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Abstract
Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by sustained elevated pulmonary arterial pressures
in which the pulmonary vasculature undergoes significant structural and functional remodeling. To better understand disease
mechanisms, in this review article we highlight recent insights into the regulation of pulmonary arterial cells by mechanical
cues associated with PAH. Specifically, the mechanobiology of pulmonary arterial endothelial cells (PAECs), smooth
muscle cells (PASMCs) and adventitial fibroblasts (PAAFs) has been investigated in vivo, in vitro, and in silico. Increased
pulmonary arterial pressure increases vessel wall stress and strain and endothelial fluid shear stress. These mechanical cues
promote vasoconstriction and fibrosis that contribute further to hypertension and alter the mechanical milieu and regulation
of pulmonary arterial cells.

Keywords Mechanosignaling · Pulmonary arterial endothelial cells · Pulmonary arterial smooth muscle cells · Pulmonary
arterial adventitial fibroblasts · Stiffness · Stretch · Computational model

Introduction

Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a vasculopathy
that is manifested by sustained elevation of pulmonary arte-
rial pressures and irreversible vascular remodeling. In PAH,
the pulmonary vasculature undergoes significant struc-
tural and functional remodeling, including thrombus forma-
tion, endothelial dysfunction, cell proliferation, migration,
and hypertrophy, and accumulation of extracellular matrix
(ECM) proteins, leading to the formation of complex lesions
known as plexiform lesions (Ogata and Iijima 1993). As
a consequence, there is thickening of the vascular wall,
persistent vasoconstriction, arterial stiffening, and vascu-
lar rarefaction that further exacerbate pressure overload
and adversely impairs pulmonary artery (PA) perfusion and
hemodynamics.

Therapeutics targeting different cell types involved in
this cascade of events have been developed to ameliorate
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the symptoms or progression of PAH. Vasodilators target-
ing smooth muscle cells by stimulating nitric oxide (NO)
release have shown to reduce pulmonary arterial pressure,
but do not reverse adverse vascular remodeling (Sun and
Chan 2018). Other therapeutic targets include G protein-
coupled receptors (GPCRs), ion channels, metabolic path-
ways, transcription factors, and growth factor receptors
(Hemnes and Humbert 2017; Sommer et al. 2021). NO
release is stimulated by phosphodiesterase type 5 (PDE5)
inhibitors tadalafil and sildenafil, and endothelin receptor
antagonists ambrisentan and macitentan also lead to smooth
muscle cell relaxation. Bone morphogenic protein receptor
type 2 (BMPR2) antagonists like chloroquine and Smad2/3
antagonists like sotatercept are used to target the BMP
and transforming growth factor beta (TGF-β1) pathways,
respectively (Sommer et al. 2021). Since the structural and
cellular remodeling of the pulmonary arteries is still largely
irreversible, the prognosis of PAH is poor, and the underly-
ing causes remain untreatable. Existing drugs do not reduce
the progression of vascular remodeling, and patients deteri-
orate over time. Fewer than 60% of patients survive more
than five years after diagnosis (Dannewitz Prosseda et al.
2020) and lung transplantation remains the only cure (Som-
mer et al. 2021). Since PAH therapeutics have had limited
efficacy in reversing the pathological mechanisms that drive
vascular remodeling, there is a need for more research
into the pathology and crosstalk between biochemical and
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mechanosensitive signaling pathways in pulmonary arterial
cells (Sitbon et al. 2019).

