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Abstract

Distributed Sliding Mode Control for Nonlinear Consensus

by

Yujia Wu

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

This dissertation is concerned with the distributed control of nonlinear multi-
agent consensus problems. The main objective of the consensus study is to design
distributed algorithms that rely on only local interaction to achieve global group
behavior. We propose a distributed sliding mode control (DSMC) framework for
nonlinear heterogeneous multi-agent systems under different information exchange
topologies. The DSMC constructs the topological sliding surface and reaching law via
a so-called “topological structured function”. The control law obtained by matching
the topological sliding surface and topological reaching law is naturally distributed.
Under this framework, topological diversity is explicitly incorporated. Also, the
consensus problem is significantly simplified by mapping N interconnected higher-
order dynamics into an N -th order sliding variable. The DSMC framework supports
both leaderless consensus and consensus with a leader. For both cases, we show
asymptotic stability when the topology contains a spanning tree, and further prove
finite-time convergence under the undirected topologies. We also extend the DSMC
framework to MIMO systems.

To demonstrate the usage and show the effectiveness of DSMC, we discuss two
major applications with simulation results. The first application is for heterogeneous
platoon systems. The control objective is to regulate vehicles to travel at a common
speed while maintaining desired inter-vehicle gaps. The information flow topology
dictates the pattern of communication between vehicles in the platoon. The second
application is for flocking of nonholonomic unicycle agents.
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Chapter 1

Introduction

The coordination problem of multi-agent systems has received tremendous attention
from the automation community in the past decade due to the broad applications in
many areas including control of vehicular platoons [77, 84], coordination of unmanned
air vehicles [16], flocking [57], distributed sensor networks [11], and congestion control
in communication networks [49]. One critical issue arising from multi-agent systems
is to develop the distributed control law based on local information that enables all
agents to reach an agreement on certain quantities of interest, which is known as the
consensus problem [40].

1.1 Consensus Problem

Consensus problems have a long history in computer science as the foundation of
distributed computing [46]. The consensus problem was later applied to statistics
[12] in 1960s. The ideas of statistical consensus theory reappeared two decades later
in aggregation of information with uncertainty obtained from multiple sensors and
medical experts [73].

Distributed computation and consensus over a network has a tradition in systems
and control theory starting with the pioneering work in distributed estimation [6], de-
centralized decision making [69], rendezvous problems [43], asynchronous asymptotic
agreement problems [70].

Since [48] introduced the distributed coordination of networked dynamical sys-
tems, we witnessed dramatic advances of various distributed algorithms that achieve
agreements. In [48], a general framework for consensus for networked single-integrators
with balanced graph topologies is established. The authors addressed the leader-
less consensus (cooperative regulation) problem with a linear consensus protocol
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based on disagreement functions, and discovered the connection between the alge-
braic connectivity and performance. Later, [54] extended this result to consensus
with second-order agents under directed topologies. This work showed that con-
taining a spanning tree is a necessary condition with the proposed protocol. [28,
27] introduced the leader-following consensus (cooperative tracking) protocol with
a distributed observer under bidirectional topologies. The state of the leader keeps
changing and is partially measured. It was proved that the agents can follow the
leader if the input of the leader is known. Leader-following consensus is also stud-
ied under directed topologies, proving asymptotic tracking is guaranteed with the
condition of a static leader and the existence of a spanning tree [55]. All the afore-
mentioned works limited the agent model to first or second order integrators. [40]
address the consensus problem with general linear node dynamics by introducing
a distributed observer-type consensus protocol (with an essence from the complex
networks synchronization problem). This method converts the consensus problem of
multi-agent system into a stability analysis of a set of matrices with the same low
dimension (as a single agent).

Following this, consensus problem has been studied from different angles. [2]
showed that for multi-agent systems with bidirectional topologies, the closed-loop
system exhibits a special interconnection structure inherited from the passivity prop-
erties of its components. A passivity-based design framework was proposed for ad-
ditional design flexibility. For multi-agent systems with external disturbances and
model uncertainties, [44] developed H∞ consensus control based on a reduced-order
system. For finite-time convergence, [10] considers a discontinuous control law for
bidirectional topologies. A distributed observer is brought up [65] for consensus
problems with general linear dynamics and an active leader. Consensus of general
linear agents with intermittent interactions is studied in [56, 74]. Distributed model
predictive control is introduced in [83] for consensus problems under bidirectional
topologies. There are other advances in topics such as nonholonomic agents, for-
mation transition and scaling, actuator saturation, and event-based consensus, etc.
There is no way to cover the literature exhaustively in this dissertation, interested
readers can consult recent surveys [52, 47].

Sliding mode control, with its robustness and easy-to-design nature, is widely
applied in platoon systems, which is often viewed as a subcategory of multi-agent
systems. The main shortcoming of existing research on SMC for multi-agent con-
sensus is that it is dedicated to specific fixed topologies. [66, 67] conducted the
research under a fixed leader-predecessor following topology. Here, each following
agent has access to the state information to its predecessor as well as the leader.
Based on this framework, [45] explored the effects of network communication delays
on the stability, and [36] applied the fuzzy-sliding mode control to address nonlinear
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paper type agent topology controller

[48] leaderless single-integrator balanced graph linear
[54] leaderless double-integrator spanning tree linear
[28] active-leader double-integrator bidirectional linear
[55] static-leader single-integrator spanning tree linear
[41] active-leader LTI spanning tree linear
[10] leaderless single-integrator bidirectional discontinuous
[2] leaderless single-integrator bidirectional passive
[44] leaderless single-integrator spanning tree H∞
[65] active-leader LTI bidirectional output-feedback
[74] leaderless LTI spanning tree intermittent
[83] leaderless LTI bidirectional MPC

all nonlinear all sliding mode

Table 1.1: Listing of some literature

node dynamics. [35] extended coupled sliding mode control to a specific bidirectional
topology. Similar structures were used in [23] to integrate tracking errors into the
sliding surface design to overcome bounded disturbances.

In this dissertation, we present a distributed sliding mode control (DSMC) frame-
work for nonlinear heterogeneous node dynamics, and all types of leaders and com-
munication topologies mentioned above.

1.2 Application of Consensus: Platoon Systems

The platooning of connected and automated vehicles is attracting increasing atten-
tion due to its potential in increasing traffic throughput and infrastructure utiliza-
tion, enhancing driving safety, and reducing fuel consumption. The objective of the
platoon control system is to regulate vehicles to travel at a common speed while
maintaining desired inter-vehicle gaps [29, 84].

Platooning was first proposed in the well-known PATH project [61], where linear
control strategies were designed and implemented based on linearized vehicle models.
Importantly, this work focused on a fixed communication topology of information ex-
change between vehicles. Following this, diverse aspects of platoon control have been
explored, including control architecture, platoon modeling, spacing policy, controller
synthesis, and performance requirements. Some representative examples of research
include selection of spacing policies [68], string stability [66], scalability [85], direct
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(a)

(b)

(c)

(d)

Figure 1.1: Common topologies: (a) predecessor following topology, (b) leader-
predecessor following topology, (c) bidirectional topology, (d) leader-bidirectional
topology.

consideration of powertrain dynamics [79], dynamic homogeneity and heterogeneity
[60]. A recent review on platoon control can be found in [37].

The information exchange topology plays a key role in the design of platoon
control systems [37]. Much of the early research on platoon control focused on
radar-based sensing systems, where information topologies were limited to predeces-
sor following topology [25], [17]. The topology is shown in Figure 1.1 (a), where
directed links denote information exchange. With the rapid adoption of vehicle-to-
vehicle (V2V) communications [75], a variety of new information topologies can be
supported, which offer the promise of high performance and robust platoon control.
These include leader-predecessor following topology [66], bidirectional topology [35]
and leader-bidirectional topologies (see Figure 1.1).

Under this diversity of possible information topologies, new control challenges
emerge, in particular when systematically considering nonlinear vehicle dynamics,
communication delay and topology switching. As a result, it is advantageous to
view the vehicle platoon as a multi-agent system, and to employ a networked control
perspective to design distributed controllers [85]. This has led to new advanced control
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methods for platoon control.
Here we survey several distributed design methods specifically for platooning

systems.

• Linear consensus control.

Linear control is one of the most commonly used methods for platoon control
[68, 60], since it can not only facilitate theoretical analysis but is also suitable
for hardware implementations. Many existing results on stability region, sta-
bility margin, and string stability requirements are based on linear controllers
[60, 22, 63].

• Distributed robust control.

The robustness of platoon control systems is an important topic. One practical
way to handle model mismatches in vehicle dynamics is to use the consistent
and accurate input-out behavior of node dynamics [39]. But it is not easy to
accommodate the heterogeneity in node dynamics.

Considering the requirements of string stability, robustness, and tracking per-
formance [19] proposed an H∞ control method for a heterogeneous platoon
with uncertain dynamics and uniform time delays. In this study, all nodes
were combined as a big system. One disadvantage is that the designed con-
troller only works for a specific platoon and it needs to be redesigned when the
scale or interaction topology changes. Similar to the case of linear control, the
decoupling strategy of robust control is also an effective way to overcome this
problem.

• Distributed MPC.

MPC is an optimization-based control technique to anticipate future behavior
of plants and take control actions accordingly. Using MPC techniques, the
control input is obtained by numerically optimizing a finite horizon optimal
control problem where both nonlinearity and constraints can be explicitly han-
dled. This technique has been embraced by many industrial applications, for
instance, collision avoidance and vehicle stability [72, 13].

Currently, most MPCs are implemented in a centralized way. The distributed
MPC is proposed by [83], where each vehicle is assigned a local optimal control
problem only relying on its neighboring vehicles information. This method is
suitable for an unidirectional topologies.

Sliding mode control (SMC) is a promising method to handle nonlinear dynamics,
actuator constraints, and information topology diversity. The pioneering work of
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SMC research on platoon control was conducted by Swaroop and Hedrick (1996)
under a fixed leader-predecessor following topology. Here, each following vehicle can
access the position, velocity and acceleration information of both the lead vehicle and
the preceding vehicle [66]. This work was the first to introduce and analyze the key
notion of string stability of interconnected nonlinear systems. Under this information
topology, Liu et al. (2001) explore the effects of network communication delays on
the stability of the sliding-mode-controlled platoon system [45]. This research studies
the effects of preceding-vehicle information delay and lead-vehicle information delay
on string stability. Lee and Kim (2002) used fuzzy-sliding mode control for platoons
with leader-predecessor following topology to address nonlinear vehicle dynamics
and time-varying parametric uncertainty [36]. The fuzzy SMC controller generate
throttle and brake commands without requiring high-fidelity vehicle models. For
the predecessor-following topology, Ferrara (2009) designed a sliding mode controller
for each vehicle in a platoon to track its preceding vehicle under a constant time-
headway spacing policy [17]. Kwon and Chwa (2014) extended coupled sliding mode
control to bidirectional topology where the preceding vehicle information is used in
the sliding surface design [35]. Similar controller structures were used in [23] to
integrate tracking errors into the sliding surface design, and to overcome bounded
disturbances under different kinds of spacing policies.

The main shortcoming of existing research on SMC for vehicle platoons is that
they are dedicated to fixed information topologies: leader-predecessor following topol-
ogy in [66], [67], [45], and [36]; predecessor following topology in [25] and [17]; bidirec-
tional topology in [35] and [23]. However, in a practical context, information topolo-
gies can vary as platoons are formed, or can change as topologies switch. Chapter
7 focuses on sliding mode control design for vehicle platoons that is agnostic to the
dynamic nature of the information topology.

1.3 Statement of Contributions

We present a distributed sliding mode control (DSMC) design framework for nonlin-
ear heterogeneous multi-agent systems. We propose a new “topologically structured
function” that is used to construct the topological sliding surface and reaching law.
This design results naturally in a distributed control architecture. The distributed
control law is obtained by properly matching the topological sliding surface and topo-
logical reaching law. The consensus problem is significantly simplified by casting N
interconnected higher-order dynamics into N -th order sliding variable. The stabil-
ity and convergence property are proved in the sense of Filippov to cope with the
discontinuity originated from switching terms.
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The advantage of our method is it explicitly supports both consensus problems
with/without leader. It also incorporates all possible information topologies ranging
from undirected topology to directed topologies with spanning tree, and gives stabil-
ity justifications for each one of them. Also, it fits all nonlinear feedback-linearizable
systems.

1.4 Outline of Dissertation

A brief outline of content of the various chapters is as follows:

Chapter 2: Here we review the necessary mathematical tools. The dis-
continuous dynamical systems and the Filippov method are
introduced.

Chapter 3: In this chapter, we present graph theory, the modeling of in-
formation topologies, and some algebraic results for graphs.

Chapter 4: This chapter presents the problem formulation, definition of
the topological structured function, and DSMC design for con-
sensus 1. without a leader, 2. with a static leader, 3. with
an active leader. The design process includes the introduction
of topological structured sliding surface and reaching law. We
will show how to match the sliding surface and reaching law
to arrive at a distributed control formula.

Chapter 5: Here we presents the stability analysis results. This chapter in-
cludes the discussions on Lyapunov stability, finite-convergence,
input-to-state stability, robustness, and the relation between
graph and performance.

Chapter 6: This chapter contains the application of DSMC to a platooning
system. In addition, we have a discussion on propogation of
disturbance and topology.

Chapter 7: In this chapter, we present the MIMO DSMC design. We also
show an application of using DSMC to study the sparsity-
promoting optimal control framework.

Chapter 8: This chapter presents some conclusions, a summary and some
directions for future research.
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Chapter 2

Discontinuous Dynamical Systems

Discontinuous dynamical systems appear in many real-world applications. There are
applications in minimum-time trajectory generation, thermostats on-off controllers,
robot manipulation, etc. In sliding mode control, discontinuities are also intentionally
designed to achieve regulation and stabilization.

Usually, we describe nonlinear time-invariant systems as:

ẋ(t) = f(x(t)), x(t0) = x0, (2.1)

where x ∈ Rn, n is a positive integer, f : Rn → Rn. If x(t) is a solution for
(2.1), x(t) has to be continuously differentiable (due to the right-hand side). If x(t)
satisfies ẋ(t) = f(x(t)) and x(t0) = x0, and x(t) is continuously differentiable, then
it is called a classical solution. Usual Lyapunov analysis relies on the existence and
uniqueness of the classical solution [32]. One common sufficient condition for the
classical condition to exist and being unique is f being Lipschitz continuous [32].

If f is not continuous, then the classical solution x(t) might not exist. Consider
the example [9]:

f(x) =

{
−1 x > 0
1 x ≤ 0

does not have a classical solution from zero. Suppose that there exists a continuously
differentiable function x : [0, T ] → R such that ẋ(t) = f(x(t)) and x(0) = 0. Then
ẋ(0) = 1, and ẋ(t) = −1 for any t > 0, which shows x(t) is not continuous at t = 0.

One sufficient condition on the existence of the classical solution is x 7→ f(x)
being continuous. One common sufficient condition on the uniqueness of the classical
solution is x 7→ f(x) being locally Lipschitz, which can be relaxed to one-sided
Lipschitz.

However, for sliding mode control, f is not continuous, under this case, classical
solution-based Lyapunov analysis could not be applied. Fortunately, for discontin-
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uous dynamical systems, there are several other solutions, such as Caratheodory,
Filippov, Krasovskii, Sample-and-Hold, etc.

