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Abstract
We hypothesize that convolutional neural networks (CNN) can be used to predict neoadjuvant chemotherapy (NAC) response using
a breast MRI tumor dataset prior to initiation of chemotherapy. An institutional review board-approved retrospective review of our
database from January 2009 to June 2016 identified 141 locally advanced breast cancer patients who (1) underwent breastMRI prior
to the initiation of NAC, (2) successfully completed adriamycin/taxane-based NAC, and (3) underwent surgical resection with
available final surgical pathology data. Patients were classified into three groups based on their NAC response confirmed on final
surgical pathology: complete (group 1), partial (group 2), and no response/progression (group 3). A total of 3107 volumetric slices of
141 tumors were evaluated. Breast tumor was identified on first T1 postcontrast dynamic images and underwent 3D segmentation.
CNN consisted of ten convolutional layers, four max-pooling layers, and dropout of 50% after a fully connected layer. Dropout,
augmentation, and L2 regularization were implemented to prevent overfitting of data. Non-linear functions were modeled by a
rectified linear unit (ReLU). Batch normalization was used between the convolutional and ReLU layers to limit drift of layer
activations during training. A three-class neoadjuvant prediction model was evaluated (group 1, group 2, or group 3). The CNN
achieved an overall accuracy of 88% in three-class prediction of neoadjuvant treatment response. Three-class prediction discrim-
inating one group from the other two was analyzed. Group 1 had a specificity of 95.1% ± 3.1%, sensitivity of 73.9% ± 4.5%, and
accuracy of 87.7% ± 0.6%. Group 2 (partial response) had a specificity of 91.6% ± 1.3%, sensitivity of 82.4% ± 2.7%, and accuracy
of 87.7% ± 0.6%. Group 3 (no response/progression) had a specificity of 93.4% ± 2.9%, sensitivity of 76.8% ± 5.7%, and accuracy
of 87.8% ± 0.6%. It is feasible for current deep CNN architectures to be trained to predict NAC treatment response using a breast
MRI dataset obtained prior to initiation of chemotherapy. Larger dataset will likely improve our prediction model.

Keywords BreastMRI . Chemotherapy treatment response . Convolutional neural network

Introduction

Neoadjuvant chemotherapy (NAC) has become a widely
used treatment approach in the management of breast

cancer. In addition to the established benefits of increasing
rates of operability and breast-conservation for locally ad-
vanced tumors, NAC provides a unique opportunity to as-
sess clinical efficacy of novel systemic combinations and
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targeted therapies in vivo within a treatment-naïve patient
population [1].

Several large randomized neoadjuvant trials have demon-
strated pathological complete response (pCR) to be a potential
surrogate marker for clinical efficacy as there is a significant
correlation between patients who achieved a pCR and im-
proved disease-free and overall survival [2, 3]. This association
varies among subtypes, with the strongest diagnostic accuracy
seen in human epidermal growth factor receptor 2 (HER2)-
positive and triple-negative breast cancer [4, 5]. While systemic
treatments delivered in the adjuvant setting require many years
of follow-up to validate a clinical benefit, pCR serves as an
attractive surrogate end point for improved long-term outcome
after only several weeks of neoadjuvant therapy [6, 7].

Advances in genomics have demonstrated breast cancer to
be a disease with a spectrum of biologically relevant molecular
subtypes. This significant disease heterogeneity poses a major
challenge in the development of novel treatments. Targeted
therapies may only be effective in a small subset of breast
cancers, which has contributed to the difficulty establishing a
therapeutic benefit in a large, heterogeneous clinical trial [8, 9].
There is potential for significant clinical benefit in streamlining
the testing of novel NAC with early response assessment and
prediction. This is the goal of the ongoing adaptive neoadjuvant
I-SPY 2 (Investigation of Serial Studies to Predict Your
Therapeutic Response with Imaging and Molecular Analysis
2) trials, which have already Bgraduated^ neratinib in HER2
positive disease and veliparib–carboplatin in triple-negative dis-
ease [10, 11]. Timely identification of responders to therapy
will reduce the time, cost, and patient numbers needed to iden-
tify new beneficial therapies. Furthermore, early identification
of non-responders is crucial in minimizing the potential toxicity
of ineffective treatments and the delay of further exploration
into potential alternative preoperative therapy [12].

