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Example-Based Wrinkle Synthesis for Clothing Animation

Huamin Wang Florian Hecht Ravi Ramamoorthi James O’Brien

University of California, Berkeley

(a) (b) (c)

Figure 1: Our method uses a precomputed dataset to synthesize detailed cloth wrinkles (a) that are layered onto a coarse base simulation
(inset). The precomputed datset can be used to synthesize wrinkles for a wide range of poses (b and c).

Abstract

This paper describes a method for animating the appearance of
clothing, such as pants or a shirt, that fits closely to a figure’s body.
Compared to flowing cloth, such as loose dresses or capes, these
types of garments involve nearly continuous collision contact and
small wrinkles, that can be troublesome for traditional cloth simula-
tion methods. Based on the observation that the wrinkles in close-
fitting clothing behave in a predominantly kinematic fashion, we
have developed an example-based wrinkle synthesis technique. Our
method drives wrinkle generation from the pose of the figure’s kine-
matic skeleton. This approach allows high quality clothing wrin-
kles to be combined with a coarse cloth simulation that computes
the global and dynamic aspects of the clothing motion. While the
combined results do not exactly match a high-resolution reference
simulation, they do capture many of the characteristic fine-scale
features and wrinkles. Further, the combined system runs at interac-
tive rates, making it suitable for applications where high-resolution
offline simulations would not be a viable option. The wrinkle syn-
thesis method uses a precomputed database built by simulating the
high-resolution clothing as the articulated figure is moved over a
range of poses. In principle, the space of poses is exponential in
the total number of degrees of freedom; however clothing wrinkles
are primarily affected by the nearest joints, allowing each joint to
be processed independently. During synthesis, mesh interpolation
is used to consider the influence of multiple joints, and combined
with a coarse simulation to produce the final results at interactive
rates.

Keywords: Clothing animation, cloth simulation, example-based
animation, wrinkles, precomputed animation.

Contact email: {whmin, fhecht, ravir, job}@eecs.berkeley.edu

From the ACM SIGGRAPH 2010 conference proceedings.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ACM SIGGRAPH 2010, Los Angeles
c© Copyright ACM 2010

1 Introduction
Garments that conform approximately to the shape of the wearer’s
body, such as a shirt or pants, typically exhibit wrinkles and fine
buckling patterns. Unlike flowing skirts and capes, most parts of
these fitted garments1 are in nearly continual contact with the body.
Current techniques for cloth animation can produce highly realistic
results for animated clothing with detailed wrinkle patterns. How-
ever, solving cloth dynamics on high-resolution meshes can be ex-
pensive, especially when the scenario involves a large number of
collisions and intermittent contacts.

In this paper, we propose a fast clothing animation system that com-
bines synthesized fine wrinkle details with coarse cloth dynamics.
The key observation behind this work is that fine-scale wrinkles can
often be approximated kinematically by matching to a database of
precomputed cloth configurations, while global dynamic behavior
can be captured with a coarse simulation on a low-resolution mesh.

Our method operates by first constructing a wrinkle database for a
given garment, based on high-resolution cloth simulations that ex-
ercise each joint of a skinned articulated figure over its range of
motion. This precomputation phase is time consuming, but it only
needs to be done once for a given figure-garment pair and can sub-
sequently be used for a wide variety of motions. Figure 1 shows an
example of typical results for our method, and demonstrates a single
precomputed database being used for a range of different motions.

Our online phase efficiently synthesizes wrinkle meshes for novel
human poses. We first interpolate within each joint to obtain a mesh
for the desired joint angle, and then merge joint wrinkles together
into a fine clothing mesh for the whole pose input. Finally, we com-
bine the output with a low-resolution cloth simulation that accounts
for gravity, collisions among different clothes, and dragging and
compression of clothes across different joints. All three steps can
be processed efficiently using graphics hardware, with the whole
system running at interactive rates.

