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Abstract Energy allocation is believed to drive trade-offs

in life history evolution. We develop a physiological and

genetic model of energy allocation that drives evolution of

feeding rate in a well-studied model system. In a variety of

stressful environments Drosophila larvae adapt by altering

their rate of feeding. Drosophila larvae adapted to high

levels of ammonia, urea, and the presence of parasitoids

evolve lower feeding rates. Larvae adapted to crowded

conditions evolve higher feeding rates. Feeding rates

should affect gross food intake, metabolic rates, and effi-

ciency of food utilization. We develop a model of larval net

energy intake as a function of feeding rates. We show that

when there are toxic compounds in the larval food that

require energy for detoxification, larvae can maximize their

energy intake by slowing their feeding rates. While the

reduction in feeding rates may increase development time

and decrease competitive ability, we show that genotypes

with lower feeding rates can be favored by natural selection

if they have a sufficiently elevated viability in the toxic

environment. This work shows how a simple phenotype,

larval feeding rates, may be of central importance in

adaptation to a wide variety of stressful environments via

its role in energy allocation.

Keywords Trade-offs � Experimental evolution �
Age-structure � Drosophila melanogaster

Introduction

A fundamental component of the modern theory of life-

history evolution has been the concept of trade-offs (Roff

and Fairbairn 2007a; van Noordwijk and de Jong 1986;

Zera and Harshman 2001, 2011). This idea was perhaps

most concretely made by Cody (1966) in his development

of a theory of clutch size. Cody’s idea, and that of more

recent adherents, has been that energy is a fundamental

limiting resource and that allocation of energy to different

life-history related traits therefore involves trade-offs (Flatt

and Heyland 2011; van Noordwijk and de Jong 1986).

Trade-offs between reproduction and some other fitness

components are often the target of research on life history

trade-offs. Important research has come from both studies

of natural and lab adapted populations—each presents their

own strengths and weaknesses. For example, wing poly-

morphism in the cricket Gryllus firmus has been shown to

be due to an energetic trade-off between wing production

and fecundity (Roff and Fairbairn 2007b; Zera 2009; Zera

and Harshman 2001, 2009). However, we lack the detailed

knowledge of the evolution of this polymorphism which we

would typically have available for laboratory evolved

populations.

In laboratory evolved populations of Drosophila, one

phenotype that responds to stressful larval environments is

larval feeding rate, measured as the number of sclerite

retractions per minute while feeding (Burnet et al. 1977;

Joshi and Mueller 1988). Feeding rates may increase in

response to crowding (Joshi and Mueller 1988) or they may

decrease in response to toxins in the food (Borash et al.

2000) or exposure to parasites (Fellowes et al. 1999). One

study also documented a decrease in competitive ability

and, thus, presumably in larval feeding rates in response to

the evolution of adult learning behaviors (Mery and
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Kawecki 2003). Feeding rates are known to affect com-

petitive ability for food (Burnet et al. 1977; Joshi and

Mueller 1988) but are also expected to affect energy

acquisition and growth rates (Mueller et al. 2005).

Thus, we have very strong empirical evidence that

adaptation in Drosophila to a variety of stressful environ-

ments involves a common physiological trait. We develop

a physiological model that unifies these apparent disparate

observations through the simple concept of energy alloca-

tion. Consequently although motivated by specific obser-

vations in Drosophila we suggest one of the unifying

themes in life-history evolution, energy allocation, is

driving Drosophila larval evolution (Stearns 1992; Roff

1992). Although the physiological model suggests feeding

rates may maximize energy intake we do not simply

assume evolution maximizes energy intake. Rather we

develop a specific population genetic model that suggests

the fine tuning of energy intake is due to a fitness com-

ponent trade-off e.g. increased viability for increased

development time.

A model of energy acquisition and feeding rates

Toxic food environments

The goal of our physiological model is to take into account

the various energy acquiring and expending activities that

are a function of feeding rates. We first take an optimiza-

tion approach and ask what feeding rate maximizes the

energy intake, per unit time. Evolution may not maximize

energy uptake. However, we can explore the relationship

between feeding rates and energy uptake as a way of

suggesting possible empirical research that might help

determine if this has indeed occurred.

