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Moving beyond Fine Particle Mass: High-Spatial Resolution Exposure to Source-
Resolved Atmospheric Particle Number and Chemical Mixing State
Qing Ye,1* Hugh Z. Li,1,2* Peishi Gu,1,2 Ellis S. Robinson,1,2 Joshua S. Apte,3 Ryan C. Sullivan,1,2 Allen L. Robinson,1,2
Neil M. Donahue,1 and Albert A. Presto1,2
1Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
3Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA

BACKGROUND: Most epidemiological studies address health effects of atmospheric particulate matter (PM) using mass-based measurements as expo-
sure surrogates. However, this approach ignores many critical physiochemical properties of individual atmospheric particles. These properties control
the deposition of particles in the human lung and likely their toxicity; in addition, they likely have larger spatial variability than PM mass.

OBJECTIVES: This study was designed to quantify the spatial variability in number, size, source, and chemical mixing state of individual particles in a
populous urban area. We quantified the population exposure to these detailed particle properties and compared them to mass-based exposures.

METHODS:We performed mobile sampling using an advanced single-particle mass spectrometer to measure the spatial variability of number concen-
tration of source-resolved 50–1,000 nm particles and particle mixing state in Pittsburgh, Pennsylvania. We built land-use regression (LUR) models to
estimate their spatial patterns and coupled them with demographic data to estimate population exposure.
RESULTS: Particle number concentration had a much larger spatial variability than mass concentration within the city. Freshly emitted particles from
traffic and cooking drive the variability in particle number, but mass concentrations are dominated by aged background particles composed of second-
ary materials. In addition, people exposed to elevated number concentrations of atmospheric particles are also exposed to more externally mixed
particles.

CONCLUSIONS: Our advanced measurement technique provides a new exposure picture that resolves the large intra-city spatial heterogeneity in traffic
and cooking particle number concentrations in the populous urban area. Our results provide a complementary and more detailed perspective compared
with bulk measurements of composition. In addition, given the influence of particle mixing state on properties such as particle deposition in the lung,
the large spatial gradients of chemical mixing state may significantly influence the health effects of fine PM. https://doi.org/10.1289/EHP5311

Introduction
Exposure to atmospheric particles, or particulate matter (PM), is
associated with chronic and acute health effects such as premature
death, cardiorespiratory morbidity, and increased daily hospital
admissions (e.g., Hamra et al. 2014; Pope and Dockery 2006;
Samet et al. 2000). Atmospheric particles have diverse physio-
chemical properties that determine their environmental fate and
their interaction with human bodies. Therefore, a detailed and thor-
ough characterization of individual atmospheric particles is essen-
tial to understand proper dose metrics for associated health effects
(Cassee et al. 2013).

Conventional PM exposure studies rely on bulk measurement
techniques such as collecting particles onto substrates (filters) to
determine total mass concentration (e.g., Eeftens et al. 2012;
Hamra et al. 2014; Samet et al. 2000). These types of mass meas-
urements are easy to conduct and can provide trace elemental
composition using techniques such as X-ray fluorescence (Herner
et al. 2006; Landis et al. 2001). However, they only provide bulk
data on the entire particle population. In the atmosphere, a

particle population comprises hundreds to tens of thousands of
individual particles per cubic centimeter. It is difficult to disag-
gregate bulk mass data into atmospherically relevant groups that
differ in physiochemical characteristics of individual particles.
This is an issue because particles emitted from different sources
have different properties (Li et al. 2018; Miguel et al. 1998;
Shields et al. 2007). Measuring the physiochemical differences is
critical in order to identify the sources responsible for elevated
exposure levels and health effects because emissions in populous
urban areas are highly inhomogeneous and dynamic (Fuzzi et al.
2015; Mohr et al. 2011).

Figure 1 presents a conceptual illustration of what filter data
(or other types of mass-based bulk measurements) miss for esti-
mating intra-city exposure contrasts. In the atmosphere, different
particles carry different chemical fingerprints and different sizes
depending on their sources. In high source–impact locations such
as urban centers, freshly emitted particles directly emitted by sour-
ces are more numerous than background particles, which mainly
comprise secondary species formed from atmospheric chemistry.
In downwind suburban areas with low emissions, the number con-
centration of freshly emitted particles greatly decreases. Freshly
emitted particles are often smaller than background particles that
have undergone substantial atmospheric processing, a process
which grows particles via coagulation and condensation of second-
ary materials (Seinfeld and Pandis 2016). Therefore, freshly emit-
ted particles are generally minor contributors to PM mass but may
be major contributors to particle number, depending on the loca-
tion. Mass-based measurements only provide total PM mass and
chemically resolved mass from further analysis, with no informa-
tion on individual particle characteristics such as size, number con-
centration, and composition. Individual particles are what deposit
in the lung, not the bulk particle mass collected on a filter. The
properties of these individual particles control their deposition
characteristics and likely their toxicity. Therefore, improved
knowledge of individual particle properties is likely important for
developing a mechanistic understanding of the causes of health
effects associated with PM. In addition, relying solely on mass
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concentration for human exposure estimates conceals the intra-city
spatial heterogeneity of particle populations because most of the
mass is dominated by background particles whose pollution pat-
terns are regional (Robinson et al. 2007).