There are three main observations that motivate the assumptions
that our system relies on:

• First, clothing wrinkles are formed predominantly by the
movement of the figure’s articulated joints. Although the

1In the fashion industry a fitted garment describes a particular style of
tailoring. Here we will use the term more generally to mean a garment that
roughly follows the shape of the body parts that it covers.
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Figure 2: The high-resolution simulation result shown in (a) used
a mesh of 25k vertices, which required 2-3 minutes per frame of
animation (0.007 frames per second). The coarse simulation shown
in (b) on a 638 vertex mesh takes only 0.072 seconds per frame
(13.9 FPS) but lacks detail. Our result, shown in (c), adds wrinkles
to the coarse result and runs at 0.084 seconds per frame (11.9 FPS),
and captures many of the fine-scale features and wrinkles. In (d),
(e), and (f) the wrinkle patterns are emphasized by showing the
vertex mean curvature magnitude of each mesh in (a), (b), and (c),
respectively.

wrinkle motion can be affected by external forces and global
cloth dynamics, the wrinkle shapes, particularly at small
scale, are largely determined by the amount of compression
or stretching due to motion of the nearby body parts. There-
fore, we can separate small-scale wrinkle behavior from the
larger scale cloth motion, and use separate methods for each.

• Second, the pattern of wrinkles generated for a particular body
pose looks similar each time that pose is reached. This phe-
nomenon occurs due to a combination of the fabric’s memory
property, and the many kinematic constraints imposed by the
large number of contacts between the cloth and body. Further,
with flexion/extension the cloth gets more/less compressed,
and the same wrinkles are intensified/reduced as a function of
joint angles. This observation implies that a wrinkle database
can be used to synthesize new wrinkles through interpolation
using body poses as variables.

• Finally, joint motion usually only affects the surrounding cloth
regions, and its influence is limited by friction between cloth
and the human body. For instance, movement of the left arm
typically has negligible effect on the right sleeve. Therefore,
instead of sampling over the figure’s entire pose space for the
wrinkle database, we can gather samples for each individual
joint separately and use blending to model areas that are af-
fected by multiple joints. This property is crucial to make the
database construction manageable, as otherwise constructing
it would require computation and storage exponential in the
number of degrees of freedom in the articulated skeleton.

Although these assumptions are not universally true and do not ap-
ply in all circumstances, our results show that the cloth synthesis
method they motivate can produce compelling results at interactive
rates. For instance, while our result in Figure 2c does not exactly
match the high-resolution simulation in Figure 2a, it does capture
many of the fine-scale details and wrinkle patterns missing from the
coarse simulation in Figure 2b. Most importantly, our result looks
plausible and is computed at a very small fraction of the cost of a
comparable full resolution simulation.

2 Background

Cloth Simulation: In recent years, physically-based cloth sim-
ulation has generated highly realistic results for clothing anima-
tion [Baraff and Witkin 1998; Choi and Ko 2002; Bridson et al.
2002; Kaldor et al. 2008], and surveys articles have been written
that summarize current state of the art [House and Breen 2000;
Choi and Ko 2005; Nealen et al. 2006]. A key feature of realis-
tic cloth appearance is the formation of fine-scale wrinkles. Many
textiles are made from stiff threads, so that woven cloth is typically
highly resistant to in-plane stretching and compression. When the
otherwise flexible material is bent out of plane in a compound fash-
ion, it forms characteristic folds and buckling patterns. Accurately
simulating these features requires both high resolution to capture
geometric detail, and a stiff constitutive model. A number of recent
efforts have focused specifically on this challenge [Bridson et al.
2003; Goldenthal et al. 2007; English and Bridson 2008; Volino
et al. 2009; Selle et al. 2009]. Although these methods can produce
highly detailed results, doing so requires substantial computation
time, typically several minutes per frame of animation.

Other methods have been designed for interactive applications.
Some examples of successful strategies include specially designed
integration methods [Jakobsen 2001; Meggs 2005], GPU accel-
eration [Bordes et al. 2009], and explicit constraint enforcement
to avoid stiff constitutive models [Provot 1995; Müller 2008;
Thomaszewski et al. 2009]. Unfortunately, all of these methods
fail to resolve fine wrinkles, either because performance demands
require insufficient detail in the simulation mesh and/or because the
fast simulation method suppresses buckling and wrinkle formation.

