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A computational model of feature formation, event prediction, and attention
switching

Eman Awad and Fintan Costello
School of Computer Science,
University College Dublin,

Belfield, Dublin 6, (eman.awad@ucdconnect.ie,fintan.costello@ucd.ie)

Abstract

In this paper we present a model of three central aspects of
probabilistic cognition: event prediction, feature formation,
and attention allocation. While most models of probabilistic
reasoning take a parameter estimation and error minimisation
approach (sometimes referred to as ‘predictive coding’, and of-
ten described in terms of Bayesian updating), our model takes
a contrasting frequentist hypothesis-testing approach. This
choice is motivated by a series of recent results suggesting that
people’s probabilistic reasoning follows frequentist probability
theory. In simulation tests we demonstrate that this frequentist
model, in which predictive features are formed by a process of
null hypothesis significance testing, can give a successful ac-
count of event prediction and attentional switching behaviour.

Introduction
There are, broadly speaking, two approaches to statistical rea-
soning: a ‘parameter estimation’ approach (associated pri-
marily with Bayesian statistics), where some form of genera-
tive model is used to predict data and the estimation process
involves adjusting parameters of this model so as to reduce er-
rors in prediction; and a ‘hypothesis testing’ approach (asso-
ciated primarily with frequentist statistics) where a decision is
made to reject a hypothesis (that is, to reject a possible gener-
ative model) when the probability of the observed data under
that model is less than some significance level. Most current
models of probabilistic cognition, learning and attention take
the parameter estimation and error minimisation approach,
sometimes referred to as ‘predictive coding’; this approach
is naturally described in terms of Bayesian priors (values of
generative model parameters) which are ‘updated’ by expe-
rience, to produce more accurate posterior estimates of those
parameters (see e.g. Clark, 2013; Griffiths and Tenenbaum,
2006; Tenenbaum et al., 2011; Miller et al., 1995).

In this paper we present a model of probabilistic cogni-
tion based on frequentist hypothesis-testing rather than pa-
rameter estimation and error minimisation. We apply this
model to the processes of probabilistic learning, feature for-
mation, event prediction, and attention. There are three mo-
tivations for this frequentist hypothesis-testing approach to
probabilistic cognition. First, the contrasting parameter es-
timation and hypothesis-testing approaches to statistical rea-
soning are known to have different strengths and weaknesses:
modelling probabilistic cognition via frequentist hypothesis-
testing is worthwhile because it allows us to see this type of
cognition in a new light.

Second, the hypothesis-testing approach applies very natu-
rally to one core aspect of probabilistic cognition; that of de-
cision making. Decision making is central to feature forma-
tion (given observed pattern of co-occurrence between events,
how do we decide whether to treat that pattern as represent-
ing a single complex event, and so form a feature represent-
ing that event?), event prediction (given estimated probabil-
ities of various future events or outcomes, how do we de-
cide which event to predict?) and attention (given multiple
sources of information, how do we decide whether to direct
our attention to one source rather than another?) The frequen-
tist hypothesis-testing approach was specifically developed to
guide decision-making on the basis of data (see e.g. Fisher,
1937), and so provides a natural normative framework for
modelling decision making in prediction, feature formation
and attention allocation.

Finally, this model is motivated by recent evidence sug-
gesting that people’s probabilistic reasoning processes follow
the requirements of frequentist probability theory (Costello
and Watts, 2018a, 2016), and that a range of well-known bi-
ases in probabilistic reasoning can be explained as a conse-
quence of regression produced by random variation or noise
in normatively correct frequentist reasoning (Costello and
Watts, 2014, 2018b). The model described here represents a
computational implementation of this account; in this model
random variation arises simply as a consequence of sampling.