Growing evidence suggests that number concentrations of
ultrafine or submicrometer particles are an important indicator
for adverse health effects (Baldauf et al. 2016; Downward et al.
2018; Ostro et al. 2015; Penttinen et al. 2001; Wittmaack 2007)
due to their large surface-to-volume ratio and their high efficiency
to deposit into the deeper respiratory system. Particle number
measurements typically use optical particle counters, which do
not resolve composition (and therefore sources). As a result, spa-
tial models [e.g., land-use regressions (LURs)] have major chal-
lenges in accurately predicting particle number concentration
(Kerckhoffs et al. 2016; Patton et al. 2015; Saraswat et al. 2013)
given that the sources of the particles are largely undetermined.
Some studies have used methods such as positive matrix factori-
zation to reveal important sources for particle number concentra-
tion (Kim et al. 2004; Sowlat et al. 2016; Squizzato et al. 2019),
but these studies often rely on a limited number of stationary sites
and therefore may not capture the intra-city spatial patterns of
population exposure.

The mixing state is a micro-scale chemical property com-
monly used to describe the heterogeneity in chemical composi-
tion of individual particles across a particle population. Bulk
measurements cannot resolve the chemical mixing state of atmos-
pheric particles. In an externally mixed population, individual
particles have different chemical compositions. This usually indi-
cates that particles are emitted by different sources, similar to the
downtown atmosphere depicted in Figure 1, where particle num-
ber concentrations are dominated by freshly emitted particles from
various sources. In contrast, in downwind areas or background
regions, each particle has more similar chemical composition

(internally mixed) due to atmospheric processing that homoge-
nizes chemical composition (Moffet et al. 2008; Robinson et al.
2016).

The mixing state may affect particle-health associations
because it changes particle properties such as water solubility and
deposition efficiency in the respiratory tract (Ching and Kajino
2018). In addition, different chemical species in individual par-
ticles may interact synergistically after being inhaled (Freedman
et al. 2019; Highwood and Kinnersley 2006; Wilson et al. 2002).
Therefore, it is likely that some of the reported inter-city hetero-
geneity in PM health effects (Franklin et al. 2007) is due to dif-
ferences in mixing state. Particle mixing state changes greatly
in areas with different emission activities (Ye et al. 2018).
However, previous studies have not characterized the variabili-
ty of exposure to particle mixing state, so it is difficult to assess
its association with PM health effects.

Advanced single-particle mass spectrometers, which measure
real-time size and chemical composition of individual particles
with high sensitivity and time resolution, have been widely used
to understand atmospheric chemical processes (Cross et al. 2007;
Sullivan and Prather 2005; Ye et al. 2018; Zelenyuk and Imre
2005). Because particle physiochemical properties are measured
on the single-particle basis, one can disaggregate the entire popu-
lation into subgroups of particles from different sources. In addi-
tion, the chemical mixing state can also be readily computed by
quantifying the varieties of species constituting individual par-
ticles and in the entire population.

In this study, we first present state-of-the-art single-particle
measurements to characterize and quantify intra-city spatial
variabilities of source-resolved particle number and chemical
mixing state in various locations in a metropolitan area. We
then build LUR models (Hoek et al. 2008) to predict their
spatial patterns. We combine the predicted concentrations with

Background particles Cooking particles Traffic particles

Downtown

Suburban

Atmosphere Mass-based 
Bulk measurements

Figure 1. A conceptual illustration of PM in the atmosphere versus traditional mass-based bulk measurements of fine particle pollution. Different colors repre-
sent particles from different sources with different chemical composition. Conventional bulk measurements provide only total mass information. Some may
provide mass-based contribution from different chemical constituents after further analysis. Such measurements are blind to particle physiochemical properties
such as number concentration, size, and chemical mixing state. Although the total mass loadings may be similar, these properties differ greatly between highly
source-active areas such as downtown and suburban areas low in emission sources in which particles have experienced greater extents of atmospheric process-
ing. These properties potentially have important health implications, but it is difficult to use bulk measurements to capture the associated exposure variability.
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U.S. Census (https://www.census.gov/geographies/reference-maps/
2010/geo/2010-census-tract-maps.html) block group data to inves-
tigate fine spatial scale population exposure to source-resolved par-
ticles with the integration of chemical mixing state. We finally
compare source-resolved particle number and mass concentrations,
suggesting the need to incorporate more physiochemical details of
PM in future health studies.

Methods

Study Area and Mobile Sampling
We conducted in situ atmospheric measurements in Pittsburgh,
Pennsylvania, and its surrounding suburban areas in Allegheny
County from August 2016 to February 2017. Pittsburgh is located
at the confluence of three rivers—the Allegheny, Ohio, and
Monongahela—with a complex topography with rivers, hills, and
valleys. The region has longstanding air pollution problems that
are caused by complex sources from local industrial activities, ve-
hicular emissions, commercial activities, transported power-plant
emissions, and other regional emissions (Wittig et al. 2004). Recent
air-quality measurements in Pittsburgh have showed that the domi-
nant anthropogenic sources of urban PM are emissions from traffic
and restaurant cooking (Gu et al. 2018; Robinson et al. 2018).

