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Optimal Selective Withdrawal Rules Using a Coupled Data
Mining Model and Genetic Algorithm

Shima Soleimani1; Omid Bozorg-Haddad2; Motahareh Saadatpour3; and Hugo A. Loáiciga, F.ASCE4

Abstract: This work presents a methodology for extracting optimal operational rules for selective reservoir water withdrawal by considering
fixed levels of reservoir water outlets for thermal control. The outlet water temperature of the Karkheh reservoir, Iran, is simulated with the
CE-QUAL-W2 model. A data-mining model (the LIBSVM model) is applied as a surrogate model of the CE-QUAL-W2 model and coupled
with a genetic algorithm (GA), resulting in the LIBSVM-GA algorithm. The selective withdrawal approach considered four fixed reservoir
outlets, located at 120, 140, 163, and 181 m above sea level, to account for reservoir thermal stratification. This paper’s methods are evaluated
with nonselective and selective withdrawal operations through different scenarios in which single outlet, fixed withdrawal proportions, fixed
monthly variable proportions, continually variable (10-day) proportions using total monthly LIBSVM input data, and continually variable
(10-day) proportions using separated monthly LIBSVM input data are considered. The highest outlet (at 181 m) was found to be the best level
for the nonselective withdrawal scenario. The best selective withdrawal operations scenario was the continually variable (10-day) proportions
using separated monthly LIBSVM input data, which minimize the root-mean-square deviation (RMSD) between upstream and downstream
temperatures during the operating period. DOI: 10.1061/(ASCE)WR.1943-5452.0000717. © 2016 American Society of Civil Engineers.

Author keywords: CE-QUAL-W2 model; Environmental temperature regime; Genetic algorithm (GA); LIBSVM model; LIBSVM-GA
algorithm; Selective withdrawal.

Introduction

Seasonal air temperature fluctuations lead to thermal stratification
in reservoirs. This phenomenon can have major effects on reservoir
water quality parameters, including water temperature. Thermal
control in reservoirs can help manage the outlet water temperature
and the water temperature regime in river reaches downstream of
reservoirs (Hocking et al. 1988; Elçi 2008; Giuliani et al. 2013;
Rheinheimer et al. 2015).

Key external factors affecting thermal stratification are the
level at which reservoir water is withdrawn and the magnitude
and timing of withdrawals. The latter forms a policy of selective
withdrawal operations of a reservoir that can be optimized. Further-
more, withdrawing water from multilevel outlets causes mixing
among reservoir thermal layers, which generally improves reservoir
water quality (Çalışkan and Elçi 2009).

Fontane and Labadie (1981) applied the WESTEX model to
simulate the thermal stratification cycle of a reservoir and linked

the simulation model (WESTEX) to objective-space dynamic
programming (OSDP) to achieve optimal control of reservoir
discharge quality through selective withdrawal structure of multi-
level water outlets and maintain the natural temperature regime
downstream of the reservoir. Hanna et al. (1999) employed the
CE-QUAL-W2 model to simulate thermal stratification coupled
with a selective withdrawal system. Gelda and Effler (2007) defined
different scenarios for reservoir release of the Schoharie reservoir in
New York City in the United States. They linked the CE-QUAL-
W2 simulation model to an evolutionary optimization algorithm
and showed that using selective withdrawal can decrease the epi-
limnion and metalimnion in the reservoir. Saadatpour and Afshar
(2011) applied simulation-optimization and selective withdrawal to
calculate optimal rules of selective withdrawal operations in Ilam
reservoir, Iran, to guide responses to pollutant spills.

