
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data Analytics and Smart City Operations

Permalink
https://escholarship.org/uc/item/6s0464kx

Author
Liu, Sheng

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6s0464kx
https://escholarship.org
http://www.cdlib.org/


Data Analytics and Smart City Operations

by

Sheng Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Zuo-Jun (Max) Shen, Chair
Professor Dorit Hochbaum
Professor Phil Kaminsky
Professor Terry Taylor

Summer 2019



Data Analytics and Smart City Operations

Copyright 2019
by

Sheng Liu



1

Abstract

Data Analytics and Smart City Operations

by

Sheng Liu

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun (Max) Shen, Chair

This thesis presents models and algorithms that leverage data analytics and optimization
approaches to address the challenges in traditional manufacturing systems as well as emerging
smart city contexts. The increasing availability of data sources and computing power has
created the need for smarter data-driven decision making models, which motivates us to
explore various ways of integrating statistics and optimization tools. In particular, we focus
on analyzing practical operational problems with real-world data sets. Chapter 2 is devoted
to improving yield prediction accuracy in integrated circuit manufacturing using the wafer
map data. We propose an innovative yield prediction model, called adjacency-clustering,
to capture the neighborhood effect that is often present in the wafer map. The adjacency-
clustering model can be solved efficiently and deliver superior prediction performance than
the state-of-the-art methods. Chapter 3 studies the order assignment problem in urban
last-mile delivery services. We propose a framework to integrate travel time predictors with
assignment optimization models to capture the drivers’ practical routing behaviors. The
proposed framework yields tractable formulations compatible with the existing stochastic
and robust optimization tools. We further develop a branch-and-price algorithm to facilitate
its real-time application. The real-world case study demonstrates the substantial benefits of
applying our framework. Chapter 4 addresses the urban bike lane planning problem based on
the real-world GPS trajectory data. We present a flexible optimization model based on the
cyclists’ utility functions. We analyze the problem structure and propose efficient algorithms
to solve the bike lane planning model. We perform extensive numerical experiments on a
real-world trajectory data set to validate the performance of our models and algorithms.
The numerical study also generates managerial insights to help the city managers improve
their bike lane planning decisions.



i

To Liang and Yaping.



ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1

2 Adjacency-Clustering for Yield Prediction 3
2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The Adjacency-Clustering Model and Its Solution Technique . . . . . . . . . 9

2.4.1 Binary Adjacency-Clustering Model . . . . . . . . . . . . . . . . . . . 9
2.4.2 Multi-label Adjacency-Clustering Model . . . . . . . . . . . . . . . . 9
2.4.3 An Efficient Solution Technique for the Multi-label Adjacency-Clustering

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Empirical Results on Real Data Sets . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Visual Clustering Results for Varying Parameters . . . . . . . . . . . 13
2.5.2 Parameter Selection for AC-Poisson . . . . . . . . . . . . . . . . . . . 14
2.5.3 Performance Comparison of AC-Poisson with Poisson and Poisson Re-

gression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.4 Testing AC with Different Yield models: Comparison of AC-NB, AC-

NBP and AC-PNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Simulated Data Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Testing AC-Poisson on Simulated Data . . . . . . . . . . . . . . . . . 21
2.6.2 Testing AC-NB, AC-NBP and AC-PNB on Simulated Data . . . . . . 22

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 On-Time Last Mile Delivery 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Order Assignment with Travel Time Predictors . . . . . . . . . . . . 26



iii

3.1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 A Food Delivery Service: Data and Observations . . . . . . . . . . . . . . . 30
3.2.1 Driver’s Routing Behavior . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Uncertain Service Time . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Travel Time Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Predictors for Travel Time . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Optimization-Compatible Prediction Models . . . . . . . . . . . . . . 37

3.4 Integrating Predictors with Optimization Tools . . . . . . . . . . . . . . . . 38
3.4.1 Linearization of Travel Time Predictors . . . . . . . . . . . . . . . . . 39
3.4.2 Linearization of Prediction Models . . . . . . . . . . . . . . . . . . . 43
3.4.3 A Robust Optimization Formulation . . . . . . . . . . . . . . . . . . 43
3.4.4 Multiperiod Order Assignment . . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 The Branch-and-Price Algorithm and Its Computational Performance 52

3.5 Experiments in a Real-World Case Study . . . . . . . . . . . . . . . . . . . . 56
3.5.1 Prediction Model Selection . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 Order Assignment Model Evaluation . . . . . . . . . . . . . . . . . . 59
3.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Urban Bike Lane Planning 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Data Description and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Bike Lane Planning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Adjacency-Continuity Utility Maximization . . . . . . . . . . . . . . 75
4.4.2 General Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Cyclist’s Response to Bike Lane Plan . . . . . . . . . . . . . . . . . . 82

4.5 A Real-World Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.1 Computational Result . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Bike Lane Planning Result and Discussion . . . . . . . . . . . . . . . 86

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conclusion 92

Bibliography 93

Appendices 106

A Parameter Selection in Chapter 2 107

B Proofs and Detailed Formulations for Results in Chapter 3 111



iv

C Proofs for Results in Chapter 4 120



v

List of Figures

2.1 A wafer map example used by Bae, Hwang, and Kuo (2007) . . . . . . . . . . . 7
2.2 An example of Gα on a 4-node graph and α = 3. . . . . . . . . . . . . . . . . . 11
2.3 Adjacency-clustering results for sample wafer map 1 where the first row presents

the results for k = 1, the second row is for k = 2 and the third row is for
k = 3; From left to right, the four columns correspond to increasing values of
u = 0.1, 0.5, 1, 2. Different clusters are differentiated based on the colors. . . . . 14

2.4 Relative absolute bias error of AC-Poisson model for u in {0.5, 0.6, . . . , 3} and k
in {1, 2, 3} on four real data sets. The gap value is the difference between the
minimum error across combinations attained and the error for u = 1 and k = 2. 15

2.5 Simulated wafer maps without radial loss for varying values of p. . . . . . . . . . 20

3.1 Delivery routes by 3 drivers (the red dot represents the depot). . . . . . . . . . 31
3.2 The travel time differences between the actual delivery and TSP routes (in min-

utes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Distribution of the service time (in minutes) at customer locations. . . . . . . . 34
3.4 Classes of predictors for travel time. . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Optimality gap in the solution time for the branch-and-price algorithm . . . . . 55
3.6 A dendrogram with 5 locations (Bien and Tibshirani 2011) . . . . . . . . . . . . 57
3.7 MAPE of LASSO versus scaled TSP solution on the test set. . . . . . . . . . . . 59
3.8 Out-of-sample performance (improvement over the VRP-SAA) of the DOA mod-

els and VRP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9 Out-of-sample performance comparison of the DOA models versus the current

assignment decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 Average total delivery time of drivers from the DOA-DROt and current assignments. 64
3.11 Impact of the sample size on the SAA models. . . . . . . . . . . . . . . . . . . . 64

4.1 Bike trajectory duration distribution. . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Bike trajectory temporal distribution. . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Density heatmap of origins and destinations in the city. . . . . . . . . . . . . . . 73
4.4 Road segment usage spatial distribution. . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Selected bike lanes (in red color) from BL-AC with B = 30 km. . . . . . . . . . 87
4.6 Selected bike lanes (in red color) from BL-GU with B = 30 km. . . . . . . . . . 88



vi

4.7 The impact of B on the coverage ratio and mean size of continuous bike lanes. . 89
4.8 Selected bike lanes from BL-GU with different responsive behaviors of cyclists

(α = 1.05, B = 10 km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Relative absolute bias of AC-NB model on four real data sets . . . . . . . . . . 108
A.2 Relative absolute bias of AC-NBP model on four real data sets . . . . . . . . . . 109
A.3 Relative absolute bias of AC-PNB model on four real data sets . . . . . . . . . . 110



vii

List of Tables

2.1 Model names, clusters generated, if any, and yield models. . . . . . . . . . . . . 8
2.2 BIC of AC-Poisson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Yield prediction comparison results: AC-Poisson with Poisson model and Poisson

regression model. The best results are given in boldface. . . . . . . . . . . . . . 17
2.4 Yield prediction comparison between: AC-NB, AC-PNB, AC-NBP , negative

binomial and negative binomial regression models. The best results are given in
boldface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Mean absolute percentage error comparison results between AC-Poisson and Pois-
son model for simulated wafer maps (β0 = −2, β1 = 0). The best results are given
in boldface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Mean absolute percentage errors comparison results between AC-Poisson, Poisson
and Poisson regression model for simulated wafer maps with radial loss (β0 =
−2, β1 = 0.1). The best results are given in boldface. . . . . . . . . . . . . . . . 22

2.7 Mean absolute percentage errors comparison results between AC-NB, AC-NBP,
AC-PNB and negative binomial model for simulated wafer maps (β0 = −2, β1 =
0). The best results are given in boldface. . . . . . . . . . . . . . . . . . . . . . 23

2.8 Mean absolute percentage errors comparison results between AC-NB, AC-NBP,
AC-PNB and negative binomial model for simulated wafer maps (β0 = −2, β1 =
0.1). The best results are given in boldface. . . . . . . . . . . . . . . . . . . . . 23

3.1 Statistics of demand and delay (in minutes) during the 2-month period . . . . . 30
3.2 Definitions of the graph attributes in travel time predictors . . . . . . . . . . . . 36
3.3 Potential predictors for the delivery travel time . . . . . . . . . . . . . . . . . . 36
3.4 Computational comparison between the branch-and-price algorithm with the

MILP and MISOCP (Time in seconds) . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Performance evaluation of the prediction models and the TSP solution . . . . . 58
3.6 Average Improvement of the DOA models and scaled VRP models over the VRP-

SAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Performance comparison of DOA models . . . . . . . . . . . . . . . . . . . . . . 62
3.8 Performance gap between the two heuristics and the clairvoyant policy for mul-

tiperiod order assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



viii

4.1 Computational performance of BL-AC-MILP (all trajectories) . . . . . . . . . . 84
4.2 Computational performance of GU-Lag and the greedy algorithm (time is in

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Topological comparison of BL-AC and BL-GU with B = 30 km. . . . . . . . . . 86
4.4 Percentage change in coverage and continuity measures with varying λ and α. . 88



ix

Acknowledgments

I am grateful to my advisor, Professor Zuo-Jun Max Shen, for his continuing support of
my research and career development. His guidance is invaluable and motivates me to study
impactful and important problems. I am also indebted to Professor Dorit Hochbaum for her
advice in my doctoral studies. Through many commmunications with her, I have developed
important research skills and critical thinking abilities. I would also like to thank Professor
Phil Kaminsky and Professor Terry Taylor for their incredible mentorship and services on my
committee. Furthermore, I want to thank Professor Candace Yano, Professor Paul Grigas,
Professor Anil Aswani, and Professor Zeyu Zheng for the insightful conversations.

Studying in Berkeley is a challenging but rewarding experience. I feel very fortunate to
have many good friends there who accompanied and helped me during this great journey.
In the collegial and warming research lab, I have many fun memories with Wei Qi, Siyuan
Sun, Min Zhao, Jiung Lee, Qiaochu He, Auyon Siddiq, Yanqiao Wang, Ying Cao, Chao Mao,
Junyu Cao, Meng Qi, Mengxin Wang, Cristobal Pais, and Hongcai Zhang. Within the de-
partment, I also spent memorable times with Nan Yang, Hao Fu, Renyuan Xu, Quico Spaen,
Rebecca Sarto-Basso, Cheng Lyu, Shiman Ding, Dan Bu, Erik Berteli, Yonatan Mintz, Ji-
aying Shi, Haoyang Cao, Xu Rao, Darren Lin, and Heyuan Liu. Outside the department,
I would like to thank Zhe Ji, Yulin Liu, Yujia Wu, Yao Cai, Manfei Wu, Xiaoxuan Hou,
Mogeng Yin, Wei Ni, Xiaofei Zhou, Letian Wang, and Hong Shang for their support.

I also appreciate the help and advice from my coauthors/coworkers inside and outside
Cal: Long He, Tianhu Deng, Shixuan Zhang, Deepak Rajan, Muhong Zhang, Felix Cheng,
Siyang Xie, Kaibo Wang, Jeremy Karp, Chris Sholley, Xiang Ji, and among others. Also,
I feel lucky to have long-time friends standing behind me: Wenzhe Li, Ye Zhang, Weixiang
Yuan, Tianjun Chen, and Tuo Wu.

I would like to thank my girlfriend, Yuanyuan Pan, for her understanding and support
during my PhD study and academic job search. She is caring and intelligent.

Lastly, I want to thank my parents and grandparents for their endless love.



1

Chapter 1

Introduction

Recent years have witnessed the rapid development of data analytics technologies thanks
to the accelerating advances in data storage and computing power. The widespread use of
mobile devices and sensors has enabled collection of a huge amount of data about machines
and human, which creates many challenging and interesting research questions regarding
making better decisions from those massive data sources. In particular, it is critical for the
operations research and operations management scholars to develop a more data-driven way
of solving operational problems in contexts such as manufacturing and logistics systems.

One of the many emerging research directions driven by the data analytics is smart city
operations. As more and more people live in cities, city residents are facing severe challenges
in their living environment such as air pollution, traffic congestion, among others. Since
data alone can not solve these problems, developing a data-driven optimization framework
to better integrate data with the decision-making process for city management is of great
importance.

This thesis presents three papers that explore different data-driven optimization ap-
proaches to address the challenges in traditional manufacturing systems and emerging smart
city operations.

In Chapter 2, we study the yield prediction problem in integrated circuit manufacturing
using the wafer map data. It is known that defects tend to be clustered and a chip is likely
to be defective if its neighbors are defective. This neighborhood effect is not well captured
in traditional yield modeling approaches. We propose a new yield prediction model, called
adjacency-clustering which addresses, for the first time, the neighborhood effect, and delivers
prediction results that are significantly better than state-of-the-art methods. Adjacency-
clustering (AC) model is a form of the Markov random field minimum energy model (MRF)
that is primarily known in the context of image segmentation. AC model is a novel use of
MRF for identifying defect patterns that enable diagnosis of failure causes in the manufac-
turing process. In this paper we utilize the defect patterns obtained by the AC model for
yield prediction. We compare the performance of the AC model to that of leading yield
prediction models including the Poisson, the negative binomial, the Poisson regression and
negative binomial regression models, on real datasets and on simulated datasets. The re-
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sults demonstrate that the adjacency-clustering model captures the neighborhood effect and
delivers superior prediction accuracy. Moreover, the concept and methodology of adjacency-
clustering are not limited to integrated circuit manufacturing. Rather, it is applicable in
any context where a neighborhood effect is present, such as disease risk mapping and energy
consumption prediction. The contents of this chapter correspond to the material in our
paper (Hochbaum and S. Liu, 2018).

In Chapter 3, we study how delivery data can be applied to improve the on-time perfor-
mance of urban last mile delivery services. Motivated by the delivery operations and data of
a food delivery service provider, we discuss a framework that integrates the travel time pre-
dictors with the order assignment optimization. Such integration enables us to capture the
driver’s routing behavior in practical urban environment, where the driver’s decision-making
process is often unobservable or intricate to model. Focusing on the order assignment prob-
lem as an example, we discuss the classes of tractable predictors and prediction models that
are highly compatible with the existing stochastic and robust optimization tools. We fur-
ther provide reformulations of the integrated models, which can be efficiently solved with
the proposed branch-and-price algorithm. Moreover, we propose two simple heuristics for
the multiperiod order assignment problem, which are built upon the single-period solutions.
Using the delivery data, our numerical experiments on a real-world application not only
demonstrate the superior performance of our proposed order assignment models with travel
time predictors, but also highlight the importance of learning the behavioral aspects from
the operational data. We find that large sample size does not necessarily compensate for the
misspecification of the driver’s routing behavior. The contents of this chapter correspond to
the material in our paper (liu2018data).

In Chapter 4, we study the urban bike lane planning problem based on the bike trajectory
data from bike sharing systems. The key decision is where to build bike lanes in the existing
road network. As bike sharing systems are widespread in the metropolitan areas across the
world, bike lanes are being planned and constructed by many city governments to promote
cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys
and heuristics. We develop a general and novel optimization framework to guide the bike
lane planning from bike trajectories. We formalize the bike lane planning problem from
the view of the cyclists’ utility functions and then derive an integer optimization model to
maximize the utility. We offer several structural results about our model, and prove the
Lagrangian dual is polynomial-time solvable. We then develop tractable formulations and
efficient algorithms to solve the large-scale optimization problem. Via a real-world case
study with a city government, we demonstrate the efficiency of the proposed algorithms and
quantify the trade-off between the coverage of bike trips and the continuity of bike lanes.
We show how the topology would evolve according to the utility functions and highlight the
importance of understanding cyclists’ responsive routing behaviors. The proposed framework
drives the data-driven urban planning scheme in smart city operations management.
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Chapter 2

Adjacency-Clustering for Yield
Prediction

2.1 Background and Motivation

Integrated circuit manufacturing is a highly complex, costly process that involves hundreds
of chemical or physical processing steps (Yuan, Ramadan, and Bae 2011). The key processes
include wafer fabrication, wafer probe, assembly or packaging and final test. The degree
of manufacturing success is measured by yield, which is defined as the average ratio of
the number of usable devices that pass tests after completing processes to the number of
potential usable devices before starting processes (T. Kim and Kuo, 1999; Ferris-Prabhu,
1992). Accurate yield prediction is critical for managers to estimate productivity, production
cost and make scheduling decisions. Moreover, yield prediction helps to detect processing
problems in an early production stage, which is crucial to quality improvement.

In semiconductor manufacturing, there are four components to the yield: wafer process
yield, wafer probe yield, assembly yield and final test yield (Milor, 2013). Among these,
wafer process yield (also known as line yield) and wafer probe yield (also known as die yield)
are considered to be the major cost determining factors (Cunningham, 1990). Wafer probe
defects found in integrated circuits (also called chips) include shorts, opens, misalignment,
photoresist splatters and flakes, and pinholes (Charles H Stapper, Armstrong, and Saji 1983).
A chip containing at least one fatal defect is considered defective, and “good” otherwise.

Yield prediction based on defect data from sampled wafers is to estimate the ratio of
non-defective (good) chips to the total number of chips. Till now only statistical models
have been utilized for this purpose. The classical yield model assumes the number of defects
on a chip follows Poisson distribution with density λ, taken to be the average number of
defects on a chip. It is assumed that the value of λ is uniform across all chips and wafers.
The yield is then estimated as the probability that no defects occurs on a chip. In later work
researchers relax the assumption of the constant λ and assume λ itself follows a specific
distribution. Two popular such models are Murphy’s model and Seeds’ model proposed in
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Murphy (1964) and Seeds (1967), respectively. In addition, negative binomial distribution
and variants of Poisson distribution have been applied to improve yield prediction in recent
years (see, e.g., Bae, Hwang, and Kuo 2007).

Existing models assume that the distribution of defects is identical for all chips on the
wafer. Yet this is not the case in practice where defects are known to be clustered in
contiguous groups (Bae, Hwang, and Kuo 2007; M. H. Hansen, Nair, and D. J. Friedman
1997). Indeed, various mechanisms causing defects tend to only affect certain regions of the
wafer (Hwang and Kuo 2007; Y.-S. Jeong, S.-J. Kim, and M. K. Jeong 2008; Charles H
Stapper, Armstrong, and Saji 1983). Chips in close vicinity of each other are more likely to
be affected by the same defect generating mechanism, and therefore the number of defects
on a chip is correlated with the number of defects on its neighbors.

The adjacency-clustering approach introduced here is to partition the set of chips on
the wafer to subsets, referred to as clusters, so that each cluster contains chips with similar
defect level, which also tend to be adjacent to each other. This is attained by minimizing a
combination of two objective functions, one that penalizes deviation from the priors (observed
number of defects), and the second that penalizes the separation of adjacent chips to different
clusters. The resulting clusters tend to contain chips with the same defect distribution since,
because they reside in the same neighborhood, they are likely to be caused by the same
mechanism. The wafer yield prediction is then attained from a combination of the individual
cluster yields. This approach is in contrast to existing yield prediction methods that predict
the wafer yield without differentiating among clusters. The performance of our approach
is demonstrated via an empirical study on real data sets and on simulated data sets. The
results show that the adjacency-clustering approach improves the prediction accuracy by a
factor between 3 and 15 as compared to the use of Poisson and Poisson regression model for
the real data sets. This superior performance of adjacency-clustering over the state-of-the-art
methods is further validated on simulated data.

The success of the adjacency-clustering approach for yield prediction bodes well to its
potential applicability to other contexts where the neighborhood effect is an important factor
in clustering. This is the case for disease mapping where spatially correlated disease data
are utilized to identify high-risk areas (clusters) and predict risk levels (see Charras-Garrido
et al. 2012 for more details). Another case is that of energy consumption prediction for
households where high consumption households tend to be in the vicinity (see, e.g., Baker
and Rylatt 2008).

2.2 Related Literature

Relevant literature is reviewed here within three streams: (1) Advanced statistical yield
prediction models; (2) Methods for measuring the extent of spatial aggregation of defects on
wafers given defect counts observations; (3) Identifying and classifying defect spatial patterns
in a wafer.



CHAPTER 2. ADJACENCY-CLUSTERING FOR YIELD PREDICTION 5

Advanced statistical yield prediction models. Among statistical yield models the
Poisson model is most widely used. A drawback of the Poisson model is that it is known
to considerably underestimate the yield for wafers with defects that are aggregated non-
uniformly (see, e.g., Charles H Stapper, Armstrong, and Saji 1983 and Charles H. Stapper
1989). To overcome this limitation, Stapper (1983) derives a negative binomial model by as-
suming the probability that a defect occurs in a chip depends on the number of faults already
on the chip, which is equivalent to assuming that λ follows a gamma distribution. Albin
and D. J. Friedman (1989) introduce an alternative distribution, Neyman distribution, to fit
the defect data. I. Koren, Z. Koren, and Stepper (1993) add a new parameter, block size,
to the negative binomial model to account for the aggregation effects of defects. Although
the negative binomial model and the Neyman model capture the defect aggregation, they
fail to model the spatial information of chips and relationship between adjacent chips. For
instance, these models ignore a common defect pattern where defects tend to be aggregated
on the periphery of wafers, called radial loss (Ferris-Prabhu et al. 1987). To account for
such spatial position effects, regression models (generalized linear models) are introduced:
Bae, Hwang, and Kuo (2007) propose Poisson, negative binomial and zero-inflated Poisson
regression model. Yuan, Ramadan, and Bae (2011) introduce zero-inflated binomial negative
model. Among these regression models, negative binomial regression model yields the lowest
prediction error in general. More recently, Krueger and Montgomery (2014) introduce gen-
eralized linear mixed models for yield modeling to capture longitudinal correlation between
and within batches of samples. However, they only explore the longitudinal correlation but
ignore neighborhood effect within wafer. Although these regression models improve yield
prediction accuracy, estimation issues remain challenging. Two main estimation methods,
Bayesian method and maximum likelihood method, are employed in the parameter estima-
tion of regression models. Bayesian methods based on Markov chain Monte Carlo (MCMC)
are time consuming and unstable for small-size samples while maximum likelihood estima-
tion methods may not provide tight interval estimate for parameters (Ghosh, Mukhopadhyay,
and J.-C. J. Lu 2006). In addition, for samples showing complicated spatial patterns, it is
challenging to choose appropriate covariates and set up the linear relationship in regression
models.

Measuring spatial clustering. M. H. Hansen, Nair, and D. J. Friedman (1997) introduce
a monitoring statistic to test the significance of spatial clustering based on Markov random
field. Fellows, Mastrangelo, and White Jr (2009) study the empirical performance of Hansen
et al.’ method on real data sets. Hansen et al. (1997) also propose the join-count statistics
in order to measure the spatial randomness and the degree of clustering, where join is formed
with two neighboring chips and join counts are measures of the adjacencies between different
levels of a variable. Taam and Hamada (1993) utilize the join-count to propose the log odds
ratio as a measure of spatial clustering. Y.-S. Jeong, S.-J. Kim, and M. K. Jeong (2008)
further generalize join-count based statistics with optimal weights, and introduce the spatial
correlogram to detect the presence of spatial autocorrelation. There are other statistics
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known that can be used as defect clustering indices, as reviewed in Tsai, Tong, and C.-H.
Wang (2008). All studies that measure spatial clustering are based on binary defect data,
where chips are differentiated only in whether or not they contain defects. These methods
highlight the importance of spatial clustering but do not apply for the yield prediction tasks
addressed here.

Classifying defect patterns. Classifying defect patterns is important for the purpose
of diagnosis of failure causes. F.-L. Chen and S.-F. Liu (2000) employ neural networks in
order to recognize spatial defect patterns. Di Palma et al. (2005) test the approach of Chen
and Liu on simulated and real data set. White Jr, Kundu, and Mastrangelo (2008) develop
a procedure to detect different arrangements and shapes of defect aggregations (clusters).
Recently, several recognition techniques based on support vector machines (SVM) have been
tested on wafer defect data to identify different defect patterns (e.g. see T.-S. Li and Huang
2009, Chao and Tong 2009, Yuan, Bae, and J. I. Park 2010 and M.-J. Wu, Jang, and
J.-L. Chen 2015). Ooi et al. (2013) develop an automatic defect pattern recognition system
integrating feature extraction, selection and classification techniques. These methods are
helpful in diagnosis but they do not explore how defect patterns can help yield prediction.
To the best of our knowledge, our paper is the first attempt to utilize defect clustering
pattern to improve yield prediction result.

2.3 Our Approach

The defect data available in semiconductor manufacturing is in the form of wafer maps.
A wafer map example is given in Figure 1, where the number of defects on each chip is
indicated at the chip position on the grid. Let the defect data for a wafer map on n chips
be represented by the array (d1, d2, . . . , dn), where di is the observed number of defects at
location i or the i-th chip. The wafer map is formalized as a graph G = (V,E) where each
node in V represents a chip and each pair, i, j, of neighboring chips is associated with an
edge [i, j] ∈ E. There are several alternatives for neighborhood relationship, e.g. 4-neighbor
system (rook-move neighborhood) and 8-neighbor system (king-move neighborhood). We
select here the 4-neighbor system.

The goal of adjacency-clustering is to partition the set of chips into clusters, so that the
chips that belong to the same cluster tend to have similar defect levels as well as tend to
be adjacent to each other. These two goals are balanced by a parameter that weighs one
goal versus the second. The clustering is represented by cluster label xi assigned to chip
i. One goal is to require that the chip label, xi for chip i, deviates as little as possible
from the observed value di, under a penalty called deviation cost. For the second goal there
is a penalty associated with the difference in assigned labels for neighboring chips. This
penalty, called separation penalty, is associated with each pair of adjacent chips, or nodes in
G = (V,E) that are linked with an edge of E, that differ in their labels. The goal is to attain
a solution that minimizes a combination of the two objectives of deviation and separation
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Figure 2.1: A wafer map example used by Bae, Hwang, and Kuo (2007)

penalties. Let fi(xi, di) be deviation functions associated with node i ∈ V and gij(xi − xj)
be separation functions associated with every edge [i, j] ∈ E. Let X be a set of cluster
label values. The adjacency-clustering model (AC) is formulated as a deviation-separation
optimization problem as follows:

min
∑
i∈V

fi(xi, di) +
∑

[i,j]∈E

gij(xi − xj) (2.1)

s.t. xi ∈ X ∀ i ∈ V. (2.2)

This deviation-separation formulation arises in contexts such as computer vision and statis-
tics, where it is referred to as Markov Random Field (MRF) (see, e.g., Blake and Zisserman
1987; Ishikawa and Geiger 1998; Hochbaum 2001).

All nodes that share the same label are considered to be a single cluster. The optimal
cluster partition depends on the tradeoff between the deviation and separation penalties.
The larger the separation penalty functions, the more contiguous the resulting clusters. In
contrast, relatively large deviation penalties render clusters that group together objects with
similar or identical observation values regardless of their spatial positions.

The label of a cluster corresponds to the yield level of the cluster. We choose integer
cluster labels in {0, 1, . . . , k} where a higher label value indicates a greater likelihood of
having large number of defects and thus a lower yield level. For example, we may choose
the labels {0, 1, 2}, with the interpretation that the model predicts no defects for chips in
the cluster labeled 0, moderate number of defects for chips in the cluster labeled 1, and high
number of defects for chips in the cluster labeled 2. Another example is for the binary labels
{0, 1} implying a distinction between a cluster that tend to contain chips with very small
number of defects or are surrounded by such chips, and a cluster that tend to contain chips
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with large number of defects. Such clusters are interpreted as non-defective versus defective
clusters.

