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Underwater sound speed profile estimation from vessel traffic
recordings and multi-view neural networks

Joseph L. Walker,1,a) Zheng Zeng,2 Vanessa M. ZoBell,1 and Kaitlin E. Frasier1
1Scripps Institution of Oceanography, University of California San Diego, San Diego, California 92093-0238, USA
2Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California 92093-0238, USA

ABSTRACT:
Sound speed is a critical parameter in ocean acoustic studies, as it determines the propagation and interpretation of

recorded sounds. The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate

ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon the underwater

radiated noise of moving vessels measured by a single hydrophone, is proposed. The dataset used for this study con-

sists of Automatic Identification System data and acoustic recordings of maritime vessels transiting through the

Santa Barbara Channel between January 2015 and December 2017. The acoustic recordings and vessel descriptors

are used as predictors for regressing sound speed for each meter in the top 200 m of the water column, where sound

speeds are most variable. Multiple (typically ranging between 4 and 10) transits were recorded each day; therefore,

this dataset provides an opportunity to investigate whether multiple acoustic observations can be leveraged together

to improve inversion estimates. The proposed single-transit and multi-transit models resulted in depth-averaged root-

mean-square errors of 1.79 and 1.55 m/s, respectively, compared to the seasonal average predictions of 2.80 m/s.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0025920
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I. INTRODUCTION

Acoustic inversion is frequently employed in oceanog-

raphy for the purpose of inferring ocean sound speed profile

(SSP): a parameter that characterizes the dependence of the

speed of sound on the temperature, salinity, and pressure of

water (Chen et al., 2018; Lovett, 1978). Reliably estimating

sound speeds is of interest due to the profound effect of

these profiles on acoustic propagation. Knowledge of local

SSPs is important for improving the performance of under-

water acoustic systems such as sonar and for various ocean-

ographic studies involving ocean currents, internal waves,

and underwater topography. Oceanic SSPs can be directly

measured using autonomous underwater vehicles or surface

vessel-based instruments, such as a conductivity-tempera-

ture-depth (CTD) sensor. The CTD sensor is lowered into

the water column, recording the temperature, salinity, and

pressure at regular intervals on both the descent and ascent

paths. The recorded variables are then related to sound

speed using a polynomial expression such as the Chen and

Millero equation (Chen and Millero, 1977). These direct

measurements are typically conducted during periodic field

efforts. Hindcast models are used to interpolate spatially and

temporally between these local measurements, ingesting

observations to estimate oceanographic conditions across a

region or period of interest. These models use observational

data (opportunistic in situ measurements, satellite

observations, and buoy data) and detailed physical oceano-

graphic models, often developed for a specific region of

interest (Stammer et al., 2002; Zaba et al., 2018).

In traditional acoustic inversion research, an active

source is used alongside vertical hydrophone arrays for the

inversion process. However, this setup can be costly and

requires specialized equipment that is not widely available

or easily deployed. Moreover, these advanced systems may

not be suitable for long-term (month- to year-long) deploy-

ments desired for extended studies of temporal SSP variabil-

ity, particularly in remote or deep-sea locations. The

technical constraints of active source systems have limited

the scale of data collection. To overcome these challenges,

there is a demand for inversion strategies that leverage more

easily accessible single-sensor passive acoustic recordings

and opportunistic sound sources.

The introduction of the Automatic Identification

System (AIS), which provides precise locations of vessels,

has made it possible to use vessel traffic noise as a source of

opportunity. This approach presents three main advantages:

(1) vessels produce low frequency noise that can be detected

at long distances, (2) maritime vessels are found in almost

all ocean regions, making them a widely accessible source

of data, and (3) the regular and frequent movement of ves-

sels makes them a consistent and reliable sound source for

long-term studies. Numerous studies have demonstrated the

use of propeller noise from passing vessels received by sea-

floor hydrophones as acoustic sources of opportunity for

estimating characteristics of the ocean environment anda)Email: jlwalker@ucsd.edu
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seafloor through which the signals have traveled (Gemba

et al., 2018; Gervaise et al., 2012; Koch and Knobles, 2005;

Tollefsen et al., 2020). This strategy has been used to esti-

mate the waveguide invariant property, which represents the

dispersive characteristics of the waveguide under variable

oceanographic conditions as well as for geoacoustic parame-

ter inversions (Park et al., 2005; Stotts et al., 2010;

Verlinden et al., 2017). Few studies have investigated the

use of machine learning for opportunistic acoustic inversion

in the water column, though SSP variability has been used

as a predictor for estimation of seabed parameters with

machine learning (Escobar-Amado et al., 2021).