Following our earlier work (Mueller et al. 2005), we

model feeding efficiency, metabolic rate and food con-

sumption. As a crude approximation we will use linear

models for each of these, which may be valid in the

vicinity of an equilibrium feeding-rate even if there is a

non-linear relationship over the entire range of feeding

rates. We use the term feeding efficiency to mean the

fraction of ingested food that is digested by larvae.

Feeding efficiency is a decreasing function of feeding

rate. Empirical support for this claim come from a

comparison of two different sets of crowding-adapted

(fast feeding) and control (slow feeding) Drosophila

populations (Joshi and Mueller 1996; Mueller et al.

1991). These studies showed that fast feeding larvae

required more food to reach the same critical minimum

size as control larvae. We can use the probability of

surviving on 4.5 mg of food as a surrogate measure of

feeding efficiency. The higher this probability is the more

efficient the genotype. The study of Mueller (1990)

shows a negative correlation between feeding efficiency

and feeding rate (Fig. 1a).
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Fig. 1 a The relationship between feeding rates and efficiency. The

data come from two populations of Drosophila melanogaster, called

r-selected (slow feeding) and K-selected (faster feeding). The feeding

rate data are from Joshi and Mueller (1988) and the efficiency data is

from Mueller (1990). Using the data from Table 2 of Mueller (1990) a

linear regression was used to estimate the probability of surviving on

4.5 mg of yeast. A more efficient genotype would have a higher

chance of surviving on a fixed level of food and hence our use of the

word ‘‘efficiency’’ for the y-axis label. b The metabolic rates of

Drosophila melanogaster populations that differ in their feeding rates.

The slower feeding data point is from populations adapted to high

levels of ammonia while the higher feeding rate data point is from

control populations. The feeding rate measurements come from

(Borash et al. 2000) and the metabolic rate measurements come from

Mueller et al. (2005). c The amount of energy fixed as biomass in

Drosophila larvae given varying periods of time to feed. The data

come from the UU female population described in Santos et al.

(1997). The adult dry weight of flies was converted to Joules using the

conversion of 27.8 J/mg as described in Djawdan et al. (1996)
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Here we assume that relationship in Fig. 1a is due to the

fact that energy extracted from consumed food is greater

the longer the food sits in the digestive system (with some

limits) and that the time the food resides in the digestive

system is inversely proportional to the feeding rate (Burnet

et al. 1977).

Let fr be the larval feeding rate, E(fr), be the fraction of

food digested by larvae feeding at a rate fr (in all the

notation that follows a subscript ‘‘r’’ denotes a rate, Table

1). We use the linear model,

E frð Þ ¼ a1 þ a2fr; ð1Þ

where we assume that a2 \ 0 (see Fig. 1a).

Since feeding involves movement of both the head and

entire body we assume that metabolic rate (Mr) increases as

a function of feeding rate. The few results that exist are

consistent with this assumption (Fig. 1b). Thus,

Mr frð Þ ¼ b1 þ b2fr; ð2Þ

and we assume b2 [ 0.

We presume that larvae consume more food per unit

time as their feeding rate increases although we know of no

direct measurements of food consumption to support this

assumption. It has been shown that fast feeding larvae

synthesize more lipid than slow feeding larvae (Foley and

Luckinbill 2001) When Drosophila larvae are given a fixed

period of time to feed the amount of energy they fix as

biomass increases in proportion to the time they feed

(Fig. 1c, Santos et al. 1997). Here we assume that if the

time to feed is fixed those larvae that feed faster will

consume more food. Clearly when fr = 0 then the con-

sumption rate, Cr, should also be zero. However, since the

consumption rate may be non-linear over its entire range

we will allow for a non-zero y-intercept when we model

consumption in the vicinity of a feeding rate equilibrium.

Then the linear consumption rate function is,

Cr frð Þ ¼ c1 þ c2fr; ð3Þ

and we assume c2 [ 0.