Quantitative magnetic resonance imaging (MRI) has
emerged as a powerful imaging modality in neoadjuvant treat-
ment response assessment and identification of potential
imaging-based biomarkers with successful incorporation into
the clinical trial setting [13–16]. Recent approaches have cor-
related changes in specific morphologic and kinetic parame-
ters between a baseline and interval MRI after the initiation of
chemotherapy, as early as after the first cycle, to predict treat-
ment response and pCR. Further integration of clinically rel-
evant mathematical models to account for biologic features of
tumor growth and treatment response has enhanced the pre-
dictive accuracy of these methods [17, 18]. The vast majority
of current models in early-response assessment depend on
interval imaging after the initiation of therapy, without the
ability to successfully determine a priori treatment response
or pCR, prior to the initiation of treatment given the challenges
of tumor heterogeneity [13–18].

Deep learning through convolutional neural networks
(CNN) has demonstrated strong performance in various image

classification tasks in recent years with a growing number of
applications [19]. Deep learning methods allow a machine to
extract high-level information from raw input images using
several non-linear modules to amplify important features for
image discrimination and classification. Machine learning
may be further supervised using adjustable parameters to in-
tricately correlate specific inputs and outputs.

The purpose of this study is to develop a novel CNN to
predict NAC response using a baseline breast MRI tumor
dataset and pathological confirmation of treatment response.

Materials and Methods

Patient Selection and Eligibility

A Health Insurance Portability and Accountability Act com-
pliant, institutional review board approved, retrospective re-
view of our database identified 141 patients with the diagnosis
of breast cancer between January 1, 2005 and June 1, 2016.
All patients met the following criteria: (1) underwent a staging
breast MRI prior to the initiation of therapy, (2) received
adriamycin-based and/or taxane-based neoadjuvant chemo-
therapy with additional HER2 directed therapy (trastuzumab/
pertuzumab) in patients with HER2 positive tumor, and (3)
successfully underwent surgical resection of their primary
breast tumor with appropriate lymph node sampling.

Pathologic Analysis

Data on tumor pathologic characteristics were obtained from
the original pathology reports of the core biopsy specimen.
Breast tumor subtype was determined based on immunohisto-
chemical (IHC) staining of the estrogen receptor (ER) and
progesterone receptor (PR) interpreted according to the
American Society of Clinical Oncology and College of
American Pathologists Guidelines. Tumors were considered
receptor positive if either ER or PR demonstrated ≥ 1% posi-
tive staining [20]. Tumors were considered HER2 positive if
they were 3+ by immunohistochemistry or demonstrated gene
amplification with a ratio of HER2/CEP17 ≥ 2 by in situ hy-
bridization [21]. Breast tumor subtypes were defined as fol-
lows: Luminal A (ER/PR positive, HER2 negative), luminal B
(ER/PR positive, HER2 positive); HER2 positive (ER/PR
negative, HER2 positive), and triple negative or basal-like
(ER/PR and HER2 negative). Clinical and pathologic staging
was determined based on the American Joint Committee on
Cancer TNM Staging Manual, 7th edition. Patients were clas-
sified into three groups based on their NAC response con-
firmed on final surgical pathology: pathologic complete re-
sponse (group 1), partial response (group 2), and no
response/progression (group 3). pCR was defined as no
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residual invasive disease in the breast or lymph nodes on
surgical pathology specimens (ypT0/Tis ypN0).

MRI Methods

MRI was performed on a 1.5-T or 3.0-T commercially avail-
able system (Signa Excite, GE Healthcare) using an eight-
channel breast array coil. A bilateral sagittal T1-weighted
fat-suppressed fast spoiled gradient-echo sequence (17/2.4;
flip angle, 35°; bandwidth, 31–25 Hz) was then performed
before and after a rapid bolus injection (gadobenate
dimeglumine/Multihance; Bracco Imaging; 0.1 mmol/kg) de-
livered through an IV catheter. Image acquisition started after
contrast material injection and was obtained consecutively
with each acquisition time of 120 s. Section thickness was
2–3 mm using a matrix of 256 × 192 and a field of view of
18–22 cm. Frequency was in the antero-posterior direction.