Castelletti et al. (2014) developed a combinatorial simulation
model which involved the DYRYSM model and a computational
aquatic ecosystem dynamics model (CAEDYM) that simulated
hydrodynamics and environmental processes. A batch-mode
reinforcement learning algorithm called Fitted Q-Iteration was ap-
plied to calculate optimal rules of selective withdrawal operations
in the multioutlet Tano reservoir, Japan. The research objective was
to improve water quality parameters such as temperature and total
suspended solids (TSS) in and below the reservoir. Soltani et al.
(2010) applied a one-dimensional simulation model developed
by Kerachian and Karamouz (2006) to simulate salinity in the
15-Khordad reservoir, Iran, and applied the hybrid genetic reservoir
operation rules. The input and output of the simulation model were
trained to adaptive neural fuzzy inference system (ANFIS), which
is a data-mining algorithm, and four different ANFIS models
were trained and tested to predict average salinity of the reservoir’s
outlet water, epilimnion, metalimnion, and hypolimnion at the
end of each month. Mirfendereski and Mousavi (2011) optimally
allocated water resources in the Atrak basin of Iran incorporating
support vector machine (SVM) and response surface method as
surrogates of the MODSIM model in the optimization module
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and comparing the performance of the data-mining models.
Shokri et al. (2014) considered multiobjective quantity and quality
operation of the Karaj reservoir located in Iran. The CE-QUAL-W2
model was applied to simulate methyl tertiary-butyl ether (MTBE)
and benzene pollutants. The artificial neural network (ANN) was
trained and tested with the simulation results and was coupled with
the nondominated sorting genetic algorithm (NSGA-II) to yield the
NSGA-II-ANN model. This scheme reduced the computational
time required for model implementation.

Despite the numerous data-mining techniques that have been
recently widely used in different fields of water resources investi-
gations (Fallah-Mehdipour et al. 2012, 2013a, b, c; Akbari-Alashti
et al. 2014; Ashofteh et al. 2015; Soltanjalili et al. 2013), the hybrid
LIBSVM-GA has not been reported to address real-world prob-
lems, as done in the present study.

Storage of water and thermal stratification in reservoirs can ren-
der the water quality of reservoir outflow much different from that
of reservoir inflow. The primary objective of reservoir releases in
general are to meet water supply demands, generate hydropower,
and manage flood risk, at least from an operator’s perspective.
Besides, releasing to maintain the natural temperature regime
would typically be prioritized if legally mandated. Downstream
water temperature is significant for pollution control, agriculture,
and to support the downstream aquatic ecology (Fontane and
Labadie 1981). The main objective of this study is to minimize
the deviation between the river water temperature downstream from
the reservoir and the natural temperature regime by applying selec-
tive withdrawal. The water quality CE-QUAL-W2 model requires
time series of meteorological, hydrological, and water quality
at short-term time steps (hourly) to simulate the reservoir’s outlet
water temperature. Therefore, solving the numerical equations
of hydrodynamics and water quality with the CE-QUAL-W2
model is computationally burdensome and renders simulation-
optimization approaches impractical. To avoid such a burden this
study applies an algorithm as a surrogate of the CE-QUAL-W2
model. The algorithm is trained and tested with simulated data ob-
tained from the CE-QUAL-W2 model and used to estimate outlet
water temperature in the Karkheh reservoir, Iran. The best trained
model is linked with a genetic algorithm (GA), which is used to
calculate optimal selective withdrawal rules considering several
water-release scenarios.

Methods

This section introduces the two-dimensional CE-QUAL-W2 model
for simulating thermal stratification and reservoir outlet water tem-
perature. The second part explains the SVM data-mining algorithm.
The third part summarizes the GA’s solution process as an evolu-
tionary optimization algorithm. The fourth part defines the objec-
tive function of the optimization model and assesses the efficiency
of the developed GA algorithm.

CE-QUAL-W2 Model

CE-QUAL-W2 is a two-dimensional hydrodynamics and water
quality model developed and supported by the United States Army
Engineering Waterways Experiment Station (WES). The spatial
and temporal changes in reservoir surface elevation and temper-
ature are simulated with the CE-QUAL-W2 Version 3.71 (Cole
and Wells 2008). Multilevel outlets and selective withdrawal
options are determined for CE-QUAL-W2 to release water from
different elevations and proportions from outlets during reservoir
operational period. Thermal stratification is simulated with

CE-QUAL-W2 to calculate the water temperature at both the
outlets (each individual selective withdrawal outlet) and the main
reservoir outlet. The temperature at the outlets is controlled by the
temperature of the thermal layer at the outlet elevation (though
there may be some local mixing), whereas the temperature at
the reservoir outlet is the result of mixing of temperatures from the
different layers.

