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Abstract—Multiplication of a sparse matrix with a dense
matrix is a building block of an increasing number of applications
in many areas such as machine learning and graph algorithms.
However, most previous work on parallel matrix multiplication
considered only both dense or both sparse matrix operands. This
paper analyzes the communication lower bounds and compares
the communication costs of various classic parallel algorithms
in the context of sparse-dense matrix-matrix multiplication. We
also present new communication-avoiding algorithms based on
a 1D decomposition, called 1.5D, which — while suboptimal
in dense-dense and sparse-sparse cases — outperform the 2D
and 3D variants both theoretically and in practice for sparse-
dense multiplication. Our analysis separates one-time costs from
per iteration costs in an iterative machine learning context.
Experiments demonstrate speedups up to 100x over a baseline
3D SUMMA implementation and show parallel scaling over 10
thousand cores.

I. INTRODUCTION AND PRIOR WORK

Computing the product of a sparse matrix with a dense
matrix is an understudied primitive in numerical linear algebra.
In this paper, we focus on the case where both matrices have
similar dimensions, in contrast to the well-studied case in
iterative methods where the dense matrix is tall and skinny [1].

Sparse-dense matrix-matrix multiplication, or SpDM3 in
short, has applications in diverse domains. Examples include
the all-pairs shortest-paths problem [2] in graph analytics,
non-negative matrix factorization [3] for dimensionality re-
duction, a novel formulation of the restriction operation [4]
in Algebraic Multigrid, quantum Monte Carlo simulations
for large chemical systems [5], interior-point methods for
semidefinite programming [6], and the siting problem in
terrain modeling [7].

Another application in statistical/machine learning is sparse
inverse covariance selection (ICS) and related problems [8],
[9], [10], [11], [12]. ICS estimation is used for data analysis.
Its computational burden can be as much as cubic in the
number of dimensions [10], [11], [12] per iteration and, hence,
easily becomes intractable as dimensionality increases beyond
a few thousand. To improve scalability, a divide-and-conquer
type approach has been proposed on a shared memory archi-
tecture [13]; however, we know of none that take advantage of
parallel distributed memory computing environments. More re-
cently, an algorithm suitable for massively parallel distributed
memory computing environments has been suggested [14] for
computing the CONCORD estimator [12]. The running time of

this ICS estimation algorithm, CONCORD-ISTA, is dominated
by the solution of two SpDM3 problems at every iteration.
Hence, a fast parallel SpDM3 would significantly increase
CONCORD-ISTA’s scalability and improve its running time.
CONCORD-ISTA and additional examples of computational
algorithms that can benefit from SpDM3 are further discussed
in Section VI.

There has been relatively little work on the SpDM3 prob-
lem. Bader and Heinecke [15] presented cache-oblivious al-
gorithms based on space filling curves, together with their
high-performance shared memory implementations. Greiner
and Jacob [16] presented I/O-efficient serial algorithms and
related lower bounds. Ortega et al. [17] provided an efficient
GPU implementation. In terms of multi-node parallelism, the
literature is even sparser. Pietracaprina et al. [18] gave lower
bounds on the number of rounds it takes to compute the sparse
matrix product in MapReduce. We are unaware of any existing
multi-node implementations.

Communication-avoiding algorithms aim to reformulate
linear algebra operations to minimize the communication
costs [19], [20]. In the case of dense-dense matrix multiplica-
tion, both 2D and 3D algorithms are optimal, given their mem-
ory footprint [21]. 3D algorithms, however, further minimize
the cost of communication relative to 2D algorithms, at the
expense of more memory usage [22]. The literature uses both
the 3D and the 2.5D names when referring to a non-perfect
cube where the third dimension (the replication dimension) is
shorter than the first two dimensions. In this paper, we stick
to the 3D naming. Sparse-sparse matrix multiplication is more
complicated due to different sparsity patterns. Lower bounds
are only known for Erdős-Rényi matrices, for which optimal
3D algorithms have also been proposed [23]. The efficient
implementation of the 3D sparse-sparse matrix multiplication
algorithm on distributed-memory architectures has been done
only recently [24].

We make several contributions in this paper. We first provide
communication lower bounds for parallel SpDM3 algorithms.
We then introduce efficient parallel algorithms, together with
rigorous analysis of their communication costs. We also pro-
vide performance results on up to ten thousands of cores
using sparse matrices with both uniform and skewed nonzero
distributions. Finally, we analyze the SpDM3 problem within
an iterative algorithm.



II. PRELIMINARIES

This paper focuses on the parallel matrix-matrix multipli-
cation C = A×B. A is a sparse, m× ` matrix, B is a dense,
` × n matrix, and C is an m × n matrix which is usually
dense, depending on the sparsity pattern of A and the size of
`. For theoretical analysis and lower bounds, we assume that
the nonzeroes in A are uniformly distributed, as in the Erdős-
Rényi model [25], and that there are d nonzeroes per row.
For experimental analysis, we also use more realistic sparsity
patterns. Note that all analyses can be easily extended to the
reverse case where A is dense and B is sparse.

A. Notation

We consider a distributed, homogeneous parallel system
with p processors connected through the network. Let P be
the array of all processors. P can be one-, two-, or three-
dimensional, depending on the arrangement of the algorithm,
and is indexed with tuples of same dimensionality. The :
operator returns a vector of all indices in the dimension it
is used in, e.g., P (i, :) refers to all processors in row i of the
processor grid. Our indexing is zero-based.

Let Xh×w denote a partitioning of a matrix X into an h×w
grid of equal size submatrices. The same tuple indexing applies
here, for example, Xh×w(i, :) = [Xh×w(i, 0)|...|Xh×w(i, w−
1)]. We will refer to matrix elements as a corresponding
lowercase letter with subscript. xij means the element in row
i and column j of matrix X .