For larvae feeding in normal food we set the net rate of

energy intake, Dr, to the difference between energy intake

and energy expenditure or Cr(fr)E(fr)d1 - Mr(fr), where d1

is a constant representing how much energy is extracted

from digested food. Replacing these functions with their

linear relationships we get,

Dr ¼ a1c1d1 � b1ð Þ þ d1 a2c1 þ a1c2ð Þ � b2½ �fr þ a2c2d1f 2
r :

ð4Þ

This quadratic equation in fr will have a single maxima

which can be found by differentiating Eq. (4) and setting

the resulting equation to 0 and solving for the feeding rate

that gives the maximum energy yield, f �r as

f �r ¼
b2 � d1 a2c1 þ a1c2ð Þ

2a2c2d1

: ð5Þ

Next we are interested in the feeding rate that maxi-

mizes food intake when the larvae are in an environment

with either ammonia or urea. We assume that larvae con-

suming a toxic compound will need to detoxify it thereby

incurring an energy cost of, say e1 units of energy per unit

of food consumed. The cost per unit time of consuming

toxic food is then just the consumption rate times this cost

or c1 þ c2frð Þe1. This means that the net energy intake rate

in a toxic environment is, ~Dr ¼ Dr � ðc1 þ c2frÞe1. From

this equation it is clear that net energy intake in a toxic

environment will be less than in the non-toxic environment,

that is ~Dr \ Dr as long as c1 þ c2fr [ 0 which is required

by Eq. (3) to insure positive consumption rates. Following

the same analysis that gave rise to Eq. (5) we get the

maximum yielding feeding rate in the toxic environment

as,

f ��r ¼
b2 þ c2e1 � d1 a2c1 þ a1c2ð Þ

2a2c2d1

: ð6Þ

For Eqs. (5) and (6) to be biological feasible feeding

rates they must be greater than 0. However the denomi-

nators of Eqs. (5) and (6) are negative indicating the

numerator must also be negative. Since b2 and c2e1 must be

positive then d1 a2c1 þ a1a2ð Þ must also be positive and

greater than the b2 ? c2e1. From this we conclude that

b2 � d1 a2c1 þ a1c2ð Þ\b2 þ c2e1 � d1 a2c1 þ a1c2ð Þ. After

dividing the left and right side of this inequality by the

negative denominator, 2a2c2d1, we have f �r [ f ��r . In other

words in a toxic environment larvae will get a higher rate

of energy return by feeding at a slower rate than they would

feeding in a toxin free environment.

If we take the first partial derivative of f ��r with respect

to e1 we get [2a2d1]-1, which is always negative. Thus, any

increase in e1, the cost of detoxifying food, will decrease

the feeding rate that maximizes energy intake. This high-

lights the direct relationship between the cost of detoxifi-

cation and feeding rates.

Nutrition has been studied extensively in adult Dro-

sophila, for instance to examine its effects on longevity

(Lee et al. 2008), but is much less studied in larvae. If we

take the first partial derivative of f �r with respect to d1, the

energy content of digested food, we get a term which is

always positive. Thus, if the nutritional content of the food

is decreased, e.g. d1 is decreased, then the optimal feeding

rate should decrease. Mathematically the energy intake

function is a second order in fr with a negative coefficient

in front of the fr
2 term. Thus, at high feeding rates the intake

of energy will level off and eventually decrease. The

energy consuming term is a linear increasing function of

Genetica (2015) 143:93–100 95
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feeding rates and thus the optimal feeding rate will occur at

the point the difference between these two functions is

greatest. Changes in d1 only affect the height of the energy

consumption function. Thus, increasing d1 will cause an

increase in the optimum while a decrease will cause the

maximum difference to occur at a lower feeding rate. In the

discussion we will use this result to suggest some simple

experiments to test this model.

Evolution of slower feeding rates

We are now interested in studying the evolution of feeding

rates using the results described in the previous section.