Support Vector Machine

The SVM regression model approximates the functional depend-
ence of the dependent variable y on independent variables x.
The function relating dependent and independent variables involves
a structural term and an error term (or noise) as described by Eq. (1)
(Vapnik 1995, 1998, 1999):

y ¼ fðxÞ þ noise ð1Þ

The SVM estimates the function f to predict variables with new
data. The function f is estimated by training the SVM on a set of
data called the training (or calibration) data set using a process that
optimizes the error function continuously. Vapnik (1999) intro-
duced an error function called ε-insensitive in the SVMε model.
Fig. 1 shows the soft margin in which the errors are not considered
a linear SVMε model. The main objective in SVMε modeling is to
minimize the error function given by Eq. (2) subject to the con-
straints expressed by Eq. (3) (Vapnik 1999):

Minimize
1

2
wTwþ C

XI

i¼1

ðξi þ ξ�i Þ ð2Þ

Subject to

8><
>:

wTϕðxiÞ þ b − yi ≤ εþ ξ�

yi − wTϕðxiÞ − b ≤ εþ ξ

ξi; ξ�i ≥ 0 i ¼ 1; 2; 3; : : : ; I

ð3Þ

where w = coefficient vector; wT = transposed coefficient vector; ξ
and ξ� = slack variables; b = constant variable; I = total number of
trained data; C = capacity coefficient; i = trained data counter; and
ϕ = nonlinear mapping function. There is a lack of information
about the choice of nonlinear mapping functions. Therefore, a ker-
nel function equal to a radial basis function (RBF) is applied in this
study (Chang and Lin 2011):

Fig. 1. Soft margin of ε-insensitive in the SVMε model
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Kðxi; xÞ ¼ exp

�
− kxi − xk2

2σ2

�
ð4Þ

where K = kernel function; and σ = constant coefficient of the RBF
kernel function.

In this study, the SVMε modeling was executed with the
LIBSVM code, which was developed by Chang and Lin (2011).
The LIBSVM code has been applied in many studies (Safavi
and Esmikhani 2013; Dixon 2009)

Genetic Algorithm

The genetic algorithm is inspired by the theory of evolution and was
introduced by Holland (1975). The steps of the GA are as follows:

At first, a set of random solutions called populations are
generated by the GA. Each population contains many chromo-
somes, whereby each chromosome is a solution and contains many
genes that are the decision variables. The generated population is
replaced by a new population during the iterative procedure. In the
each iteration, called generation, each of the solutions is evaluated
by a fitness function and then some best solutions are selected by
a selection operator and are promoted to the next generation.
The selection operator uses a probability distribution function that
increases the chance of promoting the best solutions to the next
generation. Some chromosomes or solutions are sent to the next
generation without any changes and the rest of the solutions are
processed to produce children with the crossover and mutation op-
erators. The crossover operator pairs parents to produce children
(chromosomes). The crossover rate is named Pc and expresses
the proportion of the number of produced children of each gener-
ation to the number of members in the present generation. The mu-
tation operator is named Pm and expresses the proportion of the
number of the mutated genes of each generation to the number
of genes of the present generation. The mutation operator only uses
one existing population member to produce a child. Each gene is
randomly selected with a uniform distribution and the value of
genes changes. Commonly the mutation operator is applied after
the crossover operator.

The preceding process is repeated as long as the difference
between the values of two consecutive objective functions pertain-
ing to two consecutive iterations exceeds a convergence criterion.
Otherwise, the iterations are terminated.