Let nnz(·) denote the number of nonzeroes of a matrix. We
use this notation for dense matrices as well because it allows
us to simplify notation and compare asymptotic results for
matrices with different sparsity and aspect ratio. Throughout
this paper, nnz(A) = md, nnz(B) = `n, and nnz(C) = mn.

B. Computation

The iteration space for the problem can be seen as an
m × n × ` cuboid where each voxel (i, j, k) represents the
computation cij += aik · bkj . All p processors partition the
cuboid and compute the voxels in their subsets. Figure 1 shows
the computational cuboid, an example voxel subset V , and its
projections onto the A, B, and C planes.

C. Communication

We are interested in per-processor communication costs
along the critical path. There are two types of communica-
tion cost: latency (cost to send a message) and bandwidth

Fig. 1: The matrix multiplica-
tion computational cuboid.

(cost per word). The communi-
cation time can be modeled as,
Sα + Wβ, where S is the num-
ber of messages, α is the latency
cost, W is the number of words,
and β is the reciprocal bandwidth.
We assume α and β are fixed in
our analysis, so it is sufficient to
measure S and W to capture the
communication trend. In addition,
we assume that work must be

performed on more than one processor so the communication
costs cannot be trivially zero.

There are 4 communication operations used in this paper,
• Shift: Shifting w words by distance d means sending w

words to the dth neighbor in one direction and replacing
it with w words from the dth neighbor in the opposite
direction. The communication costs are S = O(1) and
W = O(w).

• Broadcast: Broadcasting w words sends w words to all p
processors in a specified communication group. We assume
a broadcast tree implementation [26] which has communi-
cation costs, S = O(log p) and W = O(w log p).

• Reduce: Reducing w words sums a word from each of p
processors in a specified communication group for w words.
It has the same costs as broadcast, S = O(log p) and W =
O(w log p).

• Gather: Gathering w words from each of p processors in
a specified communication group creates wp words on the
gather root. It has communication costs S = O(log p) and
W = O(wp log p).
We assume that each processor starts out with original data

divided equally to p parts and that replicating them incurs
communication.

III. COMMUNICATION LOWER BOUNDS

For simplicity, we assume that all matrices are square with
length n in this section. Let M be the size in words of the fast
memory each of our p processing elements has. Let F be the
total number of FLOPS to multiply A and B, F = O(dn2).
The general lower bounds for communication along the critical
path from [27],

S = Ω

(
F

p
√
M3

)
, W = Ω

(
F

p
√
M

)
, (1)

trivially apply here. To relate M to our problem parameters,
we assume that M can fit at most c copies of all three matrices,
i.e., M = O(n2c/p). Plugging in F and M into Equation (1)
gives us the lower bounds,

Scompute = Ω

(
d
√
p

nc3/2

)
, Wcompute = Ω

(
dn
√
pc

)
.

However, these bounds does not consider the data move-
ments to make the n2c/p data available. This replication costs
are usually omitted in the dense-dense or sparse-sparse matrix
multiplication analysis because they are of lower order than
the main S and W costs. In our case, we have to consider
the cost for W since d� n. For practical reasons, we assume
each processor starts with only n2/p words. The lower bounds
of collecting n2/p words from c− 1 other processors are

Scollect = Ω (log c) , Wcollect = Ω

(
n2

p
· c− 1

c

)
.

Therefore, the communication lower bounds are

S = Ω

(
d
√
p

nc3/2

)
, W = Ω

(
dn
√
pc

+
n2

p

)
. (2)



To simplify the analysis, we enforced the same replication
factor on all matrices. Allowing different replication factors
for each matrix would change the lower bounds, which is the
subject of future work.

IV. ALGORITHMS

Here we discuss existing parallel algorithms and present a
few new variants. The algorithms are categorized based on how
they partition the computational cuboid [23]. The constants on
the leading order terms can be compared across all analyzed
algorithms, so we are going to abuse the big-O notation by
keeping the constants inside.

A. 1D algorithms

1D algorithms partition only one dimension of the cuboid,
i.e., slicing the cuboid into planes. They logically arrange
processors into a ring (1D torus) topology and partition
matrices along a single dimension. Only one matrix needs to
be passed around. We only analyze communicating A since it
is asymptotically cheaper than communicating B or C.

1D blocked column: Processor P (j) has A1×p(:, j) and
B1×p(:, j), and is responsible for computing

C1×p(:, j) =

p−1∑
k=0

A1×p(:, k)Bp×p(k, j).

See Figure 2b (with c = 1) for illustration. For p rounds,
each processor multiplies A by a corresponding `/p × n/p
submatrix of B, adds the result to C, and shifts A cyclically
by one. Each round a processor sends one message of size
nnz(A)/p words. Therefore, the communication costs are,

S = O(p), W = O(nnz(A)).

1D blocked inner product: P (j) owns Ap×1(j, :) and
B1×p(:, j), and must compute C1×p(:, j) by calculating
Cp×p(i, j) = Ap×1(i, :)B1×p(:, j) for all 0 ≤ i < p. See
Figure 2d (with c = 1) for illustration. For p rounds, each
processor calculates a corresponding n/p× n/p submatrix of
C using the locally available A and B, and shifts A cyclically
by one. Each round a processor sends one message of size
nnz(A)/p. so the communication costs are the same as the
1D blocked column variant,

S = O(p), W = O(nnz(A)).

1D blocked row and 1D blocked outer product require
passing dense matrices B or C around, so they are omitted.

B. 2D algorithms

2D algorithms split two dimensions of the computational
cuboid, e.g., pencils of length `. They logically arrange pro-
cessors into a 2D grid of size pm×pn. There are many variants
including Cannon’s algorithm [28] and SUMMA [29]. Since
both algorithms have similar costs, we will only discuss the
stationary-C SUMMA algorithm because it is more general-
izable and more widely used. We assume pm = pn =

√
p for

simplicity.