We performed highly spatially resolved sampling using an
aerosol mass spectrometer (AMS) capable of single-particle
measurements (details below) deployed on a mobile laboratory (a
gasoline-powered cargo van). Sampling was performed while
driving the laboratory through various neighborhoods in the
Pittsburgh region. The mobile laboratory contained other on-line
instruments including a NanoScan particle sizer (TSI Inc.) and
gas monitors. The sampling inlets were mounted on the roof of

the mobile lab and there was negligible self-sampling. When the
van was stationary with the engine on, we observed no increase
of signals measured by the onboard instruments. When the van
was moving, self-sampling was even less likely because of the
inlet location. More detailed information about the mobile labora-
tory can be found in Li et al. (2016).

We conducted systematic sampling in areas having large
contrasts in traffic and restaurant emissions. We drove the van
in 20 neighborhoods (Figure 2) covering upwind suburban, city
center, and downwind suburban areas with different land-use
types. Each neighborhood was visited one to six times. We vis-
ited a neighborhood only once within a sampling day and we
sampled only during weekdays free of precipitation. We also
conducted our measurements in different hours of the day (rush
hour, nonrush hour, mealtime, non-mealtime) to reduce biases
toward low or high emissions. In each visit, we endeavored to
cover all streets in the neighborhood, which took 30–60 min. In
total, we analyzed about 92,000 individual particles collected
during the mobile sampling.

In addition to mobile sampling, we also collected stationary
data when the mobile lab returned from the field and was
parked at the Carnegie Mellon University (CMU) campus,
which represents an urban background location without signifi-
cant local emissions. The CMU campus is used as a central ref-
erence site in this study. We also performed continuous
stationary sampling at the CMU campus using a scanning mo-
bility particle sizer (SMPS; TSI Inc.) to measure particle num-
ber size distribution. Data from the SMPS were used for
temporal corrections (described in the next section, “Source-
Resolved Particle Number Measurements from Single-Particle
Mass Spectrometry”) of the mobile sampling data.

Figure 2. (A) A map showing the 20 neighborhoods (filled areas) where we made spatially resolved measurements of individual particle concentration and chemi-
cal composition as well as the central reference site (CMU campus, red star). The black arrow shows the prevailing winds in Pittsburgh with an inset showing the
distribution of wind direction (hourly wind data from https://www.wunderground.com). (B) Number concentration (from this study) and mass concentration (from
Gu et al. 2018) for the 20 areas ordered from upwind to downwind locations. The number concentration shows a larger spatial variability across the urban area
compared with particle mass. It is mainly driven by primary emissions from traffic and cooking. The mass concentration is dominated by background particles and
shows much smaller spatial variability. (C) Size distribution for three representative environments measured by a NanoScan particle sizer (TSI Inc.) on a mobile
van: in a tunnel, in a restaurant plume, and at the CMU campus urban background site. The upper tail of the distribution in the tunnel is from background air that
gets pulled into the tunnel. Note: CMU, Carnegie Mellon University campus; dN, particle number; Dp, particle diameter; PM1, mass concentration of particulate
matter with a diameter less than 1 micrometer; PN50–1000, number concentration of particulate matter with a diameter between 50 and 1,000 nm.

Environmental Health Perspectives 017009-3 128(1) January 2020

https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-tract-maps.html
https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-tract-maps.html
https://www.wunderground.com


Source-Resolved Particle Number Measurements from
Single-Particle Mass Spectrometry
The central instrument is an AMS (Aerodyne Research, Inc.) that
can measure both aggregated particle mass as well as single-
particle size and composition. The bulk particle mass data are
described by Gu et al. (2018). The single-particle mode in the
AMS can obtain quantitative mass spectral signals as well as the
aerodynamic diameter for each individual particle detected. A
detailed description of the single-particle mass spectrometer can
be found in the Supplemental Material in “Single particle aerosol
mass spectrometer” and in Ye et al. (2018) and Onasch et al.
(2012). The AMS used in our study can measure nonrefractory
components (organics, sulfate, ammonium, nitrate, and chloride)
but also black carbon soot in particles. In the AMS, vaporization
and ionization processes are separated, producing consistent
mass spectra for particles consisting of similar chemical species.
The electron ionization (EI) fragments individual organic mole-
cules (into a mass spectrum) so the AMS does not provide molec-
ular speciation but, rather, quantifies the aggregate organic
composition (C, H, O, N) within an individual particle. This
allows us to identify sources of particles based on the well-
documented mass fragments (Allan et al. 2004) and their spectral
similarity to particles from known sources summarized in the
AMS spectral database (http://cires1.colorado.edu/jimenez-group/
AMSsd/).