Our yield prediction model works by first generating the adjacency-clustering. The out-
put of AC is a partition of the wafer’s set of chips into {V0, V1, . . . , Vk}, where V0 is the
cluster of chips that are labeled non-defective and Vj for j = 1, . . . , k are clusters that for
larger label values are increasingly likely to contain larger number of defects. In the second
stage a yield model is applied to each cluster, and the weighted average of cluster yields (ŷj
for j = 0, . . . , k) is the reported wafer yield prediction ŷ:

ŷ =

∑k
j=0 |Vj|ŷj∑k
j=0 |Vj|

.

For this second stage we use Poisson model and negative binomial model, or a mixture
of the two, as a yield model applied to each cluster. We use the notation AC-Poisson, AC-
NB, AC-PNB, and AC-NBP to indicate adjacency-clustering followed by: Poisson model,
negative binomial (NB) model, a combination of Poisson for the non-defective clusters and
NB for defective ones, and a combination of NB for the non-defective clusters and Poisson
for defective ones, respectively. Table 2.1 lists the nomenclature for the models, whether
using AC, and the respective yield model.

Table 2.1: Model names, clusters generated, if any, and yield models.

Model Clusters generated Yield model

AC-Poisson (V0, V1, . . . , Vk) Poisson

AC-NB (V0, V1, . . . , Vk) Negative binomial

AC-NBP (V0, V1, . . . , Vk)
V0: negative binomial
V1, . . . , Vk: Poisson

AC-PNB (V0, V1, . . . , Vk)
V0: Poisson

V1, . . . , Vk: negative binomial

Poisson V Poisson

Poisson regression V Poisson regression

Negative binomial V Negative binomial

Negative binomial regression V Negative binomial regression
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2.4 The Adjacency-Clustering Model and Its Solution

Technique

We first discuss the use of adjacency-clustering for yield prediction in the case of binary
labels. We then discuss the choice of penalty functions for multi-label instances and present
the solution technique for the resulting multi-label adjacency-clustering model.

2.4.1 Binary Adjacency-Clustering Model

For binary labels {0, 1} the wafer is partitioned into only two clusters, one representing a set
of defective chips that are labeled 1, and the second representing nondefective chips that are
labeled 0. Let V0 = {i ∈ V : di = 0}, V+ = {i ∈ V : di > 0}. For chip i ∈ V0 assigning xi = 0
imposes no deviation cost whereas assigning xi = 1 imposes a penalty of wi0 > 0. Likewise,
for chip i ∈ V+ assigning xi = 1 imposes no deviation cost whereas assigning xi = 0 incurs
a penalty of wi+ > 0. With this notation, the total deviation cost (penalty) of assigning the
xi labels is, ∑

i∈V+

wi+ +
∑
i∈V0

wi0xi −
∑
i∈V+

wi+xi. (2.3)

Let the separation cost function be gij(|xi − xj|), which equals to uij > 0 if xi 6= xj and
0 otherwise. The optimization problem that minimizes the sum of these deviation and
separation costs is (omitting the constant term

∑
i∈V+ wi+),

min
∑
i∈V0

wi0xi −
∑
i∈V+

wi+xi +
∑

[i,j]∈E

uijzij +
∑

[i,j]∈E

uijzji, (2.4)

s.t. zij ≥ xi − xj ∀ [i, j] ∈ E, (2.5)

zji ≥ xi − xj ∀ [i, j] ∈ E, (2.6)

xi ∈ {0, 1} ∀ i ∈ V, zij ∈ {0, 1} ∀ [i, j] ∈ E. (2.7)

Here the constraints ensure that zij = 1 for adjacent nodes i and j if xi 6= xj and 0 otherwise.
The above problem is the minimum s-excess problem (Hochbaum 2001), which is solved

in polynomial time by applying a minimum-cut procedure on an associated graph. The
optimal solution is a partition to two clusters, one of nodes of label 0, and the other of nodes
of label 1. To allow for higher levels of differentiation between yield levels of clusters we
present next the multi-label version of AC.

2.4.2 Multi-label Adjacency-Clustering Model

In the multi-label case we let the set of labels be {0, 1, . . . , k}, where k is a parameter specified
by the user. The choice of k implies there are (k + 1) potential labels that characterize the
yield level of each chip. For instance, if k = 2, a wafer is partitioned into three types of
clusters: non-defective (xi = 0), medium defective (xi = 1) and highly defective (xi = 2).
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Selecting deviation and separation functions. For non-binary labels, the deviation and
separation functions must be specified. For deviation functions we consider quadratic func-
tions that correspond to Gaussian distribution in Bayesian estimation. Gaussian distribution
is commonly used to approximate many distributions and the corresponding quadratic devia-
tion functions are widely applied in image segmentation and spatial statistics (Panjwani and
Healey 1995; K. Held et al. 1997; H̊avard Rue 2001). When the observation is not Gaussian,
batching and averaging observations can lead to an approximately Gaussian sample (Law
2014). Since we impose no restrictions on the probabilistic relationship between the number
of defects and yield level, such quadratic functions are suitable. It is noted that the com-
mon use of quadratic deviation functions in the literature is due in part to the existence of
well known algorithms, e.g. based on KKT conditions, that can be used for solving quadratic
minimization problems. This is not the motivating reason in our case, for choosing quadratic
deviation functions.

In terms of the separation functions, absolute value penalty uij|xi − xj| (`1 norm) is
commonly used to penalize the difference of neighboring labels. Occasionally, in image
segmentation context, the truncated form gi,j(xi−xj) = ui,j ·min{|xi−xj|,M} for a positive
value M , is considered desirable (Veksler 2007; Szeliski et al. 2008). This form avoids the
over-smoothness associated with the absolute value penalty, which occurs for large gaps in
label values. However, these truncated separation functions are nonlinear and the respective
problem is NP-hard, and challenging even to approximate. Furthermore, in our set-up the
label values are small integers and hence over-smoothness is not a concern.

We select here quadratic deviation functions and absolute value separation functions. For
these functions the adjacency-clustering formulation is,

(AC) min
∑
i∈V

(xi − di)2 +
∑
i∈V

∑
j:[i,j]∈E

uij|xi − xj| (2.8)

s.t. xi ∈ {0, 1, . . . , k} ∀ i ∈ V. (2.9)

This AC problem is a MRF on convex separation and deviation functions. Such convex MRF
is solved in polynomial time with the algorithm of Ahuja, Hochbaum, and Orlin (2003). For
separation functions that are of the form gi,j(xi − xj) = uij|xi − xj| and convex deviation
functions, the algorithm of Hochbaum (2001) is very efficient and provably fastest possible.
The special structure of AC, with quadratic deviation functions, is shown next to be solved
with a yet more efficient algorithm.

2.4.3 An Efficient Solution Technique for the Multi-label
Adjacency-Clustering Model

We now describe a particularly efficient algorithm for solving AC with quadratic deviation
functions and absolute value separation functions. The key to the efficiency of the algorithm
is the threshold theorem that links a minimum cut in an associated graph, Gα, with the
optimal values of the variables.
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For α a scalar in the range of the variables, the graph associated with G = (V,E) is an
s, t-graph Gα constructed as follows: We add to the graph G = (V,E) a source node s and
a sink node t; for each node i ∈ V we add an arc from s of capacity max{ ∂fi

∂xi
(α), 0} and an

arc to t of capacity max{− ∂fi
∂xi

(α), 0}, where ∂fi
∂xi

(α) = 2(α − di). Note that at least one of
these arcs must have capacity of 0, thus a node can be connected either to source or to sink
but not to both. Each edge [i, j] ∈ E is replaced by a pair of arcs (i, j) and (j, i) both of
capacity uij. An example of a Gα graph on 4 nodes and α = 3 is illustrated in Figure 2.2.
Note that node 1 (the top left node in the graph) has neither an arc from the source nor an
arc to the sink since the respective derivative is ∂f1

∂x1
(α) = 2(α− d1) = 0.

Because of the convexity of the functions fi(), the graph Gα has the property that
the source adjacent capacities are monotone increasing (more generally, monotone non-
decreasing) in α, and the sink adjacent capacities are monotone decreasing (more generally,
monotone non-increasing) in α. Such graphs are called parametric flow graphs. Let a mini-
mum cut in Gα be (Sα∪{s}, S̄α∪{t}), where Sα∪{s} is the source set of the minimum cut.
If there are multiple minimum cuts, we select the one where Sα ∪ {s} is minimal (contained
in all sources sets of minimum cuts). It is well known that the source sets of minimum cuts
in parametric flow graphs are nested: For α1 < α2, Sα1 ⊆ Sα2 . The nestedness is also a corol-
lary of the following threshold theorem which states the relationship between the optimal
solution to AC, x∗ = (x∗1, x

∗
2, . . . , x

∗
n), and the source set of a minimum cut in Gα (Hochbaum

2001):

𝑑𝑑1 = 3

𝑑𝑑3 = 2 𝑑𝑑4 = 4

𝑑𝑑2 = 6

𝑢𝑢12

𝑢𝑢21

𝑢𝑢43

𝑢𝑢34𝑢𝑢31 𝑢𝑢13 𝑢𝑢42 𝑢𝑢24
𝑠𝑠 𝑡𝑡

2 𝛼𝛼 − 𝑑𝑑3 = 2

2 𝑑𝑑2 − 𝛼𝛼 = 6

2 𝑑𝑑4 − 𝛼𝛼 = 4

Figure 2.2: An example of Gα on a 4-node graph and α = 3.

Theorem 2.1 (Threshold theorem). For Sα the minimal source set of a minimum cut in
Gα, the optimal solution x∗ to AC satisfies x∗i < α ∀i ∈ Sα and x∗i ≥ α ∀i ∈ S̄α.

With the threshold theorem, the following algorithm is used to solve AC: Call for a
minimum cut procedure in the graphs Gα for α = 1, . . . , k resulting in the sequence of
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nested source sets, {s} = S0 ⊆ S1 ⊆ . . . ⊆ Sk ⊆ Sk+1 = V ∪ {s}. Let ∆α = Sα \ Sα−1, then
the optimal solution x∗ is determined as follows:

if i ∈ ∆α+1 then x∗i = α.

Let T (n,m) be the complexity of a minimum cut algorithm on a graph with n nodes and
m arcs, then this algorithm requires O(kT (n,m)) steps to solve AC.

To improve on the complexity we notice that because of the “nestedness” property, for
α1 < α2, once the maximum flow in Gα1 is found, we can “shrink” the source set Sα1 with
the source node s as it is guaranteed that Sα1 is part of the source set of a minimum cut
in Gα2 . Once the arcs adjacent to source and sink are adjusted for the new parameter
value α2 the previous maximum flow is feasible except possibly for the arcs adjacent to
sink where their capacities have gone down. A “parametric flow algorithm” can warm-start
from such a solution and solve the entire sequence of k parametric flows and cuts in the
complexity of a single maximum flow (Gallo, Grigoriadis, and Tarjan 1989). The push-
relabel algorithm (Goldberg and Tarjan 1988) or Hochbaum’s Pseudo-flow (HPF) algorithm
(Hochbaum 2008) are both known to have this capability, and both run, for k parameter
values, in O(mn log n2

m
+ kn) steps on a graph with n nodes and m arcs. As a result, solving

AC, where m is O(n) for the graph G, can be accomplished in O(n2 log n+ kn).

Theorem 2.2. The time complexity of an algorithm solving AC with a parametric minimum
cut HPF or push-relabel is O(n2 log n+ kn).

2.5 Empirical Results on Real Data Sets

We analyze four real wafer maps in this section. The first one appears in Tyagi, Bayoumi,
et al. (1994) and the other three are presented by Yuan, Ramadan, and Bae (2011). The
first wafer map has 20× 20 = 400 chips and the other three have each contained 473 chips.

For all four wafer maps, we choose separation penalties gij(xi − xj) = u · |xi − xj|, with
u a factor that is common for all wafer maps and uniform for all pairs of chips. This is
because there is no ex-ante information to differentiate between different pairs. In case there
is a reason to differentiate, or to stress the neighborhood effect in some areas of the wafer
more than in others, one can select a non-uniform value of u. We test 3 different values of
k (= 1, 2, 3) combined with 26 different values of u (= 0.5, 0.6, . . . , 3). The selection of u is
used to balance the separation versus the deviation penalties.

The experiments in this Section and Section 2.6 are performed on a Lenovo X1 computer
running the Windows 10 64-bit operating system with a Intel Core i5-5200U 2.20 GHz
processor and 8.0 GB RAM. The adjacency-clustering problem for k = 1 is solved with
Hochbaum’s Pseudo-flow (HPF) algorithm (available at http://riot.ieor.berkeley.edu/
Applications/Pseudoflow/maxflow.html, see Hochbaum 2008, Chandran and Hochbaum
2009). The adjacency-clustering problem for k ≥ 2 is solved with parametric maximum



CHAPTER 2. ADJACENCY-CLUSTERING FOR YIELD PREDICTION 13

flow using parametric HPF (the source code used is at http://riot.ieor.berkeley.edu/

Applications/Pseudoflow/parametric.html).
The results are presented in the following subsections: In subsection 2.5.1 we illustrate the

qualitative effect of changing the two parameter values, k and u, on the resulting clustering.
Subsection 2.5.2 describes the application of the AC-Poisson model and the evaluation of the
choice of the parameters in terms of the prediction error. The prediction error is measured
by relative absolute bias, defined as:

|True yield− Estimated yield|
True yield

.

The lowest prediction errors lead to a choice of parameters for AC-Poisson, which is used af-
terward. In subsection 2.5.3 the AC-Poisson model, with the specific selection of parameters,
is compared to the Poisson model and the Poisson regression model in terms of the relative
absolute bias. Finally, in subsection 2.5.4, we test various yield models for the clusters
generated by AC: First we test the negative binomial yield model, and then a combination
of two different yield models (Poisson and negative binomial) for the no-defects cluster (of
label 0), and the defective clusters, of positive label. These results are then compared with
the negative binomial and negative binomial regression prediction models (that apply to the
entire wafer).

2.5.1 Visual Clustering Results for Varying Parameters

We present first, visually, the clustering results for the first wafer map with different choices
of the parameters. As shown in Figure 2.3, as the value of k increases (going down the
rows of images), the clusters corresponding to positive values of the label are becoming more
differentiated into small contiguous groups. As for the value of u, that increases for the
columns of images from left to right, the effect is to create more contiguous clusters, since a
higher value of u causes higher penalty for non-contiguity. Indeed Figure 2.3(a) consists of
many small contiguous groups while in Figure 2.3(d) there are only a few large groups. It
should be noted that clusters generated by AC models are not necessarily contiguous. That
is, there is a trade-off between contiguity, that implies contiguous chips should fall in the
same cluster, and clustering chips with similar number (or density) of defects. For instance,
adjacent chips tend to belong to the same cluster, unless there is a substantial gap between
their numbers of defects. On the other hand, non-adjacent chips that have the same number
of defects, may well fall in the same cluster, resulting in a cluster by a collection of non-
contiguous groups. We observe that for this first wafer map, the groups of positive labeled
chips are positioned near the center and the four corners of the wafer, implying potential
manufacturing problems.

The effects illustrated in Figure 2.3 on changing the values of u and k indicate a general
trend. When u is small, the separation cost is low, and the adjacency effect is not playing
a role. In contrast, for u that is very large, the separation cost dominates the objective
function and the tendency is to group many of the chips in a single contiguous cluster, even
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Figure 2.3: Adjacency-clustering results for sample wafer map 1 where the first row presents
the results for k = 1, the second row is for k = 2 and the third row is for k = 3; From left to
right, the four columns correspond to increasing values of u = 0.1, 0.5, 1, 2. Different clusters
are differentiated based on the colors.

if they differ substantially in their numbers of defects. In the extreme case where u = +∞,
the entire wafer forms a single cluster. Similarly for parameter k: when k is small, e.g. the
binary case, groups of high number of defects may be clustered together with groups of low
number of defects. If k is large, then the clusters tend to have small number of objects which
may result in poor prediction performance. Next we study the effects of the parameters
selection on the prediction error, for the AC-Poisson model.

2.5.2 Parameter Selection for AC-Poisson

AC-Poisson generates k + 1 clusters, the yield of each of which is then computed with a
Poisson yield model. The yield for each cluster j is estimated as ŷj = exp(−λj), where λj is
the average number of defects for the cluster. These estimates are then used to predict the
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Figure 2.4: Relative absolute bias error of AC-Poisson model for u in {0.5, 0.6, . . . , 3} and
k in {1, 2, 3} on four real data sets. The gap value is the difference between the minimum
error across combinations attained and the error for u = 1 and k = 2.

yield for the whole wafer.
To determine which parameters to select and how their choice affects the relative absolute

bias error, we apply AC-Poisson to different combinations of u and k for the four datasets.
Figure 2.4 presents the relative absolute bias of AC-Poisson model for each dataset with the
choice of values of u in {0.5, 0.6, . . . , 3} and values of k in {1, 2, 3}. The results indicate that
the choice of the combination of u = 1 and k = 2 is very close to the best combination of the
two parameters. Indeed, as will be shown, in all our experiments this combination is close to



CHAPTER 2. ADJACENCY-CLUSTERING FOR YIELD PREDICTION 16

the best combination. We therefore refer to it as the default setting. Here, the gaps between
the minimum error across all combinations and the error attained for the default setting of
u = 1 and k = 2, are 0.020, 0.019, 0.000, 0.009 for wafer maps 1, 2, 3, 4 respectively.

A known statistical method of selecting a value such as k is the Bayesian information
criterion (BIC). BIC is a trade off between an increase in the number of parameters and
an increase in the likelihood of all observations that results from finer distributions with
larger number of parameters. In the context of the adjacency-clustering model, the number
of clusters increases with k, and for each cluster the yield estimation requires the estimation
of the cluster’s distribution parameters. For instance, using Poisson model for each cluster,
the total number of estimated parameters is (k + 1). Therefore the number of parameters,
denoted by hk, grows here linearly with k. For L the likelihood of all observations on the
wafer, the BIC score is defined as:

BIC = hk lnn− 2 lnL.

The lower the BIC score the better. Setting u = 1 and the AC-Poisson model, we compute
the BIC scores for k = {1, 2, 3, 4} on the four real wafer maps, as shown in Table 2.2. For
each wafer map, the value of k corresponding to the lowest BIC is assigned a rank of 1 and
the second lowest is assigned a rank of 2, etc. The average rank across the four samples is
presented in the last column of Table 2.2. From Table 2.2, k = 2 has the lowest average
rank, which is one of the reasons why we select this value of k in our default setting.

Table 2.2: BIC of AC-Poisson.

Wafer Map 1 2 3 4 Average Rank

k = 1 478.73 498.42 348.55 568.08 2.75
k = 2 384.19 476.97 354.63 564.92 1.75
k = 3 355.14 480.33 360.79 571.08 2.5
k = 4 351.51 486.35 366.95 577.24 3

We discuss further issues concerning the choice of u and k in the section on simulated
data, Section 2.6. For the comparison with other prediction models we are selecting the
default setting of u = 1 and k = 2 as the one for AC-Poisson.

2.5.3 Performance Comparison of AC-Poisson with Poisson and
Poisson Regression Models

Table 2.3 provides the comparison of the relative absolute bias for AC-Poisson model (u = 1
and k = 2), Poisson model, and Poisson regression model. In Poisson regression model, the
covariate vector is selected as {r, cosφ, sinφ, r cosφ, r sinφ}, as suggested by Bae, Hwang,
and Kuo (2007) (using the center of the wafer as the reference point, r and φ denote the
radial coordinate and angular coordinate in the polar coordinate system). We estimate the
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corresponding coefficients by maximum likelihood method with glm() function in R (see
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html for details).
The adjacency-clustering prediction results of AC-Poisson improve, by a factor that varies
between 3 to 15, on the Poisson regression model, and by a larger factor on the Poisson
model. n particular, the improvement for wafer map is remarkably large. This may be the
case since the defects in wafer 1 are heavily clustered and exhibit a clear pattern (as shown
in Figure 2.3), which can be easily captured by AC-Poisson.

It is noted, that even though the Poisson regression model is intended to incorporate
the spatial positioning that is absent in the Poisson model, our results indicate that it is
only minimally effective. In addition, our results show that AC-Poisson model dominates
the Poisson regression for any choice of u ≤ 2.3 and k ∈ {1, 2, 3}. The results reported in
Table 2.3 provide evidence that strongly supports the capability of adjacency-clustering to
introduce major improvements in yield prediction.

In terms of running time, solving the adjacency-clustering model (with parametric max-
imum flow using HPF algorithm) requires 0.07 seconds for sample 1 and an average of 1.11
seconds for samples 2, 3, 4.

Table 2.3: Yield prediction comparison results: AC-Poisson with Poisson model and Poisson
regression model. The best results are given in boldface.

Wafer Map 1 2 3 4

True yield 79.50% 84.36% 89.85% 79.28%

Poisson model 52.33% 74.85% 87.90% 72.21%
Relative Absolute Bias 34.18% 11.27% 2.17% 8.92%

Poisson regression model 55.12% 76.13% 88.16% 72.34%
Relative Absolute Bias 30.67% 9.76% 1.88% 8.75%

AC-Poisson model
81.09% 82.84% 89.38% 78.49%

(u = 1, k = 2)
Relative Absolute Bias 2.00% 1.80% 0.52% 1.00%

2.5.4 Testing AC with Different Yield models: Comparison of
AC-NB, AC-NBP and AC-PNB

In addition to the Poisson yield model, the negative binomial model is also widely used in
yield prediction. Compared with Poisson model, it is less likely to underestimate the yield
(K. O. Kim 2011). Following negative binomial model, the yield for cluster j is given by
ŷj = (1 + λj/γj)

−γj , where γj is called the cluster parameter. There are multiple ways of
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determining γj (see Cunningham 1990 for details), and we adopt the method of moments as

γj =
λ2
j

σ2
j − λj

. (2.10)

Here σ2
j is the variance of the number of defects per chip for the cluster, which is estimated by

the sample variance. Three different prediction models combined with adjacency-clustering
are used here: (1) AC-NB model: negative binomial yield model is fitted to each cluster;
(2) AC-NBP model: negative binomial yield model is fitted to non-defective clusters (cluster
with “0”s) while Poisson yield model is fitted to defective clusters (of label > 1); (3) AC-
PNB model: Poisson yield model is fitted to non-defective clusters while negative binomial
yield model is applied to defective clusters. These three models are tested on the four
wafers for different combinations of u and k. We select the parameter values that yield the
lowest prediction errors (AC-NB: u = 0.7, k = 3; AC-NBP: u = 0.6, k = 1; AC-PNB:
u = 0.7, k = 3). Experimental results for the choice of these parameter values are provided
in Appendix A. It should be noted that the choice of u = 1 and k = 2 achieves similar
results to the above parameters with average gaps of 0.0036, 0.0019 and 0.0083 for AC-NB,
AC-NBP and AC-PNB respectively.

We compare the prediction results of these three AC models with negative binomial
model and negative binomial regression model. In negative binomial regression model, we
choose the same covariates as in Poisson regression model, and the coefficients are estimated
using maximum likelihood method, which is implemented in glm.nb() in R (see https:

//stat.ethz.ch/R-manual/R-devel/library/MASS/html/glm.nb.html for details).
The results of comparing the performance of AC-NB, AC-PNB, AC-NBP, negative bi-

nomial and negative binomial regression models are given in Table 2.4. The results indicate
that AC-NB is the best model to use uniformly. Specifically, AC-NB model outperforms
other models for wafer 3 and wafer 4, AC-NBP model yields the best result for wafer 1 and
AC-PNB model gives the best result for wafer 2. Compared with the negative binomial
model, AC-NB model improves the prediction result by a factor between 2 and 14. Com-
pared with negative binomial regression model, the error of AC-NB model is lower on wafers
2 and 4 and about the same for wafer 3, and a bit worse for wafer 1.

The reason why in some of the cases AC-PNB and AC-NBP perform better than AC-NB
is that improved yield prediction can be achieved by fitting different yield models to different
clusters. Combining different yield models works better in cases of unstable manufacturing
processes that render different defect behaviors in different areas on the wafer. Still, AC-NB
model is uniformly the most robust and therefore it is our recommended choice.

2.6 Simulated Data Study

To further compare the AC model with existing models, we generate simulated wafer maps
with different degrees of clustering and radial loss. Wafer maps have been simulated using
scattering scheme or superposition of different defect patterns (see, e.g., Yuan, Ramadan, and
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Table 2.4: Yield prediction comparison between: AC-NB, AC-PNB, AC-NBP , negative
binomial and negative binomial regression models. The best results are given in boldface.

Wafer Map 1 2 3 4

True yield 79.50% 84.36% 89.85% 79.28%

AC-NB (u = 0.7, k = 3) 79.82% 84.12% 89.94% 79.19%
Relative Absolute Bias 0.40% 0.27% 0.10% 0.12%

AC-NBP (u = 0.6, k = 1) 79.33% 84.47% 90.54% 80.06%
Relative Absolute Bias 0.22% 0.14% 0.76% 0.98%

AC-PNB (u = 0.7, k = 3) 79.83% 84.34% 90.18% 79.78%
Relative Absolute Bias 0.41% 0.02% 0.37% 0.63%

Negative binomial model 76.31% 83.09% 89.71% 78.07%
Relative Absolute Bias 4.01% 1.51% 0.16% 1.53%

Negative binomial regression
model

79.28% 84.12% 89.76% 79.07%

Relative Absolute Bias 0.28% 0.28% 0.10% 0.26%

Bae 2011, Bae, Hwang, and Kuo 2007 and M. H. Hansen, Nair, and D. J. Friedman 1997).
We adopt here the Generalized Linear Mixed Model (GLMM) to generate simulated samples
because it easily captures both the inhomogeneity and spatial dependence of defects, which is
difficult to model using either scattering or superposition method. GLMM has been applied
in the analysis of spatial correlated count data, as shown in Christensen and Waagepetersen
(2002), E. Park and Lord (2007) and Chib and Winkelmann (2012).

In the simulation, the number of defects on chip i follows Poisson distribution with density
λi, which is related to covariates with the canonical logarithmic function. As radial loss is
significant in semiconductor manufacturing, the radial distance, ri, is used as a covariate
while no other spatial variables are considered:

log(λi) = β0 + β1ri + si. (2.11)

Here s = (s1, . . . , sn) is a random vector that follows a Gaussian distribution with a specified
covariance matrix Σ: s ∼ N(0,Σ). In order to model the spatial dependency between chips
and thus generate defect clusters, Σ is designed with the conditional autoregressive model
(CAR), resulting in a type of Gaussian Markov Random Field (GMRF). Under the four-
neighborhood system, the inverse of covariance matrix Q = Σ−1 has the following structure:

Qij =


4p i = j

−p j ∈ N(i)

0 otherwise,

(2.12)
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Figure 2.5: Simulated wafer maps without radial loss for varying values of p.

where p is called precision parameter. Smaller p indicates greater neighborhood effects and
thus generates more clustered defects. Additional details about GMRF and CAR can be
found in Lichstein et al. (2002) and Havard Rue and L. Held (2005). Our simulation test
consists of two parts. The first part simulates wafer maps with different degrees of clustering
but with no radial loss, i.e. β1 = 0, while the second part simulates samples with radial loss,
i.e. β1 > 0. The values of β0 and β1 are selected such that the simulated wafer maps have
similar number of defects to real wafer maps.

Each simulated wafer contains 15 × 15 = 225 chips and parameters are chosen to be
(β0, β1) = (−2, 0) for cases with radial loss and (β0, β1) = (−2, 0.1) for cases without radial
loss. Figure 2.5 demonstrates four wafer maps simulated by GLMM with different values of
p, in which smaller p implies greater spatial correlation and thus higher degree of clustering.
For each p, we generate 100 simulated wafer maps.