Suppose we have two alternative genotypes: a fast feeding,

toxin sensitive genotype and a slow feeding toxin resistant

genotype. We know that the net rate of energy intake of the

fast feeding genotype is Dr. Prior research with Drosophila

has shown that the larvae must reach a critical size, say m,

measured in energy units, (Bakker 1961; Mueller 1988a) to

successfully pupate. It will then take the fast feeding genotype

m/Dr min to reach this critical minimum size. In a similar

fashion we conclude that the slow feeding genotype will take

m/ ~Dr min to reach its critical minimum size and this time will

be greater than m/Dr because Dr [ ~Dr. Thus, the slow feeding

genotype will take longer to develop but in a toxic environ-

ment it should have superior survival since it is using energy

to detoxify the food. These set of facts are exactly what have

been observed in populations of Drosophila which has

evolved in crowded cultures (Borash et al. 1998). In these

crowded environments high levels of ammonia build up in the

cultures over time due to the deposition of ammonia waste by

large numbers of larvae. There is a genetically distinct group

of larvae in these crowded cultures that develop quickly, feed

quickly but are more sensitive to ammonia than a second

group which develops slowly, feeds slowly and is more

resistant to ammonia (Borash et al. 1998).

In this model we will focus on the increased develop-

ment time as the primary negative fitness impact of feeding

slowly although slow feeding larvae also suffer reduced

competitive ability. We assume that female fecundity is not

affected by the resistance genotype although we relax this

assumption later. The genetic model is a single locus with

two alleles. Although we assume each genotype reproduces

only once, different genotypes reproduce at different times

as described in the previous paragraph. Accordingly, we

break time into discrete intervals, x = 1, 2, …, d, where d
is the oldest age of reproduction among all genotypes.

The evolutionary scenario we will examine is a popu-

lation of fast feeding, toxin sensitive individuals that are

suddenly moved to a toxic environment. In this setting we

derive the conditions that allow a slower developing, toxin

resistant genotype to become established in the population.

Let genotype A1A1 be the resident, fast feeding, toxin

sensitive genotype that has age-specific survival probabil-

ities equal to p(x) = 1, for x = 1, 2, ���, t11 - 2, w11 for

x = t11 - 1, and 0 otherwise. Thus the probability if the

A1A1 genotype surviving to age t11 (viability) is

p(1) 9 p(2) ��� 9 p(t11 - 1) = 1t11�2w11 = w11. Of course

the viability effects are probably manifest during the entire

larval stage not just the last age-class prior to reproduction.

However, as we will see below only the product of those

survival probabilities matter so setting up the model in this

fashion does not affect our final conclusions.

For the heterozygote, p(x) = 1, for x = 1, 2, …, t12 - 2,

w12 for x = t12 - 1, and 0 otherwise. Finally for the toxin

resistant homozygote, A2A2, p(x) = 1, for x = 1, 2, …,

t22 - 2, w22 for x = t22 - 1, with t22 C t12 [ t11. The

genotypes A1A1, A1A2, and A2A2 produce F offspring at

ages t11, t12, and t22 respectively. If we let B(t) be the total

number of zygotes produced at time t and pi(t) be the

frequency of allele Ai at time t among these zygotes, then

we can use the difference equations developed by

Charlesworth (1994, equation 3.14a-b) to describe allele

frequency change over time as,

B tð Þpi tð Þ ¼ gi tð Þ þ
Xt

x¼1

B t � xð Þ
X

j

pi t � xð Þpj t � xð Þ

� lij x; tð Þmij x; tð Þ

B tð Þ ¼
X

i

gi tð Þ þ
Xt

x¼1

Bðt � xÞ
X

ij

piðt � xÞpjðt � xÞ

� lij x; tð Þmij x; tð Þ

where lij(x,t) is the chance of genotype AiAj surviving to

age-x at time t, mij(x,t) is the fertility of genotype aged-x at

time t, and gi tð Þ ¼ 1
2

Pt22

x¼tþ1

P
j Nijð
�

x� t; 0Þ þ Nji

ðx� t; 0Þ�lij x; tð Þmij x; tð Þ, with Nij(x,0) being the number of

AiAj individuals alive at time 0.