Cellular mechanical regulation

In response to the rise in mean pulmonary arterial pressure,
the pulmonary artery wall thickens due to increased
proliferation and hypertrophy of PA smooth muscle cells
(PASMCs) (Shimoda and Laurie 2013; Tuder et al.
2013). This is accompanied by increased proliferation of
PA endothelial cells (PAECs) and adventitial fibroblasts
(PAAFs) as well as inhibited apoptosis of PAECs and
PASMCs, and an endothelial-to-mesenchymal-transition
(EndoMT), that transforms PAECs to myofibroblasts,
leading to overproduction of ECM proteins and fibrosis
(Good et al. 2015). The mechanical forces that trigger
vascular cell remodeling in PAH result from the effect
of increased blood pressure on the wall and increased
blood flow on the endothelium (Kumar et al. 2010; Bertero
et al. 2018). Increases in arterial pressure lead to vessel
thickening, while increased PA flow due to PAH also
increases PAEC fluid shear stress which promotes EndoMT
and further accumulation of PAAFs (Good et al. 2015).
Increased vessel loading also promotes PAAF proliferation
and activates increased ECM expression resulting in
matrix stiffening that in turn activates myofibroblasts to
produce more ECM, further decreasing vascular compliance
(Bertero et al. 2018). This cascade of events further
exacerbates adverse structural remodeling and vascular
dysfunction (Fig. 1).

Increased pulmonary arterial pressure causes increased
vessel wall stress and strain and drives increased blood
flow that increases fluid shear stress on the endothelium
(Fig. 2). Changes in stiffness at the tissue scale of the pul-
monary vasculature results in cellular mechanotransduction
responses leading to activation of signaling pathways that
feed back to induce more remodeling (Dieffenbach et al.
2018). For example, ECM gene expression by PAAFs can
be activated by mechanical strain, leading to the overpro-
duction of collagen. The resulting increase in ECM stiffness
activates PAAFs to transition to myofibroblasts and can
also stimulate PASMC and PAEC proliferation (Thenap-
pan et al. 2018). Here we summarize the mechanobiological
responses to wall stress and strain, fluid shear stress and
ECM stiffening in these three cell types and the crosstalk
between them in the context of vessel remodeling in
response to mechanical overload in the pathogenesis of PAH
(Fig. 3).

Pulmonary arterial endothelial cells

PAECs form the permeable barrier between blood and
vascular tissue, and respond to circulating cytokines such as
endothelin-1 (ET-1), a vasoconstrictor, and platelet-derived
growth factor (PDGF), which increases cell proliferation
(Ranchoux et al. 2017; Welsh and Peacock 2013). PAEC
signaling is also regulated by mechanical cues associated
with altered fluid shear stress on the vascular endothelium
due to increased blood pressure and flow, increases in matrix
stiffness, and hypoxia. Dysregulation of pathways such
as the vascular endothelial growth factor (VEGF), Notch,

Fig. 1 Vascular remodeling in
pulmonary arterial hypertension
is manifested by increased
pulmonary arterial pressures,
decreased arterial compliance,
and pruning of the vasculature.
At the cellular level, pulmonary
arterial adventitial fibroblasts
(PAAFs) respond to increased
strain, endothelial cells (PAECs)
respond to increased flow, and
smooth muscle cells (PASMCs)
are activated to contract causing
vasoconstriction. These cellular
responses feedback into the
system by increasing
extracellular matrix (ECM)
stiffness, releasing paracrine
factors, and increasing PA
pressure, respectively. Images
used with permission from J
Signal Transduct. 2012: 951497,
and sciencellonline.com
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Fig. 2 Increased pulmonary arterial pressure (P) increases vessel wall
stress (σ ), strain (ε), and blood flow, which increases shear fluid shear
stress (τ ) on the endothelium. The main cell types affected by these
mechanical forces are PAECs — blue PASMCs — red, PAAFs —
green

and bone morphogenetic protein (BMP) signaling pathways
leads to disordered formation of new vessels (Ranchoux
et al. 2017).