2D SUMMA calculates b outer products, where b is a
blocking factor. Here we assume b =

√
p. Processor P (i, j)

owns A
√
p×√p(i, j) and B

√
p×√p(i, j) and computes

C
√
p×√p(i, j) =

√
p−1∑
k=0

A
√
p×√p(i, k)B

√
p×√p(k, j).

See Figure 2a (with c = 1) for illustration. In the kth round,
P (i, k) broadcasts its A to P (i, :) and P (k, j) broadcasts
its B to P (:, j). All processors then do the multiplication
and accumulate the product in their local C’s. There are

√
p

broadcasts of A (log
√
p messages and nnz(A)/p words each),

and
√
p broadcasts of B (log

√
p messages and nnz(B)/p

words each). Therefore, l

S=O(2
√
p log

√
p),W=O

(
nnz(A)+nnz(B)

√
p

log
√
p

)
.

C. 3D algorithms

3D algorithms partition all 3 dimensions of the computa-
tional cuboid, e.g., into subcubes, length-n/2 pencils, etc.

3D SUMMA algorithms [30], [22] (sometimes called
2.5D) utilize replication to avoid communication. It logically
arranges processors into a 3D pm×pn×c mesh. In essence, it
is c layers of 2D SUMMA algorithm with pm× pn processor
grids, except that each layer only computes one-cth of the
outer products. We assume pm = pn =

√
p/c for simplicity,

as illustrated in Figure 2a.
Converting from a 2D layout to a 3D layout requires

preprocessing. We call this replication since it also makes c
processors hold the same blocks of each matrix. This can be
done by exchanging blocks within a group of c processors and
on each processor concatenating into larger blocks. The algo-
rithm arranges the processors in a way that A

√
p/c×
√

p/c(i, j)

and B
√

p/c×
√

p/c(i, j) are on P (i, j, :). These P (i, j, :) coop-
erate as a team on computing C

√
p/c×
√

p/c(i, j). Each layer
is responsible for calculating

√
p/c3/2 = q outer products.

P (i, j, `) calculates

C
√

p
c×
√

p
c (i, j)=

q−1∑
k=0

A
√

p
c×
√

p
c (i, `q+k)B

√
p
c×
√

p
c (`q+k, j).

In the kth round, P (i, `q+k, `) broadcasts its A to P (i, :, `)
and P (`q + k, j, `) broadcasts its B to P (:, j, `), then each
processor computes the product. After q rounds, P (i, j, :) do
a sum reduction on C to get the final result. This costs q broad-
casts of A (log

√
p/c messages and nnz(A)c/p log

√
p/c

words each), q broadcasts of B (log
√
p/c messages and

nnz(B)c/p log
√
p/c words each), and one reduction of C

(log c messages and nnz(C)c/p log c words).
As for the replication cost, we will model it as P (i, j, 0)

gathering all matrices from P (i, j, :) then broadcasting the
concatenated matrices back to them. Replicating A takes
one gather (log c messages and nnz(A)c/p log c words)
and one broadcast (log c messages and nnz(A)c/p log c
words). Replicating B takes one gather (log c messages and
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Fig. 2: Illustrating processor mesh layouts for 1.5D and 3D algorithms. Matrix names at the end indicate that they are being replicated. (Substituting c = 1
gives corresponding 1D and 2D algorithms.)

nnz(B)c/p log c words) and one broadcast (log c messages
and nnz(B)c/p log c words). Let Wr represent the bandwidth
costs of replication and reduction combined,

Wr = O

(
2 nnz(A) + 2 nnz(B) + nnz(C)

p
c log c

)
.

The total communication costs are,

S = O

(
2

√
p

c3/2
log

√
p

c
+ 5 log c

)
,

W = O

(
nnz(A) + nnz(B)

√
pc

log

√
p

c
+Wr

)
.

D. 1.5D algorithms

2D and 3D algorithms communicate at least one dense
matrix while 1D algorithms can limit the movement to just
the sparse matrix A. This section applies replication to 1D
algorithms to avoid more communication. The first algorithm
simply increases the size of matrix A that is stored locally.
The latter two algorithms are similar to the communication-
avoiding N -body algorithms [31], [32] which also operate on
a ring topology. We will still use c for replication factor.

1.5D blocked column replicating A (ColA): We start by
replicating just the sparse matrix A c times, 1 ≤ c ≤ p.
Processor P (j) has A1×p/c(:, j) and B1×p(:, j), and must
compute

C1×p =

p/c−1∑
k=0

A1×p/c(:, k)Bp/c×p(k, j).

See Figure 2b for illustration. For p/c rounds, each processor
computes the product and shifts A among processors in the
same layer by one. Latency cost is improved by a factor of c,
but the total bandwidth cost stays the same, since the message
size is also increased by c. Replication takes 2 log c messages
and 2 nnz(A)c/p log c words. Therefore, the total costs are,

S = O(2 log c+ p/c),

W = O

(
2 nnz(A)c

p
log c+ nnz(A)

)

1.5D blocked column replicating all matrices (ColABC):
Next, we investigate paying an extra cost of replicating the
dense matrix B in an attempt to reduce more shifting costs
asymptotically. This algorithm groups p processors into a
p/c × c grid. See Figure 2c for illustration. P (j, :) have
A1×p/c(:, j) and B1×p/c(:, j), and work as a team to compute

C1×p/c(:, j) =

p/c−1∑
k=0

A1×p/c(:, k)Bp/c×p/c(k, j).

All c team members split these p/c summation terms equally.
P (j, `) computes p/c2 = q terms,

C1×p/c(:, j) =

(`+1)q−1∑
k=`q

A1×p/c(:, k)Bp/c×p/c(k, j).

This computation pattern can be done by first shifting A in
the same layer by distance `q (to jump to the starting point),
then all processors can alternate between multiplication and
shifting by one as usual for q rounds, and reduce C at the
end. Figure 3a shows an example with p = 8 and c = 2.

