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Abstract

M-theory on a Calabi–Yau threefold admitting a small resolution gives rise to an
Abelian vector multiplet and a charged hypermultiplet. We introduce into this picture
a procedure to construct threefolds that naturally host matter with electric charges up
to six. These are built as families of Du Val ADE surfaces (or ALE spaces), and the
possible charges correspond to the Dynkin labels of the adjoint of the ADE algebra.
In the case of charge two, we give a new derivation of the answer originally obtained
by Curto and Morrison, and explicitly relate this construction to the Morrison–Park
geometry. We also give a procedure for constructing higher-charge cases, which can
often be applied to F-theory models.
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1 Introduction

M-theory on certain singular spaces gives rise to non-Abelian gauge symmetries. More
specifically, in Calabi–Yau (CY) geometries with non-isolated singularities that admit
crepant resolutions (i.e. those that do not alter the CY condition), Dynkin diagrams
show up naturally as a pattern traced out by families of small intersecting two-spheres in
the resolved geometry (for non-isolated holomorphic two-spheres that come in a complex
one-dimensional family). When this occurs, postulating the presence of light M2-branes
wrapping such so-called vanishing spheres gives rise to light degrees of freedom that fill
out the root system corresponding to the Dynkin diagram. This leads one to expect the
effective field theory to contain a non-Abelian gauge multiplet in the limit where areas
of the two-spheres approach zero and the geometry becomes singular [1, 2]. (For rigid
two-spheres, we get light matter multiplets instead, typically charged under the non-
Abelian group.) This picture has been exploited for two decades in the field of geometric
engineering in string theory and M-theory [3–8], as well as in some closely related F-
theory constructions [9–11]. In the latter, a direct interpretation of the singular space is
not available in all but the simplest cases. However, two strategies connect F-theory to
this phenomenon of non-Abelian degrees of freedom: Either one can take a particular
limit of M-theory, such that the duality to type IIB compactified on a circle is manifest,
and verify the correspondence. Alternatively, one can analyze the F-theory phenomena
directly by considering which (p, q)-strings in the type IIB seven-brane background
become light. (An important feature of F-theory is in fact the existence of seven-branes
of “exotic” types, i.e. beyond the D7-branes and O7-planes of perturbative type IIB.)

Much less clear is what to make of possible Abelian gauge symmetries.1 These can
also be related to singularities, but not as directly as in the case of simple Lie algebras.
Since the inception of F-theory, it has been known that one way to understand U(1)

gauge groups is by seeking sections (or in some cases, multi-sections) of the elliptic
fibration of F-theory [11–13]. In M-theory, it suffices to think of divisors in the com-
pactification space. One aspect is clear, though. A U(1) gauge symmetry – represented
by a divisor in the total space of the compactification – shows its face in the geometry
by means of the (massive or massless) matter charged under it,2 be that in the form
of hypermultiplets or chiral multiplets, depending on the amount of supersymmetry in

1A second, dual, explanation of the Cartan subgroup for the non-Abelian gauge symmetry is also
available [2], via M5-branes wrapping the surfaces swept out by irreducible deformable two-spheres.
This idea can also be applied to surfaces responsible for an Abelian gauge group.

2By Poincaré duality, in the compact case for each divisor in the (resolved) total space there is
an algebraic curve in the total space meeting it precisely once. Such an algebraic curve represents a
matter multiplet of charge one under the corresponding U(1).
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the effective theory.
A massless charged multiplet can be modeled by a light M2-brane wrapping an alge-

braic curve in the resolution which shrinks to zero area in the non-resolved fibration. (If
the algebraic curve has no embedded deformations, such a shrinking typically contracts
the curve to an isolated singular point, i.e., one of codimension at least three.) On
the other hand, a U(1) subgroup of the gauge group is understood as the ‘dimensional
reduction’ of the supergravity three-form field along a two-form that is Poincaré dual
to the divisor that intersects the resolution sphere. The intersection number measures
the charge, as is easily seen by considering the flux through a sphere surrounding the
intersection point.

We can also work at the non-compact level, and consider the non-gravitational
sector of the theory. The primordial example can be seen by looking at M-theory on a
conifold. Now the five-dimensional effective theory still has a hypermultiplet from the
M2-brane wrapping the vanishing sphere. The U(1) vector multiplet, however, is no
longer localized to five dimensions, but is seven-dimensional.3 So it shows up as a flavor
symmetry under which the hyper is charged. Throughout this paper, we will work in
this non-compact setting. However, it should always be borne in mind that our models
can be embedded into full-fledged compact geometries, where the U(1) will be gauged
again. Hence, we will refer to our U(1)’s as gauge symmetries, and consider the hypers
as electrically charged, albeit as subsectors of the full theory.

As we stated above, U(1)’s are visible in the geometry through the matter which
is charged under them. One could now ask: Given a U(1) gauge symmetry and an
electric charge quantization condition, what are the possible charges available? In
perturbative intersecting D-brane models, one can easily find charge-one spectra. By
introducing orientifolds, one can also find charges higher than one (see e.g. [15] for
recent constructions with charges up to six). However, no explicit F-theory geometries
have been constructed that go beyond charge four. (The first charge-three and four
models have appeared in [16] and [17] respectively.4 The conditions satisfied by an

3To see this, put M-theory on an A1 surface singularity, seen as a limit of a two-center Taub–NUT
space. There are two homologically nontrivial two-cycles, call them Ni, which are Poincaré dual to two
harmonic, normalizable two-forms ωi (i.e.

∫
Ni
ωj = δji ). We can decompose the supergravity C3-form

along them as follows: C3 ∼ ωi ∧ Ai. The Ai’s are U(1) gauge potentials supported on the seven-
dimensional external space, and localized on the i-th center of the Taub–NUT (that is, the kinetic
term G4∧G4 peaks around the centers) [14]. Now take M-theory on the conifold uv = zw, regarded as
C∗-fibration over C2

(z,w). The reduction to type IIA gives rise to two intersecting D6-branes, localized
at z = 0 and w = 0. The two worldvolume U(1)’s live in seven dimensions (and one of them is
decoupled [14]), while at their five-dimensional intersection lives a charged hyper.

4The most general F-theory geometry admitting charge-two matter was constructed in [18, 19],
where the above question was also raised.
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elliptic fibration realizing a global SU(N) model with matter multiplets of high U(1)

charge were earlier determined in [20,21]. For global models with SU(5) matter of high
U(1) charge see e.g. [22,23].)

This subject has recently been investigated in the F-theory framework in [24, 25],5

where the primary method for constructing higher-charge matter is an indirect one:
One starts out with a setup that gives rise to a non-Abelian gauge symmetry with
matter in either the adjoint or more “exotic” representations (such as the three-index
antisymmetric of an SU group [29, 30]). Higgsing in particular ways one shows that
these representations must decompose into matter of higher U(1) charge.

In this paper, we explore a completely different method that can readily generate
a large class of examples of CY threefolds with matter of electric charge up to q = 6.
Here, the 6 is the highest possible Dynkin label of any adjoint representation for a
simple Lie algebra. In this case, it is an E8 label. We will explain the method in what
follows.

The rough idea is to look at families of local surfaces. Exactly how to “localize”
surfaces leads to some technical questions, which traditionally have been given different
answers in algebraic geometry, complex analytic geometry, and hyper-Kähler geometry.
To fix ideas, our basic building blocks will be asymptotically locally Euclidean (ALE)
spaces, which come equipped with hyper-Kähler metrics and which can easily be re-
lated to the so-called “rational double point” singularities in algebraic geometry [31].
Moreover, the deformation theory can be described in terms of period integrals, which
would also be the case if the ALE spaces were embedded as local surfaces within global
(possibly singular) K3 surfaces.

We will thus consider families of ALE spaces, often modeled by algebraic families
of rational double point singularities. Within these families, one can impose that the
ALE spaces degenerate in particular ways, so as to generate point-like singularities that
admit small resolutions, akin to the conifold. However, unlike the conifold, the non-
compact divisor will intersect the exceptional P1 ` times, where 0 ≤ ` ≤ 6, depending
on the situation. In order to construct these families, we will be guided by the principles
of Brieskorn–Grothendieck simultaneous resolution [32–34] (made explicit in [35]), as
well as Kollár’s notion of higher-length flops [36, pp. 95-96], further developed in [35]
and [37]. Concretely, we will use some technology that has recently been developed
in [38], whereby one describes not the geometry directly, but a quiver that encompasses

5For pedagogical reviews on F-theory and its recent developments, see [26, 27]. We follow the
perspective advocated in [28], in which F-theory is regarded as a variant of type IIB string theory in
which the data of the varying elliptic curve is used to specify the variable axio-dilaton of IIB.
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all relevant information. Such a quiver, known as the universal flopping algebra, has
the property that its space of representations is literally a model for the geometry of
interest (up to taking completions of local rings), with deformations and resolutions
being regarded as Fayet–Iliopoulos terms. The advantage of using such a language is
that it gives us a very compact way to package entire families of ALE spaces.

The representation spaces of these quivers actually give us CY n-folds, where n ≥ 3.
However, an arbitrary three-dimensional slice (or an appropriate covering of such a
slice) will give us a CY threefold that admits a small resolution. By analyzing which
homology spheres get contracted along various loci of the CY, we will write down the
criteria that such a threefold must satisfy in order for it to admit higher-charged matter.

Summary and outline

We will now summarize the main point of our analysis, and give an outline of the
sections. However, we would first like to clarify our setup, as names will often get used
interchangeably. We will always be considering a non-compact Calabi–Yau threefold
X3 that admits a simple small resolution, and we will sometimes assume that X3 can
be regarded as a local patch of an elliptic fibration over a base B2 which is an open
subset of C2.6 The various possible effective theories obtained via “compactification”
on X3 are the following:

• Type IIA on X3, giving four-dimensional N = 2 supersymmetry.

• M-theory on X3, giving five-dimensional N = 1 supersymmetry.

• F-theory on X3 with type IIB axio-dilaton specified by the fibration X3 → B2

(when that fibration exists). This gives a six-dimensional theory with N = (1, 0)

supersymmetry.

In the compact setting, all three theories have a single U(1) vector multiplet (and no
non-Abelian ones) plus charged hypers, whereby the charges will vary according to our
constructions. The interconnections are displayed in figure 1.

Let us now summarize our findings. The construction by Karmazyn [38] of the so-
called universal flopping algebra of length ` provides us a CY n-fold,7 from which we
can take any three-dimensional slice (or appropriate covering of such a slice). Any such
slice or cover will contain a U(1) vector multiplet, and matter with charge `. We will

6Our basic assumption is that X3 can be fibered by ALE spaces, but sometimes we want an elliptic
fibration as well so in that case X3 should be fibered by ALG spaces.

7At times, following [37], we will refer to this CY as the universal flop of length `.
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M-theory

Type IIA

F-theory

d = 6

d = 5

d = 4

X3

X3

S1

S1

X3

Figure 1: The various theories under consideration and their interconnections. (In the case
of F-theory, the data of the fibration X3 → B2 – when it exists – is used to specify the type IIB
axio-dilaton.) Each lower-dimensional effective theory has eight Poincaré supercharges.

show how this works explicitly for charge two, and relate the construction of length two
directly to the well-known Morrison–Park geometry [18].8 We will then explain how to
obtain higher charges from higher-length flopping algebras. The recipe to obtain charge
q is summarized in figure 2, whereas the necessary terminology will be explained in later
sections.