In-vivo experiments

Most experimental studies of vascular remodeling in
PAH use one of three animal models: monocrotaline
(MCT), chronic hypoxia (CH), and sugen-hypoxia (SuHx).
MCT is a poisonous pyrolizidine alkaloid found in the
leguminous plant Crotalaria spectabilis, that produces a
massive inflammatory response in the lung, damaging
pulmonary endothelial cells, leading to pathologically
elevated pulmonary arterial pressures (Gomez-Arroyo
2017). Four weeks post-MCT injection in rodents is a
well-established animal model of end-stage PAH. MCT
is however toxic to the liver and other tissues (Gomez-
Arroyo et al. 2012; Zhu et al. 2018), and commonly
results in sudden cardiac death (Temple et al. 2014).
Exposure to chronic hypoxia (10% oxygen) for few weeks
induces pathologic elevation in pulmonary arterial pressure
via PA medial hypertrophy and sustained pulmonary
vasoconstriction (Liang et al. 2017). SuHx in rats, an
animal model developed by Taraseviciene-Stewart et al.
(Taraseviciene-Stewart et al. 2001), is the model of PAH
that most closely recapitulates the pulmonary arterial
lesions found in lung tissues from human PAH patients
(Woodcock et al. 2021) and the progressive hemodynamic
sequelae. With a single injection of 20 mg/kg of vascular
endothelial growth receptor factor inhibitor sugen SU5416
and exposure to chronic hypoxia (10% oxygen) for
three weeks, rats show significant pulmonary arterial
medial hypertrophy, pulmonary arterial wall thickening
and sustained pulmonary vasoconstriction that results

in progressively elevated pressures (Nickel et al. 2015;
Woodcock et al. 2021).

In both chronic hypoxia and MCT rats, hyper-
proliferation of PAECs and increased levels of VEGF in
vivo mediated vessel growth and disordered angiogenesis
(Liang et al. 2017). Chronic hypoxia induces expression of
PDGF, increasing PAEC proliferation and inhibiting apop-
tosis. This indicates that hypoxia-induced angiogenesis in
PAECs stimulates elevated expression of PDGF and VEGF,
growth factors that are well known to regulate vascular
remodeling.

In the MCT rat model of PAH, downregulation of miR-
371b-5p was shown to increase apoptosis of PAECs via
phosphatase and tensin homolog (PTEN)/ phosphoinositide
3-kinase (PI3K)/Akt signaling and to suppress endothelial
nitric oxide synthase (eNOS) synthesis of nitric oxide which
is a vasodilator (Zhu et al. 2018). This miRNA could thus
be an important regulator of proliferation of PAECs and
vasoconstriction in PAH.

An important pathway that is dysregulated in PAH is
BMP signaling. In SuHx rats and cultured lung samples
from human patients, an elastase inhibitor Elafin was
used to rescue BMP signaling, which is important in
vasculogenesis, improving PAEC survival and normal
angiogenesis and thereby reversing adverse remodeling
(Nickel et al. 2015).

In a recent study byWoodcock et al., SuHx rats and lungs
from PAH patients showed decreased miR-7 expression
(Woodcock et al. 2021). miR-7 has been reported to
regulate serine and arginine-rich splicing factor 1 (SRSF1),
which promotes PAEC migration (Woodcock et al. 2021).
Therefore, this may be a novel mechanism by which
changes in ECM stiffness in PAH regulates pathologic
endothelial dysfunction and cell migration.

In-vitro experiments

Increased fluid shear stress on PAECs in vitro has been
shown to decrease Protein Kinase C delta (PKCδ) activity,
which leads to increases in phosphorylation of eNOS and
consequent generation of NO in primary ovine cell cultures
(Kumar et al. 2010).

In primary human PAECs isolated from PAH patients,
increased production of ET-1 was observed, which leads to
PAEC dysfunction and excessive proliferation (Kang et al.
2016). Stimulation with peroxisome proliferator–activated
receptor gamma (PPARγ) was able to reduce this ET-
1 overexpression, demonstrating the potential for PPARγ
agonists as therapeutics for PAH.