A Caratheodory solution for (2.1) is a absolutely continuous function x : [0, T ]→
Rn that satisfies (2.1) except for a µ-null set. A Filippov solution for (2.1) is a
absolutely continuous function satisfies the differential inclusion

ẋ(t) ∈ F(x(t)),

where F : Rn → B(Rn) is the Filippov set-valued map generated from f , which will
be introduced in the next subsection.

Based on the properties of different systems, we should employ different solu-
tions. Caratheodory solutions are employed for time-depend vector fields that
depend discontinuously on time, such as dynamical systems involving impulses and
discontinuous inputs. Filippov solutions are for systems with switches and sliding.
Krasovskii solution is similar to Filippov solution, and it applies to discontinuous
systems with delay.

It is hard for us to survey many of solutions in this dissertation due to the space
limit, readers could consult: Caratheodory and Filippov [9], [18], Krasovskii [34],
Sample-and-Hold [33], Hermes [26], [3], Ambrosio [1], and Yahubovich-Leonov-Gelig
[31].

By the nature of our system, we choose the Filippov solution, and carry out our
Lyapunov analysis under this framework. In the following part of this section, we
introduce mathematical preliminaries and Filippov solution. This framework extends
Lyapunov theorems to dynamical systems (2.1) with measurable and locally essential
bounded f .

2.1 Preliminaries

Notation

For a set M , its closure is written M . The smallest convex set containing M (i.e.,
its convex hull) is denoted by coM . Equivalently, coM is the set of all convex
combination of points drawn from M . The set of positive real numbers is denoted
as R+. For a function f , define f(M) to be the image of M under f . For the affine
function f(x) = Ax+ b, where A ∈ Rm×n, we write f(M) = AM + b. If M is closed
and bounded (i.e., compact), co(AM + b) = AcoM + b.

For a symmetric matrix A, the maximum and minimum eigenvalues are denoted
by λmax(A) and λmin(A), respectively. If A is positive definite, the square root of the
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matrix is denoted by A
1
2 , which is also symmetric and positive definite. For a vector

x = [x1, x2, · · · , xn]> ∈ Rn, define sgn(x) as

sgn(x) =[sgn(x1), sgn(x2), · · · , sgn(xn)]>,

where

sgn(xi) =


−1, xi < 0,
0, xi = 0,
1, xi > 0.

for i ∈ {1, · · · , n}.

Measure theory

Our later analysis relies on the measure theory and the Lebesgue measure. In this
section, we will give a quick review on measure theory to help us understand basic
concepts.

Definition 1. Let X be a non-empty set, M is said to be an algebra on X if it
satisfies

1. contains empty set and X: ∅ ∈ M and X ∈M.

2. closed under complement: if E ∈M then X \ E ∈M.

3. closed under finite intersection and union: if E1, · · · , En ∈ M, then
⋃n
i Ei ∈

M and
⋂n
i Ei ∈M.

The algebra is a σ-algebra if the intersection and union can be countable infinite
many.

Let A denotes σ-algebra, (X,A) is called a measurable space. The sets in A are
called measurable sets.

Definition 2. For topological space X, let G be the collection of open sets. σ(G) is
the smallest σ-algebra containing open sets. B := σ(G) is called Borel σ-algebra. The
elements of B are called Borel sets.

Denote the Borel σ-algebra in R as BR, it will play an important role in the
construction of set-valued map. BR can be generated by each of the following

1. the open intervals,

2. the closed intervals,

3. half open intervals: E = {(a, b] : a < b} or E = {[a, b) : a < b},
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4. the open rays: E = {(a,∞) : a ∈ R} or E = {(−∞, a) : a ∈ R},

5. the closed rays: E = {[a,∞) : a ∈ R} or E = {(−∞, a] : a ∈ R}.

The Borel σ-algebra in Rn is the product Borel σ-algebra generated by sets:

{π−1i (Ei) : Ei ∈Mi, i ∈ {1, · · · , n}},

where πi : Rn → R are the coordinate maps, Mi is the Borel σ-algebra on the i-th
coordinate.

Definition 3. A measure µ : A → [0,∞] is defined on measurable space (X,A),
satisfying:

1. µ(∅) = 0,

2. countable additive: if {Ei} is a collection of disjoint sets inM, then µ(
⋃∞
i=1Ei) =∑∞

i=1Ei

By µ-null set, we mean a measurable set with zero measure.
By the definition of measure, some properties follow:

1. A ⊆ B ∈ A ⇒ µ(A) ≤ µ(B),

2. countable sub-additivity for A =
⋃∞
i Ai, µ(A) ≤

∑∞
i=1 µ(Ai)

3. continuity from above, Ai ↑ A, then µ(A) = limn→∞ µ(An)

4. continuity from below, Ai ↓ A with µ(A1) <∞, µ(A) = limn→∞ µ(An).

Definition 4. Outer measure µ∗ is defined on all subsets of X.

1. µ∗(∅) = 0

2. µ∗(A) ≤ µ∗(B) if A ⊂ B.

3. µ∗(
⋃∞
i Ai) ≤

∑∞
i µ∗(Ai) countable sub-additivity.

Definition 5. µ∗-measurable of a set A is µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac).

This guarantees the inner measure is equal to the outer measure.

Theorem 1. Caratheodory’s theorem: If µ∗ is an outer measure on X, the collection
M of µ∗-measureable sets is an σ-algebra, and the restriction of µ∗ toM is a complete
measure.
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Definition 6. A mapping f : (X,AX) → (Y,AY ) is said to be measurable iff
f−1(E) ∈ AX for all E ∈ AY .

Remark 1. The functions we discuss in this dissertation are all measurable. Almost
all functions we see on mechanical systems are measurable. To my knowledge, the
constructions of a non-measurable set and non-measurable require the invocation of
the axiom of choice or Zorn’s lemma. One famous example of non-measurable set is
called the Vitali set.

To construct Lebesgue measure on the real line, we also need the concept, called
premeasure. Compared to the outer measure, which is defined on all subsets on X,
the premeasure is defined on an algebra on X.

Definition 7. Let A ∈ B(X) be an algebra, a function µ0 : A → [0,∞] is a
premeasure if it satisfies:

1. µ(∅) = 0,

2. countablely additive: let {Aj}∞1 be a collection of disjoint sets in the algebra A,
then µ0(

⋃∞
i=1Aj) =

∑∞
i=1 µ0(Aj).

One way to construct outer measure from premeasure is:

µ∗(E) = inf{
∞∑
1

µ0(Aj) : Aj ∈ A, E ∈
∞⋃
i=1

Aj} (2.2)

Theorem 2. Let A ⊆ B(X) be an algebra, µ0 be a premeasure on A, and M is the
σ-algbra generated by A. Then the outer measure generated by (2.2) restricted on
M is a complete measure.

On the real line, the Borel algebra can be generated with half-open intervals. We
construct the premeasure, if (aj, bj] are disjoint half-open intervals, let

µ0(
n⋃
1

(aj, bj]) =
n∑
1

(bj − aj), (2.3)

and let µ(∅) = 0. The measure induced by the premeausre (2.3) is called Lebesgue
measure.
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2.2 Discontinuous systems

Sliding mode control is used to stabilize a platoon by intentionally introducing dis-
continuities in the feedback loop [71]. The closed-loop dynamics with discontinuity
do not satisfy the traditional Lipschitz conditions that assure the existence and the
uniqueness of continuous differentiable solutions. Solutions of discontinuous ordinary
differential equations can be analyzed using Filippov methods [18]. Our exposition
here follows [9].

Consider the vector-valued ordinary differential equation

ẋ(t) = f(x(t)). (2.4)

Here, x(t) ∈ Rn, f : Rn→Rn, and f is discontinuous.
The framework of Filippov solution for discontinuous f is formulated around the

concept of set-valued maps F : Rn → B(Rn), where B(Rn) is the power set of Rn.
The idea is to associate a set-valued map to f by looking at the neighboring values
of f at each point. Specifically, for x ∈ Rn, the vector field of f is evaluated at the
points belonging to B(x, δ) (open ball). We examine the effect of δ > 0 approaching
0. For additional flexibility, we can exclude a µ-null set when doing this evaluation.

The Filippov set-valued map F [f ] : Rn→B(Rn) associated with f is defined as

F [f ](x) ,
⋂
δ>0

⋂
µ(H)=0

co{f(B(x, δ) \H)}, x ∈ Rn, (2.5)

where B(x, δ) is a open ball of radius δ > 0 centered at x, and the intersection is
taken over all sets H with zero Lebesgue measure.

Example 1. Computation of of Filippov set-valued map when f is piecewise contin-
uous. Let f : Rn → Rn be a piecewise continuous mapping. Let there exist finite of
disjoint open sets {Di}m1 , where Di ⊆ Rn and Rn =

⋃n
1 D̄i, and f is continuous on

each Di. Denote S as the set of unions of all boundaries of Di, note that S is the
set where f is discontinuous, and µ(S) = 0.

• For x ∈ Di,
F [f ](x) = {f(x)}

• For x ∈ S,

F [f ](x) =co{ lim
i→∞

f(xi) : xi → x, xi /∈ S}
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Definition 8. An absolutely continuous function x(t) : [0, T ]→Rn is said to be a
solution of (2.4) in the sense of Filippov if for almost all t ∈ [0, T ],

ẋ(t) ∈ F [f ](x(t)). (2.6)

The point xe is an equilibrium of the differential inclusion (2.6) if 0 ∈ F [f ](xe).

Lemma 1. [9] ( Existence of Filippov solution) Let f : Rn→Rn be measurable and
locally essentially bounded, i.e., bounded on a bounded neighborhood of every point,
excluding sets of measure zero. Then for all x0 ∈ Rn, there exists a Filippov solution
of (2.4) with initial condition x(0) = x0.

The existence of solution is implicitly required for stability in the sense of Lya-
punov and asymptotic stability [32], while the solutions for a discontinuous system
are not necessarily unique.

Example 2. Consider the system ẋ(t) = sgn(x(t)), for initial condition x(0) = 0,
there are three solutions x1(t) = −t, x2 = t, x3 = 0.

Remark 2. The traditional sliding mode control does not need the Filippov solution
treatment [32], [62]. The reason for this is that under usual sliding mode control,
with the 1 dimensional sliding variable, and specific set-up of the reaching law, the
solution exists and is unique. This does not holds in our case, in the distributed
sliding mode control, the reaching law is multi-dimensional. We will introduce this
in the subsequent sections.

Filippov solutions for discontinuous system are not necessarily unique for each
initial condition. Therefore, when considering properties such as stability in the sense
of Lyapunov, asymptotic stability and invariance, we must specify whether attention
is being paid to a particular solution starting from an initial condition (“weak”)
or to all the solutions starting from an initial condition (“strong”). For example,
“weakly stable equilibrium point” means that at least one solution starting close to
the equilibrium point remains close to it, whereas “strongly stable equilibrium point”
means that all solutions starting close to the equilibrium point remain close to it.
Detailed definitions can be found in [18, 9].

To compute the Lie derivative of a set-valued map, we need to introduce the
generalized gradient [8]. Let V : Rn → R be a locally Lipschitz function, and let
SV ⊆ Rn denote the set of points where f fails to be differentiable.

Definition 9. The generalized gradient ∂V : Rn → B(Rn) is defined by

∂V , co{ lim
i→∞
∇V (xi) : xi → x, xi /∈ K ∪ SV }, (2.7)
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where K is a µ-null set arbitrarily chosen to simplify the computation.

The Lie derivative of a set-valued map is defined as follows. Given a locally
Lipschitz function V : Rn → R and a set-valued map F : Rn → B(Rn), the set-
valued Lie derivative LFV : Rn → B(Rn) of V with respect to F at x is defined
as

LFV (x) ,{a ∈ R : there exists v ∈ F(x), such that

ξ>v = a for all ξ ∈ ∂V (x)},

where ∂V (x) denotes the generalized gradient [8]. If the function V (x) is continuously
differentiable, the generalized Lie derivative takes the following form:

LFV (x) ,
{
∇V (x)>v : v ∈ F(x)

}
.

Lemma 2. Let x : [0, t1] → Rn be a solution of the differentiable inclusion (2.6),
and let V : Rn → R be locally Lipschitz and regular. Then,

i. The composition t 7→ V (x(t)) is differentiable at almost all t ∈ [0, t1].

ii. The derivative of t 7→ V (x(t)) satisfies

d

dt
(V (x(t))) ∈ LFV (x(t)) for a.e. t ∈ [0, t1].

Lemma 3. [9] ( Discontinuous Lyapunov theorem) Let f : Rn → Rn satisfy the hy-
potheses of Lemma 1, and F [f ] : Rn → B(Rn) be the set-valued map corresponding
to f . Let xe be an equilibrium of the differential inclusion (2.6), and let D ⊂ Rn be
an open and connected set with xe ∈ D. Furthermore, let V : Rn → R be such that
the following holds:

i. V is locally Lipschitz and regular on D.

ii. V (xe) = 0, and V (x) > 0 for x ∈ D \ {xe}.

iii. max LFV (x) ≤ 0 for each x ∈ D. Then, xe is a strongly stable equilibrium of
(2.6). In addition, if (iii) above is replaced by

iv. max LFV (x) < 0 for each x ∈ D \ {xe}.
Then, xe is a strongly asymptotic stable equilibrium of (2.6).

Note that a continuously differentiable function is automatically locally Lipschitz and
regular, and hence one can invoke Lemma 3 for such functions.
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Lemma 4. [9] ( Discontinuous version of Lasalle’s invariance principle) Let f : Rn →
Rn satisfy the hypotheses of Lemma 1, and let F [f ] : Rn → B(Rn) be the set-valued
map corresponding to f . Let Ω ⊂ Rn be compact and strongly invariant for (2.6),
and assume max LFV (x) ≤ 0 for each x ∈ Ω. Then, all solutions x : [0,∞) → Rn

of (2.6) starting at Ω converge to the largest weakly invariant set M contained in

Ω ∩ ZF ,V ,

where ZF ,V = {x ∈ Rn : 0 ∈ LFV (x)}.
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Chapter 3

Graph Theory

In the multi-agent consensus problem, one of the most important properties is the
information topology. The information flow topology dictates the pattern of com-
munication between agents in the system. This information is essential to effective
control, and therefore plays a central role in affecting the design and performance of
control strategies.

The information topology is described by graph. We will introduce graph theory
in this section.

3.1 Introduction to Graph

A graph G = (V , E) is a tuple consisting of a finite set V of vertices and a finite set E
of edges where each edge is an unordered pair of vertices. The two vertices associated
with an edge e are called the end-vertices of e. The edge between two vertices v1
and v2 is denoted by e = (v1, v2). We also denote the set of vertices of a graph by
V(G) and the set of edges of G by E(G). A vertex of a graph is also called a node.
The number of vertices is denoted with |V|, and number of edges is denoted with |E|.

We call a graph a directed graph or digraph if each edge is associated with a
direction. The elements of E are called directed edge or arc. For a directed graph
G = (V , E), e = (u, v) ∈ E , this means there is a directed edge from u to v. u is the
tail of e, and v is the head of v. We say the edge e is leaving u and terminating at v.
A node is a source (sink) if there is no edge terminating at (leaving) the node.