Replication and reduction cost the same as 3D SUMMA
algorithm’s. The matrix A is shifted p/c2 times so it takes
p/c2 messages and p/c2 ·nnz(A)c/p = nnz(A)/c words. Total
communication costs are,

S = O
(

5 log c+
p

c2

)
, W = O

(
nnz(A)

c
+Wr

)
.

1.5D blocked inner product replicating all matrices
(InnerABC): Next, we apply replication to the inner product
algorithm.1 This algorithm also groups p processors into
p/c × c grid, except this time P (j, :) have Ap/c×1(j, :) and
B1×p/c(:, j), and compute C1×p/c(:, j) together as a team.
See Figure 2d for illustration.

There are p/c blocked inner products to do and each team
member does p/c2 = q of them. P (j, `) computes

Cp/c×p/c(k, j) = Ap/c×1(k, :)B1×p/c(:, j)

for `q ≤ k < (`+ 1)q.

11.5D blocked inner product replicating A has the same communication
costs and output layout as 1.5D blocked column replicating A and is omitted.



Algorithms #messages = S #words = W
Replication Propagation Collection Replication Propagation Collection

1.5D Col A 2 log c
p

c
- 2

nnz(A)

p
c log c nnz(A) -

1.5D Col ABC 4 log c
p

c2
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A)

c

nnz(C)

p
c log c

1.5D Inner ABC 4 log c
p

c2
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A)

c

nnz(C)

p
c log c

3D SUMMA ABC 4 log c 2

√
p

c3/2
log

√
p

c
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A) + nnz(B)
√
pc

log

√
p

c

nnz(C)

p
c log c

TABLE I: Algorithm communication costs. Uppercase letters at the end of algorithm names indicate the matrices being replicated.

P (j, `) initially shifts A by `q to start at the required offset
then alternates between multiplication and shifting by one for
q rounds. Finally, the algorithm gathers the final matrix C to
P (j, 0) on the first layer. Figure 3b shows an example with
p = 8 and c = 2.

Shifting A costs p/c2 messages and nnz(A)/c words.
Gathering C costs the same as reduction asymptotically so
the total communication costs are,

S = O
(

5 log c+
p

c2

)
, W = O

(
nnz(A)

c
+Wr

)
.

E. Comparison

We are interested in comparing our 1.5D algorithms, ColA,
ColABC, and InnerABC with the classic 3D SUMMA algo-
rithm which will be called SummaABC from now on, with
ABC indicating that it replicates all three matrices. Table I
summarizes all communication costs of all replicating algo-
rithms. The costs of 1D and 2D algorithms can be obtained by
substituting c = 1 into 1.5D and 3D algorithms, respectively.
None of the presented algorithms obtained the communication
lower bounds, although SummaABC has quite similar costs.

Communication consists of three phases, replication, propa-
gation, and collection. Replication is the gathering of neighbor-
ing matrices and the broadcasting of the concatenated matrix.
Propagation is the communication within the multiplication
steps to get the necessary blocks for each local multiplication.
It corresponds to the shiftings of A in 1D and 1.5D algorithms,
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Fig. 3: Example computations of 1.5D blocked column ABC and 1.5D blocked
inner product ABC on 8 processors. Numbers in the grid are processor ranks.

and the broadcastings of A and B in 2D and 3D algorithms.
Collection refers to reduction or gathering of C at the end
after all multiplications are done.

Even though ColABC and InnerABC have the same asymp-
totic costs, InnerABC uses gather in the collection phase which
can be significantly faster than ColABC’s reduction in practice.
They also store matrices in different layouts, which can affect
local computation rates. The storage format for C is key to
performance in some context as well. We will discuss this in
Section VI.

There are limits to the effective replication factors for each
algorithm. For ColA, c = p corresponds to replicating the
whole matrix A, therefore c ≤ p is the limit. ColABC and
InnerABC have c ≤ √p, since when c =

√
p, each processor

layer only computes one round of local matrix multiplication –
any larger c’s would leave some layer idle. The same reasoning
applies to SummaABC algorithm whose upper limit is c ≤ 3

√
p

in which case each layer only computes one outer product.
Latency costs are not dependent on matrix inputs, but purely

on the number of processors p and the replication factor c.
Out of all three phases, the propagation cost grows fastest
with p and is the dominating cost. The best latency cost
for propagation is O(1) and is attainable by all algorithms
with their highest effective c’s. However, higher c’s mean
more memory requirement and increased bandwidth costs for
replication and possibly collection. For a fixed c, SummaABC
achieves lowest latency costs.

Bandwidth cost is the number of words sent. It can be
computed from latency cost (number of messages sent) and
message size (number of words sent in each message). Most
analysis in prior work for dense-dense or sparse-sparse case
considers the message sizes for matrices A and B to be
the same. Thus, SummaABC also minimizes bandwidth costs
altogether and is the best algorithm overall in their cases.
This assumption does not hold in our case, and one can
utilize less bandwidth by moving A more and moving B less
often than SummaABC does, at the expense of higher latency
costs. For example, ColA only moves the sparse matrix A
around. It has the lowest overall asymptotic bandwidth cost,
but also the highest latency cost. ColABC and InnerABC opt
to replicate the dense matrix B to achieve asymptotically
lower propagation latency and bandwidth than ColA. They
also have to move the dense matrix C in the collection phase.
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Fig. 4: Illustrating areas that each algorithm has theoretically lowest overall bandwidth cost. X-axis is the ratio of nnz(A) versus nnz(B). Y-axis is the
number of processors. There are three subgraphs for three different nnz(C) : nnz(B) ratios. 1.5D ABC stands for both Col ABC and InnerABC. The area
for 1.5D ABC includes the area for 1.5D Col A. Best replication factors for each data point are shown in colors. General observation is that ColA is best for
sparser matrices or lower concurrency while SummaABC is the opposite. 1.5D ABC algorithms help improve scalability of ColA.