Our method is designed to work with existing cloth simulation tech-
niques, such as those described above. A highly realistic, but likely
slow, method is used to precompute offline the examples for the
wrinkle database. Then at runtime, a faster method is used online
to produce a coarse result, that is enhanced by wrinkles synthesized
from the example database. Future advances in cloth simulation can
directly be used to improve both offline and online phases.

Wrinkle Generation: Other researchers have also investigated
detail enhancement through wrinkle generation. Hadap and col-
leagues [1999] proposed a texture-based method to generate wrin-
kle textures from triangle deformation. They present compelling
results but we believe our approach offers improved realism, par-
ticularly for fitted garments. Others have modeled fine wrinkles
procedurally to approximate wrinkling phenomena on skin and
cloth [Kang et al. 2001; Larboulette and Cani 2004; Decaudin et al.
2006; Eibner et al. 2009], or used a stress map to synthesize new
wrinkles from a database manually created by artists [Cutler et al.
2007]. Work by Popa and colleagues [2009] used a wrinkle gener-
ation method to improve the quality of specific frames of captured
cloth, based on shadows in the recorded images. In contrast, our
method builds wrinkles from simulated examples, and offers indi-
rect control over the results by choice of the simulation method and
database parameters.
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Cloth in Games: Outside the academic graphics literature, real-
time methods have been developed for animating cloth on video
game characters. Earlier examples used simple static textures, but
more recent titles typically use a combination of skinning methods
with static normal maps and geometry textures for fitted clothing,
and a combination of procedural methods and low-resolution sim-
ulation for flowing garments like capes. Recent examples include
Batman: Arkham Asylum, Assassins’ Creed II, and Star Wars: The
Force Unleashed. While the combination of skin deformers and
textures can create very realistic still images, the static nature of
wrinkles becomes apparent when characters move.

Skin Animation and Wrinkles: Similar to fitted clothing, skin
also has wrinkles. Often used in games [Lee 2006], one way
to animate skin is to use skeleton-based deformers [Capell et al.
2002; Vasilakis and Fudos 2009]. Shi and colleagues [2008] fur-
ther applied a data-driven deformable model to obtain secondary
deformation in real time. Alternatively, example-based methods
rephrase the animation problem as a pose-space interpolation prob-
lem using existing skin and wrinkle samples. Other researchers
have demonstrated how to capture skin data with cameras, and use
example-based deformation methods specifically tailored to skin
animation [Allen et al. 2002] and [Mohr and Gleicher 2003]. In
order to interpolate arbitrary shapes in the pose space, radial basis
functions can be used to control a sparse set of vertices as land-
marks in [Lewis et al. 2000]. Alternatively, least-square fitting can
be applied to model tightly-fit clothing deformations without many
wrinkles [Wang and Phillips 2002]. A combination of eigenvalue
decomposition and joint-based interpolation can be used to avoid
high dimensional pose-space sampling [Kry et al. 2002]. When the
computational cost is not a major concern, Laplace’s equation can
be used to deform skin and tightly-fit cloth [Weber et al. 2007]. Ka-
van and colleagues [2010] show how skin deformers can be used to
efficiently compress complex cloth motion.

Kim and Vendrovsky [2008] proposed an interpolation method to
generate new clothing animations by minimizing an energy func-
tional over the pose space. However, their method can only handle
a sparse set of wrinkle samples, and it is not straightforward for
GPU implementation. In contrast, our method can produce more
significant wrinkles from dense sampled database, and do so ef-
ficiently on the GPU. For this reason, our work is closely related
to the method presented by Park and Hodgins [2008]. They sepa-
rated static skin deformation, which can be animated as a function
of pose, from dynamic skin deformation, which is approximated by
dynamic equations. In our technique, fine wrinkles are modeled by
human poses and global dynamics by a coarse cloth simulation.