We present this model incrementally, focusing first on pre-
diction, feature formation and probabilistic learning for a
single ‘stream’ of input (that is, with fixed attention). We
then generalise to learning, feature formation and prediction
across multiple simultaneous streams of input (where atten-
tion moves from stream to stream). We test the frequentist ap-
proach by comparing the effectiveness of an attention switch-
ing mechanism derived from frequentist hypothesis testing
against the effectiveness of a switching mechanism based on
error minimisation (as used in predictive coding), and against
a random switching baseline.

The model
At an abstract level, temporal prediction involves taking a
temporally ordered stream of categorical events or labels,
such as

A,B,S,A,B,S,A,−,S,A,−,S,−,A,B,S,A,B,A,B (1)
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and predicting the next event in the stream. Our model pre-
dicts future events in such sequences by constructing fea-
tures from observation of a given stream, identifying features
which allow statistically reliable predictions, and then com-
bining these ‘predictive features’ to give an overall predicted
probability for the next event in the stream.

Each feature in our model consists of an antecedent event
A, a consequent event S, and a time interval t between them.
Each feature also holds two counts: k, a count of the number
of times A has been followed, after time t, by S; and n, a count
of the number of times A has been followed, after time t, by
any event. Finally, each feature holds a conditional probabil-
ity P(S|A) = k/n, representing the probability of seeing the
consequent S at time t after the occurrence of the antecdent
A.

The antecedent A in a given feature may be a single event
(e.g. the label A as a predictor of the next event, in our exam-
ple in (1)), or may be a combination of events occurring over
time (e.g the consecutive labels A,B as a predictor of the next
event). Our model stores, in ‘Short Term Memory’ (STM),
the N most recent events in the stream. Our model stores,
in ‘Long Term Memory’ (LTM), a large number of simple or
complex features that have been observed, with some features
marked as ‘reliable’, meaning that there is statistically signifi-
cant evidence supporting the relationship between antecedent
A and consequent S in that feature. These reliable features are
used to make predictions about the next event in the stream.
The model has two free parameters: N, the size of short term
memory, which we set by default at 4, and c, the significance
criterion, which we set by default at c = 0.05.

Reliable features and prediction
To decide whether a given feature describes a statistically re-
liable relationship between antecedent A and consequent S,
our model follows the hypothesis-testing approach of stan-
dard frequentist probability theory. We consider two possible
cases: one where the antecedent event is a single ‘atomic’
event; and one where the antecedent is a complex or compos-
ite event, made up of multiple subevents.

In the case of a single event as antecedent A, we have two
hypotheses: a null hypothesis (that there is no relationship
between A and S; under this hypothesis the probability getting
S after A is simply the base probability of event S, P(S)) and
an alternative hypothesis (that there is a reliable relationship
between A and S; under this hypothesis the probability seeing
S after A is given by P(S|A)). The probability of obtaining
k instances of S after A in a sample of n occurrences of A,
assuming that P(A) = p, is given by the binomial

Bin(k,x, p) =
(

n
k

)
pk(1− p)n−k (2)

This means that if Bin(k,n,P(S)) < c, for some critical sig-
nificance level c, then we can reject the null hypothesis that
P(A) = P(S), and can instead accept the alternative hypothe-
sis, that there is a reliable predictive relationship between A

and S. When Bin(k,n,P(S)) < c the model thus marks the
feature linking A with S after time t as a statistically reliable
predictive feature.

We now consider the situation where we have a complex
event made up of sub-events A and B (each of which may
itself be made up of further subevents), and where this com-
plex event AthenB is itself an antecedent of our consequent
S. Here we take k to represent the number of times conse-
quent S has occurred at time t after antecedent AthenB in the
observed time series, and n to represent the number of times
any event at all has occurred at time t after antecedent AthenB
in the series. In this situation we test against three possible
‘null hypotheses’: that P(S|AthenB) = P(S), as before; that
P(S) = P(S|A) (that the probability getting S after AthenB is
simply the probability of getting S after A, P(S|A)); and that
P(S) = P(S|B) (that the probability getting S after AthenB is
simply the probability of getting S after A, P(S|B)). These
three ‘null hypotheses’ are tested using the binomial as be-
fore. If all three tests are significant, the model concludes that
the complex feature AthenB is itself a distinct, statistically re-
liable predictor of the occurrence of S: given that AthenB has
occurred, the probability of S is given by P(S|AthenB) (rather
than by P(S),P(S|A) or P(S|B)). By contrast, if there is no
additional relationship between the feature AthenB and S be-
yond that given by A, B, and the base rate P(S) then we can
say that A and B (or some combination of their subevents) are
independent predictors of the consequence S.