In other words, they send (2 nnz(B)+nnz(C))/p·c log c more
words to reduce the propagation bandwidth from nnz(A) to
nnz(A)/c. In general, nnz(A) � nnz(B),nnz(C) so p has
to be considerably large for this trade-off to pay off. When
ColABC and InnerABC are not replicating, they have equal
overall bandwidth costs to ColA. SummaABC moves the dense
matrix B in every phase so it is unlikely to beat any of the 1.5D
algorithms in terms of bandwidth when A is very sparse. It
will become preferable again when nnz(A) becomes closer to
nnz(B), decreasing the message-size imbalance, or when the
number of processors grows large (since it minimizes latency).

It is best to obtain hardware parameters to determine this
latency-bandwidth trade-off. However, it would be great to
see the big picture of where each algorithm is most suitable
for without being specific to any particular machine. We
found that the bandwidth costs are more prominent in our
experiments, so we focus our analysis on just them for sim-
plicity. Dividing the bandwidth costs in Table I with nnz(B)
and representing nonzero ratios nnz(A)/ nnz(B) = f and
nnz(C)/nnz(B) = g eliminate one variable off the table.
Knowing g, we can plot a graph with p and f as axes and
search for the best algorithm over all possible c’s at each
point. We picked three different nnz(C) : nnz(B) ratios (g),
1:1 in Figure 4a, 11.67:1 in Figure 4b, and 0.38:1 in Figure 4c.
For an SpDM3 problem, nnz(C) : nnz(B) ≈ m : ` and can
be interpreted as the tallness of matrix A. For example, 1:1
means square A’s, 11.67:1 applies to tall A’s, and 0.38:1 refers
to rather fat A’s. We draw black lines to separate between
algorithms and use colors to show the best replication factors.
The best replication factor for ColA is always 1 because it
does not reduce bandwidth with increasing c. The area that
ColA wins is a subset of the area that ColABC and InnerABC
win. The graphs confirm the intuition from earlier analysis that
ColA is most suitable with very sparse matrices or small scale
runs. ColABC and InnerABC can help improve scalability
to some level, but eventually SummaABC wins as we move
towards larger concurrency or denser matrices.

Since this analysis is based on just nnz(A), nnz(B), and
nnz(C), it is trivially applicable to sparse-sparse matrix-matrix
multiplication (of different sparsities and/or sizes) or even
dense-dense matrix-matrix multiplication (of different sizes).

V. PERFORMANCE RESULTS

We implemented all four algorithms listed in Table I using
C++ and MPI. A is stored in zero-based indexing Compressed
Sparse Row (CSR) format;2 B and C are stored in row-major
format, except where noted. We used the multi-threaded Intel®

Math Kernel Library (MKL) for local sparse-dense matrix-
matrix multiplication (mkl dcsrmm). We ran our experiments
on Edison, a Cray XC30 machine at the National Energy
Research Scientific Computing Center (NERSC). Edison has
a Cray Aries interconnect with a Dragonfly topology and
consists of 5,576 compute nodes, each with 2 sockets of 12-
core Intel Ivy Bridge processors running at 2.4GHz and with
64 GB memory. We used Intel’s C++ compiler (icpc) version
15.0.1, Intel MKL version 11.2.1, and Cray MPICH version
7.3.1. All benchmarks are run with 2 MPI processes per node
and 12-way multi-threaded MKL operation per process. We
did not utilize Intel’s Hyper-Threading Technology nor Turbo
Boost Technology to avoid high performance variance.

A. Trends in Communication Costs

Figure 5 shows the cost breakdown of all algorithms running
on 3, 072 processors (256 MPI processes). A is an Erdős-
Rényi matrix with n=65, 536 and 41 nonzeroes per row
(0.0625% nonzeroes). The first two bars on the left belongs to
SummaABC where all three matrices are replicated 1 (i.e., not
at all) and 4 times, respectively. The next group is the ColA
algorithm in which A is partitioned into block columns and
replicated with the factors (c) shown above the algorithm’s
name. The last two groups are ColABC and InnerABC with

2The CSC (Compressed Sparse Column) format would scale better in
terms of storage for the blocked column algorithms, but we found MKL’s
multiplication routine for the CSC format (mkl dcscmm) significantly slower
than the CSR’s (mkl dcsrmm), so we used CSR format in all implementations.
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similar replication factors (c) shown in each label. All costs
in the stacked bars are average costs over all processors.

The computation times in green are unequal even though
all algorithms do the same amount of work. This is be-
cause the local MKL matrix-multiplication routine has varying
efficiency for different shapes of input matrices. Figure 6
shows MKL performance for all of the relevant shapes and
explains the variability in computation time in our algorithms.
In general, MKL performs better on larger matrices, since
they have higher computational intensity, although there is
a dropoff in one case. To be precise, SummaABC performs
4K × 4K × 4K local matrix multiplications when c = 1, and
8K × 8K × 8K when c = 4. ColA does 64K × 256c × 256
local matrix multiplications for 1 ≤ c ≤ 256. ColABC does
64K×256c×256c local matrix multiplications for 1 ≤ c ≤ 16.
Finally, InnerABC does 256c × 64K × 256c local matrix
multiplications for 1 ≤ c ≤ 16. We exclude the bar of ColABC
at c = 16 from Figure 6 because it is too tall.

Sometimes we found nontrivial variability across processors
within an algorithm, even though all performing the same
number of local multiplications on the same shape of matrices.
We believe this is due to differences in the nonzero pattern of
A and also from cache effects. To separate idle time due to
load imbalance from useful computation or communication,
there is an extra barrier after the computation phase for these
time breakdown graphs. The barrier time can therefore be
substantial and is shown in gray on top of the computation
time. The total height of the stacked bars is the average total
runtime of the run with barrier. We also show the maximum
total runtime across all processors from similar runs without
barriers in black dotted line.