Computer-Based Image Analysis: Image
Preprocessing

For each breast MRI, tumor was identified on first T1
postcontrast dynamic images (Figs. 1, 2, and 3). The entire
breast volume underwent 3D segmentation by a breast fellow-
ship trained radiologist with 8 years of experience using an
open source software platform 3D Slicer [22]. A total of 3107
volumetric slices for 141 tumors were collected. The data was
normalized by subtracting the mean intensity value of each
slice and dividing by the standard deviation of each slice. A
64 × 64 voxel crop of the segmented tumor was then fed into
the convolution neural network (Fig. 5). An average of 22
slices of volumetric data per tumor was used, with a threshold
of 75 voxels per slice. At the time of training, real-time data
augmentation was performed to limit overfitting of data.
Using random affine transformation, additional images were
created by modifying the images: randomly rotate images
(range 10°), horizontal flip, shear (range 0.1), and zoom
(range 0.1) the images.

Convolution Neural Network

The convolution neural network was implemented using the
keras toolbox (https://github.com/fchollet/keras) with
tensorflow backend in python. The models were run on a
linux workstation utilizing NVIDIA GTX 1080ti GPUs.

CNN Architecture

The architecture follows the general structure of the VGG 16
network. The overall network architecture is shown in Fig. 4.
In this architecture, a block consists of multiple convolution
layers of 3 × 3 convolution kernels that have progressively
increasing feature channels in deeper layers. The convolution

layers are followed by the non-linear rectified linear unit acti-
vation function (RELU [23]). Before each increase of feature
channels, a 2 × 2 max pooling layer is applied to reduce the

Fig. 1 a–cExamples of T1 postcontrast breastMRI images of tumors that
underwent CNN evaluation in our study from patients with complete
pathologic response
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amount of parameters and computation in the network, serv-
ing the double purpose of controlling overfitting. Four of these
blocks are stacked on each other before the architecture flat-
tens out to a full connected dense layer. The fully connected

layer acts as a perceptron and is mathematically similar to a
least squares regression. Dropout of 25% is applied in the
dense layer to prevent overfitting by limiting co-adaptation
of parameters [24]. L2 regularization with a beta of 0.01 is

Fig. 2 a–cExamples of T1 postcontrast breastMRI images of tumors that
underwent CNN evaluation in our study from patients with partial
response

Fig. 3 a–cExamples of T1 postcontrast breastMRI images of tumors that
underwent CNN evaluation in our study from patients with no response/
disease progression
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used after the dense layer to place a penalty on the squared
magnitude of the kernel weights. This penalizes outlier param-
eters and in encourages generalizable parameters. This re-
duces overfitting in the model and leads to a more generaliz-
able model. A softmax classifier is used for the loss function.

CNN Training

The data was divided into 80% validation and 20% test.
The validation test set was then divided into fivefold, and
fivefold cross-validation was performed. Training from
scratch without pretrained weights was done over 100
epochs using adam optimizer with nesterov momentum at
an initial learning rate of 0.002. Each of the five models
was tested against the 20% hold out data to obtain sensi-
tivity, specificity, and accuracy. Receiver operator curves
were also calculated for each of the five models.

Results

Patient Tumor Pathology and Response

A total of 141 patients met the criteria for inclusion in this
study. Three-class neoadjuvant prediction model was evaluat-
ed for the three patient groups. The breakdown of tumor re-
sponse and molecular subtype is shown in Table 1. Group 1
consisted of 46 patients with pathologic complete response.
Group 2 consisted of 57 patients with partial response. Group
3 consisted of 38 patients with no response to progression on
chemotherapy. The molecular subtype based on IHC staining
included the following: 61 luminal A, 39 luminal B, 16 HER2
positive, and 25 triple negative or basal-like.