Objective Function

There are lots of aims to control the water temperature downstream
of a reservoir. It is necessary to explain that the objective function
can be selected to maximize or minimize each of the statistical
criteria related to minimum, maximum, or average deviation of
water temperature. According to the purpose of temperature con-
trol, some statistical criteria can be considered such as minimizing
water temperature for fishery purpose in a downstream river. In this
study, the purpose is to maintain upstream river temperature in
downstream river temperature. Therefore, the objective function
is defined to minimize the RMSD between the reservoir outflow
temperature and the reservoir inflow temperature during the opera-
tional period. The GA’s decision variables are the withdrawal pro-
portion at each of the reservoir outlets, and it minimizes the
nonlinear function defined by Eq. (5):

Minimize RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xt¼N

t¼1

ðTt
Outflow − Tt

InflowÞ2
vuut ð5Þ

where Tt
inflow = mean reservoir inflow temperature in the tth time

step; Tt
outflow = mean reservoir outflow temperature in the tth

time step; t = time interval counter; and N = total number of time
steps during the period of selective withdrawal operations.

LIBSVM-GA Model

Several selective withdrawal operations options were defined inde-
pendently of the CE-QUAL-W2 model to simulate water outflow
temperature. The options were based on the withdrawal proportion
at each of several outlets located at different, fixed elevations. The
reservoir surface elevation, meteorological, and hydrological data
used as input to the CE-QUAL-W2 model are selected so that they
have the greatest effect on reservoir outflow temperature and are
introduced as the input data to the LIBSVM model. In this manner
the LIBSVM model is trained (that is, calibrated) and tested with
inputs that, in turn, are selected outputs of the CE-QUAL-W2
model for different operational options with different withdrawal
proportions of each reservoir outlet. The LIBSVM model with
the best efficiency considering different statistic criteria is selected
as a surrogate model of the CE-QUAL-W2 model. The GA is
linked with the surrogate model (LIBSVM) to yield the developed
LIBSVM-GA model, which is implemented to determine the opti-
mal withdrawal outlets and the withdrawal proportions.

As shown in Fig. 2, at first an initial population is produced by
the GA. The population consists of the withdrawal proportion at
each reservoir outlet. Then, the withdrawal proportion at each res-
ervoir outlet (GA population) with reservoir surface elevation,
meteorological, and hydrological data that have the greatest influ-
ence on reservoir outflow temperature are defined as input data sets
to the LIBSVM model. The LIBSVM model generates reservoir
outflow temperature in every time step. The GA’s fitness function
is evaluated for every solution in the initial population based on the
LIBSVM output. The population of solutions is modified based on
the fitness function evaluation, and the modified population be-
comes input to the LIBSVM model for re-evaluation. This iterative
procedure is repeated until a convergence criterion is satisfied.

Case Study

The Karkheh reservoir is the sixth largest reservoir in the world and
the largest reservoir in Iran. The catchment area of the Karkheh
reservoir is approximately 43,000 km2 and is located between
46° 57′ to 49° 10′ eastern longitudes and 31° 48′ to 34° 58′ northern

LIBSVM model 

Yes 

No 

Modify population Crossover Mutation 

Input data 

Output data 

Generate initial population 

Evaluate fitness function 

Is the stopping 
criterion satisfied?End

Start

Fig. 2. LIBSVM-GA flowchart
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latitudes. The Karkheh reservoir has a surface area of 162 km2, a
length of 64 km, and a volume of 5.9 km3 at normal water elevation
(220 m above sea level). The height of the Karkheh dam foundation
is 127 m and the dam crest level is 234 m above sea level. The
average and maximum depth of the Kharkhe reservoir are 61.8
and 117 m, respectively (Afshar et al. 2012).