Using the simple life-histories of the three genotypes

described above the Charlesworth equations can be greatly

simplified to,

B tð Þp2 tð Þ ¼ g2 tð Þ þ B t � t22ð Þp2
2 t � t22ð Þw22F þ Bðt � t12Þ

� p1ðt � t12Þp2ðt � t12Þw12F; ð7aÞ

B tð Þ ¼ g1 tð Þ þ g2 tð Þ þ B t � t11ð Þp2
1 t � t11ð Þw11F

þ 2B t � t12ð Þp1 t � t12ð Þp2 t � t12ð Þw12F

þ Bðt � t22Þp2
2ðt � t22Þw22F;

ð7bÞ

where g1 tð Þ ¼ N11 t11 � t; 0ð Þw11F þ N12 t12 � t; 0ð Þw12F;

g2 tð Þ ¼ N22 t22 � t; 0ð Þw22F þ N12 t12 � t; 0ð Þw12F; and

Nij(k,0) are the number of individuals of genotype AiAj,

aged-k that were present at time 0. We note that with these

types of genetic models there is no simple characterization
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of fitness since it depends on fecundity, survival and the

timing of reproduction in a complicated manner. It is only

under some special conditions that we can assume that the

rate of exponential growth derived from the Lotka–Euler

equation is equivalent to fitness (e.g. see chapter 3,

Charlesworth 1994).

We first study the conditions that permit the initial

increase of small numbers of A2 alleles in the vicinity of

an equilibrium with A1 fixed. Under these conditions, all

the A2 bearing genotypes are assumed to be heterozygotes

and t C t11. In the vicinity of this equilibrium,

BðtÞ ffi Bðt � t11Þw11F. This is an t11-th order difference

equation with an asymptotic solution, B tð Þ ¼ bkt11 , where,

bk ¼
ffiffiffiffiffiffiffiffiffiffi
w11Ft11
p

. We next derive the time dependent

dynamics of a small perturbation, e2, to the A2 allele

frequency and determine if it will increase within the

generation of the A1A1 homozygotes, e.g. t11 time units.

The approximate linear dynamics are given by, bkte2 tð Þ ¼
bkt�t12e2ðt � t12Þw12F; or

e2 tð Þ ¼ w12Fbk�t12e2ðt � t12Þ ð8Þ

Table 1 A summary of parameters used in the models

Parameter Description Dimension

fr Feeding rate Retractions per minute

E(fr) Fraction of ingested food that is digested None

a1 y-intercept of E(fr) None

a2 Slope of E(fr) (Retractions per minute)-1

Mr frð Þ Metabolic rate Joules per minute

b1 y-intercept of Mr frð Þ Joules per minute

b2 Slope of Mr frð Þ Joules per minute/retractions

per minute

Cr frð Þ Consumption rate Joules per minute

c1 y-intercept of Cr frð Þ Joules per minute

c2 Slope of Cr frð Þ Joules per minute/retractions

per minute

Dr Net energy intake with no detoxification Joules per minute

d1 Fraction of digested food that is converted to metabolic energy dimensionless

e1 Detoxification cost as a fraction of food intake Dimensionless

~Dr
Net energy intake with detoxification Joules per minute

t11, t12, t22 Age of reproduction for the A1A1, A1A2, and A2A2 genotypes respectively Time units

w11, w12, w22 Probability of surviving to the age of reproduction for the A1A1, A1A2,

and A2A2 genotypes respectively

Dimensionless

F11, F12, F22 Fertility for the A1A1, A1A2, and A2A2 genotypes respectively Offspring produced per individual
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t12 - t11. The heterozygote viability needed to permit the A2 allele to
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Fig. 2 Initial increase conditions as a function of fecundity. The

heterozygote viability needed to permit the A2 allele to increase when

rare is expressed as its value relative to the homozygote viability, e.g.

w12/w11 and is equal to w11Fð Þðt12 � t11Þ=t11 . The parameter values

were t12 = 12, t11 = 10, w11 = 0.1
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Equation 8 is a t12th order difference equation with an

asymptotic solution, e2 tð Þ ¼ bkt, where bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w12Fbk�t12

t12

q
.