The rate of pCR is shown in Table 2, demonstrating 18%
(11/61) of the luminal A, 46% (18/39) of the luminal B group,
50% (8/16) of the HER2 positive group, and 36% (9/25) of the
triple-negative group achieved pCR. Combined luminal B,
HER2 positive, and triple-negative tumors had a significantly
higher rate of pCR compared to luminal A, with a rate of 44%
(35/80) versus 18% (11/61) respectively (p = 0.002).

The rate of no response/progression of disease is shown
in Table 3, demonstrating 43% (26/61) of the luminal A
group, 10% (4/39) of the luminal B group, 13% (2/16) of
the HER2 positive group, and 24% (6/25) of the triple-
negative group showed no treatment response or progres-
sion of disease. Luminal A tumors had a significantly
higher rate of no response/progression compared to the
other three groups, with a rate of 43% (26/61) versus
15% (12/80) respectively (p = 0.0005).

Fig. 4 CNN architecture for
neoadjuvant class prediction

Fig. 5 ROC plot for three-class prediction of NAC treatment response
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CNN Statistical Analysis

The confusion matrix (Table 4) shows the convolution neural
network predicted class of the hold out test data versus the true
class of the hold out test data. The values represent the average
number of slices over the fivefold of cross-validation plus or
minus the standard deviation. A final softmax score threshold
of 0.5 was used for classification. The CNN achieved an overall
mean accuracy of 88% (95% CI, ± 0.6%) in three-class predic-
tion of NAC treatment response on a fivefold validation accura-
cy test. The ROC plot is shown in Fig. 5. Three-class prediction
discriminating one class from the other twowas analyzed. Group
1 (complete response) had a specificity of 95.1%± 3.1%, sensi-
tivity of 73.9%± 4.5%, and accuracy of 87.7%± 0.6%. Group 2
(partial response) had a specificity of 91.6%± 1.3%, sensitivity
of 82.4%± 2.7%, and accuracy of 87.7%± 0.6%. Group 3 (no
response/progression) had a specificity of 93.4%± 2.9%, sensi-
tivity of 76.8%± 5.7%, and accuracy of 87.8%± 0.6%.

Conclusion and Discussion

Prior to initiation of therapy, the CNN algorithm used in our
study achieved an overall accuracy of 88% in predicting NAC
response in patients with locally advanced breast cancer. Our
results demonstrate that it is feasible to utilize CNN to predict
NAC response prior to initiation of therapy (Fig. 6). This
represents an improved approach to early treatment response
assessment based on a baseline breast MRI obtained prior to

the initiation of treatment and significantly improves on cur-
rent prediction methods that rely on interval imaging after the
initiation of therapy.

Although there has been significant progress inMRI to assess
therapy response, the vast majority of studies thus far depend on
interval imaging after initiation of therapy. Quantitative imaging
techniques have become an active area of research given the
limitations of qualitative tumor response assessment using the
Response Evaluation Criteria in Solid Tumors (RECIST) [25].
Quantitative methods of response assessment have examined
changes in kinetic parameters (i.e., volume transfer constant
Ktrans, exchange rate constant kep) in dynamic contrast-
enhanced MRI (DCE-MRI) [26–28], as well as morphologic
changes (three-dimensional volume, signal enhancement ratio,
tissue cellularity) using DCE-MRI, and diffusion-weightedMRI
(DW-MRI) with predictive value after one or more cycles of
therapy [14, 15, 29]. The limitations of these methods include
the often delayed morphologic-based changes that occur despite
treatment-induced biologic response that are not reflected by
imaging performed during or shortly after completion of thera-
py. By incorporating a mechanically coupled reaction–diffusion
model using patient-specific imaging data to drive a biomechan-
ical model of tumor growth, Weis et al. showed improved pre-
diction of therapy response compared to prior techniques,
achieving a sensitivity and specificity of 92% and 84%, respec-
tively [30]. While significant advances in response assessment
have been shown, the previously described studies all rely on
interval imaging after initiation of therapy.