It is essential to simulate outlet water temperature at different
levels to apply selective withdrawal. The Karkheh reservoir has
two outlets located at 163 and 181 m above sea level. Two other
outlets located at 120 and 140 m above sea level were assumed. The
shape type of all outlets was defined for the CE-QUAL-W2
model, which was calibrated and validated by Afshar and Saadat-
pour (2009). This study employs that calibrated model updated
to version 3.71. The first and last simulation days in the
CE-QUAL-W2model were September 19, 1980, and September 12,
1995, respectively. These choices correspond to the available
time series of meteorological and hydrologic data. The time span
for reservoir operations was defined from January 1, 1981, to
December 31, 1994. Ten-day average reservoir inflow and
10-day average reservoir outflow during the operational period are
shown in Figs. 3 and 4, respectively.

The training and testing input data of the LIBSVM model are
obtained from inputs and outputs of 18 defined operational options
simulated independently using the CE-QUAL-W2 model in which
the results of 12 and 6 operational options are used as training and
testing data, respectively. The withdrawal proportions of each outlet
for different operational options are depicted in Fig. 5. This study
implemented as input data to the LIBSVM model the 10-day
average air temperature, wind speed, input thermal flux to the
reservoir (multiplication of inflow discharge times inflow water

temperature), reservoir surface elevation, the withdrawal volume
from the reservoir and the withdrawal proportion at each reservoir
outlet. This input data was chosen from the CE-QUAL-W2
model’s outputs for the Karkheh reservoir reported by Afshar and
Saadatpour (2009). In addition, two different versions of the
LIBSVM model are defined based on the selection of input data
and time series length. Each of these two LIBSVM versions are
independently trained and tested.

Version 1: In this version the time series input contains all
10-day time steps of total months during the operational period.

Version 2: In this version the LIBSVM models are independ-
ently trained and tested, one for each calendar month, using data
from the operational period.

Scenario

Several scenarios of nonselective and selective withdrawal opera-
tions are defined as follows:

Scenario 1: Nonselective withdrawal
In this scenario release water temperature at each single outlet is

simulated using CE-QUAL-W2 during the operational period. The
sub-scenarios are defined as
• Scenario 1.1: 120-m outlet only
• Scenario 1.2: 140-m outlet only
• Scenario 1.3: 163-m outlet only
• Scenario 1.4: 181-m outlet only

Scenario 2: Selective withdrawal with fixed proportions
In this scenario the GA is linked to the LIBSVM version 1, and

the release proportion at each outlet is fixed for the duration of op-
erational period.

Scenario 3: Selective withdrawal with fixed monthly variable
proportions

In this scenario the GA is linked to each calendar month of the
LIBSVM version 2 and the release proportion at each outlet is al-
lowed to vary for each calendar month, such that there is a monthly
release proportion rule curve repeated every year.

Scenario 4: Selective withdrawal with continually variable
(10-day) proportions using total monthly LIBSVM input data

In this scenario the GA is linked to the LIBSVM version 1,
and the release proportion at each outlet is allowed to change each
10-day interval during the operational period.

Scenario 5: Selective withdrawal with continually variable
(10-day) proportions using separated monthly LIBSVM input
data
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Fig. 3. 10-day average reservoir inflow during the operational period
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Fig. 4. 10-day average reservoir outflow during the operational period
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Fig. 5. Withdrawal proportion of each outlet for different operational
options
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In this scenario the GA is linked to the LIBSVM version 2,
and the release proportion at each outlet is allowed to change each
10-day interval during the entire operational period.

Results

This section presents the LIBSVM verification results. In addition,
the results of reservoir surface elevation simulated by CE-QUAL-
W2 are considered. Finally, the results of each operational scenario
are discussed.

Verification of the LIBSVM Model

The chosen statistical criteria were the RMSD, mean absolute
deviation (MAD), and the Nash–Sutcliffe efficiency (NSE), which
were used to evaluate the accuracy of testing for two versions of the
LIBSVM (Moriasi et al. 2007). The RMSD, MAD, and NSE for
version 1 were 0.49, 0.30, and 0.99°C, respectively, and the means
of the RMSD, MAD, and NSE for all months of version 2 were
0.40, 0.30, and 0.97°C, respectively. The results of the statistical
criteria for the two LIBSVM versions demonstrated the capacity
of the LIBSVMmodel to approximate the outlet water temperature.
For this purpose, the two versions of the LIBSVM model exhibited
high reliability, and for this reason its results can be used as a sur-
rogate of the CE-QUAL-W2 model to be linked with the GA.