Precomputed Animation: Many existing methods for
example-based animation techniques have focused mainly on flow-
ing cloth motions or other non-cloth systems [James and Fatahalian
2003; Cordier and Magnenat-Thalmann 2005; White et al. 2007;
James et al. 2007]. While these techniques could potentially be ap-
plied to animating fitted clothing, they would require some modifi-
cation to avoid problems with the large state space of an articulated
figure. Our method avoids this problem with a simple approach that
separates wrinkles from coarse cloth dynamics, and further sepa-
rates wrinkles into blended sets driven by each joint.

3 Algorithm
An overview for our system is shown in Figure 3. It takes the human
pose and coarse cloth simulation in each frame as the input, and
generates finely detailed clothing meshes as output. Given the angle
configuration for each joint, a wrinkle mesh corresponding to that
joint is first interpolated using a database of precomputed wrinkles.
Separate wrinkle meshes for each joint are merged together into a
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Figure 3: The system overview.

single mesh for the full human pose. Finally, wrinkle details are
transferred to the coarse simulation, to obtain clothing animations
with fine details.

3.1 Data Precomputation

The wrinkle database is made of wrinkle meshes sampled sepa-
rately for each joint as shown in Figure 3. Each mesh corresponds to
a joint configuration, sparsely sampled over the allowed joint space.
A typical database for a human body covers nine major joints: left
elbow, right elbow, left knee, right knee, spine, left shoulder, right
shoulder, left hip, and right hip, as shown in Figure 4. The first
four joints are hinge joints with only one degree of freedom (DoF),
while the last four are ball-in-socket with three DoFs each. The
spine joint is simplified from a series of actual spine joints and we
use three DoFs for it as well. Although this database can be easily
extended to cover additional joints, for example wrists and ankles,
we found doing so unnecessary because these other joints have less
effect on wrinkles for most clothing designs. We sample each joint
angle uniformly by 15 or 30 degrees. As an example, the spine
joint uses three samples for the twisting angle, three samples for
the front-back angle, and five samples for the bending angle, so
we have 45 joint samples in all. Overall there are 325 samples for
five joints on the upper body and 202 samples over four joints on
the lower body. We emphasize that each joint is sampled indepen-
dently, so the total number of configurations is just the sum of the
number of configurations for each joint.

The high-resolution wrinkle mesh for each sample is generated by
simulating the clothing mesh from the resting human pose to the
sample pose. We use a mass-spring system to simulate cloth dy-
namics by adding length springs for each triangle edge, and bend-
ing springs for each opposing vertex pair in neighboring triangles
as proposed by Choi and Ko [2002]. We use an implicit cloth solver
similar to that use by Baraff and Witkin [1998] to calculate velocity
updates in each time step and a fourth-order Runge-Kutta method to
integrate over time. A signed distance function defined over a 3D
regular grid is calculated ahead of time to handle cloth collisions
with the human body [Bridson et al. 2003]. A friction spring pro-
portional to the collision force is added to produce a dynamic fric-
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Figure 4: The human joints and their influence regions.

tion effect. We also decrease the magnitude of other forces applied
to colliding cloth vertices to mimic a static friction effect. Self col-
lisions are only tested for each vertex-triangle pair, and when they
become close to each other, a penalty spring will be added to avoid
penetration. It is possible that self penetration still happens when
wrinkles collapse heavily over each other under a large bending an-
gle. Fortunately, they are mostly occluded and not visible from the
outside.

We emphasize that any fine-scale cloth solver can be used for the
precomputation step, and newer algorithms in the future will pro-
vide better precomputed data. We also note that some level of artis-
tic control could potentially be exercised at this point as stylistic
variations of the precomputed cloth should appear later during syn-
thesis.

3.2 Coarse Simulation

The coarse cloth simulation must quickly simulate cloth dynamics
for a simplified clothing mesh (using 600 to 800 vertices in our
experiments). The input to this simulation is a human body mesh
for each frame supplied from external sources, which can also be a
collision proxy in a coarser form than the one used for display.

We implemented an online solver similar to the one used in Sec-
tion 3.1 for data construction, except that a second-order implicit
scheme replaces the RK4 method for temporal integration and the
collision detection is handled differently. To speed up the solver, we
ignore self collisions because wrinkle collapses have been covered
mostly in the wrinkle database. Cloth-body collisions and cloth-
cloth collisions among different garment meshes still need to be
considered.