Using this hypothesis-testing procedure our model iden-
tifies, for a given sequence of events, the set of indepen-
dent, statistically reliable, features occurring in that sequence
which predict a given event S at the next timestep. Following
standard frequentist probability theory the overall predicted
probability of S is calculated by ‘ORing’ these independent
predictions

Pr(S|A1, . . . ,An) = 1− ∏
i=1..n

(1−P(S|Ai)) (3)

to give an overall predicted probability for S occurring next
in the sequence.

An example
We can give an example of the model’s operation for our ex-
ample sequence in (1). In that series there are 20 events in to-
tal, of which 5 are S (so P(S)= 0.25). There are 3 occurrences
of B followed one step later by S, and 1 occurrence of B fol-
lowed one step later by a different event. To test the hypothe-
sis that the occurrence of B predicts the occurrence of S at the
next time step, we calculate the probability of seeing 4 occur-
rences of B, 3 of which are followed by S, if S was occurring
at its base rate probability of 0.25: Bin(3,4,0.25) = 0.0469.
Since this probability is less than our significance criterion
of c = 0.05 we conclude that there is a statistically reliable
relationship between B and S. Similarly, there are 5 occur-
rences of A followed two steps later by S, and 1 occurrence of
A followed two steps later by a different event. To test the hy-
pothesis that the occurrence of A predicts the occurrence of S
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two steps later, we calculate the probability of seeing 6 occur-
rences of A, 5 of which are followed by S, if S was occurring
at its base rate probability of 0.25: Bin(5,6,0.25) = 0.0004.
This probability is also less than our significance criterion of
0.05 and we conclude that there is a statistically reliable rela-
tionship between A and S.

We also consider the complex predictive feature AthenB.
There are 3 occurrences of AthenB followed one step later
by S, and 1 occurrence of AthenB followed one step later
by a different event. Since we’ve seen 4 occurrences of B,
3 of which were immediately followed by S, we estimate
P(S|B) = 3/4 = 0.75. Testing against the hypothesis that
the observed relationship between AthenB and S is explained
simply be the presence of B we calculate the binomial prob-
ability Bin(3,4,0.75) = 0.42, and we see that there is no evi-
dence for an additional relationship between the AthenB and
S beyond that given by B. Since we’ve seen 5 occurrences
of A, 4 of which were immediately followed by S, we esti-
mate P(S|A) = 4/5 = 0.8, and since Bin(3,4,0.8) = 0.41 we
similarly see that there is no evidence for an additional rela-
tionship between the AthenB and S beyond that given by A.
We can thus conclude that the complex event AthenB is not a
reliable predictor of S; instead, the two simple events A and
B are independent predictors of the occurrence of S, with A
predicting S after 2 steps with P(S|A) = 0.8, and B predicting
S after 1 step with P(S|B) = 0.75. If events A,B have just
occurred, the probability of S occurring next is obtained by
ORing the predictions of these two statistically reliable fea-
tures, giving

P(S) = 1−(1−P(S|A))(1−P(S|B)) = 1−0.2×0.25 = 0.95

as the predicted probability of S occurring at the next timestep
in the stream shown in (1).

