.76541734255385 1.06726253032684 0.695579395876131 0.1612156139  0.30279999999999996
Soft Lighting 1.15505859850802  1.0463809967041 0.1456943556 0.1642
Outdoor 1.20495433082845 1.06911957263946  0.598417408506429 0.1508525053  0.15849999999999997
Curly Hair 1.13923719958202 1.05589497089385 0.566613406376017 0.1696171921  0.22760000000000002
Wavy Hair 1.06940992787003 1.04987812042236  0.62375408962946 0.1510261253  0.14180000000000004
Straight Hair 1.04934265833276  1.07179963588714  0.581830632275736  0.1555814983  0.04500000000000004
Receding Hairline 1.17698276832539  1.00636541843414 0.835806132542037 0.1448722679  0.25670000000000004
Bangs 1.09157918248827 1.06093919277191  0.690329452940728 0.1422119786  0.31120000000000003
Sideburns 1.15947653456037  1.08820021152496 0.672981815415049 0.1471594972  0.33009999999999995
Fully Visible Forehead 1.55668147556531  1.00061905384063 0.939739785437114  0.1406534992  0.22319999999999995
Partially Visible Forehead 1.25747607655502 1.03077602386474 0.858784143650612 0.1439849571 0.2298
Obstructed Forehead 1.11325281649095 1.05480468273162 0.536483299094575 0.1456306697  0.15200000000000002
Bushy Eyebrows 1.00786702803827 1.03234314918518  0.73674199193487 0.1423631794  0.11260000000000003
Arched Eyebrows 1.06208761023718  1.07342624664306 0.645286464277562 0.1421420989 0.0998
Narrow Eyes 1.08786442753544 1.09905493259429 0.862360191737046 0.1465277227  0.15269999999999995
Eyes Open 1.223370100546 1.07901871204376  0.69078596971772 0.1408611888  0.19099999999999995
Big Nose 1.03111518672274  1.0845707654953 0.698166324279083 0.1462382611 0.2893
Pointy Nose 1.11446611115883 1.05301141738891 0.634406147759263 0.1469018736  0.06599999999999995
Big Lips 1.14029929024963 1.05008065700531  0.622764969945978 0.1448668399 0.046699999999999964
Mouth Closed 1.0816224959562 1.06419742107391 0.663166704709731 0.1431995614  0.08440000000000003
Mouth Slightly Open 1.01337628971086 1.03440833091735 0.904511907479266 0.1416061479  0.32189999999999996
Mouth Wide Open 1.03990024937655 1.06561398506164 0.571102488016434 0.1447347991  0.07479999999999998
Teeth Not Visible 1.04770316767762 1.07595670223236 0.714981358898272 0.1403963187  0.18810000000000004
No Beard 1.0876431987543 1.03276085853576 0.759796089172943 0.1401160741  0.27669999999999995
Goatee 1.19802672343941  1.09399461746215 0.869284029521418 0.1522871416 0.2319
Round Jaw 1.06897059287373 1.04447555541992 0.639351746176672  0.156724269  0.04530000000000001
Double Chin 1.02390223246378 1.00809562206268 0.860229780111085  0.141805179 0.050899999999999945
Wearing Hat 1.08353184055899  1.06220078468322 0.519135661568896  0.1406492755 0.1965
Oval Face 1.12880495352612  1.02028930187225 0.950467929696416 0.1452499895  0.08360000000000001
Square Face 1.03973957569458  1.0401998758316  0.920718253062466  0.141584407  0.12819999999999998
Round Face 1.1325489572568  1.10276663303375 0.957087422962793 0.1514307107  0.08360000000000001
Color Photo 1.13798432728612  1.07599568367004 0.504983641482157  0.143338242 0.2126
Posed Photo 1.0394726007875  1.0795783996582 0.664764513429201 0.1440141143  0.10570000000000002
Attractive Man 1.08110687391574 1.03554499149322 0.848740774556798 0.1406362299  0.15300000000000002
Attractive Woman 1.51685778921912  1.05630433559417  0.977098075020923 0.1412037472  0.35509999999999997
Indian 1.04062717938913  1.05820059776306  0.84105607547744 0.1797280974  0.13529999999999998
Gray Hair 1.1973171397336  1.06187999248504 0.588830556189606 0.1409442876  0.14029999999999998
Bags Under Eyes 1.45747314192372  1.02336192131042 0.882523016054173  0.140306542  0.18779999999999997