In vitro, increased extracellular matrix stiffness from
1 kilopascal (kPa), representing control arterioles, to 50 kPa,
representing diseased pulmonary arterioles, led to increased
glycolysis via the YAP/TAZ mechanotransducers in the
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Fig. 3 The effect of an increase of mean pulmonary arterial pres-
sure (mPAP) on increasing blood flow results in increased shear stress
experienced by pulmonary arterial endothelial cells (PAECs) which
increases their proliferation. This and other cytokines mediate the
PAEC transition into activated fibroblasts and release of paracrine

factors that induce smooth muscle cell (PASMC) proliferation and
vasoconstriction that in turn reduces blood flow. An increase in mPAP
also increases PA wall stress and strain, which increases profibrotic
adventitial fibroblast (PAAF) expression, increasing ECM stiffness
and overall PA stiffness leading to decreased PA wall strain

Hippo signaling pathway (Bertero et al. 2016). A shift
from oxidative phosphorylation to glycolysis is a driver of
PAEC proliferation and migration early in PH, as glycolysis
is needed to meet the metabolic demands of proliferating
cells. When PAECs were grown on the aforementioned
stiff 50-kilopascal (kPa) matrix representative of tissue
stiffness in PAH compared with a soft 1-kPa matrix
representative of control lungs by Woodcock et al., miR-
7 was downregulated, which led to increased migration
(Woodcock et al. 2021).

Summary

PAECs respond to the elevated ECM stiffness, fluid
shear stress, and hypoxia associated with PAH via
dysregulated PI3K and BMP signaling, which trigger
hyper-proliferation and migration. This in turn mediates
pathogenic angiogenesis and vascular remodeling.

Pulmonary arterial smoothmuscle cells

PASMCs are the primary cell type in the medial layer
of the pulmonary artery. They contain contractile proteins
which are regulated by calcium and control vascular tone
(Lyle et al. 2017). When dysregulated, abnormal SMC
contractility can cause persistent vasoconstriction, a disease
marker of PAH. In PAH we also observe neointimal
hyperplasia due to proliferation, hypertrophy, and migration
of PASMCs to the intimal layer of the PA. Under PAH
conditions, SMCs also produce more pro-inflammatory
cytokines, deposit increased elastin and collagen, and grow

thereby thickening the medial layer (Stenmark et al. 2018).
SMCs respond to increases in matrix stiffness and hypoxia
by remodeling the ECM and proliferating abnormally.

In-vivo experiments

Signaling pathways such as NFAT and Notch signaling
become overactive in PAH conditions. In MCT rats,
calcineurin/nuclear factor of activated T-cells (NFAT)
signaling was reported to be activated and shown to increase
PASMC proliferation and migration, and inhibit apoptosis
(He et al. 2018). Notch signaling is another important
pathway that upregulates proliferation and differentiation of
PASMCs. The γ-secretase inhibitor DAPT blocks Notch3
and successfully reduced mean pulmonary arterial pressure
in extrauterine growth restriction (EUGR) rats (Li et al.
2009; Wang et al. 2019).

Transient receptor potential vanilloid-3 (TRPV3) channel
expression was also found to be increased in hypoxic rats,
and is thought to mediate pulmonary vascular remodeling
via the proliferation of PASMCs by activating PI3K/Akt
signaling (Zhang et al. 2018).

There is evidence of regulation of PAH by noncoding
RNAs. Upregulation of the newly found microRNA miR-
205-5p was observed to reduce PASMC proliferation in a
hypoxia-induced PAH mouse model, inhibiting molecule
interacting with CasL 2 (MICAL2) expression by targeting
the 3′ untranslated region, which activates the ERK1/2
pathway (Tao et al. 2019). miRNAs were also found to
be important in PASMC synthesis of collagen, particularly
miR-29b, which physically binds Smad3 downstream of
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TGFβ1 as found by chromatin immunoprecipitation (Wang
et al. 2018). TGF-β1 is an important cytokine because
chronic activation in vivo leads to spontaneous PAH in mice
(Calvier et al. 2019). TGF-β1 also downregulates miR-29b
through Smad3 (Wang et al. 2018). PASMCs isolated from
PAH patients by Lei et al. demonstrated an increase in a long
noncoding RNA (lncRNA), which reduces the expression of
miR-141 (Lei et al. 2020). miR-141 normally downregulates
expression of RhoA, suppressing the RhoA/ROCK pathway,
but when miR-141 is not highly expressed the ROCK
pathway is upregulated, which increases constriction and
remodeling of the vasculature.