Using uncontrolled, opportunistic vessel traffic noise as

an acoustic source in oceanographic applications poses sev-

eral challenges. The two main challenges are signal variabil-

ity and background noise. The acoustic signal radiated by

vessels is highly variable, dependent on factors such as the

size of the vessel, speed, load, and environmental condi-

tions, including ocean currents and wind resistance

(McKenna et al., 2013). Moreover, the signal is anisotropic

due to hull interference and potential secondary sound sour-

ces from ship systems other than the propeller, introducing

additional variability dependent on vessel orientation rela-

tive to an acoustic receiver (Gassmann et al., 2017). Some

of these factors are provided by AIS, but transit-dependent

factors such as load and actual draught are not. Incomplete

information can limit our ability to explain observed acous-

tic variability. The underwater environment is inherently

noisy, and vessel traffic noise can be masked by other sour-

ces of noise such non-target vessels or natural sounds from

marine life, wind, and waves. Recording systems can also

differ in their self-noise characteristics. These challenges

are exacerbated when a single hydrophone is employed to

sample the acoustic signal, as is typically done in long-term

observational passive acoustic monitoring.

When the underwater radiated noise (URN) of a moving

ship is recorded in a shallow water environment, the signal

contains characteristic interference patterns when viewed in

the time-frequency domain (Brekhovskikh et al., 1991;

Chuprov, 1982). Prior works have linked these striation pat-

terns with interference between propagative modes and

exploited them to perform geoacoustic inversion (Gervaise

et al., 2012). These works relied upon conventional signal

processing tools to extract the dispersion patterns. However,

these algorithms require a high signal-to-noise ratio in order

to be reliably extracted.

In recent years, machine learning approaches have been

shown to outperform conventional signal and image proc-

essing techniques in a wide range of spectrogram processing

applications (Ferguson et al., 2018; Kirsebom et al., 2020;

Liu et al., 2021; Tr�eboutte et al., 2023). One of the advan-

tages of using deep learning for acoustic inversion is that it

can learn relationships between the input data and the output

properties, even when those relationships are highly nonlin-

ear and difficult to model using traditional methods. Multi-

view learning, a machine learning approach that leverages

multiple sources of information (i.e., views), can be

integrated to learn more robust and accurate models. In the

context of acoustic inversion, multi-view learning could the-

oretically be used to combine multiple recorded transits

from the same day to improve the estimation of daily SSPs.

In this study, we investigate whether passive recordings

of transiting vessels from a single hydrophone can be used

together with deep learning to estimate local SSPs. We con-

ducted a comparative modeling analysis to evaluate our pre-

diction that spectral striation patterns observed between 50

and 200 Hz during vessel transits are informative of the

SSP. We also inspect the learned filters of the convolutional

neural network used in this study to determine whether our

model identified these features as informative during

training.

II. MATERIALS AND METHODS

A. Study site

The dataset used in this study consists of acoustic

recordings of maritime vessels transiting through the Santa

Barbara Channel (SBC) between January 2015 and

December 2017 (Fig. 1). The traffic separation scheme

within the SBC is approximately 20 nautical miles wide,

extending from Point Conception in the north to the Long

Beach Harbor. The SBC experiences a high volume of ves-

sel traffic throughout the year, with container ships making

up approximately 60% of all transits (Frasier et al., 2022).

Vehicle carriers, bulk carriers, and tankers each constitute

about 10% of the transits, and cruise ships, tugs, research

vessels, law enforcement and military vessels combined

make up less than 10%.

B. AIS dataset

Vessels have been identified through AIS records, col-

lected at onshore stations located at Coal Oil Point

(34.411�N, 119.877�W) from April 2014 to the present and

Santa Ynez Peak (34.029�N, 119.784�W) from August 2016

to the present. The received AIS messages were time-

stamped and continuously logged with an on-site computer.