A single prior study by Ravichandran et al. applied a CNN
to 166 breast cancer patients to predict pCR from a pretreat-
ment MRI tumor dataset [31]. They achieved an area under

Table 1 Pathologic tumor response and molecular subtype

Molecular subtype Pathologic response

Complete Partial No response/progression Total

Luminal A 11 24 26 61

Luminal B 18 17 4 39

HER2+ 8 6 2 16

Triple− 9 10 6 25

Total 46 57 38 141

Table 2 Rate of pCR per molecular subtype

Molecular subtype Pathologic response

Complete

Luminal A 11/61 18%

Luminal B 18/39 46%

HER2+ 8/16 50%

Triple− 9/25 36%

Table 3 Rate of no response/progression per molecular subtype

Molecular subtype Pathologic response

No response/progression

Luminal A 26/61 43%

Luminal B 4/39 10%

HER2+ 2/16 13%

Triple− 6/25 24%

Table 4 Convolution neural network performance confusion matrix

Predicted response

Complete Partial No response

True response Complete 160.2 ± 4.4 10.6 ± 2.9 8.6 ± 2.9

Partial 9.2 ± 4.2 219.6 ± 5.7 18.2 ± 5.4

No response 10.8 ± 4.3 19.2 ± 3.1 165 ± 6.7
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the curve (AUC) of 0.77 and an overall accuracy of 82%.
Inclusion of clinical variables improved response prediction
with an AUC of 0.85 and an accuracy of 85%. While their
study put forth a novel approach to pretreatment response
prediction, our study further advances prediction strength with
an improved overall accuracy of 88%.

Currently available clinical and pathologic data show lumi-
nal B, HER2-positive, and triple-negative breast cancer respond
best to NAC. A large meta-analysis of 30 studies including
11,695 patients investigating pCR after NAC showed average
rates of pCR were 8.3% in luminal A, 18.7% in luminal B,
38.9% in HER2 positive, and 31.1% in triple-negative breast
cancer subtypes [32]. Similarly, in our study, HER2-positive
and triple-negative tumors achieved significantly higher pCR,
compared to the luminal A subtype. While this information is
helpful, it cannot be used solely to predict who will respond to
NAC given over half of these patients do not have pCR.

In our study, only 18% of luminal A breast tumors achieved
pCR, which is consistent with previously reported poor re-
sponse to NAC in this subtype [32]. In addition, our results
show 43% of patients in this group demonstrated no treatment
response or progression of disease. In these non-responders,
there is a potential for upfront use of novel agents which may
be beneficial to the patient, while minimizing toxicity from
ineffective treatments and delaying treatment time. However,
relying on clinical data alone is not enough to predict who will
have a poor response to the current NAC regimen. Given
limitation to utilizing available clinical and pathologic data
for NAC prediction, our CNN model may have an important
clinical utility as a better predictive tool prior to initiation of
treatment not relying solely on pathologic data.

The major limitation of our study includes the small, retro-
spective single-institution nature of our experience.We success-
fully trained our machine learning algorithm to predict treat-
ment outcome in a subset of patients all treated at our institu-
tion—thus inherently selecting for various demographic and
clinical features, as well as management biases that may not
apply to a larger, more diverse patient population. In addition,
patients in this study underwent MRI imaging at different mag-
netic field strengths (1.5 or 3.0 T). However, selection bias is

likely negligible given that the choice of patients undergoing
MRI on a 1.5 or 3.0-Tmagnet was randomly determined purely
based on availability of the scanner. In addition, classifications
based on ER, PR, and HER2 status are only approximations of
the underlying genotype-based breast cancer subtype.
However, given the high cost of full gene expression profiling,
IHC staining has become a widely used and generally accepted
method of approximating true molecular subtypes. [33–35]
Other limitations include potential overfitting due to relatively
small dataset in our study. However, accepted methods were
used to limit overfitting in our study including 50% dropout,
augmentation, and L2 regularization.

Prior to initiation of NAC, it is feasible to utilize CNN to
predict response using a baseline MRI tumor dataset. A larger
dataset will likely improve our model with potential for im-
plementation into the clinical setting. Our early prediction
model of treatment response has the potential to impact clin-
ical management in patients with locally advanced breast can-
cer, including the opportunity to direct appropriate therapy in
non-responders, minimize toxicity from ineffective therapies,
and facilitate the upfront use of novel targeted treatment in the
neoadjuvant setting.
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