Switching between multiple streams
In this section we apply this model to feature formation and
prediction across multiple different streams of input. We as-
sume a single Long Term Memory (LTM), as before. To deal
with multiple streams of input we assume multiple separate
STM stores, one for each stream, and with each STM storing
the last N events that have occurred in that stream. The model
uses the statistically reliable features in LTM to calculate pre-
dicted probabilities for the next event in each input stream.
The predicted next event for input stream i is calculated by
finding statistically reliable predictive features in LTM whose
antecedent event has occurred in ST Mi (that is, in the store of
recent events from stream i), and then combining the predic-
tions from those features as described above.

Prediction, for each stream, happens in parallel and is com-
putationally cheap (there are typically very few statistically
reliable predictive features whose antecedents are present in
a given STM). Learning and feature formation, however, are
computationally ‘expensive’ and so take place only for one
particular stream: the stream that is the current focus of at-
tention. The model forms new features, updates antecedent

and consequent occurrence counts, and identifies statistically
reliable predictive features just as before, but only for this fo-
cal stream.

As the overall goal of the model is to accurately predict
its environment (to accurately predict event occurrence in all
streams), the model must occasionally switch its focus of at-
tention from one stream to another. Attentional switching is
a form of decision making: the model must decide to switch
attention away from one stream of input (and so cease any
predictive learning from events in that stream) and towards
another stream of input (so beginning the process of learn-
ing from events in that new stream). The overall goal of the
model is to form statistically reliable predictive features; sat-
isfaction of this goal requires a decision process where atten-
tion is switched towards streams where statistically reliable
predictive features are more likely to be formed, and away
from streams where such reliable features are less likely to
be formed. As before, frequentist hypothesis testing gives a
natural and normatively correct way to make such switching
decisions.

Suppose we are considering forming a reliable feature
ApredictsS, and have observed k instances of A followed by S,
out of n occurrences of A overall. This feature will be judged
reliable when the observed pattern of co-occurrence between
A and S has a low probability of occurrence under the null hy-
pothesis that A does not predict S (when bin(k,n,P(S))< c).
This means that the lower the value of this binomial expres-
sion bin(k,n,P(S)), the more likely it is that the null hypothe-
sis is false and the there is some reliable relationship between
A and S. In other words, if we have we have some feature
for which bin(k,n, p) > c (some feature which is not yet re-
liable), then the probability that this feature will become re-
liable is proportional to 1− bin(k,n, p). More generally, if a
given stream i contains a number of not-yet-reliable features
with counts k j and n j and null hypothesis values p j, then the
overall probability of forming a reliable feature in that stream
is obtained by ORing the individual probabilities of each of
these features becoming reliable, as given in the expression

F(i) = 1− ∑
j= not yet
reliable

feature in
stream i

bin(k j,n j, p j) (4)

The greater the value of this expression F(i) for a given
stream i, the greater the probability that switching atten-
tion to that stream will lead to the formation of a new reli-
able predictive feature. The model uses these values F(i) to
guide switching; at each timestep the model calculates F(i),
the probability of constructing a new reliable feature, for all
streams i including the current stream x, and identifies the
stream max with the highest value. If F(max)− F(x) > s,
where s is a switching decision criterion (if the chance of
forming a new feature in stream max is s greater than the
chance of forming a new feature in the current stream) then
the model switches attention to stream max; otherwise atten-
tion remains in the current stream.
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Testing the Model
We test our model via Markov Chain Monte Carlo simulation,
as follows.

Any process producing a series of events can be repre-
sented by an nth order Markov chain (for some value of n).
Such chains thus represent realistic generative models of se-
quential event occurrence. For each stream of information
in our simulation, we construct a generative n-th Markov
chain with m = 4 (4 distinct categorical events) and n = 4
( the current state consists of the last 4 events). There are
44 = 256 distinct states in this chain, each with 4 transition
probabilities. For each state these 4 transition probabilities
are assigned random values, normalised so their sum for that
state equals 1. Each stream thus represents a (randomly con-
structed) Markov chain process.