FIG. 1. (Color online) Map of the Santa Barbara Channel, using the World

Geodetic Survey 1984 coordinate system. The traffic separation scheme is

shown as black lines, and the HARP location is shown with a white penta-

gram. The white circle around the HARP denotes the 6 km boundary within

which ship transits were tracked and acoustically delimited for this study.
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These records were compared against time stamps of the

same vessel transits matched based on the Maritime Mobile

Service Identity (MMSI) extracted from Marine Cadastre1

to ensure accurate position estimation in time. Time stamps

are not broadcast over the AIS; therefore, the correct associ-

ation of time and position depends on the time synchroniza-

tion of the AIS receiving station. Where time stamps

differed, Marine Cadastre positions, which are derived from

U.S. Coast Guard records, were taken as the better estimate

of position in time. All available AIS-derived information

relevant to understanding vessel signature variability was

used in this study. These variables are listed in Table I. The

ship type (referred to as “type” in Table I) variable consists

of seven different ship categories. The majority of the

recorded transits were “cargo” ships, which comprised

78.5% of all transits. The remaining ship types and their rel-

ative frequency are as follows: “tanker” (7.2%), “tug”

(5.1%), “research” (3.5%), “offshore supply” (3.5%),

“passenger” (1.1%), and “recreational” (1.1%).

C. Vessel noise dataset

An existing database of 5865 recordings of identified

ships transiting through the SBC between January 2015 and

December of 2017 was used for this study. Acoustic record-

ings were collected in the SBC using a high-frequency

acoustic recording package (HARP) (Wiggins and

Hildebrand, 2007), which is a bottom-mounted recorder

with a hydrophone tethered 10 m above the seafloor (580 m

bottom depth). The location of the HARP (34.270�N,

120.030�W) relative to the study site is shown in Fig. 1.

The recordings were sampled at 200 kHz, which was

then decimated by a factor of 20, resulting in a 10 kHz sam-

pling rate, and a Nyquist frequency of 5 kHz. The data were

low-pass filtered with an 8th order Chebyshev type I IIR fil-

ter to prevent aliasing during decimation. Each transit

recording was segmented to consider only the time period in

which the ship was within 6 km of the recording station.

These audio clips were converted into spectrograms using a

10 000-point short-time Fourier transform with no overlap,

resulting in a frequency resolution of 1 Hz and time resolu-

tion of 1.0 s. Spectrograms were cropped to limit the

frequency range under consideration from to 10 to 300 Hz,

the range over which local vessel noise is typically the dom-

inant signal in this dataset and interference patterns are most

apparent.

Multiple ship systems generate underwater noise; how-

ever, the highest amplitude source is typically generated by

cavitation associated with the ship’s propeller (Ross, 1976).

The 2019 International Organization for Standardization

estimates source depth for propeller-generated noise is as

70% of the draught (ISO 17208-1:2019, 2019). In our study,

we include reported draught as a predictor, under the

assumption that it is related to propeller depth and therefore

to effective source depth. However, reported draught may

not be routinely updated, may therefore differ from transit-

specific operational draught, and may therefore have limited

predictive utility. The effective source depth can be inferred

to some degree from spectral data due to the Lloyd’s mirror

effect, in which surface reflections cause deconstructive

interference at low frequencies (Gassmann et al., 2017;

Pereira et al., 2020); or as part of a joint ship source-ocean

parameter estimation problem using data recorded on hydro-

phone arrays (Tollefsen et al., 2020).

D. Hindcast dataset

Estimating the near-surface region of the SSP is chal-

lenging because it experiences the highest level of variabil-

ity. For this reason, daily SSPs were obtained for the top

200 m of the study region using the California State

Estimation Short-Term State Estimation (CASE-STSE)

model output (Zaba et al., 2018). This model utilizes hind-

cast data and integrates the Massachusetts Institute of

Technology general circulation model (MITgcm) through a

least-square fitting solution. The data used in the integration

include profiles from Spray gliders, high-resolution expend-

able bathythermographs, Argo, and satellite measurements

of sea surface height and temperature. All CASE-STSE pro-

files used in this study are shown in Fig. 2. Although our

presumed source depths are below the sea surface (approxi-

mately 3–5 m deep), near-surface portions of the SSP were

included in the model because the minimum horizontal

ranges between our sources and receiver are usually 8 or

TABLE I. Description of predictor variables used in statistical models.