For the thousands of individual particles collected in every
neighborhood, we first performed k-means clustering on their
normalized mass spectra, separating the particles into a number
of distinguishable groups. Then, by comparing the average mass
spectrum of each group to the AMS database, we identified the
source of each group. Broadly, particles are categorized into three
types, two types of freshly emitted particles and background par-
ticles. First are what we refer to as traffic particles in the remain-
der of this paper: hydrocarbon organic aerosol (HOA) particles
that are rich in reduced organic fragments (e.g., CnH+

2n+1) and
may contain soot fragments (e.g., C+

3 ). They are associated with
vehicular emissions (Zhang et al. 2011). Second are cooking or-
ganic particles (COA) that are rich in CmH2m− 1CO+ and are
associated with cooking emissions (Zhang et al. 2011). We refer
to them as cooking particles. Third are background particles that
contain a dominant fraction of inorganic species such as sulfate
or nitrate, and/or oxygenated organic fragments (e.g., COO+ and
C2H3O+ ) (Zhang et al. 2005). These secondary fragments indicate
that these particles have undergone considerable atmospheric
aging. We show the average mass spectrum of each group in
Figure S1 with comparisons with known sources in Figure S2.
Each particle is categorized into only one group. However, in real-
ity, an individual particle may contain more than one chemical fin-
gerprint, for example, a particle may contain both reduced organics
and sulfate. The grouping and source attribution are based on the
dominant chemical fingerprints.

Due to the design of the AMS inlet, we only collected par-
ticles from 50–1,000 nm in aerodynamic diameter (Dp). Single-
particle detection is based on the ion signals generated by indi-
vidual particles and the detection is triggered only when the
signals exceed a user-defined threshold. The single-particle AMS
detects only a fraction of the particles sampled into the instru-
ment due to the instrument dead time and the insufficient signals
generated by some of the particles. Smaller particles have lower
detection efficiency because they generate fewer ions. To quan-
tify particle number concentration measured from the single-
particle AMS, we performed size-dependent corrections on the
particle number measured by the AMS using the number meas-
ured from the SMPS when the van was parked on campus. The
SMPS was operated continuously throughout the entire campaign

in the central reference site. The correction factors are the ratios
of number concentrations measured by the SMPS and the number
concentrations measured by the AMS in different size bins (Qin
et al. 2006), as shown in Figure S3. The uncertainty (relative
standard deviation) of the correction factor was estimated to be
15–46% (shown as error bars in Figure S3) depending on particle
size and instrument stability on a day-to-day basis.

We also used particle number measurements from the SMPS to
adjust for temporal variations of our mobile sampling. The adjust-
ment factors were computed using Nt=Navg, the ratio of number
concentration during the time of the sampling and the annual aver-
age number concentration derived from the SMPS. The AMS does
not detect road dust, one important type of PM in the urban envi-
ronment (Rogge et al. 1993). However, we did not expect road dust
to be amajor source for particle number (ormass) <1,000 nm.

Particle Mixing State Quantification
To quantify the chemical mixing state of a particle population,
we used the mixing state metric v based on information–theoretic
entropy measures developed by Riemer and West (2013). v quan-
tifies the diversity of chemical species in individual particles with
respect to the whole particle population.

For a population of N particles, the mixing entropy value, Hi,
for every particle is calculated as follows:

Hi =
XA

a=1

− pai ln p
a
i :

The mass fraction of particle i in the particle population is pi.
A is the total number of chemical species. The mass fraction of
chemical species a in the particle population is pa. The mass frac-
tion of species a in particle i is pai . The average particle mixing
entropy, Ha, is calculated using

Ha =
XN

i=1

piHi:

The mixing entropy of the population is given by

Hc =
XA

a=1

− paln pa:

The average single particle diversity (Da) is

Da = eHa,

and the bulk population diversity (Dc) is

Dc = eHc:

The mixing state metric v is then calculated as

v=
Da − 1
Dc − 1

:

Here we include organics, nitrate, sulfate, chloride, and black
carbon in the mixing-state calculation. We do not include ammo-
nium due to the large background interference in the instrument.
We treat all organics as one chemical species, without further
separation of fresh and aged organics. This is because of the
small number of ions derived from individual particles, which
precludes further separation on a single-particle basis.

For atmospheric particles, v of a particle population is some-
where between 0% and 100%. Zero percent indicates full external
mixing, meaning that the particle population consists of individual
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particles with distinct chemical constituents. One hundred percent
indicates full internal mixing, meaning all particles have identical
composition. v in the urban background areas of Pittsburgh and of
Paris, France, are found to be 50–60%, suggesting particles are
midway between a complete external and a complete internal mix-
ture (Healy et al. 2014; Ye et al. 2018).

Land-Use Regression Models
To predict the fine spatial-scale number concentration (in n=cm3)
of traffic and cooking particles as well as the chemical mixing
state of particle populations in Pittsburgh, we built LUR models
using available land-use predictors with a range of buffer areas.
We first constructed raster cells at 5 m×5 m resolution using
ArcGIS (Esri). Each raster has the associated land-use values.
For any grid sizes that we used to build the models (for sampling
neighborhoods or the subdivided areas, see below), we used the
ArcGIS tool zonal statistics to calculate corresponding land-use
values based on the 5 m×5 m raster cells. We list all of the covari-
ates and the data sources in Table S1. These data are from the data-
bases of the Allegheny CountyHealth Department (http://infoportal.
alleghenycounty.us/data.html), the Pennsylvania Department of
Transportation, the National Emission Inventory (https://www.epa.
gov/air-emissions-inventories/2017-national-emissions-inventory-
nei-data), the Pennsylvania Spatial Data Access (http://www.pasda.
psu.edu/uci/DataSummary.aspx?dataset=56), and the U.S. Census
(https://www.census.gov/geographies/reference-maps/2010/geo/2010-
census-tract-maps.html).