It is noted that our adjacency-clustering algorithm is scalable for large wafer maps. For
instance, for a wafer map containing 100 × 100 = 10000 chips, the AC model is solved to
optimality within 3.36 seconds. For the purpose of generating insights from the simulation
it is sufficient to use simulated wafers containing small number of chips, e.g. 15× 15 = 225
chips.
Parameter selection: The AC model requires the setting of the two parameters, u and k.
Similar to other data analytics methods and machine learning techniques, the combination
of u and k can be selected through training on given training datasets (samples produced
in the initial manufacturing stage or representative historical samples). Specifically, we
identify the best combination of u and k that minimizes the training error. In order to
mimic the practical prediction tasks in integrated circuit manufacturing, we perform two
different training procedures to select u and k on simulated wafer maps: (1) One-sample
training: Among 100 simulated wafer maps, we pick as the training set one wafer map at a
time and the other 99 maps as the test set. The AC model is fitted to the training set to find
the best combination of u and k which is then applied to the test set and the mean absolute
percentage error (MAPE) is calculated. We report as the error the average MAPE across
these 100 runs. (2) Two-fold training: We select a random subset of size 50 out of the
100 simulated wafer maps to serve as training set and the complement set serves as test set.
Then the MAPE is evaluated on the test set. Next the roles of the same two sets are reversed
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with the second one serving as training and the first as test set. The average of these two
MAPE values is then reported. These two training procedures are two different types of
cross-validation designed to measure the actual prediction performance of AC models. It is
noted that the reported errors are test errors instead of training errors.

In the next two subsections we evaluate the performance of the AC models with the two
training procedures as compared to the default setting of u = 1 and k = 2 on the simulated
data. AC with these three parameter selection procedures are compared to Poisson model,
Poisson regression and negative binomial models. In subsection 2.6.1 we analyze AC-Poisson
with parameters selected by training and the default setting, and compare their performance
with Poisson and Poisson regression model. In subsection 2.6.2 we test the performance of
AC with other yield models.

2.6.1 Testing AC-Poisson on Simulated Data

In this subsection we compare AC-Poisson to Poisson on simulated maps. We are not testing
the regression model here because the regression is on the radial distance and in the simulated
data here β1 = 0, which means that there is no radial effect.

Table 2.5: Mean absolute percentage error comparison results between AC-Poisson and
Poisson model for simulated wafer maps (β0 = −2, β1 = 0). The best results are given in
boldface.

Precision (p) 0.2 0.3 0.5 1

AC-Poisson model (one-sample training) 1.81% 1.64% 1.22% 0.99%
AC-Poisson model (two-fold) 0.81% 0.98% 0.84% 0.68%

AC-Poisson model (u = 1, k = 2) 0.81% 0.98% 0.85% 0.68%
Poisson model 40.42% 19.27% 6.93% 1.81%

The results given in Table 2.5 are in terms of MAPE. The two training procedures are
performed and the corresponding cross-validation errors are presented for AC-Poisson. We
also report the prediction error of the default setting. As shown in Table 2.5, AC-Poisson
model provides significantly better prediction results than the Poisson model. As expected,
the gap between the two narrows as the clustering becomes less pronounced in the simulated
data, which is measured by the increasing value of the precision parameter p. For highly
clustered wafer maps (p = 0.2), our model reduces the prediction error by a factor of 50, as
compared with Poisson model. In addition, two-fold training provides lower errors than one-
sample training, which is explained by the larger size of the training data set. Compared
with the two-fold training, the default setting gives almost the same prediction results,
which provides additional evidence to support the use of this combination in the context of
integrated circuit manufacturing.

Next we consider simulated data with radial loss, i.e. β1 = 0.1. Here we compare
AC-Poisson with both Poisson and Poisson regression models, where the only covariate
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for Poisson regression model is {r}, the radial distance of a chip (and no angle-dependent
variables). Table 2.6 displays the comparison results, in terms of the error measure MAPE,
of AC-Poisson and Poisson and Poisson regression models.

Table 2.6: Mean absolute percentage errors comparison results between AC-Poisson, Poisson
and Poisson regression model for simulated wafer maps with radial loss (β0 = −2, β1 = 0.1).
The best results are given in boldface.

Precision (p) 0.2 0.3 0.5 1

AC-Poisson model (one-sample training) 1.97% 2.39% 2.49% 1.70%
AC-Poisson model (two-fold) 1.27% 1.29% 1.43% 1.18%

AC-Poisson model (u = 1, k = 2) 1.23% 1.41% 1.60% 1.36%
Poisson model 62.21% 41.87% 18.90% 5.77%

Poisson regression model 45.82% 31.53% 14.88% 4.75%

As seen in Table 2.6, AC-Poisson outperforms Poisson and Poisson regression model with
the two training procedures and the default setting. As expected, Poisson regression model
provides better prediction accuracy than Poisson model, which can be explained by the
fact that Poisson model does not relate the defect density to radial distance. Both models,
however, are significantly inferior to AC-Poisson, in terms of the error. Overall, two-fold
training leads to the best prediction results, and the default setting gives very close results
to the two-fold training. This validates the setting of u = 1 and k = 2 as a good choice in
the absence of training data.

2.6.2 Testing AC-NB, AC-NBP and AC-PNB on Simulated Data

In this subsection, we extend our discussion to AC models with the negative binomial yield
model. The MAPE of AC-NB, AC-NBP and AC-PNB as well as the negative binomial
model for datasets with and without radial loss are presented in Table 2.7 and Table 2.8,
respectively. Similarly, we consider three parameter settings for AC models: two with our
training procedures and one with the default setting. It should be mentioned that for the
simulated wafer maps with radial effect, we do not construct a negative binomial regression
model as the iteratively reweighted least squares (IRLS) algorithm fails to converge for many
simulated maps. The lack of convergence has been noted previously in the literature ( for
more details see Marschner et al. 2011). This phenomenon worsens as the neighborhood
effect becomes more prominent in our simulation.

From the comparison results we conclude that both AC-NB and AC-NBP models outper-
form the AC-PNB model and negative binomial model for the simulated data set without
radial effects. For the simulated wafer maps with radial effects, AC-NB, AC-NBP and
AC-PNB all provide smaller prediction errors than the negative binomial model. On both
simulated data sets, AC-NB model is the leading model, in terms of the lowest errors for
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Table 2.7: Mean absolute percentage errors comparison results between AC-NB, AC-NBP,
AC-PNB and negative binomial model for simulated wafer maps (β0 = −2, β1 = 0). The
best results are given in boldface.

Precision (p) 0.2 0.3 0.5 1

AC-NB (one-sample training) 1.50% 0.87% 0.45% 0.22%
AC-NB (two-fold) 0.92% 0.37% 0.23% 0.18%

AC-NB (u = 1, k = 2) 1.64% 0.58% 0.28% 0.19%
AC-NBP (one-sample training) 1.69% 1.53% 0.81% 0.44%

AC-NBP (two-fold) 0.74% 0.69% 0.49% 0.21%
AC-NBP (u = 1, k = 2) 0.69% 0.71% 0.60% 0.42%

AC-PNB (one-sample training) 2.42% 1.83% 1.02% 0.78%
AC-PNB (two-fold) 1.26% 0.74% 0.58% 0.68%

AC-PNB (u = 1, k = 2) 1.85% 0.98% 0.77% 0.63%
Negative binomial model 8.42% 4.93% 1.33% 0.28%

Table 2.8: Mean absolute percentage errors comparison results between AC-NB, AC-NBP,
AC-PNB and negative binomial model for simulated wafer maps (β0 = −2, β1 = 0.1). The
best results are given in boldface.

Precision (p) 0.2 0.3 0.5 1

AC-NB (one-sample training) 2.86% 1.38% 1.01% 0.51%
AC-NB (two-fold) 2.10% 0.94% 0.48% 0.32%

AC-NB (u = 1, k = 2) 3.74% 1.91% 0.73% 0.34%
AC-NBP (one-sample training) 1.78% 1.93% 1.97% 1.01%

AC-NBP (two-fold) 1.16% 1.02% 1.03% 0.63%
AC-NBP (u = 1, k = 2) 1.03% 1.23% 1.22% 0.96%

AC-PNB (one-sample training) 3.55% 2.40% 1.96% 0.92%
AC-PNB (two-fold) 2.19% 1.15% 1.04% 0.90%

AC-PNB (u = 1, k = 2) 3.66% 1.98% 1.19% 0.92%
Negative binomial model 16.58% 11.93% 4.45% 1.31%

most cases. For these AC models, the default setting of u = 1 and k = 2 has similar pre-
diction results to the two-fold training results. The default setting provides better results
than the one-sample training in most simulations, which implies that it is the combination
to select unless sufficient data is available for training.



CHAPTER 2. ADJACENCY-CLUSTERING FOR YIELD PREDICTION 24

2.7 Conclusion

We introduce the adjacency-clustering (AC) model for yield prediction that takes into ac-
count a neighborhood effect. We demonstrate that this model delivers significant improve-
ments in prediction accuracy as compared to state-of-the-art statistical approaches. The
empirical evidence is based on runs for real data sets and simulated data sets. The AC
model is parametrized by the selection of two parameters that could be tuned for specific
purposes. Nevertheless, we show that even making a default selection of values u=1 and
k=2 still delivers high quality prediction results that substantially improve on existing tech-
niques. The AC model applies a polynomial time algorithm to obtain clusters efficiently and
thus can be available for online monitoring and other practical uses. Although it fits clas-
sical yield model for each cluster, the yield prediction result of adjacency-clustering model
exhibits significant improvement in the accuracy compared with classical models that do
not differentiate between clusters. We also observe that the scheme of fitting different yield
models to clusters with different yield levels can further increase the accuracy. This obser-
vation implies that different clusters in a wafer may have different types of mechanisms of
generating defects. In practice, historical data can be used as the training set to select the
two parameters, u and k. Our simulation results show that AC models work well even with
very small training set. And through evaluation on both real and simulated data sets, we
find out that the combination of u = 1 and k = 2 leads to superior prediction performance.

Apart from yield prediction, the adjacency-clustering model can be used to evaluate the
extent of clustering of defects on wafer maps, where larger objective values correspond to
higher segregation, or separation, of clustering of defects. This may be helpful in the quality
control of a manufacturing process.

Compared with existing regression models in the literature, our model presents not only
improved prediction accuracy, but also other advantages: First, our model is free from
coefficient estimation, which remains challenging for regression models based on complicated
distributions or discrete hidden Markov models, especially when handling large-scale data.
Second, our model is highly flexible and can be applied to wafers with various spatial patterns
since the spatial pattern is naturally captured by the solution to the adjacency-clustering
model. In contrast, regression models necessarily require covariate selection and this selection
is increasingly difficult as wafers exhibit more complicated spatial patterns. The success of
the technique of adjacency-clustering presented in this paper bodes well to its applications to
other contexts where a neighborhood effect is manifested, e.g. energy consumption prediction
and disease mapping.
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Chapter 3

On-Time Last Mile Delivery

3.1 Introduction

As e-commerce booms and customers expect faster delivery, food shopping has recently
been shaped into a case in point. The fast-growing online platforms enable convenient
food ordering and delivery services for customers. While platforms such as Grubhub and
UberEATS deliver food that is prepared and packaged by restaurants, others, for example
SpoonRocket and Domino’s Pizza, prepare and deliver their own food boxes. In either case,
one of the key challenges is how to assign the prepared orders to drivers (or carriers) for
on-time delivery.

Motivated by our partner food service provider in China, we aim to improve its on-time
delivery performance through better order assignment decisions. This provider prepares the
food at its central kitchen, which is referred to as “the depot” hereafter, and delivers to
customers within a certain radius from the depot. Customers place orders before each cutoff
time, e.g., 10:30 am, are promised to receive the orders by a deadline, e.g., 11:45 am. From
its daily operations, the provider found that delays seemed to be inevitable, especially when
the orders were poorly assigned to drivers.

In this paper, we highlight two practical complications in order assignment—the driver’s
routing behavior and uncertain service time–and tackle them by bridging between the tools
in prediction and optimization. First, the drivers do not always follow the planned delivery
sequences from the routing tools, if any. While many last mile service providers invest con-
siderably in routing tools, the practitioners realize that significant deviations exist between
the drivers’ routes and the planned ones. It is said that drivers tend to repeat their familiar
routes, and they rely on their past experience and the real-time road conditions. Thus, our
partner service provider only assigns orders to drivers without detailed route planning and
instead gives them the freedom in choosing their delivery routes. Such a route deviation is
not unique to the Asian context. According to a research project conducted in the U.S. and
Mexico, using the data on deliveries over a one-year period for a large soft drinks company,
it was found that three out of four deliveries did not follow the planned sequence (Y. Li and
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Phillips, 2018). Therefore, we aim to construct a travel time prediction model to capture
the drivers’ behavior, which can be integrated with order assignment optimization.

Second, the time a driver spends at a customer location, which we term as the “service
time”, is highly uncertain. Because the customer locations are often high rise buildings,
the drivers usually need to find parking spaces, navigate to the right floor and meet the
customers in person. The service time varies and depends on the customer location and the
order size, which are also random from day to day. By leveraging the existing techniques
in optimization with uncertainty, we are able to account for uncertain service times when
planning the order assignments.

3.1.1 Order Assignment with Travel Time Predictors

We first provide an overview of our model and the general framework for the integration
between a prediction model and an optimization formulation in our context. We consider
that the order assignment problem consists of two stages: upon receiving the orders from
customer locations I, the service provider first assigns the locations Ik to driver k among
a pool of drivers K, and then each driver k responds to the assignments by choosing his
preferred route to visit Ik.

Suppose driver k chooses his own route zk by optimizing his objective function gk(zk, Ik).
Consequently, the route choice taken by driver k is the optimal solution z∗k(Ik) to the driver’s
optimization problem minzk gk(zk, Ik). Moreover, we denote the uncertain service times at
all the locations as t̃ ∈ R|I| that follows a distribution P. Suppose the on-time performance
metric is characterized by the function H

(
{Ik,∀k ∈ K} , {z∗k(Ik),∀k ∈ K} , t̃

)
, e.g., the de-

livery delay. Therefore, the order assignment problem can be generally formulated as a
two-stage stochastic program as follows:

min
Ik,∀k∈K

EP
[
H
(
{Ik,∀k ∈ K} , {z∗k(Ik),∀k ∈ K} , t̃

)]
s.t. z∗k(Ik) = gk(zk, Ik), ∀k ∈ K

Ik ⊆ I, ∀k ∈ K.

(3.1)

In this paper, we focus on the practice that the service provider partitions I into Ik,∀k ∈
K for the order assignment, aiming to minimize the total delay of all the drivers as in the
following on-time performance metric:

H
(
{Ik,∀k ∈ K} , {z∗k(Ik),∀k ∈ K} , t̃

)
=
∑
k∈K

(∑
i∈Ik

t̃i + lk(z
∗
k(Ik))− τ

)+

, (3.2)

where
∑

i∈Ik t̃i is the total service time at the customer locations, lk(z
∗
k(Ik)) is the total

travel time on the road and τ is the target delivery time window.
The main challenge here is to depict z∗k(Ik) for the evaluation of the total travel time

lk(z
∗
k(Ik)). Unfortunately, a driver’s preference in route choices is often unobservable to the
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provider or difficult to be formulated mathematically as elaborated by the driver’s routing
behavior above. That is, although the driver k’s objective function gk(zk, Ik) is clear to the
driver himself, it is unknown to the service provider.

Instead of investigating gk(zk, Ik) or z∗k(Ik), our approach takes a straightforward step
by estimating lk(z

∗
k(Ik)) as a function of Ik. Using machine learning methods, we generate

features based on Ik as the travel time predictors and develop a prediction model l(Ik) for
the total travel time spent by a driver to visit Ik locations. We will detail the potential
travel time predictors in Section 3.3.1 and discuss how to integrate them with the existing
optimization tools for order assignment. Specifically, we identify computationally tractable
predictors and prediction models for the total travel time in Sections 3.4.1 and 3.4.2.

The connection between the on-time performance metric and the prediction
target variable. Our approach treats the total travel time as the target variable because
the considered on-time performance metric in (3.2) emphasizes minimizing the delays in
completing all the routes. This measurement is timed from a driver’s perspective with
respect to his preset target time window. It encourages the drivers to finish their trips on
time. Depending on the settings, the travel time measured as lk(z

∗
k(Ik)) can be of one-way

(from the depot to the last visited customer) or round-trip (from the depot to the return).
Alternatively, one may propose a more customer-centric metric that includes the delay at
every customer location, which highly depends on the actual delivery sequence in a driver’s
route. Since the on-time performance metric in (3.2) evaluates the delay at the last-visited
customer, it is more conservative (i.e., larger) than the average delay experienced by all the
customers. While a customer-centric metric is more comprehensive than the metric in (3.2),
it inevitably requires the prediction of z∗k(Ik). As we have noted above, due to the higher
dimension of z∗k(Ik), learning a driver’s exact route choice z∗k(Ik) as a target variable is much
more challenging than learning his total travel time lk(z

∗
k(Ik)). Hence, we will leave it for

future research.

3.1.2 Related Literature

We discuss the connections between our study and several streams of literature in terms of
the research topic, approach, and framework.

Vehicle Routing Problems and Order Dispatch. The order assignment problem for
delivery has been studied extensively in the form of vehicle routing problems (VRPs) in the
transportation and operations research literature (see, e.g., Solomon 1987; Laporte 2007).
There are various extensions of VRPs developed in deterministic or stochastic contexts,
static or dynamic environments, and with or without time window constraints (see D. J.
Bertsimas and Van Ryzin 1991; Laporte, Louveaux, and Mercure 1992; D. J. Bertsimas and
Van Ryzin 1993; Gendreau, Laporte, and Séguin 1996; A. M. Campbell and Thomas 2008;
Erera, Morales, and Savelsbergh 2010; Jaillet, J. Qi, and Sim 2016 for examples). While
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our problem is related to the routing problems, we aim to explicitly capture the driver’s
route choice via a travel time prediction model and thus do not solve the driver’s routing
optimization where its objective is unknown to the service provider.

In the context of last mile delivery, assigning the orders to vehicles is also referred to
as dispatching. For example, Klapp, Erera, and Toriello (2016) study the dynamic dispatch
problem where the orders arrive dynamically throughout a day. Our problem is also related
to the order batching problem in a warehouse. For instance, Gademann and Velde (2005)
study the order picking strategy in a parallel-aisle warehouse to minimize the total travel
time, where the extraction time, i.e., the time spent at the pick location, is omitted in their
optimization model, due to the assumption of a constant total extraction time. In our paper,
in addition to the predicted travel time, we also integrate the uncertain service time at the
customer locations by employing stochastic and robust optimization tools.

Approximations of the Routes. The VRP tour lengths are often approximated by
analytical functions in strategic planning problems. The well-known Beardwood-Halton-
Hammersley (BHH) Theorem (Beardwood, Halton, and Hammersley, 1959) allows the trav-
eling salesman problem (TSP) tour length to be expressed in the probability density function
of the demand points. By utilizing the asymptotic result in BHH theorem, Carlsson (2012)
partitions a service region to balance the workload among vehicles. Alternatively, the ap-
proximation functions for TSP tours can also be obtained through simulation (H. Wang and
Odoni, 2014). Moreover, the continuum approximation (CA) models are widely used to yield
tractable analytical solutions in applications, including terminal design problems (Ouyang
and Daganzo, 2006), inventory routing problems (Z.-J. M. Shen and L. Qi, 2007), dynamic
facility location (X. Wang, Lim, and Ouyang, 2016), supply chain distribution network de-
sign (Lim, Mak, and Z.-J. M. Shen, 2016), and online grocery shopping analysis (Belavina,
Girotra, and Kabra, 2016).

The key difference between our paper and the above literature is the starting point of
the route approximation—our prediction model directly estimates the total travel time from
the historical data without any underlying structural assumptions (e.g., the TSP or CA)
for the driver’s routing decision. Nevertheless, inspired by these analytical approximations,
we construct the relevant predictors for travel time and discuss a class of computationally
tractable prediction models for order assignment.

Data-driven modeling and optimization. Our paper is also closely related to the
stream of papers that integrate predictive models with optimization. The recent advances
include estimating the benefit of potential regions in organ allocation (Kong et al., 2010),
resource allocation in a large gas utility (Angalakudati et al., 2014), incorporating demand
prediction models into pricing optimization (Ferreira, Lee, and Simchi-Levi, 2015), pricing
and selection for wines (Hekimoğlu, Kazaz, and Webster, 2016), analyzing traffic equilibrium
(Ahipaşaoğlu, Meskarian, et al., 2015; Ahipaşaoğlu, Arıkan, and Natarajan, 2016), improv-
ing the assignment strategy in HIV early infant diagnosis supply chains (Jónasson, Deo, and
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Gallien, 2017), as well as the feature-based machine learning algorithms for the newsvendor
problem (Ban and Rudin, 2018).

Furthermore, Elmachtoub and Grigas (2017) propose a new predictive framework to
incorporate the structure of the optimization problem, which enables robust performance
against model misspecification. In recent revenue management research, there are also non-
parametric choice modeling approaches that improve the prediction accuracy and assortment
decision (e.g., Farias, Jagabathula, and Shah 2013; D. Bertsimas and Mǐsic 2015). Our paper
follows a similar journey in data-driven modeling, where several model components for order
assignment are identified and formulated based on data analytics. Nonetheless, our idea of
developing a travel time prediction model and integrating it with existing optimization tools
is novel and practical for delivery operations.

The closest study to our paper is that of Zheng, Natarajan, and Teo (2016) where least
squares linear and quadratic estimators are proposed to approximate the distribution of
project completion. Specifically, the authors solve for the least squares normal approximation
to obtain the best parameters consist of two parts: the intercept and coefficients associated
with individual activities. Similar in concept, we consider the total delivery time consists of
the travel time and the uncertain service time at the customer locations, which is analogous
to the intercept and random activity durations in Zheng, Natarajan, and Teo (2016). We
further develop the prediction model for the travel time by utilizing the spatial information
of the customer locations as predictors in the order assignment context.

3.1.3 Our Contributions

Our main contributions include the integration of predictors with optimization, modeling,
and algorithms, as well as the insights from the numerical experiments.

The integration of predictors with optimization: We propose the framework in Sec-
tion 3.1.1 that integrates travel time predictors with order assignment optimization with
the objective of improving the on-time performance. The use of predictors enables us to
account for driver’s routing choice, where the decision-making process is unobservable to the
service provider or intricate to model if not impossible. This idea can also be generalized
to other applications that involve optimization components not directly representable by
mathematical programming but can be approximated by prediction.

Models, reformulations, and algorithms: Using the order assignment problem as an
example, we demonstrate the detailed development and implementation of the proposed
framework. In particular, we identify the classes of tractable predictors and prediction
models that are highly compatible with the existing stochastic and robust optimization
tools. We also provide reformulations for the integrated models that can be efficiently solved
by optimization solvers with the proposed branch-and-price algorithm. While our main
discussion focuses on the order assignment problem for a single-period setting, two simple
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heuristics for multiperiod order assignment are built upon the single-period solutions, whose
effectiveness is shown in the computational experiments.

Insights from a real-world application: We approach the order assignment problem
from the analysis of the delivery data, where we observe the driver’s routing behavior that
deviates from the theoretical shortest-distance tours. Such an observation motivates us to
predict a driver’s travel time and integrate it with the ultimate order assignment. Using the
delivery data, our numerical experiments not only demonstrate the superior performance
of our proposed order assignment models with travel time predictors, but also highlight
the importance of capturing the driver’s routing behavior—a large sample size does not
necessarily compensate for the misspecification of the driver’s routing behavior.

3.2 A Food Delivery Service: Data and Observations

We acquire an operational data set that contains the detailed ordering and delivery infor-
mation for a 2-month period in 2015, from a food delivery service provider that operates
in Shanghai, China. The data set records the following information: 1) the order time:
the time when the order is received by the provider; 2) the quantity: the number of items
ordered; 3) the time window: the guaranteed delivery time; 3) the pick-up time: the time
when the order is collected by a driver; 4) the delivery time: the actual time when the order
is delivered to the customer; 5) the longitude and latitude: the customer location; 6) the
cutoff time: it identifies the order batch and all orders with the same cutoff time will be
dispatched together. The provider has determined a sequence of cutoff times {t1, t2, . . . } and
all orders placed in (tn, tn+1] will be guaranteed to be delivered by tn+1 + 75 minutes.

There are 839 customer locations identified in the data set. In terms of the delivery
performance, 20.4% of the total orders were not delivered on time, and 13.9% of the orders
were delayed by more than 10 minutes. We summarize the number of orders and delay time
in Table 3.1.

Table 3.1: Statistics of demand and delay (in minutes) during the 2-month period

Min Median Max Mean

Number of orders per location 1 2 503 10.3
Delay per order (minutes) 0 0 120 4.6

This paper aims to improve the order assignment by reducing inefficient routes taken by
drivers, while leaving other potential causes such as food preparation operations for future
exploration. When a driver picks up the batch of assigned orders, he is notified with the
remaining time window for the delivery, i.e., τ in the on-time performance metric (3.2). In
the provider’s current practice, orders are assigned manually. Figure 3.1 demonstrates a set
of orders in one dispatch batch, and how they were delivered in sequence by different drivers
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(we only show 3 drivers for clarity). We observe that driver 1 only carried one order and
visited one customer location while driver 3 made deliveries to more than 5 locations. In
addition, driver 2 was assigned to locations in opposite directions and consequently took
long detours. Such an assignment decision led to an inefficient utilization of the drivers and
poor on-time performance. In fact, driver 3 failed to deliver on time.
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Figure 3.1: Delivery routes by 3 drivers (the red dot represents the depot).

Furthermore, driver 2 did not follow the shortest path by traveling back and forth. It is
because the drivers have freedom in planning their own routes—they are not informed about
or required to follow any planned routes. The underlying motivation is that the service
provider believes that the drivers are familiar with the local area, but the information may
not be represented in its database, e.g., the real-time road conditions, biking friendliness,
and hidden paths. Hence, to improve the order assignment, it is critical to understand how
the drivers would deliver a set of assigned orders.

3.2.1 Driver’s Routing Behavior

In theory, it is optimal for a single driver to deliver the assigned orders based on the tour
derived from a traveling salesman problem (TSP). However, as elaborated in Section 3.1, the
driver’s routes often deviate from the planned ones. This subsection examines the driver’s
routing behavior in comparison to the theoretical TSP routes. Since the comparison is only
meaningful when the number of locations is more than one, we exclude the one-location
routes in the following analysis.
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To both the provider and drivers, the key objective is to minimize delays: the provider
receives complaints from customers, and drivers receive penalties on delayed orders. Since
the final segment from the last visited customer to the depot does not influence the on-time
performance in this batch, the drivers tend to minimize the one-way delivery travel time,
starting from the depot and ending at the last visited customer location. Using a standard
TSP formulation with a dummy node (see the details in the Appendix), one can find the
shortest one-way delivery tour to visit all the assigned customers.

Moreover, based on the drivers’ routes reconstructed from the data, we are able to obtain
their actual delivery routes, i.e., the travel sequences from the depot to the last visited
customer. To compare the TSP routes with the actual ones, we calculate the total travel
time of both routes based on the travel time matrix calibrated from RouteMatrix API (2019).
To account for the speeding effect from electric bikes, we scale down the estimated travel
time by a factor of 4/3 as suggested by the literature (Langford, J. Chen, and Cherry, 2015;
A. A. Campbell et al., 2016).

Figure 3.2 presents the histogram of the differences between the actual delivery travel
time and that from the TSP solution for all the observed routes visiting more than one
location. We find that the actual delivery travel time is consistently greater or equal to the
delivery travel time from the TSP solution. The long tail in this histogram highlights the
instances where the actual delivery tour largely deviates from the shortest TSP route. The
difference in travel time is 3.8 minutes on average and its average relative difference is 17.9%.
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Figure 3.2: The travel time differences between the actual delivery and TSP routes (in
minutes).

The above result implies that drivers often deviate from the theoretical shortest routes.
This phenomenon is also confirmed in empirical studies on drivers’ routing behavior (e.g.,
Lima et al. 2016 and Y. Li and Phillips 2018). There are several possible explanations.
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First, the TSP formulation does not consider many practical constraints faced by drivers. For
example, some road intersections have limited left turn flows and drivers may choose to avoid
these intersections. Second, the drivers may prefer some travel patterns over others. For
instance, zigzagging routes are found to be undesirable because of the increased possibility of
accidents on busy streets (Holland et al. 2017). Third, delivery drivers may adjust the routes
based on real-time traffic conditions, weather conditions and customers’ updated locations.

Modeling all the practical constraints and behavior considerations is difficult if not im-
possible and incorporating them as numerous constraints into a complicated VRP model
is almost intractable. Therefore, the driver’s routing problem denoted as gk(zk, Ik) in the
general framework 3.1 is difficult to represent in mathematical formulation. To overcome
this difficulty, we will utilize machine learning techniques to predict the total travel time for
visiting a set of customer locations without specifying the visiting sequence.