Build the Dynkin-McKay quiver containing q as a Dynkin label

Contract the quiver keeping track of deformation parameters

Implement base change on deformation parameters

Use homology of K3 surfaces (or ALE spaces) to identify

two-spheres acquiring non-zero volume → charge q matter

Figure 2: The main idea

8Note that in the length 2 case, the elliptic fibration and presumably the ALG spaces are a natural
feature of the solution.
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This paper is organized as follows. In section 2, we first present the concept of
building threefolds as families of surfaces, by demanding that these admit simultaneous
resolutions. We first whet the reader’s appetite with a familiar example, the conifold
[39,40], seen as a family of A1 surfaces. We then explain the general picture. In section
3, we specialize to the case of the universal flop of length two (a CY sixfold). This
is the case that will ultimately produce threefolds with matter of charge two, starting
from the D4 surface. Here, we expose the technology recently developed in [38], where
one constructs these families in terms of quivers. In section 4, we actually proceed to
the construction of threefolds with charge-two matter.9 Here, we discover that these
threefolds exhibit a rich matter structure. Depending on how we cut the sixfold down
to a CY threefold, we may get:

• Charge-one matter loci, along which the exceptional locus of the (simple small)
resolution is a P1.

• We may get loci with length-two flops, corresponding to charge-two matter made
from a bound state of membranes on the exceptional P1. (We give an explicit
example of this in section 5.4.)

• We may get an exceptional locus consisting in a union of two P1’s.

• Finally, we may get a quadratically embedded P1, such that the standard U(1)

divisor cuts it at two points. This produces charge-two matter.

The various possibilities are summarized in figure 11. In section 5, we establish the
correspondence of this construction with the Morrison–Park one. This is the classic
example of F-theory with a single U(1), and matter hypermultiplets of charge one
and two. In section 6, we open up the investigation for higher charge, and we list
the universal quivers of [38]. We briefly present our conclusions in section 7. Finally,
in appendix A we explain how to construct general threefolds admitting high-charge
matter loci with the aid of simple computer algebra. The outputs of this calculation
are written in the Mathematica notebook included with the arXiv submission,10 where
we present the most general n-folds in elliptic form admitting charge three, four, five,
and six.

9Our presentation gives a new derivation of results originally obtained in [37], which also formulated
a conjectural extension to higher-length cases.

10Which can also be found at this page.
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1.1 Local surfaces

Before ending this introduction, we wish to make our conventions about local surfaces
completely explicit, as well as to introduce the important notions of local and global
Picard groups.

In algebraic geometry, the key object is the ring of algebraic functions. The natural
domains of definition of algebraic functions are the so-called Zariski open sets, and
passing to a smaller Zariski open set will allow algebraic functions with poles along the
algebraic subset which was removed, i.e. the ring of algebraic functions will increase.
The natural way to “shrink” a surface in that case would be to pass to a Zariski open
subset. Unfortunately, such subsets tend to be rather large. The “solution” to the
problem of defining functions which are appropriate for even smaller neighborhoods, is
to use functions expressed as formal power series (i.e., we should complete the local ring
at its maximal ideal).

In complex analytic geometry, the key object is the ring of holomorphic functions.
The natural domains of definition are much smaller than in the algebraic case, and
various rings of functions can be related by the “germ” construction: Two functions are
in the same germ at a point P if they agree in a small neighborhood of P . The ring
of germs of functions at P tends to be a bit smaller than the formal power series ring,
even if the space on which the functions are defined is an algebraic variety, because the
power series corresponding to holomorphic functions are necessarily convergent.

If we have a singular algebraic variety or a singular complex analytic space, there is a
well-developed local deformation theory which relies on the rings of functions described
above. The results either describe a deformation up to (formal) completion, or up to
passing to germs of functions.

The simplest singularities in complex codimension two, which have many equivalent
descriptions [41], are the so-called rational double points. A convenient description of
these is as quotients: They all take the form C2/Γ for Γ a finite subgroup of SU(2).
There are many other descriptions.

Kronheimer gave a quotient construction for such singularities and their deforma-
tions, which incidentally puts a metric on the underlying complex space (even when that
space is singular – in which case the metric is well-defined on the smooth locus and has
controlled asymptotic behavior). Kronheimer’s construction [31] puts a hyper-Kähler
metric on each fiber. The singular spaces and their resolutions are all described as
spaces which asymptote (metrically) to S3/Γ at infinite distance – such spaces (whose
metric satisfies an appropriate equation) are known as asymptotically locally Euclidean,
or ALE, spaces.
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Kronheimer also describes the deformation theory in terms of the period integrals of
two-forms from the hyper-Kähler structure with respect to compact two-cycles in the
space [42]. Many such deformations can be seen as arising from degenerations of (hyper-
Kähler) K3 surfaces. The addition of orbifold metrics to complete the moduli space of
K3 surfaces (the need for which had been pointed out in [43]) was demonstrated in [44]
as an extension of Yau’s proof of the Calabi conjecture [45]. Subsequently, Anderson [46]
showed that all degenerations of K3 surfaces which are at finite distance from the bulk
of the moduli space can be realized in this form. In particular, K3 surfaces may develop
orbifold singularities in the way predicted by Kronheimer’s analysis. Thus, most of
the singularities we are studying could also be modeled on open subsets of singular K3
surfaces. (Note however that such a model has a bounded rank – giving a bound on
the number of independent rational curves which can shrink – which is why not all of
the singularities of interest can be modeled on open subsets of K3 surfaces).

In addition to the ALE spaces, geometers and physicists have studied other types
of ‘gravitational instantons’, namely ALF (asymptotically locally flat), ALG, and ALH
spaces [47–51], which are all asymptotic to fibrations over a Euclidean base and contain
tori (the fibers) of various dimensions at infinity (and in fact throughout the interior of
the space). Relevant to F-theory are the ALG spaces which have a T 2 fibration;11 in
many instances, the deformation theory of the ADE singularities can be reproduced by
ALG spaces as well as by ALE spaces.

1.2 Local and global Picard groups

In this paper, we measure the charge of various matter fields (represented by compact
curves in the space) with respect to various gauge fields (represented by possibly non-
compact divisors in the space) in terms of the intersection number between divisors and
curves. In order to compare charges (and therefore assert that we have matter with
high U(1) charge), we need a way to compare divisors at different points of the space.
This is provided by the theory of the Picard group.

On any algebraic variety or complex analytic space, one can define the Picard group
as the free Abelian group of subvarieties of complex codimension one modulo the rela-
tions obtained by considering the divisors of zeros and poles of arbitrary meromorphic
functions on the space. If D and D′ are equivalent under such a relation, i.e.. if D−D′
represents the divisor of zeros and poles of some meromorphic function f , then for any
compact curve in the space D · C = D′ · C. Thus, for computing gauge charges, one

11For ALF spaces the fibers are circles, whereas for ALH spaces they are compact orientable flat
three-manifolds. See e.g. [52].

9



can pass naturally to the Picard group. Similarly, the existence of the meromorphic
function f shows that the gauge field obtained by reducing the M-theory three-form on
the divisor D is gauge equivalent to the gauge field obtained by reducing the three-form
on D′. The Picard group thus captures an Abelian subgroup of the full gauge group,
in which the (Abelian) gauge fields come by reduction of the M-theory three-form on
divisors.

The computations we will make of gauge charges in this paper will typically be local
ones: we will find a small resolution of a local neighborhood of some singular point P ,
and then consider a compact curve CP in that small resolution. The gauge charge of
CP is then an integer-valued function on the local Picard group, i.e. the Picard group
of divisors defined in an appropriate neighborhood of P . In principle, the gauge charge
might depend on the choice of small resolution, but such dependencies can be made
very explicit.

A bit more challenging is the problem of relating the gauge charges of a curve
CP lying over one singular point P , with those of a curve CP ′ lying over a different
singular point P ′. In fact, this problem goes back to the earliest examples of conifold
transitions [40, 53, 54] and their mathematical explanations [55, 56]. In the case of a
quintic threefold specializing to a quintic X containing a P2, sixteen singular points are
created but there is only one new divisor class (the proper transform of the P2) after
performing a small resolution Y 99K X. However, there are maps Pic(Y ) → Pic(YP )

where YP is the inverse image of a small neighborhood UP of the singular point P . In
fact, YP is just a neighborhood of a single compact curve CP ∼= P1, and one shows that
the new divisor class maps to a generator of Pic(YP ) ∼= Z for each P . In fact, each curve
CP has charge 1 under the new divisor class (or perhaps each curve CP has charge −1,
which happens if the small resolution is changed).

The basic principle that calculations can be done in local Picard groups Pic(YP )

and then related to each other in the global Picard group Pic(Y ) is something we will
encounter frequently in this paper. Suppose our threefold Y contains two singular
points P and P ′ supporting charged matter. After resolving both singularities and
creating exceptional curves CP and CP ′ , we can define the local Picard groups Pic(YP )

and Pic(YP ′). Each local Picard group will contain a divisor that intersects the local
exceptional curve once. However, for the full ‘global’ model,12 a generator of Pic(Y )

might intersect, say CP once, and CP ′ N times, where N could be arbitrarily high. See
figure 3 for a cartoon.

This is how higher-charge models are possible. In our paper, we will study a class
12By global we do not necessarily mean compact.
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CP

CP ′

CP ′

Figure 3: A globally defined generator of Pic(Y ) can intersect the resolution curve CP once,
and CP ′ N times (top frame). However, in a local patch around the curve CP ′, this looks like
N times the generator of Pic(YP ′) (bottom frame).

of models that automatically generate charges up to six. However, even higher charges
could be possible if one glues several such models appropriately. This is an interesting
direction for future research.

2 Threefolds as families of ADE surfaces

2.1 Elementary example: The conifold as a family of A1 surfaces

In this section, we will rediscover the simplest of flops, based on the conifold, as a
one-parameter family of surfaces.13 This gives us a prototype local model for a theory
with a U(1) symmetry and one charged hyper. The basic idea is summarized by the
workflow 4. In equations, we start with the standard Du Val A1 surface given by the
following hypersurface:

P := x2 + y2 + z2 = 0 . (2.1)
13The idea of building threefolds by starting with surfaces is not new to physics, as exemplified

in [57,58]. It is also not new to geometry [59,60]. We will take a purely geometric stance here.
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A1 surface

Build family of versal deformations

Perform base change on parameter space

Figure 4: The main idea exemplified in the A1 case.

Its family of versal deformations is parametrized by the Jacobian ring

C[x, y, z]/(∇P ) = C[x, y, z]/(x, y, z) ∼= C . (2.2)

In other words, we have the following one-parameter family:

x2 + y2 + z2 = α . (2.3)

The total space of this family is a threefold X3, and its central fiber over α = 0 admits
a resolution. However, there is no ‘simultaneous resolution’ for the whole family.14 In
other words, we can only perform the birational transformation on the central fiber.
A simultaneous resolution would correspond to an operation we would perform on this
whole threefold, such that its restriction to the central fiber would be the standard
resolution, as schematically presented in figure 5. Instead, Atiyah observed [59] that
if we perform a base change, meaning, if we pull back this family onto a particular
covering space of the parameter space of α, then we will have a new threefold Y3 that
does admit a simultaneous resolution. In this case, the base change is (see figure 6)

φ : B̃ −→ B : t 7→ α = t2 . (2.4)

Now, the end result after pulling back the family of surfaces onto B̃ is the conifold:

x2 + y2 + z2 = t2 . (2.5)

As is well known [40], the conifold admits two ‘small resolutions’, and each one restricts
to the usual resolution for the A1 singularity, when we set t = 0.

14The question of which deformations of surface singularities admit ‘simultaneous resolutions’ was
investigated thoroughly by Grothendieck [61] and Brieskorn [32]; see [33] for a detailed exposition.
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deformed

Figure 5: A simultaneous resolution of singularities (D4 in the picture). In the ‘resolved’
fiber over the red base locus, a black line represents an exceptional P1 that has been blown
up, with three marked points (the red crosses) representing residual A1 singularities. Over
the generic grey locus, the fiber is completely smooth, and corresponds to a versally deformed
surface singularity.