The degree of a vertex v in a graph G is denoted by deg(v), is defined as the
number of edges incident to v.

Lemma 5. Let G = (V , E) be a graph,
∑

v∈V deg(v) = 2|E|.
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The concept of the degree of vertex of graphs also extends to digraphs. The
indgree of a vertex v of a digraph is the number of directed edges terminating at v,
and the outdegree of v is the number of directed edges leaving v.

Lemma 6. Let G = (V , E) be a directed graph, then
∑

v∈V indeg =
∑

v∈V outdeg =
|E|.

let G = (V , E) be a directed graph, the undirected graph G ′ = (V , E ′) is called the
underlying graph of G if G ′ is constructed from G such that (u, v) ∈ E ′ if and only
if (u, v) ∈ E . A sequence of successive edges {(i, k), (k, l), · · · , (m, j)} is a directed
path from node i to node j. A directed graph G is weakly connected if its underlying
graph is connected. A vertex u is said to be reachable from a vertex v, if there is a
directed path from v to u. A digraph is strongly connected if every pair of vertices
is reachable from each other.

A tree is an undirected graph in which any two vertices are connected by exactly
one path. An example is shown in fig. 3.1. Photo credit: https://en.wikipedia.

org/wiki/Tree_(graph_theory)

Figure 3.1: Example: tree

A directed graph G contains a spanning tree if there exists a node v, such that
all other nodes can be reached via a directed path. v is also called the root of the
spanning tree.

A subgraph of a graph G is a graph G ′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊂ E .
A graph with an empty edge set is called a null graph. A graph in which each pair
of distinct vertices are adjacent is called complete graph.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The union of G1 and G2
denoted by G1 ∪ G2 is defined as G3 = (V1 ∪ V2,V1 ∪ E2). Similarly, the intersection
of G1 and G2 denoted by G1 ∩ G2 is defined as G4 = (V1 ∩ V2,V1 ∩ E2).

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Let G be a graph with the vertex set V = {v1, v2, · · · , vn}, and the edge set
E = {e1, e2, · · · , em}. The adjacency matrix of G is an n×n matrix A = [aij] defined
as {

aij = 1, If (j, i) ∈ E ,
aij = 0, Otherwise.

A directed graph G is called balanced if
∑

i 6=j aij =
∑

j 6=i aji for all i ∈ V . An
example from [48] of balanced graphs is shown in 3.2.

Figure 3.2: Example: balanced graphs [48]

The Laplacian matrix L = [lij] ∈ RN×N is defined as:

lij =


−aij, if i 6= j,

N∑
k=1, k 6=i

aik, if i = j,
∀i, j ∈ V .

For an undirect graph, the adjacency matrix and the Laplacian matrix are symmetric.
This does not hold for the direct graph.

We also define incidence matrix E = [eij] ∈ R|E|×|V| as:

eij =


√
aij, (i, j) ∈ E and i < j,
−√aij, (i, j) ∈ E and i > j,
0, otherwise.

(3.1)
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We can easily check that EᵀE = L.

3.2 Graph for Consensus Problem

The communication topology of the networked system is described by a directed
graph (digraph) G with two subgraphs Gagent and Gleader.

The subgraph Gagent = (V , E) describes the communication topology among the
agents with the node set V = {1, . . . , N} and the edge set E ⊆ V × V . An edge
of Gagent leaving node i and terminating at node j is denoted by eij = (i, j). We
say node i is the tail and node j is the head of eij. The connectivity of Gagent is
represented by adjacency matrix A and Laplacian matrix L.

The subgraph Gleader describes the communication topology between the virtual
leader and the agents. Assume the virtual leader is a source, we use the pinning
matrix P to denote the edges leaving the leader and terminating at nodes in V :

P = diag(p1, p2, . . . , pN),

where pi ∈ {0, 1}. If there is an edge from leader to node i, pi = 1; otherwise, pi = 0.

Figure 3.3: Example: directed topology
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Example 3. Pinning matrix and Laplacian matrix of Figure. 3.3

P = diag([1, 0, 1, 0, 0, 0, 0, 0])

L =



0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 −1 1 0 −1 0
0 0 −1 0 0 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1



Figure 3.4: Example: undirected topology

Example 4. Pinning matrix and Laplacian matrix of Figure. 3.4

P = diag([1, 0, 1, 0, 0, 0, 0, 0])

L =



2 −1 0 −1 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 1 0 0 −1 0 0
−1 0 0 2 −1 0 0 0
0 0 0 −1 2 0 −1 0
0 0 −1 0 0 2 −1 0
0 0 0 0 −1 −1 3 −1
0 0 0 0 0 0 −1 1


3.3 Algebraic Results

In this section, we present some of the algebraic results related to graph theory. The
exposition and results follow [82, 48, 77, 38, 78] with minor modifications.
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Theorem 3. [48] Let G = (V , E) be a weighted directed graph with Laplacian L. If
G is strongly connected, then rank(L) = |V| − 1.

Corollary 1. Let G = (V , E) be undirected graph with Laplacian L. If G is connected,
then rank(L) = |V| − 1.

Theorem 4. [48] (Balanced graph) Let G = (V , E) be a directed graph with adjacency
matrix A. Then, all the following statements are equivalent.

• G is balanced.

• η = 1 is the left eigenvector of the Laplacian L of G associated with the zero
eigenvalue. i.e. 1>L = 0.

•
∑n

i=1 ui = 0, ∀x ∈ R|V| with ui =
∑

j 6=i aij(xj − xi).

Theorem 5. [53] Suppose that directed graph G = (V , E) is strongly connected.
Let x = [x1, x2, · · · , xN ]> be a left eigenvector for the Laplacian associated with the
eigenvalue 0. Define

Λ = diag{x1, x2, · · · , x|V|},
Q =ΛL+ L>Λ.

Then P � 0 and Q � 0.

More specifically, let’s apply the upper theorems to real topologies.

Theorem 6. [78] Consider a network of agents with topology G = Gleader ∪ Gagent.
Assume Gagent is undirected and connected, and there exists at least one edge from
the leader to one of the followers. Then L+ P � 0.

Proof. When Gagent is undirected and connected, L is positive semi-definite, and the
algebraic multiplicity of the zero eigenvalue is one. The eigenvector corresponding
to zero eigenvalue is 1 , [1, 1, . . . , 1]> ∈ RN [21]. Define eigenvalues of L to be
λ1 = 0 < λ2 ≤ . . . ≤ λN , and the corresponding eigenvectors are η1, η2, . . . , ηN ,
where η1 = 1. Since L is symmetric, it can be diagonalized by a orthogonal matrix
composed of N linearly independent eigenvectors, so any vector x ∈ RN can be
written as a linear combination of the eigenvectors, x =

∑N
i=1 ciηi, where ci, i ∈ N

are constants. Since G contains a spanning tree, P 6= 0, and η>1 Pη1 > 0. For any
x 6= 0, there is

x>(L+ P)x =
N∑
i=2

λic
2
i η
>
i ηi + x>Px > 0.
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The following theorems are about spanning trees.

Theorem 7. [82] Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader. Then, L+ P is nonsingular
and eigenvalues have positive real part, i.e., Re[λ(L+ P)] > 0.

Theorem 8. [82] Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader. Define

a =[a1, · · · , aN ]> = (L+ P)−11,

b =[b1, · · · , bN ]> = (L+ P)−>1,

D = diag

(
b1
a1
,
b2
a2
, · · · , bN

aN

)
, (3.2)

Q =D(L+ P) + (L+ P)>D. (3.3)

Then, D � 0 and Q � 0.

Corollary 2. [41] Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader. Let

[λ1, λ2, · · · , λN ] = (L+ P)−>1,

Λ = diag{λ1, λ2, · · · , λN},
Q = Λ(L+ P) + (L+ P)>λ.

Then Λ � 0 and Q � 0.

The following theorems are about strongly connected graphs.

Theorem 9. [82] Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader, and G is strongly connected.
Denote λ = maxi≤N(lii+pi) and B = λIN− (L+P). Let x > 0 and y > 0 be the first
right and left eigenvectors of L + P with respect to the eigenvalue λ − ρ(B), where
ρ(B) denotes the largest absolute value of its eigenvalues.

Define

D = diag

{
y1
x1
, · · · , yN

xN

}
,

Q =D(L+ P) + (L+ P)>D.

Then D � 0 and Q � 0.
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Corollary 3. [82] Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader, and G is strongly connected.
Denote λ = maxi≤N(lii+pi) and B = λIN− (L+P). Let x > 0 and y > 0 be the first
right and left eigenvectors of L + P with respect to the eigenvalue λ − ρ(B), where
ρ(B) denotes the largest absolute value of its eigenvalues.

Define

D = diag

{
y1
x1
, · · · , yN

xN

}
,

Q =D(L+ P)> + (L+ P)D.

Then D � 0 and Q � 0.

The following theorem is the discontinuous version of the former theorems, we
will use this in the discontinuous analysis.

Theorem 10. Consider a network of agents with topology G = Gleader ∪ Gagents.
Assume there is a spanning tree rooted from the leader. Let D be as defined in (3.2).
For x ∈ RN , define set W as

W = co{x̄ = [x̄1, · · · , x̄N ]> : x̄i = sgn(xi), ifxi 6= 0;

x̄i = {−1, 1}, ifxi = 0}.
(3.4)

Then x>D(L+ P)w ≥ 0 for all x ∈ RN and w ∈ W.

Proof. From (3.4), we have

xiwi =

{
0, ifxi = 0,

xi sgn(xi), ifxi 6= 0,

where wi is the i-th element of w. Hence, we have

x>D(L+ P)w =
N∑
i=1

dipi|xi|+ x>DLw, (3.5)

where di and pi is the i-th diagonal term of D and P . With Lemma 8, there is D � 0,
we have dipi|xi| ≥ 0.

Define H = [hij] ∈ RN×N as

hij =

{
lii, if i = i,

wilijwj, if i 6= j
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where lij is the (i, j)th term of L. One can easily check

x>DLw = |x|>DH1. (3.6)

Also, we have hii = lii for all i ∈ V , and hij ≥ lij for i, j ∈ V and i 6= j (lij ∈ {0, 1}
and wi, wj ∈ [0, 1]). We can conclude H ≥ L.

Since L1 = 0 and H−L ≥ 0, we have

x>DLw =|x|>DH1− |x|>DL1

=|x|>D(H−L)1 ≥ 0.
(3.7)

Thus, we have x>D(L+ P)w =
∑N

i=1 dipi|xi|+ x>DLw ≥ 0 for all w ∈ W .

3.4 Graph and Stability

From the results Theorem 5 to Corollary 3, we see the equation

Q = D(L+ P)> + (L+ P)D, (3.8)

several times.
Recall the Lyapunov equation of linear systems. Consider a continuous-time

linear-invariant system:
ẋ(t) = Ax(t),

where x ∈ Rn, A ∈ Rn×n.
Select the specific positive definite equation V (x) = x>Px with P � 0, P ∈ Rn×n,

if we have

d

dt
V (x) = x>A>Px+ x>PAx = x>(A>P + PA)x,

with
Q := A>P + PA. (3.9)

Stability conditions are:

• If Q � 0, then the system is stable in the sense of Lyapunov.

• If Q � 0, the system is asymptotically stable.

• If Q � 0, and (A,Q
1
2 ) is observable, then the system is asymptotically stable.

• if Q � 0, then all trajectories of x(t) from all initial conditions are bounded.
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Chapter 4

Design of Distributed Sliding
Mode Control

In this section, we will formulate the consensus problem and then design the dis-
tributed sliding mode control.

4.1 Problem Formulation

Nonlinear node dynamics

Consider a network of single-input-single-output nonlinear heterogeneous agents with
n-th order dynamics,

ẋi,1 =xi,2,

ẋi,2 =xi,3,

...

ẋi,n =fi(xi) + gi(xi)ui,

yi =xi,1

(4.1)

where xi = [xi,1, xi,2, · · · , xi,n]> ∈ Rn is the state vector, ui ∈ R and yi ∈ R are the
input and output of i-th node, respectively. The smooth functionals fi : D → R
and gi : D → R are defined on domain of interest D ⊂ Rn, and gi(xi) 6= 0 for all
xi ∈ D.

Remark 3. For any nonlinear feedback (input-output) linearizable system, there ex-
ists a diffeomorphism which transforms the system to (4.1).
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Leader and leaderless

Based on the existence of a leader, the consensus problems can be categorized into
consensus with a leader and leaderless consensus.

For the consensus with a leader, we assume there is a leader with output y0. The
information of the leader is only available to the subset of the agents which are linked
to the leader. For those agents, the corresponding elements of the pinning matrix
pi = 1. The objective of the control design is to achieve:

yi(t)→ y0, as t→ +∞, ∀ i ∈ V .

For the leaderless consensus, we assume there is no leader. In this case, we treat
the graph Gleader as a null-graph, and the corrosponding pinning matrix P to be a
zero matrix. The objective of the control design is to achieve:

‖yi(t)− yj(t)‖ → 0, as t→ +∞, ∀ i, j ∈ V .

Assumptions on information exchange topology

From Chapter 3, we know that different assumptions lead to various stability re-
sults. Here for consensus with a leader and leaderless consensus, we list 4 different
Assumptions.

• Consensus with a leader

Assumption 1. Consider a network of agents with topology G = Gleader∪Gagents.
Assume the graph G contains a spanning tree rooted from the leader.

Assumption 2. Consider a network of agents with topology G = Gleader∪Gagents.
Assume the graph G contains a spanning tree rooted from the leader. Also Gagents
is bidirectional (undirected).

• Leaderless consensus

Assumption 3. Consider a network of agents with topology G = Gagents. As-
sume the graph G contains a spanning tree.

Assumption 4. Consider a network of agents with topology G = Gagents. As-
sume the graph G is bidirectional (undirected) and connected.
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4.2 Consensus with a Static Leader

In this section, we mainly consider a consensus problem with a static virtual reference
y0 ∈ R. Note that y0 is only available to a subset of the agents. The objective of
control design is to achieve:

yi(t)→ y0, as t→ +∞, ∀ i ∈ V .

The Distributed SMC is composed of two parts: (a) topological sliding surface,
and (b) topological reaching law. The two parts share a common designing structure
defined by a newly-proposed topologically structured function.

Topologically structured function

Definition 10. (Topologically structured function) For a set of vectors {zi}N1 , zi ∈
Rn, the topologically structured function for the i-th node is defined as

tTSi (Z) =
N∑

j=1,j 6=i

aij(zi − zj) + pizi, (4.2)

where Z = [z>1 , z>2 , . . . , z
>
N ]> ∈ RnN , aij is the (i, j)th entry of A, and pi is the i-th

diagonal entry of P.
We define the topologically structured function for the entire multi-agent system

as

T TS(Z) =


tTS1 (Z)
tTS2 (Z)

...
tTSN (Z)

 = ((L+ P)⊗ In)Z, (4.3)

where ⊗ denotes Kronecker product, and In is the n-th order identity matrix.

Remark 4. Under Assumption 1 and Assumption 2, the topologically structured
function for the entire multi-agent system (4.3) is an isomorphism.