We used a similar model construction procedure as used by Li
et al. (2016) and Eeftens et al. (2012). In brief, we used the forward
variable selection approach to select the covariates, which only
added a new covariate to the model if it produced the highest R2.
The variable selection process continued until the newly added
covariates improved the overall R2 by <0:01. For all of the covari-
ates selected, we further examined their p-values and removed
those having p>0:1. Last, we tested the variance inflation factors
(VIF) for collinearity and removed covariates with VIF>3.

We derived separatemodels to predict three quantities: a) num-
ber concentration of traffic particles, b) number concentration of
cooking particles, and c) particle mixing state. For traffic and cook-
ing particle concentration predictions, because our measurements
are source-resolved, we restricted the models to select only covari-
ates from categories related to vehicle emissions and cooking
activities. These categories include traffic, restaurants, housing,
population, commercial land use, and elevation. We refer to these
models as source-specific LUR models. For comparison, we also
developed models for traffic and cooking particles using covariates
from all land-use categories, whichwe refer to as full LURmodels.
The two types of LUR models agreed well, as shown in “Results”
section. For mixing state prediction, given that we did not have
prior knowledge about what categories of covariates may affect
mixing state, we developed a full LURmodel using all covariates.

As described above and in Figure 2, we sampled 20 neighbor-
hoods in Pittsburgh and its surrounding regions. Our final LUR
models were built using 200 m×200 m spatial resolution. Ideally,
we would subdivide all neighborhoods into 200 m× 200 m areas
for model construction. However, we did not have enough collected
particles to do so.Wewere only able to subdivide 10 of the 20 neigh-
borhoods into 200 m×200 m grids (see Figure S4). There were two
reasons. First, there was sufficient signal for us to further subdivide
the 10more urban neighborhoods that had higher particle concentra-
tions. The other 10 neighborhoods were more suburban/rural, so we
collected comparatively fewer particles. Second, as shown in Figure
S5, the 10 subdivided areas had large subneighborhood variabilities
in vehicle and restaurant density, two main sources for ambient par-
ticles we identified. The other 10 neighborhoods were relatively

homogenous in vehicle and restaurant density and were therefore
expected to be more homogeneous in terms of pollutant concentra-
tions (Li et al. 2019).

We used the neighborhoods and the subdivided 200 m×
200 m areas that had 250 or more detected particles to build the
LUR models. We established this criterion by first calculating
the normalized size distribution from the particles collected at the
CMU campus, then deriving the normalized size distribution
from particles randomly sampled from the particle pool. By look-
ing at the estimated errors of size distributions from the subsam-
ples as a function of the sample size, we determined that a
sample size of 250 particles was sufficient to reproduce the size
distribution of the entire population with relatively small errors
(see Figure S6). There were fifty-five 200 m×200 m small areas
with more than 250 detected particles. Combining the remaining
10 neighborhoods, we used 65 distinct areas to build the models.
In total, we had about 250 area-visits that covered about 14 km2,
shown in Figure S4. We also developed models using only the
200 m× 200 m subdivided areas. As discussed in the “Results”
section, two types of models shared highly similar predictors.

We evaluated LUR model performance using R2, 10-fold
cross validation, absolute mean error (AME), and root mean
square error (RMSE). For the cross validation, we randomly
partitioned the measurement data into 10 equal-sized sub-
groups. Every time, we used 1 subgroup as the validation data
to test the model and 9 subgroups as training data. We repeated
the process so that every subgroup was used once as the valida-
tion data set.

Results

Freshly Emitted Particle Number Drives Spatial Variability
Invisible in Mass
Figure 2A is amap showing the 20mobile sampling neighborhoods
and the CMU campus site. We numbered the neighborhoods from
upwind to downwind. Figure 2B contrasts the number with mass
concentration for the sampling areas along the prevailing wind
direction. There is a large spatial heterogeneity of total number con-
centration across the urban scale. This heterogeneity is mostly
driven by freshly emitted particles, whereas the concentration of
background particles is relatively homogeneous spatially. In areas
upwind of the city, the majority of the particles are aged background
particles that are presumably transported regionally and have expe-
rienced extensive atmospheric processing. As air masses travel to
the city center, the concentrations of freshly emitted particles grow
substantially due to emissions from traffic and restaurant cooking.
In these areas, the freshly emitted particle number concentration
exceeds the background particle number concentration by more
than a factor of three in the size range of 50–1,000 nm measured by
our instrument. In downwind suburban areas such as neighborhood
20, which has low vehicle and restaurant activity, freshly emitted
particle number concentrations are greatly reduced, similar to
upwind background locations. This indicates that emission intensity
is the main driving force for the spatial complexity of particle num-
ber concentration across the urban scale in our study.