2.2 General ALE surfaces

This innocent trick of replacing the deformation parameter α with the square of a new
parameter t has underpinnings in the Weyl invariant theory of A1. For the case of the
conifold, this machinery constitutes overkill. However, it is crucial in the construction
of other threefolds that admit simultaneous resolutions [35].

Here is a preview. The Lie group A1 has a one-dimensional Cartan torus T that we
can parametrize with the coordinate t. There is a Weyl symmetry groupW = S2 which
acts as t 7→ −t. The standard versal deformation of an ALE hypersurface is a family of
surfaces parametrized by coordinates of the quotient space T/W [33, 34]. In this case,
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Figure 6: The new threefold family Y3 (given as a fibration φ∗π : ALE → B̃) after base
change.
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this coordinate is α, and the family is

x2 + y2 + z2 = α , (2.6)

which does not admit a simultaneous resolution. However, if we pull this family back
onto T , and express it in terms of the Weyl-covariant coordinate t =

√
α, then we get

the conifold, which admits a simultaneous resolution.
The story for more general ALE groups is similar: there is a finite base change to

the Weyl-covariant coordinates which allows for a complete simultaneous resolution.
There are, however, also intermediate cases in which one wishes to simultaneously
resolve only along a subgraph of the Dynkin diagram (which can be colored black to
aid in visualization). There is then a subgroupW ′ of the full Weyl group corresponding
to the complement of the subgraph (which would be colored white), and a partial
quotient T /W ′; pulling back the deformation to that partial quotient allows a partial
simultaneous resolution. The intermediate quotient lies between the Cartan torus T
and the full quotient T /W :

T → T /W ′ → T /W . (2.7)

In the work of [35, 37], one is studying partial resolutions of surfaces which involve a

1 1 2 1

1

1 2 3 2 1

2

1 2 3 4 3 2

2

2 3 4 5 6 4 2

3

2 3 4 5 6 4 2

3

Figure 7: The ‘colored’ Dynkin diagrams A1, D4, E6, E7, E8 corresponding to the chosen sub-
group of the full Weyl group. (We consider two different colorings for E8.) We will be quoti-
enting the Cartan torus T by the Weyl group of the white sub-diagram only.

single P1 only, so one chooses a particular node, such that only its corresponding sphere
admits a simultaneous resolution, and keeps the rest shrunk at the origin. In other
words, one has a single node colored in black, and Weyl subgroup in question is that of
the subgraph in white in figure 7.15

In order to construct the special family admitting the partial simultaneous resolu-
15The same idea was subsequently exploited in [62, Sec. 6] to construct four-dimensional N = 1

gauge theories with adjoint matter by having a bunch of D5-branes wrap the blown-up sphere (the one
corresponding to the black node), while the others are shrunk to zero size.
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tion, one takes the standard versal deformation, and writes the various coefficients as
functions of the Cartan torus, such that these are invariant under the Weyl group of
the (white) complementary Dynkin subgraph.

3 Families of ALE surfaces from quivers

In the previous section, we schematically explained that, in order to construct a family
of ALE spaces admitting a simultaneous resolution, one writes the versally deformed
ALE, but writes the deformation parameters as functions of the Cartan torus, partially
quotiented under a suitably chosen subgroup of the full Weyl group. While this approach
is completely correct (and is the primary approach of [35]), it appears to be impractical
for Lie algebras beyond D4.

Instead of directly generalizing (2.3) at the level of hypersurface equations, we will
use the approach put forth in [38]. The idea is to reconstruct the geometry from a
quiver with relations. The family of deformed ALE surfaces admitting a simultaneous
resolution is indeed recovered as the relation satisfied by the gauge invariants of the
former. This quiver is directly obtained starting from the Kronheimer quiver, i.e., the
affine quiver of the ALE singularity. Below we summarize the results of [38] that we
will need in the following, and refer the reader to that paper for the detailed derivation.

We will exemplify the construction with the simplest nontrivial case, i.e. the D4 sin-
gularity. Consider the (affine) D4 McKay quiver in figure 8. The figure actually depicts
a representation of the quiver, whereby each node corresponds to a vector space, and
the arrows to linear maps among them. Notice that the dimension of each vector space
is specified by the label in the colored D4 Dynkin diagram of figure 7 (with the affine
node always corresponding to a one-dimensional space). We collect these dimensions
in a dimension vector ~d = (d0, . . . , d4) = (1, 1, 1, 1, 2). The arrows correspond to linear
maps, i.e. matrices, which are required to satisfy the following relations (akin to the
F-terms one would obtain by taking derivatives of a superpotential):

aA = bB = cC = dD = 0 , Aa+Bb+ Cc+Dd = 0 . (3.1)

We are using conventions such that the composition of maps runs from left to right;
to accomplish that we take transposes, so that e.g. a : C → C2 is a row two-vector,
A : C2 → C a column two-vector, and so on. Thus by e.g. Aa we mean the 2×2 matrix
obtained via Kronecker product.

To describe the versal deformation at the quiver level, we first need to modify the
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Figure 8: The Dynkin–McKay quiver with relations reproducing the D4 surface singularity
x2 = yz(y + z). The vertex labeled by a subscript 0 corresponds to the affine node in the D̂4

Dynkin.

above relations as follows:

aA = t0 , bB = t1 , cC = t2 , dD = t3 , (3.2a)

Aa+Bb+ Cc+Dd = −t412 . (3.2b)

The ti’s in (3.2) are complex numbers,16 and correspond to coordinates on the Cartan
torus TD̂4

of D̂4. Since we are using the affine D̂4 Dynkin diagram, rather than the non-
affine one (as previously done for A1), the ti’s must satisfy the additional constraint17

t0 + . . .+ t3 + 2t4 = 0 . (3.3)

The quiver representation is supplemented by stability parameters, which can be thought
of as real Fayet–Iliopoulos (FI) constants ~ξ = (ξ0, . . . , ξ4), subject to the relation

~d · ~ξ = 0 . (3.4)

The space of possible representations subject to certain stability criteria forms a con-
tinuous moduli space. These criteria essentially ensure that ‘bad’ points are excluded
(much like one excludes the origin of a vector space when making a projective space).
See our companion paper [63] for more detailed explanations. The moduli space turns
out to be the ALE surface itself. (This is essentially Kronheimer’s construction [31].)

16They can be thought of as complex Fayet–Iliopoulos parameters in 4d N = 2 language.
17More generally, for any affine ADE quiver we have∑

i

ωiti = 0 ,

where the ωi are the labels on the nodes in figure 7, and for the affine node we always put ω0 = 1.
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The ξi correspond to the Kähler modulus of the i-th exceptional P1 of a resolution, and
the ti corresponds to the volume of the i-th deformed (i.e. non-holomorphic) sphere
w.r.t. the complex structure (2, 0)-form Ω.

If we now define the following three gauge-invariant loops (which are just complex
numbers),

x := aBbCcA , y := aCcA , z := aBbA , (3.5)

it is straightforward to show (by repeatedly applying (3.2)) that these satisfy the fol-
lowing hypersurface relation:

x2 +
1

4
t0(4y + 4z − t23 + t22 + t21 + t20)x =

yz(y + z) +
1

4
yz(−t23 + t22 + t21 + t20)−

1

16
t20t

2
1t

2
2 +

1

4
t21y

2 +
1

4
t22z

2 . (3.6)

This is a deformation of the D4 singularity

x2 = yz(y + z) . (3.7)

After a suitable coordinate redefinition, it can be brought to the well-known versal form

x̃2 + ỹ2z̃ − z̃3 + α2(ti)z̃
2 + α1(ti)z̃ + α0(ti) + β(ti)y = 0 , (3.8)

where the αi and β are Weyl-invariant functions of the Cartan torus coordinates ti.
We have now recovered a versal deformation of the D4 surface that admits a full

simultaneous resolution. In terms of figure 7, we have colored all nodes black, so that
the complementary Weyl group is trivial. Although the functions that appear in the
hypersurface are Weyl-invariant, they are written in terms of coordinates that are fully
Weyl-covariant.

Now, we will study the situation with only the central node colored in black. This
is the essence of the work in [38]. The Weyl group of the white D4 subdiagram in figure
7 is S2×S2×S2 (that is, the product of three copies of the Weyl group of A1), and the
correct base change is given by:

(t0, . . . , t3) 7→ (T0, . . . , T3) =

(
t0
2
,
t21
4
,
t22
4
,
t23
4

)
, (3.9)

where we have eliminated t4 in favor of (t0, . . . , t3) upon using (3.3).
The procedure explained in [38] entails considering a new quiver obtained by ‘con-

tracting’ the external paths in figure 8 onto the central vertex, as depicted in figure 9.
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Notice that the new loops b, c, d are represented by 2×2 matrices (rather than row vec-
tors, as the notation in use would suggest).18 We also have the following new relations,
inherited from (3.2):

aA = 2T0 , b2 = T112 , c2 = T212 , d2 = T312 , (3.10a)

Aa+ b+ c+ d = T012 . (3.10b)

It is straightforward to show (upon repeatedly applying relations (3.10)) that the gauge

C C2
a

A

b

c

d

Figure 9: The quiver with relations reproducing the threefold family of deformed D4 surface
singularities admitting a simultaneous resolution.

invariants
x := abcA , y := acA , z := abA (3.11)

satisfy the following relation:

x2 + 2T0(y + z − T3 + T2 + T1 + T 2
0 )x =

yz(y + z) + yz(−T3 + T2 + T1 + T 2
0 )− 4T 2

0 T1T2 + T1y
2 + T2z

2 , (3.12)

which is again a deformation of the D4 singularity (3.7). So how is this different from
the hypersurface in (3.6)? Both are fully deforming the singularity in the sense that,
at a generic point on the Cartan torus, the ALE fiber is fully desingularized. However,
whereas the hypersurface (3.6) admits a full simultaneous resolution, the one in (3.12)
only admits the simultaneous partial resolution that blows up the central node of the
D4 Dynkin diagram.

We have produced a non-compact CY sixfold, if we take the whole family with the
Ti’s promoted to coordinates. This family is known to be the so-called universal flop
of length two first constructed explicitly in [37] (albeit using a different method). Now
we can build CY threefolds that admit a small resolution by simply taking a three-
dimensional subspace of this sixfold (or an appropriate cover thereof).

For all other ALE cases, the prescription is exactly the same. The quivers producing
18The loops in figure 9 are not given by the same-name paths of figure 8.
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the versal deformations of a Du Val surface singularity can be found in [38, Sec. 4].
They will make their appearance in section 6.

4 D4 singularity in ALE and universal flop of length
two

In the previous section we have constructed a family of D4 singularities, that is an ALE
fibration over a four-dimensional base space, namely a sixfold. The ALE fiber is smooth
over generic points of the base, and degenerates over codimension-one loci. In this sec-
tion we want to describe this family from a different perspective, in order to understand
why this model should generate charge-two matter in an M-theory compactification on
a threefold slice (or appropriate cover of a slice) of the sixfold. We will first describe the
ALE fibration over a cover of the base, using the Weyl-covariant coordinates. At the
end we will quotient them by the proper Weyl subgroup, in order to have a fibration of
the reduced D4 quiver. See figure 10.

Figure 10: Partial resolution of the sixfold family of versally deformed ALE spaces of type
C2/D4 = SpecR, with R = C[x, y, z]/(x2 − yz(y + z)). The base of the fibration is the
deformation space parametrized by (T0, . . . , T3), whereas the fiber is parametrized by (x, y, z).
Over the red locus (which may be a nontrivial subvariety of the base) the fiber degenerates:
We only resolve the black node in the colored D4 Dynkin (see figure 7), corresponding to the
two-dimensional vertex in figure 9. The resolution produces a single P1 (the black line) with
three singular A1 points (the red crosses).

