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In recent decades, artificial intelligence (AI) systems are becoming increasingly ubiquitous

from low risk environments to high risk environments such as chatbots, medical-diagnosis and

treatment, self-driving cars, drones and military applications. However understanding the behavior

of AI systems built using black box machine learning (ML) models such as deep neural networks

remains a significant challenge as they cannot explain why they reached a specific recommendation

or a decision. Explainable AI (XAI) models, through explanations, address this issue by making the

underlying inference mechanism of AI systems transparent and interpretable to expert users (system

developers) and non-expert users (end-users). Moreover, as the decision making is being shifted

from humans to machines, transparency and interpretability achieved with reliable explanations is

central to solving AI problems such as safely operating self-driving cars, detecting and mitigating

bias in machine learning (ML) models, increasing justified human trust in AI models, efficiently

debugging models, and ensuring that ML models reflect our values. In this thesis, we propose new

methods to effectively gain human trust in vision and language reasoning models by generating

adaptive and human understandable explanations and also by improving interpretability, faithfulness,
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and robustness of the existing models. Specifically, we make the following four major contributions:

• First, motivated by Song-Chun Zhu’s work on generating abstract art from photographs, we

pose explanation as a procedure/path to explain the image interpretation, i.e. a parse graph.

Also, in contrast to the current methods in XAI that generate explanations as a single shot

response, we pose explanation as an iterative communication process, i.e. dialog, between

the machine and human user. To do this, we use Theory of Mind (ToM) which helps

us in explicitly modeling human’s intention, machine’s mind as inferred by the human as

well as human’s mind as inferred by the machine. In other words, these explicit mental

representations in ToM are incorporated to learn an optimal explanation path that takes into

account human’s perception and beliefs. We call this framework X-ToM. We show that

the mental representations in ToM help in quantitatively measuring and increasing justified

human trust in the machine. We present applications of the proposed approach to three visual

recognition tasks, namely, image classification, action recognition, and human body pose

estimation. We argue that our ToM based explanations are practical and more natural for

both expert and non-expert users to understand the internal workings of complex machine

learning models. Extensive human study experiments verify our hypotheses, showing that the

proposed explanations significantly outperform the state-of-the-art XAI methods in terms of

all the quantitative and qualitative XAI evaluation metrics including human trust, reliance,

and explanation satisfaction.

• We propose a Conceptual and Counterfactual Explanation framework, which we call CoCo-X,

for explaining decisions made by a deep convolutional neural network (CNN). In Cognitive

Psychology, the factors (or semantic-level features) that humans zoom in on when they

imagine an alternative to a model prediction are often referred to as fault-lines. Motivated

by this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically,

given an input image I for which a CNN classification model M predicts class cpred, our

fault-line based explanation identifies the minimal semantic-level features (e.g., stripes on

zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or
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deleted from I in order to alter the classification category of I by M to another specified class

calt.

• In addition to proposing explanation frameworks such as X-ToM and CoCo-X, we also evalu-

ate existing deep learning models such as Transformer, Compositional Modular Networks

in terms of their ability to provide interpretable visual and language representations and

their ability to provide robust predictions to out-of-distribution samples. We show that the

state-of-the-art end-to-end modular network implementations - although provide high model

interpretability with their transparent, hierarchical and semantically motivated architecture -

require a large amount of training data and are less effective in generalizing to unseen but

known language constructs. We propose several extensions to modular networks that mitigate

bias in the training and improve robustness and faithfulness of model;

• The research culminates in a visual question and answer generation framework, in which

we propose a semi-automatic framework for generating out-of-distribution data to explicitly

understand the model biases and help improve the robustness and fairness of the model.
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CHAPTER 1

Introduction

1.1 Motivation and Objective

The motivation of this dissertation is to propose effective methods to gain justified human trust

in AI models by providing users with adaptive and human-friendly explanations. As part of this

high-level goal, we also critically examine the existing models to understand their biases and also

propose new methods to mitigate biases and improve robustness, interpretability and fairness of the

models.

1.1.1 Importance of Explanations

Artificial Intelligence (AI) systems are becoming increasingly ubiquitous from low risk environments

such as movie recommendation systems and chatbots to high risk environments such as medical-

diagnosis and treatment, self-driving cars, drones, IT support and military applications [CBP15,

GPC16, LCW17, MKS13, PAS13, DNA14, AAA17, AAD18, GAD16, ADE21, ADN18, BRH17,

ADE21]. In particular, AI systems built using black box machine learning (ML) models – such

as deep neural networks and large ensembles [Lip16, RSG16, Mil18a, YGS18, STY17, RAR16,

ZF14, STK17, KRS14] – perform remarkably well on a broad range of tasks and are gaining

widespread adoption. However understanding the behavior of these systems remains a significant

challenge as they cannot explain why they reached a specific recommendation or a decision. This

is especially problematic in high risk environments such as banking, healthcare, and insurance,

where AI decisions can have significant consequences. Therefore, much hope rests on explanation
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methods as tools to understand the decisions made by these AI systems.

Explainable AI (XAI) models, through explanations, make the underlying inference mechanism

of AI systems transparent and interpretable to expert users (system developers) and non-expert

users (end-users) [Lip16, RSG16, Mil18a, Hof17b, Lip90, SK11]. Explanations play a key role in

integrating AI machines into our daily lives, i.e. XAI is essential to increase social acceptance of

AI machines (see Figure 1.1). As the decision making is being shifted from humans to machines,

transparency and interpretability achieved with reliable explanations is central to solving AI

problems such as the following:

1. Safety [MBT19] (e.g. How to operate self-driving cars safely?)

2. Bias & Fairness [BDH18] (e.g. How to detect and mitigate bias in ML models?)

3. Justified Human Trust in ML models [SW18] (e.g. How to trust the output of AI systems to

inform our decisions?)

4. Model Debugging [Hal19] (e.g. How to improve my model by identifying points of model

failure?)

5. Ethics [VKK19] (e.g. How to ensure that ML models reflect our values?)

1.2 Measuring Justified Human Trust

In this dissertation, we focus on two dimensions of trust: Justified Positive Trust (JPT) and

Justified Negative Trust (JNT) [HMK18]. We measure JPT and JNT by evaluating the human’s

understanding of the machine’s (M) decision-making process. For example, let us consider an image

classification task. Suppose if the machine M predicts images in the set C correctly and makes

incorrect decisions on the images in the set W . Intuitively, JPT will be computed as the percentage

of images in C that the human subject felt M would correctly predict. Similarly, JNT (also called

as mistrust), will be computed as the percentage of images in W that the human subject felt M
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Figure 1.1: An AI machine that explains its predictions to human users will find more social

acceptance. Therefore, XAI models are the key in addressing the issues such as Safety in AI,

Bias/Fairness in AI, Trust in AI, Model Debugging, and Ethics in AI.

would fail to predict correctly. In other words, given an image, justified trust evaluates whether the

users could reliably predict the model’s output decision. Note that this definition of justified trust is

domain generic and can be applied to any task. For example, in an AI-driven clinical world, our

definitions of JPT and JNT can effectively measure how much doctors and patients understand the

AI systems that assist in clinical decisions.

1.3 Limitations in the existing XAI models

We identify the following two key limitations in the state-of-the explainable AI models:

1. Attention is not a Good Explanation: Previous studies have shown that trust is closely

and positively correlated to the level of how much human users understand the AI sys-

tem — understandability — and how accurately they can predict the system’s performance

on a given task — predictability [Hof17b, Lip16, HMK18, Mil18a]. Therefore there has

been a growing interest in developing explainable AI systems (XAI) aimed at increasing
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understandability and predictability by providing explanations about the system’s predic-

tions to human users [Lip16, RSG16, Mil18a, YGS18]. Current works on XAI generate

explanations about their performance in terms of, e.g., feature visualization and attention

maps [STY17, RAR16, ZF14, STK17, KRS14, ZNZ18]. However, solely generating expla-

nations, regardless of their type (visualization or attention maps) and utility, is not sufficient

for increasing understandability and predictability [JW19]. We verify this in our experiments.

2. Explanation is an Interactive Communication Process: Existing methods for XAI generate

explanations as a single shot response. We believe that an effective explanation cannot be one

shot and involves iterative process of communication between the human and the machine.

The context of such interaction plays an important role in determining the utility of the

follow-up explanations [CS89]. As humans can easily be overwhelmed with too many or

too detailed explanations, interactive communication process helps in understanding the user

and identify user-specific content for explanation. Moreover, cognitive studies [Mil18a] have

shown an explanation can only be optimal if it is generated by taking user’s perception and

belief into account.

1.4 Research questions and contributions

In this dissertation, we address the limitations of the existing XAI frameworks and propose new

methods to make the AI models more transparent and understandable. We advance the state of the

art in XAI, vision and language grounding, and interpretable neural architectures to achieve these

goals. Below, we discuss the concrete research questions that we address in this thesis and our key

contributions:

Research question 1: Given a visual recognition task, there exists multiple explanations

to justify the model’s underlying reasoning process. How to generate user-specific adaptive

explanations without overwhelming user with too many or too detailed explanation?

Song-Chun Zhu, a Chinese mathematician, statistician, and computer scientist, proposed multi-
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ple models and algorithms for the rendering of abstract paintings that is capable of controlling the

entropy to the user’s desired levels [ZZ13]. Extending Zhu’s work to the explanation generation

framework, we pose explanation as a procedure/path to explain the image interpretation, i.e. a parse

graph. Specifically, we learn an optimal explanation path that takes into account human’s perception

and beliefs. In Chapter 2, we do this by introducing an interactive explanation framework, X-ToM.

In our framework, the machine generates sequence of explanations in a dialog which takes into

account three important aspects at each dialog turn: (a) human’s intention (or curiosity); (b) human’s

understanding of the machine; and (c) machine’s understanding of the human user. To do this, we

use Theory of Mind (ToM) which helps us in explicitly modeling human’s intention, machine’s

mind as inferred by the human as well as human’s mind as inferred by the machine. The ability to

reason about other’s perception and beliefs, in addition to one’s own perception and beliefs, is often

referred to as the Theory-of-Mind [DA16, Gol12, PW78].

More specifically, in X-ToM, the machine and the user are positioned to solve a collaborative

task, but the machine’s mind (M ) and the human user’s mind (U ) only have a partial knowledge

of the environment (see Figure 1.2). Hence, the machine and user need to communicate with

each other, using their partial knowledge, otherwise they would not be able to optimally solve the

collaborative task. The communication consists of two different types of question-answer (QA)

exchanges — namely, a) Factoid question-answers about the environment (W-QA), where the user

asks “WH”-questions that begin with what, which, where, and how; and b) Explanation seeking

question-answers (E-QA), where the user asks questions that begin with why about the machine’s

inference. At each turn in the collaborative dialog, our X-ToM updates a model of human perception

and beliefs, and uses this model for generating a maximum utility explanation that (a) minimizes

the total number of explanations in the dialog and the explanation content; and (b) maximizes user’s

understandability and predictability about the machine’s predictions.

We show that the mental representations in ToM help in quantitatively measuring and increasing

justified human trust in the machine. We present applications of the proposed approach to three

visual recognition tasks, namely, image classification, action recognition, and human body pose
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Figure 1.2: XAI as Collaborative Task Solving: Our interactive and collaborative XAI framework

based on the Theory of Mind. The interaction is conducted through a dialog where the user poses

questions about facts in the environment (W-QA) and explanation seeking questions (E-QA).

estimation. We argue that our ToM based explanations are practical and more natural for both expert

and non-expert users to understand the internal workings of complex machine learning models.

Extensive human study experiments verify our hypotheses, showing that the proposed explanations

significantly outperform the state-of-the-art XAI methods in terms of all the quantitative and

qualitative XAI evaluation metrics including human trust, reliance, and explanation satisfaction.

Research question 2: Humans do not explain their understanding through pixels or saliency

maps. Instead, they explain through high-level semantic concepts. Is it possible to produce such

human-level explanations?

In Chapter 3, we propose a novel conceptual and counterfactual explanation framework, which

we call CoCo-X, for explaining decisions made by a deep convolutional neural network (CNN).

In Cognitive Psychology, the factors (or semantic-level features) that humans zoom in on when
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Figure 1.3: CoCoX Explanations using Fault-Lines: Positive fault-line explanation (Ψ+
I1

) suggests

adding stripes to the animal in the input image (I1) to alter the model M ’s prediction from Dog class to

Thylacine class, i.e., the concept of stripedness is critical for M to decide between Dog and Thylacine

in I1. Similarly, negative fault-line Ψ−
I2

suggests removing bumps from I2 to alter the classification category

from Toad to Frog. Changing the classification result of I3 from Goat to Sheep requires adding wool

and removing beard and horns from I3, i.e., it needs both positive and negative fault-lines.

they imagine an alternative to a model prediction are often referred to as fault-lines. Motivated by

this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically, given an

input image I for which a CNN classification model M predicts class cpred, our fault-line based

explanation identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of

dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter

the classification category of I by M to another specified class calt.

For example, let us consider a training dataset for an image classification task shown in Figure 1.3

containing the classes Dog, Thylacine, Frog, Toad, Goat and Sheep, and a CNN based

classification model M which is trained on this dataset. In order to alter the model’s prediction
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of input image I1 from Dog to Thylacine, the fault-line (Ψ+
I1,cpred,calt

) suggests adding stripes

to the Dog. We call this a positive fault-line (PFT) as it involves adding a new xconcept, i.e.,

stripedness, to the input image. Similarly, to change the model prediction of I2 from Toad to

Frog, the fault-line (Ψ−
I2,cpred,calt

) suggests removing bumps from the Toad. We call this a negative

fault-line (NFT) as it involves subtracting xconcept, i.e., bumpedness, from the input image. In most

cases, both PFT and NFT are needed to successfully alter the model prediction.

While there are recent works on generating pixel-level counter-factual and contrastive explana-

tions [HHD18, DCL18, GWE19], to the best of our knowledge, this is the first work to propose a

method for generating explanations that are counter-factual as well as conceptual.

We identify two main challenges in generating a fault-line explanation, namely: (a) How to

identify the set of xconcepts; and (b) How to select the most critical xconcepts that alter the model

prediction from cpred to calt. In this work, we first propose a novel method to mine all the plausible

xconcepts from the given dataset automatically. We then identify class-specific xconcepts by using

directional derivatives [KWG18]. Finally, we pose the derivation of a fault-line as an optimization

problem which selects a minimal set of these xconcepts to alter the model’s prediction. We perform

extensive human study experiments to demonstrate the effectiveness of our approach in improving

human understanding of the underlying classification model.

Through our human studies, we show that our fault-line based explanations significantly outper-

form the baselines (i.e., attribution techniques and pixel-level counterfactual explanations) in terms

of qualitative and quantitative metrics such as Justified Trust and Explanation Satisfaction [HMK18].

Research question 3: Recently, several deep learning models have achieved tremendous

progress on vision and language grounding datasets. Is it possible to understand the extent to which

these models are interpretable, and also verify if these models exploit an unintended biases from the

datasets to gain good performance on test sets?

In Chapter 4, we evaluate existing deep learning models such as Transformer, Compositional

Modular Networks in terms of their ability to provide interpretable visual and language representa-
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tions and their ability to provide robust predictions to out-of-distribution samples. To show our anal-

ysis, we consider the task of visual referring expression recognition: a challenging task that requires

natural language understanding in the context of an image [KOM14, NMD16, MHT16, HXR16].

To measure the true progress of existing models, we split the existing test sets for this task into two

sets, one which requires reasoning on linguistic structure and the other which doesn’t. Additionally,

we create an out-of-distribution dataset by asking crowdworkers to perturb in-domain examples

such that the target object changes. Using these datasets, we empirically show that existing methods

fail to exploit linguistic structure and are 12% to 23% lower in performance than the established

progress for this task.

In Chapter 5, we show that the state-of-the-art end-to-end modular network (NMNs) implemen-

tations [SBG20, AGA20a] - although provide high model interpretability with their transparent,

hierarchical and semantically motivated architecture - require a large amount of training data and

are less effective in generalizing to unseen but known language constructs. For example, NMNs

fail to understand new concepts such as “yellow sphere to the left” that are constructed using a

combinations of known concepts from train data such as “blue sphere”, “yellow cube”, and “metallic

cube to the left”. One of the main reasons for this is that the neural modules in existing works

either use a shallow, indirect language guidance [PSV18, HAR17, ASM13] or pre-define the textual

inputs in the module instantiation [JHM17b, LLB19], ignoring the rich correlations among the

visual inputs and the relevant context from the textual inputs. For example, the neural module that

filters based on the object size, “filter size(smallest)”, needs to localize a tiny sphere

or a medium-sized sphere in the image depending on the object relationships in the expression

(e.g. “the smallest thing among the spheres” vs. “the metallic sphere smaller than all the large

cylinders”) and the different sizes of spheres and cylinders available in its visual input. We believe

that explicitly conditioning the neural modules on the joint textual and visual context helps in

inferring robust visiolinguistic relationships which further enhances the compositional reasoning

skills. In this dissertation, we propose several extensions to modular networks that mitigate bias in

the training and improve robustness and faithfulness of model. The research culminates in a visual
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question and answer generation framework in Chapter6, in which we propose a semi-automatic

framework for generating out-of-distribution data to explicitly understand the model biases and help

improve the robustness and fairness of existing models.
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CHAPTER 2

Collaborative Explanation with Theory-of-Mind

2.1 Introduction

Explainable AI (XAI) models, through explanations, make the underlying inference mechanism of

AI systems transparent and interpretable to expert users (system developers) and non-expert users

(end-users) [Lip16, RSG16, Mil18a, Hof17b, Lip90, SK11, ALT19]. Explanations play a key role

in integrating AI machines into our daily lives, i.e. XAI is essential to increase social acceptance of

AI machines.

Most work on XAI typically focuses on black-box models and generating explanations about

their performance in terms of, e.g., feature visualization and attribution [STY17, RAR16, ZF14].

However, solely generating explanations, regardless of their type (visualization or attribution)

and utility, is not sufficient for increasing understandability and predictability. Previous studies

have shown that trust is closely and positively correlated to the level of how much human users

understand the AI system — understandability — and how accurately they can predict the system’s

performance on a given task — predictability [Hof17b, Lip16, HMK18, Mil18a]. Therefore there

has been a growing interest in developing explainable AI systems (XAI) aimed at increasing

understandability and predictability by providing explanations about the system’s predictions to

human users [Lip16, RSG16, Mil18a, YGS18]. Current works on XAI generate explanations about

their performance in terms of, e.g., feature visualization and attention maps [STY17, RAR16,

ZF14, STK17, KRS14, ZNZ18]. However, solely generating explanations, regardless of their

type (visualization or attention maps) and utility, is not sufficient for increasing understandability
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and predictability [JW19]. We verify this in our experiments (see Section 4). To address this

issue, We argue that an effective explanation cannot be one shot and involves iterative process of

communication between the human and the machine. The context of such interaction plays an

important role in determining the utility of the follow-up explanations [CS89]. As humans can

easily be overwhelmed with too many or too detailed explanations, interactive communication

process helps in understanding the user and identify user-specific content for explanation. Moreover,

cognitive studies [Mil18a] have shown an explanation can only be optimal if it is generated by

taking user’s perception and belief into account.

In our experiments, we found that it is difficult to evaluate the effectiveness of explanations

without constraining the communication process. Therefore, we constrain the communication by

explicitly defining a collaborative task-solving game for the human user where the effectiveness of

the explanations is measured based on the total number of tasks successfully solved by the user and

the total number of explanations shown to the user in the communication dialog.

Thus, in this Chapter, we introduce an interactive explanation framework, X-ToM. In our

framework, the machine generates sequence of explanations in a dialog which takes into account

three important aspects at each dialog turn: (a) human’s intention (or curiosity); (b) human’s

understanding of the machine; and (c) machine’s understanding of the human user. To do this, we

use Theory of Mind (ToM) which helps us in explicitly modeling human’s intention, machine’s

mind as inferred by the human as well as human’s mind as inferred by the machine. The ability to

reason about other’s perception and beliefs, in addition to one’s own perception and beliefs, is often

referred to as the Theory-of-Mind [DA16, Gol12, PW78, ALS19, AWL21].

More specifically, in X-ToM, the machine and the user are positioned to solve a collaborative

task, but the machine’s mind (M ) and the human user’s mind (U ) only have a partial knowledge

of the environment (see Figure 1.2). Hence, the machine and user need to communicate with

each other, using their partial knowledge, otherwise they would not be able to optimally solve the

collaborative task. The communication consists of two different types of question-answer (QA)

exchanges — namely, a) Factoid question-answers about the environment (W-QA), where the user
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Figure 2.1: X-ToM for a visual recognition task consists of three distinct parse graphs (pg’s): pgM

representing the machine’s interpretation of the image, pgUinM — the human’s mind as inferred by

the machine; and pgMinU — the machine’s mind as inferred by the human. Nodes of a parse graph

represent objects and parts appearing in the image, and edges represent spatial relationships of the

objects. X-ToM optimizes explanations so as to reduce a difference among the three parse graphs.

asks “WH”-questions that begin with what, which, where, and how; and b) Explanation seeking

question-answers (E-QA), where the user asks questions that begin with why about the machine’s

inference. At each turn in the collaborative dialog, our X-ToM updates a model of human perception

and beliefs, and uses this model for generating a maximum utility explanation that (a) minimizes

the total number of explanations in the dialog and the explanation content; and (b) maximizes user’s

understandability and predictability about the machine’s predictions.

We applied our framework to three visual recognition tasks, namely, image classification, action

recognition, and human body pose estimation. In these visual recognition tasks, the machine is given
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an original image and is supposed to detect and localize objects and parts of interest or a human

activity appearing in the image. The user is given a blurred version of the original image, and the

user seeks the machine’s help essentially through the explanations generated by the machine in order

to recognize objects/parts in the blurred image. This provides a unique collaborative setting where

the system is motivated to provide human-understandable explanation for its visual recognition

and the user is motivated to seek the system’s recognition and explanation to help his/her own

understanding. To facilitate this collaborative interaction, X-ToM explicitly models mental states

of visual understanding (“minds”) of the machine and user using parse graphs (pg) in the form of

And-Or Graph (AOG) [ZM07]. In a pg, nodes represent objects and parts detected in the image,

and edges represent spatial relationships identified between the objects. As shown in Figure 2.1,

X-ToM mind models include:

• pgM: the machine’s own inference about objects and their locations in the image.

• pgUinM: the human’s mind as inferred by the machine.

• pgMinU: the machine’s mind as inferred by the human.

These explicit mental representations allow for formalizing the notions of justified trust and

mistrust in the machine, as well as quantifying their desired increase through the process of

generating explanations.

Using Amazon Mechanical Turk, we have collected explanation dialogs by interacting with

turkers through X-ToM framework. From there, X-ToM learned an optimal explanation policy that

takes into account user perception and beliefs. Through our extensive human studies, we show that

X-ToM allows the user to achieve a high success rate in visual recognition on blurred images, and

does so very efficiently in a few dialog exchanges. We also found that the most popularly used

attribution based explanations (viz. saliency maps) are not effective to improve human trust in AI

system, whereas our Theory-of-Mind inspired approach significantly improves human trust in AI

by providing effective explanations.
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2.1.1 Contributions

Our contributions in this Chapter are threefold: (i) a new interactive XAI framework based on the

Theory-of-Mind; (ii) a new collaborative task-solving game in the domain of visual recognition

for learning collaborative explanation strategies; and (iii) a new objective measure of trust and

quantitative evaluation of how humans gain increased trust in a given vision system.

2.2 Related Work

The importance of generating explanations or justifications of decisions made by an AI system has

been emphasized and widely explored in numerous works over the past decades [Ala17, Bor16,

CBS17, BBM15, SGK17, ZKL16, BB87, BC17, Dar13, DK17a, DK17b, GF17, Hof17a, HK17,

She17, SM18, TZS16, WKR16, ATC19]. For the rest of this section, we use the term ‘Performer’

to refer to the AI model that needs to be explained. As shown in Figure 2.2, most prior work in XAI

fall into one or more of the following categories:

2.2.1 Intrinsic vs Post-hoc Explanations

Explanations that are derived (or understood) directly from the performer’s internal representation or

the output parse structure are called as Intrinsic Explanations [DK17b, ZNZ18, ZWZ18, SWS17].

For example, the reasoning behind the predictions made by linear regression models, decision

trees, and And-Or Graphs [LHW13, ZCN17] is easier to understand without using any external

XAI models and hence are considered as intrinsically explainable. These performers, due to

their simple structure, typically do not fare well in terms of performance compared to black-box

performers such as deep neural nets. Majority of the work in XAI is focused on generating post-

hoc [LBJ16, RSG16, KWG18, KRS14, WRV16, KSD15] explanations where an external XAI

model is employed to explain an already trained performer. More recently, there are efforts in

making the complex deep neural networks intrinsically explainable [ZWZ18, ZYM19, ZYY18].

15



Figure 2.2: Types of AI Explainability

For example, [ZYM19] proposed a decision tree to encode decision modes in fully-connected layers

and thereby quantitatively explain the logic for each CNN prediction.

2.2.2 Model-agnostic vs Model-specific Explanations

Explainable AI models that do not require performer specific details (for example, weights of deep

neural nets) for generating explanations are called as model-agnostic models [RSG18]. In other

words, they simply analyze the dependencies of input features against the output predictions to

explain the performer’s decision. It may be noted that intrisinc explanations are typically model-

specific whereas post-hoc XAI models are model-agnostic. Several XAI works belong to this

category, to name a few:

1. Local Intepretable Model-Agnostic Explanation (LIME) [RSG16]. LIME produces attention

map as explanation, generated through super-pixel based perturbation. Though LIME is a
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post-hoc model-agnostic model, it generates explanations by approximating the performer

(locally) with an intrinsic model-specific XAI model.

2. Contrastive Explanation Methods (CEM) [DCL18]. CEM provides contrastive explanations

by identifying pertinent positives and pertinent negatives in the input image.

3. Counterfactual Visual Explanations (CVE) [GWE19]. CVE provides counterfactual explana-

tion describing what changes to the situation would have resulted in arriving at the alternative

decision.

2.2.3 Human Interpretable Explanations (Concept Activation Vectors)

Most XAI models represent the explanations using attention maps (saliency). However, these

explanations are difficult for humans to understand. For example, authors in [JW19] considered

NLP tasks (text classification, natural language inference (NLI), and question answering) to show

that attention mechanism is not useful for humans. Therefore, there is a dire need to represent and

generate human-friendly explanations. Recent work by [KWG18] presents a first step towards this

goal. They propose a technique called TCAV that takes the the user defined concept (X) represented

using a set of example images and maps it to the activation space of any given layer l in the network.