If bkt11 [ 1, then the A2 allele should increase relative to the

A1 allele and become established in the population. To

determine whether the A2 allele will become fixed, go to an

equilibrium or perhaps enter a cycle would require addi-

tional analysis. After some algebra we find that the con-

dition that will permit the A2 allele to increase when rare is,

w12Fð Þ1=t12 [ w11Fð Þ1=t11 : ð9Þ

It is interesting that even though all genotypes have the

same fecundity the parameter F is part of the condition for

initial increase. This is because the advantage to earlier

development is a function of fecundity: with increasing F,

the fitness advantage of earlier reproduction increases due

to the exponential increase in progeny over time. Of course

if these genotypes reproduced at exactly the same time, e.g.

t12 = t11, then the initial increase condition would reduce

to w12 [ w12 and evolution would no longer depend on the

value of F. If we look at the relative viability of the het-

erozygote (w12/w11), we see that the viability advantage

that is needed for the A2 allele to increase-when-rare

increases as F increases (Fig. 2). As the developmental

delay of the heterozygote increases, the relative viability

advantage needed for the A2 allele to increase-when-rare

increases (Fig. 3).

A protected polymorphism requires that both the bp1 = 1

and the bp2 = 1 equilibria be unstable which will be the

case when,

w12Fð Þ1=t12 [ w11Fð Þ1=t11 and w22Fð Þ1=t22 ð10Þ

Although we know if the protected polymorphism con-

ditions are satisfied neither allele will be fixed we can’t say

anything specific about the polymorphism. There may be

stable points, multiple locally stable points or stable cycles.

We next study these protected polymorphisms with some

specific examples. We show an example of a protected

polymorphism (Fig. 4). The approach to this equilibrium is

oscillatory since the leading eigenvalue is a complex

number. The structure of this model produces multiple

eigenvalues with the same modulus. The initial conditions

will determine which of these dominates and thus the

details of this oscillatory behavior. This example produces

a polymorphism even though there is no overdominance in

any single fitness component. The heterozygote viability is

sufficiently larger than the A1A1 homozygote viability that

it has superior fitness despite the 4 days developmental

delay. However the A2A2 homozygote’s viability while

greater than the A1A1 homozygote is not sufficient to insure

the fixation of the A2 allele. Although allele frequencies get

very close 1.0 we do not expect allele fixation. This model

assumes an infinite population size so the conditions for a

protected polymorphism (Eq. 10) guarantee that natural

selection will prevent allele frequency fixation. However,

in a finite population it may certainly be the case that

fluctuations this extreme could push the A2 allele to fixa-

tion due to random loss of all A1 carrying genotypes.

The model can be generalized to allow fecundity to vary

among genotypes. Let the fecundity of A1A1, A1A2, and

A2A2 be F11, F12, and F22 respectively. Then the equivalent

of the initial increase condition, Eq. (9), is,

w12F12ð Þ1=t12 [ w11F11ð Þ1=t11 : ð11Þ

Discussion

It is well established that larval feeding rates are highly

correlated with competitive ability (Burnet et al. 1977;

Joshi and Mueller 1988). Given this fact why would there

be extensive additive genetic variation for larval feeding

rates? One explanation is that selection on feeding rates

varies over time and space. While competitive ability is

important in certain types of crowded environments (Bo-

rash et al. 1998) it may also decrease the efficiency of

energy intake which may have a deleterious fitness impact

in other environments (Joshi and Mueller 1996; Mueller

1990). In this paper we argue that certain kinds of toxic

larval environments may in fact favor the evolution of

reduced feeding rates as a consequence of the improved

energy intake of slower feeding larvae.

Laboratory evolution experiments have shown that

Drosophila larvae adapted to high levels of urea may have
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viability values were, w11, w12, and w22 were 0.1, 0.5 and 0.7

respectively. The ages of reproduction, t11, t12, and t22 were 12, 16,

and 20 time units respectively. All genotypes were assigned a

fecundity of 15. These parameters satisfy the conditions of Eq. (10)

for a protected polymorphism. Equation (7a, b) were used to generate

the allele frequency trajectories above
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nearly the same viability in high urea as control popula-

tions have in standard food (Shiotsugu et al. 1997) how-

ever, their development time is demonstrably increased.