Let us summarize this section. First, in section 4.1, we briefly introduce the hyper-
Kähler structure of ALE spaces in a notation that will serve us. We explain in terms
of the complex structure form and the Kähler form what it means to have a ‘vanishing
sphere’. In section 4.2, we discuss the deformations of ALE spaces. We single out three
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special subspaces in the parameter space of deformations that will be of interest: Two
of them will display residual A1 singularities; the third one is given by the intersection
of the first two and it will display an A2 singularity. In section 4.3, we show how these
residual singularities are resolved. Here, we will realize that the two A1 loci show us
the various types of charged matter that can appear. For one of the A1 singularities,
the exceptional P1 is intersected once by the U(1) divisor and gives rise to a charge-one
hypermultiplet. The other type of A1 singularity has a different structure, it corresponds
to a P1 that is quadratically embedded into the geometry, and therefore twice intersected
by the U(1) divisor. This gives rise to a charge-two hyper. See figure 11.

deformed  
ALE space: 
eq. (3.12).

base of the sixfold: 
(T0,T1,T2,T3)

singular ALE fiber: 
case 1 (quadratic ℙ1)

(“conifold”) charge-2 locus of MP: eq. (5.6) 
MF has rank (2-2)=0

[P1 ⇢ P2] = [↵0]
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singular ALE fiber: 
case 3 (regular ℙ1)

or

generic 
locus

charge-1 locus of MP: eq. (5.7) 
MF has rank (2-1)=1

locus (4.14): 
T0=0 ⇔ t0=0

locus (4.16) ⇔ 
t1+t2+t3±t0=0

intersection (4.15): 
T0=0 ∩ Δ=0 ⇔ 
t0=t1+t2+t3=0
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Figure 11: Possible matter loci for charge-two examples. The cases referred to in the figure
are 1, 2, and 3. (2)ξ is the real volume of the exceptional P1 locus, [αi] its homology class.
The sixfold family is given by (3.12).
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4.1 D4 singularity on an ALE space

An ALE space develops an ADE singularity when a bunch of two-spheres in its homology
collapse to zero size. If the intersection form of the surface restricted to these spheres is
(minus) the Cartan matrix of an ADE algebra ΓADE, then the surface has a singularity
of type ΓADE.

The volume of the homologically non-trivial cycles is measured by the metric. The
metric of any ALE space is determined by three harmonic two-forms, that span a three-
plane Σ inside H2(surface). The latter is a vector space equipped with a natural scalar
product defined as

v · w :=

∫
surface

v ∧ w , v, w ∈ H2(surface) . (4.1)

This product must be positive definite when restricted to Σ. In terms of Poincaré dual
two-cycles, the product is simply given by the intersection number.

The ALE surface is a local Calabi–Yau (i.e., it is Ricci flat), whose metric is deter-
mined by the Kähler form and the holomorphic (2, 0)-form Ω, which satisfy

Ω · Ω = 0 , J · Ω = 0 , Ω · Ω̄ > 0 , J · J > 0 . (4.2)

These two forms can be constructed by choosing three orthogonal vectors ω1, ω2 and
ω3 spanning Σ:

Ω = ω1 + iω2 and J = ω3 . (4.3)

The metric is invariant under SO(3) rotations of the ωi’s. By such a rotation, one can
change the choice of Ω and then of a complex structure. In fact, any hyper-Kähler
manifold has a whole S2 worth of complex structures.

The position of Σ in H2(surface,Z) determines what cycles have zero size: If a two-
cycle is orthogonal to Σ, its volume is zero.19 By adjunction, one can verify that the
classes of two-spheres have self-intersection −2. Hence an ADE singularity of type ΓADE

is present when Σ is orthogonal to a set of two-cycles with intersection matrix equal to
minus the Cartan matrix of the ADE group ΓADE (in particular this means that they
have self-intersection −2).

In this section, we are interested in a hyper-Kähler surface with a D4 singularity.
Following the general rule, this happens when Σ is orthogonal to four independent

19By this we actually mean
∫
α

Ω =
∫
α
J = 0. Since two-forms are Poincaré dual to two-cycles, we

often write these conditions as an orthogonality condition with Σ, i.e. α · Ω = α · J = 0.
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spheres α1, α2, α3, α4 in H2(surface,Z) that have the following intersection pattern:

αi · αj = Cij with C =


−2 1

−2 1

−2 1

1 1 1 −2

 . (4.4)

We will call
V D4 = 〈α1, α2, α3, α4〉 (4.5)

the four-dimensional subspace spanned by the spheres αi, that we will also call simple
roots. All vectors in V D4 that square to −2 represent homology classes of two-spheres
inside the surface corresponding to the roots of D4.20 The simple roots αi (and conse-
quently all the roots) have zero size when they are orthogonal to Σ, i.e. when

αi · ΩD4 = αi · JD4 = 0 , ∀i = 1, . . . , 4 . (4.6)

4.2 Deformation of the D4 singularity

To smooth out the D4 singularity one needs to move the plane Σ inside H2(surface) such
that Ω or J are no longer orthogonal to the αi. We say that we deform the singularity
if we keep J orthogonal to V D4 , while letting Ω have components along V D4 :

J = JD4 , Ω = Ω′D4 + t1α
∗
1 + t2α

∗
2 + t3α

∗
3 + t4α

∗
4 . (4.7)

Here Ω′D4 is a (2, 0)-form that is still orthogonal to V D4 and is chosen such that (4.2)
are satisfied by J and the new Ω.21 ti (i = 1, ..., 4) are complex numbers. {α∗i } is a dual
basis of {αi} in V D4 , i.e. they are such that α∗i · αj = δij. For convenience, we write
down the expression of α∗i in terms of αj:

α∗1 = −α1 − α4 − 1
2
(α2 + α3) , (4.8a)

α∗2 = −1
2
(α1 + 2α2 + α3 + 2α4) , (4.8b)

α∗3 = −1
2
(α1 + α2 + 2α3 + 2α4) , (4.8c)

α∗4 = −α1 − α2 − α3 − 2α4 . (4.8d)

20 Let us list all twelve positive roots of D4: α1, α2, α3, α4, α1 + α4, α2 + α4, α3 + α4, α1 + α2 +
α4, α1 + α3 + α4, α2 + α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + α3 + 2α4.

21Take ω0
m such that ω0

m · ω0
k = δmk and ωm · αi = 0 ∀m, i. Then one can write JD4 = νω0

3 and
ΩD4 = ω0

1 + iω0
2 . One can take Ω′D4 = ΩD4 + bω0

1 , with b = −∑ij titj(α
∗
i · α∗j ).
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The ALE fibration over the space with coordinates ti is the sixfold family that we want
to construct up to an appropriate quotient by a subgroup of the Weyl group of D4.

With a generic choice of ti’s, one obtains a non-zero volume for all the (integral)
spheres in V D4 ⊂ H2(surface) and the resulting ALE space is smooth. There are
however choices of these parameters that leave some sphere in V D4 orthogonal to Σ.
This means that the ALE space is still singular. Let us consider the following relevant
examples (where we use relation (3.3)):

1. −t0 = t1 + t2 + t3 + 2t4 = 0. The vector

α0 := α1 + α2 + α3 + 2α4 (4.9)

has self-intersection −2 and is orthogonal to Ω. If the values of the ti’s are the
most generic ones satisfying this condition, all the other spheres in V D4 have finite
size (i.e. are not orthogonal to Ω). We then have an A1 singularity.

2. −t0 = t1 + t2 + t3 + 2t4 = 0, ±t1 ± t2 ± t3 = 0. We have three vectors in V D4

that have zero size. In the case + + + they are

α4 , α0 − α4 , α0 . (4.10)

They span a two-dimensional subspace of V D4 : take α4 and α0 − α4 as a basis,
they intersect at one point and give a choice of simple roots for A2. The ALE
space develops an A2 singularity. Different choices of sign in ±t1 ± t2 ± t3 select
a different set of three roots that shrink; they always have the right intersection
pattern to give an A2 singularity.

3. ±t1 ± t2 ± t3 ± t0 = 0, t0 6= 0. There is only one sphere that has zero volume.
In the case + + ++ it is

α4 . (4.11)

We have an A1 singularity. For the choice + + +− the zero-size sphere is α0−α4.

4. t1 = t2 = t3 = t4 = 0. All the spheres in V D4 have zero size. We have the D4

singularity.

Notice that the second case is the intersection of the first and third.
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4.3 Resolutions of remaining singularities

Over some loci of the ti space, the ALE space is still singular. Over these loci one can
resolve the singularities by moving J in such a way that the spheres orthogonal to Ω

are not orthogonal to J anymore. This means that J now takes the form

J = J ′D4 +
4∑
i=1

ξiα
∗
i , (4.12)

where J ′D4 is a two-form that is still orthogonal to V D4 and is chosen such that (4.2)
are still satisfied. The ξi’s are real numbers.

The procedure for constructing partial simultaneous resolutions has led us to replace
the originalD4 quiver by a contracted quiver with only two nodes. See figure 9. In quiver
representation language, this means that we really only have two stability parameters
(i.e. Kähler moduli) at our disposal, namely ξ0 and ξ4. Moreover, these must satisfy
2ξ0 + ξ4 = 0. In the language of D3-probes at singularities, we only have one overall
U(1) in the quiver, so only one real FI parameter.

Therefore, we are interested in resolutions consistent with the contracted D4 quiver,
where we allow simultaneous resolution only along the central root of the D4 Dynkin
diagram. This corresponds to fiberwise resolutions of the following form for J :

J = J ′D4 + ξ α∗4 , (4.13)

i.e. we allow only ξ := ξ4 to be non-zero (while ξ1,2,3 = 0).
Let us consider the previous examples and see which spheres acquire a non-zero

volume when J is given by (4.13):

1. −t0 := t1 + t2 + t3 + 2t4 = 0. The root α0 gets volume

J · α0 = 2ξ . (4.14)

2. −t0 := t1 + t2 + t3 + 2t4 = 0, ±t1 ± t2 ± t3 = 0. Let us concentrate on the case
+ + +: The simple roots α4 and α0 − α4 have volume

J · α4 = J · (α0 − α4) = ξ . (4.15)

Notice that the third root is α0 = α4 + (α0 − α4) that has volume 2ξ and is
homologous to the sphere discussed at point 1.
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3. ±t1 ± t2 ± t3 ± t0 = 0, t0 6= 0. Let us consider the case with + + ++: the root
α4 gets a volume

J · α4 = ξ . (4.16)

In the case + + +−, we have J · (α0 − α4) = ξ .

4. t1 = t2 = t3 = t4 = 0. Only the spheres that are linear combinations of α4 with
some other sphere get non-zero size.

Consider the ALE fibration over the space with coordinates t1, t2, t3, t4. Over generic
points of the base, the ALE fiber is smooth. Over the locus t0 = 0 there is an A1

singularity whose resolution gives an exceptional P1 in the class α0 (case 1). On top of
t1 + t2 + t3 + t0 = 0 the resolved P1 is in the class α4, while on top of t1 + t2 + t3− t0 = 0

it is in the class α0 − α4 (case 3). All these three loci intersect at t0 = t1 + t2 + t3 = 0,
where we have two P1’s intersecting at one point (case 2). Case 4 is special, and will
be treated separately in sections 5.3 and 5.4.

Notice that the fact that the class [α0] has volume 2ξ is compatible with the fact
that this is a quadratically embedded P1. We can think of it as follows: Take case 2,
which has a union of two P1’s, one of class α4, and one of class α0 − α4. If we deform
this locus, the two spheres will coalesce into a single sphere of class α0 − α4 + α4 = α0.
Hence, α0 is a sphere that is the homological sum of two projective lines. From this
picture, we understand that it gets intersected twice by the Weil divisor corresponding
to the small resolution, and hence gives matter of charge two.