We use the Markov chain to generate a large sequence of
categorical events from that stream. We first pick an 4 initial
events at random, representing the initial state of the Markov
Chain. We identify the 4 transition probabilities associated
with that state, and choose one transition (one new event)
at random, proportional to its transition probability from the
current state in the Markov Chain. The selected event is
added to our sequence of generated events. The new state of
our Markov model now consists of the 4 most recent events
(three previous events and the event that was just added to the
series), and the cycle repeats.

The events for each stream are fed in parallel to our model,
which forms statistically reliable predictive features, makes
predictions for the next event to occur at each time step in
each stream, and switches attention between streams as de-
scribed above.

After an initial training phase we continue running the
model and the Markov Chain generators for an additional
test phase. We gather, at each time step of this phase, the
model’s predicted probability for each event in each stream,
and whether or not that event actually occurred. We assess the
model by gathering together all cases where the model pre-
dicts that an event will occur with probability in some range
R. If the model is accurate, the proportion of those predicted
events that did actually occur should be in or near the range
R. For example: we gather together all cases where the model
predicted some event with probability in the range 0.1−0.15.
If the model’s predictions are accurate, then the predicted
event should have actually occurred around 10%− 15% of
the time; the probability (or proportion) of actual occurrence
of the predicted event should be close to the range 0.1−0.15.

Test 1: Learning from a single stream
Table 1 shows results obtained when running the model with
a single stream of input (no switching between streams), for a
5000 timestep training phase (during which the model formed
predictive features) followed by a 5000 timestep test phase
(during which we gathered the model’s predicted probabili-
ties for the next event, at each timestep). This table gives the
proportion of times the model’s predicted event occurred, for

Table 1: This table shows the number of times our model
predicted that an event would occur with a probability that fell
into a given range R (column 2), and of those predictions, the
number of times when the predicted event actually occurred
(column 3). If the model is making accurate predictions, the
proportion of occurrence of the predicted event (the observed
probability, column 4) should follow the range value R. The
two values are highly correlated (r = 0.99) indicating that the
model is predicting event probabilities accurately.

Predicted
probability

range R

Number of
predictions

in R

Predicted
event

occurred

Observed
probability
of predicted

event

0.05 - 0.10 1393 193 0.14
0.10 - 0.15 2268 401 0.18
0.15 - 0.20 2600 516 0.19
0.20 - 0.25 3016 6463 0.21
0.25 - 0.30 3901 1094 0.28
0.30 - 0.35 3341 1005 0.3
0.35 - 0.40 1806 597 0.33
0.40 - 0.45 788 272 0.35
0.45 - 0.50 307 117 0.38
0.50 - 0.55 171 64 0.47

correlation with probability range R 0.99

prediction ranges from 0.05− 0.10 to 0.55− 0.60. As the
table demonstrates, the model’s predicted probabilities corre-
sponded closely with the actual probability (or proportion) of
occurrence of the predicted event.

As Table 1 also demonstrates, there is regression in the
model’s predictions: for low predicted probability ranges, ob-
served event probabilities tend to be significantly higher than
the probability range, while for high predicted probability
ranges, observed event probabilities tend to be significantly
lower than the probability range. This pattern of regression
in turn implies that the models predicted probabilities are re-
gressive towards the center of the probability scale, relative
to true event probabilities Erev et al. (1994). This pattern of
regression is just as assumed in Costello & Watts frequentist
account of probabilistic reasoning (Costello and Watts, 2014,
2016, 2018a,b). This model thus provides a mechanistic im-
plementation of that account, in which regression arises as a
consequence of random sampling variation.

Test 2: Learning from a multiple streams
To test the hypothesis-testing model of switching given
above, we test the model in the same Random Markov chain
regime, but with 5 parallel streams of input, each with its own
randomly initialised Markov Chain generator. Specifically,
we compare learning under this model against learning under
random switching, and learning under an alternative ‘predic-
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Table 2: Average observed probability of occurrence of pre-
dicted event for prediction range R, across all streams. Ob-
served probabilities are calculated as in Table 1. Data is given
for each switching mechanism, running the model for 5000
times/steps in each case. Both the ‘Switch to max error’ and
the ‘switch to form reliable features’ switching methods gave
predictions closely correlated with observed probability.