Predictor variable Abbreviation Description

Ship design

Length LOA Total length of ship in meters

Type TYP Numerical value that represents the general category of the vessel’s type or purpose

Operational

Draught DRT Depth of a vessel below the waterline

Heading HDG Direction that a vessel’s bow is pointing

Course over ground COG Actual direction of progress of a vessel relative to the Earth’s surface

Speed over ground SOG Speed of a vessel relative to the Earth’s surface

Closest point of approach CPA Point at which the distance between the ship and receiver is smallest

Oceanographic

Month MTH Month of the year
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more times the water depth. Therefore, we expect that indi-

rect surface and bottom-interacting transmission paths are

present in these recordings, providing some information on

near-surface sound speeds.

E. Theoretical prediction

To investigate whether SSP differences might influence

the appearance of vessel transit range-frequency spectro-

grams, an acoustic propagation model was used to simulate

transits of an individual vessel with two different SSPs. Full

water column SSPs were calculated using CTD cast data

collected at a CalCOFI station located near the acoustic

recording site (line 81.8, station 46.9) in summer (July 22,

2016) with a warm and highly stratified surface layer and in

winter (January 16, 2017) with a cooler, deeper mixed layer.

Bottom composition was derived from local sediment cores,

obtained and measured by ZoBell et al. (2023). Propagation

loss for a modeled source positioned 10 m below the sea sur-

face was computed using the parabolic equation model

RAMGeo (Collins, 1993) at 1 m vertical and 10 m horizontal

resolution between 1 and 200 Hz in 1 Hz increments. Model

parameters included a relative depth resolution of 0.05, rela-

tive range resolution of 2, and a reference phase velocity of

1500 m/s and used 6 terms for the Pad�e expansion. The

source spectrum of a representative cargo ship was esti-

mated by averaging estimated monopole source level spec-

tra at the closest point of approach from three 2016 transits

using a Lloyd’s mirror correction and 1 Hz resolution [the

source level estimation methodology using portions of the

same dataset is detailed in ZoBell et al. (2023)]. Predicted

range-frequency spectrograms were computed by subtract-

ing propagation loss at each frequency from the vessel’s

estimated source spectrum at a series of range steps, com-

puted at 10 m intervals along an actual transit path of the

ship recorded on January 13, 2016. The difference between

predicted spectrograms estimated using the summer versus

winter profiles was visualized by computing the difference

between the two spectrograms.

F. Models

1. Baseline model

Oceanic SSPs typically manifest seasonal patterns, pri-

marily due to their significant dependence on temperature.

Therefore, we first propose a model for SSP estimation that

computes seasonal averages from previous years to estimate

the SSP for all days within that specific season. This

approach does not utilize any of the AIS or acoustic data.

FIG. 2. (Color online) CASE-STSE

generated SSPs for the study period in

the grid cell nearest to the acoustic

recording station. Panels (A) to (D)

show all profiles generated for the

months of January to March, April to

June, July to September, and October

to December, respectively. The associ-

ated year for each profile is color-

coded.
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This model is from here onwards referred to as the baseline

model.

This baseline model is used to provide context for the

neural network-based model performance. All neural

network-based models used in this study use the same infor-

mation as the baseline model (i.e., season) in addition to the

transit data. Therefore, we can evaluate the informativeness

of the transit recordings by comparing the performance of

the neural network-based models with the baseline. If the

transit data contain additional information regarding the

local SSP, we would expect incorporation of the transit data

to improve the SSP prediction estimate. Conversely, if the

transit data are uninformative, we expect the estimation per-

formance to remain unchanged.

2. Single-transit model

We designed a neural network-based model to produce

an estimate for SSP from each of the recorded transits using

the spectrograms and vessel descriptors. This model is from

here onwards referred to as the single-transit model. The

data used to train the single-transit model are denoted as X s

and can be formulated as follows. The data corpus

X s ¼ fðxð1Þ; vð1Þ; yð1ÞÞ;…; ðxðnÞ; vðnÞ; yðnÞÞg, where xðiÞ and

vðiÞ are the spectrogram representation of the audio record-

ing and the vessel descriptors, respectively, for the ith
recorded transit. We seek to learn a model, f : ðx; vÞ ! y,

that maps input variables x and v to y 2 R200�1, where y is

a vector containing the sound speed estimations for each

meter in the upper 200 m of the water column [Fig. 3(A)].