It then constructs a vector representation of each concept, called CAV (denoted as vX), by using a

direction normal to a linear classifier trained to distinguish between the concept activations from

the random activations. The sensitivity of network predictions towards a concept is gauged by

computing directional derivatives (Sc,X) to produce estimates of how important the concept X was

for a CNN’s prediction of a target class c, e.g. how important is the concept stripedness for

predicting the zebra class.

Sc,X = ∇gc(f(I)) · vX (2.1)

where gc denote classifier component of CNN that takes output of f and predicts log-probability of

output class c. Because TCAV provides explanations using high-level concepts, it is expected

to achieve higher human trust and reliance values compared to the attention based explana-
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tions [SCD17a, RSG16].

2.2.4 Proxy or Surrogate Models

A Proxy or surrogate model is a simpler interpretable model that approximates the behaviour of

the complex performer [RSG16, AJ18, ST01, AK12]. It reduces the complexity of the original

performer but produces similar output estimates. Most surrogate XAI models are model-agnostic. A

surrogate model that is trained to explain individual instances is referred to as local surrogate model.

For example, LIME [RSG16] approximates performer with a local linear model that serves as a

surrogate for the performer in the neighborhood of the input. Similarly, authors in [ST01, ZCN17]

locally approximate neural networks with decision trees. This notion of using proxy models is also

referred to as Knowledge Distillation [HVD15, HK18, PPA18] and Rule Extraction [ZMJ16].

2.2.5 Feature visualization

Feature visualization techniques typically identify qualitative interpretations of features used for

making predictions or decisions. Recently, there has been an increased interest in developing

feature visualizations for deep learning models, especially for Convolutional Neural Nets (CNNs)

in computer vision applications, and Recurrent Neural Nets (RNNs) in NLP applications. For

example, gradient ascent optimization is used in the image space to visualize the hidden feature

layers of unsupervised deep architectures [EBC09]. Also, convolutional layers are visualized by

reconstructing the input of each layer from its output [ZF14]. Recent visual explanation models

seek to jointly classify the image and explain why the predicted class label is appropriate for the

image [HAR16]. Other related work includes a visualization-based explanation framework for

Naive Bayes classifiers [GPL03], an interpretable character-level language models for analyzing

the predictions in RNNs [KJF15], and an interactive visualization for facilitating analysis of RNN

hidden states [SGH16].
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2.2.6 Perturbation Analysis

Perturbation analysis helps in measuring the feature importance for the predictions made by

performer [FRD18, MFF17]. The assumption here is that performer’s confidence in the prediction

will be low if an important feature has been removed (or masked) after perturbing the input features.

Adversarial analysis [GSS14] and Probing techniques [CKL19] are few popular techniques for

perturbation analysis.

2.2.7 Counterfactual Explanations

Counterfactual (and Contrastive) explanations provide a minimal amount of information capable

of altering a model’s decision. In other words, they aim at describing the causal situations such as

“What would be the output of model if X had not occurred?”. This makes them easily digestible and

practically useful for understanding the reasons for a model’s decision [PGG18, WMR17, GWE19,

VK19].

For example, [FV17] propose a counterfactual reasoning framework to find the part of an image

most responsible for a classifier decision. This saliency based explanation framework helps in

understanding where the model looks by discovering which parts of an image most affect its output

score when perturbed. [GWE19] proposes a counterfactual explanation framework to identify how

the input image could be changed such that the model would output a different specified class. To

do this, they select a distractor image that the model predicts as class c1 and identify spatial regions

such that replacing the identified region in input image with the regions from distractor image would

push the model towards classifying I as c2. Contrastive explanations are proposed by [DCL18] to

identify minimal and sufficient features to justify the classification result.

2.2.8 Partial Dependence Plots

Partial dependence plots (PD) is a model-agnostic XAI technique that helps in understanding the

relationships between one or more input variables as well as marginal effect of a given variable on a
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performer’s decision [Fri01, HTF01, Mol19].

2.2.9 Attribution

Attribution is a set of techniques that highlight pixels of the input image (saliency maps) that most

caused the output classification. The following Gradient-based visualization methods [ZKL16,

SCD17b] have been proposed to extract image regions responsible for the network output.

1. Class Activation Mapping (CAM) [ZKL16]. CAM produces attention map as explanation, i.e.

it highlights the important regions in the image for predicting a target output.

2. Gradient-weighted Class Activation Mapping (Grad-CAM) [SCD17a]. Grad-CAM uses the

gradients of target class flowing into the final convolutional layer to produce attention map as

explanation.

3. Layer-wise Relevance Propagation (LRP) [BBM15]. LRP generates attention map by propa-

gating classification probability backward through the network and then calculates relevance

scores for all pixels.

4. SmoothGrad [STK17]. Smooth grad produces attention map as explanation by adding

gaussian noise to the original image and then calculating gradients multiple times and

averaging the results.

More recently, in addition to the above techniques, other important lines of research in ex-

plainable AI explore dimensionality reduction techniques [Bri, MH08]. Also, influence mea-

sures [DDP15] have been used to identify the importance of features in affecting the classification

outcome for individual data points. There are several works [Mil18a, Hil90, Lom06] on the good-

ness measures of explanation which aim to understand the underlying characteristics of explanations.
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2.3 X-ToM Framework

Our X-ToM consists of three main components:

• A Performer that generates image interpretations (i.e., machine’s mind represented as pgM )

using a set of computer vision algorithms;

• An Explainer that generates maximum utility explanations in a dialog with the user by

accounting for pgM and pgUinM using reinforcement learning;

• An Evaluator that quantitatively evaluates the effect of explanations on the human’s under-

standing of the machine’s behaviors (i.e., pgMinU ) and measures human trust by comparing

pgMinU and pgM .

2.3.1 X-ToM Collaborative Task

As part of our X-ToM framework, we have designed a collaborative task-solving game for visual

recognition. The game consists of two phases. In the first phase, the user is shown a blurred image

and given a task to recognize what the image shows. X-ToM has access to the original (unblurred)

image and the machine’s (i.e. Performer’s) inference result pgM (see Section 2.3.3). The user

is allowed to ask questions regarding objects and parts in the image that the user finds relevant

for his/her own recognition task. Using the detected objects and parts in pgM , X-ToM Explainer

provides visual explanations to the user, as shown in Figure 2.3. This process allows the machine to

infer what the user sees and iteratively update pgUinM , and thus select an optimal explanation at

every turn of the game (see Section 2.3.4). Optimal explanations generated by the Explainer are

the key to maximize the human trust in the machine. The second phase is specifically designed for

evaluating whether the explanation provided in the first phase helps the user understand the system

behaviors. The Evaluator shows a set of original (unblurred) images to the user that are similar

to (but different from) the ones used in the first phase of the game (i.e., the set of images shows

the same class of objects or human activity). The user is then given a task to predict in each image
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the locations of objects and parts that would be detected by the machine (i.e., in pgM ) according to

his/her understanding of the machine’s behaviors. Based on the human predictions, the Evaluator

estimates pgMinU and quantifies human trust in the machine by comparing pgMinU and pgM (see

Section 2.3.5).

Figure 2.3: An example of the first phase of an X-ToM game aimed at estimating pgUinM : The user is

shown a blurred image and given a task to recognize if the person in the image is running or walking. X-ToM

has access to the original (unblurred) image and pgM . The user then asks questions regarding objects and

parts in the image. Using the detections in pgM , X-ToM provides visual explanations as “bubbles” that reveal

the corresponding image parts in the blurred image. The generated explanations are used to update pgUinM .

2.3.2 Representation of Minds in X-ToM

The three minds pgM , pgMinU , and pgUinM are sub-graphs of an And-Or Graph (AOG) defining all

objects, parts, and their relationships and attributes of the visual domain considered. Our motivation
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to use AOGs for modeling the three mental states of the Theory of Mind stems from the following

advantages. First, an AOG is a context-sensitive stochastic grammar [ZM07] that can explicitly

capture rich contextual and hierarchical relationships (spatial, temporal and causal). Second, AOG

based representation and inference is a domain generic approach and the literature has abundantly

demonstrated that AOG based systems, especially recent methods that combine deep learning and

AOGs, are the top performers for a wide range of tasks in domains such as computer vision, natural

language processing, and human-robot collaboration [ZWZ18, LYS16, WZ11, TML14, PNZ18].

Third, since the result of visual recognition (i.e., a parse graph) is a sub-graph of the AOG, image

interpretations can be readily explained using the top-down, bottom-up, or contextual types of

visual reasoning enabled by the AOG. Finally, and of great importance for XAI systems, the rich

contextual and hierarchical nature of AOGs allows for formalizing and quantitatively evaluating

human trust in the visual performer along both depth and breadth.

As AOG is interpretable, why not show PgM directly to the user as an explanation? It will

be daunting to show the entire AOG since our AOG encodes hundreds of objects, parts, activities,

attributes and other concepts as nodes. In addition, AOG has numerous edges. It might be possible

to visualize a part of AOG, but it is not clear how to optimize which AOG subgraph would not

overwhelm the user and maximize utility. The advantage of using our dialog based explanations is

that, at each dialog turn, explainer can tailor the explanations based on the user’s current perception

and understanding [Mil18a].

2.3.3 X-ToM Performer (for Image Interpretation)

In this Chapter, the visual tasks involve detecting and localizing human body parts, identifying their

poses and attributes, and recognizing human actions from a given image. The AOG for this visual

domain uses AND nodes to represent decompositions of human body parts into subparts, and OR

nodes for alternative decompositions. Each node is characterized by attributes that pertain to the

corresponding human body part, including the pose and action of the entire body. Also, edges in the

AOG capture hierarchical and contextual relationships of the human body parts.
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Figure 2.4: Illustration of the α,β,γ inference processes in the AOG for human body pose detection

Our AOG-based performer uses three inference processes α, β and γ at each node. Figure 2.3

shows an example part of the AOG relevant for human body pose estimation [PNZ18]. The α

process detects nodes (i.e., human body parts) of the AOG directly based on image features, without

taking advantage of the surrounding context. The β process infers nodes of the AOG by binding

the previously detected children nodes in a bottom-up fashion, where the children nodes have been

detected by the α process (e.g., detecting human’s upper body from the detected right arm, torso, and

left arm). Note that the β process is robust to partial object occlusions as it can infer an object from

its detected parts. The γ process infers a node of the AOG top-down from its previously detected

parent nodes, where the parents have been detected by the α process (e.g., detecting human’s right

leg from the detected outline of the lower body). The parent node passes contextual information so

that the performer can detect the presence of an object or part from its surround. Note that the γ

process is robust to variations in scale at which objects appear in images.
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2.3.4 X-ToM Explainer (for Explanation Generation)

The explainer, in the first phase of the game, makes the underlying α, β, and γ inference process

of the performer more transparent to the human through a collaborative dialog. At one end, the

explainer is provided access to an image and the performer’s inference result pgM on that image. At

the other end, the human is presented a blurred version of the same image, and asked to recognize a

body part, or pose, or human action depicted (e.g., whether the person is running or walking). To

solve the task, the human may ask the explainer various “what”, “where” and “how” questions (e.g.,

“Where is the left arm in the image”). We make the assumption that the human will always ask

questions that are related to the task at hand so as to solve it efficiently. The explainer answers these

questions using pgM and justifies the answers by showing the corresponding visual explanations in

the image (as illustrated in Figure 2.5).

As visual explanations, we use “bubbles” [GS01], where each bubble reveals a circular part of

the blurred image to the human. The bubbles coincide with relevant image parts for answering

the question from the human, as inferred by the performer in pgM . For example, a bubble may

unblur the person’s left leg in the blurred image, since that image part has been estimated in pgM as

relevant for recognizing the human action “running” occurring in the image.

Following the “principle of least collaborative effort” [CW86] and the aforementioned find-

ings [Mil18a] that explanations should not overwhelm the human, our X-ToM explainer utilizes

pgM and pgUinM (i.e., the contextual and hierarchical relationships explicitly modeled in the AOG)

for controlling the depth and breadth of explanations. To enable this control, each bubble is charac-

terized by a number of parameters, including the amount of image reveal (i.e., the unblurring level),

size, and location in the image, to name a few. We use reinforcement learning to train the explainer

to optimize these parameters and thus provide optimal visual explanations.
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2.3.5 X-ToM Evaluator (for Trust Estimation)

The second phase of the X-ToM game serves to assess the effect of the explainer on the human’s

understanding of the performer. This assessment is conducted by the evaluator. The human is

presented with a set of (unblurred) images that are different from those used in the first phase. For

every image, the evaluator asks the human to predict the performer’s output. The evaluator poses

multiple-choice questions and the user clicks on one or more answers. As shown in Figure 2.6,

we design these questions to capture different aspects of human’s understanding of α, β and γ

inference processes in the performer. Based on responses from the human, the evaluator estimates

pgMinU . By comparing pgMinU with the actual machine’s mind pgM (generated by the performer),

we have defined the following qualitative and quantitative metrics to quantitatively assess human

trust [Hof17b, HHB10, HMK18, Mil18b] in the performer:

Quantitative Metrics:

(1) Justified Positive and Negative Trust: It is possible for humans to feel positive trust with respect

to certain tasks, while feeling negative trust (i.e. mistrust) on some other tasks. The positive and

negative trust can be a mixture of justified and unjustified trust [Hof17b, HMK18]. We compute

justified positive trust (JPT) and negative trust (JNT) as follows:

JPT =
1

N

∑
i

∑
z=α,β,γ

∆JPT(i, z),

∆JPT(i, z) =
∥pgMinU

i,z,+ ∩ pgMi,+∥
∥pgMi,+∥

,

JNT =
1

N

∑
i

∑
z=α,β,γ

∆JNT(i, z),

∆JNT(i, z) =
∥pgMinU

i,z,− ∩ pgMi,−∥
∥pgMi,−∥

,

where N is the total number of games played. z is the type of inference process. ∆JPT(i, z),

∆JNT(i, z) denote the justified positive and negative trust gained in the i-th turn of a game on the

z inference process respectively. pgMinU
i,z,+ denotes nodes in pgMinU

i for which the user thinks the
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performer is able to accurately detect in the image using the z inference process. Similarly, pgMinU
i,z,−

denotes nodes in pgMinU
i for which the user thinks the performer would fail to detect in the image

using the z inference process. ∥pg∥ is the size of pg. Symbol ∩ denote the graph intersection of all

nodes and edges from two pg’s.

(2) Reliance: Reliance (Rc) captures the extent to which a human can accurately predict

the performer’s inference results without over- or under-estimation. In other words, Reliance is

proportional to the sum of JPT and JNT.

Rc =
1

N

∑
i

∑
z=α,β,γ

∆Rc(i, z),

∆Rc(i, z) =
∥pgMinU

i,z ∩ pgMi,z∥
∥pgMi ∥

.

Qualitative Metrics:

(3) Explanation Satisfaction (ES). We measure users’ feeling of satisfaction at having achieved an

understanding of the machine in terms of usefulness, sufficiency, appropriated detail, confidence,

accuracy, and consistency. We ask them to rate each of these metrics on a Likert scale of 0 to 9.

2.4 Experiments

We deployed the X-ToM game on the Amazon Mechanical Turk (AMT) and trained the X-ToM

Explainer through the interactions with turkers. All the turkers have a bachelor’s degree or higher.

We used three visual recognition tasks in our experiments, namely, human body parts identification,

pose estimation, and action identification. We used 1000 images randomly selected from Extended

Leeds Sports (LSP) dataset [JE10]. Each image is used in all the three tasks. During training, each

trial consists of one X-ToM game where a turker solves a given task on a given image. We restrict

Turkers from solving a task on an image more than once. In total, about 2400 unique workers

contributed in our experiments.
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We performed off-policy updates after every 200 trials, using Adam optimizer [KB15] with a

learning rate of 0.001 and gradients were clipped at [-5.0, 5.0] to avoid explosion. We used ϵ-greedy

policy, which was annealed from 0.6 to 0.0. We stopped the training once the model converged. In

our case, the X-ToM policy model converged after interacting with 3500 turkers. All our data and

code will be made publicly available.

Elaboration Sequence Recurrence Restatement Summary

26% 48.7% 12.6% 5.1% 7.6%

Table 2.1: Distribution of observed discourse relations in the test trials

The trained X-ToM Explainer was applied to an additional 500 X-ToM games with AMT turkers

for testing. Table 2.1 shows the percentage of discourse relations among bubbles found in the test

interactions. As can be seen, the discourse relation sequence dominates other relations. This

indicates that the X-ToM’s most common explanation strategy is to prefer a bubble containing

new evidence (that was not already shown to the user). Furthermore, the experiment has shown

that 55.3% of the bubbles in the test trials were generated using α explanation act, 23.1% using β

explanation act, and 21.6% using γ explanation act. The high percentage of β and γ explanation

acts indicate that contextual evidence is not only helpful for the performer to detect but also for the

explainer to explain.

2.4.1 AMT Evaluation of X-ToM Explainer

We conducted an ablation study to quantify the importance of taking the inferred human’s mind into

account for generating optimal explanations, i.e., the ablated model does not explicitly represent and

infer pgUinM . Similar to X-ToM, the ablated model was also deployed and trained on AMT. The

trained ablated model was again applied to an additional 500 X-ToM games with AMT turkers for
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testing. Table 2.2 compares X-ToM Explainer with the ablated model in terms of objective measures

such as average success rate (ss), average number of bubbles, average rewards (r). X-ToM Explainer

significantly outperforms the ablated model (p < 0.01) in terms of the overall reward. Although

the success rates of both models are similar, the ablated model is found to use a significantly larger

number of bubbles, which leads to lower overall reward.

Model #test trials ss #bubbles r

X-ToM 500 81.3% 10.5 0.91

Ablated Model 500 77.1% 28 0.42

Human Strategy 100 78.9% 6 0.62

Table 2.2: Comparison of X-ToM with ablated and human baselines

Figure 2.7 compares the justified positive trust (JPT), justified negative trust (JPT), and Reliance

(Rc) of X-ToM with the baselines.

Using an additional 100 X-ToM games on AMT, we further compare the explanations generated

by our X-ToM Explainer with the explanations annotated by humans. We asked three graduate

students (not the authors), to select the most appropriate bubbles for a given task. Bubbles that have

been agreed upon by these three subjects were taken as the best explanations for the given task and

image. In terms of maximizing the reward, we found that X-ToM Explainer performed significantly

better than the human strategy of bubble selection (p < 0.01). However, we found that the average

dialog length in the human explanations is 6, while the average dialogue length observed in the

X-ToM explanations is 10.5, indicating that there is a possibility to further improve the quality of

the X-ToM explanations. We leave this for future exploration.

Using X-ToM Evaluator, we conduct human subject experiments to assess the effectiveness of

the X-ToM Explainer, that is trained on AMT, in increasing human trust through explanations. We

recruited 120 human subjects from our institution’s Psychology subject pool *. These subjects have

*These experiments were reviewed and approved by our institution’s IRB.
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no background on computer vision, deep learning and NLP. We applied between-subject design and

randomly assigned each subject into one of the three groups. One group used X-ToM Explainer,

and two groups used the following two baselines respectively:

• ΩQA: we measure the gains in human trust only by revealing the answers for the tasks without

providing any explanations to the human.

• ΩSalience: in addition to the answers, we also provide saliency maps generated using attribution

techniques to the human as explanations [ZKL16, SCD17b].

Within each group, each subject will first go through an introduction phase where we introduce

the tasks to the subjects. Next, they will go through familiarization phase where the subjects become

familiar with the machine’s underlying inference process (Performer), followed by a testing phase

where we apply our trust metrics and assess their trust in the underlying Performer.

As we can see, JPT, JNT and Rc values of X-ToM are significantly higher than ΩQA and ΩSalience

(p < 0.01). Also, it should be noted that attribution techniques (ΩSalience) did not perform any better

than the ΩQA baseline where no explanations are provided to the user. This could be attributed to

the fact that, though saliency maps help human subjects in localizing the region in the image based

on which the performer made a decision, they do not necessarily reflect the underlying inference

mechanism. In contrast, X-ToM Explainer makes the underlying inference processes (α, β, γ) more

explicit and transparent and also provides explanations tailored for individual user’s perception

and understanding. Therefore X-ToM leads to the significantly higher values of JPT, JNT and Rc.

This is one of the key results of our work, given the popularity of attribution techniques as the

state-of-the-art explanations.

Figure 2.8 shows the average explanation satisfaction rates obtained from each of the three

groups. As we can see, subjects in X-ToM experiment group found that explanations were highly

useful, sufficient and detailed compared to the baselines (p < 0.01). Interestingly, we did not find

significant differences across the three groups in terms of other satisfaction measures: confidence,

understandability, accuracy and consistency. We leave this observation for future exploration.

30



2.4.2 Gain in Reliance over time

We hypothesized that human trust and reliance in machine might improve over time. This is because,

it can be harder for humans to fully understand the machine’s underlying inference process in one

single session. Therefore, we conduct an additional experiment with eight human subjects where

the subjects’ reliance is measured after every session. The results are shown in Figure 2.9. As we

expected, subjects’ reliance increased over time. Specifically, reliance with respect to α inference

process significantly improved only after 2.5 sessions. Reliance with respect to β and γ inference

processes significantly improved after 4.5 sessions. It is clearly evident that, with more sessions, it

is possible to further improve human reliance in AI system.

2.4.3 Case Study

Figure 2.10 shows examples where the top-3 best explanations preferred by X-ToM are compared

against the top-3 explanations generated by the attribution techniques. The first column shows

the input image for the task. The second column shows all the evidence (i.e., explanations in the

form of bubbles, highlighted in yellow color) used in the machine’s inference about the task. The

thicker the bubble, the higher is its influence, for the machine, in interpreting the image. As we

can see, attribution techniques chose the explanations only based on how influential they are for

the machine in recognizing the image (third column). In contrast, since X-ToM maximizes the

utility of explanations based on both influence values and user’s model, explanations selected by

the X-ToM (fourth column) are diverse and are more intuitive for humans to understand and solve

the task efficiently. For example, for the first image, to aid the human user in solving the task ‘Is the

person in the image walking’, X-ToM generates the explanation bubbles based on left arm, right

arm and lower body of the person, whereas attribution techniques generate the top-3 bubbles only

based on right arm which clearly is not sufficient for the user to successfully solve the task.

In addition to the quantitative and qualitative metrics discussed in the previous section, we also

measure the following metrics for comparing our X-ToM framework with the baselines:
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• Response Time: We record the time taken by the human subject in answering evaluator

questions. Figure 2.14 shows the average response times (in milliseconds per question) for

each of the three groups (X-ToM, QA and Saliency Maps). We expected the participants in

X-ToM group to take less time to respond compared to the baselines. However, we find no

significant difference in the response times across the three groups.

• Subjective Evaluation of Reliance: We collect subjective Reliance values (on a Likert scale

of 0 to 9) from the subjects in the three groups. The results are shown in Figure 3.3. These

results are consistent with our quantitative reliance measures. It may be noted that subjects’

qualitative reliance in Saliency Maps is lower compared to the QA baseline.

2.5 Summary

This Chapter demonstrated X-ToM – a new framework for Explainable AI (XAI) and human trust

evaluation based on the Theory-of-Mind (ToM). X-ToM generates explanations in a dialog by

explicitly modeling, learning, and inferring three mental states based on And-Or Graphs – namely,

machine’s mind, human’s mind as inferred by the machine, and machine’s mind as inferred by

the human. This allows for a principled formulation of human trust in the machine. For the task

of visual recognition, we proposed a novel, collaborative task-solving game that can be used for

collecting training data and thus learning the three mental states, as well as a testbed for quantitative

evaluation of explainable vision systems. We demonstrated the superiority of X-ToM in gaining

human trust relative to baselines.
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2.6 Appendix

2.6.1 X-ToM Evaluator Interface and Questions

Specifically, there are two main types of evaluator questions about the user’s prediction: (1) whether

the Performer would successfully or incorrectly detect objects, parts and other concepts encoded by

AOG; and (2) which image parts are most influential for the Performer’s successful or incorrect

object detection. For example, the evaluator’s questions include “which parts of the image are most

important for the machine to recognize that the person is running”, and “which small part of image

contributes most to inferring the surrounding larger part of image”. Figures 2.16 to 2.18 show few

sample screenshots (from our web interface) of the exact questions, on the detection of the body

part “Left-Arm”, that we pose to the subjects.

2.6.2 Evaluation with Psychology Subject Pool

Figure 2.13 shows the statistics (Age, First Language, Gender) of the 120 human subjects, recruited

from our institution’s Psychology subject pool.

2.6.3 Human Subject Evaluation: Additional Results

In addition to the metrics Justified Trust and Reliance, we also measure the following metrics for

comparing our X-ToM framework with the baselines (QA and Saliency Maps):

• Response Time: We record the time taken by the human subject in answering evaluator

questions. Figure 2.14 shows the average response times (in milliseconds per question) for

each of the three groups (X-ToM, QA and Saliency Maps). We expected the participants in

X-ToM group to take less time to respond compared to the baselines. However, we find no

significant difference in the response times across the three groups.

• Explanation Satisfaction: We measure human subjects’ feeling of satisfaction at having
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achieved an understanding of the machine in terms of usefulness, sufficiency, appropriated

detail, confidence, understandability, accuracy and consistency [Hof17b, HMK18, Mil18b,

HHB10]. We ask them to rate each of these metrics on a Likert scale of 0 to 9. Figure 2.8

shows the average explanation satisfaction rates obtained from each of the three groups.

As we can see, subjects in X-ToM experiment group found that explanations were highly

useful, sufficient and detailed compared to the baselines (p < 0.01). However, we did not

find significant differences across the three groups in terms of other satisfaction measures:

confidence, understandability, accuracy and consistency.

• Subjective Evaluation of Reliance: We collect subjective Reliance values (on a Likert scale

of 0 to 9) from the subjects in the three groups. The results are shown in Figure 3.3. These

results are consistent with our quantitative reliance measures. It may be noted that subjects’

qualitative reliance in Saliency Maps is lower compared to the QA baseline.
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Figure 2.5: Illustration of the first phase in X-ToM game. The human is asked to solve the task “Is the

person in the image walking or running?”. The human may ask questions related to body parts and body

poses. The machine reveals a bubble (of various sizes and scales) for each of those questions. The figure

shows examples of explanations generated using α, β and γ processes and the updated inferred user’s mind

after each explanation.
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Figure 2.6: An example of second phase of X-ToM game where we estimate pgMinU and also

quantitatively compute justified trust.
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Figure 2.7: Gain in Justified Positive Trust, Justified Negative Trust and Reliance: X-ToM vs

baselines (QA, Saliency Maps). Error bars denote standard errors of the means.

Figure 2.8: Explanation Satisfaction: X-ToM vs baselines (QA, Saliency Maps). Error bars denote

standard errors of the means.
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Figure 2.9: Gain in Reliance over sessions w.r.t α, β and γ processes

Figure 2.10: Top-3 best explanations generated with and without using X-ToM.
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Figure 2.11: Qualitative Reliance. Error bars denote standard errors of the means.