Observed probability of predicted
event for predictions in range R

(by Switching method)

Range R Random
switching

Switch to
max. error

Form reliable
features

0.05 - 0.10 0.17 0.00 0.14
0.10 - 0.15 0.18 0.16 0.17
0.15 - 0.20 0.17 0.17 0.19
0.20 - 0.25 0.17 0.19 0.21
0.25 - 0.30 0.2 0.22 0.25
0.30 - 0.35 0.34 0.32 0.3
0.35 - 0.40 0.41 0.39 0.34
0.40 - 0.45 0.48 0.45 0.39
0.45 - 0.50 0.56 0.49 0.39
0.50 - 0.55 0.49 0.61 0.42

correlation 0.90 0.98 0.99

tive coding’ model of attentional switching, where we switch
attention to the stream where errors in event prediction are
highest.

Random switching As a baseline for comparison, we run
the model with a fixed-length random-choice method for
switching between streams. Under this switching method,
the model will remain in a certain stream for 100 timesteps
at a stretch; after each sequence of 100 timesteps has passed,
the model will switch to a randomly selected other stream.
Given that the learning model performs well in learning to
predict events in a single stream, we expect that the model
will perform relatively well in predicting events across multi-
ple streams under this random switching regime.

Switching to minimise predictive error As an alternative
for comparison, we run the model with a switching method
designed to minimise predictive error. In the predictive cod-
ing view, a learning model makes predictions which are com-
pared with outcomes: attention is driven towards locations
where those predictions are incorrect (and so more learning
is required) and away from locations where predictions are
accurate (and so less learning is needed). In our model, pre-
dictive error in a given stream at a given time is simply equal
to the predicted probability of the event that actually occurred
in that time: if S is the event that actually occurs and the
model’s prediction probability for S was high, then there is
little predictive error; if S occurs and the model’s prediction

Table 3: Average correlation between observed and predicted
event probability, obtained after learning with each switching
method, for runs of different length (500,1000,5000,10000
and 50000 times/steps). Both the ‘Switch to max error’ and
the ‘switch to form reliable features’ switching methods gave
predictions that were more closely correlated with observed
even occurrence rates, with the ‘switch to form reliable fea-
tures’ approach giving the highest average correlation be-
tween observed and predicted probability.

Correlation between observed and
predicted probability

(by Switching method)

Run size
Random
switching

Switch to
max. error

Form reliable
features

500 0.85 0.96 0.88
1000 0.89 0.97 0.96
5000 0.9 0.98 0.99

10000 0.9 0.98 0.99
50000 0.9 0.96 0.99

probability of S was low, there is significant predictive error.
To implement a switching mechanism based on predictive

error, we give a method which calculates, for each stream
i, the average predicted probability of the last N events that
occurred in this stream. The lower this average, the more
prediction error in stream i. Letting G(i) be equal to 1 mi-
nus the average prediction probability for stream i, the model
uses a decision criterion s to guide switching; at each timestep
the model calculates G(i) for all streams i including the cur-
rent stream x, and identifies the stream max with the highest
value. If Gmax−G(x) > s (if prediction error in stream max
is s greater than that in the current stream) then the model
switches attention to stream max; otherwise attention remains
in the current stream.