3.2.2 Uncertain Service Time

The food orders are usually delivered to customers in person. As many customer locations
are high rise buildings in urban areas, the drivers often need to find a parking space, navigate
to the right floor and meet the customers to hand over the orders. To differentiate this time
from the travel time in the delivery tour, we use the term “service time” to denote the time
a driver spends at a customer location. Since the service time is not measured explicitly in
the data set, we estimate the service time spent at each customer location as follows. We
first measure the biking travel time between two consecutively visited customer locations
from the travel time matrix. The travel time estimation does not vary according to the
traffic conditions, because electric bikes are allowed to take the bike lanes to avoid traffic
congestions. The service time is therefore estimated as the difference between the observed
delivery time and the estimated arrival time that is based on the departure time from the
previous location and the estimated travel time between the two locations from the query.
We note that by using a different travel time estimation tool, the estimated values of the
service time may differ. Nevertheless, in this section, we intend to investigate the existence
of uncertainty in the service time, as highlighted by the practitioners in the delivery service.
In theory, an accurate measure of the service time can be obtained, if the provider tracks
the more detailed vehicle location information.

The distribution of the service time estimated across all the customer locations is pre-
sented in Figure 3.3 (a), where its mean is 4.16 minutes. We observe that the variability of
service time at the same location is significant. Moreover, we notice that the service time is
heterogeneous across different locations. The mean service time of a customer location varies
from 0 to 101 minutes. Furthermore, the distributions of the service time at various loca-
tions are different. Figure 3.3 (b) displays the histograms of service time at three different
customer locations with a similar number of orders.

Furthermore, the service times across different customer locations are mostly uncorre-
lated. We apply Hoeffding’s independence test (Hoeffding, 1948) to all location pairs. The
results show that only 0.14% of them reject the null hypothesis of independence with a sig-
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(a) All customer locations.
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(b) Three selected customer locations.

Figure 3.3: Distribution of the service time (in minutes) at customer locations.

nificance level of 0.05 (out of the pairs that share more than 4 observations the percentage
is less than 9.6%). This observation facilitates the analysis of the worst-case expected total
delay in Section 3.4.3.

3.3 Travel Time Prediction

We dedicate this section to discuss predictors and prediction models for travel time lk(z
∗
k(Ik))

as a function of orders Ik assigned to driver k. The proposed prediction methods not only
embed driver’s routing behavior highlighted above but also contribute to the literature in
approximating theoretical TSP and VRP tour lengths.

Previous research has proposed approximate formulas for the TSP (i.e., a special case
of the VRP with a single driver) and VRP with asymptotic results under various scenarios.
Assuming demand locations are independently and uniformly distributed in a square service
region of area A, the optimal TSP tour length TSP ∗ satisfies (Beardwood, Halton, and
Hammersley, 1959):

lim
n→∞

TSP ∗√
n

= ϕ
√
A, (3.3)

where n is the number of locations and ϕ is a constant. Similar results for the VRP are
also available, e.g., in Daganzo (2005). However, such approximate formulas require strong
stochastic assumptions and can only yield good results when n is large (Z.-J. M. Shen and
L. Qi, 2007). For food delivery, however, a driver may visit less than 10 locations, which
makes the approximate formulas inappropriate. Furthermore, the above formula ignores the
drivers’ routing behavior discussed in Section 3.2.1.

Therefore, in the following, we explore several classes of predictors and prediction models
for the travel time while maintaining the computational tractability in the order assign-
ment problem. The integration of prediction and optimization for order assignment will be
discussed in Section 3.4.
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3.3.1 Predictors for Travel Time

We first review the promising predictors (features) for TSP tour estimation in the literature
and then extend them to tractable predictors for the travel time. The general classes of travel
time predictors are based on the number of locations, visiting area, distance, dispersion, and
their interactive terms as illustrated in Figure 3.4.

Number of 
locations

Distance Dispersion

Visiting area

Figure 3.4: Classes of predictors for travel time.

Researchers have proposed simple regression models based on the approximation in (3.3)
to estimate the TSP length. Typically, these regression models involve one predictor for
the distance between the depot and customers, and the other one for the visiting area. For
instance, Chien (1992) suggests d (the average distance between the depot and customers)
and

√
R(n− 1), where R is the smallest rectangular area to cover the n locations. Moreover,

Çavdar and Sokol (2015) propose using the standard deviation of the customers’ coordinates
to account for the impact of dispersion. In Table 3.2, we introduce the definitions of the
graph attributes involved in travel time predictors.

However, not all the predictors can yield tractable representations for computation. For
instance, R can be calculated as a×b, where a is the maximum latitudinal difference between
a pair of customer locations and b is the maximum longitudinal difference between a pair
of customer locations. While a and b (depending on the order assignment decision) can be
represented using linear constraints, R does not yield linear or convex representations, which
raises tractability challenges for the order assignment problem. As a result, we propose a
number of new predictors that can potentially capture the practical delivery travel time and
enable tractable representations with linear constraints. We list the predictors surveyed from
the literature as well as the tractable ones we identified and extended for our problem in
Table 3.3 .

Note that although predictors such as a
√
n are not linear or convex in the assignment

decisions, we can represent them as piecewise linear functions by utilizing the fact that
n is an integer variable. More details about the reformulations are provided in Section
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Table 3.2: Definitions of the graph attributes in travel time predictors

Attribute Definition

d̄ The average distance between the depot and customer locations
d The smallest distance between the depot and customer locations
D The largest distance between the depot and customer locations
R The area of the smallest rectangle covering the customer locations
R′ The area of the smallest rectangle covering both the depot and the customer

locations
L The area of the smallest lune (determined by two sectors with the same

central angle originated from the depot) covering the customer locations
a The maximum latitudinal difference between a pair of customer locations
b The maximum longitudinal difference between a pair of customer locations
a′ The maximum latitudinal difference between a pair of customer locations

(including the depot)
b′ The maximum longitudinal difference between a pair of customer locations

(including the depot)
cstdeva The standard deviation of the latitudinal differences between the depot and

customer locations
cstdevb The standard deviation of the longitudinal differences between the depot

and customer locations
sa The average latitudinal difference between a pair of customer locations
sb The average longitudinal difference between a pair of customer locations

Table 3.3: Potential predictors for the delivery travel time

Class Features in the literature Tractable features

Distance
d̄ (Chien 1992) d̄
D D
d d

Number of
locations

n n

Visiting area ×
Number of
locations

√
Rn,

√
R′(n+ 1),

√
Ln

(Chien, 1992)
a
√
n, b
√
n, a′
√
n+ 1, b′

√
n+ 1

√
R′(n+ 1)3,

√
R′

n+1 (Kwon,

Golden, and Wasil, 1995)

a′(n+ 1)
3
2 , b′(n+ 1)

3
2 , a′√

n+1
, b′√

n+1

n
√
R an, bn

Dispersion
√
n(cstdevacstdevb) (Çavdar

and Sokol, 2015)
sa, sb
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3.4.1. In addition, measuring a and b in the latitudinal and longitudinal distances aligns
approximately with the road network in the studied area in Shanghai. For cities with different
road orientations, one can apply rotation transformations to establish proper orientation in
the measurement of a and b.

3.3.2 Optimization-Compatible Prediction Models

After extracting the predictors, the second step is to select the appropriate prediction model
that is compatible with the order assignment optimization. More specifically, the learned
prediction model should yield explicit and tractable representations in the assignment de-
cision variables. We discuss here a wide range of machine learning models including linear
models, e.g., the least absolute shrinkage and selection operator (LASSO) and ridge regres-
sion, and nonlinear models, e.g., support vector regression and random forest. The more
complex machine learning models, e.g., neural networks, are not compatible due to their
complicated nonlinear structures.

The linear models assume a linear relationship between the target variable and predictors,
e.g., the ordinary least squares (OLS). Let β denote the vector of coefficients for all the
predictors. The LASSO approach extends the OLS regression by adding p||β||1, an `1-
norm penalty on β, into the loss minimization problem. The shrinkage parameter p > 0 is
used to control the model sparsity—the greater the value of p is, the sparser the resulting
coefficients will be. By contrast, ridge regression instead imposes p||β||22, which is a squared
`2-norm penalty on β. The ridge penalty (squared `2-norm) encourages highly correlated
features to be averaged (J. Friedman, Hastie, and Tibshirani 2001). Moreover, the elastic
net combines both types of penalties with p(α||β||1 + (1 − α)||β||22), where 0 < α < 1, and
enjoys the properties of both LASSO and ridge regressions. These shrinkage methods are
able to reduce the undesired over-fitting of the OLS approach. Once the coefficients β are
derived, we can represent the total travel time as a linear function of the predictors, which
is compatible with the order assignment optimization.

Support vector regression (SVR) stems from the support vector machine (SVM) for
classification and uses the ε-sensitive error function as its objective (J. Friedman, Hastie,
and Tibshirani 2001). In its simplest form, a linear SVR still assumes a linear relationship
between the prediction variable and features. As a result, a linear SVR is also compatible
with the order assignment optimization. Using kernel functions such as the polynomial and
radial basis functions, SVR can map data to a higher-dimension feature space (possibly
infinite-dimension), which facilitates capturing the more complicated nonlinear relationships
between the target variable and predictors. However, the kernel representation makes it
difficult to obtain a tractable prediction model for the following optimization procedure.

The decision tree method is another popular class of machine learning models with great
prediction power. In decision trees, the feature space is divided into a set of subspaces where
a simple model is fitted to each subspace. More specifically, a decision tree makes a binary
partition in each split based on a tree structure. Each split can be represented by linear
constraints with indicator variables. Hence, a decision tree is also optimization-compatible.
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Nevertheless, a single decision tree may suffer from high variance and poor quality of out-of-
sample performance. To overcome these issues, random forest runs a number of decision trees
by applying random sampling to average out the noises. While the variance of the prediction
shrinks, as the number of trees increases, the number of indicator variables required for the
linear representation grows. Consequently, the resulting increased computational burden for
the random forest may outweigh the improved prediction performance.

In summary, we identify the optimization-compatible prediction models with linear rep-
resentations, including the linear models (e.g., OLS, LASSO, ridge regression, elastic net,
and linear SVR) and the piecewise linear models (e.g., decision trees). For the model selec-
tion, we are able to tune the hyper-parameters as well as calculate the accuracy based on
cross-validation. We apply three selection criteria: accuracy, tractability, and interpretabil-
ity. In the case study of Section 3.5, we detail the selection process considering the above
three criteria.

3.4 Integrating Predictors with Optimization Tools

We first detail the general framework proposed in Section 3.1.1 by formulating the order
assignment problem as a stochastic optimization problem. We then discuss tractable re-
formulations for the travel time predictors as well as the prediction models that can be
integrated with the optimization formulation. The robust optimization formulations are
further developed to address the uncertainty in service time and travel time, followed by a
discussion on multiperiod order assignment.

For the ease of exposition, we assume that the orders from the same location are delivered
by the same driver. Subsequently, the firm’s decision is to partition the set of customer
locations with orders denoted by I into Ik ∈ I for driver k ∈ K. Let qi be the associated
order quantity of location i ∈ I. The total number of orders served by a driver cannot exceed
his capacity C. After the order assignment, the drivers freely design their routes to visit
the assigned customer locations. As elaborated in the previous sections, we predict the total
travel time by driver k as l(Ik) with the travel time predictors from Ik. Let yik ∈ {0, 1} be
the binary decision variable that indicates whether customer location i is served by driver
k: 1 if i is served by driver k and 0 otherwise. Subsequently, the vector yk = (yik,∀i ∈ I)
defines Ik, i.e., Ik = {i ∈ I : yik = 1}. Hence, the travel time prediction model l(Ik) can be
represented as a function l(yk) in yk. Note that one can also make the prediction model l(·)
depend on k to account for the heterogeneous behaviors among the drivers.

Let the joint distribution of t̃i for all i ∈ I as P. The order assignment problem is then
formulated as the following stochastic program under the on-time performance metric (3.2)
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from Section 3.1.1:

min
yik

EP

[∑
k∈K

(∑
i∈Ik

t̃i + lk − τ

)+]
s.t.

∑
k∈K

yik = 1, ∀i ∈ I,∑
i∈I

qiyik ≤ C, ∀k ∈ K,

lk = l(yk), ∀k ∈ K,
yik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K,

where the first constraint ensures that location i is served and the second constraint accounts
for the delivery capacity C of each driver, and the third constraint simply replaces the
predicted travel time with an auxiliary decision variable.

Since evaluating the objective in this stochastic program requires full knowledge of the
joint distribution P as well as an integration operation, one may deploy the sample average
approximation (SAA) scheme. Given a set of historical samples S, let tsi be the service time
at location i in sample s ∈ S. The SAA formulation for the order assignment is provided as
follows, where we omit the constant multiplier 1/|S| for the sample average:

min
yik

∑
s∈S

∑
k∈K

(∑
i∈I

tsiyik + lk − τ

)+

s.t.
∑
k∈K

yik = 1, ∀i ∈ I,∑
i∈I

qiyik ≤ C, ∀k ∈ K,

lk = l(yk), ∀k ∈ K,
yik ∈ {0, 1}, ∀i ∈ I, k ∈ K.

The nonlinear objective function can be linearized by introducing nonnegative auxiliary
variables, e.g.,

∑
s∈S
∑

k∈K ω
s
k with constraints ωsk ≥

∑
i∈I t

s
iyik + lk − τ and ωsk ≥ 0. The

challenge in solving this problem lies in obtaining a tractable reformulation of l(yk) for the
travel time prediction, which is detailed in the following subsections.

3.4.1 Linearization of Travel Time Predictors

We first discuss the linear representation for each class of tractable predictors summarized
in Table 3.3. We denote the predictors with subscript k for driver k ∈ K.
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Number of locations: nk.

We can express the number of customer locations assigned to driver k as follows:

nk =
∑
i∈I

yik.

Distance: d, D and d̄.

For d, which is the shortest distance between the depot and the customer locations, we can
construct the following constraints:

dk =
∑
i∈I

d̂iϑik, (3.4)∑
i∈I

ϑik = 1, (3.5)

ϑik ≤ yik, ∀i ∈ I, (3.6)

dk ≤ d̂iyik +Md(1− yik), ∀i ∈ I, (3.7)

where d̂i is the distance between the depot and location i and ϑik’s are positive auxiliary
variables. The big number Md can be chosen as maxi∈I d̂i. Note that some of the above
constraints may be redundant for certain prediction models. For example, with a linear
prediction model, constraint (3.7) is not necessary if the coefficient of d is positive.

For D, which is the longest distance between the depot and customer locations, we can
adopt constraints similar to (3.4)-(3.6) combined with

Dk ≥ d̂iyik, ∀i ∈ I.

For d̄, the average distance between the depot and customer locations, it can be expressed
as

d̄k =

∑
i∈I d̂iyik

nk
=

∑
i∈I d̂iyik∑
i∈I yik

.

However, it is not yet tractable due to its nonlinearity. Observe that nk is an integer variable
with a limited range, we can linearize the above nonlinear (and non-convex) expression by
using binary variables. In practice, the number of locations assigned to a driver can not
be arbitrarily large and should be no larger than C. Therefore, we can safely restrict nk
to be within a certain range {0, 1, . . . , Nk}, where Nk ≤ C. One can interpret Nk as the
maximum number of locations a driver can visit, which can be determined by the practitioner
or estimated from the data. We can thus express nk as a piecewise function with a set of
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auxiliary binary variables:

nk =

Nk∑
j=0

j · ukj, (3.8)

Nk∑
j=0

ukj = 1, (3.9)

ukj ∈ {0, 1}, ∀j ∈ {0, 1, ..., Nk}. (3.10)

Based on the constraints introduced by Glover (1975), d̄k can then be represented as

d̄k =

Nk∑
j=0

fkj, (3.11)

where fk0 = 0 and

Md+
kj ukj ≥ fkj ≥Md−

kj ukj, (3.12)∑
i∈I d̂iyik

j
−Md−

kj (1− ukj) ≥ fkj, (3.13)

fkj ≥
∑

i∈I d̂iyik

j
−Md+

kj (1− ukj), (3.14)

where Md+
kj and Md−

kj can be set as the upper and lower bounds on
∑

i∈I d̂iyik
j

from the data.

Visiting area × Number of locations: a, b, a′, b′, anr, bnr, a′nr and b′nr for
r ∈ {−0.5, 0.5, 1, 1.5}.

We start with a, the maximum latitudinal difference between a pair of customer locations. A
similar discussion naturally applies to b, a′ and b′, which we will omit for conciseness. Note
that we can express ak as

ak = āk + ak ≥ 0, (3.15)

where āk is the maximum latitude of the assigned customer locations and ak is the negative
of the minimum latitude of the assigned customer locations. Moreover, āk and ak can be
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represented by

āk =
∑
i∈I

latix
′
ik, (3.16)

ak = −
∑
i∈I

latix
′′
ik, (3.17)

āk ≥ lati · yik, ∀i ∈ I, (3.18)

ak ≥ −lati +Ma
i (yik − 1), ∀i ∈ I, (3.19)∑

i∈I

x′ik = 1,
∑
i∈I

x′′ik = 1, (3.20)

x′ik ≤ yik, x′′ik ≤ yik, ∀i ∈ I, (3.21)

where x′ik and x′′ik are positive auxiliary variables, and Ma
i is a big number set to be

maxi′∈I lati′ − lati. Again, some of the above constraints may be redundant for the lin-
ear prediction models. For instance, if the coefficients for the predictors involving a are all
positive, constraints (3.16)-(3.17) and (3.20)-(3.21) can be omitted.

We then reformulate the predictors in the form of anr, where r ∈ {−0.5, 0.5, 1, 1.5},
as shown in Table 3.3. Following the discussion on d̄, we can express nk as a piecewise
function with binary variables ukj and use constraints similar to (3.11)-(3.14) for a linear
representation of anr:

akn
r
k =

Nk∑
j=0

f rkj (3.22)

M r+
kj ukj ≥ f rkj ≥M r−

kj ukj, (3.23)

akj
r −M r−

kj (1− ukj) ≥ fkj, (3.24)

fkj ≥ akj
r −M r+

kj (1− ukj). (3.25)

The same reformulation procedures are applicable to bnr, a′nr and b′nr.

Dispersion: sa and sb.

By definition, we see that

sak =

∑
i∈I
∑

i′∈I |lati − lati′ |yikyi′k
nk(nk − 1)

,

where the product term yikyi′k can be linearized with a binary auxiliary variable. We can
further repeat the procedures in the linearization of d̄ and anr to obtain the set of linear
constraints for sa and sb.
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3.4.2 Linearization of Prediction Models

As we discussed in Section 3.3.2, in this paper, we consider the optimization-compatible
prediction models that are linearly representable, i.e., the linear models (e.g., OSL, LASSO,
ridge regression, elastic net and linear SVR) and piecewise linear models (e.g., decision trees).
With the linear prediction models, l(yk) is a linear function of the predictors, i.e.,

l(yk) = β>x(yk),

where x(yk) is the predictor vector and the coefficient vector β is learned from the prediction
algorithm. Based on the linearization of the predictors above, we can then obtain a mixed
integer linear program (MILP) for the order assignment model under the SAA scheme. The
resulting optimization problem be solved by commercial optimization solvers such as CPLEX
and Gurobi.

For the decision trees, each split in a tree (assuming it is applied to a single predictor)
checks the branching condition on whether xl(yk) ≥ Bl for a specific feature xl(yk). To
track the split, binary indicators can be introduced in the disjunctive inequalities with a big
number MB:

xl(yk) ≥ Bl −MBνl,

xl(yk) ≤ Bl +MB(1− νl),

where νl = 0 indicates xl(yk) ≥ B and νl = 1 indicates xl(yk) ≤ B. For a set of predictor
values, we can utilize these indicator variables to locate the corresponding leaf node of a
decision tree to retrieve the prediction. As a result, we can represent l(yk) as a linear
function of indicator variables, which also yields a MILP formulation. Note that the number
of the indicator variables required grows linearly with respect to the number of nodes in a
decision tree. When running multiple decision trees in the random forest model, the total
number of nodes grows, so does the total number of indicator variables. More discussion
about the MILP formulation of decision trees can found in Biggs and Hariss (2018) and D.
Bertsimas and Dunn (2017).

In conclusion, the order assignment problem with a linear or piecewise linear prediction
model can be formulated as an MILP under the SAA scheme. We will refer to this formulation
as DOA-SAA (data-driven order assignment with SAA).

3.4.3 A Robust Optimization Formulation

For the DOA-SAA model to perform well, it requires a large number of samples of service
times at customer locations. However, the observations of the service times at many cus-
tomer locations are sparse, since the drivers do not visit every customer location every day.
Moreover, its computation time grows as more samples for the SAA scheme are generated,
e.g., via bootstrapping. To deal with such challenges, we develop a distributionally robust
optimization model that utilizes limited distributional information and is independent of
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sample size in computation. More importantly, we aim to demonstrate that the predictors
above-mentioned can also be integrated with the robust optimization approach, which is also
widely used in the decision making under uncertainty.

Without assumptions on the specific probability distributions, the distributionally robust
optimization (DRO) approach is widely used in the contexts in which the empirical data are
not sufficient to calibrate the full distributional information. DRO approaches have been
developed in the applications such as territory partitioning for VRPs and TSPs (Carlsson
and Delage, 2013; Carlsson, Behroozi, and Mihic, 2018), bin packing problems (Y. Zhang,
Jiang, and S. Shen, 2016), and fleet repositioning in vehicle sharing (He, Hu, and M. Zhang,
2019), where various ambiguity sets are proposed for the studied contexts.

Suppose the joint distribution P of service time t̃i,∀i ∈ I lies in an ambiguity set F that
is specified by partial distributional information, i.e., the mean and covariance matrix. In
particular, we construct the following moment ambiguity set with zero covariance:

F =

 P ∈ P0(R|I|)

EP(t̃i) = µi, ∀i ∈ I

EP

[(
t̃i − µi

)2
]

= σ2
i , ∀i ∈ I

EP
[(
t̃i − µi

) (
t̃j − µj

)]
= 0, ∀i 6= j ∈ I

 .

Note that the computational efficiency and solution performance from a robust optimiza-
tion model depend on the choice of the ambiguity set. Here, we choose to use the ambiguity
set F because it leads to a decomposable and computationally efficient optimization formu-
lation. Thus, it serves the demonstration purpose of bridging the prediction model and a
robust optimization approach. Specifically, the zero covariance estimation is supported by
the data analysis in Section 3.2.2. Moreover, it allows us to decompose the objective by the
drivers. It is possible to refine the ambiguity set at the expense of a larger problem size
and higher computational burden. For instance, with a positive support and marginal first
and second moments (e.g., Delage and Ye, 2010; Wiesemann, Kuhn, and Sim, 2014), one
can show that the resulting second-order cone program formulation will involve 2|I| cones,
instead of |K| cones under our chosen ambiguity set F.

Therefore, we consider the distributionally robust optimization (DRO) model that mini-
mizes the worst-case expected total delay as follows:

min
Y

max
P∈F

EP
∑
k∈K

(∑
i∈I

t̃iyik + lk − τ

)+

(DOA-DRO)

s.t. Constraints in DOA-SAA.

We then show in Proposition 3.1 that the DOA-DRO model can be reduced to having an
optimization problem with an objective of a sum of K separable worst-case expected delays.



CHAPTER 3. ON-TIME LAST MILE DELIVERY 45

Proposition 3.1. Let T̃k =
∑

i∈Ik t̃i, where Ik = {i ∈ I : yik = 1}, be the projected random
variable, i.e., the total service time of driver k. The DOA-DRO model is equivalent to:

min
Y

∑
k∈K

max
Qk∈Gk

EQk

(
T̃k + lk − τ

)+

(3.26)

s.t. Constraints in DOA-SAA,

where Qk is the distribution of T̃k and its ambiguity set Gk is given by

Gk =

 Qk ∈ P0(R)

EQk
(T̃k) =

∑
i∈Ik µi

EQk

[(
T̃k −

∑
i∈Ik µi

)2
]

=
∑

i∈Ik σ
2
i

 .

Proof. We first show that the worst-case expected total delay in the DOA-DRO model can
be separable. Let Pk be the joint distribution of the service time at the locations assigned
to driver k, i.e.,

{
t̃i
}
Ik

where Ik = {i ∈ I : yik = 1}. Correspondingly, we consider the
ambiguity set Fk as the projection of F on Pk. That is, Fk is specified as

Fk =

 Pk ∈ P0(R|Ik|)

EPk
(t̃i) = µi, ∀i ∈ Ik

EPk

[(
t̃i − µi

)2
]

= σ2
i , ∀i ∈ Ik

EP
[(
t̃i − µi

) (
t̃j − µj

)]
= 0, ∀i 6= j ∈ Ik

 .

Note that each location is assigned to a single driver. The collection of Ik,∀k ∈ K is a
partition of I, i.e., ∪k∈KIk = I and Ik ∩ Ik′ = ∅ for k 6= k′ ∈ K. Therefore, for any given
Pk ∈ Fk for all k ∈ K, we can construct the joint distribution of service times at all locations
as P = Πk∈KPk. It is straightforward to see that the constructed P belongs to the ambiguity
set F. Hence, the inner maximization problem in the DOA-DRO model can be reformulated
in the following steps:

max
P∈F

EP
∑
k∈K

(∑
i∈I

t̃iyik + lk − τ

)+

= max
P∈F

∑
k∈K

EP

(∑
i∈Ik

t̃i + lk − τ

)+

= max
Pk∈Fk,∀k∈K

∑
k∈K

EPk

(∑
i∈Ik

t̃i + lk − τ

)+

=
∑
k∈K

max
Pk∈Fk

EPk

(∑
i∈Ik

t̃i + lk − τ

)+

.

Here, the first equality follows from the linearity of expectation and the definition of Ik =
{i ∈ I : yik = 1}. The second equality is established based on the previous argument—for
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any given Pk ∈ Fk, we can construct P = Πk∈KPk ∈ F (the direction “≤” holds), while for
any given P ∈ F, we can construct Pk ∈ Fk by projection (the direction “≥” holds). The
third equality is based on the separability of the objective function and the ambiguity sets
Fk by the decision variables Pk.

Let T̃k =
∑

i∈Ik t̃i, be the projected random variable. From Proposition 1 in Popescu
(2007), we have

max
Pk∈Fk

EPk

(∑
i∈Ik

t̃i + lk − τ

)+

= max
Qk∈Gk

EQk

(
T̃k + lk − τ

)+

,

where

Gk =

 Qk ∈ P0(R)

EQk
(T̃k) =

∑
i∈Ik µi

EQk

[(
T̃k −

∑
i∈Ik µi

)2
]

=
∑

i∈Ik σ
2
i

 .

Therefore, we have the DRO model provided in (3.26) with the univariate distributions in
Gk.

To derive a tractable formulation to problem (3.26), we deal with maxPk∈Fk
EPk

(
T̃k + lk − τ

)+

in the following lemma.

Lemma 3.1. The inner problem maxQk∈Gk
EGk

(
T̃k + lk − τ

)+

in (3.26) can be solved by

the following formulation with the second-order cone constraints:

min
λk,ηk,θk

λk + ηk
∑
i∈Ik

µi + θk
∑
i∈Ik

σ2
i

s.t. λk + (ηk − 1)
∑
i∈Ik

µi − lk + τ + θk ≥
∥∥∥∥( ηk − 1

λk + (ηk − 1)
∑

i∈Ik µi − lk + τ − θk

)∥∥∥∥
2

,

λk + (ηk − 1)
∑
i∈Ik

µi − lk + τ ≥ 0,

λk + ηk
∑
i∈Ik

µi + θk ≥
∥∥∥∥( ηk

λk + ηk
∑

i∈Ik µi − θk

)∥∥∥∥
2

,

θk ≥ 0.

Based on Lemma 3.1, using the KKT conditions, we can formulate the DOA-DRO model
as a tractable second-order cone program:
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Proposition 3.2. The DOA-DRO model can be solved by the following mixed-integer second
order cone program (MISOCP):

min
Y,ρ

∑
k∈K

(
ρk +

∑
i∈I

µiyik + lk − τ

)
(3.27)

s.t. ρk ≥

∥∥∥∥∥∥∥∥∥


σ1y1k

...
σIyIk∑

i∈I µiyik + lk − τ


∥∥∥∥∥∥∥∥∥

2

,∀k ∈ K

Constraints in DOA-SAA.

Problem (3.27) has |K| second-order cone constraints. Since we can decompose the
problem by drivers under the ambiguity set F, we are able to derive an efficient formulation
for the DOA-DRO model. For the general distributionally robust optimization model without
zero correlation, it is still possible to have a MISOCP formulation but with potentially more
conic constraints.