Design of topological sliding surface

The tracking error of node i is
ei = yi − y0.
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We define an intermediate error δi,

δi , (
d

dt
+ ρ)n−1ei, (4.4)

where ρ ∈ R+ is a positive real tuning parameter. This parameter determines the
converging rate of tracking error.

The intermediate error vector is

∆ , [δ1, δ2, . . . , δN ]>.

We define the individual sliding variable for the i-th node as

si , tTSi (∆).

The sliding variable array is

S ,


s1
s2
...
sN

 = T TS(∆) = (L+ P)∆. (4.5)

The topological sliding surface for the entire multi-agent system is the manifold
defined by S = 0.

Remark 5. Under Assumption 1 and Assumption 2, T TS is an isomorphism, S =
T TS(∆) = 0 if and only if ∆ = 0.

Remark 6. It is easily observed that each si only depends on local states as well
as the states of neighboring agents constrained by G, which means si is a distributed
sliding variable. Note that δi− δj does not depend on the virtual leader information,
since

δi − δj =
n−1∑
k=0

(
n− 1

k

)
ρk(xi,n−k − xj,n−k),

where
(
n−1
i

)
denotes the binomial coefficient.
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Design of topological reaching law

To design the DSMC, the reaching law has to conform with the associated sliding
surface. The topological reaching law for node i is

ṡi ,− ψtSTi (S)− φtSTi (sgn(S))

where ψ, φ ∈ R+ are tuning parameters. We define sgn(S) , [sgn(s1), · · · , sgn(sN)]>,
where

sgn(si) =


−1, si < 0,
0, si = 0,
1, si > 0.

Combining all nodes, we arrive at the compact form array

Ṡ =− (L+ P)(ψS + φ sgn(S)). (4.6)

With (4.5) and (4.6), we observe that

(L+ P)∆̇ =− (L+ P)(ψS + φ sgn(S)).

Since L+ P is nonsingular, we obtain

∆̇ =− (ψS + φ sgn(S)). (4.7)

Note that the invertibility of L + P is critical in designing a distributed SMC
suitable for a broad range of communication topologies. The i-th row of (4.7) is

δ̇i = −ψsi − φ sgn(si). (4.8)

Substituting (4.1) and (4.4) to (4.8), the distributed SMC control law is

ui = − 1

gi(xi)
(ψsi + φ sgn(si) + fi(xi) + γ(xi)), (4.9)

where

γ(xi) =
n−1∑
k=1

(
n− 1

k

)
ρkxi,n−k+1. (4.10)

Remark 7. The control law (4.9) is distributed since si is distributed and fi(xi),
gi(xi), γ(xi) only depends on local states.
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4.3 Consensus with an Active Leader

Consider an active leader with dynamics as follows:

ẋ0 =A0x0,

y0 =C0x0,
(4.11)

where x0 ∈ Rq, y0 ∈ R, A0 ∈ Rq×q, and C0 ∈ R1×q. The objective of control design
is to achieve:

yi(t)→ y0(t), as t→ +∞, ∀ i ∈ V .

The reference state x0 is available to node i if and only if pi = 1.
We apply the same design principle (4.5) and (4.6). For theoretical simplicity, we

eliminate the switching term by setting φ = 0. The following control law is obtained:

ui =− 1

gi(xi)
(ψsi + fi(xi) + γ(xi)− ζ(x0)), (4.12)

where ζ : Rn → R is a linear functional defined as:

ζ(x0) =
n−1∑
k=0

(
n− 1

k

)
ρkC0A

n−k
0 x0. (4.13)

Controller (4.12) is not distributed since x0 is not available to all agents in the
network. To address this issue we follow [65] to construct a distributed observer to
estimate x0,

˙̂x0,i = A0x̂0,i − k(
N∑
i=1

aij(x̂0,i − x̂0,j) + pi(x̂0,i − x0)), (4.14)

where x̂0,i is the estimated x0 for the i-th agent, and k ∈ R+ is tuning parameter.
We define the observing error as εi , x̂0,i − x0, and E , [ε>1 , ε

>
2 , · · · , ε>N ]>, (4.14) is

reformed as:
˙̂x0,i = A0x̂0,i − ktTSi (E).

Replacing x0 in (4.12) with x̂0,i, the control law becomes fully distributed:

ui =− 1

gi(xi)
(ψsi + fi(xi) + γ(xi)− ζ(x̂0,i)). (4.15)
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4.4 Leaderless Consensus

We mainly consider a consensus problem without a leader, which means P = 0.
The objective of a leaderless consensus is to satisfy

lim
t→∞
‖yi(t)− yj(t)‖ = 0,

for all i, j ∈ N , then we say the consensus is achieved. Furthermore, if there exists
y∗ ∈ R such that

lim
t→∞
‖yi(t)− y∗‖ = 0,

for all i ∈ N then we call y∗ is the consensus state of the multi-agent system.
For a leaderless consensus, the control law is simply to apply P = 0 in the

topologically structured function (4.3), then apply control law (4.9) and (4.10).
In this case, the topologically structured function becomes:

tTSi (Z) =
N∑

j=1,j 6=i

aij(zi − zj) + 0zi,

=
N∑

j=1,j 6=i

aij(zi − zj).

(4.16)

The topologically structured function for the entire multi-agent system becomes

T TS(Z) =


tTS1 (Z)
tTS2 (Z)

...
tTSN (Z)

 = (L ⊗ In)Z. (4.17)

Design of topological sliding surface

Directly define ei as
ei = yi.

We define an intermediate error δi,

δi , (
d

dt
+ ρ)n−1ei, (4.18)

where ρ ∈ R+ is a positive real tuning parameter. This parameter determines the
converging rate of tracking error once the intermediate error equals zero.
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The intermediate error vector is

∆ , [δ1, δ2, . . . , δN ]>.

We define the individual sliding variable for the i-th node as

si , tTSi (∆).

The sliding variable array is

S ,


s1
s2
...
sN

 = T TS(∆) = L∆. (4.19)

The topological sliding surface for the entire multi-agent system is the manifold
defined by S = 0.

DSMC control law for leaderless consensus

For leaderless consensus, since L+ P is not invertible, we give the control law di-
rectly, we will deliver the stability analysis in a different fashion.

The DSMC control law:

ui = − 1

gi(xi)
(ψsi + φ sgn(si) + fi(xi) + γ(xi)), (4.20)

where

γ(xi) =
n−1∑
k=1

(
n− 1

k

)
ρkxi,n−k+1. (4.21)

ψ, φ ∈ R+ are tuning parameters.

Remark 8. The control law (4.20) is distributed since si is distributed and fi(xi),
gi(xi), γ(xi) only depends on local states.
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Chapter 5

Stability and Performance
Analysis

5.1 Consensus with a Static Leader

The stability proof of DSMC is divided into two phases, i.e., reaching phase and
sliding phase. The stability of reaching phase is analyzed by Lyapunov method in
the sense of Filippov, while that of sliding phase follows the traditional SMC analysis.

Reaching Phase

Theorem 11. Consider a network of agents with nonlinear heterogeneous node dy-
namics (4.1) and communication topology G under Assumption 3. With the dis-
tributed control law (4.9), and tuning parameters ψ, φ, ρ ∈ R+, the sliding variable
S, defined by (4.5), converges to 0 asymptotically.

Proof. With the control law (4.9), the dynamics of sliding variable is

Ṡ = (L+ P)(−ψS − φ sgn(S)). (5.1)

Define fsld : RN → RN as

fsld(S) = (L+ P)(−ψS − φ sgn(S)). (5.2)

Although fsld is not Lipschitz continuous, it is measurable and essentially locally
bounded. Therefore, Lemma 1 is satisfied, the Filippov solution of (5.1) exists.

From (2.5), the Filippov set-valued map associated with (5.2) is

F [fsld](S) = −(L+ P)(ψS + φW),
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where W is the set defined by

W , co{S̄ = [s̄1, · · · , s̄N ]> :s̄i = sgn(si), if si 6= 0;

s̄i = {−1, 1}, if si = 0}.
(5.3)

We choose a Lyapunov candidate for the networked system,

V1(S) = S>DS, (5.4)

where D � 0 is defined as in (3.2).
The set-valued Lie derivative of (5.4) is

LF [fsld]V1(S) ={∇V1(S)>v : v ∈ F [fsld](S)}
=− ψS>QS − 2φS>D(L+ P)W ,

(5.5)

where Q = D(L+ P) + (L+ P)>D. By Theorem 8, we have Q � 0, thus the first
term of (5.5) is negative for all S ∈ RN \ {0}. By Theorem 10, all elements in the
second term of (5.5) are non-positive.

Then, for all S ∈ RN \ {0}, we have

max LF [fsld]V1(S) < 0. (5.6)

By Lemma 3, we establish asymptotic stability of system (5.1).

Next, we give a sufficient condition for finite-time convergence.

Corollary 4. Consider a network of agents satisfying the hypotheses of Theorem 11.
Let Gagent be undirected. Then, the sliding variable S converges to 0 in finite time.

Proof. With Theorem 6, we have L+ P � 0. Choose the Lyapunov candidate,

V2(S) =
1

2
S>(L+ P)−1S.

Taking the set-valued Lie derivative, we have

LF [fsld]V2(S) ={−ψ‖S‖22 − φS> sgn(S)}
={−ψ‖S‖22 − φ‖S‖1}

Since ‖S‖1 ≥ ‖S‖2, we have

max LF [fsld]V2(S) ≤ −ψ‖S‖22 − φ‖S‖2 (5.7)
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Instead of proving the finite-time convergence of S directly, we prove that
√

2V2 =
‖(L+ P)−

1
2S‖2 converges to 0 in finite time. For S ∈ RN \ {0}, the set-valued Lie

derivative of
√

2V2 is

LF [fsld]
√

2V2 =
1

‖(L+ P)−
1
2S‖2

LF [fsld]V2. (5.8)

By Rayleigh’s quotient, we have

‖(L+ P)−
1
2S‖2 ≤

1√
λmin(L+ P)

‖S‖2. (5.9)

From (5.7), (5.8), and (5.9), one can establish

max LF [fsld]
√

2V2 ≤−
√
λmin(L+ P)φ.

From Lemma 2, we have

d

dt
‖(L+ P)−

1
2S(t)‖2 ∈ LF [fsld]

√
2V2 (5.10)

for almost every t ∈ [0,+∞). We have

‖(L+ P)−
1
2S(tf )‖2 =‖(L+ P)−

1
2S(0)‖2

+

∫ tf

0

d

dτ
‖(L+ P)−

1
2S(τ)‖2dτ.

(5.11)

With (5.10) and (5.11), in the region RN \ {0}, we have

‖(L+ P)−
1
2S(tf )‖2 ≤ ‖(L+ P)−

1
2S(0)‖2

−tfφ
√
λmin(L+ P).

We argue that there must exist tf such that S(tf ) = 0. Otherwise, ‖(L+ P)−
1
2S(tf )‖2 →

−∞ as tf → +∞.

Sliding Phase

Lemma 7. Consider a linear time-invariant system ẋ = Ax+ Bu, if A is Hurwitz,
then u(t)→ 0 as t→ +∞ implies x(t)→ 0 as t→ +∞.
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Proof. Since A is Hurwitz, the system is input-to-state stable (ISS). Then, there
exists class-KL function β : [0,+∞) × [0,+∞) → [0,+∞), and class-K function
κ : [0,+∞)→ [0,+∞), such that

‖x(t)‖2 ≤ β(‖x(0)‖2, t) + κ( sup
τ∈[0,t]

|u(τ)|). (5.12)

To prove ‖x(t)‖2 → 0 as t→ +∞, it is equivalent to show for any ε ∈ R+, there
exist a T ∈ R+, s.t. ‖x(t)‖2 → ε for all t ≥ T .

Since u(t) → 0, there exists T1, s.t. κ(supτ≥T1 |u(τ)|) ≤ ε/2. Then, because β is
class-KL, there exist an T2, s.t. β(x(T1), t− T1) ≤ ε/2 for all t ≥ T2.

From (5.12), we have ‖x(t)‖2 ≤ ε for all t ≥ T1 + T2.

Theorem 12. Consider a network of agents satisfying the hypotheses of Theorem
11. The tracking error ei(t) for each agent converges to 0 asymptotically.

Proof. From Theorem 11, we know S(t) → 0 as t → +∞. With (4.5), we have
∆(t) = (L+ P)−1S(t) → 0 as t → +∞. System (4.4) is asymptotic stable, since
ρ > 0. From Lemma 7, we have ei(t)→ 0 as t→ +∞.

5.2 Consensus with an Active Leader

The stability result is presented as follows.

Theorem 13. Consider a network of agents with nonlinear heterogeneous node dy-
namics (4.1) and communication topology G under Assumption 1. With the dis-
tributed control law (4.15), and the distributed observer (4.14) with a sufficiently
large positive k, both the sliding variable S in (4.5) and the observing error E con-
verge to 0 asymptotically.

Proof. First, we prove observing error E converges to 0 asymptotically. The observ-
ing error dynamics is

Ė = (IN ⊗ A0 − k(L+ P)⊗ Iq)E. (5.13)

From [65], the eigenvalues of IN ⊗ A0 − k(L+ P)⊗ Iq are:

{λi(A0)− kλj(L+ P) : i ∈ {1, · · · , q}; j ∈ {1, · · · , N}}

where λi(A0) and λj(L+ P) are the eigenvalues of A0 and L+ P , respectively. With
a sufficiently large k, we can ensure all the eigenvalues of IN ⊗A0− k(L+ P)⊗ Iq in
the left-half complex plane. Then, we conclude asymptotic stability of system (5.13).
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Secondly, we prove the asymptotic convergence of the sliding variable. The dy-
namics of sliding variable is

Ṡ = −ψ(L+ P)S + ζ(E),

where ζ : RqN → RN defined as

ζ(E) = T TS(

 ζ(ε1)
...

ζ(εN)

) = (L+ P)

 ζ(ε1)
...

ζ(εN)

 . (5.14)

From (4.13) and (5.14), we see ζ is linear. Since ζ(E) → 0 and −ψ(L+ P) is
Hurwitz, we conclude S → 0 as t→ +∞ by Lemma 7.

Theorem 14. Consider a network of agents satisfies the hypotheses of Theorem 13.
The tracking error ei(t) for each agent converges to 0 asymptotically.

Proof. The proof is the same as in Theorem 12.

5.3 Leaderless Consensus

Also, the stability proof of leaderless consensus is divided into two phases, i.e. reach-
ing phase and sliding phase.

Theorem 15. Consider a network of agents with nonlinear heterogeneous node dy-
namics (4.1) and communication topology G under Assumption 3. With the dis-
tributed control law (4.20), and tuning parameters ψ, φ, ρ ∈ R+, the sliding variable
S, defined by (4.19), converges to a consensus equilibrium S∗ = c1 asymptotically,
where c ∈ R. This means limt→∞ ‖si(t)− sj(t)‖ = 0.