Figure 2.12: Response Times (in milliseconds per question). Error bars denote standard errors of

the means.
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Figure 2.13: Statistics (based on Age, First Language and Gender) of the 120 human subjects, from

Psychology subject pool, participated in our study.

Figure 2.14: Response Times (in milliseconds per question). Error bars denote standard errors of

the means.
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Figure 2.15: Qualitative Reliance. Error bars denote standard errors of the means.
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Figure 2.16: Sample evaluator questions
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Figure 2.17: Sample evaluator questions

Figure 2.18: Sample evaluator questions
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CHAPTER 3

Conceptual and Counterfactual Explanations

The previous Chapter introduced an iterative and collaborative explanation framework X-ToM by

explicitly modeling, learning, and inferring three mental states based on And-Or Graphs. While the

explanation bubbles in X-ToM reveal the optimal explanation path, they cannot capture high-level

semantics/concepts of the features or attributes in the dataset without explicitly specifying them in

And-Or Graphs. This limits the scalability of these explanations in terms of porting them to a new

domain/task. In this Chapter, we propose a conceptual and counterfactual explanation framework

for explaining decisions made by a deep convolutional neural network (CNN) [AWZ20]. Unlike

X-ToM, we do not assume any underlying representations for the explanation parse graph in this

Chapter. Instead, we learn the high-level concepts semi-automatically from the training dataset.

3.1 Introduction

we present a new XAI model CoCoX which explains decisions made by a deep convolutional neural

network (CNN) using fault-lines [KT81].

Fault-lines are the high-level semantic aspects of reality that humans zoom in on when they

imagine an alternative to it. More concretely, given an input image I for which a CNN model M

predicts class cpred, our fault-line based explanation identifies a minimal set of semantic features,

referred to as explainable concepts (xconcepts), that need to be added to or deleted from I in order

to alter the classification category of I by M to another specified class calt. For example, let us

consider a training dataset for an image classification task shown in Figure 1.3 containing the classes
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Dog, Thylacine, Frog, Toad, Goat and Sheep, and a CNN based classification model M

which is trained on this dataset. In order to alter the model’s prediction of input image I1 from

Dog to Thylacine, the fault-line (Ψ+
I1,cpred,calt

) suggests adding stripes to the Dog. We call this a

positive fault-line (PFT) as it involves adding a new xconcept, i.e., stripedness, to the input image.

Similarly, to change the model prediction of I2 from Toad to Frog, the fault-line (Ψ−
I2,cpred,calt

)

suggests removing bumps from the Toad. We call this a negative fault-line (NFT) as it involves

subtracting xconcept, i.e., bumpedness, from the input image. In most cases, both PFT and NFT are

needed to successfully alter the model prediction.

For example, in Figure 1.3, in order to change the model prediction of I3 from Goat to Sheep,

we need to add an xconcept wool (PFT) to I3 and also remove xconcepts beard and horns (NFT)

from I3. As we can see, these fault-lines can be directly used to make the internal decision making

criteria of deep neural network transparent to both expert and non-expert users. For instance, we

answer the question “Why does the machine classify the image I3 as Goat instead of Sheep?”

by using PFT Ψ+
I3,cpred,calt

and NFT Ψ−
I3,cpred,calt

as follows: “Machine thinks the input image is

Goat and not Sheep mainly because Sheep’s feature woolly is absent in I3 and Goat’s features

beard and horns are present in I3”. It may be noted that there could be several other features

of Sheep and Goat that might have influenced the model’s prediction. However, fault-lines only

capture the most critical (minimal) features that highly influenced the model’s prediction.

What makes fault-lines a good visual explanation? We chose fault-lines as an explanation for

the following two important reasons:

1. Firstly, unlike current methods in XAI which mainly focus on pixel-level explanations (viz.

saliency maps), fault-line based explanations are concept-level explanations. Pixel-level expla-

nations are not effective at human scale, whereas concept level explanations are effective, less

ambiguous, and more natural for both expert and non-expert users in building a mental model of a

vision system [KWG18]. Moreover, with conceptual explanations, humans can easily generalize

their understanding to new unseen instances/tasks. In our work, as shown in Figure 1.3, we

represent xconcepts (e.g., stripedness) using a set of example images (similar to [KWG18]).
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2. Secondly, fault-lines are counter-factual in nature, i.e., they provide a minimal amount of

information capable of altering a decision. This makes them easily digestible and practically

useful for understanding the reasons for a model’s decision [WMR17]. For example, consider

the fault-line explanation for image I3 in Figure 1.3. The explanation provides only the most

critical changes (i.e., adding wool and removing beard and horns) required to alter the model’s

prediction from Goat to Sheep, though several other changes may be necessary.

While there are recent works on generating pixel-level counter-factual and contrastive explana-

tions [HHD18, DCL18, GWE19], to the best of our knowledge, this is the first work to propose a

method for generating explanations that are counter-factual as well as conceptual.

We identify two main challenges in generating a fault-line explanation, namely: (a) How to

identify the set of xconcepts; and (b) How to select the most critical xconcepts that alter the model

prediction from cpred to calt. In this work, we first propose a novel method to mine all the plausible

xconcepts from the given dataset automatically. We then identify class-specific xconcepts by using

directional derivatives [KWG18]. Finally, we pose the derivation of a fault-line as an optimization

problem which selects a minimal set of these xconcepts to alter the model’s prediction. We perform

extensive human study experiments to demonstrate the effectiveness of our approach in improving

human understanding of the underlying classification model.

Through our human studies, we show that our fault-line based explanations significantly outper-

form the baselines (i.e., attribution techniques and pixel-level counterfactual explanations) in terms

of qualitative and quantitative metrics such as Justified Trust and Explanation Satisfaction [HMK18].

Concurrent to our work, recent work by [GWK19] also seeks to automatically identify human-

friendly xconcepts. However, they use segmentation methods to identify xconcepts, whereas we use

Grad-CAM [SCD17a] based localization maps. Moreover, their explanations are not counter-factual

unlike our fault-line based explanations.

The contributions of this Chapter are threefold: (i) we introduce a new XAI framework based on

fault-lines to generate conceptual and counterfactual explanations; (ii) we present a new method to
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Figure 3.1: We consider feature maps from the last convolutional layer as instances of xconcepts

and obtain their localization maps (i.e., superpixels) by computing the gradients of the output

with respect to the feature maps. We select highly influential superpixels and then apply K-means

clustering with outlier removal to group these superpixels into clusters where each cluster represents

an xconcept.

mine xconcepts from a given training dataset automatically and derive the fault-lines; (iii) we show

that our fault-line explanations qualitatively and quantitatively outperform baselines in improving

human understanding of the classification model.

3.2 Approach

In this section, we detail our ideas and methods for generating fault-line explanations. Without

loss of generality, we consider a pre-trained CNN (M ) for image classification. Given an input

image I , the CNN predicts a log-probability output logP (Y |I) over the output classes Y. Let χ

denote a dataset of training images, where χ
c ⊂ χ represents the subset that belongs to category

c ∈ Y , (c = 1, 2, . . . , C). We denote the score (logit) for class c (before the softmax) as yc and the

predicted class label as cpred. Our high-level goal is to find a fault-line explanation (Ψ) that alters
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the CNN prediction from cpred to another specified class calt using a minimal number of xconcepts.

We follow [KWG18] in defining the notion of xconcepts where each xconcept is represented using

a set of example images. This representation of xconcepts provides great flexibility and portability

as it will not be constrained to input features or a training dataset, and one can utilize the generated

xconcepts across multiple datasets and tasks.

We represent the quadruple <I , cpred, calt> as a human’s query Q that will be answered

by showing a fault-line explanation Ψ. We use Σ to represent all the xconcepts mined from χ.

The xconcepts specific to the class cpred and calt are represented as Σpred and Σalt respectively.

Our strategy will be to first identify the xconcepts Σpred and Σalt and then generate a fault-line

explanation by finding a minimal set of xconcepts from Σpred and Σalt. Formally, the objective is to

find a fault-line that maximizes the posterior probability:

argmax
Ψ

P
(
Ψ,Σpred,Σalt,Σ

∣∣Q) (3.1)

3.2.1 Mining Xconcepts

We first compute P (Σ |χ,M) by identifying a set of semantically meaningful superpixels from

every image and then perform clustering such that all the superpixels in a cluster are semantically

similar. Each of these clusters represent an xconcept. We then identify class specific xconcepts i.e.,

P
(
Σpred

∣∣Σ, χ, I, cpred,M) and P (Σalt |Σ, χ, I, calt,M).

3.2.1.1 A. Finding Semantically Meaningful Super-pixels as Xconcepts

Figure 5.10 shows the overall algorithm for computing P (Σ |χ,M). As deeper layers of the

CNN capture richer semantic aspects of the image, we construct the xconcepts by making use of

feature maps from the last convolution layer. Let f denote the feature extractor component of the

CNN and g denote the classifier component of the CNN that takes the output of f and predicts

log-probabilities over output classes Y . We denote the m feature maps produced at layer L of the

CNN as Am,L = {aL|aL = f(I)} which are of width u and height v. We consider each feature map
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as an instance of an xconcept and obtain its localization map (i.e., super-pixels of each feature map).

To produce the localization map, we use Grad-CAM [SCD17a] to compute the gradients of yc with

respect to the feature maps Am,L and are then spatially pooled using Global Average Pooling (GAP)

to obtain the importance weights (αc
m,L) of a feature map m at layer L for a target class c:

αc
m,L =

1

Z

∑
i

∑
j

∂yc

∂Am,L
ij

(3.2)

Using the importance weights, we select top p super-pixels for each class. Given that there are

C output classes in the dataset χ, we get p ∗ C super-pixels from each image in the training dataset.

We apply K-means clustering with outlier removal to group these super-pixels into G clusters where

each cluster represents an xconcept (as shown in Figure 5.10). For clustering, we consider the

spatial feature maps f(I) instead of the super-pixels (i.e., actual image regions) themselves. We use

the silhouette score value of a different range of clusters to determine the value of K.

3.2.1.2 B. Identifying Class-Specific Xconcepts

For each output class c, we learn the most common xconcepts that are highly influential in the

prediction of that class over the entire training dataset χ. We use the TCAV technique [KWG18] to

identify these class-specific xconcepts. Specifically, we construct a vector representation of each

xconcept, called a CAV (denoted as vX), by using a direction normal to a linear classifier trained

to distinguish between the xconcept activations from the random activations. We then compute

directional derivatives (Sc,X) to produce estimates of how important the concept X was for a CNN’s

prediction of a target class c, e.g., how important the xconcept stripedness is for predicting the

zebra class.

Sc,X = ∇gc(f(I)) · vX (3.3)

where gc denote the classifier component of the CNN that takes the output of f and predicts log-

probability of output class c. We argue that these class-specific xconcepts facilitate in generating

meaningful explanations by pruning out incoherent xconcepts. For example, the xconcepts such as

wheel and wings are irrelevant in explaining why the network’s prediction is a zebra and not a
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cat.

3.2.2 Fault-Line Identification

In this subsection, we describe our approach to generate a fault-line explanation using the class-

specific xconcepts.

Let us consider that npred and nalt xconcepts have been identified for output classes cpred and

calt respectively, i.e.,
∣∣Σpred

∣∣ = npred and |Σalt| = nalt. We denote CAVs of the npred xconcepts

belonging to the class cpred as vpred = {vipred, i = 1, 2, . . . , npred} and CAVs of the nalt xconcepts

belonging to the class calt as valt = {vialt, i = 1, 2, . . . , nalt}. We formulate finding a fault-line

explanation as the following optimization problem:

minimize
δpred,δalt

αD(δpred, δalt) + β
∥∥δpred∥∥1 + λ ∥δalt∥1 ;

D(δpred, δalt) = max{gpred(I ′
)− galt(I

′
),−τ};

I
′
= Am,L ◦ v⊤predδpred ◦ v⊤altδalt;

δipred ∈ {−1, 0}, δialt ∈ {0, 1} ∀i and α, β, λ, τ ≥ 0.

(3.4)

We elaborate on the role of each term in the Equation 3.4 as follows. Our goal here is to derive a

fault-line explanation that gives us the minimal set of xconcepts from Σpred and Σalt that will alter

the model prediction from cpred to calt. Intuitively, we try creating new images (I ′) by removing

xconcepts in Σpred from I and adding xconcepts in Σalt to I until the classification result changes

from cpred to calt. To do this, we do not directly perturb the original image but change the activations

obtained at last convolutional layer Am,L instead. In order to perturb the activations, we take the

Hadamard product (◦) between the activations (Am,L), v⊤predδpred and v⊤altδalt. The difference between

the new logit scores for cpred (i.e., gpred(I ′)) and calt (i.e,. galt(I ′)) is controlled by the parameter τ .

We apply a projected fast iterative shrinkage-thresholding algorithm (FISTA) [BT09, DCL18] for

solving the above optimization problem. We outline our method in Algorithm 1.

50



Algorithm 1: Generating Fault-Line Explanations
input image I , classification model M , predicted class label cpred, alternate class label calt

and training dataset χ

1. Find semantically meaningful superpixels in χ,

αc
m,L =

1

Z

∑
i

∑
j

∂yc

∂Am,L
ij

2. Apply K-means clustering on superpixels and obtain xconcepts (Σ).

3. Identify class specific xconcepts (Σpred and Σalt) using TCAV,

Sc,X = ∇gc(f(I)) · vX

4. Solve Equation 3.4 to obtain fault-line Ψ,

Ψ← min
δpred,δalt

αD(δpred, δalt) + β
∥∥δpred∥∥1 + λ ∥δalt∥1

return Ψ.
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3.3 Experiments

We conducted extensive human subject experiments to quantitatively and qualitatively assess the

effectiveness of the proposed fault-line explanations in helping expert human users and non-expert

human users understand the internal workings of the underlying model. We chose an image

classification task for our experiments (although the proposed approach is generic and can be

applied to any task). We use the following metrics [HMK18, Hof17b] to compare our method with

the baselines*.

1. Justified Trust (Quantitative Metric). Justified Trust is computed by evaluating the human’s

understanding of the model’s (M ) decision-making process. In other words, given an image,

it evaluates whether the users could reliably predict the model’s output decision. More

concretely, let us consider that M predicts images in a set C correctly and makes incorrect

decisions on the images in the set W . Justified trust is given as sum of the percentage of

images in C that the human subject thinks M would correctly predict and the percentage of

images in W that the human subject thinks M would fail to predict correctly.

2. Explanation Satisfaction (ES) (Qualitative Metric). We measure human subjects’ feeling

of satisfaction at having achieved an understanding of the machine in terms of usefulness,

sufficiency, appropriated detail, confidence, and accuracy [HMK18, Hof17b]. We ask the

subjects to rate each of these metrics on a Likert scale of 0 to 9.

We used ILSVRC2012 dataset (Imagenet) [RDS15] and considered VGG-16 [SZ14] as the

underlying network model. We randomly chose 40 classes in the dataset for our experiments and

identified 46 xconcepts using our algorithm†.

We applied between-subject design and randomly assigned subjects into ten groups. We perform

*We empirically observed that the metrics Justified Trust and Explanation Satisfaction are effective in evaluating the

core objective of XAI, i.e. to evaluate whether the user’s understanding of the model improves with explanations. These

metrics are originally defined at a high-level in the work by [HMK18] and we adapt them for the image classification
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XAI Framework Justified

Trust (±std)

Explanation Satisfaction (±std)

Confidence Useful-

ness

Appropriate

Detail

Under-

standabil-

ity

Sufficiency

NO-X 21.4%± 2.7% N/A N/A N/A N/A N/A

CAM [ZKL16] 24.0%± 1.9% 4.2± 1.8 3.6± 0.8 2.2± 1.9 3.2± 0.9 2.6± 1.3

Grad-CAM [SCD17a] 29.2%± 3.1% 4.1± 1.1 3.2± 1.9 3.0± 1.6 4.2± 1.1 3.2± 1.0

LIME [RSG16] 46.1%± 1.2% 5.1± 1.8 4.2± 1.6 3.9± 1.1 4.1± 2.0 4.3± 1.6

LRP [BBM15] 31.1%± 2.5% 1.1± 2.2 2.8± 1.0 1.6± 1.7 2.8± 1.0 2.1± 1.8

SmoothGrad [STK17] 37.6%± 2.9% 1.4± 1.0 2.2± 1.8 2.8± 1.0 3.1± 0.8 2.9± 0.8

TCAV [KWG18] 49.7%± 3.3% 3.6± 2.1 3.2± 1.8 3.3± 1.6 3.6± 2.1 3.9± 1.1

CEM [DCL18] 51.0%± 2.1% 4.1± 1.4 3.4± 1.4 3.1± 2.1 2.9± 0.9 3.3± 1.6

CVE [GWE19] 50.9%± 3.0% 3.8± 1.9 3.1± 0.9 3.6± 2.1 4.1± 1.2 4.2± 1.2

CoCoX (Fault-lines) 69.1% ± 2.1% 6.2± 1.2 6.6± 0.7 7.2± 0.9 7.1± 0.6 6.2± 0.8

Table 3.1: Quantitative (Justified Trust) and Qualitative (Explanation Satisfaction) comparison of

CoCoX on Non-Expert Pool with random guessing baseline, no explanation (NO-X) baseline, and

other state-of-the-art XAI frameworks such as CAM, Grad-CAM, LIME, LRP, SmoothGrad, TCAV,

CEM, and CVE.

this separately with expert user pool and non-expert user pool. Subjects in non-expert pool have

no background in computer vision, whereas subjects in expert pool are experienced in training an

image classification model using CNN. Each group in the non-expert pool are assigned 6 subjects

and each group in the expert pool are assigned 2 subjects. Within each group, each subject will

task.

†We manually removed noisy xconcepts and fault-lines. We couldn’t find an automatic approach to filter them. We

found that xconcepts generated by [GWK19] are less noisy and might help in generating more meaningful fault-lines.

We leave this for future exploration.
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XAI Framework Justified

Trust (±std)

Explanation Satisfaction (±std)

Confidence Useful-

ness

Appropriate

Detail

Under-

standabil-

ity

Sufficiency

NO-X 28.1%± 4.1% N/A N/A N/A N/A N/A

CAM [ZKL16] 37.1%± 3.9% 3.2± 1.8 3.3± 1.4 3.1± 2.1 3.1± 1.8 2.9± 1.9

Grad-CAM [SCD17a] 39.1%± 2.1% 3.7± 1.2 3.1± 2.2 2.7± 1.9 3.7± 1.1 3.4± 1.6

LIME [RSG16] 42.1%± 3.1% 3.1± 2.2 3.0± 1.2 2.8± 1.9 3.1± 2.2 2.8± 1.7

LRP [BBM15] 51.1%± 3.1% 3.2± 4.1 3.5± 1.6 4.2± 1.5 4.3± 1.0 3.9± 0.9

SmoothGrad [STK17] 40.7%± 2.1% 3.1± 1.0 2.9± 1.2 3.8± 1.5 3.3± 1.1 3.1± 1.0

TCAV [KWG18] 55.1%± 3.3% 3.9± 2.8 3.6± 1.6 4.1± 1.3 4.9± 1.2 3.9± 0.8

CEM [DCL18] 61.1%± 2.2% 4.8± 1.6 3.7± 1.6 4.0± 1.2 3.7± 1.0 4.0± 1.1

CVE [GWE19] 64.5%± 3.7% 4.1± 2.3 3.9± 1.5 4.6± 1.5 4.5± 1.4 3.9± 1.2

CoCoX (Fault-lines) 70.5% ± 1.3% 5.7± 1.1 4.9± 0.8 5.8± 1.2 6.9± 1.1 6.4± 1.0

Table 3.2: Performance comparison on expert subject pool.

first go through a familiarization phase where the subjects become familiar with the underlying

model through explanations (with 15 training images), followed by a testing phase where we

apply our evaluation metrics and assess their understanding (on 5 test images) in the underlying

model. Specifically, in the familiarization phase, human will be shown the input image I and the

CNN’s prediction cpred and asked to provide calt as input. We will then show an explanation to the

human user for the model’s prediction cpred. For example, in CoCoX group, we show the fault-line

explaining why the model chose cpred instead of calt. In the testing phase, human will be given only

I and will not see cpred, calt, and explanations, and we evaluate whether the human can correctly

identify cpred based on his/her understanding of the model gained in the familiarization phase.

For the first group, called NO-X (short for no-explanation group), we show the model’s classifi-
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Figure 3.2: Gain in Justified Trust over time.

cation output on all the 15 images in the familiarization phase but we do not provide any explanation

for the model’s prediction. For the subjects in groups two to nine, in addition to the model’s

classification output, we also provide explanations in the familiarization phase for the model’s

prediction generated using the following state-of-the-art XAI models respectively: CAM [ZKL16],

Grad-CAM [SCD17a], LIME [RSG16], LRP [BBM15], SmoothGrad [STK17], TCAV [KWG18],

CEM [DCL18], and CVE [GWE19]. For the subjects in the tenth group, we show the fault-line

explanations generated by our CoCoX model in addition to the classification output. It may be

noted that, in the testing phase, human will be shown only the image I and will not be provided

cpred, calt, and explanations.

3.3.1 Results

Table 3.1 and Table 3.2 compares the Justified Trust (JT) and Explanation Satisfaction (ES) of

all the ten groups in expert subject pool and non-expert subject pool. As we can see, JT and ES

values of attention map based explanations such as Grad-CAM, CAM, and SmoothGrad do not

differ significantly from the NO-X baseline, i.e., attention based explanations are not effective at

increasing human trust and reliance (we did not evaluate ES for NO-X group as these subjects are not
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Figure 3.3: Average Qualitative Justified Trust (on a Likert scale of 0 to 9). Error bars denote

standard errors of the means.

shown any explanations). This finding is consistent with the recent study by [JW19] which shows

that attention is not an explanation. On the other hand, concept based explanation framework TCAV

and counterfactual explanation frameworks CEM, and CVE performed significantly better than the

NO-X baseline (in both expert and non-expert pool). Our CoCoX model, which is both conceptual

and counterfactual, significantly outperformed all the baselines with 69.1% JT in non-expert pool

and 70.5% JT in expert pool (p < 0.01). Interestingly, expert users preferred LRP (JT = 51.1%) to

LIME (JT = 42.1%) and non-expert users preferred LIME (JT = 46.1%) to LRP (JT = 31.1%).

Furthermore, human subjects in the CoCoX group, compared to all the other baselines, found

that explanations are highly useful, sufficient, understandable, detailed and are more confident in

answering the questions in the testing phase. These findings verify our hypothesis that fault-line

explanations are lucid and easy for both expert and non-expert users to understand.

Gain in Justified Trust over Time: We hypothesized that subjects’ justified trust in the AI

system might improve over time. This is because it can be harder for humans to fully understand the
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Figure 3.4: Examples of xconcepts (Left) and fault-line explanations (Right) identified by our

method.

machine’s underlying inference process in one single session. Therefore, we conduct an additional

experiment with eight human subjects (non-experts) for each group where the subjects’ reliance was

measured after every session. Note that each session consists of a familiarization phase followed by

a testing phase. The results are shown in Figure 3.2. As we can see, the subjects’ JT in CoCoX group

increased at a higher-rate compared to other baselines. However, we did not find any significant

increase in JT after fifth session across all the groups. This is consistent with our expectation that it

is difficult for humans to focus on a task for longer periods ‡. It should be noted that the increase

in JT with attention map based explanations such as Grad-CAM and CAM is not significant. This

finding again demonstrates that attention maps are not effective to improve human trust.

Subjective Evaluation of Justified Trust: In addition to the quantitative evaluation of the

justified trust, we also collect subjective trust values (on a Likert scale of 0 to 9) from the subjects.

This helps in understanding to what extent the users think they trust the AI system. The results are

shown in Figure 3.3. As we can see, these results are consistent with our quantitative trust measures

except that qualitative trust in Grad-CAM, CAM, and SmoothGrad is lower compared to the NO-X

‡In the future, we also intend to experiment with subjects by arranging sessions over days or weeks instead of

having continuous back to back sessions.

57



group.

Case Study: Figure 3.4 shows examples of the xconcepts (cropped and rescaled for better

view) identified using our approach. As we can see, our method successfully extracts semantically

coherent xconcepts such as pointed curves of deer, stripedness of zebra, and woolliness of

deerhound from the training dataset. Also the fault-lines generated by our method correctly

identify the most critical xconcepts that can alter the classification result from cpred to calt. For

example, consider the image of deerhound shown in the Figure 3.4. Our fault-line explanation

suggests removing woolliness and adding black and white pattern to alter the model’s classification

on the image from deerhound to greyhound.

3.4 Related Work

Most prior work has focused on generating explanations using feature visualization and attribution.

Feature visualization techniques typically identify qualitative interpretations of features used for

making predictions or decisions. For example, gradient ascent optimization is used in the image

space to visualize the hidden feature layers of unsupervised deep architectures [EBC09]. Also,

convolutional layers are visualized by reconstructing the input of each layer from its output [ZF14].

Recent visual explanation models seek to jointly classify the image and explain why the predicted

class label is appropriate for the image [HAR16]. Other related work includes a visualization-

based explanation framework for Naive Bayes classifiers [SGL03], an interpretable character-level

language models for analyzing the predictions in RNNs [KJF15], and an interactive visualization

for facilitating analysis of RNN hidden states [SGH16].

Attribution is a set of techniques that highlight pixels of the input image (saliency maps) that most

caused the output classification. Gradient-based visualization methods [ZKL16, SCD17a] have

been proposed to extract image regions responsible for the network output. The LIME method

proposed by [RSG16] explains predictions of any classifier by approximating it locally with an

interpretable model.
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There are few recent works in the XAI literature that go beyond the pixel-level explanations.

For example, the TCAV technique proposed by [KWG18] aims to generate explanations based on

high-level user defined concepts. Contrastive explanations are proposed by [DCL18] to identify

minimal and sufficient features to justify the classification result. [GWE19] proposed counterfactual

visual explanations that identify how the input could change such that the underlying vision system

would make a different decision. More recently, few methods have been developed for building

models which are intrinsically interpretable [ZNZ18]. In addition, there are several works [Mil18b]

on the goodness measures of explanations which aim to assess the underlying characteristics of

explanations.

3.5 Summary

In this Chapter, we introduced a new explainable AI (XAI) framework, CoCoX, based on fault-lines.

We argue that due to their conceptual and counterfactual nature, fault-line based explanations are

lucid, clear and easy for humans to understand. We proposed a new method to automatically

mine explainable concepts from a given training dataset and to derive fault-line explanations.

Using qualitative and quantitative evaluation metrics, we demonstrated that fault-lines significantly

outperform baselines in improving human understanding of the underlying classification model.