For any of the algorithms with c > 1 for A or B, the
time to replicate those matrices is shown in bright red and
blue, respectively. Replication times increase linearly with c
as predicted, although barrier costs decrease with c since the
set of processors involved in a barrier is smaller.

In each step within the multiplication algorithm, the local

matrices are broadcast or shifted right after local matrix mul-
tiplication. The time to propagate A (shift or broadcast), and
propagate B (broadcast) are in brown and purple, respectively.
ColA reduces S by c but does not reduce W , and its shift
time stays the same but with moderate variance, which could
be because it sends many small messages. Both ColABC and
InnerABC reduce S by c2 and W by c so we expect between
two to four times reduction in shift or broadcast time as we
double c. This trend might not be apparent in the graph since
the duration is very short and there might be some overheads
introduced. The SummaABC algorithm reduces S by c3/2 and
W by

√
c and it does show a decrease in communication time

by a factor of between
√

4 = 2 to 43/2 = 8 as c is quadrupled
in the graph. Since the factor seems closer to 2, it means that
bandwidth is more prominent than latency on Edison, for our
problem.

ColABC and SummaABC require a reduction of matrix C
while InnerABC gathers C at the end. All of these are shown
in yellow as collection cost. Even though gather asymptotically
costs the same as reduce, in practice it can cost much less,
because each processor only sends a message of size ranging
from n2/p to n2c/p, depending on its position in the gather
tree, instead of all n2c/p in reduction. ColA has the best
communication and also overall cost. At c = 32, it is 12.06
times faster than SummaABC, whose communication time is
the worst because it also propagates the dense matrix.

B. Scalability

Figure 7 shows strong scaling performance on 384 to 12,288
cores for 65, 536 × 65, 536 Erdős-Rényi matrices with 1%
nonzeroes for A. All our non-cost-breakdown graphs were run
without barriers. For each algorithm at each number of cores,
we report the best speedup over all available replication factors
(c), so the graphs are not expected to be smooth or monotonic.
Since the problem cannot fit into one node, we timed the
multiplication on 2 nodes (48 cores) with the same Hybrid
MPI configuration, and excluded communication time for a
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baseline. We estimated the serial running time by multiplying
this measured time by 48. The black dotted line indicates the
ideal speedup.

The superlinear speedup of ColA and ColABC at the
beginning was because of significantly faster computation time
(again due to different MKL performance with different matrix
sizes, see the trends in Figure 6). They both fell to sublinear
speedup at larger scale where the edge in computation time
was gone and the increasing communication time dominated.
ColABC was also faster than InnerABC because of the faster
computation time. SummaABC was outperformed by ColA by
factors from 3.25× to 4.89×, but it still has decent scalability.

We report the best replication factors in Table II. This exper-
iment maps to a line in Figure 4a at nnz(A)/ nnz(B) = 1%
from 32 to 1,024 MPI processes. The figure predicts any of
the 1.5D algorithms could win with c = 1 (or any c in case
of ColA), which is true because InnerABC wins at 384 cores
with c = 1, then ColABC wins the rest with c > 1. We also
see larger replication factors as the number of cores increases,
consistent with the trend in Figure 4. All algorithms have best
c’s greater than 1 on 6,144 cores onwards.

C. Non-uniform Distribution

Next, we experiment with matrices with non-uniform
nonzero distribution. A Graph500 matrix A is generated with
RMAT parameters a = 0.57, b = 0.19, c = 0.19, and
d = 0.05 [33]. Using these parameters, RMAT is known
to create a matrix with skewed distribution (approximating
a power-law distribution if some noise is added [34]) of
nonzero row and column counts. We deviated from the average
edge factor (nonzero row/column count) suggested by the
Graph500 benchmark, in order to stay consistent with the
density of Erdős-Rényi matrices we used. We also modified
our 1.5D algorithms to partition work based on equal number
of nonzeroes (using greedy algorithm) instead of number of
rows or columns to mitigate the expected load imbalance.

Fig. Number of processors
384 768 1,536 3,072 6,144 12,288

7 2, 1 ,1,1 1,1,1, 2 2,1,1, 8 1,2,1, 16 2,2,2, 32 4,1,4, 8
8a 2,1, 1 ,1 1,1, 1 ,2 2,1, 1 ,4 1,1,1, 8 2,2,2, 16 4,2,2, 32
8b 2,1,1, 2 1,1,1, 2 2,1,1, 4 1,1,1, 8 2,2,2, 16 4,2,2, 32
9a 2,1,1, 2 1,1,1, 8 2,1,1, 8 1,2,1, 16 2,2,2, 8 -
10a - 1,1, 1 ,64 2,1, 1 ,64 1,2, 1 ,64 2,2, 1 ,64 -
11a 2,1, 1 ,32 1,1, 1 ,32 2,1, 1 ,32 1,1, 1 ,32 2,1,1, 32 -

TABLE II: Showing the best replication factors (c) for each strong/weak
scaling graph in the paper. Each cell lists the replication factors of the
algorithms in the following order: SummaABC, ColABC, InnerABC, and
ColA. The winning algorithm in each cell is circled. A dash means we did
not run an experiment for that configuration.

Figure 8 compares weak scaling performance of Erdős-
Rényi versus Graph500 matrices. We fix the number of nonze-
roes per row to d = 164 and vary the number of cores from
384 to 12, 288 cores. We start with 4, 096 × 4, 096 matrices
(4% nonzeroes) on 384 cores and double the matrix size as we
double the number of cores, ending with 131, 072× 131, 072
(0.125% nonzeroes) matrices on 12, 288 cores. Some points
from Graph500 have performance than Erdős-Rényi because
of faster computation time. This might be due to the different
structures of nonzeroes. Dotted lines show the weak scaling
of the actual computation times of each algorithm. The data
for InnerABC in Figure 8b are collected with one-based
indexing version of multithreaded mkl dcsrmm because the
zero-based multithreaded version did not return when called
with some local matrices specific to InnerABC’s partitioning.
Its performance in Figure 8b is lower than expected because
the one-based indexing version has slower computation time.