In-vitro experiments

Rat PASMCs showed higher expression of collagen III
protein and fibronectin mRNA when stimulated with
connective tissue growth factor (CTGF), upstream of
PI3K (Sun et al. 2017). This increase in ECM protein
deposition promotes pulmonary vascular remodeling under
PAH conditions.

Different pathways are upregulated by hypoxia in
PASMCs. Huang et al. showed that the mitogen-activated
protein kinases (MAPK) signal pathway is crucial in the
proliferative response of PASMCs to hypoxia (Huang
et al. 2017). Hypoxia induces pulmonary vasoconstriction,
mediated by increased intracellular calcium in PASMCs
(Yadav et al. 2018). Vasoconstriction causes reactive
oxygen species (ROS)-dependent phospholipase C (PLCγ1)
activation and contraction in mouse PASMCs.

BMP signaling is important to normal function of
PASMCs but can be disrupted by disease. Wang et al. found
in rat primary PASMCs that BMP signaling is suppressed
in hypoxia-induced PH (Wang et al. 2019). Dysfunctional
BMP signaling causes proliferation of PASMCs in PAH,
and PDGF-BB can activate Rho kinase and enhance
proliferation of rat SMCs (Wei et al. 2019).

NFAT signaling can also be dysregulated in PAH.
PASMCs isolated from PAH patients and control subjects
showed upregulated STIM2 in PAH-PASMCs, which
raises resting cytosolic calcium and increases PASMC
proliferation via, among others, the Akt and NFAT
signaling pathways (Song et al. 2018). Upregulation of
the matricellular protein osteopontin by Sphingosine-1-
phosphate (S1P) via calcineurin/NFAT signaling is observed
in rat cell cultures (Yan et al. 2019). S1P induces a
vasoconstrictive response, and via osteopontin, directly
promotes PASMC proliferation.

Regulation of PAH by noncoding RNAs has also been
shown in vitro, in particular miR-17-92 has been shown
to regulate the PASMC contractile phenotype and increase
proliferation in cells isolated from PAH patients (Chen et al.
2018).

Summary

PASMCs respond to increases in pulmonary arterial pres-
sure by increasing vasoconstriction via the NFAT signaling
pathway, increases in stiffness through proliferation medi-
ated by miRNAs and dysregulated BMP and TGFβ1 sig-
naling, and hypoxic conditions by depositing ECM proteins
which remodels the pulmonary vasculature.

Pulmonary arterial adventitial fibroblasts

PAAF cells are important for vascular ECM homeostasis
and remodeling (Thenappan et al. 2018; Stenmark et al.
2006). There is evidence that PAAFs are regulated by
matrix stiffness (Sun and Chan 2018; Dieffenbach et al.
2018; Dieffenbach et al. 2017), stretch (Strauss and
Rabinovitch 2000), and hypoxia (Stenmark et al. 2006). In
the presence of injury, PAAFs are activated and differentiate
into myofibroblast subtypes that remodel vascular wall
properties by altering the expression, degradation or cross-
linking of ECM proteins including collagen, fibronectin
and elastin (Stenmark et al. 2006). Given that the ECM
also serves as a substrate for cell adhesion and sends
physical and chemical cues that determine cell phenotype,
it has recently been suggested that matrix remodeling and
stiffening may themselves signal tissue remodeling and
drive the disease process (Bertero et al. 2018).

In-vivo experiments

Balloon overstretch has been a useful way to study in
vivo activation of PAAFs in injury. Juvenile swine had a
high number of proliferating cells in the adventitia, and
increased expression of PDGF, showing that adventitial
myofibroblasts aid in lesion formation by synthesizing
growth factors and alpha-smooth muscle actin (Scott et al.
1996). Another balloon overstretch experiment conducted
by Mallawaarachchi et al. demonstrated that PAAFs are
activated to myofibroblasts by stretch in PAH, migrate
towards the lumen to form the neointima, and synthesize
ECM after vascular injury mediated by the TGF-β1 pathway
(Mallawaarachchi et al. 2005).