3.6 Appendix

3.6.1 More Examples of our Extracted Xconcepts

We provide more examples of the extracted xconcepts (along with the original image for clarity) in

Figure 3.5.
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Figure 3.5: More examples for the Xconcepts.
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CHAPTER 4

Explaining Model Biases and Improving Robustness

In Chapter 1 and 2, we proposed explanation frameworks to help users understand the model

decisions. In this Chapter, we critically examine state-of-the-art models and benchmarks for vision

and langauge grounding tasks to evaluate the extent to which these models are interpretable, faithful

and robust to out-of-distribution and adversarial samples [AGA20a]. In addition, we also propose

new methods to improve robustness and compositional reasoning skills of these models.

4.1 Introduction

In this Chapter, we consider the task of visual referring expression recognition to conduct our

evaluation. Visual referring expression recognition is the task of identifying the object in an image

referred by a natural language expression [KOM14, NMD16, MHT16, HXR16]. Figure 4.1 shows

an example. This task has drawn much attention due to its ability to test a model’s understanding

of natural language in the context of visual grounding and its application in downstream tasks

such as image retrieval [YLH14] and question answering [AAL15, ZGB16, GAM12, ASM13,

PRA15, Aku15, AZ19]. To track progress on this task, various datasets have been proposed, in

which real world images are annotated by crowdsourced workers [KOM14, MHT16]. Recently,

neural models have achieved tremendous progress on these datasets [YLS18, LBP19a]. However,

multiple studies have suggested that these models could be exploiting strong biases in these datasets

[CMB18, LLB19]. For example, models could be just selecting a salient object in an image or a

referring expression without recourse to linguistic structure (see Figure 4.1). This defeats the true

purpose of the task casting doubts on the actual progress.
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Modelpastry on the plate next to a blue fork

a blue fork next to the pastry plate

r1r2

r1

r1

Original 
Expression

Adversarial 
Modification

Input 
Image

Region 
Proposals 
(r1, r2)

Model

Figure 4.1: An example of the visual referring expression recognition task. If the word pastry

is present in the referring expression, models prefer the bounding box r1 (highlighted in green)

irrespective of the change in linguistic structure (word order).

In this Chapter, we examine RefCOCOg dataset [MHT16], a popular testbed for evaluating

referring expression models, using crowdsourced workers. We show that a large percentage of

samples in the RefCOCOg test set indeed do not rely on linguistic structure (word order) of the

expressions. Accordingly, we split RefCOCOg test set into two splits, Ref-Easy and Ref-Hard ,

where linguistic structure is key for recognition in the latter but not the former (§4.2). In addition,

we create a new out-of-distribution* dataset called Ref-Adv using Ref-Hard by rewriting a referring

expression such that the target object is different from the original annotation (§4.3). We evaluate

existing models on these splits and show that the true progress is at least 12-23% behind the

established progress, indicating there is ample room for improvement (§4.4). We propose two new

models, one which make use of contrastive learning using negative examples, and the other based

on multi-task learning, and show that these are slightly more robust than the current state-of-the-art

models (§4.5).

*This is a contrast set according to [GAB20]
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4.2 Importance of linguistic structure

RefCOCOg is the largest visual referring expression benchmark available for real world images

[MHT16]. Unlike other referring expression datasets such as RefCOCO and RefCOCO+ [KOM14],

a special care has been taken such that expressions are longer and diverse. We therefore choose to

examine the importance of linguistic structure in RefCOCOg . CirikMB18 observed that when the

words in a referring expression are shuffled in random order, the performance of existing models on

RefCOCOg drops only a little. This suggests that models are relying heavily on the biases in the

data than on linguistic structure, i.e., the actual sequence of words. Ideally, we want to test models

on samples where there is correlation between linguistic structure and spatial relations of objects,

and any obscurity in the structure should lead to ambiguity. To filter out such set, we use humans.

We randomly shuffle words in a referring expression to distort its linguistic structure, and ask

humans to identify the target object of interest via predefined bounding boxes. Each image in

RefCOCOg test set is annotated by five Amazon Mechanical Turk (AMT) workers and when at

least three annotators select a bounding box that has high overlap with the ground truth, we treat

it as a correct prediction. Following [MHT16], we set 0.5 IoU (intersection over union) as the

threshold for high overlap.

Given that there are at least two objects in each image, the optimal performance of a random

choice is less than 50%.† However, we observe that human accuracy on distorted examples is 83.7%,

indicating that a large portion of RefCOCOg test set is insensitive to linguistic structure. Based

on this observation, we divide the test set into two splits for fine-grained evaluation of models:

Ref-Easy contains samples insensitive to linguistic structure and Ref-Hard contains sensitive

samples (statistics of the splits are shown in Table 6.6).

†On average, there are 8.2 bounding boxes per image.
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Ref-Easy Ref-Hard Ref-Adv

data size 8034
(83.7% of RefCOCOg )

1568
(16.3% of RefCOCOg )

3704

avg. length
in words

8.0 10.2 11.4

Table 4.1: Statistics of Ref-Easy , Ref-Hard and Ref-Adv . Ref-Easy and Ref-Hard indicate the

proportion of samples in RefCOCOg test set that are insensitive and sensitive to linguistic structure

respectively.

4.3 An out-of-distribution dataset

Due to unintended annotation artifacts in RefCOCOg , it is still possible that models could perform

well on Ref-Hard without having to rely on linguistic structure, e.g., by selecting frequent objects

seen during training time. Essentially, Ref-Hard is an in-distribution split. To avoid this, we create

Ref-Adv , an adversarial test set with samples that may be fall out of training distribution.

We take each sample in Ref-Hard and collect additional referring expressions such that the

target object is different from the original object. We chose the target objects which humans are

most confused with when the referring expression is shuffled (as described in the previous section).

For each target object, we ask three AMT workers to write a referring expression while retaining

most content words in the original referring expression. In contrast to the original expression,

the modified expression mainly differs in terms of the structure while sharing several words. For

example, in Figure 4.1, the adversarial sample is created by swapping pastry and blue fork and

making plate as the head of pastry. We perform an extra validation step to filter out bad referring

expressions. In this step, three additional AMT workers select a bounding box to identify the target

object, and we only select the samples where at least two workers achieve IoU > 0.5 with the target

object.

Since the samples in Ref-Adv mainly differ in linguistic structure with respect to Ref-Hard ,

we hope that a model which does not make use of linguistic structure (and correspondingly spatial
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Easy: A dinning table with cake and
drinks
Hard: A chair with a purse hanging from
it
Adv: The purse which is hanging from a
chair
Easy: Bus
Hard: Bus in the middle of the crowd
Adv: The crowd that the bus is in the
middle of

Easy: The larger of two giraffes
Hard: A giraffe eating leaves off the tree
Adv: The giraffe that is not eating leaves
off the tree

Easy: A blue snowboard
Hard: A woman wearing a blue jacket
and orange glasses next to a woman with
a white hood
Adv: A woman with a white hood, next
to a woman wearing orange glasses and a
blue jacket.

Easy: Water in a tall, clear glass
Hard: The glass of water next to the
saucer with the cup on it
Adv: The cup on the saucer, next to the
glass of water

Easy: The short blue bike on the right
Hard: The blue bike behind the red car
Adv: The red car behind the blue bike

Easy: The man with the glasses on
Hard: A man holding a cake that is not
wearing a tie
Adv: The man holding a cake that is wear-
ing a tie

Easy: A green cushion couch with a pil-
low
Hard: A green couch across from a white
couch
Adv: A white couch across from a green
couch

Figure 2: Examples from Ref-Easy, Ref-Hard, and Ref-Adv splits. As seen, Ref-Hard and Ref-Adv have several
words in common but differ in their linguistic structure and the target object of interest.

Ref-Adv expressions are longer on average than
Ref-Easy and Ref-Hard (Figure 6 in appendix) and
consists of rich and diverse spatial relationships
(Figure 7 in appendix).

Concurrent to our work, Gardner et al. (2020)
also propose perturbed test splits for several tasks
by modifying in-domain examples. In their setup,
the original authors of each task create perturbed
examples, whereas we use crowdworkers. Clos-
est to our work is from Kaushik et al. (2020) who
also use crowdworkers. While we use perturbed ex-
amples to evaluate robustness, they also use them
to improve robustness (we propose complemen-
tary methods to improve robustness §5). Moreover,
we are primarily concerned with the robustness
of models for visual expression recognition task,
while Gardner et al. and Kaushik et al. focus on
different tasks (e.g., sentiment, natural language
inference).

3.1 Human Performance on Ref-Easy,
Ref-Hard and Ref-Adv

We conducted an additional human study (on AMT)
to compare the human performance on Ref-Easy,
Ref-Hard and Ref-Adv splits. First, we randomly
sampled 100 referring expressions from each of
the three splits. Each referring expression is then
assigned to three AMT workers and are asked to
select a bounding box to identify the target object.
We considered a sample to be correctly annotated
by humans if at least two out of three workers select

the ground-truth annotation. Through this evalua-
tion, we obtained human performance on each of
the three splits Ref-Easy, Ref-Hard, and Ref-Adv
as 98%, 95%, and 96% respectively.

4 Diagnosing Referring Expression
Recognition models

We evaluate the following models, most of which
are designed to exploit linguistic structure.

CMN (Compositional Modular Networks; Hu et al.
2017; Andreas et al. 2016) grounds expressions
using neural modules by decomposing an expres-
sion into <subject, relation, object> triples. The
subject and object are localized to the objects in
the image using a localization module while the
relation between them is modeled using a relation-
ship module. The full network learns to jointly
decompose the input expression into a triple while
also recognizing the target object.

GroundNet (Cirik et al., 2018a) is similar to CMN,
however it makes use of rich linguistic structure
(and correspondingly rich modules) as defined by
an external syntactic parser.

MattNet (Yu et al., 2018) generalizes CMN to flex-
ibly adapt to expressions that cannot be captured
by the fixed template of CMN. It introduces new
modules and also uses an attention mechanism to
weigh modules.

ViLBERT (Lu et al., 2019), the state-of-the-art
model for referring expression recognition, uses a

Figure 4.2: Examples from Ref-Easy , Ref-Hard , and Ref-Adv splits. As seen, Ref-Hard and

Ref-Adv have several words in common but differ in their linguistic structure and the target object

of interest.

relations between objects) performs worse on Ref-Adv even when it performs well on Ref-Hard

due to exploiting biases in the training data.

Figure 4.2 shows several examples from the Ref-Easy , Ref-Hard , and Ref-Adv splits. We

note that Ref-Adv expressions are longer on average than Ref-Easy and Ref-Hard (Figure 6.11 in

appendix) and consists of rich and diverse spatial relationships (Figure 4.7 in appendix).

Concurrent to our work, [GAB20] also propose perturbed test splits for several tasks by modify-

ing in-domain examples. In their setup, the original authors of each task create perturbed examples,

whereas we use crowdworkers. Closest to our work is from [KHL20] who also use crowdworkers.

While we use perturbed examples to evaluate robustness, they also use them to improve robustness

(we propose complementary methods to improve robustness §4.5). Moreover, we are primarily

concerned with the robustness of models for visual expression recognition task, while [GAB20]

and [KHL20] focus on different tasks (e.g., sentiment, natural language inference).
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Co-TRM TRM

Co-TRM TRM

Shared ViLBERT Layers
Input image

Input question/
Referring expression

Task-Specific Layers

Figure 4.3: Multi-task learning model for referring expression recognition with GQA

4.3.1 Human Performance on Ref-Easy , Ref-Hard and Ref-Adv

We conducted an additional human study (on AMT) to compare the human performance on Ref-Easy

, Ref-Hard and Ref-Adv splits. First, we randomly sampled 100 referring expressions from each of

the three splits. Each referring expression is then assigned to three AMT workers and are asked to

select a bounding box to identify the target object. We considered a sample to be correctly annotated

by humans if at least two out of three workers select the ground-truth annotation. Through this

evaluation, we obtained human performance on each of the three splits Ref-Easy, Ref-Hard, and

Ref-Adv as 98%, 95%, and 96% respectively.

4.4 Diagnosing Referring Expression Recognition models

We evaluate the following models, most of which are designed to exploit linguistic structure.

CMN (Compositional Modular Networks; hu2017modeling,andreas2016neural) grounds expres-

sions using neural modules by decomposing an expression into <subject, relation, object> triples.

The subject and object are localized to the objects in the image using a localization module while

the relation between them is modeled using a relationship module. The full network learns to jointly

decompose the input expression into a triple while also recognizing the target object.
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GroundNet [CBM18] is similar to CMN, however it makes use of rich linguistic structure (and

correspondingly rich modules) as defined by an external syntactic parser.

MattNet [YLS18] generalizes CMN to flexibly adapt to expressions that cannot be captured by the

fixed template of CMN. It introduces new modules and also uses an attention mechanism to weigh

modules.

ViLBERT [LBP19a], the state-of-the-art model for referring expression recognition, uses a pretrain-

then-transfer learning approach to jointly learn visiolinguistic representations from large-scale data

and utilizes them to ground expressions. This is the only model that does not explicitly model

compositional structure of language, but BERT-like models are shown to capture syntactic structure

latently [HM19a].

4.4.1 Results and discussion

We trained on the full training set of RefCOCOg and performed hyperparameter tuning on a

development set. We used the development and test splits of mao2016generation. Table 4.2 shows

the model accuracies on these splits and our proposed datasets. The models are trained to select

ground truth bounding box from a set of predefined bounding boxes. We treat a prediction as

positive if the predicted bounding box has IoU > 0.5 with the ground truth.

Although the overall performance on the test set seem high, in reality, models excel only at

Ref-Easy while performing poorly on Ref-Hard . The difference in performance between Ref-Easy

and Ref-Hard ranges up to 15%. This indicates that current models do not exploit linguistic

structure effectively. When tested on Ref-Adv , the performance goes down even further, increasing

the gap between Ref-Easy and Ref-Adv (up to 26%). This suggests that models are relying on

reasoning shortcuts found in training than actual understanding. Among the models, GroundNet

performs worse, perhaps due to its reliance on rigid structure predicted by an external parser and

the mismatches between the predicted structure and spatial relations between objects. ViLBERT

achieves the highest performance and is relatively more robust than other models. In the next
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Model Dev Test Easy Hard Adv

GroundNet 66.50 65.80 67.11 54.47 42.90

CMN 70.00 69.40 69.55 68.63 49.50

MattNet 79.21 78.51 80.96 65.94 54.64

ViLBERT 83.39 83.63 85.93 72.00 70.90

Table 4.2: Accuracy of models on RefCOCOg standard splits and our splits Ref-Easy , Ref-Hard

and Ref-Adv .

section, we propose methods to further increase the robustness of ViLBERT.

4.5 Increasing the robustness of ViLBERT

We extend ViLBERT in two ways, one based on contrastive learning using negative samples, and

the other based on multi-task learning on GQA [HM19b], a task that requires linguistic and spatial

reasoning on images.

Contrastive learning using negative samples Instead of learning from one single example,

contrastive learning aims to learn from multiple examples by comparing one to the other. In order to

increase the sensitivity to linguistic structure, we mine negative examples that are close to the current

example and learn to jointly minimize the loss on the current (positive) example and maximize the

loss on negative examples. We treat the triplets
(
i, e, b

)
in the training set as positive examples,

where i, e, b stands for image, expression and ground truth bounding box. For each triplet
(
i, e, b

)
,

we sample another training example
(
i′, e′, b′

)
, and use it to create two negative samples, defined by(

i′, e, b′
)

and
(
i, e′, b

)
, i.e., we pair wrong bounding boxes with wrong expressions. For efficiency,

we only consider negative pairs from the mini-batch. We modify the batch loss function as follows:

68



L
(
i, e,b

)
=F(e,e′)

[
ℓ
(
i, e,b

)
− ℓ
(
i, e′,b

)
− τ
]
+

+F(i,i′)

[
ℓ
(
i, e,b

)
− ℓ
(
i′, e,b′)− τ

]
+

Here ℓ(i, e, b) is the cross-entropy loss of ViLBERT, [x]+ is the hinge loss defined by max
(
0, x
)
,

and τ is the margin parameter. F indicates a function over all batch samples. We define F to be

either sum of hinges (Sum-H) or max of hinges (Max-H). While Sum-H takes sum over all negative

samples, If batch size is n, for each
(
i, e, b

)
, there will be n−1 triplets of

(
i′, e, b′

)
and

(
i, e′, b

)
. For(

i, e, b
)
, there will be one

(
i′, e, b′

)
and one

(
i, e′, b

)
. Similar proposals are known to increase the

robustness of vision and language problems like visual-semantic embeddings and image description

ranking [KSZ14, GSK17, FFK18].

Multi-task Learning (MTL) with GQA In order to increase the sensitivity to linguistic structure,

we rely on tasks that require reasoning on linguistic structure and learn to perform them alongside

our task. We employ MTL with GQA [HM19b], a compositional visual question answering dataset.

Specifically, we use the GQA-Rel split which contains questions that require reasoning on both

linguistic structure and spatial relations (e.g., Is there a boy wearing a red hat standing next to

yellow bus? as opposed to Is there a boy wearing hat?). Figure 4.3 depicts the neural architecture.

We share several layers between the tasks to enable the model to learn representations useful for both

tasks. Each shared layer constitute a co-attention transformer block (Co-TRM; lu2019vilbert) and

a transformer block (TRM; vaswani2017attention). While in a transformer, attention is computed

using queries and keys from the same modality, in a co-attention transformer they come from

different modalities (see cross arrows in Figure 4.3). The shared representations are eventually

passed as input to task-specific MLPs. We optimize each task using alternative training [LLS15].

Results and discussion Table 4.3 shows the experimental results on the referring expression

recognition task. Although contrastive learning improves the robustness of ViLBERT on Ref-Adv

(+1.4% and +2.5% for Sum-H and Max-H respectively), it comes at a cost of slight performance
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Model Dev Test Easy Hard Adv

ViLBERT

(VB)

83.39 83.63 85.93 72.00 70.90

VB+Sum-H 81.61 83.00 85.93 70.60 72.30

VB+Max-H 82.93 82.70 86.58 70.46 73.35

VB+MTL

(GQA)

83.45 84.30 86.23 73.79 73.92

Table 4.3: Accuracy of enhanced ViLBERT models.

drop on the full test (likely due to sacrificing biases shared between training and test sets). Whereas

MTL improves the robustness on all sets showing that multi-task learning helps (we observe

2.3% increase on GQA §4.7.5.2). Moreover, the performance of MTL on Ref-Hard and Ref-Adv

are similar, suggesting that the model generalizes to unseen data distribution. Figure 5.3 shows

qualitative examples comparing MTL predictions on Ref-Hard and Ref-Adv parallel examples.

These suggest that the MTL model is sensitive to linguistic structure. However, there is still ample

room for improvement indicated by the gap between Ref-Easy and Ref-Hard (12.4%).

4.6 Summary

In this Chapter, we show that current datasets and models for visual referring expressions fail to

make effective use of linguistic structure. Although our proposed models are slightly more robust

than existing models, there is still significant scope for improvement. We hope that Ref-Hard and

Ref-Adv will foster more research in this area.
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e1: The ladder that is 
raised the tallest

e2:  A wooden boat 
carries 5 boys with skis

e1’: The ladder in front of 
the raised ladder

e2’: A pair of skis 
in the boat

ViLBERT

MTL

GT

Figure 4.4: Predictions of ViLBERT and MTL model (GT denotes ground-truth). e1′ and e2′ are

adversarial expressions of e1 and e2 respectively.

4.7 Appendix

In this supplementary material, we begin by providing more details on RefCOCOg dataset to

supplement Section 4.2 of the Chapter 4. We then provide Ref-Adv annotation details, statistics,

analysis, and random examples, to supplement Section 4.3 of the Chapter 4. Finally, we provide

details of our models (initialization & training, hyper-parameters) and show additional results to

supplement Section 4.5 of the Chapter 4.

4.7.1 RefCOCOg vs Other Referring Expressions Datasets

RefCOCO , RefCOCO+ [KOM14] and RefCOCOg (Google-RefCOCO; mao2016generation)

are three commonly studied visual referring expression recognition datasets for real images. All

the three data sets are built on top of MSCOCO dataset [LMB14a] which contains more than
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300,000 images, with 80 categories of objects. RefCOCO , RefCOCO+ were collected using online

interactive game. RefCOCO dataset is more biased towards person category. RefCOCO+ does

not allow the use of location words in the expressions, and therefore contains very few spatial

relationships. RefCOCOg was not collected in an interactive setting and therefore contains longer

expressions.

For our adversarial analysis, we chose RefCOCOg for the following three important reasons:

Firstly, expressions are longer (by 2.5 times on average) in RefCOCOg and therefore contains more

spatial relationships compared to other two datasets. Secondly, RefCOCOg contains at least 2 to 4

instances of the same object type within the same image referred by an expression. This makes the

dataset more robust, and indirectly puts higher importance on grounding spatial relationships in

finding the target object. Finally, as shown in Table 4.4, RefCOCO and RefCOCO+ are highly

skewed towards Person object category (≈ 50%) whereas RefCOCOg is relatively less skewed (≈

36%), more diverse, and less biased.

4.7.2 Importance of Linguistic Structure

[CMB18] observed that existing models for RefCOCOg are relying heavily on the biases in the data

than on linguistic structure. We perform extensive experiments to get more detailed insights into this

observation. Specifically, we distort linguistic structure of referring expressions in the RefCOCOg

test split and evaluate the SOTA models that are trained on original undistorted RefCOCOg training

split. Similar to [CMB18], we distort the test split using two methods: (a) randomly shuffle words

in a referring expression, and (b) delete all the words in the expression except for nouns and

adjectives. Table 4.5 shows accuracies for the models with (column 3 and 4) and without (column

2) distorted referring expressions. Except for the ViLBERT model[LBP19a], the drop in accuracy

is not significant indicating that spatial relations are ignored in grounding the referring expression.

Using the relatively robust ViLBERT model, we repeat this analysis on our splits Ref-Easy ,

Ref-Hard and Ref-Adv . We randomly sampled 1500 expressions from each of these splits and
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RefCOCO RefCOCO+ RefCOCOg

Outdoor 0.89% 0.88% 1.65%

Food 10.16% 10.07% 8.10%

Indoor 3.10% 3.09% 2.59%

Appliance 0.67% 0.68% 1.03%

Kitchen 3.95% 3.95% 5.40%

Accessory 2.33% 2.33% 2.85%

Person 49.50% 49.70% 37.02%

Animal 13.26% 13.27% 15.05%

Vehicle 7.23% 7.22% 10.71%

Sports 0.73% 0.74% 1.91%

Electronic 1.94% 1.95% 2.56%

Furniture 6.14% 6.12% 11.09%

Table 4.4: Distribution of object categories in RefCOCO , RefCOCO+ , and RefCOCOg datasets.

then compare performance of ViLBERT on these three sets. As shown in Table 4.6, we find a large

difference in model’s accuracy on Ref-Hard and Ref-Adv . This clearly indicates that grounding

expressions in both of these splits require linguistic and spatial reasoning.

4.7.3 Ref-Adv Annotation

We construct Ref-Adv by using all the 9602 referring expressions from RefCOCOg test data split.

As shown in Figure 4.5, we follow a three stage approach to collect these new samples:

Stage 1: For every referring expression in RefCOCOg test split, we perturb its linguistic structure

by shuffling the word order randomly. We show each of these perturbed expression along with
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Model Original Shuf N+J

CMN [HRA17] 69.4 66.4 67.4

GroundNet

[CBM18]

65.8 57.6 62.8

MattNet [YLS18] 78.5 75.3 76.1

ViLBERT

[LBP19a]

83.6 71.4 73.6

Table 4.5: RefCOCOg test accuracies of SOTA models on (a) original undistorted split, (b) after

randomly shuffling words (Shuf) in the referring expression, and (c) after deleting all the words

except for nouns and adjectives (N+J). ViLBERT is relatively more robust than other baselines.

images and all object bounding boxes to five qualified Amazon Mechanical Turk (AMT) workers

and ask them to identify the ground-truth bounding box for the shuffled referring expression. We

hired workers from US and Canada with approval rates higher than 98% and more than 1000

accepted HITs. At the beginning of the annotation, we ask the turkers to go through a familiarization

phase where they become familiar with the task. We consider all the image and expression pairs for

which at least 3 out of 5 annotators failed to locate the object correctly (with IoU < 0.5 ) as hard

samples (Ref-Hard ). We refer to the image-expressions for which at least 3 out of 5 annotators

were able to localize the object correctly as easy samples (Ref-Easy ). On average, we found that

humans failed to localize the objects correctly in 17% of the expressions.

Stage 2: We take Ref-Hard images and ask turkers to generate adversarial expressions such that

the target object is different from the original object. More concretely, for each of the hard samples,

we identify the most confused image regions among human annotators as the target objects in stage

1. For each of these target objects, we then ask three turkers to write a referring expression while

retaining at least three content words (nouns and adjectives) in the original referring expression.

This generates adversarial expressions for the original ground-truth Ref-Hard referring expressions.
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Test Original Shuf N+J

Ref-Easy 86.40 75.06 76.00

Ref-Hard 72.73 51.13 56.60

Ref-Adv 71.08 50.23 57.40

Table 4.6: Ref-Easy , Ref-Hard , and Ref-Adv test accuracies of ViLBERT on (a) original undistorted

split, (b) after randomly shuffling words (Shuf) in the referring expression, and (c) after deleting all

the words except for nouns and adjectives (N+J).

Referring Expressions 3704

Unique Images 976

Vocabulary 2319

Avg. Length of Expression 11.4

Table 4.7: Ref-Adv Statistics

Stage 3: We filter out the noisy adversarial expressions generated in stage 2 by following a

validation routine used in the generation of RefCOCOg dataset. We ask three additional AMT

workers to select a bounding box to identify the target object in the adversarial expression and then

remove the noisy samples for which the inter-annotator agreement among workers is low. The

samples with at least 2 out of 3 annotators achieving IoU > 0.5 will be added to Ref-Adv dataset.

4.7.4 Dataset Analysis, Comparison, and Visualization

In Table 4.7 we summarize the size and complexity of our Ref-Adv split. Figure 6.11 shows

expression length distribution of Ref-Easy , Ref-Hard , and Ref-Adv . It should be noted that Ref-Adv

expressions are longer on average than Ref-Easy and Ref-Hard . Distribution of object categories in

Ref-Easy , Ref-Hard and Ref-Adv is shown in Table 4.8. In comparison to Ref-Easy and Ref-Hard ,
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Figure 5: Overview of our three-stage Ref-Adv construction process. Given the image, referring expression, ground-
truth bounding boxes for all the samples in RefCOCOg test split, we first filter out the hard samples and then
construct adversarial expressions using them. Please refer to section 2 for further detail.