During the data construction step, cloth-body collisions are de-
tected by first converting the body mesh into volumetric data as a
precomputation step. Unfortunately, this is no longer acceptable for
coarse simulation since volumetric conversion will be too time con-
suming to calculate on the fly. Instead, we assume that all triangle
normals in the body mesh are defined toward the outside, so we can
simply use the nearest triangle normals to do the inside-outside test,
with the distance to the nearest triangle as the penetration amount.

Cloth-cloth collisions are detected in the same fashion when the
clothes are worn in layers. For example, when the long shirt always
covers the pants, a cloth-cloth collision happens if and only if a
vertex of the pants jumps to the outside of the shirt and it is on top
of its closest shirt triangle (its projection on the plane of the closest
shirt triangle is within that triangle). This body penetration test
fails if the body mesh becomes inside out, in which case a better
yet slower collision detection algorithm should be used instead.
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Figure 5: The interpolation schemes for two types of joint angles.
Blue dotted curves represent the interpolation trajectories.

3.3 Wrinkle Synthesis

The database constructed in Section 3.1 is then used to synthesize
fine wrinkle meshes for arbitrary human pose. The synthesis pro-
cess is done in two steps. First, sparse mesh samples are interpo-
lated into a wrinkle mesh, corresponding to each desired joint sep-
arately. Wrinkle meshes are then composed together into a single
clothing mesh for the whole human pose.

Because all joint motions are rotational, a rotational interpolation
scheme performs better than spatial linear interpolation, which
causes severe shrinking artifacts especially when joint angles are
sparsely sampled. The joint location c0 can be directly determined
from the human model. We assume the joint rotates at a constant
speed, and we linearly interpolate both the joint angle and the dis-
tance to the joint, as shown in Figure 5a. In this figure, p0 and p1
are positions of the same vertex in two precomputed meshes, and
t is a number between 0 and 1 that controls the interpolation. Let
e0 = p0 − c0 and e1 = p1 − c0 be the vectors from c0 to p0 and
p1 respectively, and ê0 = e0/|e0| and ê1 = e1/|e1| be the normalized
vectors. We obtain,

p(t) = c0 + ((1 − t) |e0| + t |e1|) R(n̂, tθ)ê0 (1)

where R(u, θ) is the rotation matrix that transforms ê0 to ê1 by ro-
tating around the normalized axis n̂ = ê0 × ê1 by angle θ.

This scheme works for most joint angles except for the twisting
angle, which uses the bone n = c1 − c0 as the axis as shown in Fig-
ure 5b. In this case, we linearly interpolate the distance to the axis,
the rotational angle, and also the distance along the axis, similar to a
screw motion in dual-quaternion interpolation. Let n̂ = n/|n| be the
normalized rotational axis and q0 and q1 be p0 and p1’s projection
on the bone respectively. q(t) is linearly interpolated as:

q(t) = (1 − t)q0 + tq1, (2)

Given e0 = p0 − q0 and e1 = p1 − q1, p(t) is calculated as:

p(t) = q(t) + ((1 − t) |e0| + t |e1|) R(n̂, tθ)ê0 (3)

Once wrinkle meshes are interpolated from the database for each
joint separately, the next step is to merge them together for the
whole human pose. We first segment each clothing mesh into re-
gions according to body joints as shown in Figure 4. Typically, a
long shirt covers the top six regions and pants cover the five regions
on the bottom. Under the assumption that each joint only affects its
two neighboring regions, we code this influence by a map between
each cloth vertex v and the joint connecting to its residing region.
While the joint is only defined as a single point for rotations in the
skeleton model, the blending method treats the seam between two
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adjacent regions as a practical joint. Therefore, the influence map
is calculated using the distance from v to neighboring regions. As
an example, influence values of a vertex v in the chest region are
calculated as:

wls(v) = da(v)dr(v)/(da(v)dr(v) + da(v)dl(v) + dl(v)dr(v))
wrs(v) = da(v)dl(v)/(da(v)dr(v) + da(v)dl(v) + dl(v)dr(v))
wsp(v) = dl(v)dr(v)/(da(v)dr(v) + da(v)dl(v) + dl(v)dr(v))