Proof. By (4.19), the sliding mode variable is

si =
N∑

i=1,i 6=j

aij(δi − δj). (5.15)

Taking derivative of (5.15) we get

ṡi =
N∑

i=1,i 6=j

aij(δ̇i − δ̇j) (5.16)
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With equation (4.18), there is

δ̇i =
d

dt
((

d

dt
+ ρ)n−1yi)

=
d

dt
((

d

dt
+ ρ)n−1xi,1)

=fi(xi) + γ(xi) + gi(xi)ui

=fi(xi) + γ(xi) + gi(xi)(−
1

gi(xi)
(ψsi + φ sgn(si) + fi(xi) + γ(xi)))

=− ψsi − φ sgn(si)

(5.17)

Substituting (5.16) to (5.17), we get

ṡi =
N∑

i=1,i 6=j

aij(−ψsi − φ sgn(si) + ψsj + φ sgn(sj)). (5.18)

The dynamics of the sliding surface is

Ṡ = −L(ψS + φ sgn(S)), (5.19)

Define the right-hand-side of (5.19) as fsld : Rn → Rn,

fsld(S) = −L(ψS + φ sgn(S)). (5.20)

Although fsld is not Lipschitz continuous, it is measurable and essentially locally
bounded. Therefore, Lemma 1 is satisfied, the Filippov solution of (5.19) exists.

From (2.5), the Filippov set-valued map associated with (5.20) is

F [fsld](S) = −L(ψS + φW),

where W is the set defined by

W , co{S̄ = [s̄1, · · · , s̄N ]> :s̄i = sgn(si), if si 6= 0;

s̄i = {−1, 1}, if si = 0}.

Choose Lyapunov candidate:

V3(S) = max
i
{si} −min

i
{si},

where V3 is continuous but not differentiable with respect to S. From [8], Proposition
2.3.1, one deduces that V3 is locally Lipschitz, with generalized gradient

∂V3(S) = co{ej ∈ Rn|j such that sj = max
i
{si}}

− co{ek ∈ Rn|j such that sk = min
i
{si}},

(5.21)
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where ei is the i-th vector of orthonormal basis of Euclidean space.
According to [10],

V3(S) = max
i
{si} −min

i
{si}

=‖2S − 2(max
i
{si}+ min

i
{si})1‖∞.

The set-valued Lie derivative is:

LF [fsld]V3(S) ={a ∈ R : there exists v ∈ F [fsld], such that

ξ>v = a for all ξ ∈ ∂V3(x)},

which is hard to compute directly. We take S with v3(S) 6= 0. Let j, k ∈ {1, · · · , N}
such that sj = mini{si} and sk = maxi{si}. Then ek − ei ∈ ∂V3.

Then we have

a := (ek − ej)>(−L(ψS + φW )) ∈ LF [fsld]V3(S),

where W ∈ W .
We can easily check

a =ψ
N∑

i=1,i 6=k

aik(si − sk)− ψ
N∑

i=1,i 6=j

aij(si − sk)

+ φ
N∑

i=1,i 6=k

aik(wi − wk)− ψ
N∑

i=1,i 6=j

aij(wi − wk).

(5.22)

Since sk is the maximum of {si}, and si is the minimum of {si}. We can conclude
a < 0 for sk 6= sj. With lemma 3 we conclude the system converges asymptotically
to the equilibrium.

The final consensus value of the multi-agent system over control law (4.20) is
unknown and can be determined by many factors, such as the initial value of all
agents, the sliding surface and the communication typologies.

We can argue that since we set the sliding variable of all agents with the same
manner, the transfer functions from si to yi are the same, then they will have the
same steady state gain. So all the system will converge to the same y∗.
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Chapter 6

Application of DSMC

In this section we show the application of distributed sliding mode control. The first
application will be on platoon systems.

6.1 Platoon Systems

A vehicle platoon is a multi-agent system as shown in Fig. 6.1. We refer to the
vehicles that comprise the platoon as nodes. From a network control perspective, a
platoon has four main components: node dynamics, distributed controllers, informa-
tion flow topology, and formation geometry [37]. The node dynamics describes the
behavior of each vehicle; the information flow topology defines how nodes exchange
information with each other; the distributed controller implements feedback control
algorithms for each vehicle; and the formation geometry defines the desired distance
between any two successive vehicles.

The platoon contains a virtual leader, denoted by 0, and N following vehicles,
denoted by i ∈ N , {1, . . . , N}. The displacement and velocity of the virtual leader
are denoted by x0 and v0, respectively. We assume the information topology satisfies
Assumption 2. The stability analyses are carried out under two cases: (a) v̇0 is zero
(Lyapunov stability analysis), and (b) v̇0 = δ0(t) is nonzero, unknown and bounded
(robust analysis). The convergence to the equilibrium is analyzed in case (a) in the
sense of Lyapunov stability, and the Input-to-State stability (ISS) is used in case (b)
to demonstrate the disturbance attenuation performance of the platoon system.

The desired distance between two neighboring vehicles is assumed to be a constant
d ∈ R+. The desired position for vehicle i is then

xi,des(t) = x0(t)− i · d.
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Figure 6.1: Platoon : (a) vehicle dynamics, (b) information flow topology, (c) dis-
tributed controller, (d) geometry formation [85]

The purpose of platoon control is to ensure all the vehicles run at a harmonized
speed while maintaining the desired inter-vehicle spaces.

6.2 Dynamics

The vehicle longitudinal dynamics are nonlinear, which are composed of engine, drive
line, brake systems, aerodynamics drag, tire friction, rolling resistance, gravitational
forces, etc. To strike a balance between accuracy and conciseness, we assume that:
(1) the vehicle body is rigid and left-right symmetric, the vehicle length is assumed
to be zero; (2) the platoon is on a flat and dry-asphalt road, and the tire slip in
the longitudinal direction is neglected; (3) the driving and braking torques are in-
tegrated into one control input [15]. For a heterogeneous vehicle platoon, the i-th
node dynamics are described by a nonlinear model:

ẋi(t) =vi(t), (6.1)

v̇i(t) =
1

mi

(
ηi
Ti(t)

Ri

− CA,iv2i (t)
)
− gf, (6.2)

where xi(t) and vi(t) are position and velocity, respectively; Ti(t) is the control
input, representing the driving/braking torque; mi is the mass of vehicle; ηi is the
mechanical efficiency of the driveline; Ri is the radius of wheel; CA,i is the coefficient
of aerodynamic drag; g is the acceleration due to gravity; and f is the coefficient of
rolling resistance.
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6.3 DSMC for Platoon

Design of topological sliding surface

The tracking error of the i-th vehicle is defined as

ei , xi − xi,des.

Define an intermediate error ∆i,

∆i , ėi + ρei, (6.3)

where ρ ∈ R+ is a tuning parameter. This parameter determines the converging rate
of tracking error once the intermediate error equals zero. The intermediate error
vector is defined as

∆ , [∆1, ∆2, . . . ,∆N ]>.

We define the individual sliding variable for node i as

si , fTSi (∆).

The sliding variable array of the platoon is then

S =


s1
s2
...
sN

 = (L+ P)∆. (6.4)

The topological sliding surface for the platoon is defined by S(t) = 0.

Remark 9. Each sliding variable si depends on local node states, i.e., states of
vehicle i as well as states of neighboring vehicles as constrained by the information
topology. Note that ∆i −∆j does not depend on leader states since

∆i −∆j =vi − vj + ρ(xi − xj + d(i− j)).

Remark 10. The sliding variable S is a bijective linear function of ∆̄ defined in
(6.4) because L+ P is invertible. (see Theorem 6).
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Design of topological reaching law

To design the DSMC controller, the reaching law has to conform with the associated
sliding surface. The topological reaching law for node i is

ṡi =− ψfSTi (S)− φfSTi (sgn(S))

where ψ, φ ∈ R+ are tuning parameters. Combining these for all nodes, we arrive at
the compact form array

Ṡ =− (L+ P)(ψS + φ sgn(S)). (6.5)

We observe that

(L+ P)∆̇ =− (L+ P)(ψS + φ sgn(S)).

Since L+ P is invertible, we obtain

∆̇ =− (ψS + φ sgn(S)). (6.6)

Invertibility of L + P is critical in designing a distributed SMC suitable for a
broad range of topologies. Component i of the vector-valued equation (6.6) is then

∆̇i = −ψsi − φ sgn(si). (6.7)

Differentiating (6.3) and equating the result to (6.7) provides an expression for
v̇i. Substituting this in (6.2) yields the control law for node i:

Ti =
Ri

ηi
(mifg + CA,iv

2
i )−

miRiρ

ηi
(vi − v0)

− miRi

ηi
(ψsi + φ sgn(si)).

(6.8)

Remark 11. The control law (6.8) is not quite distributed because of its possible de-
pendence on the leader velocity v0. We therefore need to design a distributed observer
for v0 to derive a truly distributed control law. This is done in the next subsection.

Design of topologically structured velocity observer

Let v̂0,i denote the estimation of v0 produced by the i-th vehicle. The observer of
i-th vehicle for the virtual leader’s velocity is

˙̂v0,i = −ksi. (6.9)
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Since si is computed in a distributed fashion with (6.4), the observer is distributed
(i.e., compatible with the underlying information topology). Using the estimated
leader velocity v̂0,i from the observer, the control law (6.8) becomes:

Ti =
Ri

ηi
(mifg + CA,iv

2
i )−

miRiρ

ηi
(vi − v̂0,i)

− miRi

ηi
(ψsi + φ sgn(si)).

(6.10)

Remark 12. For simplicity, we have used second-order nonlinear node dynamics.
Our approach easily generalizes to higher-order nonlinear dynamics. A regulation
example with more complex vehicle dynamics is offered in our previous work [77].

6.4 Stability analysis

The stability analysis of DSMC is divided into two phases, i.e., the reaching phase
and the sliding phase. The stability of the reaching phase is analyzed by Lyapunov
method, while that of the sliding phase follows traditional SMC analysis.

Reaching Phase

We state our first main result:

Theorem 16. Consider a platoon with nonlinear node dynamics (6.1) and (6.2)
with information topology under Assumption 1. Under the distributed control law
(6.10) and tuning parameters ψ, φ, ρ, k ∈ R+, the sliding variable S in (6.4) and
the observer error ε , [v̂0,1 − v0, . . . , v̂0,N − v0]> converge to 0 asymptotically.

Proof. With the sliding variable (6.4), velocity observer (6.9) and control law (6.10),
the dynamics of (S, ε) becomes

Ṡ =(L+ P)(−ψS − φ sgn(S) + ρε),

ε̇ =− kS.
(6.11)

The first equation of (6.11) is obtained by differentiating both sides of (6.4),
and substituting (6.3), agent dynamics (6.1), (6.2), and control law (6.10) to the
right-hand side of the equation.
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For simpler presentation, define

x ,

[
S
ε

]
,

f(x) ,

[
(L+ P)(−ψS − φ sgn(S) + ρε)

−kS

]
. (6.12)

To discuss the existence and stability of solution of a discontinuous system (6.11),
we take the concepts of differential inclusion and Filippov set-valued map from [9].
Since f is measurable and essentially locally bounded, then the associated Filippov
set-valued map satisfies all the conditions of Lemma 1, this guarantees the existence
of Filippov solution.

The Filippov set-valued map associated with (6.12) is

F [f ](x) =

[
(L+ P)(ρε− ψS)

−kS

]
−
[

(L+ P)φW
0

]
,

where W is the set defined by

W = co{S̄ = [s̄1, · · · , s̄N ]> | s̄i = sgn(si), if si 6= 0;

s̄i = {−1, 1}, if si = 0}.
(6.13)

We choose a Lyapunov candidate for the networked system,

V1(x) =
1

2
x>
[

(L+ P)−1 0
0 ρ

k
IN

]
x, (6.14)

where IN is the N dimensional identity matrix. The gradient of (6.14) is

∇V1(x) =

[
(L+ P)−1S

ρ
k
ε

]
.

Taking the Lie derivative of the Lyapunov candidate,

L̃F [f ]V1(x) ={∇V1(x)>v | v ∈ F [f ](x)}
=∇V1(x)>F [f ](x)

=− ψS>S − φS>W .

(6.15)

The second term of (6.15) is

−φS>W ={−φS>w |w ∈ W}

={−φ
N∑
i=1

siwi |w ∈ W},



CHAPTER 6. APPLICATION OF DSMC 47

where wi is the i-th element of w. Using the definition of W in (6.13), each siwi is

siwi =

{
0, if si = 0,

si sgn(si), if si 6= 0.

Hence,

−S>φW = {−φ
N∑
i=1

si sgn(si)} = {−φ‖S‖1}.

The Lie derivative L̃F [f ]V1(x) is therefore a singleton,

L̃F [f ]V1(x) = {−ψ‖S‖22 − φ‖S‖1}. (6.16)

We check the three conditions of Lemma 3: i. V1(x) is continuously differentiable;
ii. V1(x) > 0 for x ∈ R2N \ {0}; iii. By (6.16), max L̃F [f ]V1(x) ≤ 0. We conclude
closed-loop system is stable in the sense of Lyapunov.

The next step is to prove asymptotic stability. For any initial condition x(0),
choose a constant c ≥ V1(x(0)), define Ωc to be the level set of V1(x),

Ωc = {x =

[
S
ε

]
|V1(x) ≤ c}. (6.17)

From (6.16), Ωc is positively invariant for all c > 0. Define

ZF,V1 ,{x ∈ R2N | 0 ∈ L̃F [f ]V1(x)}
={x |S = 0}.

(6.18)

Then we have
Ωc ∩ ZF,V1 = {x |S = 0,

ρ

k
‖ε‖22 ≤ 2c}.

From (6.15), the largest weakly invariant set M in Ωc ∩ ZF,V1 is M = {x |x = 0}.
Since the Lyapunov function V1(x) is radially unbounded, we can use Lemma 4 to
conclude global asymptotic stability.

Next, we offer a sufficient condition for finite-time convergence to the topological
sliding surface S = 0.

Theorem 17. Consider again the assumptions and parameter settings of Theorem
16, with the set Ωc and ZF,V1 defined in (6.17) and (6.18). For all c ∈ {cf |0 < cf <
φ2

2kρ
}, the set ZF,V1 ∩Ωc = {(S, ε)|S = 0, ‖ε‖2 ≤

√
2ck/ρ} is positively invariant; and

any solution x(t) = [S(t), ε(t)]> of system (6.11) with initial condition x(0) ∈ Ωc

reaches ZF,V1 ∩ Ωc in finite time.
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Proof. To discuss the topological sliding surface dynamics, let us choose the Lya-
punov candidate

V2(S) =
1

2
S>(L+ P)−1S. (6.19)

The Lie derivative of (6.19) is

L̃F [f ]V2(S) =− ψS>S − φS>W + ρε>S

={−ψ‖S‖22 − φ‖S‖1 + ρε>S}.
(6.20)

Since we have already proved that the set Ωc from (6.17) is positively invariant
for any c > 0, if x(0) ∈ Ωc, then

‖ε(t)‖2 ≤

√
2ck

ρ
, ∀t ∈ [0, +∞).

With the condition c < φ2

2kρ
, we derive the upper bound of (6.20),

max L̃F [f ]V2(S) ≤− ψ‖S‖22 − (φ−
√

2ckρ)‖S‖1
<0.