In contrast, particle mass concentration shows much less spa-
tial variability than particle number. Aged background particles
dominate total mass in all areas across the city. The modest vari-
ability of background particle mass is likely due to imperfect
temporal corrections and uncertainties in the instrument. Traffic
and cooking particle mass increase in the city center but only
contribute about 10% to the total mass concentration.

Figure 2C shows the size distribution of three particle types
measured by the NanoScan particle sizer (11:5–365 nm size
range). The NanoScan does not resolve particle source information
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but because we sampled in representative source-dominated loca-
tions (inside a tunnel and inside a restaurant plume), we are confi-
dent that the sources of fresh emissions were almost exclusively
traffic and restaurant cooking, respectively. As Figure 2C shows,
the size distribution of traffic particles has the smallest mode. Total
particle number concentration is also highest in the traffic tunnel,
illustrating the high emissions of particle number from vehicles.
Cooking particles are larger than fresh traffic emissions, and aged
background particles, which have grown by coagulation and con-
densation, are the largest. This explains why, though they are more
numerous in the source-active areas and the primary driver for
intra-city variations in particle number, traffic and cooking par-
ticles contribute (much) less to particle mass than background par-
ticles (Figure 2B).

Model Predictions of Sourced-Resolved Particle Number
and Mixing State
As described in the “Methods” section, we built LUR models to
predict the spatial distribution of traffic and cooking particle num-
ber concentrations as well as particle mixing state. Table 1 sum-
marizes the selected covariates, validation, and performance of
the models. Vehicle density, restaurant counts, and major road
length are the major covariates selected to predict traffic particles,
cooking particles, and mixing state, respectively.

Predicted number concentrations of traffic and cooking par-
ticles in the Pittsburgh area using source-specific LUR models

are shown in Figure 3A,B. Overall, concentrations are highest in
the downtown (Area 7 in Figure 2). This neighborhood had the
highest density of both traffic and restaurants in our sampling do-
main. The spatial pattern of traffic particles followed the road net-
work. Traffic particle concentrations varied by more than one
order of magnitude across the city. The concentration of cooking
particles also shows large intra-city spatial heterogeneity with
several clusters of hotspots in locations with high restaurant den-
sity. The AMS only detects particles ranging from 50–1,000 nm.
We expect that if we had included particles <50 nm, the spatial
variability of freshly emitted particle number concentrations
would have been even larger.

The full LUR models yielded similar patterns as the source-
specific LURs for cooking and traffic particles. Table S2 and
Figures S7 and S8 show these models. The full LURmodels select
similar covariates to the source-specific models. For both cooking
and traffic, the strongest predictor is the same in both the full and
source-specific LURs. This illustrates the strong connection
between emission sources and source-resolved particles measured
here.

Figure 3C shows the predicted spatial distribution of particle
mixing state. In general, particle populations in the downtown
and other areas with high fresh emissions were predicted to be
more externally mixed, whereas particles in suburban areas low
in source activities were more internally mixed. The mixing state
metric v varies by more than a factor of two across the sampling
domain.

Table 1. Summary of source-specific LUR models for traffic and cooking particle number concentration and mixing state in Pittsburgh, Pennsylvania.

Covariates selecteda Coefficient Partial R2 Model R2 Ten-fold validation R2 RMSE (n=cm3) AME (n=cm3)

Traffic — — 0.58 0.54 1,936 1,524
Vehicle density in all roads (100 m) 21.48 0.37 — — — —
Diesel annual average daily travel × squared inverse
distance to the nearest road (100 m)

321.5 0.21 — — — —

Intercept 1,577 — — — — —
Cooking — — 0.67 0.61 1,479 1,119
Restaurant counts (100 m) 12.87 0.37 — — — —
Major road length (1,000 m) 0.0505 0.24 — — — —
Population density (1,000 m) 0.1633 0.06 — — — —
Intercept −717:8 — — — — —
Mixing State (1−v), unitless — — 0.63 0.58 0.06 0.05
Major road length (1,000 m) 5:77× 10−6 0.54 — — — —
House density (300 m) 7:59× 10−5 0.06 — — — —
NEI point source density (30 km) 9.44 0.03 — — — —
Intercept −0:304 — — — — —

Note: —, not applicable; AME, absolute mean error; LUR, land-use regression; NEI, National Emission Inventory; RMSE, root mean square error.
aCovariate data sources: Allegheny County Health Department (http://infoportal.alleghenycounty.us/data.html), Pennsylvania Department of Transportation, National Emission
Inventory (https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data), Pennsylvania Spatial Data Access (http://www.pasda.psu.edu/uci/DataSummary.
aspx?dataset=56), U.S. Census (https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-tract-maps.html).