All of the homology and volume relations we have discovered can be phrased in
terms of the global Picard group and the local Picard groups of the singularities. For
example, the fact that the volume of the root α0 is twice the volume of the roots α4

and α0 − α4 is the statement that the class of α0 is twice the generator of the Picard
group, while the classes of α4 and α0 − α4 correspond to generators.

4.4 Algebraic description

We now relate the above description of the ALE-fibered sixfold with the algebraic
description given in section 3. The coordinates Ti of the four-dimensional base are
expressed in terms of the covering coordinates ti according to (3.9). Remember that
t0 = −(t1 + t2 + t3 + 2t4). Let us repeat the equation describing the generic (deformed)
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ALE fiber:22

x2 = T 2
0 (y + z − T3 + T2 + T1 + T 2

0 )2 +

+ (y + z − T3 + T2 + T1 + T 2
0 )yz − 4T 2

0 T1T2 + T1y
2 + T2z

2 , (4.17)

where x, y, z are coordinates along the ALE fiber. The sixfold (4.17) is singular at the
vanishing loci of the following two ideals:

(x, y, z, T0) (4.18)

and

(x, v y+2T2z, 2T1y+v z, y2−4T2T
2
0 , z

2−4T1T
2
0 , zy+2T 2

0 v, 4T1T2−v2) , (4.19)

with v := (z + y + T1 + T2 − T3 + T 2
0 ).23

The quiver in figure 9 provides a (simultaneous) resolution of these singularities.
As we are now going to show, over the two loci the exceptional locus is a P1. At the
intersection of the two loci, the exceptional locus is the union of two intersecting P1’s.
In the next section we will show that these P1’s correspond to the blown-up spheres of
the ALE fiber found above.

4.4.1 Exceptional locus

We start by restricting ourselves over the locus T0 = 0 (i.e. t0 = 0) (4.18), where we
know the ALE fiber should have an A1 singularity. In the resolution given by the quiver,
we should see an exceptional P1 over this locus.

Over T0 = 0 the relations (3.10) become:

aA = 0 , b2 = T112 , c2 = T212 , d2 = T312 , Aa+ b+ c+ d = 0 . (4.20)

First of all notice that the stability conditions imply that, at x = y = z = 0, one has
22This is nothing but (3.12) with xhere = xthere+v, where v (introduced below) is (half) the coefficient

of the linear term in xthere.
23We notice that v = −2v, where v is the variable appearing in the universal flop of length two

of [37], that we reproduce in (5.10).
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A = 0.24 Moreover, we can use the last relation to eliminate d. We are then left with:

b2 = T112 , (4.21a)

c2 = T212 , (4.21b)

{b, c} = (T3 − T1 − T2)12 . (4.21c)

The matrices b, c can be expanded as

b = β012 + βiσ
i , c = γ012 + γiσ

i . (4.22)

Let us consider the relation (4.21a). It says that b2 must be proportional to the identity
matrix, i.e.

b2 = (β012 + βiσ
i)2 = (β2

0 + β2
i )12 + 2β0βiσ

i ∝ 12 . (4.23)

This happens if and only if β0 = 0 or βi = 0 ∀i = 1, 2, 3. The second option is not
possible: If the βi’s vanish, b ∝ 12 and this would also imply c ∝ 12 (see (4.21c));
however this is forbidden by the stability condition (i.e. Span〈a, ab, ac, abc〉 ∼= C2 must
be two-dimensional). Therefore we must take β0 = γ0 = 0, i.e.

b = βiσ
i , c = γiσ

i . (4.24)

Plugging this into (4.21a), (4.21b), and (4.21c) one obtains:

∑
i

βiβi = T1 ,
∑
i

γiγi = T2 ,
∑
i

βiγi =
1

2
(T3 − T1 − T2) . (4.25)

It is now possible to construct three SL(2,C)-invariant object (where SL(2,C) is acting
on the right node of the quiver):

s1 := a ∧ ab s2 := a ∧ ac , s3 := a ∧ abc . (4.26)

Because of the stability condition, these cannot vanish simultaneously. Moreover, they
are charged under the relative C∗ between the two nodes. Hence they are coordinates
on a P2. There is a homogeneous quadratic relation among the si, which selects a P1

24 Remember that a, ab, ac, abc must generate the whole C2 vector space at the right vertex (this
is equivalent to insuring that ‘destabilizing’ quiver representations are excluded [63]). Hence, the
condition x = y = z = 0, with x, y, z given in (3.11), force A = 0: in fact, A is implied to be orthogonal
to a complete set of vectors of C2.
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inside P2. It is given by

s23 = T2s
2
1 − (T3 − T1 − T2)s1s2 + T1s

2
2 . (4.27)

Proof. First, notice that

bc = βiγjσ
iσj = βiγj(δ

ij12 + iεijkσk) . (4.28)

Hence
s3 = βiγj(δ

ija ∧ a+ iεijka ∧ aσk) = i βiγjε
ijka ∧ aσk (4.29)

For convenience, let us call Xk := a ∧ aσk. Then

s1 = βiX
i , s2 = γiX

i , s3 = i βiγjε
ijkXk . (4.30)

Using the relation

εijkεh`p = δih(δj`δkp − δjpδk`)− δi`(δjhδkp − δjpδkh) + δip(δjhδk` − δj`δkh) , (4.31)

we can finally write

s23 = −βiγjβhγ` εijkεh`pXkXp

=
(

((~β · ~γ)2 − ~β 2~γ 2)δkp + ~γ2βkβp − (~β · ~γ)(βkγp + βpγk) + ~β2γkγp

)
XkXp

= ~γ2(βkX
k)2 − 2(~β · ~γ)(βkX

k)(γpX
p) + ~β2(γpX

p)2 (4.32)

= ~γ2s21 − 2(~β · ~γ)s1s2 + ~β2s22

= T2s
2
1 − (T3 − T1 − T2)s1s2 + T1s

2
2 ,

where we used
∑

kX
kXk = 0 and the relations (4.25). �

We have thus shown that the exceptional P1 over the locus T0 = 0 is given by the
quadratic equation (4.27) inside P2[s1 : s2 : s3].

We are now interested in following the fate of this P1 when the locus T0 = 0 intersects
the second singular locus in the sixfold, namely (4.19). This happens when

∆ := (T3 − T1 − T2)2 − 4T1T2 = 0 . (4.33)

Looking at equation (4.27), one sees that at this locus the exceptional P1 splits into two
P1’s. By a gauge fixing, we now show that the exceptional locus at T0 = 0 is exactly
parametrized by a P1. We started from coordinates βi, γi, a1, a2 modulo the relations
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(4.25) and modulo (complexified) gauge transformations (C∗ ×GL(2,C))/C∗. We first
break SL(2,C) to the C∗ generated by the Cartan, by choosing

b = T
1/2
1 σ3 , c =

(
r q

p −r

)
, (4.34)

and putting γ1 = 1
2
(q+ p), γ2 = i

2
(q− p), γ3 = r. The relations (4.21c) and (4.21b) now

impose

p q = − ∆

4T1
, r2 =

(T3 − T1 − T2)2
4T1

, (4.35)

with ∆ as in (4.33).
When ∆ 6= 0, we can use the C∗ generated by the Cartan to fix q = p, leaving

behind only the relative C∗ (between the two nodes of the quiver); the relations (4.35)
then determine c completely. The exceptional locus is parametrized by the components
of the row two-vector a, i.e. (a1, a2), modulo the relative C∗ action. These actually span
a P1[a1 : a2], since the stability condition excludes the point (a1, a2) = (0, 0).

When ∆ = 0, the first equation in (4.35) factorizes, giving two loci, one at p = 0

and one at q = 0. Let us consider the former: the C∗ generated by the Cartan can be
fixed by choosing q = T3. Again, we are left with a P1 parametrized by [a1 : a2]. We
can do the same with the locus q = 0, obtaining a second P1. We have then explicitly
shown that at ∆ = 0 the exceptional P1 splits into two P1’s, intersecting at p = q = 0.
(At this point we still need to fix the Cartan C∗; we do this by choosing a1 ∝ a2, i.e.
we get a point.)

4.5 Correspondence with sections 4.2 and 4.3

We now show that the exceptional P1’s found in section 4.4.1 are exactly the spheres
over the loci called 1 and 3 in sections 4.2 and 4.3.

Let us begin with the locus (4.18). In terms of the parameters ti’s this means that
t0 = −(t1 + t2 + t3 + 2t4) = 0, i.e. it corresponds to locus 1, where the resolved sphere
was α0 with volume 2ξ. In section 4.4.1 we found that the exceptional P1 is a quadric
in P2 that splits when (T3− T1 − T2)2 = 4T1T2. In terms of the ti’s (using the relations
(3.9)) the latter condition becomes

0 = T3 − T1 − T2 ∓ 2T
1/2
1 T

1/2
2 = 1

4
(t22 − t21 − t22 ∓ 2t1t2) = 1

4
t23 − 1

4
(t1 ± t2)2 . (4.36)
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Hence we have
± t1 ± t2 ± t3 = 0 . (4.37)

We recognize the case 2, where the exceptional fiber was made up of two spheres (in
the classes α4 and α0 − α4 when we choose + + +), both with volume ξ. The choice of
± sign is only available on the covering space parametrized by the ti: Once we quotient
by the appropriate Weyl subgroup (i.e. we pass to the Weyl-invariant coordinates Ti)
the loci (4.37) become branches of the same locus.

We now analyze the singular locus (4.19). We first see that the singularity occurs
at non-zero y and z:

y = ±2T
1/2
2 T0 = ±1

2
t2t0 , z = ±2T

1/2
1 T0 = ±1

2
t1t0 . (4.38)

The other independent relation in the ideal (4.19) is v2 − 4T1T2 = 0, that in terms of
the ti’s reads

0 = v ± 2T
1/2
1 T

1/2
2

= (±2T
1/2
1 T0 ± 2T

1/2
2 T0 + T1 + T2 − T3 + T 2

0 )± 2T
1/2
1 T

1/2
2

=
1

4
(±2t1t0 ± 2t2t0 + t21 + t22 − t23 + t20 ± 2t1t2) (4.39)

=
1

4
(t1 ± t2 ± t0)2 −

1

4
t23 .

Hence, we have
± t1 ± t2 ± t3 ± t0 = 0 , (4.40)

with t0 generically different from zero. We obtain all the branches of the locus 3 in the
base: Choosing + + +±, the exceptional P1 is either in the class α4 (+ sign) or α0−α4

(− sign).

5 The Morrison–Park threefold

We are finally ready to explain how the construction of families of versally deformed,
partially resolved ALE surfaces of type D4 relates to the Morrison–Park threefold [18],
engineering a generic F-theory model with matter of charge one and two.
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5.1 U(1) gauge symmetry from geometry

In M-theory, some of the U(1) gauge symmetries come from the reduction of the three-
form C3 along harmonic two-forms of the compactification threefold X3:

C3 =
∑
I

AIµdx
µ ∧DI , (5.1)

where DI are (the Poincaré duals of) divisors of X3.
Let us consider an elliptic fibration X3. In the F-theory limit of M-theory, to have a

massless U(1) gauge boson the elliptic fibration must have an extra section, or better a
divisor that intersects the fiber at one point. We call this divisor D. By combining the
divisor D with the zero section Z of the elliptic fibration and a proper vertical divisor
Drest, one finds the U(1) generator [64], i.e. the divisor that appears in C3 ∼ Aµdx

µ∧ωD:

ωD = D − Z +Drest . (5.2)

The requirement that the elliptic fibration has an extra (rational or irrational) section
leads to a specific form of the Weierstrass model, known as the Morrison–Park (MP)
threefold [18]:

WMP : y2 = x3 + c2x
2 +

(
c1c3 − b2c0

)
x + c0c

2
3 − b2c0c2 +

1

4
b2c21 , (5.3)

where we have set z = 1 (in the z 6= 0 patch of the P231 fiber). To obtain the standard
Weierstrass form Y 2 = X3 + f X + g, one simply takes y = Y and x = X − c2

3
.