Adaptation to toxic environments containing high levels of

urea and ammonia are accompanied by the evolution of

lower larval feeding rates (Borash et al. 2000) consistent

with the theory developed in this paper.

Our genetic model assumes a penalty for slow feeding in

the form of delayed development and thus reproduction. In

the laboratory this penalty can be removed by forcing all

flies, even those that develop quickly to reproduce at the

same time. This of course would be expected to make the

evolution of slower feeding and resistance to toxins easier

than suggested in the more general model we develop in

this paper. In a natural environment flies could reproduce

multiple times which was not included in our models.

However, the faster development time and single time of

reproduction modelled here would still be a major con-

tributor to the outcome of evolution in natural populations.

Other stressful environments

Drosophila populations also respond evolutionarily to

parasitoid stress by lowering feeding rates (Fellowes et al.

1999). Even though it appears that the response of larvae to

parasitoid stress involves an immune response that is

energetically costly it is not directly proportional to food

consumption. Thus the previous model would not seem to

cover this type of evolution. It may not be unreasonable to

assume that the metabolic rate might increase due to this

more or less constant background energy requiring immune

response. In the previous model that would affect the y-

intercept of the metabolic model, e.g. b1. However the

value of f �r is not affected by b1. But, if this adaptive

immune response increases b2, then that will lead to a

reduction in f �r , since the numerator of Eq. (5) is negative.

Crowding

Previous theoretical and experimental work have suggested

that natural selection in crowded Drosophila cultures

would favor the evolution of higher feeding rates due to the

increased competitive ability of fast feeding larvae (Joshi

and Mueller 1988; Mueller 1988a, b). However, under this

theory (Mueller 1988a) there was no penalty to feeding

fast. It was assumed that the larvae consumed food until it

was gone and the faster feeding larvae, who consumed

more food, would be larger and thus more likely to have

achieved the minimum size needed for successful pupation.

Under the model developed in the previous section larvae

that fed faster than the optimum rate would in fact have a

reduced net energy intake and thus would be smaller when

all the food was gone relative to slower feeding larvae that

were at the optimum.

Crowded environments are likely to be heterogeneous.

In fact in these cultures you can at times see hundreds of

larvae crowded around one small section of food and a

nearby patch be almost unoccupied. Fast feeding is also

associated with roving behavior (Mueller et al. 2005; So-

kolowski et al. 1997). The advantage of feeding fast in

these environments may be in the ability of the faster

feeding larvae to find high quality patches of food before

slow feeding larvae do. Fast feeding is also not uncondi-

tionally favored in crowded environments. In one experi-

mental system it was demonstrated that there is a

polymorphism for both fast and slow feeding larvae pos-

sibly as a result of temporal heterogeneity that arises in

crowded lab populations (Borash et al. 1998).

Testing the theory

Several avenues exist for testing aspects of the theory

developed in this paper. For instance we saw that decreasing

the energy content of food, d1, should lower feeding rates. If

larvae are able to sense the nutritional values of food and

plastically change their feeding rate to conform to the optimal

rate then we should be able to experimentally demonstrate

this by measuring feeding rates in yeast solutions diluted to

different levels. Flies allowed to evolve on low nutrition food

evolve faster development times and thus possibly faster

feeding rates on this food although they are also smaller as

adults (Kolss et al. 2009). It is unclear if these observations are

contrary to the theory outlined here or not. One recent

experiment found no change in larval consumption rates as

they adapted to poor quality food (Vijendravarma et al. 2012).

The theory is also premised on the assumption that

slower feeding larvae will extract more energy from the

food they consume. This could be tested with larvae that

feed at different rates under the same conditions, such as a

comparison of urea or ammonia adapted populations and

their ancestral controls. Likewise gross food consumption

should differ between larvae with different feeding rates

under the same conditions.

The adaptation to toxic environments is premised on the

need to use energy to detoxify these compounds that are

ingested along with the food. The presence of increased

activity among relevant biochemical pathways to detoxify

either ammonia or urea could be empirically studied in

Drosophila with standard RNA expression arrays.