(6.21)

We can conclude that {x |S = 0} ∩ Ωc is a positive-invariant set.
Next, we show finite-time convergence to S. Instead of proving the finite-time

convergence of S directly, we prove that
√

2V2 = ‖(L+ P)−
1
2S‖2 converges to 0 in

finite time.
In the region {x|x ∈ Ωc, s 6= 0}, the set-valued Lie derivative of

√
2V2 is

L̃F [f ]
√

2V2 =
1

‖(L+ P)−
1
2S‖2

L̃F [f ]V2. (6.22)

From (6.21), we have

max L̃F [f ]V2(S)

≤− ψ‖S‖22 − (φ−
√

2ckρ)‖S‖1

≤− ψ‖S‖22 −
1√
N

(φ−
√

2ckρ)‖S‖2.
(6.23)

By Rayleigh’s quotient, we have

‖(L+ P)−
1
2S‖2 ≤

1√
λmin(L+ P)

‖S‖2. (6.24)
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From (6.22), (6.23) and (6.24), one can establish

max L̃F [f ]
√

2V2 ≤−
√
λmin(L+ P)

N
(φ−

√
2ckρ),

for all {x |x ∈ Ωc, S 6= 0}.
From Lemma 2, we have

d

dt
‖(L+ P)−

1
2S(t)‖2 ∈ L̃F [f ]

√
2V2 (6.25)

for almost every t ∈ [0,+∞). We have

‖(L+ P)−
1
2S(tf )‖2 =‖(L+ P)−

1
2S(0)‖2

+

∫ tf

0

d

dτ
‖(L+ P)−

1
2S(τ)‖2dτ.

(6.26)

With (6.25) and (6.26), in the region {x|x ∈ Ωc, S 6= 0} we have

‖(L+ P)−
1
2S(tf )‖2 ≤ ‖(L+ P)−

1
2S(0)‖2

−tf (φ−
√

2ckρ)

√
λmin(L+ P)

N
.

(6.27)

We argue that there must exist tf such that S(tf ) = 0. Otherwise, ‖(L+ P)−
1
2S(tf )‖2 →

−∞ as tf → +∞.

Remark 13. The above result establishes that every trajectory starting in Ωc ap-
proaches {(S, ε)|S = 0, ‖ε‖2 ≤

√
2ck/ρ} in finite time. By choosing c sufficiently

large, any compact set in R2N will fall inside Ωc. As a result, φ2

2kρ
can be made arbi-

trarily large, and Theorem 17 offers a sufficient semi-global condition for finite-time
convergence to the sliding surface.

Sliding Phase

Theorem 18. Consider a vehicle platoon with nonlinear dynamics described by (6.1)
and (6.2) and information topology under Assumption 1. During the sliding phase
where S = 0, the tracking error for each vehicle ei → 0 as t→∞ .

Proof. In the sliding surface S = 0, with the definition of sliding error, we have

S = (L+ P)∆ = 0.
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With L+ P being positive definite, we have

∆ = [∆1, ∆2, . . . ,∆N ]> = 0.

For each ∆i,
∆i = ėi + ρei = 0, (6.28)

where ρ > 0. Hence (6.28) is a stable differential equation, ei → 0 as t→∞.

Due to practical realities of switching devices, the control law (6.10) can cause
chattering. The following result assures that asymptotic stability of (6.11) is pre-
served with a smooth control law by setting φ = 0.

Corollary 5. Consider again the set-up and assumptions of Theorem 16 with tuning
parameter ψ, k ∈ R+ and φ = 0. Then, the closed-loop system (6.11) is asymptotic
stable.

Proof. By setting φ = 0, the closed-loop system (6.11) becomes linear

ẋ(t) = Ax(t), (6.29)

where A is defined as

A ,

[
−ψ(L+ P) ρ(L+ P)
−kIN 0

]
. (6.30)

Let

P ,

[
k
ψ

(L+ P)−1 + ρ
ψ
IN −IN

−IN ρ
ψ
IN + ( ρ

2

ψk
+ ψ

k
)(L+ P)

]
.

Using the characterization of positive definite matrices with Schur complements
[81] to prove matrix P is positive definite, two conditions have to be satisfied:

1. The first diagonal block is positive definite

k

ψ
(L+ P)−1 +

ρ

ψ
IN � 0.

2. The Schur complement is positive definite

ρ

ψ
IN + (

ρ2

ψk
+
ψ

k
)(L+ P)

−(
k

ψ
(L+ P)−1 +

ρ

ψ
IN)−1 � 0.
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One can check easily that the first condition holds since L+ P is positive definite.
The second part is proved by using the matrix inversion lemma (Woodbury matrix
identity). Since the algebraic process is simple, we omit this part for brevity.

Next, choose a Lyapunov candidate V3(x) = 1
2
x>Px. The derivative of V3(x)

with respect to system (6.29) is

V̇3(x) =
1

2
x>(A>P + PA)x

=− x>Qx < 0,
(6.31)

where matrix Q is defined as the positive definite matrix

Q , ρ

[
(L+ P) 0

0 (L+ P)

]
� 0.

We conclude matrix A is Hurwitz.

Remark 14. By eliminating the switching term, the asymptotic stability result of
Theorem 16 is preserved, however, the finite-time convergence property from Theorem
17 is compromised. As is done with traditional SMC, a suitable trade-off between
tracking precision and finite-time convergence can be arranged by introducing a thin
boundary layer neighboring the topological sliding surface, {S | ‖S‖2 ≤ ε}. Using
the negative definiteness condition (6.31), one can prove that the boundary layer is
invariant and can be reached in finite time. Within the boundary layer, the tracking
error for each vehicle remains bounded.

6.5 Discussion on String Stability and

Robustness

String stability

String stability in a broad sense implies that the disturbances in the system will
be attenuated when propagating through the platoon system. One of the common
string stability definitions in the time-domain is given by [66]:

Definition 11. [66]. Consider a interconnected system

ẋi = f(xi, xi−1, · · · , xi−r+1) (6.32)

The origin xi = 0, i ∈ R of (6.32) is string stable, if for any ε > 0, there exists a
δ > 0, such that ‖xi(0)‖∞ < δ ⇒ supi ‖xi(t)‖∞ < ε.
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This definition strongly relies on a specific information flow topology. The struc-
ture of the system (6.32) implies that the error propagates from the front cars to the
rear cars. Without (6.32), the definition reduces to normal Lyapunov stability of the
whole platoon.

String stability definition also relies on specific information flow topology in
frequency-domain.

Definition 12. [51] The system is string stable if the transfer function of outputs
between the vehicle i and the predecessor vehicle i− 1, denoted as Gi−1,i, is such that
‖Gi−1,i(jω)‖H∞ ≤ 1.

The definition is based on the predecessor following topology, and does not ap-
ply to other other information flow topology, since the existence of Gi−1,i is not
guaranteed.

There are other definitions of string stability based on specific information flow
topologies: [50][51] used a predecessor following topology, [66] used a leader-predecessor
following topology, [58] used a unidirectional ring topology, and [4] used nearest-
neighbor bidirectional topology.

For a general class of topologies, it is very difficult to define the concept of
“disturbance attenuation through the system”, since the direction of disturbance
propagation is not specified. To our knowledge, there are loose versions of string
stability for general topologies [51] [5] [64]. These definitions emphasize Bounded-
Input-Bounded-Output (BIBO) or Input-to-State stability (ISS) of the platoon un-
der external disturbances. However, we refrain ourselves using the notion of string
stability on these definitions, since we think it deviates from the original string sta-
bility idea, which focuses on disturbance attenuation. The BIBO and Input-to-State
stability is immediate attainable with the proposed DSMC design.

In the dissertation, we added a section below discussing Input-to-State stability
of the system. We include the unknown leader acceleration and physical disturbances
as input disturbance. We proved Input-to-State (BIBO) stability of the closed-loop
system, this implies with a bounded disturbance input, the error is also bounded.
Furthermore, we relate the amplification effect with the eigenvalue of L+ P matrix
and tuning parameter of the controller.

Robust analysis

In this section, we analyze the performance of DSMC under external disturbance.
For theoretical simplicity, we assume tuning parameter φ = 0.
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Assume all vehicles are subject to persistent external disturbances δi:

ẋi(t) =vi(t),

v̇i(t) =
1

mi

(
ηi
Ti(t)

Ri

− CA,iv2i (t)
)
− gf + δi(t),

and the acceleration of the leader is non-zero v̇0 = δ0(t), where δ0 is unknown.
The closed-loop dynamics (6.11) with external disturbances becomes

ẋ(t) = Ax(t) +Bd(t), (6.33)

where x = [S, ε]>, A is defined in (6.30), B and d(t) is defined as

B ,

[
L+ P

0

]
and d ,

 δ1 − δ0
...

δN − δ0

 .
The Hurwitz A matrix implies the Input-to-State Stability (ISS) of system (6.33):

x(t) =eAtx(0) +

∫ t

0

eA(t−τ)Bd(τ)dτ,

|x(t)| ≤‖eAt‖|x(0)|+
∫ t

0

‖eA(t−τ)‖‖B‖|d(τ)|dτ

≤κe−αt|x(0)|+ ‖B‖ sup
τ∈[0,t]

|d(τ)|
∫ t

0

κe−αtdτ

≤κe−αt|x(0)|+ κ

α
‖B‖ sup

τ∈[0,t]
|d(τ)|, (6.34)

where | · | denotes vector norm (e.g 1, 2, ∞ norm) in Euclidean space, ‖ · ‖ denotes
the corresponding matrix norm, κ, α ∈ R+ and max Re{λ(A)} < −α. We further
define:

β(|x(0)|, t) ,κe−αt|x(0)|,

γ( sup
τ∈[0,t]

|d(τ)|) ,κ
α
‖B‖ sup

τ∈[0,t]
|d(τ)|.

We can easily check function β is class-KL and γ is class-K, then conclude ISS.

Remark 15. The disturbance attenuation effect is closely related to max Re{λ(A)}.
For a smaller max Re{λ(A)}, the error bound of x(t) will be smaller. From (6.30),
we observe that the eigenvalues of A are affected by the information flow topology
L+ P and the tuning parameters ψ, ρ.
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Remark 16. The inequality (6.34) is related to collision avoidance. The sliding
variable S is bounded due to the boundness of x(t). Sliding variable S and ∆ are
isomorphic (6.4). Each ∆i and tracking error ei are related through a stable linear
system (6.3):

∆i 1
s+ρ

ei

We can conclude that the tracking error ei is bounded. Then we can guarantee
collision avoidance for a finite length platoon if properly selecting spacing policy,
tuning parameter and information flow topology [80].

Remark 17. Since system (6.33) is ISS, if δi(t) = 0 for all i ∈ N , and δ0 eventually
converges to 0, then the tracking error ei → 0 as t→ 0.

Parameter Value Uncertainty
mi (1445 + i× 50) kg 0%
ηi 0.85 ±10%
CA,i 0.43 kg/ m ±10%
Ri (0.28 + i× 0.005)m 0%
f 0.02 ±10%

Table 6.1: Simulation parameters

6.6 Simulation Results

We now illustrate the effectiveness of proposed DSMC through numerical simulations.
A heterogeneous platoon with 1 leader and 8 followers is simulated under 3 different
information flow topologies. These topologies are nearest-neighbor (NN), nearest-
neighbor with leader paths (NNL), and two-nearest-neighbor (2NN), as shown in
Fig. 6.2. With the NNL topology, all the vehicles have access to the leader. This
will allow us to demonstrate effect of the leader information on the performance of
the platoon.

The distributed control law (6.10) was designed based on a nonlinear vehicle
dynamics (6.1)-(6.2) for simplicity and elegance. In the simulation, we applied the
control law to platoon with high-fidelity vehicle model to validate the performance of
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Figure 6.2: Types of bidirectional information flow topology used in this dissertation:
(a) nearest-neighbor (NN); (b) nearest-neighbor with leader paths (NNL); (c) two-
nearest-neighbor (2NN).
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Figure 6.3: Sketch of vehicle longitudinal dynamics.

DSMC under modeling uncertainty. Each vehicle is a passenger car with a gasoline
engine, a torque converter, a continuous variable transmission (CVT), two driving
and two driven wheels, as well as a hydraulic braking system. Fig. 6.3 sketches
the powertrain dynamics. The inputs are the throttle angle (αthr) and the braking
pressure (Pbrk). In realistic driving modes, a driver can not simultaneously engage
the throttle and brake pedals. Therefore, in this study we use an inverse model
to allocate the driving commands (Ti) to either throttle angle or braking pressure.
Interested readers can refer to [39] for further information. The outputs include
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Figure 6.4: Engine torque map.

the longitudinal acceleration (a), vehicle velocity (v), as well as other measurable
variables in the powertrain. When driving, the engine torque is amplified by the
torque converter, CVT, and final gearing and acts on the two front driving wheels.
When braking, the braking torque acts on all four wheels to dissipate the kinetic
energy of the vehicle body. Fig. 6.4 shows the nonlinear engine torque map: engine
torque (Te) is a nonlinear monotonically increasing function of engine speed (ωe) and
throttle angle (αthr). The vehicle parameters are offered in Table 6.1, in which the
heterogeneity is represented by the difference in vehicle mass (mi) and wheel radius
(Ri). In addition, parameter uncertainties are added in mechanical efficiency (ηi),
coefficient of aerodynamic drag (CA,i), and coefficient of rolling resistance (f). In this
study, the parameter heterogeneities are known while the parameter uncertainties are
unknown.

The simulation includes 2 scenarios distinguished by the speed profile of leading
vehicle: constant speed ramp and modified EPA74 profile. In the former, the leading
vehicle ramps from 15m/s to 20m/s in 3 seconds with constant acceleration, for
the purpose of examining the stability of the distributed control law. In the latter,
the leading vehicle follows a modified EPA74 speed profile to allow comparison of
platooning performance under different communication topologies.
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Figure 6.5: Simulation result in ramp speed profile under NN topology. 1st, 3rd,
5th, and 7th vehicle are denoted by ( ), ( ), ( ), and ( ), respectively. ( )
denotes leader velocity.
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Figure 6.6: Simulation result in ramp speed profile under NNL topology. 1st, 3rd,
5th, and 7th vehicle are denoted by ( ), ( ), ( ), and ( ), respectively. ( )
denotes leader velocity.
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Figure 6.7: Simulation result in ramp speed profile under 2NN topology. 1st, 3rd,
5th, and 7th vehicle are denoted by ( ), ( ), ( ), and ( ), respectively. ( )
denotes leader velocity.
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Figure 6.8: Result of topologically structured velocity observer. The map between
vehicles and lines are: 2nd vehicle ( ), 3rd vehicle ( ), 4th vehicle ( ), 5th
vehicle ( ), 6th vehicle ( ), 7th vehicle ( ), 8th vehicle ( ).
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Figure 6.9: The velocity profile of leading vehicle when running EPA74 standard
driving cycle.

Simulation of Leader’s Ramp Speed Profile

The simulation results of the 3 topologies, i.e., NN, NNL, and 2NN, are shown in
Fig. 6.5- 6.7, (a)-(c) respectively. In each figure, there are 4 subplots from top to
bottom, including distance error between 2 consecutive vehicles (∆di = ei − ei−1),
vehicle velocity (vi), vehicle acceleration (ai), and throttle angle (αthr,i). One can
observe that the tracking error converges to zero asymptotically for both non-zero
initial condition and time-varying leader velocity. The velocity estimation of NN and
2NN topology is shown in Fig. 6.8.