Hypoxia is also a critical regulator of matrix gene expres-
sion by activating ROS signaling that stimulates increased
alpha smooth muscle actin (α-SMA) production, a marker
of activated fibroblasts (Barman SA et al. 2014). Work
by Chai et al. (2018) showed that hypoxia induces PAAF
proliferation, migration, and vascular remodeling via the
PI3K/Akt pathway, inducing medial and adventitial thick-
ening and excessive fibronectin and collagen deposition in
pulmonary artery walls of hypoxic rats in vivo.

In vivo studies have shown an overexpression of
transient receptor potential vanilloid 4 (TRPV4), a
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calcium-permeable channel that is activated by mechanical
stimulation, in chronic hypoxia and MCT rats (Cussac et al.
2020). In their study, Cussac et al. showed how upregulation
of the TRPV4 channel leads to PAAF activation and adverse
adventitial remodeling in PAH, increasing collagen I and
fibronectin expression. Targeting TRPV4 could potentially
ameliorate disease progression in PAH by reducing PAAF
activation.

In-vitro experiments

In vitro experiments have shown the effect of altered
substrate stiffness on PAAFs. Bertero et al. studied the
YAP/TAZ and miR-130/301 vascular matrix feedback loop
using cultured primary human PAAFs. They conducted
quantitative RT-PCR of PAAFs on 1-kPa and 12-kPa
stiffness matrices and found that stiffer matrices created a
positive feedback loop, suggesting that matrix remodeling
and stiffening may themselves signal tissue remodeling
and drive the disease process (Bertero et al. 2018). The
group also showed that YAP/TAZ signaling was activated
by ECM stiffening from as low as 0.4 kPa to 1 kPa (Bertero
et al. 2015). As part of the Hippo pathway, YAP/TAZ
and the role of miRNA 130/301 have also been suggested
to promote PAAF proliferation, collagen deposition and
cross-linking (Dieffenbach et al. 2018). As the matrix
stiffens due to fibrosis, angiotensin II is released by PAAFs
activating pathways, such as the MAPK signaling cascade,
that stimulate further ECM deposition (Boyd et al. 2011).

Recently, TRPV4 has been shown to mediate PAAF
proliferation and migration in vitro using BrdU and wound
scratch assays in PAAFs isolated from rats (Cussac et al.
2020). Cussac et al. showed how upregulation of TRPV4
activates PAAFs to transition to myofibroblasts. This
work suggests a role for TRPV4 in excessive adventitial
remodeling in PH.

Our group has shown how PAAFs respond to stretch
and changes in extracellular matrix stiffness associated
with PAH remodeling (Wang et al. 2021). PAAFs were
differentially regulated by stretch and stiffness in expressing
collagen I (Col1a1), collagen III (Col3a1), fibronectin
(Fn1), α-SMA (Acta2), Lysyl oxidase-like 1 (Loxl1), and
elastin (Eln) mRNA, but there were no interaction effects
between stretch and stiffness for these genes. Increasing
substrate stiffness resulted in an increase in collagen III
and myofibroblast marker protein α-SMA, confirming the
important role of PAAFs in PA stiffening and vascular
remodeling. In addition, Fn1 expression was significantly
upregulated when PAAFs were stretched for 4 h but returned
to baseline if cells were stretched for 24 h. However,
Col1a1 expression was only upregulated after PAAFs were
stretched for 24 h. This faster response to stretch of Fn1

thanCol1 suggests that more detailed timecourses of PA cell
responses to stretch may be needed.