We still observe the same performance trend for all algo-
rithms in the Graph500 results without any significant load
imbalance. ColA has highest speedup over SummaABC at
12, 288 cores, with 9.64× speedup for Erdős-Rényi matrix
and 9.94× speedup for Graph500 matrix.

D. Real-world Matrices

Our final experiments test on three real-world matrices of
different shapes from the University of Florida Sparse Matrix
Collection [35]. Each of these sparse matrices (A) is multiplied
by a generated dense matrix B of the same size as AT .

Mouse gene network from V. Belcastro (mouse gene.mtx)
is a square, symmetric matrix of size 45, 101 × 45, 101 with
28, 967, 291 nonzeroes (degree d = 642.28, 1.424% nonze-
roes). Figure 9a and Figure 9b show the strong-scaling and
cost-breakdown graphs. See Figure 4a at nnz(A)/ nnz(B) =
1.42% for its bandwidth plot. The data for InnerABC at
3,072 and 6,144 cores are collected with one-based indexing
multithreaded mkl dcsrmm again due to the same zero-based
indexing multithreaded MKL issue mentioned in Section V-C.
These points are significantly slower than the points from
384 to 1,534 cores partially because they use slower routine.
We get similar results to past experiments, except this time
we see noticeably more load imbalance despite the greedy
partitioning. ColA still performs best, followed by InnerABC,
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Fig. 8: Weak Scaling of square Erdős-Rényi and Graph500 matrices with fixed d = 164 nonzeroes per row on p = 384, 768, 1536, 3072, 6144, and 12288
cores of Cray XC30 with corresponding matrix sizes of n = 4096, 8192, 16384, 32768, 65536, and 131072 (4%, 2%, 1%, 0.5%, 0.25%, and 0.125%
nonzeroes), respectively. Flops rates from only the computation time are shown in dotted lines and explain the performance jump of the algorithms around
768 and 1,536 cores. The skewed distribution for this particular Graph500 matrix does not introduce substantial load imbalance, yielding similar performance
to Erdős-Rényi’s. It also increases the computation efficiency in some cases.

ColABC, and SummaABC. The maximum speedup is 5.27×
from ColA over SummaABC on 384 cores.

Simplicial complexes from V. Welker (shar te2-b2.mtx)
is a tall matrix with dimensionality 200, 200 × 17, 160 with
600, 600 nonzeroes (degree d = 3, 0.0175% nonzeroes).
The strong scaling and cost breakdown graphs are shown in
Figure 10a and Figure 10b. The corresponding bandwidth plot
is shown in Figure 4b. We observed mild load imbalance.
The computation time for ColA and ColABC is higher than
others because their local matrix shapes are tall and skinny.
InnerABC has local matrices with better aspect ratio so it
performs best in this scenario. The reduction time for ColABC
and SummaABC is also high because the resulting matrix C
is fairly large. The message sizes are very skewed: nnz(C)�
nnz(B) � nnz(A). The highest speedup is 38.24× at 1,536
cores, between InnerABC and SummaABC.

Stochastic linear programming problem from C.
Meszaros (stormg2-125.mtx) is a fat matrix of size 66, 185×
172, 431 with 433, 256 nonzeroes (degree d = 6.55, 0.0038%).
Figure 11a and Figure 11b show the strong scaling and
cost breakdown graphs. According to the bandwidth plot in
Figure 4c, any of the 1.5D algorithms could win. Again,
InnerABC wins with c = 1 because of faster computation
time. We also observed load imbalance. The largest speedup is
99.55×, between InnerABC and SummaABC at 1,536 cores.

VI. ITERATIVE MULTIPLICATION

Many algorithms in statistical/machine learning are itera-
tive: first an initial solution is chosen, then iterative updates are
applied until some convergence criteria is met. Hence, if the
updates involve SpDM3 evaluations, total computational time
spent on these evaluations can add up quickly. Also, required
number of iterations are not known apriori, and may vary
drastically depending on many factors. In case of CONCORD-
ISTA, for example, number of iterations can depend on penalty
parameter, (numerical) rank of the input data, choice of step

size, etc [14]. In this section, we illustrate various methods
that can potentially benefit from using SpDM3.

Let X denote a matrix of dimension r × n, where r-rows
are independent observations of an n-dimensional random
vector. Such matrix can represent data from various scientific
disciplines including neuroscience, biology, and even social
sciences. For example, X may be fMRI scan data collected
for r time periods over n voxels [36], expressions of n genes
from r individuals [37], or voting patterns [37]. In many high
dimensional datasets, dimensions of matrix X is such that
r � n, which we will assume is the case here.

Suppose B = XTX so that A, B and C are all of size
n× n. Suppose there are s iterations, each of which consists
of one global matrix multiplication (C = AB), The replication
costs (red and blue bars in Figure 5) is only paid once. The
propagation costs (brown and purple) and computation costs
(green and gray) recur every iteration. CONCORD-ISTA uses
element-wise soft-thresholding operator which depends on the
total magnitude of cij , so a per-iteration reduction is needed
for ColABC and SummaABC. ColA and InnerABC store an
entire element cij on a single layer so they do not need to
pay collection costs in each iteration. Assuming ColABC and
InnerABC must pay collection costs every iteration, the total
bandwidth costs are