As already mentioned, the geometry has been constructed so to have (at least)
rank-one Mordell–Weil group; its generator is given by:

QMP : [x : y : z] =

[
c23 − b2c2 : −c33 + b2c2c3 −

1

2
b4c1 : b

]
∈ P231 . (5.4)

The zero section sits at Z : [x : y : z] = [1 : 1 : 0]. The non-Cartier divisor associated
with the extra rational point is given by the equations

DMP :

{
x =

(
c23
b2
− c2

)
, y =

(
−c

3
3

b3
+
c2c3
b
− 1

2
bc1

)}
⊂ WMP , (5.5)

at least locally in the patch z = b 6= 0. The MP geometry admits a small, Kähler
resolution, and we expect that the U(1) gauge boson remains massless at strong coupling
[65].
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The MP threefold has two loci of point-like singularities, given by the following
ideals:

( y, x, b, c3 ) , (5.6)

and  y, minors2×2

 b2 −c3 x

−c3 x + c2
c1
2

x c1
2

c0


 . (5.7)

The last one is not a complete intersection in the ambient space. The extra divisor DMP

passes through both singular loci.
In M-theory geometric engineering, these singularities correspond to massless states,

given by M2-branes wrapping the shrunk P1, that are charged under the U(1) symmetry
generated by the new divisorDMP. The actual charge is given by the intersection number
of DMP with the exceptional P1. This is due to the coupling of the M2-branes to the
M-theory three-form C3 ∼ Aµdx

µ ∧ ωD:∫
M2
C3 =

∫
Aµdx

µ

∫
P1

ωD = (P1 · DMP)

∫
Aµdx

µ . (5.8)

In the MP geometry, we have P1 · DMP = 2 for the locus (5.6) and P1 · DMP = 1 for the
locus (5.7). Therefore there are states with charge two and states with charge one.

5.2 Morrison–Park is the universal flop of length two

We will now show that the MP threefold (5.3) is a particular threefold slice of the
universal flop of length two (a sixfold). Indeed it can be obtained from (4.17), after
identifying x = y and y = x, by imposing the following equations:

z = c3(ζ) , T0 =
1

2
b(ζ) , T1 = x + c2(ζ) T2 = c0(ζ) , T3 = c1(ζ) . (5.9)

The ζi are local coordinates on the twofold F-theory base (whereas x and y are coordi-
nates along the fiber). In the patch where z and T0 can be taken as local coordinates,25

the last three equations give a cut of the universal flop sixfold. We also notice that
the singular locus (5.6), where charge-two states live, corresponds to the singular locus
(4.18) of the universal flop sixfold, where the exceptional P1 is quadratically embedded
in a P2. Analogously, the charge-one locus (5.7) corresponds to (4.19) in the sixfold,
where the exceptional P1 is an ordinary one.

25This is the relevant patch to study the singularities of MP.
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The universal flop of length two can be written in the simpler form [37]

Wuniv := x2 + uy2 + 2vyz + wz2 + (uw − v2)t2 = 0 ⊂ C7
(x,y,z,t,u,v,w) (5.10)

by applying to (3.12) the following change of variables:

(T0, T1, T2, T3) =

(
t

2
,−u,−w, 2v + y + z − u− w +

t2

4

)
. (5.11)

In this new form, the MP threefold is given, after identifying x = y and y = x, by

t = b(ζ) , z = c3(ζ) , u = −y − c2(ζ) , v = −c1(ζ)

2
, w = −c0(ζ) , (5.12)

again with ζi coordinates on the F-theory twofold base.

5.3 Matrix factorizations and U(1) divisor

Call R := C[x, y, z, t, u, v, w]/(Wuniv) the coordinate ring of Wuniv. In [37] a 4 × 4

matrix factorization (Φuniv,Ψuniv) of (5.10) was presented, such that M := coker Ψuniv

is a so-called Cohen–Macaulay (CM) R-module (see [63] for the relevant terminology.)
Thanks to (5.12), the MP threefold (5.3) will also admit a 4 × 4 matrix factorization
(MF) (ΦMP,ΨMP), see (5.14). By construction, these two matrices satisfy

ΦMP ·ΨMP = ΨMP · ΦMP = WMP 14×4 . (5.13)

The MP threefold is a determinantal variety, since WMP = PfaffΦMP. Over the hyper-
surface WMP = 0, the 4× 4 matrix ΦMP has rank two. The singularities occur over the
subloci where the rank of ΦMP is lower than two. There are two types of codimension-
two loci where this happens; not surprisingly these correspond to (5.6) and (5.7), upon
using the equations (5.12). The rank drops to zero at the charge-two locus (5.6), while
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it drops to one at the charge-one locus (5.7).

ΨMP =


y− 1

2
bc1 −x −c3 −b

−c1c3 − x(c2 + x) y + 1
2
bc1 −b(c2 + x) −c3

−c0c3 bc0 y− 1
2
bc1 x

bc0(c2 + x) −c0c3 c1c3 + x(c2 + x) y + 1
2
bc1

 , (5.14a)

ΦMP =


y + 1

2
bc1 x c3 b

c1c3 + x(c2 + x) y− 1
2
bc1 b(c2 + x) c3

c0c3 −bc0 y + 1
2
bc1 −x

−bc0(c2 + x) c0c3 −c1c3 − x(c2 + x) y− 1
2
bc1

 . (5.14b)

(The MF (5.14) can be straightforwardly completed to a globally-defined one in P231[x :

y : z].)
In [63] it was shown how a 4×4 MF of a threefold can be associated with a family of

non-Cartier divisors intersecting the exceptional locus: As we have said, the MF defines
the CM moduleM := coker Ψuniv. The rank-two moduleM becomes a locally-free sheaf
in the resolved threefold, i.e. a rank-two vector bundle V generated by its sections. The
Poincaré dual of the first Chern class of the vector bundle is a divisor D. It is related
to the U(1) gauge boson in the M-theory compactification. The divisor is given by the
locus where two generic sections of the rank-two vector bundle become parallel. This
locus can be identified already in the singular space, by requiring that two sections ofM
be proportional to each other. To do this we use the isomorphism between coker ΨMP

and im ΦMP explained in [63]: When the domain of the map ΦMP is restricted to be
coker ΨMP, the map is bijective (this is valid on generic points of the MP threefold).
Hence, the locus where two sections of coker ΨMP are parallel is the same as the locus
where two sections of im ΦMP are parallel. Since the image im ΦMP is generated by the
columns of ΦMP, we can choose two columns of ΦMP and find the locus where these
become parallel.

Take e.g. the last two columns of ΦMP. The locus we are looking for is given by the
condition

rank


c3 b

b(c2 + x) c3

y + 1
2
bc1 −x

−c1c3 − x(c2 + x) y− 1
2
bc1

 ≤ 1 . (5.15)
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When all the 2× 2 minors vanish, we obtain the vanishing locus of the following ideal:(
b2(c2 + x)− c23, yb+ c3x + 1

2
b2c1, c3y + b

(
1
2
c1c3 + x(x + c2)

)
, (5.3)

)
. (5.16)

We can make independent choices by taking e.g. the second and last columns or the
first and last. Taking generic combinations of columns and requiring them to be parallel
gives a whole family of Weil divisors [63], of the form

MD ·

k1k2
k3

 = 0 , (5.17)

with

MD =

 b2(c2 + x)− c23 1
2
c1b

2 + yb+ c3x −b(1
2
c1c3 + x(c2 + x))− c3y

1
2
c1b

2 − yb+ c3x b2c0 − x2 xy− 1
2
b(2c0c3 + c1x)

b
(
x(c2 + x)− 1

2
c1c3

)
− c3y bc0c3 + x

(
1
2
bc1 + y

)
−(1

2
bc1 + y)2 − b2c0(c2 + x)

 .

(5.18)

Taking e.g. ~k = (1, 0, 0)t gives the ideal (5.16), corresponding to the non-Cartier divisor
DMP found in [18] and defined in (5.5). However notice that the former is just one
representative in a whole family the MF is capable of providing us.

The generic choice in the family can also be constructed in the universal flop sixfold
directly, and upon using (5.5) it matches with (5.17). By using the techniques discussed
in [63], one can show that it intersects once the exceptional fiber at the origin of the
sixfold. In the language of section 4, this locus corresponds to t1 = ... = t4 = 0 (i.e.
to case 4). The exceptional P1 is the sphere α4 in the ALE fiber. Now consider the
exceptional P1 on top of (5.6); it is in the class α0, and when intersected with (5.7) it
splits into two P1’s that coincide at the origin of the sixfold. Hence the divisor we have
constructed will intersect twice the exceptional P1 at the locus (5.6) where the matrix
rank drops to zero, while it will intersect once the exceptional P1 at the locus (5.7)
where the matrix rank drops to one.
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5.4 Laufer threefold

In [63], we discussed in full detail the Laufer threefold [66], which is described by the
following equation:26

x2 + y3 − tz2 − yt3 = 0 . (5.19)

This is also a threefold cut of the universal flop of length two (and also a specialization
of MP). It is obtained from (4.17) by imposing

T0 =
t

2
, T1 = −y , T2 = t , T3 = z + t+

t2

4
. (5.20)

The resulting threefold is singular at x = y = z = t = 0. Notice that at this point all the
Ti’s vanish. In terms of the covering variables ti, this means t1 = t2 = t3 = t4 = 0, i.e.
we are in the case 4 of sections 4.2 and 4.3. The ALE space develops a D4 singularity,
and we resolve its central node (the black one in figure 7) by a simultaneous resolution.

This singular threefold with its two resolutions is the simplest example of length-two
flop (with the conifold flop being instead length-one). The exceptional P1 in this case
is ‘length-two’, i.e. is an example of non-reduced scheme (roughly, an algebraic variety
defined by w2 = 0, for some local coordinate w).27 The P1 is intersected once by the U(1)

divisor. However, this two-cycle supports a bound state of two superposed membranes,
which means that charge-two matter is also possible by this mechanism [63, Sec. 6].28

6 The general picture for other ALE spaces

We have seen the connection between the universal flop of length two and M-theory
models with one massless U(1) and matter with charge one and two. The universal flop
sixfold has two loci of singularities that the threefold cut inherits. After resolution, the
volume of the exceptional P1 over one locus is twice the volume of the exceptional P1

over the second locus. If the two loci intersect, the quadratically-embedded P1 splits
into two P1. We have seen this both algebraically and by studying the ALE fiber.

The same analysis can be performed for models with length higher than two, which
will produce matter with charge higher than two. As we have seen in section 3, also

26This is Laufer’s threefold for n = 1; see [66, Eq. (69)].
27More precisely, the coordinate ring R of the singular variety X := SpecR (i.e. the scheme) contains

a nilpotent element. The length is simply the dimension of the (complex) vector space OX(X). For a
brief account on the subject see e.g. this page or, for a more complete treatment, section 4.2 of Vakil’s
lectures [67].

28The original Laufer example [68] was later generalized in [69,70]: These too are specializations [66,
Sec. 4.2] of the universal flop by [37, Thm. 3], and their singular geometries host charge-two matter.
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these n-folds are ALE fibrations over the space of deformation parameters.

6.1 ALE fibrations with higher-charge states

One can straightforwardly repeat the analysis of section 4 to cases corresponding to
higher length. In order to get charge-three states one starts from the family of deforma-
tions of an ALE space with one E6 singularity (i.e. the universal flop of length three),
for charge four (length four) one studies the deformations of an E7 singularity, whereas
for charge five and six (length five and six) those of an E8 singularity.