Ref-Easy
8034 samples

Ref-Hard
1568 samples

Ref-Adv
3704 samples

Outdoor 1.21% 1.90% 1.97%
Food 7.94% 9.80% 9.63%
Indoor 2.81% 2.83% 2.76%
Appliance 0.80% 1.07% 1.11%
Kitchen 4.52% 5.73% 5.77%
Accessory 3.20% 5.44% 5.29%
Person 37.26% 20.88% 21.01%
Animal 15.95% 13.92% 13.90%
Vehicle 10.91% 10.40% 10.26%
Sports 1.45% 5.04% 5.13%
Electronic 2.62% 3.20% 3.31%
Furniture 11.28% 19.73% 19.83%

Table 8: Distribution of object categories in Ref-Easy,
Ref-Hard, and Ref-Adv splits.

Figure 6: Referring expression length distribution for
Ref-Easy, Ref-Hard, Ref-Adv datasets.

Referring Expressions 3704
Unique Images 976
Vocabulary 2319
Avg. Length of Expression 11.4

Table 7: Ref-Adv Statistics

length distribution of Ref-Easy, Ref-Hard, and Ref-
Adv. It should be noted that Ref-Adv expressions
are longer on average than Ref-Easy and Ref-Hard.
Distribution of object categories in Ref-Easy, Ref-
Hard and Ref-Adv is shown in Table 8. In compar-
ison to Ref-Easy and Ref-Hard, Ref-Adv is more
balanced and less biased towards Person cate-
gory. Figure 7 shows the relative frequency of the
most frequent spatial relationships in all the three
splits. As we can see, Ref-Adv comprises of rich
and diverse spatial relationships. In Table 2, we
show random selection of the Ref-Easy, Ref-Hard,
and Ref-Adv splits.

A.5 Model and other Experiment Details
A.5.1 Datasets
GQA (Hudson and Manning, 2019) contains 22M
questions generated from Visual Genome (Krishna
et al., 2017) scene graphs. However, in our our
multi-task training (MTL), we leverage only 1.42M
questions that require reasoning on both linguistic
structure and spatial relations. We filter these re-

Figure 4.5: Overview of our three-stage Ref-Adv construction process. Given the image, referring

expression, ground-truth bounding boxes for all the samples in RefCOCOg test split, we first filter

out the hard samples and then construct adversarial expressions using them. Please refer to section

2 for further detail.

Ref-Adv is more balanced and less biased towards Person category. Figure 4.7 shows the relative

frequency of the most frequent spatial relationships in all the three splits. As we can see, Ref-Adv

comprises of rich and diverse spatial relationships. In Table 4.2, we show random selection of the

Ref-Easy , Ref-Hard , and Ref-Adv splits.

4.7.5 Model and other Experiment Details

4.7.5.1 Datasets

GQA [HM19b] contains 22M questions generated from Visual Genome [KZG17] scene graphs.

However, in our our multi-task training (MTL), we leverage only 1.42M questions that require

reasoning on both linguistic structure and spatial relations. We filter these relational questions

by applying the following constraint on question types: type.Semantic=‘rel’. We also apply this

76



Figure 4.6: Referring expression length distribution for Ref-Easy , Ref-Hard , Ref-Adv datasets.

constraint for filtering the development set. We denote this subset as GQA-Rel. We considered

GQA-Rel instead of GQA for two reasons: 1) GQA-Rel is a more related task to RefCOCOg; and

2) MTL training with the full GQA set is computationally expensive. For each question in the

dataset, there exists a long answer (free-form text) and a short answer (containing one or two words).

We only consider the short answers for the questions and treat the unique set of answers as output

categories. While the full GQA dataset has 3129 output categories, GQA-Rel contains only 1842

categories.

We follow yu2018mattnet in creating the train (80512 expressions), val (4896 expressions), and

test (9602 expressions) splits of RefCOCOg . For all our experiments in this paper, we directly use

the ground-truth bounding box proposals.
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Figure 4.7: Relative frequency of the most frequent spatial relationships in Ref-Easy , Ref-Hard ,

and Ref-Adv

4.7.5.2 Training

ViLBERT Pre-training We used pre-trained ViLBERT model that is trained on 3.3 million

image-caption pairs from Conceptual Captions dataset [SDG18a].‡

Single-Task Fine-tuning on RefCOCOg In order to fine-tune the baseline ViLBERT [LBP19a]

model on RefCOCOg dataset, we pass the ViLBERT visual representation for each bounding box

into a linear layer to predict a matching score (similar to RefCOCO+ training in lu2019vilbert). We

calculate accuracy using IoU metric (prediction is correct if IoU(predicted region, ground-truth

region) > 0.5). We use a binary cross-entropy loss and train the model for a maximum of 25 epochs.

We use early-stopping based on the validation performance. We use an initial learning rate of 4e-5

and use a linear decay learning rate schedule with warm up. We train on 8 Tesla V100 GPUs with a

total batch size of 512.

‡ViLBERT 8-Layer model at the link https://github.com/jiasenlu/vilbert_beta
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Ref-Easy
8034 samples

Ref-Hard
1568 samples

Ref-Adv
3704 samples

Outdoor 1.21% 1.90% 1.97%

Food 7.94% 9.80% 9.63%

Indoor 2.81% 2.83% 2.76%

Appliance 0.80% 1.07% 1.11%

Kitchen 4.52% 5.73% 5.77%

Accessory 3.20% 5.44% 5.29%

Person 37.26% 20.88% 21.01%

Animal 15.95% 13.92% 13.90%

Vehicle 10.91% 10.40% 10.26%

Sports 1.45% 5.04% 5.13%

Electronic 2.62% 3.20% 3.31%

Furniture 11.28% 19.73% 19.83%

Table 4.8: Distribution of object categories in Ref-Easy , Ref-Hard , and Ref-Adv splits.

Negative Mining We used a batch size of 512 and randomly sample negatives from the mini-batch

for computational efficiency. We sampled 64 negatives from each batch for both Sum of Hinges and

Max of Hinges losses. We fine-tune the margin parameters based on development split. We train the

model for a maximum of 25 epochs. We use early-stopping based on the validation performance.

We use an initial learning rate of 4e-5 and use a linear decay learning rate schedule with warm up.

We train on 8 Tesla V100 GPUs with a total batch size of 512.

Multi-Task Learning (MTL) with GQA-Rel The multi-task learning architecture is shown

in Figure 4.3 in the main paper. The shared layers constitute transformer blocks (TRM) and co-

attentional transformer layers (Co-TRM) in ViLBERT [LBP19a]. The task-specific layer for GQA

task is a two-layer MLP and we treat it as a multi-class classification task and the task-specific layer
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Split Before MTL After MTL

GQA-Rel Dev 53.7% 56.0%

GQA Dev 40.24% 42.1%

GQA Test 36.64% 39.2%

Table 4.9: Performance on GQA-Rel Dev, GQA-Dev and GQA-Test splits before and after MTL

training with RefCOCOg (Note: MTL training for all the three rows is performed using GQA-Rel

and RefCOCOg ).

for RER is a linear layer that predicts a matching score for each of the image regions given an input

referring expression. The weights for the task-specific layers are randomly initialized, whereas

the shared layers are initialized with weights pre-trained on 3.3 million image-caption pairs from

Conceptual Captions dataset [SDG18a]. We use a binary cross-entropy loss for both tasks. Similar

to luong2015multi, during training, we optimize each task alternatively in mini-batches based on a

mixing ratio. We use early-stopping based on the validation performance. We use an initial learning

rate of 4e-5 for RefCOCOg and 2e-5 for GQA, and use a linear decay learning rate schedule with

warm up. We train on 4 RTX 2080 GPUs with a total batch size of 256.

GQA MTL Results Table 3 in the main paper showed that MTL training with GQA-Rel signifi-

cantly improved the performance of model on Ref-Hard and Ref-Adv splits. In addition, we also

observed a significant improvement in GQA-Rel development, GQA development and test splits as

shown in the Table 4.9.

4.7.5.3 Additional Experiments

In this subsection, we present results of additional experiments using transfer learning (TL) and

multi-task learning (MTL) with ViLBERT on VQA, GQA, and GQA-Rel tasks. As shown in

Table 4.10, TL with VQA showed slight improvement. However, TL with GQA, TL with GQA-Rel,
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ViLBERT Ref-Dev Ref-Test Ref-Adv

Without TL and

MTL

83.39 83.63 70.90

TL with VQA 82.26 84.14 72.96

TL with GQA 80.60 82.08 70.41

TL with GQA-Rel 81.05 83.12 70.78

MTL with VQA 81.20 82.10 70.82

MTL with GQA-Rel 83.45 84.30 73.92

Table 4.10: Comparing ViLBERT’s Multi-task Learning (MTL) with Transfer Learning (TL)

experiments. Ref-Dev and Ref-Test correspond to: RefCOCOg-Dev and RefCOCOg-Test splits

respectively.

and MTL with VQA did not show any improvements §.

§We could not perform MTL with GQA as it requires large number of computational resources.
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CHAPTER 5

Improving Robustness and Faithfulness of Neural Module

Networks

In this Chapter, we show that the state-of-the-art end-to-end modular network (NMNs) implementa-

tions [SBG20, AGA20a, AJC21, AGW21] - although provide high model interpretability with their

transparent, hierarchical and semantically motivated architecture - require a large amount of training

data and are less effective in generalizing to unseen but known language constructs. For example,

NMNs fail to understand new concepts such as “yellow sphere to the left” that are constructed

using a combinations of known concepts from train data such as “blue sphere”, “yellow cube”, and

“metallic cube to the left”. One of the main reasons for this is that the neural modules in existing

works either use a shallow, indirect language guidance [PSV18, HAR17, ASM13] or pre-define

the textual inputs in the module instantiation [JHM17b, LLB19], ignoring the rich correlations

among the visual inputs and the relevant context from the textual inputs. For example, the neural

module that filters based on the object size, “filter size(smallest)”, needs to localize a

tiny sphere or a medium-sized sphere in the image depending on the object relationships in the

expression (e.g. “the smallest thing among the spheres” vs. “the metallic sphere smaller than all the

large cylinders”) and the different sizes of spheres and cylinders available in its visual input. We

believe that explicitly conditioning the neural modules on the joint textual and visual context helps

in inferring robust visiolinguistic relationships which further enhances the compositional reasoning

skills. In this Chapter, we propose several extensions to modular networks that mitigate bias in the

training and improve robustness and faithfulness of model.
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r1: The metallic 

object that is second 

one of the thing 

from right and to the 

right of [ big cubical 

metallic thing ]

filter

shape

filter

size

filter

material

[cube] [large]

[big cubical]

Argument

Context

[metallic]

[big cubical 

metallic thing]

[cubical]

e1

e1

r1

Figure 5.1: An example from the CLEVR-Ref+ dataset. In addition to passing textual inputs

(arguments) cubical, large and metallic to neural modules, we also provide them with the

relevant neighborhood of arguments as context (highlighted in blue).

5.1 Introduction

Recently, neural module networks (NMN; andreas2016neural,hu2017modeling,liu2019clevrref)

have been gaining popularity as a promising approach for solving this task. Briefly, NMN models use

an explicit modular reasoning process where a program generator first analyzes the input referring

expression and predicts a sequence of learnable neural modules (e.g. count, filter, compare).

Next, an execution engine dynamically assembles these modules to predict the target object in the

image. Such a module based hierarchical reasoning process helps NMNs in providing high model

interpretability and therefore facilitates in improving overall trust in the model [ARD16b, AWZ20].

Although achieving promising results, existing NMN models primarily focused on designing

module architectures with textual inputs directly hard-coded in the module instantiation [JHM17b,
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LLB19]. For example, processing the textual inputs ‘red’ and ‘blue’ require the instantiation of

two different modules filter color[red] and filter color[blue]. However, such a

design demands a large number of learnable modules (and network parameters) and they cannot

share weights for similar contextual textual inputs (e.g. ‘dark cube’ vs. ‘black cube’, ‘shiny cylinder’

vs. ‘metallic cylinder’). Lack of these contextual signals leads to poor generalization performance

on unseen but known language contexts [LB17, BVO19].

Moreover, in the prior implementations of NMN such as IEP-Ref [JHM17b, LLB19], the

modules in execution engine are not conditioned on the surrounding context of their textual input

in the expression. This is problematic as the modules are not given the opportunity to watch the

neighborhood of textual input that helps in extracting the informative visiolinguistic context from

the module’s visual input. For example, the module filter color[dark] needs to pick a

black colored cube or a red-colored cube depending on the neighborhood context in the expression

(e.g. “the dark thing that is hardly visible” vs. “the dark thing among the red cubes”) and the

type of cubes available in its visual input. Few implementations of NMN such as FiLM [PSV18]

and N2NMN [HAR17] parametrize the surrounding context of their textual input. However, the

visiolinguistic context in these modules is rather shallow as they cannot jointly co-attend over

potential objects of interest directly from the visual input and textual inputs.

In this Chapter, we address the aforementioned issues and evaluate the impact of contextual

signals in improving the performance of NMN models. First, we address the problem of hard-coded

language inputs by parameterizing the module arguments (Figure 5.1), i.e., for example, we treat

“filter size” module as parameterized by textual input “large” instead of as a standalone

function “filter size[large]” (§5.3). We show that module parametrization reduces the

total number of learnable modules by 75% without affecting the performance of NMNs.

Second, we use the ground-truth annotations in CLEVR-Ref+ [LLB19], a challenging synthetic

referring expression dataset, to show the evidence that providing the relevant neighborhood context

of the textual input to the neural module (see Figure 5.1) is beneficial for improving the model’s

grounding performance (§5.4.1). We next propose a contextualization method to learn to select the
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most relevant neighborhood context by jointly co-attending on visual and textual inputs, eliminating

the need for ground-truth contextual information (§5.4.2).

Our experimental results show that our approach is effective in capturing visiolinguistic relations

and contextual dependencies, especially when the textual inputs are long, and has complex linguistic

structures. We demonstrate that our proposed method significantly improves the performance of

NMN (§5.5.4) in grounding visual referring expressions. Specifically, on CLEVR-Ref+ bench-

mark, we outperform competing NMN approaches such as IEP-Ref, FiLM and N2NMN by as

much as +8.1% accuracy on single-referent split (S-Ref) and +4.3% on full-referent split (F-Ref).

Additionally, we also test our approach on CLOSURE [BVO19] and NLVR2 [SZZ18] benchmarks.

CLOSURE is a VQA benchmark consisting of CLEVR-like questions with emphasis on simple

and complex referring expressions. NLVR2 is a language grounding task where the goal is to

determine whether an expression is true based on two paired real images. Our approach significantly

outperforms the existing NMN approaches with +11.2% and +1.7% improvements in accuracy on

CLOSURE and NLVR2 respectively.

We further evaluate the impact of our contextualization by constructing a set of contrasting

perturbations around CLEVR-Ref+ test instances [GAB20], and call our new dataset CC-Ref+

(§5.5.6). We significantly outperform the state-of-the-art models by as much as +10.4% absolute

accuracy on CC-Ref+.

5.2 Related Work

Referring Expression Recognition. Visual referring expression recognition (REF) is the task of

identifying the object in an image that is referred to by a natural language expression [MHT16,

KOM14]. Datasets containing real images and expressions such as RefCOCO+ [KOM14] and

RefCOCOg [MHT16] have been proposed to evaluate the progress on this task. Multi-modal

transformers [LBP19a, LYY19, TB19], using pretrain-then-transfer approach, have shown superior

performance on these datasets. However, these models fail to learn robust visio-linguistic con-
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textual representations and are shown to exploit the imbalanced distribution in the train and test

splits [AGA20a, CBM18]. Recently, CLEVR-Ref+ [LLB19] has been introduced as a synthetic

diagnostic benchmark that allows control over dataset bias. There are nearly 0.8M referring expres-

sions of which 32% of expressions refer to only a single object (Single-referent) and 68% refer to

more than one object (Multi-referent). In this Chapter, we refer to the full dataset as F-Ref and the

single-referent subset as S-Ref. Module network [LLB19, JHM17a, ARD16b] based architectures

achieved new state-of-the-art performance on this dataset.

Neural Module Networks. Neural module networks (NMNs) learn to parse textual expressions as

executable programs composed of learnable neural modules [ARD16b, JHM17a, JHM17b, HAR17].

Each of these modules are specialized to compute basic reasoning tasks and can be assembled

to perform complex and compositional reasoning. [ARD16b] used dependency trees [ZZC13]

to generate the execution layouts. [ARD16a] proposed dynamic NMNs that learns and adapts

the structure of the execution layouts to the question. [JHM17b] proposed homogeneous (IEP)

and generic neural modules, unlike fixed and hand-crafted neural module, in which the semantics

of each neural module is learnt during training. IEP model achieves promising performance on

CLEVR dataset. [LLB19] proposed IEP-Ref by extending IEP model to CLEVR-Ref+ dataset and

outperformed all the prior works. Although, compositional by design, the visiolinguistic context

in these modules is rather shallow and fail to ground novel combinations of known linguistic

constructs [BVO19]. The major difference between our work and these prior works of NMN is that

we explicitly parametrize and contextualize the neural modules by jointly attending over the visual

and textual inputs.

5.3 Module Parameterization in NMN

We propose parametrization as the first step to enable weight sharing and exploiting associations

between similar textual contexts. Specifically, we evaluate the effectiveness of parameterizing

module textual inputs using IEP-Ref [LLB19] as the baseline NMN implementation. IEP-Ref,
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Modules

Unary Filter Shape, Filter Color, Filter Material,

Filter Visible, Filter Size, Filter Ordinal,

Unique, Relate, Same Size, Same Shape,

Same Color, Same Material, Scene

Binary Intersect, Union

Table 5.1: Modules in Parameterized IEP-Ref

a NMN solution based on IEP [JHM17b], is the current state-of-the-art model on CLEVR-Ref+

dataset.* As shown Figure 5.2(a), the neural modules in IEP-Ref are represented using a standard

Residual Convolution Block (RCB). Formally, each RCB module (fn) of arity n receives n feature

maps (Fi) of shape 128× 20× 20 and outputs a same-sized tensor fo = fn(F1,F2, ...,Fn).

We parameterize each RCB module m as follows: (a) we feed all the words in the textual input

em into an LSTM; (b) The last hidden state of LSTM ht is then used to perform element-wise

multiplication with the output of the first convolution layer in the RCB block to produce joint

representation cm of module’s textual input (em) and visual input (vm), which is then passed to

ReLU function (see Appendix):

ht = LSTM
(
em,t,ht−1

)
,

cm = conv (vm)⊙ ht.
(5.1)

Table 5.2 shows the count of distinct modules and the model performance before and after

parameterizing the RCB modules (i.e. IEP-Ref vs P-Ref). As we can see, there are total 60 distinct

modules in IEP-Ref. After parameterization, the distinct number of modules reduce by 75% (i.e.,

15 distinct modules) without any drop in the model performance. Table 5.1 presents the list of all

the 15 modules in our parameterized NMN model.

*We used the IEP-Ref implementation provided at the link https://github.com/ruotianluo/iep-ref
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#modules #param
per module

. F-Dev F-Test S-Dev S-Test

IEP-Ref
(18K programs)

60 442,752 80.54 78.20 49.89 51.50

P-Ref 15 574,336 81.23 78.31 51.60 51.57

Table 5.2: Count of modules, parameters and performance of IEP-Ref and parameterized model

(P-Ref).

In addition to evaluating the model performance on the full CLEVR-Ref+ dev (F-Dev) and test

(F-Test) splits, we also evaluate the model on single-referent (S-Ref) dev (S-Dev) and test (S-Test)

splits.† Moreover, although the network parameters of each parameterized module slightly increase

due to the additional LSTM unit, since each module in IEP-Ref can have multiple instantiations for

the same textual input, we have fewer parameters than IEF-Ref in total (see Sec 5.5.4.1 for more

discussion).

5.4 Contextualization in NMN

5.4.1 Using Ground-Truth Annotations

We extend our parameterized model by contextualizing it with the neighborhood context of textual

input in the referring expression. Figure 5.1 shows an example. We leverage the ground-truth

annotations available in CLEVR-Ref+ to provide neighborhood context for the modules as follows:

Let us denote the ground-truth neural modules as m1, m2, m3, ..., mn for a given input referring

expression q. Suppose the modules mj and mk are children for the parent module mi in the ground-

truth execution tree. We modify the architecture of each neural module shown where we concatenate

the ground-truth arguments of all the children modules mj and mk and pass it as the neighborhood

†For results in the last two columns of Table 5.2, we trained our model using S-Ref train split.
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Model F-Dev F-Test S-Dev S-Test

P-Ref 81.23 78.31 51.60 51.57

P-Ref + Input Expr. 81.10 77.01 50.88 51.45

P-Ref + GT Neighb. 82.60 80.02 55.22 54.76

Table 5.3: Performance of contextualized NMN models.

context to the parent module mi (see Appendix). We test if this contextualization helps.

As an ablation, we also test the model performance where the entire expression q is provided as

neighborhood context for the modules instead of the relevant neighborhood. Table 5.3 shows the

results. Using the entire expression as the neighborhood context did not show any improvements in

the model performance, perhaps due to the difficulty in searching and extracting relevant context

from long CLEVR-like expressions. On the other hand, providing ground-truth neighborhood

context shows significant improvement in the performance (1.71% on F-test and 3.19% on S-Test),

indicating that model is able to extract informative visiolinguistic clues. Since the ground-truth

human annotations are costly and difficult to obtain, we next propose a contextualization method

that enables the modules to learn to select the most relevant neighborhood context without requiring

ground-truth annotations.

5.4.2 Using Memory-augmented Block

We incorporate a memory-augmented LSTM block [GWD14] in the neural module to guide the

attention towards the relevant and informative neighborhood words in the input expression (q).

Figure 5.2(b) shows our contextualized module architecture. Our design enhances the module’s

capacity to exploit the visiolinguistic context between the visual input vm and the selective set of

words that are stored in the memory over multiple timesteps.

The memory M consists of a set of row vectors as memory slots. LSTM (i.e., controller) has
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Figure 5.2: (a) Architecture of neural module (m) in IEP-Ref consuming a visual input vm. ⊕

denotes summation. (b) Our proposed contextualized module design using our proposed memory

(M ) based architecture. ⊙ and⊗ denote element-wise multiplication and concatenation respectively.

em is parameterized textual input.

read and write heads into M , which helps in retrieving representations from M or place them into

M . In the first time step (t0), we feed visual input and then in the later time steps textual input is

fed. More formally, given a input referring expression q, at each time step (t), LSTM produces a

key, ki,t, which is either used to retrieve a particular location l from the row Mt or to store in Mt.

We feed the referring expression q into LSTM as:

ht = LSTM (qt,ht−1) . (5.2)

We then compute the cosine similarity measure between ht and each individual row j in M :

K
(
ht,Mt (j)

)
=

ht ·Mt (j)

∥ht∥
∥∥Mt (j)

∥∥ . (5.3)

A read weight vector wt is computed using a softmax over the cosine similarity and then a memory

row mt is retrieved. The vectors mt, ht are concatenated with the textual input (em) and then an
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Figure 5.3: Qualitative examples showing the attention heatmaps of

filter material(metallic) module outputs trained using IEP-Ref and P-

Ref+LSTM+Mem models. e1 and e2 highlight the metallic objects that are referred in

the input expressions r1 and r2 respectively.

element-wise multiplication is performed with the output of the convolution layer before passing to

the ReLU function (see Appendix).

5.5 Experiments

5.5.1 Datasets

We evaluate our approach on F-Ref and S-Ref splits of CLEVR-Ref+ [LLB19]. In addition, we

also test our approach on CLOSURE [BVO19] and NLVR2 [SZZ18] benchmarks. CLOSURE is a

VQA benchmark, consisting of synthetically generated image and question pairs with emphasis

on grounding simple and complex referring expressions. NLVR2 is a language grounding task

where the goal is to determine whether an expression is true based on two paired real images. While
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reporting results on CLOSURE, we train our NMN model using CLEVR [JHM17a] train and val

splits.

5.5.2 Baselines

We compare the performance of our approach against the following baselines: (1) IEP-Ref [LLB19]

is the current state-of-the-art NMN model for CLEVR-Ref+ benchmark which uses explicit program

generator and execution engine (PG+EE) to predict the answer; (2) FiLM (Feature-wise Linear

Modulation) [PSV18] is a NMN model which introduces new layers in the RCB block that learn

parameters γi,c and βi,c for scaling up or down the CNN activations (Fi,c) by conditioning on the

input referring expression xi, i.e. FiLM(Fi,c|γi,c, βi,c) = γi,cFi,c + βi,c; (3) MAC [HM19c] is an

end-to-end differentiable architecture designed to perform an explicit multi-step reasoning process

by decomposing them into a series of attention-based reasoning steps; (4) VectorNMN [BVO19] is

a direct extension to FiLM that uses vector-valued inputs and outputs for the modules instead of

high-capacity 3D tensors; (5) NS-VQA [YWG18] uses structural scene representation from input

image in addition PG+EE components in IEP-Ref; (7) N2NMN uses hand-crafted and parameterized

neural modules; (8) LCGN [HRD19] uses a graph network where each node represents an object,

and is described by a context-aware representation from related objects conditioned on the textual

input.

To gain better insight into the relative contribution of the design choices we made, we perform

experiment with the following ablated models: (9) P-Ref+LSTM+Attn uses attention instead

of an external memory block for selecting the neighborhood words in the expression; (10) P-

Ref+Curriculum Learning: We employ a curriculum training (Platanios2019)regimetotraintheP−

Refmodelinordertoimproveitsperformancewithoutcontextualization(SeeAppendix).
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5.5.3 Implementation Details

The memory matrix in our model discussed in section 5.4.2 consists of 128 rows and 80 columns.

The controller is a single layer LSTM network. We use GloVe to obtain the word embedding

(dimension = 300) of each word in the textual input. When training, we first train our program

generator (PG) and use it as a fixed module for training the execution engine (EE). We use 18K

ground-truth programs to train the program generator (PG). We train PG and EE using Adam [KB15]

with learning rates 0.0005 and 0.0001, respectively. Note that PG is trained for a maximum of

32,000 iterations, while EE is trained for a maximum of 450,000 iterations. We employ early

stopping based on validation set accuracy. We do not find any significant improvements with the

joint optimization of PG and EE. We train on one RTX 2080ti GPU with a batch size of 8.

5.5.4 Evaluation

Table 5.4 shows results in comparison with the baselines. We find that our contextual NMN model

(P-Ref+LSTM+Mem) significantly outperforms all prior work by large margins. In addition to

outperforming NMN baselines such as FiLM, N2NMN, IEP-Ref, we also outperform the non-

NMN baselines such as LCGN demonstrating the effectiveness of the introduced memory module

in capturing visiolinguistic relations and contextual dependencies from the longer CLEVR-like

expressions. Specifically, we achieve +4.3% on F-test and +8.1% on S-Test, compared with the

current state-of-the-art NMN model IEP-Ref. Most significant gains on S-Test also suggest the

superior generalization skills of our model in learning from fewer training samples.

The ablation results are shown in Table 5.5. As we can see, all the ablative baselines under-

perform, confirming the importance of our proposed contextualization approach. Specifically the

improvements obtained with module contextualization in both IEP-Ref and FiLM demonstrate that

our approach can generalize across diverse NMN architectures.