WColA =2
nnz(A)

p
c log c + nnz(A)s,

WColABC =2
nnz(A) + nnz(B)

p
c log c +

(
nnz(A)

c
+

nnz(C)

p
c log c

)
s,

WInnerABC =2
nnz(A) + nnz(B)

p
c log c +

(
nnz(A)

c

)
s +

nnz(C)

p
c log c,

WSUMMA =2
nnz(A) + nnz(B)

p
c log c+(
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√
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√
p

c
+
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If s is large enough then both the replication and collection
terms of InnerABC with dense matrices can be amortized,
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Fig. 9: Strong scaling and cost-breakdown results from multiplying the Mouse gene network matrix (mouse gene.mtx) (45, 101× 45, 101, 1.42% nonzeroes)
with a dense 45, 101× 45, 101 matrix. ColA performs the best again as this configuration is well in its bandwidth-winning region (a vertical line at 1.42%
in Figure 4a from 32 to 512 MPI processes).
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Fig. 10: Strong scaling and cost-breakdown results from multiplying the Simplicial complexes matrix (shar te2-b2.mtx) (200, 200 × 17, 160, 0.0175%
nonzeroes) with a dense 17, 160×200, 200 matrix. InnerABC wins over ColA because ColA does tall-skinny local matrix multiplications which is significantly
slower than InnerABC’s fatter local matrices.
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Fig. 11: Strong scaling and cost-breakdown results from multiplying the Stochastic linear programming problem matrix (stormg2-215.mtx) (66, 185×172, 431,
0.0038% nonzeroes) with a dense 172, 431× 66, 185 matrix.
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making InnerABC more desirable, since it does not move any
dense matrix in propagation, does not need to collect every
iteration, and it has potentially better propagation cost than
ColA. Figure 12 illustrates the area each algorithm would
have the lowest bandwidth cost for 10 and 20 iterations of
multiplication. The area where InnerABC is best intuitively
increases with the number of iterations.

In addition to CONCORD-ISTA, there are other iterative
learning algorithms that compute one or more SpDM3 at every
iteration [6], [3]. Although it is difficult to gauge the exact
extent of computational impact SpDM3 would have on these
algorithms, it would be reasonable that these algorithms would
be able to solve higher dimensional problems than in shorter
amount of wall-clock time than possible on a single processor.

VII. CONCLUSIONS

We presented four variations on parallel sparse-dense
matrix-matrix multiplication (SpDM3), all based on a tradi-
tional O(n3) algorithm, but using different approaches to repli-
cating data and partitioning work to minimize communication
costs. One of these is the 3D SUMMA algorithm and the
other three represent new parallelization strategies specific to
a setting involving sparse matrices. We derived communication
lower bounds for the problem, then presented an analysis of
new and existing algorithms, and compared their costs both
theoretically and experimentally on over 10 thousand cores.
The problem was motivated by iterative algorithms in machine
learning, and both our experiments and cost analysis break
the running time into parts to show how the algorithms would
compare in such a setting — some parts are one-time costs
and others occur at each iteration.

Our analysis shows that no single algorithm is optimal for
all settings, but that the choice depends on sparsity, matrix
size, available memory, and machine size. We show that when
the theoretical analysis shows a difference in cost, it is a
good predictor of which algorithm to use. The theory is quite
general, and uses the number of matrix entries (nonzeroes) of
each matrix, independent of whether the matrix is dense or
sparse. Thus, while our experiment focus on the dense-sparse
case, the algorithms are relevant to other settings in which one

of the two matrices is much larger or denser than another. We
give guidelines on how to choose between algorithms in terms
of graphs indicating what area each algorithm would have the
lowest bandwidth cost. The four algorithms each have benefits
for some cases:
• SummaABC (previously known) is best with relatively

dense matrices or very large processor counts. Because it
moves all matrices during multiplication, it is suboptimal
when one is significantly smaller or sparser.

• ColA is better with sparser A matrices or smaller scale par-
allelism. (An analogous algorithm that replicates B would
work for the dense-sparse case.)

• ColABC and InnerABC generally work in ColA’s range
and also the intermediate range between ColA and Sum-
maABC in both matrix density and processor count. They
have equivalent theoretical communication costs, but Inner-
ABC is faster in practice, sometimes substantially so.

Since sparse matrices rarely have more than a few percent
of nonzeroes, the majority of SpDM3 will be in ColA’s area,
which means the best algorithm could be ColA with any c,
non-replicating ColABC, or non-replicating InnerABC. Our
experimental results matched this trend. We observed up to
100× speedup over SummaABC. Replicating ColABC or
InnerABC will likely be more beneficial in iterative multi-
plication rather than in single multiplication.

Our models correctly predict the trends of all communi-
cation costs, and generally predict the faster algorithms and
parameter settings, but they do not consider computation cost.
In practice, MKL library performance varies when matrix
shapes are different, with the usual observation that larger
matrices and low aspect ratio matrices run at a higher machine
efficiency. This is not accounted for in our theory, but the
low communication algorithms also tend to have larger local
matrices, so it adds to the benefit. This omission in the model
does lead to substantial mis-predictions of computation time
that sometimes are a deciding factor in which algorithm wins,
for example, it often is a tie-breaker between ColA, ColABC
at c = 1, and InnerABC at c = 1. ColA and ColABC gets
faster computation time when they replicate, but ColABC also
replicates the dense matrix and has to pay a much higher cost
to get to the same computation efficiency as ColA. This and
the fact that it uses reduction is why we often found it inferior
to both ColA and InnerABC. Because of this, InnerA (blocked
inner product replicating only A) might be worth investigating
as well. A future analysis should take this unequal computation
time into account.

In addition to the synthetic Erdős-Rényi, Graph500, and
a few real-world matrices tested here, future work would
involve a larger set of matrices from real machine learning
problems. We are interested to see how the 1.5D algorithms
would perform compared to SUMMA in such setting and
expect that some type of graph partitioning may prove im-
portant. We are also under the process of implementing the
CONCORD-ISTA [14] iterative machine learning algorithm
with our SpDM3 algorithms.
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