Simulation of modified EPA74 speed profile

The simulation results are shown in Fig. 6.10. The used speed profile, shown in Fig
6.9, is modified from the standard EPA74 by multiplying 0.8 and then adding 5m/s
point-wise. Three performance indices – tracking index (TI), acceleration standard
deviation (ASD), and fuel economy (Fuel) – are used to assess the performance. The
tracking index for i-th vehicle is calculated by

TIi =
1

T

∫ T

0

(|ėi(t) · SV E|+ |∆di(t) · SDE|) dt,

where T is the simulation length, SV E = 10 denotes sensitivity of velocity error,
and SDE = 1 denotes sensitivity to distance error [14]. The ASD for i-th vehicle is
calculated by

ASDi = std(ai(t)),
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where std denotes standard deviation in t ∈ [0, T ]. The fuel economy for i-th vehicle
is calculated with

Fueli =

∫ T
0
Qi(t)dt

xi(T )
,

where Qi denotes the engine fuel injecting rate and xi(t) is the traveling distance.
We observe from Fig. 6.10 that 2NN has superior tracking performance com-

pared to NN, due to access to more information from neighboring nodes, in combi-
nation with the constant-distance spacing policy. The topology with full leader access
(NNL), have significantly improved tracking ability compared with other topologies.
These results confirm our intuitive analysis. The topological selection has less in-
fluence on the acceleration noise. In addition it is found that 2NN has worse fuel
economy than NN. This phenomenon is caused by more aggressive control inputs,
which come from a tighter information connection with other neighboring vehicles.
More neighbor information is then beneficial to the tracking capability but unfavor-
able to the fuel economy. Fortunately, more leading information contributes to both
tracking capability and fuel economy. Similar conclusions can be drawn from Fig.
6.12.

Remark 18. We used a high-fidelity model in this section. The simulation result
(tracking performance, velocity profile and acceleration) of the design model (6.1)-
(6.2) is similar to the result presented in this section.
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Figure 6.10: Simulation result under EPA74 scenario. From top to bottom, each
subplot shows tracking index, acceleration standard deviation and fuel consumption
for each vehicle. The NN, NNL, and 2NN are denoted by ( ), ( ), and ( ).
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Figure 6.11: Engine operating points with a leader running EPA74 cycle. The 1st,
3rd, 5th, and 8th vehicle are denoted by ( ), ( ), ( ), ( ).
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Figure 6.12: Performance analysis of 3 different topologies. Each subplot shows
average performance indexes.
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Chapter 7

Extensions of DSMC

7.1 Extension to MIMO systems

Consider a network of agents with multi-input-multi-output dynamics,

ẋki,1 =xki,2,

ẋki,2 =xki,3,

... ∀k ∈ {1, · · · ,M} (7.1)

ẋki,n =fki (xi) +
M∑
j=1

gki,j(xi)u
j
i ,

yki =xki,1,

where uki and yki are the k-th input and output for the i-th node. The input, output
and state vector of i-th agent are denoted as

ui = [u1i ,u
2
i , · · · , uMi ]> ∈ RM ,

yi = [y1i ,y
2
i , · · · , yMi ]> ∈ RM ,

xi = [x1i,1, x
1
i,2, · · · , x1i,n︸ ︷︷ ︸

x1
i

, · · · , xMi,1, xMi,2, · · · , xMi,n︸ ︷︷ ︸
xM
i

]> ∈ RMn.



CHAPTER 7. EXTENSIONS OF DSMC 67

For simpler explanation, define

fi(xi) =[f 1
i (xi), f

2
i (xi), · · · , fMi (xi)]

>,

gi(xi) =


g1i,1(xi) g1i,2(xi) · · · g1i,M(xi)
g2i,1(xi) g2i,2(xi) · · · g2i,M(xi)

...
...

. . .
...

gMi,1(xi) gMi,2(xi) · · · gMi,M(xi)

 ,
we assume gi(xi) is nonsingular for all xi ∈ RMn.

Assume the output of the virtual reference model y0 = [y10, y
2
0, · · · , yM0 ]> ∈ RM .

The consensus problem is said to be solved if

yi → y0, as t→ +∞, ∀ i ∈ V .

We define the tracking error vector as

ei = yi − y0,

and the intermediate error vector as

δi = (IM ⊗ (
d

dt
+ ρ)n−1)ei,

where IM is the identity matrix of dimension M and ρ ∈ R+.
The topological sliding variable for the whole system is:

S = (L+ P)⊗ IM


δ1

δ2
...
δN

 = (L+ P)⊗ IM∆, (7.2)

where ∆ = [δ>1 , δ
>
2 , · · · , δ>N ]>. For simpler description, we define si ∈ RM as

si = tTSi (∆) =
N∑

j=1,j 6=i

aij(δi − δj) + piδi.

Therefore, we have S = [s>1 , s
>
2 , · · · , s>N ]> ∈ RMN .

We introduce the topological reaching law as

Ṡ = −(L+ P)⊗ IM(ψS + φ sgn(S)), (7.3)

with ψ and φ positive.
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Static reference model

The SMC control law for static reference model based on design principal (7.2) and
(7.3) is

ui = −g−1i (xi)(ψsi + φ sgn(si) + fi(xi) + γ(xi)), (7.4)

where γ(xi) = [γ(x1
i ), γ(x2

i ), · · · , γ(xMi )], and γ : RN → R is defined in (4.10).
Similar to the SISO case, we give stability justification here.

Theorem 19. Consider a network of agents with nonlinear heterogeneous node dy-
namics (7.1) and communication topology G under Assumption 3. With the dis-
tributed control law (7.4), and tuning parameters ψ, φ, ρ ∈ R+, the sliding variable
S, defined by (7.2), converges to 0 asymptotically.

Proof. With the control law (7.4), the dynamics of sliding variable is

Ṡ = −(L+ P)⊗ IM(ψS + φ sgn(S)), (7.5)

Define fsld : RMN → RMN as

fsld(S) = −(L+ P)⊗ IM(ψS + φ sgn(S)). (7.6)

Although fsld is not Lipschitz continuous, it is measurable and essentially locally
bounded. Therefore, Lemma 1 is satisfied, the Filippov solution of (7.5) exists.

From (2.5), the Filippov set-valued map associated with (7.6) is

F [fsld](S) = −(L+ P)⊗ IM(ψS + φ sgn(W)),

where W is the set defined by

W , co{S̄ = [s̄1, · · · , s̄MN ]> :s̄i = sgn(si), if si 6= 0;

s̄i = {−1, 1}, if si = 0},
S = [s1, s2 · · · , sMN ].

(7.7)

Define L+ P = (L+ P)⊗ IM , and

a =[a1, · · · , aN ]> = (L+ P)−11,

b =[b1, · · · , bN ]> = (L+ P)−>1,

D = diag

(
b1
a1
,
b2
a2
, · · · , bN

aN

)
, (7.8)

Q =D(L+ P) + (L+ P)
>
D, (7.9)
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then according to theorem 8, D � 0 and Q � 0.
We choose a Lyapunov candidate as

V4(S) = S>DS. (7.10)

The set-valued Lie derivative of (7.10) is

LF [fsld]V3(S) ={∇V3(S)>v : v ∈ F [fsld](S)}
=− ψS>QS− 2φS>D(L+ P)W ,

(7.11)

By Theorem 8, we have Q � 0, thus the first term of (7.11) is negative for all
S ∈ RMN \ {0}. By Theorem 10, all elements in the second term of (7.11) is non-
positive.

Then, for all S ∈ RMN \ {0}, we have

max LF [fsld]V3(S) < 0. (7.12)

By Lemma 3, we establish asymptotic stability of system.

Next, we give a sufficient condition for finite-time convergence.

Corollary 6. Consider a network of agents satisfies the hypotheses of Theorem 19.
Let Gagent be undirected. Then, the sliding variable S converges to 0 in finite time.

Proof. With Theorem 6, we have L+ P � 0. Choose the Lyapunov candidate,

V4(S) =
1

2
S>(L+ P)

−1
S.

Taking the set-valued Lie derivative, we have

LF [fsld]V4(S) ={−ψ‖S‖22 − φS> sgn(S)}
={−ψ‖S‖22 − φ‖S‖1}

Since ‖S‖1 ≥ ‖S‖2, we have

max LF [fsld]V4(S) ≤ −ψ‖S‖22 − φ‖S‖2. (7.13)

Instead of proving the finite-time convergence of S directly, we prove that
√

2V4 =
‖(L+ P)−

1
2 S‖2 converges to 0 in finite time. For S ∈ RMN \ {0}, the set-valued Lie

derivative of
√

2V4 is
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LF [fsld]
√

2V4 =
1

‖(L+ P)
− 1

2 S‖2
LF [fsld]V4. (7.14)

By Rayleigh’s quotient, we have

‖(L+ P)−
1
2 S‖2 ≤

1√
λmin(L+ P)

‖S‖2. (7.15)

From (7.13), (7.14), and (7.15), one can establish

max LF [fsld]
√

2V4 ≤−
√
λmin(L+ P)φ.

From Lemma 2, we have

d

dt
‖(L+ P)

− 1
2 S(t)‖2 ∈ LF [fsld]

√
2V4 (7.16)

for almost every t ∈ [0,+∞). We have

‖(L+ P)
− 1

2 S(tf )‖2 =‖(L+ P)
− 1

2 S(0)‖2

+

∫ tf

0

d

dτ
‖(L+ P)

− 1
2 S(τ)‖2dτ.

(7.17)

With (7.16) and (7.17), in the region RMN \ {0}, we have

‖(L+ P)
− 1

2 S(tf )‖2 ≤ ‖(L+ P)
− 1

2 S(0)‖2

−tfφ
√
λmin(L+ P).

We argue that there must exist tf such that S(tf ) = 0. Otherwise, ‖(L+ P)
− 1

2 S(tf )‖2 →
−∞ as tf → +∞.

In the sliding phase we also use Lemma 7 to justify the following theorem.

Theorem 20. Consider a network of agents satisfies the hypotheses of Theorem 19.
The tracking error ei(t) for each agent converges to 0 asymptotically.
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Active reference model

Assume active reference model

ẋ0 =A0x0,

y0 =C0x0,

where x0 ∈ Rq, y0 ∈ RM , A0 ∈ Rq×q, and C0 ∈ RM×q. The objective of control
design is to achieve:

yi(t)→ y0(t), as t→ +∞, ∀i ∈ V .

with the same sliding variable (7.2), reaching law (7.3) and distributed observer
(4.14), we get the distributed control law:

ui = −g−1i (xi)(ψsi + fi(xi) + γ(xi)− ζ(x̂0,i)), (7.18)

where ζ : Rq → RM is defined as:

ζ(x̂0,i) =
n−1∑
k=0

(
n− 1

k

)
ρkC0A

n−k
0 x̂0,i.

The stability result is similar to the SISO case and is presented as follows.

Theorem 21. Consider a network of agents with nonlinear heterogeneous node dy-
namics (7.1) and communication topology G under Assumption 1. With the dis-
tributed control law (7.18), and the distributed observer (4.14) with a sufficient large
positive k, both the sliding variable S in (7.2) and the observing error E converge to
0 asymptotically.

Proof. First, we prove observing error E converges to 0 asymptotically. The observ-
ing error dynamics is

Ė = (IN ⊗ A0 − k(L+ P)⊗ Iq)E. (7.19)

From [65], the eigenvalues of IN ⊗ A0 − k(L+ P)⊗ Iq are:

{λi(A0)− kλj(L+ P) : i ∈ {1, · · · , q}; j ∈ {1, · · · , N}}

where λi(A0) and λj(L+ P) are the eigenvalues of A0 and L+ P , respectively. With
a sufficient large k, we can ensure all the eigenvalues of IN ⊗A0 − k(L+ P)⊗ Iq on
the left-half complex plane. Then, we conclude asymptotic stability of system (7.19).
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Secondly, we prove the asymptotic convergence of sliding variable. The dynamics
of sliding variable is

Ṡ = −ψ(L+ P)S + ζ(E),

where ζ : RqN → RMN defined as

ζ(E) =T TS(

 ζ(ε1)
...

ζ(εN)

)

=(L+ P)

 ζ(ε1)
...

ζ(εN)

 = (L+ P ⊗ IM)

 ζ(ε1)
...

ζ(εN)

 .
(7.20)

From (7.20), we see ζ is linear. Since ζ(E) → 0 and −ψ(L+ P) is Hurwitz, we
conclude S→ 0 as t→ +∞ by Lemma 7.

Leaderless Consensus

For leaderless consensus, the consensus problem is said to be solved if

‖yi − yj‖ → 0, as t→ +∞, ∀ i, j ∈ V .

We define the intermediate error vector as:

δi = (IM ⊗ (
d

dt
+ ρ)n−1)yi, (7.21)

where IM is the identity matrix of dimension M and ρ ∈ R+. Since the multi-agent
system is leaderless, the topological sliding variable for the whole system is:

S = L ⊗ IM


δ1

δ2
...
δN

 = L ⊗ IM∆, (7.22)

where ∆ = [δ>1 , δ
>
2 , · · · , δ>N ]>.

For simpler description, we define si ∈ RM as

si =tTSi (∆) =
N∑

j=1,j 6=i

aij(δi − δj) + 0δi

=
N∑

j=1,j 6=i

aij(δi − δj)
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Figure 7.1: Desired formation of networked system under three different information
flow topologies.
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Figure 7.2: Position of the leader and agents under three different information topolo-
gies.

We then give the control law as:

ui = −g−1i (xi)(ψsi + φ sgn(si) + fi(xi) + γ(xi)), (7.23)

where γ(xi) = [γ(x1
i ), γ(x2

i ), · · · , γ(xMi )], and γ : RN → R is defined in (4.10).

The stability justification follows:

Theorem 22. Consider a network of agents with nonlinear heterogeneous node dy-
namics (7.1) and communication topology G under Assumption 3. With the dis-
tributed control law (7.23), and tuning parameters ψ, φ, ρ ∈ R+, the sliding variable
S, defined by (7.22), converges to a consensus equilibrium S∗ = c1 asymptotically,
where c ∈ R. This means limt→∞ ‖si(t)− sj(t)‖ = 0.

The proof is similar to theorem 15.
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7.2 Applications of MIMO DSMC

In this section, we apply the DSMC to a consensus problem with MIMO dynamics.
Consider a unicycle model with extended dynamics [59] on a 2D plane,

ṗxi = cos θivi,

ṗyi = sin θivi,

v̇i =ui,1,

θ̇i =ui,2,

(7.24)

where the input is ui = [ui,1, ui,2]
>, position pi = [pxi , p

y
i ]
> is the output.

The dynamics (7.24) can also be written as

p̈i =

[
cos θi −vi sin θi
sin θi vi cos θi

]
ui. (7.25)

We assume the reference signal p0 generated by

ṗ0(t) =

[
0 1
−1 0

]
︸ ︷︷ ︸

A0

p0(t),

with initial condition p0(0) = [0.82, 0]>.
We define the tracking error and intermediate error as

ei =pi − p0,

δi =(I2 ⊗ (
d

dt
+ ρ))ei.