Reservoir Surface Elevation and Withdrawal Options

The mean surface elevation of the Karkheh reservoir for each
10-day step during the operational period was simulated with
the CE-QUAL-W2 model and is graphed in Fig. 6 in which the
first and last numbers of time step are equal to January 1, 1981,
and December 31, 1994, respectively. As Fig. 6 shows, the reser-
voir surface elevation was never lower than the highest outlet.
Therefore, all outlets could be used during the entire operational
period.

Scenario 1: Nonselective Withdrawal

In this scenario, it was assumed that there is no selective withdrawal
for the entire operational period and, if there is only one outlet
for the reservoir, which outlet is the optimal outlet to release water.

The RMSD, MAD, and coefficient of determination (R2) were used
to select the best subscenario of Scenario 1 and the best entire
scenario.

Table 1 shows that according to Scenario 1 the highest (worst)
value of RMSD and MAD, which are 6.53 and 5.53°C, respec-
tively, correspond to Scenario 1.2. And the lowest (best) values
of RMSD and MAD, which are 5.71 and 4.70°C, respectively, cor-
respond to Scenario 1.4. R2 equals 99% for all outlets’ elevations.
Therefore, if only one outlet were used to release water, the 181-m
outlet would be the best to minimize the deviation of the inflow and
outflow water temperature of the reservoir.

Scenario 2: Selective Withdrawal with Fixed
Proportions

According to first row of Table 1, the optimum fixed withdrawal
proportions at each outlet calculated with the LIBSVM-GA were
0.35, 0.00, 0.00, and 0.65 at the 120, 140, 163, and 181-m outlets,
respectively. The results show that when withdrawal proportions
were fixed during the operational period, the optimal outlets were
the 120 and 181-m outlets, which are the lowest and highest outlets
among all outlets. In addition, the optimal proportion of the 181-m
outlet (upper outlet) is approximately 1.85 times larger than the
optimal proportion of the 120-m outlet.

Scenario 3: Selective Withdrawal with Fixed Monthly
Variable Proportions

The optimal fixed monthly variable proportions at each outlet
calculated with the LIBSVM-GA algorithm and the results of
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Fig. 6. Reservoir surface elevation of the reservoir during the operational period

Table 1. Calculated Statistical Criteria for Each Operational Scenario

Scenario RMSD (°C) MAD (°C) R2

1.1 6.36 5.38 0.99
1.2 6.53 5.53 0.99
1.3 6.30 5.31 0.99
1.4 5.71 4.70 0.99
2 5.53 4.51 0.99
3 5.32 4.58 0.99
4 5.20 4.27 0.99
5 5.15 4.14 0.99
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Scenario 3 are shown in Fig. 7. The results show that in some
months all water is released just from one outlet, such as from
December to April (cold months) all water is released at the
181-m outlet, and in some months water is released from two or
three outlets such as May and September, respectively.

Scenario 4: Selective Withdrawal with Continually
Variable (10-Day) Proportions Using Total Monthly
LIBSVM Input Data

The optimal withdrawal proportions were calculated with the
LIBSVM-GA. In this scenario proportions change for each 10-day
time step during the operational period. To show this more clearly,
Fig. 8 displays the 10-day withdrawal proportion average for all
months of operational years. According to Fig. 8, the largest aver-
age withdrawal proportions are released from the 120 and 181-m
outlets. In addition, the 140-m outlet has the minimum average
withdrawal proportions during the operational period.