Uncertainty in the Travel Time

Thus far, we have demonstrated that the prediction model for travel time can be integrated
with stochastic and robust optimization tools, which consider the uncertainty in service time.
Recall that the prediction model l(Ik) provides a point estimate on the average total travel
time. Therefore, it may be necessary to account for the actual uncertainty in routing.

As the deviation in the travel time often increases for a longer tour, we incorporate the
uncertainty via an error term in a multiplicative model—the actual travel time is (1+ẽk)l(Ik)
where ẽk is the error in the travel time for driver k. Indeed, the extension for an additive
travel time model l(Ik) + ẽk can be treated in a similar manner. For the DOA-SAA model,
it is straightforward to utilize the empirical distribution of ẽk to generate the samples. Here,
we will focus on the extension in the DOA-DRO model.

We construct the following ambiguity set F̄ with a zero mean and a variance of s2
k for ẽk

and assume that ẽk is uncorrelated with the service time and other driver’s travel time:

F̄ =


P̄ ∈ P0(R|I|+|K|)

EP̄(t̃i) = µi, ∀i ∈ I

EP̄

[(
t̃i − µi

)2
]

= σ2
i , ∀i ∈ I

EP̄
[(
t̃i − µi

) (
t̃j − µj

)]
= 0, ∀i 6= j ∈ I

EP̄(ẽk) = 0, ∀k ∈ K
EP̄ (ẽ2

k) = s2
k, ∀k ∈ K

EP̄
[
ẽk
(
t̃i − µi

)]
= 0, ∀i ∈ I, k ∈ K

EP̄ (ẽkẽ
′
k) = 0, ∀k 6= k′ ∈ K


.
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The DOA-DRO problem with travel time ambiguity is thus formulated as:

min
Y

max
P̄∈F̄

EP̄

∑
k∈K

(∑
i∈I

t̃iyik + (1 + ẽk)lk − τ

)+

(DOA-DROt)

s.t. Constraints in DOA-SAA.

Consequently, we can have the MISOCP reformulation shown in Proposition 3.3 below.
Similar to Proposition 3.2, we have |K| conic constraints in (3.28). The only difference is
that the term sklk is involved in the conic constraint for driver k.

Proposition 3.3. The DOA-DROt model with the ambiguity set F̄ is equivalent to:

min
Y,ρ

∑
k∈K

(
ρk +

∑
i∈I

µiyik + lk − τ

)
(3.28)

s.t. ρk ≥

∥∥∥∥∥∥∥∥∥∥∥


σ1y1k

...
σIyIk
sklk∑

i∈I µiyik + lk − τ



∥∥∥∥∥∥∥∥∥∥∥
2

,∀k ∈ K

Constraints in DOA-SAA.

3.4.4 Multiperiod Order Assignment

Our discussion thus far has focused on a single-period setting for a batch of orders with the
same delivery deadline, in which we put aside the impact of the current order assignment
decision on the future delivery on-time performance. When the drivers are employees of
the service provider (as opposed to freelance drivers for an on-demand platform), they need
to return to the depot for the next batch of orders. As a result, our current order assign-
ment decision affects when they will return to the depot, which in turn affects the on-time
performance for the next batch. For instance, dispatching more drivers improves the on-
time performance for the current batch, but it will make fewer drivers available for the next
batch. To capture these dynamics, we can formulate a dynamic program for multiperiod
order assignment.

For the ease of presentation, we highlight the key trade-offs in the dynamic model and
leave out the less important operational details. Let K be the set of all drivers, including
both the idle and en route drivers. The provider operates in N = (1, · · · , N) periods with
length ∆ per period, e.g., ∆ = 15 minutes for lunch delivery. In the beginning of period
n ∈ N , the system state is described as: 1) the order location and quantity information
(In,qn) of the current batch; and 2) the driver information ζn = (ζnk ,∀k ∈ K), where ζnk is
the remaining time for driver k to return to the depot. For example, ζnk can be known by
tracking the driver’s real-time location information, e.g., ζnk = 5 indicates that the estimated
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time for the driver’s return to the depot is 5 minutes. Furthermore, τnk denotes the available
time window for driver k to deliver batch n. When the driver is at the depot, i.e., ζnk = 0, we
set τnk = τ̄nk which is the required time window for on-time delivery; otherwise, for ζnk > 0, we
have τnk = 0, as the driver is not immediately available. Indeed, by introducing an indicator
variable znk ∈ {0, 1} for driver dispatch, we can simply write τnk = τ̄nk z

n
k .

Let Pn be the joint distribution of service times in period n and Qn+1 be the joint
distribution of the customer locations and order quantity in period n + 1. The service
provider then makes the order assignment decisions {ynik ∈ {0, 1} : i ∈ In, k ∈ K}, by solving
the following finite-horizon stochastic dynamic program:

Hn(In,qn, ζn) = min
Yn

{
EPn

{∑
k∈K

(∑
i∈In

t̃ni y
n
ik + lnk (Yn)− τnk

)+

+ EQn+1

[
Hn+1(In+1,qn+1, ζn+1)

]}}
,

HN(IN ,qN , ζN) = min
YN

{
EPN

∑
k∈K

(∑
i∈IN

t̃Ni y
N
ik + lNk (YN)− τNk

)+}
,

with the transition constraints

ζn+1
k = max

{
0, ζnk −∆,

∑
i∈In

t̃iy
n
ik + lnk (Yn) + rnk (Yn)−∆

}
,∀k ∈ K, n ∈ N \ {N}

τnk = τ̄nk z
n
k ,∀k ∈ K, n ∈ N

znk ≤ 1− ζnk
M
,∀k ∈ K, n ∈ N

ynik ≤ znk , ∀k ∈ K, n ∈ N
znk ∈ {0, 1},∀k ∈ K, n ∈ N
ζ1
k = 0,∀k ∈ K.

The term rnk (Yn) represents the travel time from the last visited customer back to the depot,
which exists only if lnk (Yn) is measured for an open route; if lnk (Yn) is measured to include
the return trip, then the term rnk (Yn) can be eliminated.

The first constraint updates the remaining time for the driver’s return to the depot, after
an elapsed time of ∆ from the previous period. There are two possible scenarios:

1. ζnk > 0: the driver is not available for batch n. Therefore, we will not dispatch driver
k, i.e., znk = 0 as implied by the third constraint and subsequently ynik = 0 according to
the fourth constraint. The remaining time for the driver’s return to the depot becomes
ζn+1
k = max {0, ζnk −∆}.

2. ζnk = 0: the driver is available for batch n. Therefore, the provider might dispatch the
driver for batch n. Hence, the remaining time for the driver’s return to the depot is
updated as ζn+1

k = max
{

0,
∑

i∈In t̃iy
n
ik + lnk (Yn) + rnk (Yn)−∆

}
, where

∑
i∈In t̃iy

n
ik +

lnk (Yn) + rnk (Yn) is the total delivery time for batch n. If the driver is not dispatched
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in period n, then
∑

i∈In t̃iy
n
ik + lnk (Yn) + rnk (Yn) = 0 and the remaining time to return

is thus ζn+1
k = max {0,−∆} = 0, as the driver is still available for period n+ 1.

The state transition is stochastic due to the uncertain service times, which can only be
revealed when visiting the customers in later periods. Nevertheless, the driver information
can be updated at the beginning of each period. The resulting dynamic program is com-
plicated due to its combinatorial and stochastic nature, as well as the high dimensional
state space. While it is possible to apply approximate dynamic programming or deep rein-
forcement learning techniques for its solution, the computational burden would make using
those algorithms prohibitive. Indeed, even for a single vehicle with orders on a line, Klapp,
Erera, and Toriello (2016) show the dynamic order dispatch problem “has exponentially
many variables, constraints, and terms in the expectations” as an MDP with a standard LP
dual reformulation. Therefore, we leave the dynamic order assignment model and solution
algorithms for future research.

Instead, we propose two simple heuristics built upon the single-period optimization mod-
els to balance the on-time performance of the current and future deliveries. Note that the
last period problem HN(IN ,qN , ζN) is exactly a single-period problem that can be solved by
the DOA-SAA or DOA-DRO model. For the earlier periods, we discuss the static manpower
planning and the adaptive order assignment heuristics in the following subsections.

Static Manpower Planning

This heuristic decomposes the multiperiod order assignment problem into a series of single-
period order assignment problems, by planning the number of drivers Kn for each period n
one day ahead.

Suppose there are N planning periods, e.g., 6 periods of 15 minutes each for lunch
delivery. Let N0 periods be the pre-allocated usage for each driver. That is, each driver will
be busy for N0 periods in one dispatch. With the target delivery time window τ (which may
include the return trip to the depot), we can convert τ into a corresponding N0 with a buffer
time for the driver to comply with the labor rules as well as to include potential delays. It
greatly simplifies the multiperiod problem as we disregard the dynamics of ζn by setting a
deterministic usage of N0 periods for a driver in each dispatch.

With customer locations In to be visited in period n, the expected total delay with Kn

drivers is Hs(Kn, In,qn) by solving the single-period problem, e.g., in the DOA-SAA and
DOA-DRO models. Subsequently, the expected total delay in period n, as evaluated one day
ahead before the realization of In, is EQn [Hs(Kn, In,qn)] where Qn is the joint distribution
of (In,qn). Let K̄n be the total number of drivers working in period n, according to their
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working schedule. The static manpower planning problem is thus formulated as

min
Kn∈N

N∑
n=1

EQn [Hs(Kn, In,qn)]

s.t.
n∑

m=n−N0+1

Km ≤ K̄n, ∀n = 1, · · · , N

Kn = 0, ∀n = 1−N0, · · · , 0,

where the first constraint accounts for the driver availability—once a driver departs from the
depot, he will only be available for his next dispatch after N0 periods.

Note that Kn can only take integer values. The expected delay before the demand real-
ization EQn [Hs(Kn, In,qn)] can be evaluated and stored offline. Therefore, we parametrize
it as πnk = EQn [Hs(k, In,qn)] to denote the expected delay with k drivers in period n. With

binary indicator variables xnk , we can rewrite Kn =
∑K̄n

k=1 kx
n
k . Thus, the manpower planning

stage problem becomes an integer assignment problem:

min
xnk∈{0,1}

N∑
n=1

K̄n∑
k=0

πnkx
n
k

s.t.
n∑

m=n−N0+1

K̄m∑
k=1

kxmk ≤ K̄n, ∀n = 1, · · · , N

K̄n∑
k=1

xnk = 1, ∀n = 1, · · · , N

K̄n∑
k=1

xnk = 0, ∀n = 1−N0, · · · , 0.

Adaptive Order Assignment

An immediate improvement over the static manpower planning heuristic is to assign the
orders adaptively on the currently realized order information. When assigning the batch of
orders for In in period n, the provider weighs the trade-off between minimizing the delay
in the current period and a potential shortage of drivers in the future. By looking ahead,
we determine the immediate manpower planning decisions for the current period and the
expected usage of drivers for future periods.

Recall that Hs (k, In,qn) is the expected delay with k drivers to visit In in period n.
After seeing (In,qn), it can be solved in parallel for all k using the single-period order
assignment models. That is, Hs (k, In,qn) can also be evaluated and parametrized for all k
with In realized, together with πnk = EQn [Hs(k, In,qn)] computed one day ahead. Hence,
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at the beginning of period n, the provider can determine the number of drivers to serve In
by solving:

min
xnk∈{0,1}

K̄n∑
k=0

Hs (k, In,qn)xnk +
N∑

n′=n+1

K̄n′∑
k=0

πn
′

k x
n′

k

s.t.
n′∑

m=n′−N0+1

K̄m∑
k=1

kxmk ≤ K̄n′ , ∀n′ = n, · · · , N

K̄n′∑
k=1

xn
′

k = 1, ∀n′ = n, · · · , N

where xn
′

k for n′ ≤ n−1 are the parameters traced back to the historical assignment decisions
in the previous periods. The first constraint suggests that in each period n′, the total
number of busy drivers cannot exceed K̄n′ . The remaining constraints define the integer
value selection for the number of drivers to start their delivery in each period.

Compared to the static manpower planning heuristic, the adaptive order assignment
fully utilizes the real-time information on (In,qn) as well as the available number of drivers
(i.e., K̄n can be iteratively updated). With xnk solved in this optimization formulation, the
provider is able to identify the number of drivers to dispatch in the current period and
obtain the corresponding order assignment decision from the solution of Hs (k, In,qn). This
adaptive order assignment heuristic is implemented in a rolling horizon manner—we only
execute the current order assignment decision for period n and are not obliged to follow the
future staffing decisions as the decision for period n+ 1 will be resolved in the next period.

3.4.5 The Branch-and-Price Algorithm and Its Computational
Performance

The DOA models formulated above can be solved by commercial mixed integer solvers such
as Gurobi and CPLEX. As the number of locations (|I|) and the number of drivers (|K|)
grow, the assignment problem becomes increasingly difficult to solve. However, the order
assignment decision for food delivery service needs to be obtained in real-time, e.g., within the
20-minute food preparation time window. Thus, the standard MILP/MISOCP formulation
may fail to deliver good-quality solutions in time. To overcome this issue, we utilize the
structure of the order assignment problem and formulate it as a set partitioning problem,
which allows us to develop an efficient branch-and-price algorithm.

Set Partitioning Formulation

Let the subset of locations assigned to a driver be associated with a cost, i.e., the expected
delay. The order assignment problem is to find the partitioning of the locations with the
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minimum total cost (expected total delay). As a result, the order assignment problem can
be cast as the set partitioning master problem (MP):

min
z

∑
j∈J

cjzj (MP)

s.t.
∑
j∈J

δijzj = 1, ∀i ∈ I, (3.29)∑
j∈J

zj = K, (3.30)

zj ∈ {0, 1}, ∀j ∈ J ,

where J is the set of all the possible subsets that satisfy the cardinality constraints. δij is 1 if
location i belongs to subset j, and 0 otherwise. Constraints (3.29) ensure that every location
is covered by a subset and constraint (3.30) ensures the number of selected subsets equal to
K. For SAA (or DRO), the subset cost cj is the sample average delay (or the worst-case
expected delay) of subset j.

MP involves an exponential number of variables (columns) since the number of possible
subsets grows exponentially in the number of locations. Instead of enumerating all the
possible subsets and solve the entire MP, column generation provides a way to generate the
candidate subsets and can be used to solve the LP relaxation of MP when a stop routine
is invoked. Specifically, column generation solves the following pricing subproblem at each
iteration:

min
ȳ

− πo −
∑
i∈I

πiȳi + c(ȳ) (SP)

s.t. Constraints in DOA-SAA or DOA-DRO,

where πo is the dual value for constraint (3.30) and πi’s are the dual values for constraints
(3.29) in MP. The constraints in SP are similar to those in DOA-SAA and DOA-DRO except
that the subscript k is dropped.

Note that in the case of DOA-DRO, the subproblem is also a MISOCP but with fewer
binary variables and only one conic constraint. Thus, the subproblem can be solved effi-
ciently. If the optimal objective of SP is negative, we add to MP the subset corresponding
to ȳ∗, i.e., {i ∈ I : ȳ∗i = 1}, and then solve the new MP. We repeat this process until the
optimal objective of SP is nonnegative, implying that the LP relaxation of MP is solved.
For more details about set partitioning and column generation, we refer readers to Barnhart
et al. (1998).

Algorithm Overview

We start the algorithm from an initial pool of subsets that is a feasible partitioning of the
customer locations. The initial partitioning is found by solving the order assignment problem
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by replacing the delivery travel time with its lower bound (a + b + d), i.e., the minimum
travel time required to cover all the customer locations. This simpler problem removes many
hard constraints and allows us to find a good feasible partitioning quickly.

The optimal solution from solving the LP relaxation of MP with column generation is
not necessarily integral and applying a branching rule is required. However, a standard
branching rule that sets a fractional variable to {0, 1} can fail, since preventing a subset j
from reappearing in SP (corresponding to setting zj = 0) is difficult. To resolve this issue,
we adopt the branching rule introduced by Ryan and Foster (1981) that can be added to
SP in branches. Basically, this branching rule detects a pair of subsets, S1 and S2, with
fractional values in the solution, and two locations, i and j, with one in S1 ∩ S2 and the
other in S1/S2. In the two branches, the left branch adds constraints such that i and j can
only be in the same subset while the right branch adds constraints such that i and j can not
be in the same subset.

Following the suggestions of Mehrotra, Johnson, and Nemhauser (1998), we use a depth-
first-search (DFS) to select the next node to solve. Additionally, for all the nodes except
the root node, we do not solve the LP relaxation to optimality. Instead, we stop the column
generation once the objective value of the LP relaxation is less than the objective value at
the root node.

Comparison to the MILP and MISOCP Formulations

To test the efficiency of using branch-and-price algorithm to solve the DOA models, we
generate random instances with different characteristics as follows: (a) n customer locations
are drawn uniformly from a square plane [0, 10] × [0, 10]; (b) The depot location is set
to be at the center (5, 5); (c) The number of orders from each location is drawn from a
Poisson distribution with λ = 2 and the service time at each location follows an exponential
distribution with Beta ∈ {3, 5}. For the SAA model, we choose the sample size to be 20.
For both DOA-SAA and DOA-DRO, the travel time prediction model is assumed to be
0.5d̄ + 0.5D + 0.1n + a

√
n + b

√
n + 0.4an + 0.4bn, where d̄ and D are measured by the

Manhattan distance metric. Each driver has a capacity of 30 (orders) and the number of
locations assigned to a driver is bounded by 8. The number of drivers is set by the ceiling
function dκ × ICe with κ ∈ {1.2, 1.5}, where IC is the minimum number of drivers needed
according to the capacity restriction. We test the computational performance with various
combinations of n, Beta, and κ. Ten random instances are generated for each combination
of the parameters. We run the experiments in Python 3.6 using Gurobi 8, on a 3.50 GHz
Xeon CPU. We choose the termination criteria to be (i) optimality gap is below 1%, or (ii)
CPU time exceeds 20 minutes.

Table 3.4 reports the computational comparison. The “Time” column presents the so-
lution time in seconds and the “Gap” column shows the optimality gap at the termination.
It is obvious that the branch-and-price algorithm delivers significant improvement in both
solution speed and quality. Furthermore, Figure 3.5 provides summary information on how
the solution quality evolves over time across different runs. We observe that the solution



CHAPTER 3. ON-TIME LAST MILE DELIVERY 55

Table 3.4: Computational comparison between the branch-and-price algorithm with the
MILP and MISOCP (Time in seconds)

n β κ
SAA DRO

MILP Branch-and-Price MISOCP Branch-and-Price
Time Gap Time Gap Time Gap Time Gap

30

3 1.2 1113 90.0% 183.7 0.00% 1200 97.2% 465.4 0.00%
3 1.5 170.5 0.00% 43.1 10.0% 1200 96.6% 319.7 0.07%
5 1.2 1200 98.9% 166.3 0.00% 1200 97.0% 269.2 0.18%
5 1.5 1200 98.9% 107.0 0.10% 1200 96.7% 185.3 0.13%

40

3 1.2 1200 100% 311.6 2.23% 1200 99.1% 969.6 7.74%
3 1.5 1200 100% 618.8 9.52% 1200 98.7% 915.7 5.36%
5 1.2 1200 99.5% 304.5 2.06% 1200 98.6% 864.8 3.69%
5 1.5 1200 99.5% 271.4 0.05% 1200 98.4% 933.6 3.74%
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Figure 3.5: Optimality gap in the solution time for the branch-and-price algorithm

quality starts to improve quickly within the first 100 seconds, and the optimality gap drops
to below 15% after 300 seconds. Thus, even when a shorter solution time window is desired,
the branch-and-price algorithm can still deliver good solutions with an early termination.
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3.5 Experiments in a Real-World Case Study

We conduct extensive experiments in this section to comprehensively evaluate the perfor-
mance of the proposed order assignment models. In this section, we first introduce the
setting of our numerical study based on the delivery data set from a food service provider in
Shanghai. We then present how we select the prediction model and the detailed evaluation
procedures, followed by the evaluation results and managerial insights.

Data: We consider all the batches that contain more than 20 orders during the lunch peak
period, with cutoff times in [10:00 am, 10:15 am, . . . , 11:15 am]. We obtain 167 batches in
total, of which 134 batches are randomly sampled as the training set and the remaining 33
batches serve as the test set (i.e., an 80/20 split for training and test). The average number
of orders per batch is 90.

Preprocessing: We apply a clustering algorithm to each batch of orders in the test data
based on their geographical proximity; this is to manage the practical problem size and
alleviate the complexity in the actual delivery. For example, the locations in the same
building, even if there are slight differences in latitude and longitude measurements, will be
considered as one customer location. It is also economical to serve nearby locations by one
driver instead of multiple drivers.

Specifically, we apply minimax linkage hierarchical clustering, which is an agglomerative
clustering algorithm that builds trees in a bottom-up approach. It starts with the singletons
and gradually merges the two closest clusters stage by stage, until only one cluster remains.
The resulting binary tree is commonly displayed as a dendrogram, as shown in Figure 3.6.
Each leaf node represents a data point and is placed at the bottom of the tree with height 0.
Each interior node indicates a merging and the corresponding height is equal to the distance
between the clusters merged at that node. A key choice for such clustering algorithms is
the distance measure between two clusters. Common measures include the complete, single,
average, and centroid linkage (see J. Friedman, Hastie, and Tibshirani 2001 for example).
The minimax hierarchical clustering uses a different linkage, defined as follows

d(G,H) = min
x∈G∪H

dmax(x,G ∪H),

where G and H are clusters and dmax(x,G∪H) is the maximum distance between the point
x and a point in cluster G ∪H. This linkage measures the minimax radius of the resulting
merged cluster. The most central point of the merged cluster (in terms of minimizing dmax)
is called the prototype. Minimax hierarchical clustering is proved to have many desirable
properties including interpretability and robustness (see Bien and Tibshirani 2011 for more
details). In our application, we can restrict the minimax radius of the obtained clusters by
cutting the dendrogram at a certain height, so that each resulting cluster contains only the
locations within that distance.
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Figure 3.6: A dendrogram with 5 locations (Bien and Tibshirani 2011)

We choose to cut the dendrogram at height 0.15, which implies that the radius of the
resulting clusters can not exceed 0.15 km. This choice is made to match the average street
block size in the inner ring of Shanghai (Pan and Cao 2015). After clustering, the number of
clusters in each batch varies from 15 to 52. The average number of orders from each cluster is
3.0 while the average number of meal boxes ordered from each location is 4.5. In rare cases,
a driver may not be able to fully serve a cluster of locations due to the capacity limit. In
such a scenario, we split the orders from that cluster into multiple subsets, such that all the
subsets except the last one will be served by dedicated drivers to their full capacity. Then,
only the last subset will be considered in the order assignment together with other orders.

Training and Testing: The prediction models are trained and selected only using the
training data. Then the prediction model estimated from the training data will be integrated
into the DOA-SAA and DOA-DRO models. The order assignment decision is derived and
evaluated for each batch in the test set.

Sample Generation and Estimation: An important input to the SAA models is the set
of sampled service times at different locations. We generate samples from the training set
by bootstrapping from the observed set of service times at each (clustered) location. As the
distribution of the service time does not exhibit normal behavior, bootstrapping is helpful in
approximating the distribution without analytical functional assumptions. In the case of the
robust model, sample mean and variance are estimated from the observations to construct
the ambiguity set.

SAA Replication and Solution Selection: Following the SAA procedure proposed in
Kleywegt, Shapiro, and Homem-de-Mello (2002), we run 20 replications of SAA for each
batch of orders in the test set. The sample size in SAA is chosen from {10, 15, . . . , 40} such
that a good-quality solution to each replication can be obtained within 20 minutes. The
optimality gap is estimated by additional 300 samples drawn independently from the SAA
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samples. Then we select the best solution from the 20 replications that yields the lowest
optimality gap estimate.

3.5.1 Prediction Model Selection

We test 6 different prediction models: LASSO, ridge regression, elastic net, linear SVR,
RBF SVR (radial basis function kernel), and random forest. The feature vector contains the
tractable features listed in Table 3.3 including (d̄, D, d, n, a

√
n, b
√
n, an, bn, sa, sb) while some

other features are reserved for the evaluation. 5-fold cross-validation is performed to select
the best hyper-parameters for all the models (e.g., the shrinkage parameters in LASSO and
ridge regression, and the number of trees grown in the random forest). All of the training
and validation procedures are implemented in R.

Table 3.5 summarizes the average cross-validation mean squared errors (MSE), which

is the average of
∑

s∈S(ls−l̂s)2

|S| , where ls denotes the actual travel time and l̂s denotes the
predicted travel time for sample s in each fold S of the training set. In addition, we report
the MSE on the test set, which indicates the generalization power of different models. As a
benchmark, we also calculate the MSE of a scaled TSP model, wherein the scaling factor is
derived by a linear regression.

Table 3.5: Performance evaluation of the prediction models and the TSP solution

Prediction model Training set cross-validation MSE (min2) Test set MSE (min2)

LASSO 20.2 15.7
Ridge regression 19.7 15.7
Elastic net 19.0 15.8
Linear SVR 19.9 16.4
RBF SVR 21.4 15.1
Random forest 18.8 15.0

TSP solution 63.8 51.5
Scaled TSP solution 46.4 42.5

Based on the cross-validation and test results, all the prediction models achieve signifi-
cantly lower errors than both the TSP and scaled TSP solutions. In particular, the linear
models deliver promising prediction performance, although slightly inferior to random forest.
Among the linear models, elastic net has the lowest cross-validation error while LASSO and
ridge regression attain the lowest test error. As discussed before, the random forest with
a large number of trees does not yield a very efficient linear representation and thus not
suitable for our real-time application. By contrast, the linear models with nonlinear features
enable tractable representations, and maintain great interpretability.

To further examine the prediction performance, Figure 3.7 presents the mean absolute
percentage error (MAPE) of LASSO and the scaled TSP solutions on the test set with a
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different number of customer locations. MAPE, defined as
∑

s∈S |ls−l̂s|/ls
|S| × 100%, is unit free

and measures the relative prediction errors. We observe that LASSO has significantly smaller
errors than those of the scaled TSP solution, especially when the number of locations exceeds
8. It is worthwhile to note that the MAPE of LASSO is mostly below 25% and varies less
compared to that of the scaled TSP solution, while the MAPE of the scaled TSP solution
can be relatively large for certain number of locations (e.g., over 50% when the number of
locations is 10).

0.0

0.2

0.4

0.6

2 3 4 5 6 7 8 9 10 11

Number of locations

M
A

P
E

 (
x
1
0
0
%

)

Method

LASSO

Scaled TSP

Figure 3.7: MAPE of LASSO versus scaled TSP solution on the test set.

To conclude this subsection, we make two further remarks. First, both elastic net and
LASSO can obtain a sparse coefficient vector and screen out the unnecessary features (auto-
matic feature selection by regularization). In particular, LASSO requires the least features,
which leads to extraordinarily efficient optimization models. Second, unlike the TSP solution
that consistently underestimates the delivery travel time, all the prediction models enable
less biased prediction results. Although scaling the TSP solution can reduce the bias, there
is still a significant gap between the TSP solution and the actual delivery travel time. In
the remaining of this section, we use LASSO as a representative prediction model in our
DOA models, to be compared with the benchmark order assignment models introduced in
the next subsection.

3.5.2 Order Assignment Model Evaluation

We compare the performance of the assignment decision produced by the DOA models
with two benchmark models that assume the drivers follow the TSP routes. With the
shortest route assumptions, the benchmark models essentially become stochastic vehicle
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routing problems with stochastic service times (SVRPs). Similar to the DOA models, we
can formulate an SAA model of the SVRP and its distributionally robust counterpart to
minimize the worst-case expected delays. We refer to the benchmarks as VRP-based models,
VRP-SAA for an SAA model and VRP-DRO for a DRO model respectively. Based on the
observation in 3.5.1, we mainly consider the VRP-based models with a scaling factor learned
from the training set. We refer to the scaled VRP-based models using SAA and DRO as
sVRP-SAA and sVRP-DRO, respectively. Note that our calculation of the delay does not
account for the return trip from the last visited location to the depot. As discussed in
Section 3.2.1, we introduce a dummy node into the location network, which helps drop the
return trip from the route. We employ the commonly used illegal subtour elimination scheme
in solving the SVRP (see Laporte, Louveaux, and Mercure 1992 for more details). Both the
VRP-SAA and VRP-DRO models are solved with the branch-and-price algorithm, which
has been shown to be an efficient exact method of solving VRPs (Fukasawa et al. 2006).
Please refer to the detailed formulations of VRP-SAA and VRP-DRO in the Appendix.
Additionally, the DRO models with travel time uncertainty can be formulated similar to
those in Subsection 3.4.3.