Performance on CLOSURE and NLVR2 benchmarks is shown in Table 5.6. We achieve +11.2%

in accuracy on CLOSURE test split compared to the best prior model Vector-NMN, indicating that
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Model F-Dev F-Test S-Dev S-Test

IEP-Ref 80.54 78.20 49.89 51.50

FiLM 76.58 75.71 44.90 46.70

MAC 79.40 77.36 47.20 47.00

Vector-NMN 82.05 77.00 46.72 52.88

NS-VQA 80.08 79.01 48.07 51.66

N2NMN 76.00 75.11 43.62 46.70

LCGN 77.07 74.80 46.88 48.00

P-Ref+LSTM+Mem (ours) 84.82 83.05 59.76 60.04

Table 5.4: Performance of our memory based contextualized NMN model (P-Ref+LSTM+Mem)

and baselines on CLEVR-Ref+.

our model generalizes well to unseen compositions. We also surpass all the existing NMN based

models for NLVR2 dataset which has real images unlike synthetic images in CLEVR-Ref+ and

CLOSURE.

Figure 5.3 illustrates the qualitative differences of filter material(metallic) module

trained using IEP-Ref and our P-Ref+LSTM+Mem model. With IEP-Ref, the model selects all

metallic objects from the image, ignoring the context in the expression. On the other hand, our

approach correctly locates objects based on their contextual relevance.

5.5.4.1 Model Parameters

Our proposed model has 3 times fewer parameters than the baseline model IEF-Ref in total (see

Table 5.7). More concretely, the baseline IEP-Ref model contains 60 modules and each module

consists of 0.44M parameters. That is, total number of parameters in IEP-Ref are 60*0.44M =

26.4M. Similarly, the FiLM baseline, which also does contextualization of inputs, has 60*0.59M

94



Model F-Dev F-Test S-Dev S-Test

IEP-Ref 80.54 78.20 49.89 51.50

P-Ref+LSTM+Attn 79.26 78.99 52.68 52.96

P-Ref+LSTM+Mem (ours) 84.82 83.05 59.76 60.04

FiLM 76.58 75.71 44.90 46.70

FiLM+LSTM+Mem (ours) 79.05 80.86 51.10 53.06

P-Ref+CL 81.70 80.32 57.25 56.91

P-Ref+LSTM+Mem+CL 82.16 80.93 57.90 58.14

Table 5.5: Ablations. Performance of our model and its ablative baselines on CLEVR-Ref+.
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Figure 5.4: CC-Ref+ Statistics
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Figure 5.5: Performance of models on randomly drawn 500

original CLEVR-Ref+ test instances and their contrast sets.

= 35.4M parameters. On the other hand, our proposed memory based contextualization of NMN

model contains only a maximum of 15 modules and each module has 0.58M parameters. Therefore

total number of parameters in our model are 15*0.58M = 8.7M. This is 3 times smaller than IEP-Ref

and 4 times smaller than FiLM.
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Model CLOSURE NLVR2 (Test-P)

IEP-Ref 59.80 N/A

FiLM 58.72 51.10

N2NMN 62.07 52.10

MAC 65.19 51.40

Vector-NMN 64.14 N/A

P-Ref 59.68 N/A

P-Ref+LSTM+Attn 63.13 N/A

P-Ref+LSTM+Mem (ours) 71.22 N/A

FiLM+LSTM+Mem (ours) 69.78 53.80

Table 5.6: Performance of our model and NMN baselines on CLOSURE and NLVR2 datasets.
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Figure 5.6: Performance of baseline IEP-Ref model on original CLEVR-Ref+ test split and CC-Ref+

samples

5.5.5 The CC-Ref+ Dataset

We further examine the robustness of the models by creating contrast sets (similar to gard-

ner2020evaluating) that help in exposing model brittleness by probing a model’s decision boundary

local to examples in the test set. Specifically, we follow a three stage approach to collect our contrast

set:
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Model #Parameters
(per module)

IEP-Ref 442,752

Param. IEP-Ref (P-Ref) 574,336

FiLM 590,720

P-Ref+LSTM+Attn 574,464

P-Ref+CL 574,336

P-Ref+LSTM+Mem (ours) 589,597

Table 5.7: Count of parameters for each neural module in the baselines and our proposed NMN

models.
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Figure 5.7: Performance of our contextual NMN model (P-Ref+LSTM+Mem) on original CLEVR-

Ref+ test split and CC-Ref+ samples

Stage 1: First, we randomly sample 100 single-referent expressions from the test split containing

only a single spatial relation (e.g. The first one of the tiny rubber thing from left). We then sample

another 100 expressions containing two spatial relations (e.g. The first one of the thing from left

that is behind the big yellow matte object). Similarly we sample a third subset of 200 expressions

containing 3 or more relations. Finally, we sample 100 expressions containing at least one compare

relations (e.g. Any other tiny object as the same color as the big yellow metallic cube). This

constitutes a total of 500 expressions.

Stage 2: We then manually perturb the semantics of various parts of these 500 referring expressions
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Original: The brown things that are big object(s) or the second

one of the small metal thing(s) from left

CC-Ref+: The cyan things that are big object(s) or the first one of

the small metal thing(s) from left

Original: The matte things that are either the sixth one of the tiny

thing(s) from right or the fifth one of the thing(s) from front

CC-Ref+: The matte things that are tiny thing(s) and the second

one of the thing(s) from front

Table 5.8: Random examples from CC-Ref+ and their original annotations in CLEVR-Ref+

such that the ground-truth referent object changes. For example, we modify the expression first

one of the tiny rubber thing from left to first one of the tiny metallic thing from right. We call this

perturbed test split CC-Ref+. We show random selection of CC-Ref+ examples in Table 5.8.

Stage 3: Finally, we verify and validate the correctness of the new ground-truth annotations using

two human annotators. The annotations that are not consistent among the two human annotators

are removed and we re-iterate the above three steps until we collect a validated set of 500 contrast

samples‡. In Figure 5.4, we summarize the size and complexity of our CC-Ref+ split.

‡[GAB20] shows that a few hundreds of contrast samples will be sufficient to draw substantiated conclusions about

model behavior.
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5.5.6 Evaluation on CC-Ref+ Dataset

As shown in Figure 5.5, performance of baseline models drop by >10% on CC-Ref+ and the models

struggle to correctly ground the perturbed samples containing compare relations (e.g. same color)

or that containing more than 2 spatial relations (e.g. front, left) in the expression. Our method shows

least drop (<5%) in performance indicating its superiority in grounding expressions with complex

linguistic constructs (see Appendix for more detailed analysis). In Figure 5.6 and Figure 5.7, we

further analyze the model’s performance when one of the object attributes namely, color, size,

shape, material, ordinality, and visibility are perturbed in the contrast sets. We found that both

IEP-Ref and our model are robust to perturbations in color indicating that this is a relatively easier

concept to ground in the images. In contrast to the findings in [LLB19], we see a significant drop

by up to 15% in the performance of IEP-Ref on all the other attributes such as shape and visibility.

Our proposed approach P-Ref+LSTM+Mem shows relatively low drop in the logical, material

and ordinal perturbations, insignificant drops (< 3%) in color, visible perturbations and a slight

improvement (+2%) in shape perturbations. This clearly suggests that our approach generalizes well

and is robust to contrastive perturbations in the input. The performance gap of P-Ref+LSTM+Mem

in logical, ordinal and material perturbations show that these are relatively difficult concepts for the

model to learn. We hope that CC-Ref+ dataset will foster more research in this area.

5.6 Another method for Contextualization in NMN

In the previous section, we show the importance of contextualizing modular networks. In this

section, we present an alternate method to perform this contextualization. To do this, as shown

in Figure 6.1, we replace the standard convolution operations in the neural modules with a novel

language-guided adaptive convolution operation, which we call LG-Conv. More specifically,

the filter weights W of LG-Conv are explicitly multiplied with a spatially varying language-

guided kernel G, which allows the module to adaptively co-attend over potential objects of interest

from the visual input and textual input by altering the convolution. Although content-adaptive
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Figure 5.8: An example from the CLEVR-Ref+ dataset. Existing NMN implementations only

provide the visual features (vm) as inputs to the neural modules. In this work, we additionally

condition each module on textual expression (q) by replacing the standard convolution layers

with content adaptive convolution layers LG-Conv which modify the convolution by explicitly

multiplying the filter weights (W ) with a spatially varying language-guided kernel G.
⊗

denotes

element-wise multiplication and
⊕

denotes summation.

convolutions [JDT16, DQX17, SJS19] are used in several vision tasks, we are not aware of any

prior works that does this filter adaptation using language as guidance. We propose two novel and

effective methods namely, bi-salient attentional guidance (BiSAtt) network and co-salient attentional

guidance guidance (CoSAtt) network to learn the guidance kernel G from textual and visual inputs.

Problem Setup and Notation. Given an image I and a natural language query q as input, our

goal is to develop a NMN model that selects an answer a ∈ A to the query from a fixed set A of

possible answers. We generalize this notation for both VQA and REF tasks; q, a denote question

and a natural language answer respectively in VQA, whereas they represent a referring expression
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Figure 5.9: (a) Architecture of neural module (m) in existing NMN [JHM17b] consuming a visual

input vm; (b) Our proposed architecture replacing Conv layers with content adaptive convolution

layers guided by the input image I , input query q and parameterized textual input marg.

and a bounding box of the target object respectively in REF. We represent input image I as an

ordered sequence of a set of image regions R = (r0, r1, ..., rN) and the query q as the set of words

(w1, w2, ..., wL) where wi is the i-th word, N is the number of image regions extracted from input

image I , and L is the total number of the tokens in the input query.

Similar to [JHM17b], we use a two-stage model for generating answer: (1) Program Generation

Model p(z|q; θp): where the query is parsed to z representing the reasoning steps required to answer

the query, and (2) Program Execution Model p(a|z, I; θe): where the predicted program z is used to

assemble a input-specific neural network that is composed from a set of neural modules m and is

executed to produce a distribution over answers.

As shown in Figure 5.9(a), the neural modules in current implementations of NMN [JHM17a,

LLB19] typically use a standard Residual Convolution Block (RCB), consisting of convolution

layers and ReLU activations. Formally, a module (fn) of arity n receives n feature maps (Fi) of
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Figure 5.10: Bi-Salient Attentional Guidance Encoder (BiSAtt): In BiSAtt Encoder architecture,

we first encode text inputs and then use it to learn a set of adaptive weights to linearly combine the

basis filters which produces the convolution filters applied on input image.

shape 128× 20× 20 and outputs a same-sized tensor fo = fn(F1,F2, ...,Fn).

hm = ReLU
(
conv1 (Fi)

)
fo = ReLU

(
conv2 (hm)⊕ hm

) (5.4)

As we can see, these modules [JHM17a, JHM17b] are not explicitly conditioned on the input

expression q, and therefore fails to extract robust visiolinguistic relationships. In contrast, as

shown in Figure 5.9(b), we explicitly condition the neural modules on q, in addition to visual

inputs, by replacing the standard convolution operations in RCB block with a novel adaptive

and language-guided convolution operation, which we call LG-Conv. Also, we parameterize the

module arguments, i.e., for example, we treat “filter material” module as parameterized by

argument (marg) “rubber” instead of as a standalone module “filter material[rubber]”.

As a result of this parametrization, the number of a distinct set of modules used in the parameterized
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Figure 5.11: Co-Salient Attentional Guidance Encoder (CoSAtt): CoSAtt Encoder jointly attends

over the input image and text inputs (early fusion) to identify co-salient regions and relationships in

visual and language features that are contextually associated with each other.

model reduce by 75%. We condition our LG-Conv layer on both query q and the module argument

marg (See Figure 5.9). In the following, we describe the LG-Conv operation and detail its formal

specification.

5.6.1 Language-Guided Convolution

Our high-level goal is to empower the neural modules to learn adapting visiolingustic features from

both visual and language inputs. We achieve this by introducing novel LG-Conv layers which allows

the module to adaptively co-attend over potential objects of interest from the visual and textual

inputs by altering the convolution [JDT16, DQX17, SJS19]. Formally, a standard conv layer in the

RCB block performing a spatial convolution operation over the n image pixels P = (p1, p2, ...pn) is

given as:
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p′
i =

∑
j∈Ω(i)

W[ci − cj]pj + b (5.5)

where W denotes the filter weights, ci denote the coordinates of the pixels in the image, b

denotes biases, and Ω(i) defines a convolution window. This convolution operation, with spatially

shared weights, is agnostic to pixel features and independent of language features. As shown in

Figure 6.1, we modify this to depend on both pixel features and language features using a spatially

varying guidance kernel G as follows:

p′
i =

∑
j∈Ω(i)

G(gi,gj)W[ci − cj]pj + b (5.6)

The spatial convolution W is adapted at each pixel in the visual input using the guidance

kernel G. Similar to [SJS19], we represent G using a fixed parametric Gaussian: G(gi, gj) =

exp(−1
2
(gi− gj)

T (gi− gj)), where g represents guidance features that we learn using the following

two methods §: (a) Bi-Salient Attentional Guidance (BiSAtt Encoder): We generate spatial

guidance features using the architecture shown in Figure 5.10. The input image of dimensions

128×20×20, the input query q, and the module’s parametrized text argument are used in producing

the guidance features. Specifically, in BiSAtt architecture, we add visual attention layers over I

to generate spatial guidance from non-spatial q. (b) Co-Salient Attentional Guidance (CoSAtt

Encoder): Here, we apply a joint attention over I , q, and the module argument to identify co-salient

regions and relationships in visual and language features that are contextually associated with each

other. The architecture is shown in Figure 5.11. In comparison to BiSAtt, as we show in our

experiments, CoSAtt improves the relevance and interaction between objects in the image and the

query. For efficient implementation, we use the same learned guidance across all the LG-Conv

layers in a RCB block.

§We experimented more forms of guidance kernel discussed in [SJS19], but we did not find significant improvements

in NMN performance with these other kernels.
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As our parametrized model require only a few number of modules, the total number of parameters

in our NMN is significantly less compared to the state-of-the-art models, even though the network

parameters in our parameterized module slightly increase due to the additional conv and LSTM

units in the guidance encoder.

Program Generator. We implement program generator using an attention-based sequence to

sequence (seq2seq) model with an encoder-decoder structure [SVL14, JHM17a] to map the input

query q into an executable program z. Both the encoder and decoder have two hidden layers with

a 256-dim hidden vector. Similar to [JHM17a], we convert the decoded sequence of program

functions to syntax trees (in an in-order traversal) in which each node contains a RCB module.

Execution Engine. The execution engine assembles a neural network using the predicted program

z by mapping function f at each node in syntax tree to its corresponding neural module. The parent

modules in the syntax tree takes the outputs from the child modules. Since we use a homogeneous

architecture for designing our modules, the output generated from all modules is of same shape

128×20×20. We flatten the final feature map before passing it to a multi-layer perceptron classifier,

producing a distribution over all possible answers.

Training. During training, we find the optimal module parameters by maximizing the likelihood of

the data. We optimize p(z|q; θp) using a policy gradient method.

∇J(θp) = E[∇log p(z|q; θp) · r] (5.7)

where r is the reward and the expectation is taken with respect to rollouts of the policy. In order

to enforce the network for generating the most accurate predictions, we then train the execution

engine directly by maximizing log p(a|z, I, q; θe) with respect to θe.

E[∇log p(z|q; θp) · log p(a|z, I,q; θe)] (5.8)
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Model CLEVR-Dev CLEVR-Test CLOSURE

IEP-Ref [LLB19] 98.7±0.3 97.1±0.2 59.8±0.4

FiLM [PSV18] 96.2 96.9 58.9

MAC [HM19c] 99.1 98.2 71.6

Vector NMN [BVO19] 98.8 97.6 71.0

NS-VQA [YWG18] 99.2 99.4 76.4

LCGN [HRD19] NA NA NA

ViLBERT [LBP19b] 95.3 93.0 51.2

Visual BERT [LBP19b] 96.0 92.8 50.6

Ours (with BiSAtt) 98.9±0.2 99.2±0.1 86.1±0.1

Ours (with CoSAtt) 98.9±0.1 99.2±0.1 88.0±0.2

Table 5.9: Performance of our approach and baselines on CLEVR, CLOSURE benchmarks.

5.6.2 Experiments

Similar to [JHM17a], we use 18K ground-truth programs to train the program generator (PG). We

train PG and the execution engine using Adam [KB15] with learning rates 0.0005 and 0.0001,

respectively. Our PG is trained for a maximum of 32K iterations, while EE is trained for a maximum

of 450K iterations. We employ early stopping based on validation set accuracy. While reporting

accuracies on S-Ref test split, we use the model trained on S-Ref train split. We repeat the

experiment 5 times on each benchmark and report the mean/variance on each of them.

5.6.3 Evaluation

Table 5.9 and Table 5.10 show results in comparison with the baselines. We find that our model

outperforms all prior work on CLOSURE, and CLEVR-Ref+ benchmarks, while showing on-par
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Model S-D S-T F-D F-T

IEP-Ref 49.8±0.1 51.5±0.6 80.5±0.2 78.2±0.3

FiLM 44.9 46.7 76.5 75.7

MAC 46.3 49.2 81.3 77.4

Vector NMN 48.3 53.5 83.2 77.1

NS-VQA 51.5 52.9 82.5 79.6

LCGN 46.8 48.0 77.0 74.8

ViLBERT 42.4 44.3 69.3 68.7

Visual BERT 41.7 43.2 69.8 63.2

Ours (with BiSAtt) 61.1±0.3 59.7±0.2 87.2±0.3 83.5±0.2

Ours (with CoSAtt) 62.3±0.163.3±0.189.1±0.284.3±0.3

Table 5.10: Performance of our language-guided NMN models and state-of-the-art models on S-Ref Dev

(S-D), S-Ref Test (S-T), F-Ref Dev (F-D) and F-Ref Test (F-T).

Model CLS S-T F-T

Ours 88.0 63.3 84.3

C1 Ours-L+G 62.1 51.6 77.8

C2 Ours-L-G 61.5 52.1 75.2

C3 Ours+L+(G w/o I) 80.2 57.7 79.9

C4 Ours+L+(G w/o q) 78.8 54.1 76.2

C5 Ours+L+(G w/o marg) 82.1 61.7 80.9

Table 5.11: Ablations. Performance of our model with and without LG-Conv layer (L) and CoSAtt encoder

(G) on CLOSURE (CLS), S-Ref Test, and F-Ref Test.

performance on CLEVR test split. This demonstrates the effectiveness of the proposed language

guided convolutions in capturing visiolinguistic relations and contextual dependencies from the

longer CLEVR-like expressions. In particular, we achieve +11.6% in accuracy on CLOSURE test
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split compared to the best prior model Vector-NMN, indicating that our model generalizes well to

unseen compositions. The multi-modal transformer based approaches ViLBERT and VisualBERT

performed poorly on both CLOSURE and CLEVR-Ref+, probably due to the mismatched image

distribution in pre-training (with conceptual captions [SDG18a]) and fine-tuning. Our model

improves the accuracy on CLEVR-Ref+ test splits by 9.8% on S-Ref and 4.7% on F-Ref, compared

with the current state-of-the-art method IEP-Ref. Significant gains on S-Test also suggest the

superior generalization skills of our model in learning from fewer training samples. Relatively more

improvements with CoSAtt encoder compared to BiSAtt encoder shows that early fusion of image

and text features facilitate in generating more robust guidance kernel.

To gain better insight into the relative contribution of the design choices we made, we perform

experiment with the following five ablated models:

C1: Conv vs. LG-Conv (L). We investigate the contribution of the proposed content adaptive

convolution layer in the RCB block by replacing LG-Conv layer with standard convolution. In

this setting, we use guidance (G) from CoSAtt encoder for directly scaling up or down the CNN

activations in the RCB block.

C2: Conditioning on CoSAtt Guidance (G). In this ablation, we use LG-Conv layers but skip the

CoSAtt encoder to verify the importance of module level conditioning on the interaction between

image and text features. We instead only pass the module argument (marg) as guidance to the

LG-Conv layer.

C3: CoSAtt w/o. Image (I) We encode guidance using only input query q and the module argument

to test the importance of conditioning on image I in the CoSAtt encoder.

C4: CoSAtt w/o. Query (q) We encode guidance using only input image to test the importance of

conditioning on input query q in the CoSAtt encoder.

C5: CoSAtt w/o. Module Arg (minp) In this variant, we keep q and I , but skip marg in the CoSAtt

encoder.

The results are shown in Table 5.11. As we can see, all the above five variants underperform,

confirming the importance of our proposed content-adaptive convolutions and guidance kernel.
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Results show that module argument in the CoSAtt guidance has less significant effect compared to

other components, suggesting that our model is able to infer the semantic context of the module.

5.7 Summary

Neural module networks (NMNs) are widely used in language and vision tasks. In this Chapter,

we show that contextualizing these modules dramatically reduces the number of modules required

and improve their grounding abilities, achieving a new state-of-the-art results on the CLEVR-Ref+

visual referring expressions task. Our analysis on CLEVR-Ref+, CLOSURE, NLVR2 and a new

contrast set CC-Ref+ demonstrate that our proposed method enhances NMNs’ ability to exploit

visiolinguistic relationships.

5.8 Appendix

In this supplementary material, we begin by providing more details on CLEVR-Ref+ F-Ref /

S-Ref splits and the neural modules in IEP-Ref. We then provide the details of our models (e.g.,

initialization & training, hyper-parameters). Finally, we provide CC-Ref+ dataset annotation details,

statistics, random examples, and more analysis.

5.8.1 F-Ref and S-Ref splits in CLEVR-Ref+

Visual referring expression recognition is the task of identifying the object in an image that is referred

to by a natural language expression [KOM14, MHT16]. It is a fundamental language-to-vision

matching problem and has several downstream applications such as question answering [ZGB16].

CLEVR-Ref+ [LLB19] is a recently proposed dataset for visual referring expression recognition

(RefExp) task, which consists of synthetic images and referring expressions. Specifically, it contains

the ground-truth functional program representations that describe the intermediate visual reasoning

as a chain of logical operations (i.e., neural modules) that need to be executed to find the target
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referent object (e.g., filter color, compare, filter size, and relate). There are nearly 0.8M referring

expressions of which 32% of expressions refer to only a single object (Single-referent) and 68%

refer to more than one object (Multi-referent). In this Chapter, we refer to the full dataset as F-Ref

and the single-referent subset as S-Ref. Detailed statistics of the splits are presented in Table 5.12.

F-Ref S-Ref

Train
#Expr. 628915 200313

(32% of F-Ref)

#Images 70000 62016

Dev
#Expr. 69879 22256

#Images 6500 5200

Test
#Expr. 149741 47731

#Images 15000 13534

Table 5.12: Statistics of F-Ref and S-Ref.

5.8.2 Neural Modules in Parameterized IEP-Ref

IEP-Ref [LLB19], the current state-of-the-art neural module network (NMN) model for the CLEVR-

Ref+ dataset, uses a generic design of neural module architecture adapted from IEP [JHM17b],

which was designed for VQA task.¶ The modules take either two visual inputs (binary modules)

or one visual input (unary modules). There are total 60 distinct modules in IEP-Ref. After

parameterization (see Figure 5.12b), the distinct number of modules drop to 15 without any drop

in the model performance. That is, the number of a distinct set of modules (and the total number

of parameters) used in the parameterized model reduces by 75%. Moreover, although the network

parameters of each parameterized module slightly increase due to the additional LSTM unit, since

each module in IEP-Ref can have multiple instantiations for the same textual input, we have

¶We used the IEP-Ref implementation provided at the link https://github.com/ruotianluo/iep-ref
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Figure 5.12: (a) Architecture of neural module (m) in IEP-Ref consuming a visual input vm.

⊕ denotes summation. (b) Our proposed module design with parameterized textual input em.

⊙ denotes element-wise multiplication. (c) Contextualized module design using ground-truth

annotations for constructing neighborhood context (ne,m) of em. ⊗ denotes concatenation. (d)

Contextualized module design using our proposed memory (M ) based architecture that learns to

select the most relevant neighborhood context directly from the input expression q.

fewer parameters than IEF-Ref in total. Table 5.14 presents the list of all the 15 modules in our

parameterized NMN model. We compare the parameters per module of all baseline NMN models

and our proposed models in Table 5.13.

Note that our proposed model has 3 times fewer parameters than the baseline model IEF-Ref in

total. More concretely, the baseline IEP-Ref model contains 60 modules and each module consists

of 0.44M parameters. That is, total number of parameters in IEP-Ref are 60*0.44M = 26.4M.

Similarly, the FiLM baseline, which also does contextualization of inputs, has 60*0.59M = 35.4M

parameters. On the other hand, our proposed memory based contextualization of NMN model

contains only a maximum of 15 modules and each module has 0.58M parameters. Therefore total

number of parameters in our model are 15*0.58M = 8.7M. This is 3 times smaller than IEP-Ref and

4 times smaller than FiLM.
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Model #Parameters
(per module)

IEP-Ref 442,752

Param. IEP-Ref (P-Ref) 574,336

FiLM 590,720

P-Ref+LSTM+Attn 574,464

P-Ref+CL 574,336

P-Ref+LSTM+Mem 589,597

Table 5.13: Count of parameters for each neural module in the baselines and our proposed NMN

models.

Modules

Unary Filter Shape, Filter Color, Filter Material,

Filter Visible, Filter Size, Filter Ordinal, Unique, Relate,

Same Size, Same Shape, Same Color, Same Material, Scene

Binary Intersect, Union

Table 5.14: Modules in Parameterized IEP-Ref

5.8.3 Model and other Experiment Details

Our proposed model (LSTM+Mem): The memory matrix consists of 128 rows and 80 columns.

The controller is a single layer LSTM network. We use GloVe to obtain the word embedding

(dimension = 300) of each word in the textual input. When training, we first train our program

generator (PG) and use it as a fixed module for training the execution engine (EE). We use 18K

ground-truth programs to train the program generator (PG). We train PG and EE using Adam [KB15]

with learning rates 0.0005 and 0.0001, respectively. Note that PG is trained for a maximum of

32,000 iterations, while EE is trained for a maximum of 450,000 iterations. We employ early
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Figure 5.13: Overview of our curriculum learning baseline.

stopping based on validation set accuracy. We do not find any significant improvements with the

joint optimization of PG and EE. We train on one RTX 2080ti GPU with a batch size of 8.

Curriculum Learning Baseline: Prior literature shows that curriculum learning (CL) may greatly

facilitate the learning of complex tasks for neural architectures [PSN19]. Therefore, we employ

a curriculum training (CL) regime as an additional baseline to train the P-Ref model in order to

improve its performance without contextualization. An overview of the CL model is shown in

Figure 5.13. To estimate the difficulty of the expressions, we define a scoring function inspired by

what we, as humans, intuitively may consider difficult when grounding the expressions:

• Longer expressions are difficult to ground.