Figure 3. Predicted number concentration (n=cm3) of (A) traffic particles, (B) cooking particles and (C) mixing state index (v, unitless) in Pittsburgh,
Pennsylvania. Hot colors (red) indicate high number concentrations and a low (more externally mixed) mixing-state index. Spatial resolution is
200 m×200 m. Note: N50–1000, number of particles from 50–1,000 nm in aerodynamic diameter (Dp).
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As described above, our LUR models were built from a com-
bination of 200 m×200 m areas and larger neighborhoods. We
tested the sensitivity of our models to this choice of aggregation.
Table S3 shows source-specific LUR models built only from the
200 m×200 m areas. Overall, these LURs used the same covari-
ates as the source-specific (Table 1) and full (see Table S2) LURs
that used all of the available data for model building, though
model R2 values were slightly lower.

Source-Resolved Particle Number and Mixing State
Exposure
We combined our predictions of source-resolved particle concen-
trations with American Community Survey U.S. Census block
group data (https://www.census.gov/geo/maps-data/) to calculate
the fine-scale population exposure in every grid cell of the do-
main (200-m resolution). We then aggregated the results to char-
acterize the cumulative population exposure. Figure 4A shows
the cumulative population exposure to particle number concentra-
tion. It also incorporates the corresponding particle mixing state
in each grid cell, shown as color coding along the edge of the
total particle number concentration. We contrast this new picture
of population exposure with source-resolved particle-mass-based
concentration for Pittsburgh using data from Gu et al. (2018),
which deconvolved particle mass to the same sources and had the
same spatial resolution, shown in Figure 4B. Figure 4B is analo-
gous to conventional bulk mass-based measurements.

As Figure 4 shows, background particles contribute to both
particle mass and number concentrations. Here we used the
median concentration measured at the CMU campus, an urban
background site because background particles were spatially ho-
mogenous (Figure 2). Background particles contribute the major-
ity of particle mass but are a much less important contributor to
particle number. For example, Figure 4 indicates that more than
80% of the population is exposed to a total number concentration
more than twice the background level. In contrast, due to the
small mass contribution of freshly emitted particles, the overall
spatial variability of mass exposure was relatively small—more
than 80% of the population was exposed to concentrations of

freshly emitted particles that were within 20% of the background
mass concentration.

Figure 4A also shows that particle number concentration cor-
relates with particle mixing state. People who are exposed to ele-
vated particle number concentrations are also exposed to a more
externally mixed particle population. Again, this information can-
not be resolved using conventional methods purely based on par-
ticle mass.

Figure 4 shows that traffic and cooking have different contribu-
tions to particlemass and number exposures. As shown in Figure 4B
and described by Gu et al. (2018), fresh cooking emissions have an
equal or larger contribution to particle mass exposures than fresh
traffic emissions. However, Figure 4A shows that trafficwas a larger
contributor to particle number exposures. This is also apparent in
Figure 3, where the predicted range of traffic particle concentrations
is more than double the range for cooking particles. This occurred
because vehicles have high emissions of small particles (Figure 2C)
that contributemore to particle number than tomass.

We also compared the particle number concentration of traffic
and cooking particles in different communities stratified by race
and household income (see Figure S9). We found no significant
trend of exposure injustice for traffic particles in Pittsburgh. We
attribute this to the fact that in Pittsburgh most minority and low-
income neighborhoods do not contain major highways or arterial
roads. Other U.S. cities may have different spatial patterns.
Asians are predicted to be exposed to a higher level of cooking
particles than other races. This could be due to the fact that neigh-
borhoods containing the two major university campuses in
Pittsburgh where many Asian students live also have high restau-
rant densities.

Discussion

AMore Realistic Estimate of Fine Particle Exposure
By using advanced single-particle mass spectrometry that resolves
detailed physiochemical information of atmospheric particles, we
provide a more atmospherically realistic picture of spatial distribu-
tion of fine particle concentrations in a populous urban environ-
ment. Our new perspective much more closely matches the state of

0.0

0.2

0.4

0.6

0.8

1.0

P
op

ul
at

io
n 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

0 5 10 15 20 25 30

N
50-1000

 (#/cm3)

0.6

0.5

0.4

Background
Cooking
Traffic
Mixing state

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12

PM
1
 ( g/m3)

0   1       3        5        7         9 0                 1                 2                 3

Analogous to 
filter measurements

External

Internal

Ratio to background concentration Ratio to background concentrationA B

Figure 4. Normalized cumulative distribution of population exposure to background, traffic particles, and cooking particles on a (A) particle number concentra-
tion and a (B) particle mass concentration basis. Results are based on predictions of the source-resolved LUR models in Pittsburgh. The curve of total particle
number in A is color-coded by the particle chemical mixing state. The background particle number concentration is the median concentration measured at the
CMU campus, the central site of this campaign. Particle mass data in B are from Gu et al. (2018). Note: CMU, Carnegie Mellon University campus; LUR,
land-use regression.

Environmental Health Perspectives 017009-7 128(1) January 2020

https://www.census.gov/geo/maps-data/


PM as it actually exists in the atmosphere (and what we breathe)
comparedwith bulkmeasurements.

Considering particle number versus mass substantially alters
our perspectives on population exposure to fine PM. Our results
suggest that within-city variability of PM pollution is much larger
than conventional mass-based methods indicate. Therefore, our
results significantly extend many existing intra-city particle expo-
sure estimates, which are based solely on mass (Eeftens et al.
2012; Henderson et al. 2007; Just et al. 2015; Moore et al. 2009),
by showing much larger spatial gradients of source-resolved par-
ticle number concentration compared with source-resolved mass
concentration.