To assess the out-of-sample performance of the order assignment decisions, we construct
the validation sets of the service times by drawing independent samples from the test set.
We do not estimate the probability density functions because the number of observations at
some locations is very limited, which makes many parametric and nonparametric estimation
methods inappropriate. For each problem instance in the numerical test, we generate 1,000
validation sets of the service times.

To evaluate the delivery delays from implementing the proposed solutions in the valida-
tion sets, we need to estimate the actual delivery travel time for a set of locations, which
may not be observed in history. Since the driver behavior is difficult to simulate, we propose
a two-step data-driven evaluation procedure. 1) Given a set of assignments, we first search
in all the historical delivery routes to see whether the assignment has been observed or not.
If yes, the corresponding observed travel time will be returned as the estimate. Otherwise,
2) we use the prediction result from the random forest with an additive perturbation as the
estimate where the perturbation is sampled from the residuals of random forest.

3.5.3 Results and Discussion

In this subsection, we first report the performance of the DOA models versus the VRP-
based models on the test set. We then compare them to the observed assignment decisions.
The impact of the sample size on the solution quality of SAA and implementation of the
multiperiod order assignment are further discussed.

Performance Comparison.

We set the delivery time window to 55 minutes, which corresponds to the practical scenario
when food preparation takes 20 minutes. Since the studied delivery service provider assigned
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the orders in a manual way, there is no specific rule to decide the number of drivers. For the
purpose of comparison, we set the number of drivers |K| used for each batch of orders to be
min{IC ∗ 1.5, IC + 4}, where IC is the minimum number of drivers needed according to the
capacity restriction.

The out-of-sample average delay is calculated for each order assignment model. Figure
3.8 presents the relative improvement of the different models (reduction of total delays) on
the test set using VRP-SAA as a baseline, where the average improvement is summarized in
Table 3.6. We observe that the scaled VRP models improve on VRP-SAA only by a small
scale, and the performance gap is not significant. With the DOA models, we get a significant
improvement between 35.9% and 38.2% on average. To examine the performance of DOA
models more closely, we also calculate the percentage of instances that a DOA model achieves
the best performance in all the tested models, which is listed in Table 3.7. The average gap
between a DOA model’s performance and the best performance is also reported. We find
that DOA-DRO achieves the best performance most frequently while DOA-DROt attains
the smallest average gap. This observation implies that adding the additional robustness of
travel time can help achieve a better overall performance with the price of missing some of
the best solutions, potentially due to being overly conservative.
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Figure 3.8: Out-of-sample performance (improvement over the VRP-SAA) of the DOA mod-
els and VRP models.

We proceed to compare the DOA models to the order assignment decisions observed in
the test set (the implemented order assignment decision). The number of drivers is set to be
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Table 3.6: Average Improvement of the DOA models and scaled VRP models over the VRP-
SAA

DOA-
DROt

DOA-
DRO

DOA-
SAA

sVRP-
DROt

sVRP-
DRO

sVRP-
SAA

Avg Improvement
over VRP-SAA

38.2% 36.9% 35.9 % 3.84% 11.6% 6.63%

Table 3.7: Performance comparison of DOA models

DOA-DROt DOA-DRO DOA-SAA

% of instances achieving the best performance 27.3% 39.4% 18.2 %
Average gap with the best performance 9.94% 12.0% 16.2%

the same as the actual number of dispatched drivers. As described in the evaluation step, the
travel times of the currently implemented order assignments are obtained from the historical
data directly, while these of the DOA solutions are first checked with the historical records
and if no matched record is found, we make a prediction using the random forest (with the
added noises). Indeed, for 32.9% of the DOA solutions, we are able to obtain their travel
times from the historical records. The out-of-sample evaluation result is shown in Figure
3.9. We observe that all the DOA models deliver significantly better performance than the
current manual assignment decision, and the two DRO models show greater improvement
than the SAA model. Among the two DRO models, DOA-DROt’s improvement is more
stable while DOA-DRO delivers high improvements more often. Specifically, DOA-DROt
and DOA-DRO reduce the total delivery delay by 75.3% and 74.7%, respectively on average
relative to the current assignment.

Moreover, to understand the difference between the generated DOA assignment and the
current assignment decision, we present the distribution of the average total delivery time
of different drivers for both the DOA-DROt and the current assignment in Figure 3.10. We
observe that DOA-DROt balances the delivery tasks between different drivers such that most
of them have a similar total delivery time, while the current assignment decision results in a
relatively large variation of delivery time among the drivers. The large variation implies that
some drivers take too long tours or visit too many customer locations, which contributes to
extraordinarily long delays.

The Impact of the Sample Size.

The performance of SAA depends on the number of samples used to approximate the ex-
pected objective function value. To obtain a good-quality solution, the number of samples
is suggested to be growing logarithmically on the size of the feasible set (Kleywegt, Shapiro,
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Figure 3.9: Out-of-sample performance comparison of the DOA models versus the current
assignment decision.

and Homem-de-Mello 2002). However, the growing number of samples may make the prob-
lem computationally inefficient for our application. Furthermore, since the real delivery
tour is unknown, our approximated objective function may not approach the true expected
objective value even when the number of samples is sufficiently large. To understand the
impact of the sample size on the performance of the SAA models, we calculate the average
out-of-sample total delay of the SAA models with different sample sizes on a selected set of
instances from the test set, as shown in Figure 3.11. We observe that as the sample size
grows, the out-of-sample performance of DOA-SAA improves and approaches the reference
point of DOA-DRO and DOA-DROt. In contrast, the out-of-sample performance of VRP-
SAA and sVRP-SAA can be worse off when a larger sample size is used. In particular, the
gap between the performance of VRP-SAA and DOA-SAA reaches the highest when the
sample size reaches the maximum of 180.

As discussed before, the objective function of VRP-SAA and sVRP-SAA may not approx-
imate the true objective function well due to their biases in estimating the travel time. When
the number of samples increases, the objective function of VRP-SAA and sVRP-SAA may
become more biased. As a result, the solution to VRP-SAA and sVRP-SAA can “overfit” to
the samples and deviate from the true optimal solution. Instead, the objective function of
DOA-SAA has a better approximation performance and is closer to the true objective value.
Thus, its solution approaches the true optimal solution for a large sample size.
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Multiperiod Order Assignment

We also implement both the static manpower planning heuristic as well as the adaptive
rolling-horizon heuristic for the peak periods from 10:00 am to 11:15 am, which accounts for
more than 85% of the orders for the company. We set N = 6 and N0 = 5 correspondingly.
The expected delay function πnk = EQn [Hs(Kn, In,qn)] is calculated by drawing (In,qn)
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from the observations in the previous week. We use the objective value of DOA-DROt as
a proxy for Hs(Kn, In,qn). The two heuristics are compared to a clairvoyant policy that
foresees the realizations of (In,qn) in later periods and thus provides a lower bound for
the expected delay. Table 3.8 presents the average gap between the two heuristics and the
clairvoyant policy by varying the total number of drivers (K̄). Both the static and adaptive
heuristics achieve a satisfactory performance as indicated by the small performance gaps.
The adaptive heuristic attains a better performance than that of the static heuristic, reducing
the performance gap by more than 50%.

Table 3.8: Performance gap between the two heuristics and the clairvoyant policy for mul-
tiperiod order assignment

K̄ Adaptive policy Static Policy

40 2.25% 8.38%
45 2.50% 5.01%
50 1.57% 5.52%
55 0.99% 2.85%

3.6 Conclusion and Future Research

In this study, we propose a framework that integrates travel time predictors with existing
optimization techniques to generate the order assignment decisions for last mile delivery.
This idea of integrating predictors with optimization can be generalized to other applications
where some elements are not directly representable in mathematical programming, e.g., the
driver’s routing behavior. The use of the prediction model is practical—it captures the
driver’s routing behavior and avoids an excessively complicated modeling of it.

With the order assignment problem as a showcase, we demonstrate that the linear and
piecewise linear prediction models, together with the tractable predictors, can be successfully
integrated with stochastic and robust optimization tools. The resulting formulations are an
MILP for the stochastic optimization with SAA and an MISOCP for the distributionally
robust optimization, which can be efficiently solved via the branch-and-price algorithm pro-
posed by exploiting the problem structure in the order assignment. Furthermore, we provide
two simple heuristics, the static manpower planning and adaptive rolling-horizon heuristics,
for multiperiod order assignment problems based on the single-period solutions.

Using real-world delivery data from our partner food service provider, we conduct exten-
sive experiments to evaluate the performance of our proposed DOA models, in comparison
with the benchmark VRP-based models. The significant on-time performance improvement
by the DOA models, compared to the VRP-based models, suggests the importance of con-
sidering the driver’s routing behavior in making an order assignment. Moreover, the inferior
solutions from the VRP-based models, which ignores the driver’s routing behavior, cannot be
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corrected by using a large sample size in their SAA formulations. Finally, in the experiments
for multiperiod order assignment, we show the effectiveness of both simple heuristics built
on the single-period solutions.

This paper considers that the firm dispatches the orders to the drivers after orders have
been prepared. While such an order assignment is responsive to the realized demand and
improves the utilization of drivers, it requires extra effort in operations and technology
from the service provider, compared to the static order assignment strategy: first divide the
service region and allocate dedicated drivers to their own subregions, e.g., delivery zoning and
territory partitioning e.g., Carlsson (2012) and Carlsson and Delage (2013). The practical
advantage of static order assignment is that drivers become more familiar and effective
in visiting their assigned customer locations, which leads to a smoother delivery experience.
Therefore, a natural extension is to develop a static order assignment model. A key challenge
that arises from the static order assignment is the uncertainty in customer locations to visit
in each batch, in addition to the uncertainty in the service times. While our SAA model
can be directly extended by using the indicators for the customer location realizations in all
the samples, it would be interesting to study a DRO model for static order assignment with
both uncertainty in both the customer location and service time.
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Chapter 4

Urban Bike Lane Planning

4.1 Introduction

Urbanization is a global trend. More than half of the world’s population now lives in towns
and cities. It is projected that about 56% of the developing world and 82% of the developed
world will be urbanized by 2030, which equals to 5 billion people (The Economist, 2012).
Much of this urbanization will unfold in Africa and Asia, bringing huge social, economic
and environmental transformations (United Nations Population Fund, 2018). The main
challenges brought by the fast urbanization include traffic congestion and air pollution. The
growing number of cars exceeds the city’s traffic carrying capacity and thus causes severe
traffic congestion around the city. In the meanwhile, the vast amount of emissions generated
by moving cars worsens the air quality and poses serious public health problems. For Beijing,
cars accounted for 30% of city’s self-generated pollutants contributing to air pollution (South
China Morning Post, 2018).

In addition to driving cars, cycling is a popular urban transit mode for daily commute.
For instance, 30% of people go to work by riding bikes in Cambridge, UK (Department for
Transport, UK, 2015). According to U.S. Census Bureau (2012), 864,883 people cycled to
work in the United States. Cycling is promoted by many countries as it benefits the city
residents in many different aspects. First, cycling is free of pollution and the large-scale
adoption of cycling can benefit the urban environment. Second, the popularity of cycling
could alleviate the traffic congestion and improves the overall traffic condition. Third, cycling
is also a more affordable and healthy transit mode than driving cars. As shown by the City
of Copenhagen (2010), mortality is reduced by 30% in adults who cycle to and from their
workplace on a daily basis, which can translates to huge savings of health care cost. In the
recent years, the convenience of using shared bikes also stimulates the popularity of cycling
among city residents. It is estimated that more than 75 communities now have bike sharing
programs, and the number of shared-bike rides in U.S. cities has achieved 34.6 million in
2017 (The Wall Street Journal, 2018).

To promote cycling and reduce bike crashes, bike lanes have been planned and constructed
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by city planners. In Amsterdam, for example, there are 250 miles of dedicated bike lanes
in use. In the U.S., city governments are rolling out better bike lanes in a large scale. For
instance, Chicago has planned to build 50 miles of bike lanes by 2019 (Chicago Tribune,
2015). Cities from developing countries, such as China and India, are also investing heavily
in protected bike lanes (The Seattle Times, 2016). The construction of bike lanes improves
the safety for cyclists, car drivers as well as pedestrians. It is reported that fatality rate is
less than a tenth as high in the countries with well designed cycling road networks as in the
countries without cycling friendly infrastructures (Pucker, 2001).

Traditionally, bike lanes are planned based on experience and surveys. As smart phones
are widely used, the GPS human mobility data becomes more available and makes it possible
to utilize this fine-grained data in bike lane planning. Most recently, dock-less bike sharing
systems are expanding quickly across the world. In this system, people can use smart phones
to pick up and drop off bikes at arbitrary locations. Bikes in the dock-less system are often
embedded with GPS devices so the bike trajectories can be recorded. These bike trajectories
record the detailed travel pattern of bike riders and reflect the actual bike travel demand
of city residents. Compared to the conventional origin-destination data, the trajectory data
reveals the footprints on the road network, which is essential to the bike lane planning as
most bike lanes are constructed along the existing road network.

This paper presents and solves the bike lane planning problem using the detailed bike
trajectory data. The bike lane planning problem decides on which road segments of the
existing road network to construct bike lanes, aiming to balance the two main objectives:
1) coverage: cover as many bike trips as possible and 2) continuity : build more continuous
bike lanes to minimize interruptions. We summarize our main results and contributions as
follows.

1. We present the bike lane planning model in view of the cyclist’s utility functions based
on the trajectory data. We start from a simple adjacency-continuity utility function
and then discuss the general class of utility functions. The choice of the utility functions
is flexible to characterize the trade-off between the coverage and continuity objectives.
To the best of our knowledge, our work is the first to formalize the general bike lane
planning model.

2. For the simple adjacency-continuity utility function, we show that the resulting bike
lane planning model has a supermodular objective function and admits an efficient
mixed integer linear program (MILP) formulation. For the general utility functions, we
show that under reasonable conditions, the objective function is also supermodular and
the resulting problem yields a polynomial-time solvable Lagrangian dual. Furthermore,
we provide a linear programming approach to the Lagrangian relaxation subproblem
and propose an efficient algorithm for the general utility functions. We also make the
first attempt to account for the cyclists’ responsive behaviors in the bike lane planning
problem by modeling their route choices.
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3. We present a real-word case study based on the collaboration with an urban planning
institution and a dock-less bike sharing company. We collect and preprocess a large
bike trajectory data set, and test our models and algorithms via extensive numerical
experiments. The numerical experiments validate the efficiency of the proposed algo-
rithms and deliver insightful comparison results between different models. We show
how the topology of bike lane network would change according to the utility functions
and provide quantitative measures to analyze the trade-off between coverage and conti-
nuity. We also highlight the importance of understanding cyclists’ responsive behaviors
in the bike lane planning.

The remainder of the paper is organized as follows. Section 4.2 reviews the related
literature and Section 4.3 describes the trajectory data set and provides summary statistics.
Section 4.4 develops the bike lane planning model and presents tractable formulations and
structural results, which motivates efficient algorithms. Section 4.5 is devoted to the real-
world case study and insights derived from numerical experiments. Section 4.6 concludes
the paper and presents several future research directions.

4.2 Related Literature

Smart city operations have received growing attention from the operations management com-
munity. Different aspects of the smart city movement have been studied, including smart
grid, smart transportation, and smart retail. The “smart” parts of these aspects often come
from innovative technologies that can disrupt the present urban environment and city oper-
ations, or new data collection and data analytics tools to inform better understanding and
decisions for city management. For instance, Y. Zhang, M. Lu, and S. Shen (2018) study
a promising scheme where vehicle-to-grid (V2G) electricity selling is integrated in electric
vehicle sharing systems, as enabled by new technological development. They provide impor-
tant strategic planning and operational tools to support the advancement of this scheme.
Shared mobility, where shared passenger cars are deployed to provide ride and logistics ser-
vices, has been examined from various perspectives such as pricing (Taylor 2018; Bai et al.
2018), admission control (Afeche, Z. Liu, and Maglaras 2018), repositioning (He, Hu, and M.
Zhang, 2019) and last-mile delivery (W. Qi, L. Li, et al., 2018), among others. In retailing,
recent development of IT and big data tools have enabled innovative omni-channel strategies
(Gao and Su, 2016; Harsha, Subramanian, and Uichanco, 2019) and data-driven pricing and
logistics policies (Perakis et al., 2018; S. Liu, He, and Z.-J. M. Shen, 2019). We refer readers
to Mak (2018) and W. Qi and Z.-J. M. Shen (2019) for thorough reviews of papers in smart
city operations. Our paper is among the first to develop rigorous analytical models to tackle
an urgent city planning problem built upon new mobility data sources, and thus promotes
the smart city vision.

There has been an increasing focus on the planning and control of bike facilities, in
particular, the optimization of bike-sharing systems in recent years. The majority of the
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existing literature tackles the operational problems of bike sharing systems, such as balancing
bike stock levels among bike stations to satisfy temporal and spatial demand. For example,
Shu et al. (2013) addresses the bike deployment and redistribution problems with network
flow formulations. O’Mahony and Shmoys (2015) study similar rebalancing problems as
well as routing and clustering problems with different integer programming techniques. In
addition, empirical approaches have been applied to shed lights on the optimal configuration
of bike share systems (Kabra, Belavina, and Girotra, 2018). However, few papers consider
the roads used by cyclists to travel between bike stations, which is another fundamental
deciding factor of a bike-sharing system’s success. Noticeably, the above three papers only
utilize the origin-destination information of bike rides while our paper incorporates a fine-
grained bike trajectory data set, which makes it possible to capture more detailed travel
patterns of bike riders.

Traditionally, bike lane planning is not built upon reliable real-world data. A prominent
approach of traditional bike-lane planning is to select road segments (on which to construct
bike lanes) by evaluating them with respect to a set of predetermined guidelines and criteria.
Dondi et al. (2011) propose a context sensitive approach and make the selection based
on the analysis of the visual effects, environmental contexts and traffic considerations of
road segments. Rybarczyk and C. Wu (2010) select road segments with a modified simple
additive weighting method to calculate an overall score for each road segment based on
its rankings among all road segments for each criterion in a predetermined set of weighted
criteria. Since the guidelines and criteria in these papers are decided based on expertise or
specific needs, there is a potential risk of subjective bias. Another classical approach is to
select road segments based on cyclists survey results that reveal their preferences. One such
approach is built on stated preference surveys, in which respondents are asked to imagine
their preferences in some hypothetical cases (Tilahun, Levinson, and Krizek, 2007; Stinson
and C. Bhat, 2003; Hunt and Abraham, 2007). However, results from the stated preference
surveys could be inaccurate as they do not represent cyclists’ actual choices. Researchers also
adopted revealed preference surveys, in which respondents reveal their actual choices (Sener,
Eluru, and C. R. Bhat, 2009; Howard and Burns, 2001; Hyodo, Suzuki, and Takahashi,
2000). Results from revealed preference surveys are also subject to sampling biases and
small sample biases.

In addition to subjective and survey based methods, there are a few papers that develop
analytical methods for the bike lane planning problem. Epperson (1994) analyzes the road
level of service standard for bike use, which can be then used to guide bike lane design. Lin
and Yang (2011) consider a strategic designing problem for bike sharing, in which the location
of bike stations and bike lanes are decided to minimize the system-wide operating cost. Their
model only accounts for the origins and destinations while ignoring the road network. As
a result, their model can not be directly used to guide the practical bike lane construction.
Most recently, Bao et al. (2017) propose several heuristics to decide the bike lane locations
by maximizing a specific score function under budget and connectivity constraints. Our
paper, on the other hand, proposes a general and tractable modeling framework for the bike
lane planning, and derives structural results about the resulting planning problem. The
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structural results motivate efficient algorithms with empirically validated performance.
From a modeling perspective, our paper is related to the general class of facility lo-

cation problems. While many traditional facility location models are focused on locating
warehouses/distribution centers/retailing stores to maximize profits or minimize operational
costs (Snyder and Z.-J. M. Shen, 2019), we consider locating bike lanes on the existing road
network to maximize riders’ utility. Hence our paper echoes the emerging location models in
nonprofitable operations and healthcare operations (Cho et al., 2014; Chan, Z.-J. M. Shen,
and Siddiq, 2017).

4.3 Data Description and Analysis

We obtain a GPS bike trajectory data set via our collaboration with the urban planning
institution of Zhuhai city and a major bike sharing company operating in that city. Zhuhai
is a medium-size city of China with a population of 1.67 million, where both station-based
and dock-less bike sharing systems have been deployed. Zhuhai residents take hundreds of
thousands of rides every day. To promote cycling and improve the safety for cyclists, Zhuhai
city government is planning to construct protected/dedicated bike lanes in the following
years. We collected the bike trajectories from the bike sharing company in 2017 and 2018,
which are then mapped to the road network extracted from OpenStreetMap (Geofabrik,
2018). Each trajectory contains a timestamp that indicates the start time of a trip and a
series of GPS coordinates that were recorded every 5 seconds. We loaded and visualized the
trajectories in ArcGIS Pro and used its planarize feature to split roads into separate road
segments at intersections.

Preprocessing. The original data set includes the bike trajectories taken by users who
registered in Zhuhai. We first removed the trajectories that started or ended outside the
urban area of Zhuhai as well as the trajectories with duration shorter than one minute to
obtain representative trajectories.

Since our trajectory data and road network are in different coordinate systems, we also
used the Python package eviltransform to convert trajectory coordinates from GCJ-02 to
WGS-84. To minimize the overlap of road segments and maintain the geometric property
of trajectories, we removed short road segments whose lengths are shorter than 35 meters.
After preprocessing, the data set has 96,631 bike trajectories in total.

Mapping Trajectory Coordinates to Roads To map the GPS coordinates to the
road network, we generate a near table in ArcGIS that finds the nearest road segment to a
coordinate point. Then each coordinate is associated with a road segment ID. As a result,
each trajectory is transformed to a series of road segments (IDs), which serves as the input
to the bike lane planning model.

Summary Statistics. Figure 1 presents the distribution of trajectory duration of our
data set. The average duration of the trajectories is 1,043 seconds (17.4 minutes), and
the majority of trajectories have duration shorter than 20 minutes. This is because most
trajectories are limited to the urban and residential areas of Zhuhai. We identify 3,735
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road segments from the trajectories in total. The average length of the road segments is
195.3 m, and more than 60% of road segments have lengths under 200 meters. Most roads
are constructed in the urban area of Zhuhai with high density of population, and thus
intersections are close to each other in this area.
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Figure 4.1: Bike trajectory duration distribution.

Temporal Distribution. Figure 4.2a shows the distribution of bike trajectories across
different hours of a day. It can be observed that there are two demand peaks: one occurs in
the morning (7 to 9:00 am) and the other occurs in the evening (5:00 to 8:00 pm). These
two peaks correspond to the commute rush hours. We also note that the bike trip demand
falls gradually after the evening peak and still remains substantial until midnight, which can
be attributed to people who engage in leisure activities after work. Figure 4.2b shows the
distribution of bike trajectories across different days of a week. We observe that the bike trip
demand is almost stable throughout a week, while there is a small peak on Fridays. which
is possibly due to the rise in leisure activities after work in the advent of weekend.

Spatial Distribution. Figure 4.3a shows the density of the origins of bike trajectories
on a map of Zhuhai. We can see that the majority of trajectories begin in four areas in
Zhuhai, which include the financial district, shopping district and residential districts of the
city. Correspondingly, Figure 4.3b shows the density of the destinations of bike trajectories
on a map. It can be observed that popular destinations of trajectories coincide with the four
areas that are also popular origins. This is because many people spend a portion of their
days staying at these places on a regular basis (e.g. workplaces, shopping malls, homes). So
bike lanes should be prioritized in these popular areas.
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Figure 4.2: Bike trajectory temporal distribution.
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Figure 4.3: Density heatmap of origins and destinations in the city.
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In addition to origins and destinations, our data also reveals the usage of different road
segments in bike trajectories. Figure 4.4 shows the spatial distribution of the road segment
usage frequency on the street map. It can be observed that the locations of the road segments
with high usage match with those of popular trajectory origins and destinations. We also
observe that the most popular road segments are spread out over the city, which implies that
simply maximizing the coverage of bike trips would result in a highly discontinuous bike lane
system.

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

Figure 4.4: Road segment usage spatial distribution.

4.4 Bike Lane Planning Model

We first introduce the bike lane planning model based on the bike trajectory data with a
specialized utility function. We then analyze the structural properties of the model and
discuss several important generalizations.
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4.4.1 Adjacency-Continuity Utility Maximization

Let V be the set of all road segments that have been visited by bike riders in our data set
and M be the set of cyclists. We say two road segments i and j are neighbors, (i, j) ∈ N ,
if they are connected. We can also interpret (i, j) ∈ N as road intersections. For each road
segment i ∈ V , we use di to denote the associated number of bike trips. Similarly, each pair
of connected road segment (i, j) ∈ N is also associated with the number of trips that go
through the corresponding intersection, dij.

We consider two main objectives of designing bike lanes inspired by the literature and
our communication with the biking community:

1. Constructed bike lanes should be able to cover as many bike trips as possible. (coverage
objective)

2. Constructed bike lane network should enable continuous and smooth riding experience
for cyclists. (continuity objective)

Continuity is preferred for both the cyclists and government. Krizek and Roland (2005)
show that the discontinuity of bike lanes that can cause great discomfort to cyclists. And
the discontinuity at the intersections also generate potentially higher crash risks. For the
government, discontinuous bike lanes can pose management challenges as well as construction
difficulties. The coverage objective and the continuity objective are often conflicting with
each other, as shown by Bao et al. (2017). Maximizing only the coverage may lead to very
dispersed bike lanes while maximizing only the continuity can leave many cyclists uncovered.
So we need to find the ideal trade-off between the two objectives.

Now we formalize the two objectives from the cyclist’s perspective. For a cyclist m,
we use rm = {i1m, . . . , inm

m } to denote the ordered set of road segments (i.e. trajectory) she
traveled through, where i1m, . . . , i

nm
m ∈ V and nm is the number of road segments traveled by

m (|rm|). The cyclist receives a positive utility if there is a bike lane on the road segment,
i.e. xi = 1. Also, she gets an additional λ utility if the bike lanes are continuous along an
intersection, i.e. xi = xi+1. So her gained utility of traveling through rm from the bike lane
construction plan x is

vx(rm) =
nm∑
i=1

xi + λ

nm−1∑
i=1

xixi+1.

Summing over the utility functions of all cyclists gives∑
m∈M

vx(rm) =
∑
i∈V

dixi + λ
∑

(i,j)∈N

dijxixj

where di is the number of trajectories going through road segment i and dij is the number of
trajectories going through the intersection (i, j). So

∑
i∈V dixi stands for the total number of

covered road segments (with bike lanes) weighted by the demand, and
∑

(i,j)∈N dijxixj is the
additional continuity utility for two adjacent bike lanes weighted by the travel demand. Since
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the above utility function measures the continuity utility along two adjacent road segments,
we call this utility function as the adjacency-continuity (AC) utility function. Note that here
we treat each road segment equally regardless of the length for the ease of exposition and
the discussion can be easily extended to consider the impact of length on the utility.

Based on the AC utility function, we propose a bike lane planning model that takes into
account both the coverage and the continuity requirement. Let xi ∈ {0, 1} denote the bike
lane construction decision variable: xi = 1 if a bike lane is planned at road segment i and
xi = 0 otherwise. And we use ci to denote the construction cost of building a bike lane on
road segment i. The bike lane planning model (BL) can be formulated as an integer program
(IP):

max
x

∑
i∈V

dixi + λ
∑

(i,j)∈N

dijxixj, (BL-AC)

s.t.
∑
ei∈V

cixi ≤ B, (4.1)

xi ∈ {0, 1}, ∀i ∈ V. (4.2)

The objective function measures the cyclists’ welfare from bike lanes. The parameter λ ≥ 0
determines the relative continuity benefit to the cyclist. A higher λ means continuity is more
desirable and thus a more continuous bike lane network would be proposed. Constraint (4.1)
is the budget constraint that ensures the total construction cost does not exceed the allowable
government budget B. In practice, there may be other constraints that limit the construction
of bike lanes in certain regions, which can be incorporated as needed. Furthermore, it is
possible that building bike lanes along certain roads may reduce the capacity for car traffic
flows, and hence worsening the traffic condition. To account for this, we can add additional
penalty terms to our objective function. The detailed modeling of this traffic impact is out
of the scope of this paper and we leave it for future research.