Scenario 5: Selective Withdrawal with Continually
Variable (10-Day) Proportions Using Separated Monthly
LIBSVM Input Data

The optimal withdrawal proportions that change for each 10-day
time step were calculated with the LIBSVM-GA at each outlet
during the operational period. Fig. 9 presents 10-day withdrawal
proportion average from all months of the operational years.

According to Fig. 9, the largest averaged withdrawal proportions
are released from the 181-m outlets. The average withdrawal pro-
portions at the 120, 140, and 163-m outlets are approximately the
same during the operational period.

Comparison of Scenarios

Table 1 lists the statistical criteria used to compare the performance
of scenarios, from which it follows that the highest (worst) and low-
est (best) values of both RMSD and MAD correspond to Scenarios
1.2 and 5, respectively. The R2 equals 99% for all scenarios, which
shows a very high correlation between inflow and outflow temper-
atures for all scenarios.

The 181-m outlet was the best outlet if there were only one
outlet to use. The RMSD decreased 0.18°C from Scenario 1.4
to Scenario 2 because the 120-m outlet was added for use in
Scenario 2. In addition, when Scenario 3 was used, the RMSD
reached 5.32°C, which is 0.21°C lower than Scenario 2. Using var-
iable withdrawal proportions with Scenario 4, which changed in
10-day time steps, the RMSD reached 5.2°C. Finally, employing
Scenario 5 with continual monthly variable (10-day) proportions,
the RMSD reached the minimum value of 5.15°C.

The reservoir inflow water temperature and the calculated
outflow water temperature are shown in Fig. 10 for each scenario.
The outflow water temperature of Scenarios 4 and 5 better followed
the trend and small changes in inflow water temperature because
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Scenarios 1.1, 1.2, and 1.3 only followed the trend of inflow water
temperature.

Deviation of outflow temperature from inflow temperature for
all scenarios is depicted in Fig. 11. It is evident that the differences
between the actual inflow and calculated outflow temperature that
occurred after 1991 were larger than those before 1991 because the
reservoir surface elevation (Fig. 6) had a significant effect on res-
ervoir thermal stratification after 1991, when the reservoir elevation
exceeded 210 m. According to Fig. 11, the RMSD of the opera-
tional years 1981 to 1990 and 1991 to 1995 were equal to 4.5
and 6.41°C for Scenario 5 (best selected scenario), respectively.
During the operational years 1981 to 1990 the reservoir water
elevation was less than 210 m, and the RMSD was smallest. This
implies that the reservoir surface elevation should be maintained
below 210 m during the operational period.

Conclusions

This study calculated optimal selective withdrawal operations for
thermal control of reservoir releases to downstream river. This
study implemented a data mining model (LIBSVM) as a surrogate
to the CE-QUAL-W2 simulation model to approximate reservoir
outflow temperature. The data-mining model was combined with

an evolutionary algorithm (LIBSVM-GA) to reduce optimization
processing time. Four reservoir outlets at 120, 140, 163, and
181 m above mean sea level were considered in the Karkheh res-
ervoir with 18 different options for selective withdrawal operations,
in which each option comprised withdrawal proportions at each
outlet. These options were input to the CE-QUAL-W2 model to
produce the training and testing data for the LIBSVM model.
The LIBSVM model with the best efficiency was linked to the
GA to determine the optimal selective withdrawal rules.

Results show that the most important reservoir parameter is sur-
face water elevation, which has a large effect on outlet water tem-
perature. If only one outlet were used, the best location of the
outlet would be on the upper thermal layer (epilimnion) to min-
imize the difference in temperature between reservoir inflow and
downstream water temperature. The reservoir should have at least
two outlets to control downstream temperature, and they should be
located on the upper and lower reservoir thermal layers to control
cold and warm water temperature. The possibility of selective
withdrawal with continually variable (10-day) proportions using
separated monthly LIBSVM input data produced minimal
deviation between reservoir outflow and inflow temperatures.
Optimal selective withdrawal rules efficiently control downstream
water quality, which is vital to meet downstream ecological and
environmental requirements.
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