Appropriately resolving the patterns of freshly emitted parti-
cle pollution is important for understanding spatial variations of
PM exposure and intra-city variations of PM health effects. First,
our results highlight that freshly emitted and background particles
differ significantly in size, which determines their deposition effi-
ciency in the respiratory tract. Second, our results demonstrate
that freshly emitted and background particles have distinct chem-
ical composition important to toxicities. Fresh emissions are gen-
erally more hydrophobic than aged background particles, which
are dominated by oxidized organics and sulfate (see Figure S1).
Fresh traffic particles also contain black carbon and particle-
bound metals (the latter of which were not detected in our meas-
urements). Third, freshly emitted particles are often strongly
associated/co-emitted with other primary hazardous pollutants
such as carbon monoxide and nitrogen oxides (Brown et al. 2012;
Lanz et al. 2007), which has strong implications for multipollu-
tant health effects (Dominici et al. 2010).

A growing body of research demonstrates that intra-urban air
pollution exposure gradients may lead to risk contrasts at least as
large as those that result from differences in urban background
concentrations among individual cities, and related work has sug-
gested that certain source-related air pollution signatures may
have enhanced health risks (Jerrett et al. 2005; Thurston et al.
2016). Alexeeff et al. (2018) showed that intra-urban differences
in source-related exposure—in their case, exposure to traffic air
pollutants—contributed to fine-scale differences in cardiovascular
health within individual neighborhoods. Our chemical measure-
ments of individual particles with mobile sampling more directly
resolve the source-related particle number at finer spatial scale
compared with studies that relied on statistical methods and sta-
tionary measurements (Kim et al. 2004; Sowlat et al. 2016;
Squizzato et al. 2019). Future studies incorporating these types of
measurements can assist in improving the assessments of health
burden attributable to different sources and ultimately facilitate
effective pollution control.

Our detailed measurements of the chemical composition of
individual particles by single-particle mass spectrometry also
allow us to determine the chemical mixing state of the particle
populations we sampled. This, to our knowledge, is the first
study that evaluates the spatial variation in mixing state and its
effects on population exposure. Our results indicate that exter-
nal mixing is associated with a high number concentration.
Health effects of chemical mixing state are largely unexplored
and therefore uncertain, but some studies have revealed a
potential health influence of particle mixing state (Ching et al.
2019; Ching and Kajino 2018).

The overall approach we developed in this study serves as a
good starting point to characterize intra-urban PM exposure
beyond mass in other cities. The particle number concentration
and chemical mixing state in Pittsburgh are strongly associated
with common sources in urban environments. Future studies
can apply a similar approach to other major metropolitan areas
to examine transferability and generalizability of this approach

and ultimately refine PM exposure estimates on the national
scale.

Limitations
The number concentrations and mixing state values we predict
here are from relatively short-term sampling because we visited
each neighborhood a limited number of times (one to six times).
Many LUR models for predicting ultrafine particle concentration
are based on short-term mobile or stationary sampling (Saha et al.
2019) and increasing sampling time will improve model perform-
ance. As mentioned above, for areas we sampled multiple times,
our visits were spread out over different times of the day to
reduce biases toward low or high emission scenarios. PM pollu-
tion from fresh emissions such as traffic and cooking activities
can have strong temporal profiles in Pittsburgh (Robinson et al.
2018); background particle concentrations are also temporally
variable. The major source areas of fresh emissions—roads and
restaurants—are stationary, therefore spatial patterns of source-
resolved PM should be relatively robust (e.g., downtown should
always have more traffic particles than the urban background).
Given the size of our current data set, we were not able to resolve
temporal variations but, rather, present a picture of average con-
centrations. Future studies should increase the sampling time for
better temporal resolution. In addition, the different frequency of
visits to each neighborhood may cause some uncertainties in the
spatial patterns of model inputs. However, several other studies
from the same campaign that conducted a greater number of vis-
its to the neighborhoods have identified similar sources and spa-
tial variations of source-specific pollutant level in Pittsburgh (Gu
et al. 2018; Li et al. 2019; Robinson et al. 2018). This indicates
that the spatial patterns of our model inputs should be relatively
robust.

The detection efficiency of particles decreases as particle size
decreases in our instrument, causing higher uncertainties for
quantifying the concentration of small particles. In addition, our
analysis does not include nucleation as a source for ultrafine par-
ticles due to the size cutoff of the AMS measurements.
Nucleation in Pittsburgh is likely a minor contributor to particle
number concentration at present. A recent study by Saha et al.
(2018) showed that the frequency and intensity of nucleation in
Pittsburgh has been reduced by half over the past 15 y and that
locally nucleated particles constitute only around 6% of the parti-
cle number concentration. We also did not quantify particulate
metal measurements because metal quantification by the instru-
ment is challenging (Carbone et al. 2015). Regardless, this work
is, to our knowledge, the first to measure and predict both source-
resolved number concentration and particle chemical mixing state
of ambient PM, providing a more atmospherically realistic expo-
sure estimate.
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