(4)

in which wls(v), wrs(v) and wsp(v) are the weights from left shoul-
der, right shoulder and spine joint respectively, and dl, dr and da
are Euclidean distances from v to left upper arm, right upper arm
and abdomen, respectively. Once weights are determined for each
vertex, wrinkle meshes can be linearly blended using the weights
in each overlapping region, and the result is a fine mesh that corre-
sponds to the whole human pose.

3.3.1 Analysis

The assumption that each joint only affects wrinkles locally allows
us to construct the wrinkle database independently for each joint,
and to merge wrinkle meshes together in overlapping regions. Such
an assumption is also seen in example-based skin animations, such
as the method presented by Allen and colleagues [Allen et al. 2002].
Here we provide some quantitative analysis of this assumption for
clothing animation, and discuss potential artifacts and solutions.

Our experiment is carried out as follows. For a joint J, we calcu-
late the offset vector for each vertex between any two of J’s sample
meshes in the wrinkle database. This vector represents how the
vertex moves from one joint configuration to another. We then ap-
ply a Laplacian operator onto all vectors over the mesh to remove
locally-constant dragging or shifting motions, which can be mod-
eled in coarse simulation. The remaining vector is considered to
contribute more to the wrinkles, so we sum its magnitude for all J’s
sample mesh pairs. The results for two joints are plotted in Figure 6.

One can see that the blending weight proposed in Section 3.3 ap-
proximately matches with the influence weight from the experi-
ment. However, the shoulder joint also has slight influence over the
forearm and the abdomen shown in Figure 6e and 6f, which is not
considered in our model (Figure 6a and 6b). In other words, wrin-
kles on the forearm and the abdomen will not be affected by the
shoulder joint as they should be. Fortunately, we have not found
significant artifacts as a result. To solve this problem, more sophis-
ticated blending weights and algorithms could be used, which may
however cause further computational cost. Another issue is that the
space of wrinkles generated independently for each joint may not
span all possible wrinkles in the blending region. An ideal solu-
tion is to build a database based on regions rather than on separate
joints, and each region should be parameterized by all neighboring
joints. In that case, more subtle wrinkle effects could be included
but it would require constructing and storing a very large database.

Another interesting observation is that the elbow joint has more
influence over the inner elbow (Figure 6g) than the outer elbow
(Figure 6h). This is expected because wrinkles are formed mostly
in the inner elbow.

3.4 Wrinkle Detail Transfer

Given the synthesized cloth wrinkle mesh that only takes the human
pose into account, the final step is to align this wrinkle mesh with
coarse simulation. Instead of using techniques proposed for large
deformation [Sumner and Popović 2004; Baran et al. 2009], here
we use a simple down-sampling and up-sampling method, since the
deformation from the fine mesh to the coarse mesh is usually small.

Let M f be the synthesized wrinkle mesh from the database and Mc
be a coarse mesh produced by coarse simulation. We formulate the
correspondence by assigning a bidirectional influence weight auv
between every vertex u ∈ M f and v ∈ Mc. In practice, we find the
nearest triangle in Mc for every u and auv is simply defined as the
barycentric coordinate of u’s projection in that triangle. Therefore,
auv is nonzero only if v is a vertex belonging to u’s closest triangle
in Mc. We do not encourage building M f from Mc using subdivision
schemes because they can exaggerate discontinuous artifacts as will
be discussed later.