Analysis

When λ = 0, the problem reduces to the classical Knapsack problem, which is NP-hard.
Otherwise, the problem is a special case of the 0-1 quadratic knapsack problem (QKP), where
the coefficient matrix for the quadratic terms have a sparse structure. If dij is separable and
can be decomposed as dij = d̃id̃j, then the objective function is referred to as the half-product
function. The maximization of the half-product function over a knapsack polytope is known
to admit a Fully Polynomial-Time Approximation Scheme (FPTAS). However, no FPTAS
is available for the general non-separable objective function.

Nevertheless, similar to the general QKP, it can be shown that the objective function
with dij ≥ 0 is supermodular.

Lemma 4.1. When λ ≥ 0 and dij ≥ 0 for all (i, j) ∈ N , the objective function of BL-AC is
supermodular.
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The proofs of Lemma 4.1 and other results in this section are presented in the Appendix.
The supermodularity result implies that the problem can be solved efficiently without the
budget constraint. So we can adopt the Lagrangian relaxation methodology to relax the
budget constraint. The resulting Lagrangian dual is given as

min
u≥0

Φ(u), (4.3)

where

Φ(u) = max
xi∈{0,1}

∑
i∈V

dixi + λ
∑

(i,j)∈N

dijxixj − u(
∑
i∈V

cixi −B). (4.4)

Here Φ(u) is the Lagrangian relaxation of BL-AC for u ≥ 0. Based on the result of Gallo
and Simeone (1989) and Chaillou, P. Hansen, and Mahieu (1989), Φ(u) can be solved in
polynomial time.

Proposition 4.1. When λ ≥ 0 and dij ≥ 0 for all (i, j) ∈ N , the Lagrangian dual of BL-AC
can be solved in polynomial time.

More specifically, one can show that the Lagrangian dual is a piece-wise linear convex
function with at most |V | break points. And each Φ(u) is equivalent to a maximum flow
problem (Chaillou, P. Hansen, and Mahieu, 1989). There are other Lagrangian relaxation
methods for QKP that rely on relaxing different sets of constraints (e.g. Caprara, Pisinger,
and Toth 1999), we refer readers to Pisinger (2007) for an extensive review. Since the
Lagrangian dual only provides an upper bound, we may still need to perform branch and
bound to get an exact solution. Alternatively, we can get an equivalent mixed integer linear
programming (MILP) formulation to BL-AC, which can deliver satisfactory computational
performance with the commercial MILP solvers.

MILP Formulation

Although the objective function of BL-AC is nonlinear, we can linearize the product terms
in BL-AC by replacing xixj with yij, and derive the following MILP formulation for bike
lane planning:

max
x

∑
i∈V

dixi + λ
∑

(i,j)∈N

dijyij, (BL-AC-MILP)

s.t. yij ≥ xi + xj − 1, ∀(i, j) ∈ N, (4.5)

yij ≤ xi, ∀(i, j) ∈ N, (4.6)

yij ≤ xj, ∀(i, j) ∈ N, (4.7)∑
i∈V

cixi ≤ B, (4.8)

0 ≤ yij ≤ 1, ∀(i, j) ∈ N, (4.9)

xi ∈ {0, 1}, ∀i ∈ V. (4.10)
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Constraints (4.5)-(4.7) ensure that yij = 1 if xi = xj = 1 and 0 otherwise. Constraints (4.5)
are redundant when dij’s are positive. BL-AC-MILP is ready to be solved using commercial
solvers such as Gurobi and CPLEX. Some additional useful constraints can be introduced to
tighten the formulation, although they are redundant for the integer program. For instance,
the following set of constraints are valid (Helmberg, Rendl, and Weismantel, 2000):∑

i∈V/{j}

ciyij ≤ (B − cj)xj, ∀j ∈ V. (4.11)

As shown later in the computational experiment, the above formulation can be solved effi-
ciently.

4.4.2 General Utility Functions

The aforementioned utility function assumes the continuity utility only applies to two ad-
jacent road segments. We now discuss a more general class of cyclist utility functions with
the consideration of continuity beyond adjacency. In essence, the continuity utility may also
depend on the size of continuous bike lanes, which can not be captured by the AC utility
function.

Example 1. Consider a cyclist riding through r = {1, 2, 3, 4, 5} and two bike lane construc-
tion plans, namely A and B: plan A builds bike lanes on {1, 2, 4, 5} and plan B builds on
{1, 2, 3, 5}. Under the AC utility function, the cyclist’s utility from both plans are the same:
4 + 2λ. However, plan B may be more preferable to the cyclist if the marginal benefit from
the continuity is increasing in the size of continuous bike lanes.

Given a trajectory r and a bike lane construction plan x, let Sx(r) denote the set of
maximal continuous road segments with bike lanes on r. For instance, if r = {1, 2, 3, 4, 5}
and bike lanes are constructed on {1, 3, 4, 5} (x1 = x3 = x4 = x5 = 1 and x2 = 0), then
Sx(r) = {{1}, {3, 4, 5}}. We define a general utility function as

vx(r) =
∑

s∈Sx(r)

f(|s|), (4.12)

where f(·) is an increasing function. Under the adjacency-continuity utility function, f(|s|) =
|s| + λ(|s| − 1) = (λ + 1)|s| − λ, which is a linear function of |s|. And the score function
used by Bao et al. (2017) is a special case of (4.12), wherein f(|s|) = |s|α|s| with α ≥ 1. We
will refer the bike lane planning model with the general utility function as BL-GU. Although
maximizing the general utility function is often challenging due to the nonlinearity, we can
show that the utility function (4.12) has a desirable structure when f(·) is further assumed
to be convex.

Theorem 4.2. If f(·) is an increasing convex function, vx(r) defined in (4.12) is supermod-
ular.
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The convex assumption of f(·) is consistent with the notion that cyclists receive addi-
tionally more benefits by riding through more continuous bike lanes. For example, utility
functions such as f(|s|) = |s|α|s| (α > 1) are supermodular. With supermodular util-
ity functions, the general utility maximization problem over the budget constraint has a
polynomial-time solvable Lagrangian dual problem.

Corollary 4.2.1. If f(·) is an increasing convex function, maximizing the utility function
vx(r) defined in (4.12) over a budget constraint yields a polynomial-time solvable Lagrangian
dual.

However, different from the AC utility case, each iteration of the Lagrangian relaxation
under the general utility function is not equivalent to a maximum flow problem. Instead, we
can use a general supermodular maximization oracle such as Fujishige’s minimum-norm-point
algorithm (Fujishige, 2005). Then the computational performance of solving the Lagrangian
dual problem heavily depends on the efficiency of the supermodular maximization oracle. In
our case, the minimum-norm-point algorithm is not computationally efficient.

Nevertheless, the bike lane planning problem using the general utility function (4.12) can
be formulated as a MILP.

Proposition 4.2. Under the general utility function (4.12), the bike lane planning problem
can be solved as a MILP.

Note that the MILP formulation is attainable without assuming f(·) is convex. Specifi-
cally, the general utility function can be represented as

vx(r) =
∑
l∈L(r)

βl
∏
i∈l

xi (4.13)

with properly chosen coefficients βl, where L(r) is defined to include all the possible sets of
continuous road segments on r. Each element l ∈ L is a set of continuous road segments.
Here L(r) is different from Sx(r) in the sense that L(r) is independent of x. For instance,
given r = {1, 2, 3}, then L(r) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} and vx(r) = β1x1 +
β2x2 + β3x3 + β1,2x1x2 + β2,3x2x3 + β1,2,3x1x2x3, where coefficients β’s can be calculated as

β1 = β2 = β3 = f(1),

β1,2 = β2,3 = f(2)− 2f(1),

β1,2,3 = f(3)− 2(f(2)− 2f(1))− 3f(1) = f(3)− 2f(2) + f(1).

More generally, βl = f(|l|)− 2f(|l| − 1) + f(|l| − 2) for a nonempty l (the proper definition
requires f(−1) = 0). When f(·) is an increasing convex function, all β’s are nonnegative.
Since function (4.13) only involves product terms with binary variables, we can linearize them
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to get a MILP in a similar fashion to BL-AC-MILP. We call this formulation BL-GU-MILP.

max
x

∑
m∈M

∑
l∈L(rm)

βlyl, (BL-GU-MILP)

s.t. yl ≥
∑
i∈l

xi − (|l| − 1), ∀l ∈ L(rm),m ∈M, (4.14)

yl ≤ xi, ∀i ∈ l, l ∈ L(rm),m ∈M, (4.15)∑
i∈V

cixi ≤ B, (4.16)

0 ≤ yl ≤ 1, ∀l ∈ L(rm),m ∈M, (4.17)

xi ∈ {0, 1}, ∀i ∈ V. (4.18)

Again, constraints (4.14) are not necessary if β’s are nonnegative. The number of con-
straints (4.15) may be intimidating, but we can get a simple reduction by utilizing the
nested structure of l. For l ∈ L(r) with |l| > 2, two subsets, l− and l−, can be obtained
by removing the first and the last road segment of l, respectively. Since l−, l

− ∈ L(r), we
can use two constraints yl ≤ yl− and yl ≤ yl− instead of constraints (4.15). For example,
given l = {1, 2, 3, 4}, we can use l− = {2, 3, 4} and l− = {1, 2, 3}. After the reduction, the
constraint matrix of BL-GU-MILP boils down to a totally unimodular matrix along with a
budget constraint, as formalized in the following proposition.

Proposition 4.3. If f(·) is an increasing convex function, BL-GU-MILP with the relaxed
budget constraint has a totally unimodular constraint matrix. Then the corresponding La-
grangian relaxation can be solved as a linear program (LP).

Proposition 4.3 has several important implications. First, it presents an alternative way
to prove the polynomial-time solvability result of the Lagrangian dual in Corollary 4.2.1.
Since LP is polynomial-time solvable and the Lagrangial dual has a limited number of break
points, the Lagrangian dual can be solved in polynomial time. Second, instead of resorting
to a general supermodular maximization oracle, the Lagrangian dual can now be solved
with a linear programming solver, which tends to deliver significantly better computational
performance.

Regarding the size of BL-GU-MILP, both the number of continuous variables and the
number of constraints in BL-GU-MILP are O(min{|M |N2

e , |L(V )|}), where Ne is the size
of the longest trajectory (in terms of the number of road segments). Although |M | can be
arbitrarily large, L(V ), the set of all possible continuous road segments on the entire road
network, is limited. And in practice, many trajectories are similar so the actual number of
variables and constraints is much smaller.

Furthermore, the supermodularity result can be used to strengthen the formulation of
BL-GU-MILP. By the supermodularity, our problem can be transformed into a minimization
problem with a submodular objective function.
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Definition 4.1. For a submodular function g, the polyhedron

EPg = {π ∈ R|V | : π(S) ≤ g(S), ∀S ⊆ V }

is called an extended polymatroid.

It has been shown by Atamtürk and Narayanan (2008) that inequalities

πx ≤ γ, ∀π ∈ EPg

are valid for the convex lower envelope of g, defined as

Qg = conv{(x, γ) ∈ {0, 1}|V | × R : g(x) ≤ γ}.

So given a solution x∗ and its corresponding objective value γ∗, we can search in EPg to find
π∗ that maximizes πx∗. If π∗x∗ > γ∗, then a cut can be added as π∗x ≤ γ. As shown in
Edmonds (2003), π∗ can be found by a greedy algorithm.

A Lagrangian Relaxation Based Algorithm.

Solving BL-GU-MILP directly via commercial MILP solvers can be challenging due to the
large number of variables and constraints in practical applications. Given that the La-
grangian relaxation subproblem of BL-GU-MILP by relaxing the budget constraint can be
solved as a LP, we propose a simple and efficient Lagrangian relaxation based algorithm
to solve the large-scale bike lane planning problem under the general supermodular utility
functions, which is detailed as follows.

1. The Lagrangian dual of BL-GU-MILP is first solved with a “outer approximation”
algorithm, wherein each iteration involves a LP. For the ease of exposition, we use
S(x) to denote the objective function of BL-GU-MILP, c(x) for the construction cost
(=
∑

i∈V cixi), x(u) for the maximizer of the Lagrangian relaxtion at u, and g(u) =

−(c(x) − B) for the subgradient. We start with u′ = 0 and u′′ = maxi
S(r)
ci

. At these
two multiplier values, g(u′) = −(c(e)−B) and g(u′′) = B.

a) Calculate u∗ = S(x(u′′))−S(x(u′))
c(x(u′′))−c(x(u′))

, and solve for x(u∗) with LP.

b) If Φ(u∗) = Φ(u′′) + (u∗ − u′′)g(u′′), then u∗ is optimal. Otherwise go to the next
step.

c) If c(x(u∗)) > B, set u′ = u∗; otherwise set u′′ = u∗. Repeat step (a) and (b).

2. After solving the Lagrangian dual, if c(x(u∗)) = B, then x(u∗) is the optimal solution
to BL-GU-MILP. Otherwise we find the best feasible solution by removing items from
x(u∗). The formulation is the same as BL-GU-MILP except that we drop xi for i ∈
{j ∈ V : xj(u

∗) = 0} and yl for l ∈ {l′ ∈ L(em),∀m ∈ M : ∃i ∈ l′, xi(u∗) = 0}. The
resulting problem often has a much smaller size than the original problem and admits
a relatively short solution time.
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4.4.3 Cyclist’s Response to Bike Lane Plan

Up till now our model makes no assumptions about cyclists’ responsive behaviors to the bike
lane construction plan. The aforementioned models maximize the cyclists’ utility assuming
their route choices are fixed (their trajectories will not be impacted by the constructed bike
lanes). This assumption may not be valid if cyclists update their route choices based on
the constructed bike lanes. Since the utility from riding through a route is determined by
the constructed bike lanes, cyclists may choose to take a different route than the observed
trajectory if more bike lanes are constructed along that route.

To account for cyclists’ responses, we assume for a cyclist m riding from i ∈ V to j ∈ V ,
she can choose from a set of candidate routes/trajectories Cm = {r1

m, . . . , r
tm
m }, where each

route starts with i and ends with j. In addition to the bike lane utility, cyclists’ evaluation
of a route also depends on the length, slope, noises, and other physical characteristics.
Therefore, we add to the utility function an exogenous utility term v̄(r) for a route r. In
practice, v̄(r) can be estimated beforehand and assumed to be known.

Given a bike lane construction plan x, cyclist m chooses the route r ∈ Cm with probability
pm(r) according to a discrete choice model. Then the objective of the bike lane planning
problem is

max
x

∑
m∈M

∑
r∈Cm

pm(r)vx(r). (4.19)

The bike route choice is often modeled using the Multinomial Logit model (MNL), as
shown in Hood, Sall, and Charlton (2011) and Khatri et al. (2016). Under the MNL model,
the probability pm(r) is given by

pm(r) =
exp(vx(r) + v̄(r))∑

r′∈Cm
exp(vx(r′) + v̄(r′))

. (4.20)

Because many alternative routes have overlapping road segments, the assumption of irrele-
vant alternatives may not be satisfied. To relieve this concern, a correction term called Path
Size factor (PS) is introduced as (Broach, Dill, and Gliebe, 2012)

PSm(r) =
∑
i∈r

li
Lr

1∑
r′∈Cm

δir′
, (4.21)

where li is the length of the road segment i, Lr is the length of route r, and δir′ is a binary
variable that equals 1 if i ∈ r′ and 0 otherwise. This correction factor is added to the utility
function in the logrithmic form, yielding the choice probability p′m(r) as

p′m(r) =
exp(vx(r) + v̄(r) + ln(PSm(r′)))∑

r′∈Cm
exp(vx(r′) + v̄(r) + ln(PSm(r′))

, (4.22)

which is often referred to as the basic Path Size Logit (PSL) model (Ben-Akiva and Bierlaire,
1999). Intuitively, the correction term decreases the utility of a route when it overlaps with
other alternative routes. And the decrease is proportional to the degree of overlap.
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The consequent bike planning problem is similar to an assortment optimization problem
as decisions in both problems shape the choice probabilities. However, while the assortment
decision influences the choice probabilities by altering the choice set, the bike lane construc-
tion decision transforms the choice probabilities by changing the utility values. That being
said, the choice set in our problem is invariant to the decision variables, which is a critical
difference between our problem and the assortment optimization problem. Furthermore, un-
like the assortment optimization where the marginal profit of each product is exogenously
given, the “profit” from bike lanes vx(r) depends on the decision variables. Hence problem
(4.19) also shares a similar structure to the joint assortment-pricing optimization problem.
However, the decisions here are binary and the analysis in the pricing literature can not
carry on, which makes the exact solution to this problem difficult to derive especially for the
practical large-scale problem.

Remark. With other alternative assumptions about the cyclist behavior, we may arrive
at a more tractable formulation for (4.19). For instance, if the utility function of every
cyclist is known exactly and they choose the route with the highest utility, then the problem
(4.19) would admit a MILP formulation. Due to the lack of empirical evidence we omit the
discussion here. Nevertheless, we want to highlight the need for more empirical research in
this behavioral aspect.

Admitting the difficulty in solving the above model exactly, we seek a simple but practical
remedy to address the responsive behaviors by using an alternating algorithm. The algorithm
alternates between updating the choice probabilities given x between optimizing x with
the fixed choice probabilities, as detailed in the following. 1) First solve the bike lane
planning problem using the observed routes (BL-GU-MILP) and get the optimal solution
x∗; 2) Calculate ptm(x∗) according to the choice model; 3) Fixing the choice probability
ptm(x∗), solve the bike lane planning problem (4.19) to get the new solution and update x∗;
repeat 2) and 3) until the termination criteria is met.

The application of the introduced alternating algorithm is not limited to the MNL model,
but bodes well to other choice models such as Exponomial choice model and Markov chain
choice model. Moreover, when a more refined description of cyclist’s behavior is preferred
(e.g., through simulators), the alternating algorithm can be easily adapted.

4.5 A Real-World Case Study

We apply the proposed models and algorithms to the real-world trajectory data set from
Zhuhai, as described in Section 4.3. First, we discuss the computational performance and
solution quality of proposed algorithms, in comparison to a benchmark greedy heuristic.
Second, we compare the bike lane construction plans generated by different models with
varying parameters, with and without consideration of cyclists’ responsive behaviors.
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4.5.1 Computational Result

We test the two models, BL-AC and BL-GU, on the practical road network with the use of
the trajectory data set. BL-AC is solved by the MILP directly (BL-AC-MILP) and BL-GU is
solved by the Lagrangian relaxation based algorithm proposed in Subsection 4.4.2. For BL-
GU, the utility function takes the form of vx(r) =

∑
s∈Sx(r) |s|α|s|. We vary the choices of λ,

α, B, and the number of sampled trajectories (cyclists) m. The experiments were conducted
with Gurobi (Gurobi Optimization 2018) and ran on a Windows 10 64-bit machine with a
Intel Xeon 4114 2.20 GHz processor and 32.0 GB RAM.

Table 4.1 presents the running time and optimality gap of solving BL-AC-MILP. We can
see that the MILP formulation can be solved efficiently and all the instances can be solved
within 15 seconds on the given network. We also test its efficiency on randomly generated
road networks with 20,000 road segments, and the MILP formulation is able to deliver the
global optimal solution within a minute.

Table 4.1: Computational performance of BL-AC-MILP (all trajectories)

B = 30 (km) B = 50 (km) B = 100 (km)

λ Time (sec) Gap Time (sec) Gap Time (sec) Gap
0 2.49 0.00% 2.50 0.00% 2.58 0.00%
1 3.73 0.00% 4.09 0.00% 6.55 0.00%
2 6.06 0.00% 4.60 0.00% 6.01 0.00%
5 6.66 0.00% 5.49 0.00% 7.28 0.00%
10 7.28 0.00% 7.02 0.00% 13.80 0.00%

Different from BL-AC, the general model BL-GU often involves a much greater number
of variables and the corresponding MILP formulation is not efficient. We compare here the
efficiency of the proposed Lagrangian relaxation based algorithm (denoted as GU-Lag) versus
a benchmark greedy heuristic adapted from Bao et al. (2017), which selects road segments
to increase the objective function in a greedy way. The detailed comparison result is given in
Table 4.2, in which we test the two algorithms on different sets of trajectories (e.g., m = 2000
indicates a random sample of 20,000 trajectories). The reported performance is averaged
across five different runs. We observe that GU-Lag delivers superior performance in terms
of both the running time and solution quality. In particular, the greedy algorithm does not
scale well to the cases with large values of B or α. For example, when α = 1.1, the solution
derived from the greedy algorithm suffers from the significant suboptimality, as implied by
the large optimality gap. By contrast, GU-Lag admits a reliable computational performance
across all different combinations of parameters.



CHAPTER 4. URBAN BIKE LANE PLANNING 85

T
ab

le
4.

2:
C

om
p
u
ta

ti
on

al
p

er
fo

rm
an

ce
of

G
U

-L
ag

an
d

th
e

gr
ee

d
y

al
go

ri
th

m
(t

im
e

is
in

se
co

n
d
s)

m
=

20
,0

00
m

=
50
,0

00
a
ll

tr
a

je
ct

or
ie

s

α
B

G
U

-L
ag

G
re

ed
y

G
U

-L
ag

G
re

ed
y

G
U

-L
ag

G
re

ed
y

(k
m

)
T

im
e

G
ap

T
im

e
G

ap
T

im
e

G
ap

T
im

e
G

ap
T

im
e

G
ap

T
im

e
G

a
p

1.
02

30
88

2
0.

0%
3
,4

7
4

10
.8

%
2,

84
2

0.
0%

25
,6

71
4.

9%
6,

82
5

0
.0

%
38

,4
8
3

3.
6
%

1.
05

30
2
,6

1
0

1
.2

%
2,

38
5

9.
2%

11
,4

77
0.

1%
17

,1
46

4.
7%

26
,9

3
0

0.
0
%

2
8,

4
58

6.
0
%

1
.1

3
0

5
7
0

9
.6

%
3,

61
3

81
.6

%
1,

79
0

3.
6%

6,
54

3
96

.3
%

5,
81

5
0
.6

%
14

,4
7
9

95
.3

%
1.

02
50

96
7

0.
0%

9
,1

0
0

8.
1%

3,
13

6
0.

0%
58

,6
23

2.
5%

7,
42

7
0
.0

%
84

,0
4
3

2.
0
%

1.
05

50
3
,3

5
2

0
.5

%
5,

57
4

10
.3

%
25

,5
54

1.
0%

38
,7

96
3.

7%
64

,5
80

1
.5

%
60

,9
3
6

3
.0

%
1
.1

5
0

5
2
7

2
.9

%
3,

61
3

81
.6

%
3,

46
7

2.
3%

14
,6

59
92

.6
%

6,
11

1
4
.9

%
28

,9
0
8

93
.6

%
1.

02
10

0
1
,1

1
7

0
.0

%
35

,2
8
7

1.
6%

4,
32

8
0.

0%
16

1,
23

6
1.

1%
8,

38
8

0.
0
%

2
08

,9
8
2

0
.9

%
1.

05
10

0
6
,7

1
9

0
.4

%
19

,3
7
0

11
.0

%
30

,2
36

0.
4%

10
8,

59
3

8.
4%

11
3,

04
1

0
.6

%
15

6,
9
20

8.
0
%

1
.1

1
0
0

4,
79

1
0.

4%
1
0
,4

81
69

.3
%

4,
69

8
0.

2%
37

,9
69

80
.5

%
16

,2
2
2

1.
3
%

7
1,

0
59

87
.6

%



CHAPTER 4. URBAN BIKE LANE PLANNING 86

4.5.2 Bike Lane Planning Result and Discussion

We compare the bike lane planning solutions generated from BL-AC and BL-GU with quan-
titative topological measures as well as visualization results. The setup is the same as in
Subsection 4.5.1 and we use all the trajectories as the model input. We first focus on the
planning model with fixed trajectories, and discuss the impact of cyclists’ responsive behav-
iors at the end.

Topological Comparisons.

We consider five relevant topological features: the number of selected bike lanes (road seg-
ments), the number of continuous bike lane pairs, the mean number of connections per bike
lane, the mean size of continuous bike lanes (along trajectories), and the max size of continu-
ous bike lanes (along trajectories). All the features except the number of selected bike lanes
measure the continuity of bike lanes on the road network. Table 4.3 presents the comparison
results based on these features for BL-AC and BL-GU with different parameter values. Note
that BL-GU with α = 1 is equivalent to GL-AC with λ = 0.

Table 4.3: Topological comparison of BL-AC and BL-GU with B = 30 km.

# of
selected

bike lanes

# of
continuous

bike lane pairs

mean # of
connections

per bike lane

mean size of
continuous
bike lanes

max size of
continuous
bike lanes

BL-AC
λ = 0 389 1,871 5.9 4.1 16
λ = 2 332 2,805 10.3 5.4 21
λ = 10 312 2,932 11.5 5.9 33

BL-GU
α = 1.02 381 2,105 6.8 4.7 19
α = 1.05 330 2,816 10.7 6.9 37
α = 1.1 127 547 5.3 3.1 115

We have several observations. First, in BL-AC and BL-GU, increasing the value of λ
and α lead to fewer selected bike lanes. Because when the continuity is less important,
the planning model tends to build bike lanes on more road segments to cover more bike
trajectories. And when the continuity is more preferred, it is beneficial to build bike lanes
in a few areas to make sure the bike lanes are connected to each other. Second, as λ grows
in BL-AC, the number of continuous bike lane pairs increases, which is consistent with the
objective function of BL-AC that maximizes the adjacency continuity. In the meanwhile, the
mean size of continuous bike lanes, the maximum size of continuous bike lanes, and the mean
number of connections per bike lane also increase. By contrast, as α increases in BL-GU,
we observe that the number of continuous bike lane pairs first increases and then decreases,
which also applies to the mean number of connections per bike lane and the mean size of
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Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) λ = 0

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) λ = 2

Figure 4.5: Selected bike lanes (in red color) from BL-AC with B = 30 km.

continuous bike lanes. However, the maximum size of continuous bike lanes always grows.
This is because that when α is large, the objective function of BL-GU will be dominated by
the longest trajectory that has the largest number of road segments. As a result, BL-GU
will build bike lanes on the long trajectories. In practice, the mean size of continuous bike
lanes is more important than its maximum value and thus we may want to avoid too large
values of α. Third, we find that the mean size of continuous bike lanes from BL-AC is often
smaller than that from BL-GU. Even when λ is very large, BL-AC can not get the same level
as BL-GU in terms of the mean size of continuous bike lanes. This highlights the limitation
of BL-AC, of which the objective function does not incorporates the size of continuous bike
lanes. BL-GU, however, can overcome this issue by measuring the size of continuous bike
lanes explicitly. We observe that choosing α = 1.05 achieves desirable continuity measures
in the mean number of connections per bike lane and the mean size of continuous bike lanes.

We visualize the bike lane planning results of BL-AC and BL-GU on the road network
in Figure 4.5 and Figure 4.6, respectively. It can be shown that when λ = 0 (α = 1), the
selected bike lanes are spread out over the city. Consistent with our topological findings,
a large value of λ in BL-AC induces fewer and more continuous bike lanes that are mainly
built in a few areas (e.g., the top left and bottom right). Increasing the value of α in BL-GU
has a similar effect that yields a more continuous bike lane network, as shown in Figure 4.6a.
Different from BL-AC, as indicated by our previous discussion, having a large value of α in
BL-GU also tends to select continuous road segments on the long trajectories, which leads
to a very different bike lane plan in Figure 4.6b. Interestingly, the selected bike lanes from
Figure 4.6b align with the main roads of the city road network connecting different districts
while the selected bike lanes from Figure 4.5b are along with the secondary roads.
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Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) α = 1.05

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) α = 1.1

Figure 4.6: Selected bike lanes (in red color) from BL-GU with B = 30 km.

Table 4.4: Percentage change in coverage and continuity measures with varying λ and α.

% change in the
coverage ratio

% change in the mean # of
connections per bike lane

% change in the mean size
of continuous bike lanes

BL-AC
λ = 2 -9.09% 74.58% 31.71%
λ = 10 -12.99% 94.92% 43.90%

BL-GU
α = 1.02 -0.43% 15.25% 14.63%
α = 1.05 -12.12% 81.36% 68.29%

Coverage-Continuity Trade-Off.