To illustrate how the technique works in higher charge, we will consider the model
with maximal possible length. As we said, the starting point is an ALE space with an E8

singularity. The E8 root lattice is eight-dimensional, hence the holomorphic two-form
has eight deformation parameters t1, . . . , t8, corresponding to the (complex) volume of
the simple roots. The highest root is (see the Dynkin diagram in figure 7)

α0 = 2α1 + 3α2 + 4α3 + 5α4 + 3α5 + 2α6 + 4α7 + 6α8 , (6.1)

with complex parameter 2t1 + 3t2 + 4t3 + 5t4 + 3t5 + 2t6 + 4t7 + 6t8.
In the length-two case, the crucial point to construct matter of charge two (in the

M-theory threefold) was the simultaneous resolution of the simple root that appears
with the highest weight in the highest root (i.e. the black node of the Dynkin, labeled
by a 2). Hence, in order to have charge six, we need to take the simultaneous resolution
of the central root in the E8 Dynkin diagram, i.e.

J = J ′
E8 + ξα∗8 . (6.2)

Now, consider the spheres that are integral linear combinations of simple roots with
non-zero coefficient along α8, i.e. α =

∑8
i=1 niαi with n8 6= 0 (and α2 = −2). Looking

at the Dynkin diagram, one can see that all values of n8 are possible from 1 to 6. Take
the family of ALE spaces with an E8 singularity. The locus where one of these spheres
shrinks is codimension-one in the parameter space spanned by t1, . . . , t8. Over such loci
the ALE fiber develops an A1 singularity. After resolution, the exceptional P1 has real
volume n8ξ. For instance, along the locus t0 = 0, the sphere in the class α0 shrinks,
generating an A1 singularity. After resolution, the exceptional P1 in the class α0 has
real volume

J · α0 = 6ξ . (6.3)

Since n8 = 1, 2, ..., 6, all charges in {1, 2, ..., 6} are present.
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Notice that making the simultaneous resolution of the root corresponding to the
node with label 5 in the E8 Dynkin diagram corresponds to J = J ′E8 + ξα∗4. The
highest root has now real volume J · α0 = 5ξ (i.e. we have matter with charge up to
five).

6.2 Quivers for higher charge

The algebraic description of the models with high charge can be approached by using the
quiver techniques. In this section we will present the quivers constructed in [38, Sec.
4] whose gauge invariants satisfy a single relation that is equivalent to the versally
deformed ADE singularity (admitting a simultaneous resolution of the black node, as
per figure 7). The case of D4 was already presented in section 3, so we will neglect it
in what follows.

We start with A1. The quiver is depicted in figure 12, and the relations are

A1 : aA− bB = T0 , Bb− Aa = −T0 . (6.4)

The gauge invariants are the paths x = aA, y = bA, z = aB, satisfying x2 = yz in the
undeformed case (as can be checked by applying (6.4) with T0 = 0), and x2 = yz+ T0x

in the deformed one.

C C

a

b

A

B

Figure 12: The quiver with relations reproducing the threefold family of deformed A1 surface
singularities admitting a simultaneous resolution.

We now move to the cases E6, E7, E
(5)
8 , E

(6)
8 . Remember that E8 has two possible

colorings (see figure 7), corresponding to which P1 we want to give a real volume in the
homology of the partially resolved, versally deformed ALE spaces. The first (second)
coloring corresponds to a P1 associated with the node of multiplicity five (six), hence
to (the presence of) a matter locus in the threefold with charge five (six). For all these
cases the quiver is the one in figure 13. However each case requires different relations
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C C`
a

A

b

c

d

Figure 13: The quiver with relations reproducing the threefold family of deformed
E6, E7, E

(5)
8 , E

(6)
8 surface singularities admitting a simultaneous resolution, with ` = 3, 4, 5, 6

respectively (equal to the label of the black node in the corresponding non-affine Dynkin of figure
7).

among the arrows, as follows.

E6 (` = 3) : x := ac2bcA , y := ac2A , z := acA , x2 − z2x+ y3 = 0 ;

aA = T 2
0 − T5 , Aa = d2 − T513 , dA = AT0 , ad = T0a ,

b3 − T2b− T113 = 0 , c3 − T4c− T313 = 0 , b+ c+ d− T0
3

13 = 0 .

(6.5a)

E7 (` = 4) : x := ac3bc2A , y := ac3A , z := acA , x2 − y3 + yz3 = 0 ;

aA = T 3
0 − T2T0 − T1 , Aa = d3 − T2d− T114 ,

dA = AT0 , ad = T0a , b2 − T314 = 0 ,

c4 − T4c2 − T5c− T614 = 0 , b+ c+ d− T0
4

14 = 0 .

(6.5b)

E
(5)
8 (` = 5) : x := ac3bc2A , y := ac3A , z := acA , x2 − y3 − z5 = 0 ;

aA = T 4
0 − T3T 2

0 − T2T0 − T1 , Aa = d4 − T3d2 − T2d− T115 ,

dA = AT0 , ad = T0a , b− c+
T0
5

15 = 0

cbc+ c2b+ cb3 + T7cb+ T6c+ T415 = 0 ,

(c+ b2)2 + bcb+ T7(c+ b2) + T6b+ T515 = 0 .

(6.5c)
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E
(6)
8 (` = 6) : x := ac2bc2bcbc2A , y := ac2bc2A , z := acA , x2 − y3 + z5 = 0 ;

aA = T 5
0 − T4T 3

0 − T3T 2
0 − T2T0 − T1 ,

Aa = d5 − T4d3 − T3d2 − T2d− T116 ,

dA = AT0 , ad = T0a , b+ c+ d− T0
6

16 = 0

b2 − T716 = 0 , c3 − T6c− T516 = 0 .

(6.5d)

In general (i.e. with generic choices of parameters Ti), concrete examples will be ex-
tremely lengthy, as we discuss in the next subsections. However one should bear in
mind that, ultimately, all cases can be brought to the following forms through coordi-
nate redefinitions:

E6 : Y 2 − Y Z2 = X3 + ε2(Ti)XZ
2 + ε5(Ti)XZ + ε6(Ti)Z

2 +

+ ε8(Ti)X + ε9(Ti)Z + ε12(Ti) ;
(6.6a)

E7 : Y 2 = X3 + 16XZ3 + ε2(Ti)X
2Z + ε6(Ti)X

2 + ε8(Ti)XZ +

+ ε10(Ti)Z
2 + ε12(Ti)X + ε14(Ti)Z + ε18(Ti) ;

(6.6b)

E
(5)
8 , E

(6)
8 : Y 2 = X3 − Z5 + ε2(Ti)XZ

3 + ε8(Ti)XZ
2 + ε12(Ti)Z

3 +

+ ε14(Ti)XZ + ε18(Ti)Z
2 + ε20(Ti)X + ε24(Ti)Z + ε30(Ti) .

(6.6c)

As the reader can appreciate, all these cases can be regarded as patches of elliptic
fibrations, and it is reasonable to suppose that there is a model fibered by ALG spaces
as well. Here, the Ti’s will be appropriately covariant with respect to the complementary
subgroup of the full Weyl group of En (as per figure 7), with the εj’s being functions
of the elementary symmetric polynomials of degree j in the Ti’s [35]. In order to make
a CY threefold, one shall regard the Ti’s as sections of an appropriate power of the
canonical bundle of the base of the fibration.

7 Conclusions

Building threefolds

In this paper, we introduced a ‘natural’ class of models for M-theory (F-theory) com-
pactifications to five (six) dimensions, that contain an Abelian vector multiplet, and
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hypers of charges ranging from one to six. The attribute ‘natural’ is left deliberately
vague here. There are other proposals that can realize charges in F-theory higher than
six [24,25] that clearly do not fall into this class.

The models we present here become inhumanely lengthy, when written in full gener-
ality. It would be desirable to specialize to a few interesting, but more succinct examples.
This should be achievable by means of the algorithm we presented in appendix A.

The models of charge 3, 4, 5 and 6 are all derived as families of En-type ALE spaces,
which are naturally elliptic and in ‘Tate form’. However, other possible slicings of
these families might be possible. For instance, for the charge-two case, we were able
to reproduce the Morrison–Park model [18] by taking a slice that is not vertical with
respect to the family of ALE fibers, but cuts through the family mixing fiber and Ti

directions.
Finally, we remark that all these high-charge models can easily be used to construct

CY fourfolds (or even fivefolds and sixfolds).

Geometric transitions

It would be interesting to see whether ‘geometric transitions’29 – akin to the well-known
one for the conifold [73–75] – can be established for (threefold slices of) the higher-length
flops. These are topology-changing transitions, whereby one passes from the resolution
of the singularity (containing a single P1, i.e. a holomorphic two-sphere, in the case of
the conifold) to its complex deformation (with a single three-sphere for the conifold).
In general, the Milnor number of a singularity gives the number of three-spheres in the
deformation. This number can easily be computed for threefold slices of the universal
flops which contain an ADE singularity.

It would be interesting to furnish a gauge theory interpretation of the transition in
terms of its low-energy dynamics.

U(1) divisors

The second main result of this paper is the application of the theory of Eisenbud’s
matrix factorizations to single out the family of U(1) divisors in the compactification.
Usually, in an F-theory situation, one seeks out the extra sections of the elliptic fibra-
tion to construct a homology class upon which to reduce the supergravity three-form
potential. By using matrix factorizations, we can actually find the whole linear sys-
tem of divisors with which to construct it. The method does not require any map

29For a review from both the mathematics and the physics perspectives see [71,72].

41



to some birational non-Weierstrass model, but is naturally derived from the inherent
ALE-fibration structure of the family.

The matter charges can essentially be read off of the size of the matrix factorization
of the singularity, which in our examples can be explicitly constructed with the method
explained in appendix A. The maximum allowed charge is then ` for a 2` × 2` matrix
pair, with the corresponding charged hypers sitting at the locus where the matrix rank
drops to zero. Generically, there will be other ` − 1 special singular loci where the
rank drops to r, with r ranging from 1 to ` − 1. In analogy with the charge-two case
of section 5.3, we claim that these loci correspond to the lower-charge states. Hence,
our models typically realize all the charges from 1 (where the rank drops to `− 1) to `
(where the rank drops to zero). This gives a rather practical method to single out the
various charged states.

Elliptic fibrations and ALG fibrations

Most of the analysis of this paper was done in algebraic terms, with the results cast
in terms of ALE-fibrations (using Kronheimer’s identification of the algebraic and
differentio-geometric descriptions of such spaces [31]). However, we noticed in a few
places that the algebraic description contained the structure of an elliptic fibration; it
would be interesting to know if we could replace that with an ALG fibration (perhaps
using recent results of Hein, Chen, and Chen [48–51]). If so, we would have even greater
confidence in the applicability of these results to F-theory, since an appropriate metric
on the space would have been given.
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A Producing explicit examples with higher charge

In each ADE case the versal deformation can be calculated with the aid of a simple
computer algebra code, that we reproduce below.30 E.g. for the versal deformation of
D4 one types in Magma [76]:31

K := RationalField();
Kt<T0, T1, T2, T3, z, y> := RationalFunctionField(K,6);
F<a, A, x, d, c, b> := FreeAlgebra(Kt, 6);
B := [
z-a*b*A,
y-a*c*A,
x-a*b*c*A,
a*A-2*T0, b*b-T1, c*c-T2, d*d-T3,
A*a+b+c+d-T0
];
G:=GroebnerBasis(B,6);

P:=0;
f:=a*b*c*(T0-b-c-d) - (1/2)*P*a;

g1:=NormalForm(f,G);
g2:=NormalForm(g1*b,G);
g3:=NormalForm(g2*c,G);
g4:=NormalForm(g3*A-(1/2)*P*x+(1/4)*P*P,G);

printf"Charge-2 example with T0, T1, T2, T3 generic deformation
parameters (i.e.\ universal flopping algebra of length 2)
after base change ";

printf"\n \n";

printf"Hypersurface equation is 0 = - x^2 + "; g4; printf"\n \n";

30We would like to thank J. Karmazyn for help with the code. A slightly different version of the
code is also provided in [38].