The detail transfer is processed by first down-sampling the fine
mesh M f onto Mc in order to find the offset between Mc and M f
for every v ∈ Mc,

o(v) = v −

∑
u∈M f

auvu∑
u∈M f

auv
(5)

o(v) is then up-sampled and applied to each u ∈ M f :

u = u +

∑
v∈Mc

auvo(v)∑
v∈Mc

auv
(6)

One issue in using barycentric coordinates as influence weights is
that the upsampled offset will not be C1 continuous along Mc’s
triangle edges. This artifact can be noticed as a ghosting coarse
mesh on top of the fine mesh in the form of shallow folds. For
polygon meshes built from regular grids, this could probably be
avoided by high-order interpolation schemes, such as bicubic inter-
polation. Unfortunately, formulating a similar high-order interpola-
tion scheme for an arbitrary triangle mesh cannot be trivially imple-
mented in an efficient way. Instead, we apply Laplacian smoothing
on the up-sampled offsets over M f so that the fine mesh can deform
smoothly toward its coarse version.

Slight cloth-body penetration may be introduced when the coarse
mesh varies greatly from the fine mesh. To avoid this problem, we
use a safety buffering distance when testing cloth-body collisions
in coarse simulation, as discussed in Section 3.2.

If two joint angles are too close to each other, the blending region
in Section 3.3 may not have enough space to form a smooth tran-
sition from one mesh to another. For example, the abdomen region
between the left and right hip joints. In this case, we found it is
more effective to first deform each wrinkle mesh for each joint sep-
arately toward coarse simulation so they get initially aligned, and
then blend them together to finalize the synthesis step.

4 Implementation and Results

We now describe our results, discussing our offline and online
phases, and showing image still frames. The accompanying video
demonstrates a number of clothing animations.

Precomputed Database: We built four wrinkle databases for
four different clothes: men’s long shirt with 25k vertices, men’s
long pants with 21k vertices (both seen in Figure 1), women’s short
shirt with 23k vertices, and women’s cropped pants with 11k ver-
tices (both seen in Figure 8). Each database typically took two
to four days to construct with unoptimized code, depending on
the number of samples and vertices. The memory and storage re-
quirement for each database ranges from 50 to 100MB. Once the
database is calculated for a human body model, it can be used to
synthesize general human motions for the same model. The human
model is represented by a triangle mesh with 30k vertices and 50k
triangles.
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Figure 6: The influence map over the clothing mesh for the left shoulder joint (left) and the left elbow joint (right). Pictures on the top are
calculated from the blending method in Equation 4 and pictures on the bottom are from the analysis experiment.

Figure 7: Screenshots from a realtime recording of our system syn-
thesizing cloth animations.

Coarse Cloth Simulation: For the online coarse simulation, we
use meshes with between 600 and 800 vertices. The collision de-
tection also uses a simplified version of the human model with 11k
vertices and 20k triangles. We compute the coarse simulation using
three CPU threads to process each garment (shirt, pant) and detail
transfer simultaneously. Although the video frames are spaced at
1/30 second intervals, the coarse cloth simulation takes four or five
simulation steps per rendered frame. Synchronization is required
for all simulation threads after each cycle, to guarantee the accuracy
of cloth-cloth collisions. We also tried implementing the coarse
simulation in graphics hardware, but found it difficult to efficiently
maintain locality coherence in collision detection. The coarse sim-
ulation is not used for the short shirt in the female character exam-
ples because dynamic effects become less obvious when the shirt is
tightly attached to the human body.

Wrinkle Synthesis and Performance: Wrinkle databases are
loaded into GPU memory for fast access during computation. The
wrinkle synthesis step and the detail transfer are implemented on
both CPU and GPU (using CUDA). The system currently runs on a
Dell T7500 workstation with a dual quad core 2.26 GHz processor
and an Nvidia Quadro FX 5800 graphics card. The average timings
over 500 frames for the male character with 46k cloth vertices, and
the female character with 34k cloth vertices, are listed in Table 1.
Our overall system has a speed of 12 FPS, and for the first time
brings fine-scale clothing animation into the interactive realm. This
is at least three orders of magnitude faster than the high-resolution
simulation. Screenshots from our interactive system are shown in
Figure 7.