Drosophila encounter toxins in their natural environ-

ments and the evolutionary scenario outlined here may

have been relevant. For instance, Drosophila recens, put-

rida, and tripunctata breed and develop in mushrooms with

high levels of a-amanitin. This compound will kill many

organisms including naı̈ve species of Drosophila like
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Drosophila melanogaster but is well tolerated by these

mycophagous species (Jaenike et al. 1983). Likewise,

Drosophila schellia develops in fresh Morinda fruit that

has high levels of octonoic acid that is normally toxic to

sechellia’s close relatives like Drosophila simulans (R’kha

et al. 1991). Finally, Drosophila pachea cannot grow

without the presence of sterols found in the cactus Loph-

ocereus schottii which are in turn toxic to many other

species of Drosophila (Heed and Kircher 1965).

On a larger scale the model developed here also suggests

a mechanism for delayed maturity. Most explanations of

age at maturity revolve around the benefits to adults of

being larger—typically due to their increased fecundity or

mating success (Stearns 1992, chpt 6). The mechanisms

developed here suggest that increasing pre-adult survival

could be the important driver of postponed maturity.
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Archives néerlandaises de zoologie 14:200–281

Borash DJ, Gibbs AG, Joshi A, Mueller LD (1998) A genetic

polymorphism maintained by natural selection in a temporally

varying environment. Am Nat 151:148–156

Borash DJ, Teotonio H, Rose MR, Mueller LD (2000) Density-dependent

natural selection in Drosophila: correlations between feeding rate,

development time and viability. J Evol Biol 13:181–187

Burnet B, Sewell D, Bos M (1977) Genetic analysis of larval feeding

behavior in Drosophila melanogaster. II. Growth relations and

competition between selected lines. Genet Res 30:149–161

Charlesworth B (1994) Evolution in age-structured populations.

Cambridge studies in mathematical biology, vol 2. Cambridge

University Press, Cambridge

Cody ML (1966) A general theory of clutch size. Evolution 20:174–184

Djawdan M, Sugiyama TT, Schlaeger LK, Bradley TJ, Rose MR (1996)

Metabolic aspects of the trade-off between fecundity and longevity

in Drosophila melanogaster. Physiol Zool 69:1176–1195

Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1999) Association

between feeding rate and parasitoid resistance in Drosophila

melanogaster. Evolution 53:1302–1305

Flatt T, Heyland A (eds) (2011) Mechanisms of life history evolution:

the genetics and physiology of life history traits and trade-offs.

Oxford University Press, Oxford

Foley PA, Luckinbill LS (2001) The effects of selection for larval

behavior on adult life-history features in Drosophila melano-

gaster. Evolution 55:2493–2502

Heed WB, Kircher HW (1965) Unique sterol in the ecology and

nutrition of Drosophila pachea. Science 149:758–761

Jaenike J, Grimaldi D, Sluder A, Greenleaf AL (1983) a-Amanitin

tolerance in mycophagous Drosophila. Science 221:165–167

Joshi A, Mueller LD (1988) Evolution of higher feeding rate in

Drosophila due to density-dependent natural selection. Evolu-

tion 42:1090–1093

Joshi A, Mueller LD (1996) Density-dependent natural selection in

Drosophila: trade-offs between larval food acquisition and

utilization. Evol Ecol 10:463–474

Kolss M, Vijendravarma RK, Schwaller G, Kawecki TJ (2009) Life-

history consequences of adaptation to larval nutritional stress in

Drosophila. Evolution 63:2389–2401

Lee KP et al (2008) Lifespan and reproduction in Drosophila: new

insights from nutritional geometry. Proc Natl Acad Sci USA

105:2498–2503. doi:10.1073/pnas.0710787105

Mery F, Kawecki TJ (2003) A fitness cost of learning ability in

Drosophila melanogaster. Proc R Soc Lond B 270:2465–2469

Mueller LD (1988a) Density-dependent population growth and natural

selection in food-limited environments. Am Nat 132:786–809

Mueller LD (1988b) Evolution of competitive ability in Drosophila

due to density-dependent natural selection. Proc Natl Acad Sci

USA 85:4383–4386

Mueller LD (1990) Density-dependent natural selection does not

increase efficiency. Evol Ecol 4:290–297
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