We used a sensitivity analysis of the computational
model to predict which receptors would have the largest
impact on downstream phenotypic outputs when inhibited.
Based on this, we tested the effects of using losartan,
an angiotensin II type I receptor inhibitor, on the relative
expression of Fn1. Losartan inhibited the upregulation
of Fn1 by an increase in matrix stiffness, and revealed
an angiotensin receptor-independent activation of Fn1
expression by stretch in PAAFs grown on stiffer substrates.

In-silico experiments

We developed a computational model of PAAFs
mechanosignaling that included TGFβ, MAPK, PDGF,
tumor necrosis factor α (TNFα), hypoxia, fibroblast growth
factor (FGF), angiotensin II, and Hippo signaling pathways,
which are upregulated by PAH, and phenotypic outputs to
investigate mechanical regulation of fibrosis in PAH (Wang
et al. 2020). The model predicted 80% of the results from
20 independent papers not used for the original formulation.
Sensitivity analysis showed PAAFs to be most sensitive
to TGF-β1, MAPK and hypoxia signaling. In vitro, PAAF
cells were cultured on hydrogel substrates having stiff-
nesses representing normal, mild and severe PAH vessels,
and were subjected to biaxial cell stretch (Wang et al.
2021). Based on increasing the stimulus of the input “stiff-
ness”, we ran experiments and verified the model-predicted
upregulation of five profibrotic genes including Col1a1,
Col3a1, and Eln mRNA in response to biaxial stretch,
while six profibrotic genes including Fn1 and Acta2 were
upregulated by increases in matrix stiffness in PAAFs. This
computational framework allowed us to incorporate experi-
mental findings, to predict how PAAFs would respond to
inhibition of the angiotensin II and TGFβ receptors, and
design new experiments. By using the model, we were able
to successfully test our hypothesis of the differential effects
of stretch and substrate stiffness in which stretch activates
integrin-β3, Macrophage Stimulating 1 or 2 (MST1/2)
kinases, angiotensin II, and the TRP pathways and stiffness
activates integrin β3, MST1/2, angiotensin II, TGF-β1, and
syndecan-4 signaling. Even though the model identified
candidate pathways based on the available literature, this
model was not able to replicate the observed inhibition of
Fn1 expression by losartan or the transient response of Fn1
at 4 h seen in the Wang et al. (2021 study). In addition,
while this model can accurately predict many indepen-
dent experiments, it only predicts qualitative increases
and decreases of expression. With more data, the predic-
tive and quantitative power of this model should increase
greatly.

752 Biophys Rev (2021) 13:747–756



Summary

PAAFs respond to hypoxia, stretch and stiffness by acti-
vating to myofibroblasts that produce more α-SMA, pro-
liferate, and overproduce ECM proteins causing adventitial
remodeling via YAP/TAZ and MAPK signaling in vitro and
in vivo.

Cellular crosstalk

In addition to the intracellular signaling via VEGF, BMP,
PDGF, TGF-β1, Notch, endothelin and TRP channel
signaling, mechanical crosstalk and paracrine signaling
mediate interactions between PAECs, PASMCs, and PAAFs
in response to physical stimuli caused by PAH, including
altered fluid shear stress, stretch, ECM stiffness and hypoxia
(Fig. 4).

Constriction of the pulmonary artery, regulated by
PASMC contraction and relaxation, can be regulated by
PAEC released paracrine factors. ECs release endothelium-
derived constricting factors (EDCF), endothelin-1 (ET-1)
and thromboxane A2 (TXA2), which lead to vasocon-
striction via PASMCs (Makino et al. 2011). On the other
hand, ECs can also release endothelium-derived relax-
ing factors (EDRF), NO and prostacyclin (PGI2), and
the endothelium-derived hyperpolarizing factors (EDHF),
which cause vasodilatation via PASMCs. This response
between cell types are due to a connection of myoendothe-
lial gap junctions, which transfer electric signals (Makino
et al. 2011). Serotonin synthesized by PAECs is transferred
through these gap junctions into PASMCs, where it acti-
vates TGF-β1 signaling and induces a more differentiated
phenotype. As TGF-β1 is a crucial regulator of fibrosis, this
is an important way PAECs and PASMCs respond to PAH
(Gairhe et al. 2011, 2012).