With the sliding variable (7.2), reaching law (7.3) and distributed observer (4.14),
we get the following distributed control law:

ui =

[
cos θi sin θi
− sin θi

vi

cos θi
vi

]
· (−ψsi − φ sgn(si)

− ρ
[

cos θivi
sin θivi

]
+ (A2

0 + ρA0)p̂0,i),

(7.26)

where p̂0,i is the estimated p0 for the i-th node.
We conducted numerical simulation under three different information flow topolo-

gies, shown in Fig. 7.1. We choose the tuning parameter as follows: k = 2, ψ = 2,
φ = 0, and ρ = 1. Fig. 7.2 shows the position portrait of the multi-agent system.



CHAPTER 7. EXTENSIONS OF DSMC 75

7.3 Graph Robustness and DSMC

One of the important aspect of consensus is to study the influence of information
exchange topology on the closed-loop performance with respect to consensus and
robustness. In this section, we will discuss MIMO DSMC as the tool to study graph
robustness.

In [42, 30], an optimal control framework specialized to large-scale distributed sys-
tems is developed. This framework introduces a sparsity penalty on the controller
structure into a standard optimal control setting, indicating a design preference for
decentralized and localized control schemes with limited communication between
subsystems. Recent work by [76, 24] extend these ideas to the consensus and syn-
chronization setting. Here, the pursuit of sparsity is particularly well motivated. For
example, the application of classical optimal control strategies can often result in
feedback laws that require dense communication networks which are not practical
for real-world implementation. Penalizing the structure of the control law is critical
to constructing an effective framework for control design. Naturally, balancing the
performance of the closed-loop system (e.g. response times and robustness to dis-
turbances/uncertainty) with the sparsity of the feedback law leads to an interesting
tradeoff problem.

The sparsity-promoting optimal control framework for
multi-agent consensus

Here, we review the sparsity-promoting optimal control method in the context of
consensus and synchronization problems. This approach was developed in [42, 30]
and specialized to consensus and synchronization in recent work by [76, 24].

Consider the following undirected consensus network,

ẋ =− Lpx + u + d,

u =− Lcx
(7.27)

where x ∈ RN is the state, Lp is the Laplacian of the open-loop system (i.e., the
plant), u is the control action, and d represent a disturbance. Lc is a weighted
Laplacian, which implies that the control associated with the ith node takes the
form ui = −

∑n
j=1wij(xi − xj).

In the context of control design, Lp is given and Lc is to be designed. Let Ic
be the collection of all nodal pairs (i, j) that we are allowed to connect using the
controller. For example, this set may contain all edges not contained in the open-loop
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system. The control Laplacian may be rewritten as,

Lc =
∑
l∈Ic

wlξlξ
>
l = Ecdiag(w)E>c (7.28)

where Ec is the incidence matrix associated with Ic and the ξ are the corresponding
column vectors. Note that the weight vector w is the design variable.

The sparsity-promoting optimal control framework is made up of a two-stage
process. First, the sparsity structure of the optimal control is identified by solving,

w′ = argmin
w

J(w) + γ‖w‖1 (7.29)

where J(w) is the performance objective and γ is a regularization parameter. The
second stage, referred to as polishing, solves the unregularized problem (γ = 0) but
subject to the previously identified sparsity structure,

w? = argmin
w

J(w) + γ‖w‖1

s.t. supp(w) ⊆ supp(w′)
(7.30)

In [42, 76], the performance objective is chosen as the H2 norm of the closed-loop
system, which quantifies the steady-state variance amplification (of the disturbance)
and is parameterized by two penalty matrices: Q, which is used to form a quadratic
penalty on the state, and R, which is used to form a quadratic penalty on the control.
Typically, Q = I− 1

n
11> and R = I. Note, the state penalty x>Qx = ‖x−[ 1

n
1>x]1‖22

and thus punishes deviations from the network average.
As demonstrated in [24], the sparsity-promoting framework described above can

be specialized to the consensus setting by,

J(w) = 〈G(w)−1, Q+ LcRLc〉 (7.31)

where G(w) = Lp + Lc + 1
n
11> is the “strengthened” closed-loop plant and adding

the constraint G(w) � 0 to produce

w′ =argmin
w

J(w) + γ‖w‖1

s.t. G(w) � 0.
(7.32)

Note, the linear matrix inequality constraint G(w) � 0 implies that the closed-loop
plant is positive definite on the space 1⊥. To see this, note that the constraint
implies that for any z ∈ 1⊥, z>G(w)z = z>(Lp + Lc)z > 0. Hence, the closed-loop
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Laplacian has only a single zero eigenvalue and the resulting network is connected,
thus guaranteeing consensus. Importantly, (7.32) is a convex optimization. J(w) is
convex with a Lipschitz continuous gradient, with derivatives computed in [24, 20].

Following standard techniques, the objective in (7.32) can minimized by the prox-
imal gradient method, leading to the following iteration.

wk+1 = soft(wk − αk∇J(wk), γαk). (7.33)

where soft(·, ·) refers to the soft-thresholding function (proximal operator of ‖·‖1). A
key challenge, however, is the choice of stepsize αk since the Lipschitz constant of ∇J
exists but is unknown. To address this, [24] suggests the stepsize to be determined
at each iteration by backtracking to ensure the appropriate descent condition as well
as feasibility:

• J(wk+1) ≤ J(wk) +∇J(wk)>(wk+1 − wk)

+
1

2αk
‖wk+1 − wk‖22

• G(wk+1) � 0

(7.34)

Interestingly, we found that we could not replicate the results of [24] by simply ap-
plying the proximal gradient method for a wide selection of γ. In several trials, we
ended up with weight vectors with many small but non-negligible entries, which cor-
responded to dense communication networks. In order to verify our implementation,
we compared our results to that of the graphsp MATLAB implementation developed
by [24]. We found that the inclusion of a greedy modification significantly improved
the result. This modification essentially applied the proximal gradient method iter-
atively for increasing γ, where at each iteration the support of the decision variable
w was restricted to the support found in the previous iteration. The results in the
following section were produced using this algorithm.

DSMC control example

Consider agent dynamics (7.25), we define an intermediate variable for each agent:

δi = (I2 ⊗ (
d

dt
+ ρ))pi, (7.35)

where I2 denotes the second order identity matrix, and ρ ∈ R+ is a tuning parameter.
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We define the topological sliding mode variable for the whole system

S := (Lp + Lc)⊗ I2


δ1

δ2
...
δN

 = (L ⊗ I2)∆, (7.36)

where L := Lc + Lp, and ∆ = [δ>1 , δ
>
2 , · · · , δ>N ]>.

For simpler description, we denote the adjacency matrix corresponding to L =
Lc + Lp as A. Then we define si ∈ R2 as

si :=
N∑

j=1,j 6=i

aij(δi − δj), (7.37)

where aij is the (i, j)-th term of A. Therefore, we have S = [s>1 , s
>
2 , · · · , s>N ]> ∈ R2N .

With the sliding variable (7.36), we present the following distributed control law:

ui =

[
cos θi sin θi
− sin θi

vi

cos θi
vi

]
· (−ψsi − φ sgn(si)

− ρ
[

cos θivi
sin θivi

]
),

(7.38)

with ψ and φ positive.
The stability is justified with Theorem 22.
We conducted numerical simulation under two different randomly generated plant

topologies. In Fig.7.3-7.8, we showed the simulation of how the sparsity-promoted
control completes the disconnected graph with different sparsity weights. In the first
row of both figures, we plot the information topologies; the second row showcases
the phase portrait; and the third row displays the time-domain signal plots.

In Figure 7.3 and Fig. 7.6, we witnessed the fragmentation phenomena of the
closed-loop system with a disconnected information topology. In systems with con-
nected topologies, we see the consensus is achieved; also we find that under different
linkages, the convergence behaviors/patterns and rates are significantly different.
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(a) plant topology (A)
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Figure 7.3: Topology (A). The first row is the information flow topology (A), the
second row is the phase portrait, the third row is the response in time domain.



CHAPTER 7. EXTENSIONS OF DSMC 80

(a) plant topology (A) with dense link
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Figure 7.4: Topology (A) with dense link. The first row is the information flow
topology (A) with dense link, the second row is the phase portrait, the third row is
the response in time domain.
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(a) plant topology (A) with sparse link
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Figure 7.5: Topology (A) with sparse link. The first row is the information flow
topology (A) with sparse link, the second row is the phase portrait, the third row is
the response in time domain.
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(a) plant topology (B)
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Figure 7.6: Topology (8). The first row is the information flow topology (A), the
second row is the phase portrait, the third row is the response in time domain.
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(a) plant topology (B) with dense link
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Figure 7.7: Topology (B) with dense link. The first row is the information flow
topology (B) with dense link, the second row is the phase portrait, the third row is
the response in time domain.
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(a) plant topology (B) with sparse link
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Figure 7.8: Topology (B) with sparse link. The first row is the information flow
topology (B) with sparse link, the second row is the phase portrait, the third row is
the response in time domain.
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Chapter 8

Conclusion

In this dissertation, we presented a distributed sliding mode control design framework
for nonlinear heterogeneous multi-agent systems. We proposed a new “topologically
structured function” that is used to construct the topological sliding surface and
reaching law. This design results naturally in a distributed control architecture. The
distributed control law is obtained by properly matching the topological sliding sur-
face and topological reaching law. The consensus problem is significantly simplified
by casting N interconnected higher-order dynamics into N -th order sliding variable.
The stability and convergence property are proved in the sense of Filippov to cope
with the discontinuity originated from switching terms.

The advantage of this framework is it explicitly supports both consensus problems
with/without leader. It also incorporates all possible information topologies ranging
from undirected topology to directed topologies with a spanning tree, and gives
stability justifications for each one of them. Also, it fits all nonlinear feedback-
linearizable systems.

8.1 Summary

In Chapter 2, we reviewed the contents in discontinuous dynamical systems since in
sliding mode control, discontinuities are intentionally designed to achieve regulation
and stabilization.

In Chapter 3 we have introduced basic concepts of graph theory, adjacency ma-
trix, Laplacian matrix, and incident matrix. Then we introduced how the connec-
tivity of the graph affects the algebraic results of these matrices.

In Chapter 4, we presented the problem formulation. We started construction
from the definition of the topological structured function, then used this function
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to construct both topological sliding surface and topological reaching law. We also
introduced variation of the design under three different cases: 1. without a leader,
2. with a static leader, 3. with an active leader.

In Chapter 5, we have studied the stability results of the DSMC. We discussed
that under different topologies, the stability results can vary. We give sufficient
conditions on Lyapunov stability, finite-convergence, and input-to-state stability. We
made the discussion on robustness by characterizing the input-output relations.

In Chapter 6, we applied the DSMC framework to a platooning system. We
introduced a simplified velocity observer for easier implementation. In addition, we
have a discussion on the propagation of disturbance and topology.

In Chapter 7, we extend the DSMC framework to MIMO systems. We showed
corresponding stability results. We also illustrated an application of using DSMC to
study the sparsity-promoting optimal control framework.

8.2 Future directions

Despite the recent progress in the study of consensus problems, numerous open
questions of scientific and practical interest remain unanswered. We describe a few
promising projects, emphasizing motivations, prospects and potential rewards for
each of them.

How to characterize disturbance propagation for a
multi-agent system with general topologies?

In vehicle platooning, there is a commonly used definition called “string stability”.
As discussed earlier, the definition of “strong string stability” as given in (6.32) or
as given in [51] relies on a specific information flow topology. The structure of the
system (6.32) implies that the error propagates from the front cars to the rear cars.
Without (6.32), the definition reduces to normal Lyapunov stability of the whole
platoon. The definition in [51] is based on the predecessor following topology, and
does not apply to other other information flow topology, since the existence of Gi−1,i
is not guaranteed.

The question for us is to develop so-called “string stability” for general consensus
problem. This notion will be useful for future autonomous driving systems with V2V
and V2X for the purpose of collision avoidance.
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How to keep a balance between graph sparsity and system
robustness?

A critical issue arising from multi-agent systems is the influence of the information
exchange topology on the closed-loop performance with respect to consensus and ro-
bustness. Designing information topologies that are both efficient and satisfy these
important criteria can become a challenge, particularly when only limited communi-
cation between individual agents or groups of agents is possible. Many of the recent
researches [24, 20, 42, 76], gives us a direction. However, there is a still a gap be-
tween the theory and application here. Maybe some of the theorems in compressed
sensing, and sparsity promoting optimization can give us an answer in the future.

How to tame under-actuated dynamics?

In traditional nonlinear control, we deal with mostly fully actuated systems. Cur-
rently, the DSMC control can deal with all feedback-linearizable systems. However,
many of the prospective applications of consensus have under-actuated systems, for
example: airplanes, automobiles, and robots. There are many explorations in this
area to be done. The geometric control [7] provides us some ideas on how to deal
with the under-actuated systems.
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[30] Mihailo R Jovanović and Neil K Dhingra. “Controller architectures: Trade-
offs between performance and structure”. In: European Journal of Control 30
(2016), pp. 76–91.

[31] Gelig Arkadii Kh et al. Stability of stationary sets in control systems with
discontinuous nonlinearities. Vol. 14. World Scientific, 2004.

[32] Hassan K Khalil. Noninear Systems. Prentice-Hall, New Jersey, 1996.

[33] Nikolai Nikolaevich Krasovskii, Andrei Izmailovich Subbotin, and Samuel Kotz.
Game-theoretical control problems. Springer-Verlag, 1987.

[34] NN Krasovskii and JL Brenner. “Stability of Motion, Applications of Lya-
punov’s Second Method to Differential Systems and Equations with Delay”.
In: View at MathSciNet (1963).

http://dx.doi.org/10.1109/5.871301


BIBLIOGRAPHY 91

[35] Ji-Wook Kwon and Dongkyoung Chwa. “Adaptive bidirectional platoon con-
trol using a coupled sliding mode control method”. In: IEEE Transactions on
Intelligent Transportation Systems 15.5 (2014), pp. 2040–2048.

[36] GD Lee and SW Kim. “A longitudinal control system for a platoon of vehicles
using a fuzzy-sliding mode algorithm”. In: Mechatronics 12.1 (2002), pp. 97–
118.

[37] Shengbo Eben Li et al. “An overview of vehicular platoon control under the
four-component framework”. In: Intelligent Vehicles Symposium (IV), 2015
IEEE. IEEE. 2015, pp. 286–291.

[38] Shengbo Eben Li et al. “Dynamical modeling and distributed control of con-
nected and automated vehicles: Challenges and opportunities”. In: IEEE In-
telligent Transportation Systems Magazine 9.3 (2017), pp. 46–58.

[39] Shengbo Eben Li et al. “Multiple-model switching control of vehicle longitudi-
nal dynamics for platoon-level automation”. In: IEEE Transactions on Vehic-
ular Technology 65.6 (2016), pp. 4480–4492.

[40] Zhongkui Li et al. “Consensus of multiagent systems and synchronization of
complex networks: a unified viewpoint”. In: Circuits and Systems I: Regular
Papers, IEEE Transactions on 57.1 (2010), pp. 213–224.

[41] Zhongkui Li et al. “Designing fully distributed consensus protocols for linear
multi-agent systems with directed graphs”. In: IEEE Transactions on Auto-
matic Control 60.4 (2015), pp. 1152–1157.

[42] Fu Lin, Makan Fardad, and Mihailo R Jovanović. “Design of Optimal Sparse
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