• Expressions with a large number of spatial relationships such as “left”, “front”, “right”,

“behind” are more likely to have difficult linguistic structures.

• Expressions requiring a large number of neural modules are difficult to ground.

• Expressions involving comparison modules are difficult to ground.

Using the above heuristics, we evaluate the difficulty of all expressions in the training set on

a scale of 1 to 10. During the training, we initialize the model competency to 1. All the training
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expressions with difficulty level less than or equal to the current model competency are used for

training the model. We use a validation set of expressions for each of these difficulty levels. As the

model’s performance on the validation set starts to saturate, we increment the competency level of

the model. We stop training immediately after the model’s competency reaches above 10. We use

GloVe to obtain the word embedding (dimension = 300) of each word in the textual input. When

training, we first train our program generator (PG) and use it as a fixed module for training the

execution engine (EE). We use 18K ground-truth programs to train the program generator (PG). We

train PG and EE using Adam [KB15] with learning rates 0.0005 and 0.0001, respectively. PG is

trained for a maximum of 32,000 iterations, and EE is trained for a maximum of 450,000 iterations.

We employ early stopping based on validation set accuracy. We do not observe any significant

improvements with the joint optimization of PG and EE. All of our CL experiments were conducted

on one RTX 2080ti GPU with a batch size of 8.

5.8.4 CC-Ref+ Annotation, Statistics, and Visualization

Following gardner2020evaluating, we construct a contrast set for CLEVR-Ref+ dataset to identify

systematic gaps (e.g., annotation artifacts) in the test split, and we call it CC-Ref+. Contrast sets

help in exposing model brittleness by probing a model’s decision boundary local to examples in the

test set. We follow a three stage approach to collect our contrast set:

Stage 1: First, we randomly sample 100 single-referent expressions from the test split containing

only a single spatial relation (e.g. The first one of the tiny rubber thing from left). We then sample

another 100 expressions containing two spatial relations (e.g. The first one of the thing from left

that is behind the big yellow matte object). Similarly we sample a third subset of 200 expressions

containing 3 or more relations. Finally, we sample 100 expressions containing at least one compare

relations (e.g. Any other tiny object as the same color as the big yellow metallic cube). This

constitutes a total of 500 expressions.

Stage 2: We then manually perturb the semantics of various parts of these 500 referring expressions

such that the ground-truth referent object changes. For example, we modify the expression first one
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Referring Expressions 500

Unique Images 492

Vocabulary 86

Expressions with #Relations = 1 100

Expressions with #Relations = 2 100

Expressions with #Relations ≥ 3 200

Expressions with Compare Relation 100

Avg. Length of Expression 20.2

Table 5.15: CC-Ref+ Statistics

of the tiny rubber thing from left to first one of the tiny metallic thing from right. We show random

selection of CC-Ref+ examples in Table 5.16.

Stage 3: Finally, we verify and validate the correctness of the new ground-truth annotations using

two human annotators. The annotations that are not consistent among the two human annotators

are removed and we re-iterate the above three steps until we collect a validated set of 500 contrast

samples||. In Table 6.6, we summarize the size and complexity of our CC-Ref+ split.

Detailed Analysis of Models on CC-Ref+: In the Chapter, we compared the performance of

baseline models and our proposed method on CC-Ref+ in terms of number of relations (e.g. in the

front, to the left, of same shape as) present in the expressions. In this section, we present more

analysis in terms of object attributes. In CLEVR-Ref+, there are six types of object attributes

namely, color, size, shape, material, ordinality, and visibility. We analyze the model’s performance

when one of these attributes are perturbed in the contrast sets. Additionally, we also compare the

performance on contrast examples that involve logical AND/OR modifications. An example of

||[GAB20] shows that a few hundreds of contrast samples will be sufficient to draw substantiated conclusions about

model behavior.
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Original: The big objects that are the first one of the block(s)

from right or metallic object(s)

CC-Ref+: The big objects that are the first one of the

block(s) from left and rubber object(s)

Original: The brown things that are big object(s) or the

second one of the small metal thing(s) from left

CC-Ref+: The cyan things that are big object(s) or the first

one of the small metal thing(s) from left

Original: The small objects that are the third one of the

object(s) from left or purple shiny ball(s)

CC-Ref+: The large objects that are the third one of the

object(s) from left or purple shiny ball(s)

Table 5.16: Random examples from CC-Ref+ and their original annotations in CLEVR-Ref+
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contrast sample in CC-Ref+ involving logical AND/OR perturbation is as follows:

Original: The objects that are either the first one of the small metal object(s) from right or the first

one of the metallic cube(s) from left.

CC-Ref+: The objects that are first one of the small rubber object(s) from right and the first one of

the metallic object from front.

Figure 5.14 shows the performance of baseline IEP-Ref model on original test split and CC-Ref+

samples using the above attributes. Similarly, Figure 5.15, Figure 5.16, and Figure 5.17 shows the

performance of models P-Ref+LSTM+Attn, P-Ref+CL, and P-Ref+LSTM+Mem respectively. We

found that all the four models are robust to perturbations in color indicating that this is a relatively

easier concept to ground in the images. In contrast to the findings in [LLB19], we see a significant

drop by up to 15% in the performance of baseline models on all the other attributes such as shape and

visibility. P-Ref+CL also experience significant drops in accuracy on CC-Ref+. However it is found

to be relatively more robust to the perturbations compared to the other baselines indicating that

curriculum learning helps in adapting to contrast sets. Our proposed approach P-Ref+LSTM+Mem

shows relatively low drop in the logical, material and ordinal perturbations, insignificant drops (<

3%) in color, visible perturbations and a slight improvement (+2%) in shape perturbations. This

clearly suggests that our approach generalizes well and is robust to perturbations in the input. The

performance gap of P-Ref+LSTM+Mem in logical, ordinal and material perturbations show that

these are relatively difficult concepts for the model to learn. We hope that CC-Ref+ dataset will

foster more research in this area.
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Figure 5.14: Performance of baseline IEP-Ref model on original test split and CC-Ref+ samples
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Figure 5.15: Performance of baseline P-Ref+LSTM+Attn model on original test split and CC-Ref+

samples
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Figure 5.16: Performance of baseline P-Ref+CL model on original test split and CC-Ref+ samples.
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Figure 5.17: Performance of our contextual NMN model (P-Ref+LSTM+Attn) on original test split

and CC-Ref+ samples
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CHAPTER 6

Model Generalization to Distribution Shifts

In this Chapter, we propose a semi-automatic framework for generating out-of-distribution data to

explicitly understand the model biases and help improve the robustness and fairness of existing mod-

els [ACG21]. We consider visual question answering (VQA) task to demonstrate the effectiveness

of our generation framework.

6.1 Motivation and Objective

One challenge in evaluating visual question answering (VQA) models in the cross-dataset adaptation

setting is that the distribution shifts are multi-modal, making it difficult to identify if it is the shifts

in visual or language features that play a key role. In this paper, we propose a semi-automatic

framework for generating disentangled shifts by introducing a controllable visual question-answer

generation (VQAG) module that is capable of generating highly-relevant and diverse question-

answer pairs with the desired dataset style. We use it to create CrossVQA, a collection of test splits

for assessing VQA generalization based on the VQA2, VizWiz, and Open Images datasets. We

provide an analysis of our generated datasets and demonstrate its utility by using them to evaluate

several state-of-the-art VQA systems. One important finding is that the visual shifts in cross-dataset

VQA matter more than the language shifts. More broadly, we present a scalable framework for

systematically evaluating the machine with little human intervention.
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What color is 
the man’s tie? 
Yellow

Can you 
please tell me 
how many men 
are in the 
picture? 2

VQAG

Ivqa2

QAvqa2

QAvzwz

Ivzwz

What color is 
the screen’s 
background? 
Green

There is a 
screen above 
my finger. Can 
you please tell 
me what it 
says? Swipe

QAvqa2

QAvzwz

VQAG

Figure 6.1: Existing works on VQA domain adaptation between source and target datasets (e.g.

VQA2.0 and VizWiz) can only compare the model’s performance on the entangled test splits

⟨Ivqa2, QAvqa2⟩ and ⟨Ivzwz, QAvzwz⟩. In this work, we propose a VQAG module to generate novel

and scalable VQA test sets, called CrossVQA, consisting of additional test sets ⟨Ivqa2, QAvzwz⟩

and ⟨Ivzwz, QAvqa2⟩ where visual and language features are disentangled.

6.2 Introduction

Multiple datasets have been proposed to measure the progress on visual question answering

(VQA) [AAL15, ZGB16, GKS17, GLS18, HM19b, YGL16, TML14, QWL15, LYS16]. How-

ever, these datasets often possess biases introduced in the data collection process and by the human

annotators. It has been shown that existing VQA models leverage these spurious biases and take

shortcuts [GKS17, ABP18, CHS18a, AGA20b]. As a result, the performance of those models on a

specific VQA dataset can only serve as a rough proxy for the true learning of the VQA task [BSB20].
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Test sets QAvqa2 QAvzwz

Ivqa2 ✓ ✗

Ivzwz ✗ ✓

Ioid ✗ ✗

Table 6.1: Existing VQA test sets;

Test sets QAvqa2 QAvzwz

Ivqa2 ✓ ✓

Ivzwz ✓ ✓

Ioid ✓ ✓

Table 6.2: CrossVQA (disentangled) test sets generated by our VQAG model.

One common remedy to this is to go beyond in-domain evaluation, in which the test set exhibits

some form of “distribution shifts” from the training set [ABP18, CHS18b]. The key idea is that a

generalizable VQA model should be able to extrapolate, for example, from one dataset to another.

One challenge that is quite unique to VQA in this setting is that the distribution shift is multi-modal.

When one dataset unsatisfactorily transfers to another, it is difficult to identify how much of this is

due to vision or language distribution mismatches. To complicate things even more, the frequency

of objects occurring in natural images follows a long-tail distribution [STT11, ZAR14, ZVF16].

Lack of sufficient instances of minority classes in the test sets further complicates the estimation of

generalization capabilities from one dataset to another.

A possible solution to address this issue is to use an iterative, human-in-the-loop approach

for dataset collection where human annotators carefully devise new test samples by incorporating

visual and language distribution shifts [NWD19, BRW20, GAB20]. However, this approach is not

scalable and training the human annotators, be they seasoned AI experts or non-experts, would incur

huge annotation time and cost.
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In this Chapter, we propose to make the process of creating distribution shifts more systematic

and automatic. Inspired by recent work on dynamic benchmarks that co-evolve with strong

models [ZHB19], we propose to bring in visual question-answer generation (VQAG) module in

the evaluation process. More specifically, we first build a strong, controllable VQAG engine that is

capable of creating particular dataset-style question-answer pairs. Then, we use it to generate novel

⟨image, question, answer⟩ test splits, while controlling distribution shifts in vision and language

features. This is summarized in Table 6.1 and Table 6.2 and exemplified with the VQA2 and VizWiz

datasets in Figure 6.1. Collectively, we refer to the resulting VQA test sets as CrossVQA.

There are at least two advantages in using a VQAG model to construct our CrossVQA test

sets: (1) We can evaluate the adaptation skills of VQA models on non-VQA datasets such as

Open Images (OID) [KRA18], which contains various image annotations but no question/answer

pairs, i.e. ⟨Ioid, Qvqa2⟩ and ⟨Ioid, Qvzwz⟩ (see Table 6.1); (2) Collecting human-annotated test sets

is resource-intensive and scales poorly, while the VQAG approach can be massively scaled and

applied in a never-ending learning scenario for generating dynamic benchmarks [NWD19].

We conduct extensive experiments to evaluate the utility of our proposed framework. First, we

validate that our VQAG module is capable of generating relevant questions and correct answers

with the desired distribution shifts, which we achieve through a combination of transformer-based

architectures, vision-and-language pre-training, and multiple types of control signals. We also find

that, when evaluated against state-of-the-art generative models for visual question generation, our

VQAG substantially outperforms them in terms of accuracy, diversity, and novelty.

Additionally, we perform analysis and human evaluation of our CrossVQA test sets that are

built on VQA2, VizWiz, and Open Images datasets. We show that they are effective at finding

and quantifying weaknesses of cross-dataset generalization abilities in the state-of-the-art VQA

models. For instance, our experimental results show that VQA models drop up to 40% in absolute

accuracy if there is a mismatch in image distribution. On the other hand, VQA models are found to

be relatively less sensitive to a mismatch in language distribution.

Finally, inspired by the success of contrastive learning and multi-task learning techniques in
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improving generalization and robustness of multi-modal tasks [AGA20b], we investigate whether

these techniques improve the performance of VQA models on our CrossVQA test sets. Interestingly,

we find that contrastive losses and multi-task regularization do not lead to significant generalization

gains on CrossVQA.

In summary, our key contributions in this Chapter are three-fold. First, we introduce the

CrossVQA benchmark for systematically assessing the generalization skills of VQA models, and

provide analysis and experiments to support its utility. Second, we describe a scalable data collection

and benchmarking framework for semi-automatically constructing the proposed benchmarks using a

strong and controllable visual question-answer generation (VQAG) module. Finally, we empirically

demonstrate the superiority of our VQAG module by achieving new state-of-the-art results in visual

question generation.

6.3 Related Work

Cross-Dataset Distribution Shifts. There is a large body of work analyzing the generalization

skills of neural networks from a labeled source domain to a target domain where there is no or

limited labeled data [GL15, GSS12, GX12, THD15, AWZ20]. However, these works focus either

on language modeling or visual recognition tasks. Here, we investigate adaptation skills using the

multi-modal VQA task, for which distribution mismatches can occur in both language and visual

features.

There are a few works that study systematic compositional skills in multi-modal tasks. For

example, Lampert et al. [LNH09] study the use of attributes in transferring information between

object classes. Jabri et al. [JJV16] explore several variants of the VQA task and show that VQA

models struggle with transferring knowledge across datasets. Agrawal et al. [ABP18] study the

extent to which a model is visually grounded, by evaluating its ability to generalize to a different

answer distribution for each question type. Chao et al. [CHS18b] investigate the issue of cross-

dataset generalization, using a specific setting where the source domain contains a large amount of
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training data and the target domain contains insufficient data to train a VQA system from scratch.

Unlike these works, our work performs a more fine-grained analysis by disentangling the distribution

mismatches in language and vision, achieved by generating out-of-distribution shifts using a learned

VQAG module.

Visual Question Generation (VQG). The goal of VQG is to generate natural questions for an

image. This task has drawn much attention due to its ability to test a model’s understanding of

natural language in the context of visual grounding and its application in downstream tasks such as

image retrieval and question answering [AAL15, ZGB16, Aku15, PRA15].

While the task of generating question automatically is well studied in the language domain,

it has been under-explored for image-related natural questions [MMD16]. Prior works explored

VQG using autoencoder-based architectures [JZS17, YLL18, ALC19, KBF19]. Jain et al. [JZS17]

employ a variational autoencoder paradigm where they first learn to embed a given question and

image into a low dimensional latent space. The latent codes are subsequently mapped to a high-

dimensional representation using RNNs during inference to generate the question. Krishna et

al. [KBF19] model question generation as a process that maximizes mutual information between

the image and the expected answer’s category. They incorporate fine-grained answer type as the

guidance to generate goal-driven questions. Xu et al. [XWY20] propose an answer-centric approach

where they model the complex relationship between an answer and its relevant image regions.

Unlike these works, our approach uses a simple encoder-decoder framework, but we enhance

it using a transformer-based architecture, vision-and-language pre-training, and various control

signals, which together lead to a stronger VQG model. Furthermore, our work not only improves

the VQG performance, but also takes a step further by exploring using VQG in the context of VQA

evaluation.
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Figure 6.2: Overview of CrossVQA. We train a controllable visual question-answer generation

(VQAG) engine and use the dataset indicators and control signals to generate the desired cross-

dataset shifts.

6.4 Approach

6.4.1 Overview

Figure 6.2 overviews our approach to systematically generating cross-dataset distribution shifts.

During training, we train a visual question-and-answer generation (VQAG) engine using multiple

sources of VQA data (denoted by A and B). This VQAG module uses a dataset indicator to learn

and generate question-answer pairs of a particular dataset’s style.

During inference, we apply the trained VQAG model to multiple image sources (denoted by

A, B, and C), while varying the dataset indicator. For example, we turn on the dataset B indicator
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for the images of A, which generates B-style questions/answers for the images in A. Furthermore,

VQAG can also be applied to images from a different dataset C, for which no VQA annotations are

available, yet we can still control the style of annotations generated. In the post-processing step, the

resulting VQA datasets are validated by human annotators.

We first provide more details on our VQAG engine (Sec. 6.4.2) and then describe how it is used

to generate CrossVQA benchmarks (Sec. 6.4.3).

6.4.2 Visual Question-Answer Generation

We start from a transformer-based encoder-decoder model that learns to generate question-answer

pairs from images. We then enhance this model in two ways. First, we perform image-text pre-

training using a recently introduced Conceptual 12M (CC12M) dataset [CSD21]. Second, we

experiment with multiple control signals. As we will show in our experimental results, these signals

help improve the accuracy and the diversity of the generated outputs when applied to diverse sources

of images.

Base VQAG Model and Input-Output Format. We adopt a transformer-based encoder-decoder

framework [VSP17] for image-to-text generation as our base model, following recent work on

large-scale image captioning [SDG18b, CPS19]. In particular, we represent each input image

as a sequence of feature vectors, and the model learns to produce relevant questions and their

corresponding correct answers.

Each input image is represented by multiple types of visual features [CPS19], which we briefly

describe here (see Appendix for more details):

(i) a global feature vector extracted by Graph-RISE [JLL19], a ResNet-101 [HZR16] trained for

image classification at ultrafine granularity levels;

(ii) 16 regional feature vectors, obtained from Graph-RISE featurization of top-16 proposals of a

Faster RCNN [RHG16] object detector trained on Visual Genome [KZG17];

(iii) top semantic object label vectors, where labels (e.g. “river”, “man”, “football”) are produced
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Table 6.3: Dataset-agnostic control signals

Notation Description

P Question prefix

C Answer category

A Most common answer

Ã All answers

by the Google’s Vision API*.

Our target is a question-answer pair in the format q ⟨sep⟩ a, where q is the question tokens, a

is the answer tokens, and ⟨sep⟩ is the chosen delimiter. Furthermore, since a is not limited to a

single answer [BLG19], a is represented as a1⟨dsep⟩a2⟨dsep⟩ . . . ⟨dsep⟩aK , where a1, a2, . . . , ak

are possible answers for q. We use beam search to generate the target question and answer(s) during

the decoding stage.

Next we incorporate two enhancements into this base model to (a) maximize the relevance

between image, question and expected answer in the generated test sets; (b) improve generalization

capability of the model to out-of-domain images; and (c) increase the diversity and novelty of the

questions.

Enhancement 1: Image-To-Text Pre-Training. We pre-train our base VQAG model on Conceptual

12M [CSD21], a large-scale dataset specifically designed for vision-and-language pre-training. It

consists of 12.4 million image–Alt-text pairs harvested from the Web. We use the standard image

captioning objective for pre-training [CSD21]. Despite this task mismatch (i.e., image captioning vs.

visual question/answer generation), we observe the utility of pre-training in addressing the long-tail

distribution of objects (see Sec. 6.5.2)

Enhancement 2: Dataset-Agnostic Control Signals. In addition to the image features, we also

*https://cloud.google.com/vision/docs/labels
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Table 6.4: Examples of Dataset-agnostic control signals.

Examples

Question 1: Is the screen’s background blue?
P : Is the, C : Color, Ã : yes <dsep> true <dsep> blue screen <dsep> yes, A : yes

Question 2: How many men are in the picture?
P : How many, C : Counting, Ã : 2 <dsep> 2 <dsep> 3 <dsep> 5, A: 2

condition our model on up to three control knobs more directly related to visual question generation

and answering. In particular, we explore three main types of dataset-agnostic control signals,

summarized in Table 6.3: the expected first two words of the question (i.e. question prefix), the

expected answer category, and the expected answer(s). See Appendix for further discussion.

To condition the VQAG model on these control signals, the embeddings for the control signals

are fed to the encoder together with the image embeddings. The visual and language features from

the image embeddings and the control signals are allowed to attend to all other features through the

self-attention mechanism.

Dataset indicator as additional control signal. As the main focus of this paper is cross-dataset

shifts, we consider the dataset indicator control signal as an additional input. This signal helps

inform the model of the desired domain or style of visual questions. Similar to dataset-agnostic

control signals above, the one-hot embedding for the dataset indicator is concatenated to the image

and other control signal embeddings and fed to the encoder.

6.4.3 Generating CrossVQA Benchmarks

We now describe how to use the enhanced VQAG model together with the dataset indicator described

in previous section for generating CrossVQA benchmarks.

Datasets. We consider two VQA datasets: VQA2 [GKS17] and VizWiz [GLS18]. The two

datasets are drastically different visually and textually. VQA2 is built on top of high-quality COCO
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images [LMB14b] with visual questions intended to fool “smart robot” but not humans. VizWiz, on

the other hand, is collected in-the-wild from the visually-impaired users, often with lower image

quality and more conversational and simpler questions intended to be useful if answered correctly.

Additionally, we consider the images from Open Images (OID) [KRA18], which is known to

have more diverse objects than COCO [ADW19].

6.4.3.1 Training

We mix the training splits of VQA2 and VizWiz and use that for training our VQAG. We experiment

with pre-training and different combinations of dataset-agnostic control signals (Sec. 6.5). We

leverage ground-truth control signals in the training set whenever available; question prefixes and

answers are available for both datasets, while the answer categories are available on a subset of

VQA2, as provided by [KBF19].

6.4.3.2 Inference

Creating Disentangled Shifts. By varying the dataset-indicator control knob of our best-performing

VQAG models, we generate our desired disentangled shifts. More specifically, denote by ⟨IA, QAB⟩

a dataset with A-style images and B-style questions. We generate the following four VQA splits:

VQA2-style question-answer pairs on a subset of VizWiz validation images ⟨Ivzwz, QAvqa2⟩, VizWiz-

style question-answer pairs on a subset of VQA2 validation images ⟨Ivqa2, QAvzwz⟩, and additionally

both VQA2-style and VizWiz-style pairs on a subset of OID validation images ⟨Ioid, QAvqa2⟩ and

⟨Ioid, QAvzwz⟩. In addition, we also generate ⟨Ivqa2, QAvqa2⟩ and ⟨Ivzwz, QAvzwz⟩ as a sanity check

to verify if our model learns to understand the styles of VQA2 and VizWiz.

Dataset-agnostic control signals. There are no ground-truth control signals for the images during

inference. Thus, we train an image tagger with the multi-label sigmoid cross entropy loss to predict

top-k most relevant first two words (i.e. question prefix), answer categories, and answers from the

input image and the target dataset indicator This is more flexible than the approach used in [KBF19]
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where all the pre-annotated answer categories are used during inference for all images.

6.4.3.3 Postprocessing

We further clean CrossVQA by using the human annotators to assess question relevance and answer

correctness (Sec. 6.5.2).

6.5 Experiments

In this section, we first evaluate the performance of our VQAG model against existing state-of-the-

art baselines [KBF19, WYT17, JZS17]. We then demonstrate the importance of conditioning our

VQAG model on the proposed control signals by performing several ablation studies. Next, we

present CrossVQA examples and several statistics based on the generated data. We finally show that

CrossVQA is effective at identifying the limitations of state-of-the-art VQA models, and examine

the extent to which existing adaptation techniques help in improving performance of VQA models

as measured by CrossVQA.

6.5.1 In-Domain Evaluation of VQAG

We first benchmark the in-domain performance of our VQAG model by training and testing on

VQA2 [GKS17] against existing models for visual question generation (VQG). Note that, unlike

those models which focus on generating only questions, our model also generates answers; we

discard the generated answers when evaluating the generated questions against existing work.

Metrics. We consider two sets of evaluation metrics. The first set of metrics measure question

relevance. It consists of multiple automatic text similarity metrics widely used for image cap-

tioning and VQG: BLEU [PRW02], ROUGE-L [Lin04], METEOR [BL05], SPICE [AFJ16] and

CIDEr [VLP15]. The second set of metrics measure the diversity and novelty of questions and

answers [VCS16, JZS17]: (i) generative strength: the percentage of unique generated questions
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normalized by the number of unique ground truth questions, (ii) inventiveness: the percentage of

unique generated questions that are unseen during training, (iii) oracle CIDEr: the maximum value

of the CIDEr over a list of all references. Note that, although not considered by previous work, both

generative strength and inventiveness for questions (QS and QI, respectively) can be extended to

measure the diversity and novelty of generated answers as well (AS and AI, respectively).

Notation. We use X2Y to denote the model with X as input and Y as output. We use I, Q, A, C to

refer to image, question, answer, and answer category, respectively. Furthermore, we use Ã to refer

to multiple answers and P to question prefix. See Table 6.3 for examples of our control signals.

Baselines. We compare the performance of our VQAG model against the following baselines:

IA2Q [WYT17], a non-variational model that takes an image and answer as input and generates

a question; V-IA2Q [WYT17], a variational-autoencoder based approach that embeds the input

image and question to a latent space before generating a question; IC2Q and V-IC2Q, extensions

to the IA2Q and V-IA2Q models, respectively, where the models are conditioned on answer

categories [KBF19] instead of ground-truth answers; MI-IA2Q [KBF19] and MI-IC2Q, also

variational models posing the question generation as a process that maximizes mutual information

between the image, the expected answer and the answer category.

Results. Results are reported in Table 6.5. Our models (IÃC2QÃ, IÃP2QÃ) significantly outperform

all the baselines on standard automatic metrics by large margins, especially improving the BLEU-4,

METEOR and CIDEr scores by +29.5%, +23.17% and +0.62, respectively, compared to the current

state-of-the-art methods MI-IC2Q and MI-IA2Q. In addition, our best model IÃP2QÃ outperforms

the state-of-the-art MI-IC2Q by +7.06% in QS, suggesting that we generate a diverse pool of

questions. Moreover, for question inventiveness, a +30.39% QI improvement paired with a high

oracle CIDEr score indicates that our model also generates novel and appropriate questions by using

new combinations of objects and question patterns. We also find a +20% improvements in AS and

AI with the enhancements discussed in Sec. 6.4.2.
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Q: What position is this 
man playing?
Answer: Catcher

Q: What do you see in 
this picture?
Answer: Kitchen

Q: How many leaves are 
in the forest?
Answer: Many

Q: Can you please tell 
me what this says?
Answer: Unsuitable

Q: What is the man 
wearing on his head?
Answer: Helmet

Q: How many hands can 
you see?
Answer: 2

I(vqa2), Q(vqa2) I(vzwz), Q(vqa2) I(oid), Q(vqa2) 

I(vqa2), Q(vzwz) I(vzwz), Q(vzwz) I(oid), Q(vzwz) 

Figure 6.3: Qualitative examples of questions and answers in our CrossVQA dataset.