In both BL-AC and BL-GU, we are balancing the coverage objective versus the continuity
objective, which are reflected in the utility functions. When increasing the value of λ or α, the
bike lane planning model puts more weights on the continuity than the coverage objective.
Table 4.4 presents the percentage changes of the coverage and continuity measures using the
BL-AC with λ = 0 as the baseline. The coverage ratio is calculated as the percentage of
trajectories (sets of road segments) that are covered by bike lanes. Indeed, we observe that
both the mean number of connections per bike lane and the mean size of continuous bike
lanes grow at the expense of coverage ratio. Notably, the BL-GU with α = 1.02 improves
the continuity of bike lanes significantly while only lowering the coverage ratio slightly.
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Figure 4.7: The impact of B on the coverage ratio and mean size of continuous bike lanes.

Varying the Budget, B.

Increasing the budget in both BL-AC and BL-GU will improve coverage and continuity.
Figure 4.7 shows how the coverage ratio and the mean size of continuous bike lanes evolve
with the budget value. As B grows, the two measures increase and the gap between different
models remains significant. This implies that even when a large budget is allowed, making a
good bike lane planning decision is still critical. Since bike lane construction is often costly,
the city government can weigh the benefits from building bike lanes versus the cost using
the quantified measures proposed in this paper.

Cyclists’ Responsive Behaviors.

The previous discussion is focused on the scenario where the observed bike trajectories
are directly fed into the model and no cyclists’ responsive behaviors is assumed. Here we
investigate how the planning result would change when the cyclists update their route choices
following the discussion in Subsection 4.4.3. To better illustrate and compare the result, we
focus on a subarea of the city (Jida Residential District), which corresponds to the bottom
right area on the map. We apply the alternating algorithm proposed in Subsection 4.4.3 and
set the termination criteria to be: 1) the relative difference between the objective values from
the last two iterations is less than 1% or 2) the number of iterations exceeds 100. We call
the Google Map Directions API (https://developers.google.com/maps/documentation/
directions/start) to generate the candidate routes for each origin-destination pair in the
subarea. Hence the choice set Cm includes both the observed route as well as the routes
returned by Google. The utility function is assumed to take the form of ηvx(r) − ln(Lr)
for a route r, as motivated by Khatri et al. (2016). The value of η measures the relative
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importance of bike lanes to the cyclists’ routing behaviors. A larger value of η indicates
cyclists are more responsive to the constructed bike lanes.

We test the algorithm with α ∈ {1.02, 1.05, 1.1}, η ∈ {0.1, 0.5}, B ∈ {5, 10} and the
algorithm converges within 10 iterations for all the instances. Figure 4.8 presents the bike
lane planning results for α = 1.05 and B = 10 with different responsive behaviors of cyclists.
We find that the responsive behaviors affect the bike lane plan significantly. The selected
bike lanes can be very different if we assume cyclists can take other alternative routes.
Specifically, with the consideration of cyclists’ responsive behaviors, the selected bike lanes
tend to spread out to cover more routes other than the observed routes. This highlights
the importance of understanding cyclists’ routing choices when facing bike lanes (including
both coverage and continuity considerations), which remains as an interesting future research
direction.

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) No responsive behaviors

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) η = 0.1

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(c) η = 0.5

Figure 4.8: Selected bike lanes from BL-GU with different responsive behaviors of cyclists
(α = 1.05, B = 10 km)

4.6 Conclusion

This paper studies the bike lane planning problem with novel formulations and algorithms.
Unlike the previous work that mainly builds on surveys and heuristics, we present a modeling
framework that directly utilizes the GPS bike trajectory data from the emerging dock-less
bike sharing programs. Our model formalizes the main objectives of the bike lane planning
in view of the cyclists’ utility functions. Depending on the choices of the utility functions, we
propose efficient algorithms to solve the corresponding bike lane planning model by exploiting
the problem structure. We demonstrate the effectiveness of the models and algorithms on a
large-scale real-world data set. We show how the topology of the bike lane network would
change with varying choices of the utility functions and demonstrate the tension between
coverage and continuity quantitatively. Additionally, our results indicate the importance
of incorporating cyclists’ potential responsive behaviors to the bike lane planning, which is
often ignored in many strategic planning models.

There are several promising future research directions. First, it would be interesting
to consider the width of the bike lanes as another decision dimension in the model. The
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width of the bike lanes can impact the interaction between car flows and bike flows, and
eventually change the traffic equilibrium of the whole city environment. Second, since the
cyclists’ responsive behaviors are often hard to predict before any bike lane is deployed, the
city government may dynamically construct bike lanes in the city, e.g., first build a few bike
lanes to learn the behaviors and then add more bike lanes. Then the problem becomes a
dynamic strategic planning model with behavior learning. Third, jointly designing the bike
lanes with other bike facilities such as bike sharing stations and parking areas can be of
interest to the city government.
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Chapter 5

Conclusion

In this thesis we presented a set of data-driven decision making approaches for solving practi-
cal operations research and management problems, with a focus on smart city operations. We
started with the yield prediction problem in integrated circuit manufacturing and proposed
efficient models and algorithms to improve the prediction accuracy based on the neighbor-
hood effect in the wafer map data. Then we explored the integration of data analytics and
optimization tools in the last mile delivery services. We proposed tractable integrated mod-
els and leveraged the results from distributionally robust optimization to improve the order
assignment efficiency. Lastly, we studied how the bike trajectory data can help better design
the urban bike lane system. We proposed a flexible and tractable optimization framework
for the bike lane planning problem, and demonstrate its performance on a real-world data
set. This work is the first to rigorously analyze the bike lane planning problem with the
consideration of the cyclists’ utility functions.

Notably, this thesis studies problems on the basis of real-world data sets. We believe this
will be the trend of operations research and management. In addition, smart city operations
will continue attracting more attention from both inside and outside the community. While
we have listed several possible extensions of our work in the previous chapters, we believe
there are many other aspects of smart city operations worth investigating in depth. For
instance, the deployment of air quality monitoring stations is critical to providing accurate
and credible alerts to city residents, and finding a trade-off between cost and accuracy is
important. Another example lies in the vision of autonomous vehicles, which will create
enormous research opportunities.
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Appendix A

Parameter Selection in Chapter 2

The adjacency-clustering model requires to select the two parameters, u and k, where u
determines the balance between the permissible deviation of the priors, and the strength
of the neighborhood effect, and k determines the label set. In the main text, it is shown
that when using Poisson yield model, the combination of u = 1 and k = 2 provides superior
accuracy in both practical and simulated instances.

In this e-companion, we present the relative absolute bias of prediction results for AC-
NB, AC-NBP and AC-PNB in order to determine the uniform selection of u and k for each
one of these models. The models are run with u ∈ {0.5, 0.6, . . . , 3} and k ∈ {1, 2, 3}, and
the best uniform pair of u and k is selected for each model based on delivering consistently
better results than other selections.

Based on the results for AC-NB in Figure A.1, we choose the uniform best pair of pa-
rameters to be u = 0.7 and k = 3. The average gap between this combination and the choice
of u = 1 and k = 2 is 0.0036.

From the results for AC-NBP in Figure A.2, we choose the uniform best pair of parameters
to be u = 0.6 and k = 1. The average gap between this combination and the choice of u = 1
and k = 2 is 0.0019.

From the results for AC-PNB in Figure A.3, we choose the uniform best pair of parameters
to be u = 0.7 and k = 3. The average gap between this combination and the choice of u = 1
and k = 2 is 0.0083.
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Figure A.1: Relative absolute bias of AC-NB model on four real data sets
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Figure A.2: Relative absolute bias of AC-NBP model on four real data sets
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Figure A.3: Relative absolute bias of AC-PNB model on four real data sets
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Appendix B

Proofs and Detailed Formulations for
Results in Chapter 3

Proofs of Lemma 3.1, Proposition 3.2 and

Proposition 3.3

Proof of Lemma 3.1. By strong duality of maxPk∈Fk
EPk

(
T̃k + lk − τ

)+

, we have

min
λk,ηk,θk

λk + ηk
∑
i∈Ik

µi + θk
∑
i∈Ik

σ2
i

s.t. λk + ηkT̃k + θk

(
T̃k −

∑
i∈Ik

µi

)2

≥
(
T̃k + lk − τ

)+

, ∀T̃k ∈ R.

It is equivalent to

min
λk,ηk,θk

λk + ηk
∑
i∈Ik

µi + θk
∑
i∈Ik

σ2
i

s.t. λk + ηkT̃k + θk

(
T̃k −

∑
i∈Ik

µi

)2

≥ T̃k + lk − τ, ∀T̃k ∈ R,

λk + ηkT̃k + θk

(
T̃k −

∑
i∈Ik

µi

)2

≥ 0, ∀T̃k ∈ R.

From the constraints, we observe that θ must be nonnegative. Otherwise, the quadratic
constraints will be violated by large values of T̃k. We rewrite the first constraint as:

min
T̃k∈R

λk + (ηk − 1)T̃k + θk

(
T̃k −

∑
i∈Ik

µi

)2

≥ lk − τ.
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Since the left-hand-side can be solved, it becomes:

λk + (ηk − 1)
∑
i∈Ik

µi −
(ηk − 1)2

4θk
≥ lk − τ

≡


(
λk + (ηk − 1)

∑
i∈Ik µi − (lk − τ) + θk

)2 ≥(
λk + (ηk − 1)

∑
i∈Ik µi − (lk − τ)− θk

)2
+ (ηk − 1)2

λk + (ηk − 1)
∑

i∈Ik µi − (lk − τ) ≥ 0.

Similarly, the second constraint is equivalent to

λk + ηk
∑
i∈Ik

µi −
η2
k

4θk
≥ 0

≡

{ (
λk + ηk

∑
i∈Ik µi + θk

)2 ≥
(
λk + ηk

∑
i∈Ik µi − θk

)2
+ η2

k

λk + ηk
∑

i∈Ik µi ≥ 0.

Thus, the inner problem is equivalent to the optimization problem with second-order
cone constraints, as provided in the proposition.

Proof of Proposition 3.2. From the results in Lemma 3.1 and the definition of Ik, the distri-
butionally robust optimization problem (3.26) can be reformulated as

min
Y,λ,η,θ

∑
k∈K

(
λk + ηk

∑
i∈I

µiyik + θk
∑
i∈I

σ2
i yik

)

s.t.

(
λk + (ηk − 1)

∑
i∈I

µiyik − (lk − τ) + θk

)2

≥(
λk + (ηk − 1)

∑
i∈I

µiyik − (lk − τ)− θk

)2

+ (ηk − 1)2,∀k ∈ K,

λk + (ηk − 1)
∑
i∈I

µiyik − (lk − τ) ≥ 0,∀k ∈ K,(
λk + ηk

∑
i∈I

µiyik + θk

)2

≥

(
λk + ηk

∑
i∈I

µiyik − θk

)2

+ η2
k,∀k ∈ K,

λk + ηk
∑
i∈I

µiyik ≥ 0,∀k ∈ K,

θ ≥ 0,

Constraints in DOA-SAA.
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We replace λk + ηk
∑

i∈I µiyik = %k and simplify the above program as:

min
Y,η,θ,%

∑
k∈K

[
%k + θk

∑
i∈I

σ2
i yik

]

s.t.

(
%k −

∑
i∈I

µiyik − (lk − τ) + θk

)2

≥ (B.1)(
%k −

∑
i∈I

µiyik − (lk − τ)− θk

)2

+ (ηk − 1)2,∀k ∈ K, (B.2)

%k −
∑
i∈I

µiyik − (lk − τ) ≥ 0,∀k ∈ K, (B.3)

(%k + θk)
2 ≥ (%k − θk)2 + η2

k,∀k ∈ K, (B.4)

%k, θk ≥ 0,∀k ∈ K, (B.5)

Constraints in DOA-SAA.

Now we consider the above minimization problem with a fixed Y . After fixing Y , the re-
sulting minimization problem boils down to K independent subproblems, which corresponds
to K drivers. Let the KKT multipliers be α1, α2, . . . , α5 ≥ 0 (the subscript k is dropped
here for brevity), corresponding to constraints (B.2)-(B.5). The stationarity conditions can
be written as follows:

1 = 4θkα1 + α2 + 4θkα3 + α4, (B.6)

0 = −2(ηk − 1)α1 − 2ηkα3, (B.7)∑
i∈I

σ2
i yik = 4(%k −

∑
i∈I

µiyik − (lk − τ))α1 + 4%kα3 + α5. (B.8)

First, we show that %k > 0 and θk > 0. 1) If %k = 0, then from constraints (B.4) we have
ηk = 0. It follows that α1 = 0 based on the stationarity condition (B.7). Then from (B.8),
α5 =

∑
i∈I σ

2
i yik > 0. Hence θk = 0 by the complementary slackness, which indicates that

ηk = 1 from constraints (B.2). Thus we get a contradiction. 2) If θk = 0, constraints (B.2)
imply that ηk = 1 while constraints (B.4) imply ηk = 0, which generates a contradiction. As
a result, %k and θk must be both positive, and α4 = α5 = 0.

Second, we prove that %k >
∑

i∈I µiyik + (lk − τ) by contradiction. If %k =
∑

i∈I µiyik +
(lk − τ), then ηk = 1 as implied by constraints (B.2). From the stationarity condition (B.7),
we have α3 = 0. It follows that the RHS of constraint (B.8) is zero while the LHS is strictly
positive. Hence %k >

∑
i∈I µiyik + (lk − τ), and α2 = 0 by the complementary slackness.
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We can now rewrite the stationarity conditions as:

1 = 4θk(α1 + α3), (B.9)

2α1 = 2ηk(α1 + α3), (B.10)∑
i∈I

σ2
i yik = 4(%k −

∑
i∈I

µiyik − h)α1 + 4%kα3. (B.11)

Next we can show that α1, α3 > 0 by contradiction. 1) If α1 = 0, then we have θk, α3 > 0
from (B.9) and ηk = 0 from (B.10). However, by the complementary slackness, α3 > 0
indicates (%k + θk)

2 = (%k − θk)2, which is impossible as both %k and θk are positive. 2) If
α3 = 0, stationarity conditions (B.9) and (B.10) imply that α1 = 1/2θk > 0 and ηk = 1.
By the complementary slackness, constraints (B.2) must be satisfied at the equality, i.e.,
ρk =

∑
i∈I µiyik + (lk − τ) (recall θk > 0). Then the RHS of (B.11) is zero while the LHS is

strictly positive, which leads to a contradiction. Consequently, we have both α1 and α3 are
positive. Then the complementary slackness implies:

4(%k −
∑
i∈I

µiyik − h)θk = (ηk − 1)2, (B.12)

4%kθk = η2
k. (B.13)

Then we can solve for %k, θk, ηk and α1, α3 using the above five equations (B.9)-(B.13):

%k =

[∑
i∈I µiyik + (lk − τ) +

√
(
∑

i∈I µiyik + (lk − τ))2 +
∑

i∈I σ
2
i yik

]2

4
√

(
∑

i∈I µiyik + (lk − τ))2 +
∑

i∈I σ
2
i yik

,

ηk =

∑
i∈I µiyik + (lk − τ) +

√
(
∑

i∈I µiyik + (lk − τ))2 +
∑

i∈I σ
2
i yik

2
√

(
∑

i∈I µiyik + (lk − τ))2 +
∑

i∈I σ
2
i yik

,

θk =
%k − (

∑
i∈I µiyik + (lk − τ))ηk∑

i∈I σ
2
i yik

.

As a result, we have

%k + θk
∑
i∈I

σ2
i yik =

∑
i∈I

µiyik + (lk − τ) +

√
(
∑
i∈I

µiyik + (lk − τ))2 +
∑
i∈I

σ2
i yik.

The original robust optimization formulation thus is equivalent to:

min
Y,ρ

∑
k∈K

(
ρk +

∑
i∈I

µiyik + lk − τ

)
s.t. ρ2

k ≥
∑
i∈I

σ2
i yik + (

∑
i∈I

µiyik + (lk − τ))2,∀k ∈ K,

Constraints in DOA-SAA.
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The second constraints can be transformed to

ρ2
k ≥

∑
i∈I

σ2
i y

2
ik + (

∑
i∈I

µiyik + (lk − τ))2,∀k ∈ K,

by utilizing the fact that yik is binary. Thus, the resulting optimization model is a MISOCP.

Proof of Proposition 3.3. We will follow similar steps in the previous proofs. Let T̄k =∑
i∈Ik t̃i + ẽklk. With the same argument in Proof of Lemma 3.1, the DOA-DROt model is

also decomposable as follows:

min
Y

∑
k∈K

max
Q̄k∈Ḡk

EQ̄k

(
T̄k + lk − τ

)+

s.t. Constraints in DOA-SAA.

where Q̄k is in the ambiguity set Ḡk, defined by

Ḡk =

{
Q̄k ∈ P0(R)

EQ̄k
(T̄k) =

∑
i∈Ik µi

EQ̄k

[(
T̄k −

∑
i∈Ik µi

)2
]

=
∑

i∈Ik σ
2
i + s2

kl
2
k

}
.

Correspondingly, the inner problem maxQ̄k∈Ḡk
EQ̄k

(
T̄k + lk − τ

)+
can be solved by:

min
λk,ηk,θk

λk + ηk
∑
i∈Ik

µi + θk

(∑
i∈Ik

σ2
i + s2

kl
2
k

)

s.t. λk + (ηk − 1)
∑
i∈Ik

µi − lk + τ + θk ≥
∥∥∥∥( ηk − 1

λk + (ηk − 1)
∑

i∈Ik µi − lk + τ − θk

)∥∥∥∥
2

,

λk + (ηk − 1)
∑
i∈Ik

µi − lk + τ ≥ 0,

λk + ηk
∑
i∈Ik

µi + θk ≥
∥∥∥∥( ηk

λk + ηk
∑

i∈Ik µi − θk

)∥∥∥∥
2

,

θk ≥ 0.

Compared to Lemma 3.1, the only difference here is that the term θk
∑

i∈Ik σ
2
i in Lemma 3.1

is replaced by θk
(∑

i∈Ik σ
2
i + s2

kl
2
k

)
in the objective function. Thus, by the steps in the proof

of Proposition 3.2, we are able to obtain the MISOCP in (3.28). We omit the duplicated
steps for brevity.
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The Formulation of One-Way Traveling Salesman

Problem

Given the set of realized customer locations V ⊂ I and the depot node 0, we also introduce
a dummy node 0′ to facilitate the one-way travel distance calculation. Define a complete arc
set AV on the node set V ′ = V ∪{0, 0′} and each arc (i, j) ∈ AV is associated with a distance
dij. The distance between the dummy node and all other nodes are 0, i.e. d0′i = di0′ = 0 for
i ∈ V ∪ {0}. The decision variables are binary variables ζij that indicate whether the driver
travels arc (i, j) ∈ AV . The formulation for the one-way traveling salesman problem is

min
∑

(i,j)∈A

ζijdij, (B.14)

∑
j∈I′

ζij = 1, ∀i ∈ I, (B.15)∑
j∈I′

ζji = 1, ∀i ∈ I, (B.16)∑
i∈I

ζ0i = 1, (B.17)∑
i∈I

ζi0′ = 1, (B.18)

ζ0′0 = 1, (B.19)∑
i,j∈S

ζij ≤ |S| − 1, ∀S ⊂ I ′, 2 ≤ |S| ≤ I. (B.20)

Constraints (B.15) and (B.16) are degree (flow) constraints for customer nodes. Constraint
(B.17) ensures that the route begins from the depot. Constraint (B.18) specifies that the
dummy node is entered once from the customer nodes and constraint (B.19) requires the
route returns to the depot through the dummy node so no return trip cost is incurred.
Constraints (B.20) are subtour elimination constraints that prevents the formation of illegal
subtours. We implement the subtour elimination constraints as lazy constraints in Gurobi.
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The Detailed Description of SP in the

Branch-and-Price Algorithm

Constraints of DOA-SAA

The complete set of constraints in the pricing subproblem of DOA-SAA is:∑
i∈I

ȳi ≤ N (B.21)

c(ȳ) =
∑
s∈S

ws, (B.22)

ωs ≥
∑
i∈I

tsi ȳi +
l

v
− τ, ∀s ∈ S (B.23)

ωs ≥ 0, ∀s ∈ S, (B.24)

l =
N∑
j=0

fj, (B.25)

D+
j uj ≥ fj ≥ D−j uj, ∀j ∈ {1, . . . , N}, (B.26)

β0d+ β1a+ β2b+ β3a
√
j − 1 + β4b

√
j − 1 + β5n−D−j (1− uj) ≥ fj, ∀j ∈ {1, . . . , N},

(B.27)

fj ≥ β0d+ β1a+ β2b+ β3a
√
j − 1 + β4b

√
j − 1 + β5n−D+

j (1− uj), ∀j ∈ {1, . . . , N},
(B.28)

d =
∑
i∈I

d̂ix̄i, ∀k ∈ K, (B.29)∑
i∈I

x̄i ≥ ȳi, ∀i ∈ I, (B.30)

x̄i ≤ ȳi, ∀i ∈ I, (B.31)

n =
N∑
j=0

j · uj, (B.32)

N∑
j=0

uj = 1, (B.33)

a = ā+ a ≥ 0, (B.34)

b = b̄+ b ≥ 0, (B.35)

ā ≥ lati · ȳi, ∀i ∈ I, (B.36)

a ≥ −lati +M(ȳi − 1), ∀i ∈ I, (B.37)

b̄ ≥ longi · ȳi, ∀i ∈ I, (B.38)

b ≥ −longi +M(ȳi − 1), ∀i ∈ I, (B.39)

uj ∈ {0, 1}, ∀j ∈ {0, 1, ..., N}, (B.40)

ȳi ∈ {0, 1}, ∀i ∈ I. (B.41)
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The constraints have similar meanings to those in the original DOA-SAA except that the
zone subscript is removed.

Constraints of DOA-DRO

In DOA-DRO, the delay cost c(ȳ) has a different form than DOA-SAA but the constraints
defining the travel distance l remains the same. So the complete set of constraints in the SP
of DOA-DRO can be stated as∑

i∈I

ȳi ≤ N, (B.42)

c(ȳ) = ρ+ h+
∑
i∈I

µiȳi, (B.43)

h =
l

v
− τ, (B.44)

ρ2 ≥
∑
i∈I

σ2y2
i +

(∑
i∈I

µiyi + h

)2

, (B.45)

Constraints (B.25)-(B.41). (B.46)

Constraints of VRP-SAA

In addition to the set of customer locations I and the depot node 0, a dummy node 0′ is
added as in the one-way TSP formulation. Similarly, we define a complete arc set A on the
node set I ′ = I∪{0, 0′} and each arc (i, j) ∈ A is associated with a distance dij. The distance
between the dummy node and all other nodes are 0, i.e. d0′i = di0′ = 0 for i ∈ I ∪ {0}.
In the pricing subproblem of VRP-SAA, the decision variables are binary variables ζij that
indicate whether the driver travels arc (i, j) ∈ A, as well as the variables ȳi that indicate
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whether customer i is covered in this route. The detailed formulation is given as follows:∑
i∈I

ȳi ≤ N, (B.47)

c(ȳ) =
∑
s∈S

ws, (B.48)

ωs ≥
∑
i∈I

tsi ȳi +
l

v
− τ, ∀s ∈ S, (B.49)

l =
∑

(i,j)∈A

ζijdij, (B.50)

∑
j∈I′

ζij = ȳi, ∀i ∈ I, (B.51)∑
j∈I′

ζji = ȳi, ∀i ∈ I, (B.52)∑
i∈I

ζ0i = 1, (B.53)∑
i∈I

ζi0′ = 1, (B.54)

ζ0′0 = 1, (B.55)∑
i,j∈S

ζij ≤ |S| − 1, ∀S ⊂ I ′, 2 ≤ |S| ≤ I. (B.56)

Constraints (B.51)-(B.56) play the same roles as in the one-way TSP formulation.

Constraints of VRP-DRO

The constraints in the pricing subproblem of VRP-DRO can be obtained by combining the
constraints from DOA-DRO and VRP-SAA: (B.42)-(B.45) and (B.50)-(B.56).
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Appendix C

Proofs for Results in Chapter 4

Proof of Lemma 4.1. Let two sets of road segments A and B satisfy A ⊆ B. Consider adding
a road segment k /∈ B to the two sets. In terms of the first part of the objective function,
the change caused by adding k is the same for A and B because of linearity. For the second
part, as λ ≥ 0 and dij ≥ 0 for all (i, j) ∈ N , the value of the second part can only increase
with the newly added e. Since B can only contain more road segments than A, there are
potentially more neighbors of k that are included in B. As a result, the increase of objective
value caused by adding e is greater for B than A.

Proof of Proposition 4.1. Directly from Lemma 4.1, BL-AC is essentially a supermodular
knapsack problem, which admits a polynomial-time solvable Lagrangian dual, as shown in
Gallo and Simeone, 1989.

Proof of Theorem 4.2. Consider two bike lane construction plans, i.e. sets of road segments
A and B to build bike lanes satisfying A ⊆ B, and a road segment i /∈ B. We prove the
supermularity of vx(r) by conditioning on i: 1) If i /∈ r, then building a bike lane on i does
not impact the value of vx(r), so vA∪{i}(r) = vA(r) and vB∪{i}(r) = vB(r). 2) If i ∈ r, let i−1
and i+ 1 denote the road segment visited before and after i on the trajectory r, respectively
(when i is at the head or the tail of the trajectory, either i − 1 or i + 1 is empty and our
analysis can be easily extended). We further consider the following two scenarios:

• If both i−1 and i+1 do not belong to A, then vA∪{i}(r)−vA(r) = f(1). Then if either
i−1 or i+1 belongs to B, we have vB∪{i}(r)−vB(r) = f(|s|+1)−f(|s|) for |s| > 1. By the
assumption that f(·) is increasing convex, we have f(|s|+1)−f(|s|) > f(1). Otherwise,
when neither of i−1 and i+1 belong to B, vB∪{i}(r)−vB(r) = f(1) = vA∪{i}(r)−vA(r).
Hence vB∪{i}(r)− vB(r) ≥ vA∪{i}(r)− vA(r).

• If either or both of {i−1, i+1} belong to A, then vA∪{i}(r)−vA(r) = f(|s|+1)−f(|s|)
for some |s| > 1. For B, as A ⊆ B, we have vB∪{i}(r) − vB(r) = f(|s′| + 1) − f(|s′|)
for |s′| ≥ |s|. Because f(·) is an increasing convex function, f(|s′| + 1) − f(|s′|) ≥
f(|s|+ 1)− f(|s|) and thus vB∪{i}(r)− vB(r) ≥ vA∪{i}(r)− vA(r).
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In all the cases we have shown that vB∪{i}(r)− vB(r) ≥ vA∪{i}(r)− vA(r) so vx(r) is indeed
supermodular.

Proof of Corollary 4.2.1. Based on Theorem 4.2, the utility function vx(r) is supermodular
and maximization of this utility function over a budget constraint is a supermodular knapsack
problem, which has a polynomial-time solvable Lagrangian dual due to the results from Gallo
and Simeone, 1989

Proof of Proposition 4.2. Following the reformulation of vx(r) as a polynomial function (4.13),
we can further apply standard linearization techniques to get a MILP formulation, as shown
in BL-GU-MILP.

Proof of Proposition 4.3. When f(·) is an increasing convex function, the coefficients βl in
BL-GU-MILP are all positive: βl = f(|l|) − 2f(|l| − 1) + f(|l| − 2) = f(|l|) − f(|l| − 1) −
(f(|l| − 1) − f(|l| − 2)) ≥ 0. Then we can remove constraints (4.14) from the formulation.
The remaining constraints are constraints (4.15) and constraints (4.17) in addition to the
budget constraints. Our goal is to prove that the constraint matrix consisting of these two
types of constraints are totally unimodular. It is well known that matrix (P |I)T is totally
unimodular if P is totally unimodular. Note that constraints (4.17) correspond to an identity
matrix and does not influence the totally unimodularity result so we can focus on the matrix
of constraints (4.15), denoted by P . With or without using the reduction techniques, each
row of P only includes one 1 and one −1. Then we can show P T is totally unimodular since
it satisfies: 1) Each entry of P is {−1, 0, 1}; 2) Each column contains at most two non-zero
coefficients; 3) There exists a partition (M1,M2) of the set M of the set of rows of P such
that each column j containing two non-zero coefficients satisfies

∑
i∈M1

pij −
∑

i∈M2
pij = 0.

It is obvious that conditions 1) and 2) hold for P , and the third condition is satisfied by
using the partition (P, ∅). It follows that P is totally unimodular because the transpose of a
totally unimodular matrix is also totally unimodular. As a result, the Lagrangian relaxation
of BL-GU-MILP with relaxed budget constraint can be solved as a LP.