Results
We ran the model separately with each of the three different
switching mechanisms described above, and with different
number of training and test timesteps (500,1000,5000,10000
and 50000 timesteps: in each case the training phase was the
same length as the test phase). As before, we grouped the
model’s predictive probabilities into a series of ‘buckets’ or
ranges R (so one bucket would hold all cases where the model
predicted some event with a probability between 0.05 and 0.1,
another would hold all cases where the model predicted some
event with a probability between 0.1 and 0.15, and so on). For
each bucket we counted the number of times the predicted
event actually occurred. If the model is accurate, the pro-
portion of those predicted events that did actually occur (the
observed probability of occurrence of predicted events), for a
given range R should be in or near the range R (the predicted
probability for those events).
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Table 2 shows the results of this analysis of model predic-
tion for the 5000 timestep run with each of the three switching
methods. This table gives the observed probability of events
whose predicted probability fell in range R, in runs of the
model with each of the 3 possible switching methods. The
observed probabilities shown here are averages across predic-
tions made in all 5 parallel streams of input, in a single run
of the model (observed probabilities in each stream closely
follow the pattern seen here, and closely follow the pattern
seen in Table 1). As this table shows, there was a reliable
correlation between the range in which the model predicted
an event will occur and the actual rate or ratio of occurrence
of that event, for all switching methods. This is expected:
as we saw in the earlier ‘single-stream’ simulation tests, the
model does well in learning to predict events accurately from
observed event sequences, and so we would expect the model
to learn to predict all streams relatively well no matter what
attentional switching mechanism was being used.

The table also shows that both the ‘switch to form reli-
able features’ and the ‘switch to maximum error’ methods
give results that matched observed probabilities much more
closely than those given by the ‘random switching’ mecha-
nism. These results demonstrate the contribution that effec-
tive attentional switching can make to prediction accuracy.

Table 3 shows the correlation between model predicted
probabilities and observed event probabilities for each
switching method, across increasing training and test time.
As this table shows, correlation between predicted and ob-
served probabilities increased with learning to some degree
for all switching methods, but increased to very high correla-
tion values for both the ‘switch to max error’ and the ‘switch
to form reliable features’ methods. Taken together, these re-
sults demonstrate that this hypothesis-testing model forms
features which reliably predict future events, and switches at-
tention in a way that maximises formation of such features.

Conclusions
We have described a computational model of prediction, fea-
ture formation, and attentional switching. This model is in-
teresting because it is based on the frequentist, hypothesis-
testing approach to statistical reasoning, as opposed to the
parameter-estimation approach currently popular in models
of these cognitive processes. This model represents a compu-
tational implementation of a general account of probabilistic
reasoning, also based on frequentist probability (Costello and
Watts, 2014, 2016, 2018a). That account sees human proba-
bilistic reasoning as being based on normatively correct pro-
cesses, but subject to random variation or ‘noise’: that noise
has systematic regressive effects, producing a range of bi-
ases in people’s probabilistic judgement. The computational
model implemented here demonstrates just the pattern of re-
gression assumed in that more general account, and so inher-
its its account for those biases.

The frequentist, hypothesis-testing approach described
here may usefully address two problems with the standard
parameter-estimation approach to probabilistic prediction.

These problems arise because the Bayesian approach to learn-
ing and prediction often require the specification of initial
priors, in two separate ways. First, such models require ini-
tial assumptions as to the form of the generative model being
used to predict data (assumptions which specify which fea-
tures are ‘available’ for use in prediction, for example, and
which features are not). The hypothesis-testing approach de-
scribed here in some ways avoids this requirement, by pro-
viding a mechanism whereby predictive features are ‘built’
out of observed event. Second, such models require assump-
tions as to the initial values of parameters in that generative
model (assumptions about the initial, prior, probability dis-
tribution associated with features in the generative model).
The hypothesis-testing approach described here avoids this
requirement also, because features are not identified as ‘re-
liable’ (and so do not contribute to predictions) until the
events making up those features have been repeatedly ob-
served (that is, until any initial ’prior’ has been made irrel-
evant by repeated experience with the events in question).
These points suggest that an integrated approach, combining
the parameter-estimation and the hypothesis-testing perspec-
tives, may prove insightful. Understanding the interplay be-
tween hypothesis testing and parameter estimation in human
probabilistic reasoning is an important aim for future work.
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