Fig. 4 Intracellular and intercellular signaling pathways in pulmonary
arterial cells regulated by fluid shear stress, stretch, hypoxia and extra-
cellular matrix (ECM) stiffening. PAECs respond to fluid shear stress
via vascular endothelial growth factor (VEGF) signaling and bone
morphogenic protein (BMP) signaling, to ECM stiffness via VEGF
signaling and miR-7, and to hypoxia via platelet-derived growth fac-
tor (PDGF) signaling. PASMCs respond to paracrine signals released
by the PAEC and ECM stiffness via transforming growth factor
beta 1 (TGF-β1), soluble guanylate cyclase (sGC), and endothelin
(ET) signaling while responding to hypoxia via dysregulated BMP

signaling and increased Notch signaling and transient receptor poten-
tial (TRP) channel calcium influx. PAAFs respond to ECM stiffness
via TRP influx of calcium, TGF-β1 signaling, and activation of the
Hippo pathway via YAP/TAZ transcription factors, to stretch via
YAP/TAZ and PDGF signaling, and to hypoxia via reactive oxygen
species (ROS) signaling. The four physical stimuli (black) lead to
intercellular reactions (gray dashed arrows) and intracellular reactions
(solid arrows matching cell color), resulting in phenotypic outputs
(white). Illustration created with Biorender.com
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A crucial way endothelium responds to stressors such
as increased levels of TGF-β1, tumor necrosis factor-
α (TNF-α), or interleukin-1β (IL-1β), is to undergo
endothelial-to-mesenchymal transition (EndoMT). This
cellular transdifferentiation results in some PAECs losing
their endothelial markers, for example von Willebrand
factor (vWF), and tight gap junctions between cells. The
PAECs then express α-smooth muscle actin (α-SMA) and
vimentin, fibronectin, and other markers of myofibroblasts.
These transformed PAECs then go on to overproduce
collagen I and other ECM proteins that remodel the matrix,
inducing a profibrotic phenotype and increasing PA stiffness
(Good et al. 2015). This then decreases vascular wall strain
and further exacerbates ECM remodeling (Fig. 3).

In-silico experiments

Recently, there has been published a computational model
of the EndoMT transition integrating boolean equations,
feedback mechanisms, and fixed patterns of activation
which simulates cell behaviors and predicts effects of
mutations. This allows them to explore conditions that cause
EC activation, the transition, and reverse-transitions for
future possible pharmacological control of the endothelial
to mesenchymal transition (Weinstein et al. 2020).

There is currently no computational model of the
crosstalk between PAECs, PASMCs, and PAAFs, or
indeed any network models of PAECs or PASMCs
individually, but a theoretical framework would allow us
to synthesize experimental findings from different cell
types and understand how their interactions contribute to
pathological vascular remodeling.

Summary

PAECs release paracrine factors that can affect the level
of vasoconstriction and TGF-β1 signaling as mediated
by PASMCs through gap junctions. Increased levels of
TGF-β1 and TNF-α can lead to EndoMT wherein PAECs
transform into activated PAAFs, or myofibroblasts, which
increases deposition and accumulation of collagen and
other ECM proteins (Fig. 4). This matrix remodeling can
in turn increase ECM stiffness, which regulates PAEC
migration and angiogenesis, matrix expression by PASMCs
and PAAFs, and PAAF proliferation.

Conclusions

There is now compelling evidence that mechanical cues
caused by pulmonary arterial hypertension and subsequent
disease remodeling regulate the responses of endothelial
cells, smooth muscle cells, and adventitial fibroblasts in the

pulmonary vasculature. As we continue to map the signaling
pathways, paracrine interactions, and mechanical crosstalk
in these cells, we can build predictive network models and
use them to identify new therapeutic targets specifically to
the mechanical milieu during different stages of the disease.
It is likely that customized combination therapies could
prove more effective than single targets in this context.
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