Name Processor Man Woman
Wrinkle Synthesis GPU 0.009s 0.008s
Shirt Simulation CPU 0.074s -
Pants Simulation CPU 0.061s 0.078s
Wrinkle Transfer CPU/GPU 0.072s 0.041s

Total 0.084s 0.086s
Frame Rate 11.93 11.65

Table 1: Average timings for the male and female character ex-
amples. Thread bottlenecks are emphasized in bold font. Times
listed are for computing a video frame update for motion sampled
at 1/30 second intervals.

Animation Sequences: Any source of either interactively gen-
erated or pre-recorded human pose data can be used to create an-
imation sequences. In our examples, we use available motion-
capture data. We show three animations for the same male character
using the long shirt and long pants database: stretching (Figure 1a),
kicking (Figure 1b), and running (Figure 1c). We also demonstrate
two animations for the female character: dancing (Figure 8a and
b) and pointing (Figure 8c and d). Note that figures in the paper,
other than Figure 7, show rendered images computed offline with
ambient occlusion to facilitate visualizing the wrinkles. The video
also shows an interactive session with real-time animation and hard-
ware rendering. Natural clothing motions with fine-scale details
and wrinkles are produced in all cases, with the wrinkles changing
in response to the global dynamics.

Limitations: Although our experiments show that our method
can generate realistic clothing animations for a number of com-
mon cases, we also observe that our result quality is not the same
as the high resolution simulation (Figure 2). The differences oc-
curs, in part, because the wrinkle database is simplified by con-
sidering each joint separately, rather than the exponential number
of all possible human pose configurations. The blending method
is also an approximation to the actual complicated joint influence
model on wrinkles. As a result, the synthesized mesh may have
more wrinkles compared with the ground truth and wrinkles appear
to be more static. This can be seen in Figure 9 where the curve of
the mean curvature sum in the high-resolution simulation (blue) has
stronger fluctuations than the final result (red). One can also notice
from Figure 9 that the curve of the final result (red) has a similar
shape to the curve of the wrinkle synthesis result (green), because
the coarse simulation barely introduces any wrinkles into the final
result during the detail transfer step. However, it slightly reduces
the wrinkle strength due to a smoothing effect, so the final result
curve is slightly lower than the wrinkle synthesis curve (green).
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Figure 8: A female character dancing (a and b), and pointing (c and d).

Since the synthesis step depends on the pose configuration rather
than the motion history, and the coarse simulation usually does not
introduce new wrinkles, almost identical wrinkle patterns will be
generated given the same pose. Indeed, similar wrinkle patterns
can be noticed in the results for our method, for a repetitive human
motion.

Our method is also not suitable for clothing that is loosely fit to the
human body, such as skirts and capes, because the wrinkles will not
be well determined by the human pose alone, and their motion is
too nonlinear to be interpolated by a small precomputed database.

Figure 9: The vertex mean curvature sum comparison over 80 ren-
dered frames. One such frame is shown in Figure 2.

5 Conclusions and Future Work

Clothing animation for fitted garments, with fine-scale details and
wrinkles, remains as a difficult challenge. In this paper, we have for
the first time brought this problem into the interactive realm, going
from minutes per frame for high-resolution physical simulation, to
several frames per second with our method in graphics hardware.
Our technique combines a data-driven approach, based on interpo-
lating a precomputed wrinkle database, with coarse cloth simula-
tion for overall dynamics. This method is complementary to cloth
simulation algorithms, and future advances in that area will bene-
fit both precomputation and online phases of our technique. The
same precomputed wrinkle database can be used for general human
motions of the same character and garments, making our system of
great potential interest in interactive applications like video games.

Future work can focus on many directions. The wrinkle database
can be expanded to model the effects of multiple joints for greater
accuracy, rather than processing each joint independently. Model
reduction could be used to enable compactness and develop better
wrinkle blending techniques, if more training data is available. Illu-
mination effects like ambient occlusion or spherical harmonic light-
ing can also be precomputed, so that both animation and realistic
rendering can be done interactively in hardware. Captured clothing

data can be used, rather than precomputed fine-scale simulations.
We also wish to study retargetting the same wrinkle database to dif-
ferent human characters and clothing designs. Finally, we believe
there are a number of other problems that can benefit from tight
coupling of data-driven methods to physical simulation.
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