Heavy Makeup 1.00048536793256  1.02952170372009 0.805143422354104 0.1463585953  0.13219999999999998
Rosy Cheeks 1.16560850348722 1.03843355178833 0.879707829262725 0.1407405867  0.21609999999999996
Shiny Skin 1.26315502068762 1.05610179901123 0.507037966978619 0.1653680619  0.08520000000000005
Pale Skin 1.18351263647553  1.0652779340744 0.591797915240051 0.1411130869  0.10729999999999995
5 0o’ Clock Shadow 1.17272883141058 1.05673563480377 0.534428973598113  0.1401202399 0.1421
Strong Nose-Mouth Lines 1.22455279703978 1.03042745590209  0.84432777904588 0.1408965065
Wearing Lipstick 1.19464912714504  1.04016602039337 0.866697101118466 0.1447695088
Flushed Face 1.09233277829563  1.04554724693298 0.656471125313855 0.1430755171
High Cheekbones 1.11059337257828  1.08112835884094 0.655482005630373 0.1582355048
Brown Eyes 1.17224142515288 1.01272892951965 0.860229780111085 0.1409409852
Wearing Earrings 1.16634746922024  1.0849984884262 0.636384387126226 0.1463791189
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TABLE C.5. Squared Error (SE) For Various Properties & The Proposed Whole

Model

Incompressibility SSB SFV Label Noise Whole Model
5_0_Clock_Shadow 0.0684682 0.0459237 0.0002894 3e-7 3e-7
Arched_Eyebrows 0.0126105 0.0538039 0.0131643  0.0106393 0.0106393
Attractive 0.0004621 0.0338707 0.0483136  0.0275897 0.0004621
Bags_Under_Eyes 0.0202342 0.0623039 0.0050525  0.0093071 0.0050525
Bald 0.4319569 0.00024 0.0943209  0.0748498 0.00024
Bangs 0.0006496 0.1283069 0.0774581 0.0298166 0.0006496
Big_Lips 0.1088419 0.0091254 0.0032081 0.0052196 0.0032081
Big_Nose 0.2114748 0.0001715 0.0252706 0.020549 0.0001715
Black_Hair 0.0142123 0.0593484 0.0061956  0.0106132 0.0061956
Blond_Hair 0.0100063 0.0946047 0.0130189  0.0110102 0.0100063
Blurry 0.5419093 0.0074364 0.0490523  0.0729299 0.0074364
Brown_Hair 0.0001064 0.1154422 0.0218438  0.0360707 0.0001064
Bushy_Eyebrows 0.0213848 0.0773384 0.0035219 0.006768 0.0035219
Chubby 0.0013206 0.1581314  0.015918  0.0287418 0.0013206
Double_Chin 0.0035046 0.1521108 0.0137349  0.0272636 0.0035046
Eyeglasses 0.0113092  0.120019 0.0071329  0.0140104 0.0071329
Goatee 0.1604753 0.0201623 0.0013985  0.0092697 0.0013985
Gray_Hair 0.0002775 0.1933109 0.0296317  0.0411467 0.0002775
Heavy_Makeup 0.0000469 0.0613383 0.0363665  0.0266154 0.0000469
High_Cheekbones 0.0930655 0.0000754 0.0010459  0.0000749 0.0000749
Male 0.0336658 0.0118035 0.0005703  0.0000012 0.0000012
Mouth_Slightly_Open 0.0443864 0.0033491 0.0006975  0.0047076 0.0006975
Mustache 0.282736 0.0040766 0.0060553  0.0346049 0.0040766
Narrow_Eyes 0.2105005  0.005241 0.0237357  0.0113154 0.005241
No_Beard 0.6583177 0.03911 0.1239485  0.1577867 0.03911
Oval_Face 0.3213105 0.0066273 0.0411204  0.0393565 0.0066273
Pale_Skin 0.2731508 0.0047057 0.0111297  0.0200174 0.0047057
Pointy _Nose 0.0001962 0.0922673 0.0293014  0.0316888 0.0001962
Receding_Hairline 0.5347036 0.0090082 0.1198915  0.0943515 0.0090082
Rosy_Cheeks 0.0309238 0.0892779 0.0015001 0.0063849 0.0015001
Sideburns 0.1497514  0.023381  0.005897  0.0069555 0.005897
Smiling 0.1429648 0.0036202 0.0001827  0.0027342 0.0001827
Straight_Hair 0.2121866 0.0005044 0.0203373  0.0143183 0.0005044
Wavy_Hair 0.0181157 0.0392565 0.0036124  0.0094807 0.0036124
Wearing_Earrings 0.0000825 0.1285602 0.0341021 0.0405731 0.0000825
Wearing_Hat 0.0069229 0.1368304 0.0145395  0.0234406 0.0069229
Wearing_Lipstick 0.0278786 0.0084025 0.0057513  0.0016339 0.0016339
Wearing_Necklace 0.0691438 0.0408226 0.0005308  0.0004549 0.0004549
Wearing_Necktie 0.1449726 0.0222941 0.0086847 0.00313 0.00313
Young 0.1940491 0.0011516 0.0204862  0.0260069 0.0011516
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