31For short calculations (of at most 120 seconds) one can use the online Magma calculator available
at this page.
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printf"The polynomial P is "; P; printf"\n \n";

Notice that in the definition of f, which is simply xa− 1
2
Pa, we are using the relation

Aa = −b − c − d + T0. This should be modified in the appropriate way for all other
cases, as explained below.

The relations and gauge invariants x, y, z in the definition of B are taken from (3.10)
and (3.11) respectively. (It is important to input the various factors in each monomial of
the relations in the order specified in (6.5). This is because the code treats the relations
as a non-Abelian algebra.) The output is precisely (3.12), which maps to the form (3.6)
(useful for directly selecting which homology two-sphere should have non-zero volume)
under base change (3.9).

The above output contains a linear term in x, which is not present in the form (3.8).
We can easily cancel it by completing the square.

−x2−P (y, z, T0, . . . , T3)x+Q(y, z, T0, . . . , T3) = 0
x→x−P

2−−−−−→ −x2+
1

4
P 2+Q = 0 . (A.1)

To achieve this, one steps the same code, but now replaces the right-hand side of P := 0;

with the coefficient of the term in x.32 Explicitly:

K := RationalField();
Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6);
F<a, A, x, d, c, b> := FreeAlgebra(Kt, 6);
B := [
z-a*b*A,
y-a*c*A,
x-a*b*c*A,
a*A-2*T0, b*b-T1, c*c-T2, d*d-T3,
A*a+b+c+d-T0
];
G:=GroebnerBasis(B,6);

P:=(-2*T0^3 - 2*T0*T1 - 2*T0*T2 + 2*T0*T3 - 2*T0*z - 2*T0*y);
f:=a*b*c*(T0-b-c-d) - (1/2)*P*a;

g1:=NormalForm(f,G);
32This coefficient can be calculated with the command P := MonomialCoefficient(NormalForm(x ∗ x, G), x);

upon removing x from the definition of F (and decreasing the order of the FreeAlgebra by one) and
the relation x− a . . . A from B.
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g2:=NormalForm(g1*b,G);
g3:=NormalForm(g2*c,G);
g4:=NormalForm(g3*A-(1/2)*P*x+(1/4)*P*P,G);

printf"Charge-2 example with T0, T1, T2, T3 generic deformation
parameters (i.e.\ universal flopping algebra of length 2)
after base change ";

printf"\n \n";

printf"Hypersurface equation is 0 = - x^2 + "; g4; printf"\n \n";

printf"The polynomial P is "; P; printf"\n \n";

Finally, with little effort we can bring the versally deformed D4 surface into elliptic
form (and presumably describe it in terms of an ALG-fibration), which is particularly
useful for F-theory applications. The output of the second code (neglecting the −x2
term) is a polynomial of the form,

αz2 + βz + (γ + y + z)yz + δy + εy2 + κ , (A.2)

with α, . . . , κ depending only on the Ti’s. (This could now be brought into form (3.8)
via a simple coordinate redefinition.) We can bring the above into the standard form
z3 + fz + g via a (linear) change of variables.33 Indeed, shifting y → y + φz makes a
cubic term in z appear, with coefficient φ(1 + φ). The coefficient of the quadratic term
is instead b2 := α+ φ(γ + εφ) + y(1 + 2φ). Now shift z → z − 1

3φ(1+φ)
b2. This produces

a polynomial

φ(1 + φ) z3 +
1

3φ(1 + φ)
f(y, Ti) z +

1

(3φ(1 + φ))3
g(y, Ti) , (A.3)

with f and g depending on y, T0, . . . , T3. By appropriately rescaling y and z, we can
cancel the unpleasant factors in φ, and we are done.34

33The same arguments would apply to y verbatim, given the symmetry between the latter and z in
the above polynomial.

34Alternatively, a different Ansatz y → ψy+φz, with a judicious choice of ψ, φ, can directly produce
the sought form z3 + f(y, Ti)z + g(y, Ti). Notice that in (A.3) the roles of the “fiber coordinates” x, y
in standard F-theory notation are played by our z and x respectively.
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The simplest case of A1

In the simplest of all cases, namely A1, corresponding to the conifold threefold with a
charge-one matter locus only, one inputs the simplified code:

K := RationalField();
Kt<T0, z, y>:=RationalFunctionField(K,3);
F<a, A, b, B, x> := FreeAlgebra(Kt, 5);
D := [
x-a*A,
y-b*A,
z-a*B,
a*A-b*B-T0,
B*b-A*a+T0
];
G:=GroebnerBasis(D,6);

P:=0;
f:=a*A*a - (1/2)*P*a;
g:=NormalForm(f*A-(1/2)*P*x+(1/4)*P*P,G);

printf"Hypersurface equation is 0 = - x^2 +"; g; printf"\n \n";

printf"The polynomial P is "; P; printf"\n \n";

Doing so, one discovers that the coefficient of the linear term in x is precisely T0.
Stepping the modified code obtained by replacing P := 0; with P := T0; one obtains

− x2 + zy +
1

4
T 2
0 = 0 , (A.4)

which is precisely (2.5) after base change α 7→ T 2
0

4
to a Weyl-invariant coordinate.35

Tuning a non-generic matter locus

The above procedure for D4 produces an explicit albeit generic example with a locus of
charge two, and a locus of charge one. One can also greatly simplify the polynomials f, g
by selecting nongeneric values for the deformation parameters. The choice should be

35An obvious coordinate redefinition is also needed.
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dictated by the logic explained in section 4. If one wants to tune a specific matter locus
on the fourfold base of the sixfold, corresponding to having only a certain two-sphere
(or linear combination of spheres) acquire non-zero volume in the homology of the ALE
space, one should impose those conditions at the level of the deformation parameters
inside the above code. One should simply remember to lower the dimension of

Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6)

(6 in the generic case), if one fixes a relation among some of the Ti’s.

Examples with higher charge

The above code can easily be adapted to all universal flopping algebras of length ` =

3, . . . , 6 (with ` = 2 corresponding to the D4 case). First off, one should modify the line

Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6)

to include up to T7 (thereby appropriately modifying the dimension of Kt). Then
one should input in B the correct relations and gauge invariants, taken from (6.5a),
(6.5b), (6.5c), (6.5d) for E6, E7, E

(5)
8 , E

(6)
8 (i.e. charge three, four, five, six) respectively.

Moreover, for high charge examples it might be necessary to increase the number of
parameters in the calculation of a Gröbner basis for B, by simply replacing the 6 in
the line below by some higher number (starting from 8, and gradually increasing it as
needed):

G:=GroebnerBasis(B,6);

Finally, one should input one polynomial g per arrow in the definition of the gauge
invariant x = a · · ·A : C→ C as quiver path, with g1 and glast corresponding to a and
A respectively. E.g. for E6 we have x = ac2bcA, hence we should input the correct f
and

g1:=NormalForm(f,G);
g2:=NormalForm(g1*c,G);
g3:=NormalForm(g2*c,G);
g4:=NormalForm(g3*b,G);
g5:=NormalForm(g4*c,G);
g6:=NormalForm(g5*A-(1/2)*P*x+(1/4)*P*P,G);

and modify the last call of the printf function accordingly:
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length ` −x2 + f(z, t, Ti) 2` generators
1 (A.4) a , b
2 (3.12) a , ab , ac , abc
3 −x2 + z2x+ y3 + . . . a , ac , ac2 , acb , ac2b , ac2bc
4 −x2 + y3 − yz3 + . . . a , ac , ac2 , ac3 , ac2b , ac3b , ac3bc , ac3bc2

5 −x2 + y3 + z5 + . . . a , ac , ac2 , acb , ac3 , ac2b ,
ac3b , ac3bc , ac3b2 , ac3bc2

6 −x2 + y3 − z5 + . . . a , ac , ac2 , ac2b , ac2bc ,
ac2bc2 , ac2bcb , ac2bc2b , ac2bc2bc ,
ac2bc2bcb , ac2bc2bcbc , ac2bc2bcbc2

Table 1: The set of 2` paths C→ C` generating the deformation algebra. The ellipsis in the
cases ` = 3, 4, 5, 6 denotes the versal deformation in terms of the Ti.

printf"Hypersurface equation is 0 = - x^2 + "; g6; printf"\n \n";

Finally, one can always bring the generic high-charge case into elliptic form, by duly
repeating the steps explained for D4. The case of E6 is particularly tractable, and
a simple specialization of the length-three universal flop produces e.g. the following
(local) Weierstrass model [38, Ex. 5.3]:

x2 = −y3 − 3

4
y2T 2 +

(
3

2
Tz2 + 4T 3

)
y −

(
3T 5 + (T 2 + T 3)z2 +

1

4
z4
)
⊂ C4

(y,x,T,z) .

(A.5)
The explicit U(1) generator can be found via the method we explain in the next sub-
section. It would be interesting to see whether the charge-three (and four) models
of [16, 17] fit into this analysis.36

Producing matrix factorizations

Once the deformation algebra has been input as explained in the previous section, one
can also compute a matrix factorization of the universal flop of length `. To do that,
one simply needs to know a set of 2` paths from the left C vertex to the right C` one,
which generate the algebra. They are given in table 1 for each `.37 Then one simply
modifies the code as follows:

1. remove x from the definition of F and decrease number of generators of the latter
by one;

36Notice that other examples of flops of length three have already appeared in the mathematics
literature [77–79]. They should all be specializations of the universal length-three flop.

37The table is taken from [38, App. A.3].
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2. remove the relation x− a · · · A from the definition of B;

3. remove (or comment out) the calculation of the polynomials gi (by adding // in
front of them); alternatively, replace x inside glast with a · · · A;

4. redefine the shifted x (i.e. x− 1
2
P ) by adding the line

newx:=(a*...*A-(1/2)*P);

5. finally, add the following piece of code:

L:=[a, a*b, a*c, a*b*c];

printf"The matrix factorization is C:= \n {\n "; for M in L do
printf"{ ";
for N in L do
m:=NormalForm(newx*M,G);
printf"%o", MonomialCoefficient(m,N); if N ne L[#L] then printf", ";
end if;
end for; printf"}";
if M ne L[#L] then printf", ";
end if; printf" \n ";
end for; printf"} \n \n";

The output is a 2` × 2` matrix C such that (C,C) is an MF of the hypersurface with
the −x2 term removed, i.e. (C + x12`)(C − x12`) is an MF of −x2 + f(z, t, Ti), where f
depends on the choice of ADE surface, and is given in table 1. (In the above example
we give the basis L of 2` = 4 paths for the D4 case.)

Once an MF of the versally deformed ADE surface (i.e. universal flop of length `)
is produced, one can apply the argument explained in section 5.3 to construct a family
of non-Cartier divisors.

The most general threefold models with charges three through six

In the ancillary Mathematica notebook included with the arXiv submission,38 we have
written the output of the outlined calculation, for the cases E6, E7, E

(5)
8 , E

(6)
8 (charges

three, four, five, six respectively) with all deformation parameters turned on. The
38Which can be downloaded from this page.
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outputs are in the form of a (rather lengthy) hypersurface equation directly provided
in elliptic form; upon taking z and the Ti’s to be sections of appropriate line bundles
over a twofold base (satisfying relations), these should be regarded as the first examples
of F-theory threefold compactifications realizing matter of charges three through six
explicitly (except for the models which already appeared in [16,17]).
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