6.5.2 Analysis of Generated Data

Now that we establish the superiority of our VQAG engine to existing approaches, we analyze

the outputs of our best model (IÃP2QÃ with pre-training) when used to generate CrossVQA

benchmarks (Sec. 6.4.3.2).

Statistics and Examples of CrossVQA. Table 6.6 presents basic statistics of the six CrossVQA

test splits generated by our VQAG model. Figure 6.3 provides examples.

Human Evaluation. We first conduct a human study to verify question relevance and answer

correctness of 3000 samples from the generated splits. More concretely, we present each <image,

question, answer> triplet to three crowd workers and ask them to verify if the generated question

is relevant to the image. Questions that are annotated as not relevant by at least two workers are

discarded. For each of the relevant questions, we also ask the workers to verify if the generated

answer is correct, and, if incorrect, ask them to write a correct answer (See Appendix).

As shown in Table 6.7, workers annotate a large portion of the generated questions by our VQAG

model as relevant (QR percentages between 77.4% and 97.8%), showcasing the effectiveness of

the proposed VQAG model. Answer correctness is found to be relatively lower (AC percentages

between 51.6% and 74.8%), a result that indicates that CrossVQA is a challenging new benchmark

for visual question answering. We find that the questions belonging to count, time, spatial, food and

attribute categories are relatively more difficult for our model to generate correct answers.
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Is there a Fish in 
the tank?
What is the shark 
doing in the 
water?

What color is the 
fruit?
Is the pineapple 
ripe?

What color is the 
fire hydrant?
What is the color 
of the fire 
extinguisher?

What are the 
animals doing?
What does the 
panda have in its 
mouth?

What is the man 
doing?
What number is 
on the back of 
the player’s shirt?

Is this a living 
room?
Which side of the 
living room is the 
lamp on?

w/o pre-training  pre-training

Figure 6.4: Pre-training improves the ability of the VQAG model to generate questions and answers

about long-tail concepts (images in the figure are from OID).

Further Analysis. We first assess the controllability ability of our VQAG model in the generation of

VQA2-style or VizWiz-style questions. In Table 6.8, we use the Jensen-Shannon (JSD) divergence

between the unigrams and bigrams distributions of questions between each data pair to measure

their “style” distance. Regardless of the image sources, the generated VQA2-style (VizWiz-style)

questions are much more similar to VQA2 (VizWiz) than the original VizWiz (VQA2) questions

are.

We then focus on the generated questions/answers on OID and assess the benefits of pre-

training and control signals on out-of-domain images. Figure 6.4 shows a qualitative comparison of

questions generated without (red) and with pre-training (green). We observe that the pre-trained

model generates more accurate and informative questions (e.g., fire hydrant vs. fire extinguisher,
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Figure 6.5: Distribution of the first three words for questions generated without (left) and with

(right) control signals (on OID).

fish vs. shark). In Figure 6.5, the sunburst plots (shown at the top) of the first three words of the

questions exhibit much higher diversity with control signals. Further, in Figure 6.6, the distribution

of answer categories demonstrate that control signals increase the entropy of answer category

distribution, helping the heavy tail ones.

6.5.3 Cross-Dataset VQA Experiments

Performance of Existing VQA Systems on Human-Validated CrossVQA. On the 2100 human-

validated CrossVQA relevant questions, we evaluate the VQA adaptation performance of the state-

of-the-art VQA models: ViLBERT (VB) [LBP19b], LXMERT [TB19], and VisualBERT [LYY19],

all trained on VQA2. In Table 6.9 (top three rows), we find that ViLBERT outperforms other

baselines on CrossVQA splits with VQA2 images or VQA-style questions, so we provide a detailed

analysis of ViLBERT.

Figure 6.7 compares the CrossVQA performance of (a) ViLBERT trained on the VQA2 dataset,

and (b) ViLBERT trained on VQA2 and fine-tuned on VizWiz. We find that both VQA models

show accuracy drops on all six splits, compared to the SOTA accuracy 71.0% on VQA2 test set and

54.7% on VizWiz test set (left-most column). This indicates that the questions in CrossVQA are
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Figure 6.6: Distribution of answer categories generated without (red) and with (green) control

signals (on OID).

harder for SOTA models to get right. Moreover, the model trained on VQA2 drops by up to 40% on

VizWiz and OID input images, a rather unexpected (and never-before quantified) result. Similarly,

the model trained on VizWiz underperforms on splits with VQA and OID images by similarly large

margins. This suggests that the VQA models struggle to generalize when there is a mismatch in

image distribution. In contrast, the drop in accuracy is relatively low for mismatches in language

distribution, indicating that these models are relatively less robust to visual features compared to

language features. We believe that the rich object-level features and interactions available in the

visual space could be causing the models to overfit to training image distribution and therefore the

models struggle to generalize to new image distribution.

Adaptation Techniques with Auxiliary Losses. We also examine if the contrastive and multi-

task (MTL) losses [AGA20b] improve the adaptation performance of ViLBERT on CrossVQA in

Table 6.9. In contrastive leaning, negative examples that are close to the current example are mined,

and used to learn to jointly minimize the loss on the current (positive) example and maximize the

loss on the (hard) negative examples. Two versions of contrastive losses are considered: Sum of
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Figure 6.7: The CrossVQA performance of ViLBERT, trained on VQA2 only (VQA2.0) or trained

on VQA2 and then fined-tuned on VizWiz (VQA2.0 + VizWiz). Left-most column indicates the

reference state-of-the-art performance.

Hinges (Sum-H), taking a sum over all negative samples, and Max of Hinges (Max-H), which only

considers the loss on hardest negative sample by applying the max operation. For MTL, the following

auxiliary tasks are used: GQA [HM19b], visual common sense reasoning (VCR) [ZBF19], and

referring expression recognition with RefCOCOg (RER) [MHT16]. The last five rows of Table 6.9

show the performance of ViLBERT (VB) using these contrastive and MTL losses. Although the

losses slightly improve the accuracy on in-domain CrossVQA split ⟨Ivqa2, QAvqa2⟩, they fail to

improve generalization on cross-domain splits ⟨Ivqa2, QAvzwz⟩, ⟨Ivzwz, QAvqa2⟩ and ⟨Ioid, QAvqa2⟩,

suggesting that there is ample room for improvement (see Appendix).
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6.6 Summary

In this Chapter, we present a step toward scalable and systematic evaluation of VQA systems.

Key to our approach is an accurate and controllable VQAG module that is capable of generating

disentangled distribution shifts. We generate CrossVQA benchmarks, a collection of test splits

based on VQA2, VizWiz, and Open Images datasets. We validate their utility by showing that

existing VQA models struggle to perform well in this evaluation scenario and identifying the image

distribution mismatch as the main factor.

6.7 Appendix

6.7.1 Implementation Details

The models are optimized with Adam [KB15] with an initial learning rate of 0.000032. We use a

linear decay learning rate schedule with warm up and employ early stopping based on validation

set accuracy. If not pre-trained, we train our VQAG model for a maximum of 2M iterations. With

pre-trained initialization, we train our VQAG model for a maximum of 500, 000 iterations. Both the

encoder and decoder layers of transformer have 6 layers each with 8 heads for multiheaded attention.

The vocabulary embedding size is 512, and the hidden embedding size is 1024. We train our models

with a global batch size of 4096 over Google Cloud 32-core TPUs†. The average training time for

pre-training on conceptual captions dataset is 52 hours, and training on VQA2.0 and VizWiz takes

up to 21 hours.

We condition our VQAG model using the expected answer categories (Ã) of the output answer

as one of the control signals, in order to maximize the relevance between image, question and

expected answer in the generated test sets. These answer categories can be objects, attributes, colors,

materials, time, etc. Specifically we use 16 categories (similar to [KBF19]), covering more than 80

†https://cloud.google.com/tpu/
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Figure 6.8: Diversity and Novelty of our VQAG model on out-of-domain splits: VizWiz val split

and OID val split.

objects, 40 attributes, 17 colors, and 8 materials. Table 6.10 presents the list of all the 16 categories

and provides examples of answers for each of the categories.

The decoder generates the question and the answer(s) separated by delimiters, for example,

question ⟨sep⟩ answer1 ⟨dsep⟩ answer2. We use beam search (width = 5, alpha = 0.6) to generate

the target question and answer(s) during decoding.

6.7.2 More Results on Diversity and Novelty

In Section 4 of the main paper, we show that control signals improve the diversity and novelty of

the generated questions through the metrics question generative strength (QS) and inventiveness

(QI), answer generative strength (AS) and inventiveness (AI). To do this, we trained our VQAG

model on VQA2.0 train split and evaluated the model performance on the in-domain VQA2.0 val

split. In this section, we additionally show the performance of VQAG model on out-of-domain

(o.o.d) splits, namely, VizWiz val split and OID val split. Figure 6.8 shows the results. As we can

see, there is no significant drop in QS and AS on o.o.d splits, suggesting the superior generalization
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Question: What are the bricked letters on the surface? 
Answer: Can’t tell

1. Does the question apply to the image?

2. Is the answer correct?

3. What is the correct answer?

Add a correct answer here...

Task: Assess the quality of the question and the answer presented for the image.
More instructions on how to complete the task are available in this guidelines doc.

Yes, relevant No, not relevant

Yes, relevant No, not relevant Cannot tell

Cannot tell

Submit

Figure 6.9: Experiment interface for human evaluation to verify question relevance and answer

correctness.

skills of our model. Moreover, increase in QI and AI indicates that model is relatively more creative

in inventing new questions and answers on o.o.d splits compared to in-domain splits. Table 6.11

presents examples of the invented/unseen questions and answers that are not seen by our VQAG

model during training. In the next section, we verify the question relevance and answer correctness

of these o.o.d questions.

6.7.3 Additional Human Evaluation Results

We verify question relevance and answer correctness of the samples in CrossVQA splits where

the VQAG model is trained on combined train sets of VQA2.0 and VizWiz. In this section, we

present additional results on human evaluation of VQAG model that is trained on only VQA2.0

train split. We generate questions and answers for VQA2.0 val split (in-domain) and VizWiz, OID

val splits (o.o.d). Figure 6.9 shows the interface used for conducting this study. Questions that

are annotated as not relevant by at least two workers are considered as irrelevant. For each of the
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Adversarial Referring Expressions 1

Q: What game system are these people playing

<IMG> … <CLS> What game … <SEP>

V- Transformer L- Transformer

Co-Attention Transformer

V- Transformer L- Transformer

hL0
…hL1 hL2

hLT hL0
…hL1 hL2

hLT

.
Task-Specific Layers

Figure 6.10: Multi-task learning model for VQA with auxiliary tasks such as GQA, REF, and VCR.

relevant questions, we ask the workers to verify if the generated answer is correct, and if incorrect,

ask them to write the correct answer. Table 6.12 present human evaluation results. A significant

portion of generated questions are annotated as relevant. Moreover, we do not find significant

differences in QR and AC metrics across in-domain and o.o.d samples, confirming that the higher

percentage of invented questions on o.o.d splits (in Figure 6.11) are indeed relevant and not due to

random noise. Furthermore, in Table 6.12, we also show the QA and AC percentages across seen

and unseen questions generated by VQAG model. We see higher drop in AC percentage on unseen

questions compared to the drop in QR, indicating that unseen questions are relatively harder for the

model to generate correct answers.

6.7.4 More Details on our Base Model

Both the encoder and the decoder contain a stack of L layers, with each layer consisting of a

multi-head self-attention layer followed by a feedforward layer. For a given token embedding,

the self-attention layer produces a weighted representation of all other tokens in the input. This

weighted representation is then combined with the input representation of the given token and it is

passed to the next layer.
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Specifically, each attention head first calculates the queries Q, keys K and values V as follows:

Q = XWQ, K = XWK , V = XWV (6.1)

where X contains all the input features stacked into a matrix, and WQ, WK , and WV are learned

projection matrices.

The output of the attention head is then computed as follows:

ATTN (Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (6.2)

where dk, dv are the dimension of the keys K and values V respectively. Intuitively, with the above

attention, the encoder jointly attends to information from different representation subspaces at

different positions in the input image.

The point-wise feedforward network (FFN) is applied to each output of the attention layer and it

consist of two linear transformations, with a ReLU activation in between,

FFN (x) = max (0, xW1 + b1)W2 + b2 (6.3)

where W1, b1 and W2, b2 are the weights and biases of two fully connected layers.

Embedding Regional Image Features We extract image objects and their features using a

Faster RCNN [RHG16] object detector model, trained on Visual Genome [KZG17]. We extract 100

object regions per image. The resulting bounding boxes are considered as visual tokens. Similar to

the positional encoding in language models [VSP17], for each visual token, the spatial position of

bounding box is also encoded. We use a 5-d vector, pspatial, to encode the top-left, bottom-right,

and the bounding box area relative to the image, i.e., pspatial = [xtl

W
, ytl
H
, xbr

W
, xbr

H
, w·h
W ·H ].

Embedding Global Image Features Similar to [TS20, CPS19, PUC19], we also use a global

image representation using the Graph-RISE model [JLL19], a ResNet-101 model [HZR16] trained

for image classification at ultrafine granularity levels. These regional and global image features

fI = (fr, fg) are fixed during training.

fr = RCNN(I; θRCNN)

fg = GraphRISE(I; θGraphRISE)
(6.4)
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6.7.5 Models for Adaptation Analysis

ViLBERT Training: As discussed in Section 4 of the main paper, we use ViLBERT [LBP19a]

for our adaptation experiments. ViLBERT uses a pretrain-then-transfer learning approach to

jointly learn visual and textual representations from large-scale data, and utilizes them to answer

VQA questions. Specifically, we consider 8-layer ViLBERT implementation available at the link

https://github.com/jiasenlu/vilbert_beta. On VQA train splits, we train the

model for a maximum of 25 epochs and use early-stopping based on the validation performance.

We use an initial learning rate of 3e−5 and use a linear decay learning rate schedule with warm up.

We train on 8 Tesla V100 GPUs with a total batch size of 512.

Contrastive Learning using ViLBERT: In implementing the contrastive loss functions, we

randomly sample negatives from the mini-batch for computational efficiency (similar to [AGA20b]).

We sampled 64 negatives from each batch for both Sum-H and Max-H losses and fine-tune the

margin parameters based on development split.

Multi-Task Learning using ViLBERT: We present our multi-task learning (MTL) architecture

in Figure 6.10. The shared layers of ViLBERT constitute transformer blocks (TRM) and co-

attentional transformer layers (Co-TRM) [LBP19a]. The weights for the task-specific layers are

randomly initialized, whereas the shared layers are initialized with weights pre-trained on 3.3 million

image-caption pairs from Conceptual Captions dataset [SDG18b]. We use a binary cross-entropy

loss for all the auxiliary tasks GQA [HM19b], visual common sense reasoning (VCR) [ZBF19], and

referring expression recognition (REF) [CMB18]. We considered RefCOCOg [MHT16] dataset for

REF task. We optimize each task alternatively in mini-batches based on a mixing ratio and employ

early-stopping based on the validation performance. In all our contrastive learning and multi-task

learning experiments, we use an initial learning rate of 4e-5, and use a linear decay learning rate

schedule with warm up. We train on 4 RTX 2080 GPUs with a total batch size of 256.

Transfer Learning using ViLBERT: In addition to the contrastive learning and MTL based
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adaptation results presented in Section 4 of main paper, we also explore transfer learning (TL) based

models. Specifically, we first pre-train ViLBERT on auxiliary tasks, in contrast to joint training

in MTL, and then fine-tune it on VQA train split. As shown in Table 6.13, we did not find any

significant improvement in model’s performance on CrossVQA.

6.7.6 More Details on CrossVQA

Figure 6.11: Question length distribution for all the six CrossVQA splits.

In addition to the statistics presented in the Section 4 of the main paper, we present additional

details of our CrossVQA splits. Figure 6.12 and Figure 6.13 show a word cloud plot for the majority

questions and answers across all the six splits. A variety of objects and answers can be seen in the

plots, suggesting that our splits are diverse. Moreover, the relative frequency of the most frequent

spatial relationships across all the six splits in Figure 6.14 show that CrossVQA comprises of

rich and diverse spatial relationships. Figure 6.11 shows question length distribution of all the

six splits. As we expected, we find that splits with VizWiz style questions, i.e. ⟨Ivqa2, QAvzwz⟩,

⟨Ivzwz, QAvzwz⟩, and ⟨Ioid, QAvzwz⟩ contain more words in the question on average than other splits

in CrossVQA.
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11/22/2020 wordcloud

https://www.wordclouds.com 1/2

Figure 6.12: Wordcloud for questions

11/22/2020 wordcloud

https://www.wordclouds.com 1/2

Figure 6.13: Wordcloud for answers across all the CrossVQA splits.
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Model Pre-train? B1 B4 M R S C QS QI AS
(0−100)

AI
(0−100)

OC
(0−10)

IC2Q ✗ 30.42 4.44 9.42 - - 0.27 11.37 34.76 - - -

V-IC2Q ✗ 35.40 10.78 13.35 - - 0.42 12.97 38.32 - - -

MI-IC2Q ✗ 47.40 14.49 18.35 40.27 - 0.86 26.06 52.11 - - -

Ours

(IC2QA)

✗ 55.77 27.54 22.18 49.60 21.80 0.98 27.00 53.90 2.80 11.15 2.78

Ours

(IC2QA)

✓ 61.34 32.01 29.09 52.18 26.03 1.15 27.94 57.00 3.79 15.00 3.12

IA2Q ✗ 32.43 6.23 11.21 - - 0.36 - - - - -

V-IA2Q ✗ 36.91 6.25 12.39 - - 0.36 - - - - -

MI-IA2Q ✗ 48.09 15.17 18.78 49.10 - 0.92 - - - - -

Ours

(IA2QA)

✗ 57.12 29.00 24.16 51.13 23.69 1.02 27.20 54.09 2.90 11.20 3.02

Ours

(IA2QA)

✓ 63.00 34.82 30.05 55.00 27.18 1.18 28.90 58.11 3.89 16.01 3.18

Ours

(IÃ2QÃ)

✓ 66.02 37.15 32.00 58.16 30.62 1.20 29.10 61.09 4.96 18.89 4.56

Ours

(IÃC2QÃ)

✓ 75.34 42.09 41.52 69.41 38.60 1.40 33.00 80.50 22.09 39.80 4.98

Ours

(IÃP2QÃ)

✓ 79.52 44.74 41.01 68.20 39.87 1.54 33.12 82.50 23.50 39.86 5.74

Table 6.5: Performance of our VQAG model against the baselines using the metrics BLEU-1 (B1), BLEU-

4 (B4), METEOR (M), ROUGE-L (R), SPICE (S), CIDEr (C), Question generative strength (QS) and

inventiveness (QI), answer generative strength (AS) and inventiveness (AI), and oracle cider (OC). “Pre-

train?” refers to whether or not we pre-train our VQAG on Conceptual 12M [CSD21].
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Test Set #Images #Questions Question

Vocab

Unique

Answers

⟨Ivqa2, QAvqa2⟩ 3000 8418 976 464

⟨Ivqa2, QAvzwz⟩ 3000 8986 927 389

⟨Ivzwz, QAvqa2⟩ 3000 8438 872 440

⟨Ivzwz, QAvzwz⟩ 3000 3014 1004 325

⟨Ioid, QAvqa2⟩ 3000 8986 963 332

⟨Ioid, QAvzwz⟩ 3000 8986 982 427

Table 6.6: Statistics of CrossVQA before human validation.

Test Set QR AC Categories

with AC < 30%

⟨Ivqa2, QAvqa2⟩ 97.8 69.8 count, time

⟨Ivqa2, QAvzwz⟩ 96.0 74.8 count, time, spatial

⟨Ivzwz, QAvqa2⟩ 69.8 52.07 time, food, spatial

⟨Ivzwz, QAvzwz⟩ 82.2 61.2 food, spatial, attribute

⟨Ioid, QAvqa2⟩ 77.4 51.6 count, time, attribute

⟨Ioid, QAvzwz⟩ 81.4 63.7 count, time, spatial

Table 6.7: Human Evaluation: question relevance (QR) and answer correctness (AC).
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QA QB JSD JSD

from from unigram bigram

VQA2 VizWiz 0.57 0.59

⟨Ivqa2, QAvqa2⟩ VQA2 0.06 0.07

⟨Ivqa2, QAvzwz⟩ VizWiz 0.09 0.08

⟨Ivzwz, QAvqa2⟩ VQA2 0.11 0.09

⟨Ivzwz, QAvzwz⟩ VizWiz 0.06 0.07

Table 6.8: Comparison of question distribution of source and the generated datasets measured using the

Jensen-Shannon (JSD) divergence

Model vqa2,vqa2 vqa2,vzwz vzwz,vqa2 oid,vqa2

LXMERT 60.1 50.5 25.0 38.6

VisualBERT 58.1 55.1 21.4 43.6

ViLBERT(VB) 62.5 57.8 26.6 44.8

VB+Sum-H 62.8 57.8 26.9 43.9

VB+Max-H 64.1 58.0 26.9 42.8

VB+GQA 65.3 57.8 25.7 40.4

VB+RER 63.0 58.1 27.2 44.0

VB+VCR 61.0 54.3 24.1 39.6

Table 6.9: Performance on human-validated CrossVQA test sets with VQA2 images or VQA2-style

questions for (i) the state-of-the-art models (top three rows) and (ii) ViLBERT (VB) with contrastive

(Sum-H, Max-H) and multi-task (GQA, RER, VCR) losses.
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Categories Examples

Count 0, 1, 2, 30, 40, 200, many, lot, very

Binary yes, no

Predicate on ground, on plate

Material wood, plastic, concrete, oak, plaid

Time afternoon, sunset, morning, spring

Color white, blue, red, black

Attribute sunny, male, winter, stripes, open

Object frisbee, water, grass, skateboard, phone

Stuff sky

Food vegetables, tomato, salad, milk, dessert

Shape rectangle, triangle, oval, round

Other nothing, english, electricity, united

Location living room, beach, ocean, mountains

Animal cat, dog, zebras, person, police

Spatial right, left, front, downhill, north

Activity skateboarding, standing, playing wii

Table 6.10: Answer categories in our VQAG Model
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Examples of Invented Questions Examples of Invented Answers

Q1: What hand is the man using to write with?

Q2: Are most of the lights on or off in the living room?

Q3: Will this woman be drinking beer?

Q4: What is the number on the front side of the bike?

Q5: In this scene how many sheep can be clearly seen?

Q6: What is the purpose of the number on the yellow board?

Q7: Which sheep is the older in the picture?

Q8: Is the fire hydrant old or new?

Q9: What is the first letter of the word on the blue sign?

Q10: What is the name of the logo on top of the keyboard?

{at least 10 years, above door-

way, inside the baggage, behind

red car, towards bottom left side,

dirt bikes, fishing boats, fork and

sharp knife, riding big elephants,

right side of road}

Table 6.11: Examples of unseen questions and answers invented by our VQAG Model

Seen+Unseen Seen Unseen

QR AC QR AC QR AC

VQA2.0 val split 90.6 61.7 93.2 74.7 84.6 58.8

VizWiz val split 91.2 54.2 92.8 59.7 86.1 48.3

OpenImages val split 88.8 57.0 89.1 60.9 85.7 49.1

Table 6.12: Comparison of question relevance (QR) and answer correctness (AC) on in-domain val

splits (VQA2.0) and out-of-domain splits (VizWiz, OpenImages).
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Model vqa2,vqa2 vqa2,vzwz vzwz,vqa2 oid,vqa2

VB 62.5 57.8 26.6 44.8

VB+TL(GQA) 59.3 57.9 26.0 42.1

VB+TL(REF) 58.4 54.2 24.1 40.2

VB+TL(VCR) 59.7 56.3 25.0 41.4

Table 6.13: Adaptation Results on CrossVQA with Transfer Learning

Figure 6.14: Relative frequency of the most frequent spatial relationships in CrossVQA.
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CHAPTER 7

Conclusion

In this thesis, we demonstrate novel methods and algorithms to effectively gain human trust in vision

and language reasoning models by generating adaptive and human understandable explanations

and also by improving transparency, interpretability, faithfulness, and robustness of the existing

deep learning models. We presented X-ToM – a new framework for Explainable AI (XAI) and

human trust evaluation based on the Theory-of-Mind (ToM). X-ToM generates explanations in a

dialog by explicitly modeling, learning, and inferring three mental states based on And-Or Graphs

– namely, machine’s mind, human’s mind as inferred by the machine, and machine’s mind as

inferred by the human. This allows for a principled formulation of human trust in the machine.

For the task of visual recognition, we proposed a novel, collaborative task-solving game that can

be used for collecting training data and thus learning the three mental states, as well as a testbed

for quantitative evaluation of explainable vision systems. We demonstrated the superiority of

X-ToM in gaining human trust relative to baselines. We also introduced a new explainable AI (XAI)

framework based on fault-lines. We argue that due to their conceptual and counterfactual nature,

fault-line based explanations are lucid, clear and easy for humans to understand. We proposed a

new method to automatically mine explainable concepts from a given training dataset and to derive

fault-line explanations. Using qualitative and quantitative evaluation metrics, we demonstrated that

fault-lines significantly outperform baselines in improving human understanding of the underlying

classification model.

We further evaluate the existing deep learning models such as Transformer, Compositional

Modular Networks in terms of their ability to provide interpretable visual and language representa-
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tions and their ability to provide robust predictions to out-of-distribution samples. Our work shows

that current datasets and models for vision and language grounding tasks such as visual question

answering and visual referring expression recognition tasks, fail to make effective use of linguistic

structure. Although our proposed models are slightly more robust than existing models, there is still

significant scope for improvement. We hope that our newly introduced adversarial test splits will

foster more research in this area.

We find evidence that that the state-of-the-art end-to-end modular network (NMN) imple-

mentations - although provide high model interpretability with their transparent, hierarchical and

semantically motivated architecture - require a large amount of training data and are less effective

in generalizing to unseen but known language constructs. We also demonstrate that explicitly

conditioning neural modules on the language guidance through adaptive convolutions improve

their grounding and generalization abilities, achieving a new state-of-the-art results on the visual

question answering and visual referring expression recognition tasks. Our analysis on CLOSURE,

CLEVR-Ref+ and a new compositional and contrastive split C3-Ref+ demonstrate that our proposed

method enhances NMN’ ability in adaptively selecting and exploiting informative visiolinguistic

relationships.

Finally, we present a step toward scalable and systematic evaluation of visual question answering

systems. Key to our approach is an accurate and controllable VQAG module that is capable of

generating disentangled distribution shifts. We generate CrossVQA benchmarks, a collection of test

splits based on VQA2, VizWiz, and Open Images datasets. We validate their utility by showing that

existing VQA models struggle to perform well in this evaluation scenario and identifying the image

distribution mismatch as the main factor.
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