We conceptualized f as comprising two functions that are

applied in sequence: first an encoder function, E, and then a

regression function, R.

The encoder function E : ðx; vÞ ! z maps input variables

x and v to a hidden variable, z 2 R128�1. Because the input

variables are of different modalities (spectrogram image and

AIS data), we divide E into two sub-encoders. Spectrograms

are encoded using a convolutional neural network, denoted as

ES, while vessel descriptors are encoded using a fully con-

nected network, denoted as EV. ES is composed of three con-

volutional blocks, with each block incorporating a sequence

of convolutional, batch normalization, rectified linear unit

(ReLU) activations, and a max-pooling layer. These convolu-

tional blocks are followed by two fully connected blocks that

each use a dense layer followed by dropout and ReLU activa-

tions. EV comprises four fully connected blocks, each featur-

ing a dense layer followed by batch normalization, dropout

regularization, and ReLU activations. Both ES and EV return

a vector that is then concatenated together [Fig. 3(B)]. The

encoder function E refers to this integrated process of joint

encoding and concatenation. Details regarding layer parame-

ters as well as layer input and output dimensions for ES and

EV are provided in Fig. 3(B).

The regression function R : z! y produces the SSP

estimate from z. R comprises three fully connected blocks,

each featuring a dense layer followed by batch normaliza-

tion, dropout regularization, and ReLU activations. Details

regarding layer parameters as well as layer input and output

dimensions for R are provided in Fig. 3(C).

Our proposed method hinges on leveraging recorded

vessel noise in conjunction with AIS data to estimate SSP.

To validate that our model genuinely learns pertinent fea-

tures related to sound speed from the combined modalities

and avoids relying on any spurious correlations that might

exist between AIS data and ocean sound speed, we introduce

a modified version of the single-transit model, referred to as

single-transit (noAudio). In this variant, we set all spectro-

gram values to zero, effectively removing the vessel noise

data while retaining only the AIS data.

FIG. 3. (Color online) Single-transit model architecture. (A) Summary of the single-transit model. (B) The spectrogram and vessel descriptor data are

encoded separately using a convolutional neural network, ES, and fully connected network, EV. Both encoder networks output a vector, both of which are

concatenated. (C) The concatenated vector is then forward propagated through a fully connected regression network, R, which produces an estimate for

sound speed for each meter in the upper 200 m of the water column.
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3. Multi-transit models

The last set of models we consider are designed to com-

bine and/or contrast information from multiple transits to

improve SSP estimation. The methodologies we examine are

inspired by, or are direct implementations of, existing multi-

view machine learning techniques. For our application, all

transits recorded on the same day are considered as distinct

“views” that contain information about the same SSP.

To train the multi-transit models, we organize the acous-

tic dataset into daily collections denoted as CV , where each

collection consists of multiple transits. Notably, all transits

within a collection share the same SSPs, as they were recorded

on the same day. This corpus is denoted as

Xm ¼ fðCð1ÞV ; yð1ÞÞ;…; ðCðNÞV ; yðNÞÞg, where each collection

Ci
V consists of all spectrogram and vessel descriptor pairings

that were recorded on the ith day and N¼ 899 is the number

of sampling days. Hence, we reformulate the modeling task as

f : CV ! yjCV ¼ fðx; vÞð1Þ; ðx; vÞð2Þ;…; ðx; vÞðTVÞg, where

ðx; yÞðvÞ represents one audio recording and vessel descriptor

pair, v 2 f1;…; TVg, and TV denotes the number of transits in

collection CV , which is variable across the collections. All

variables in Xm are the same as the single-transit data collec-

tion X s.

The simplest way to leverage multiple transits is to

average the estimations for each of the transits in a collec-

tion using the single-transit model. We refer to this approach

as single-transit (avg). However, this approach is not able to

leverage complementary information or weigh saliency dif-

ferences from multiple transits to improve prediction accu-

racy. To address these concerns, we evaluate three “late

fusion” techniques for combining information across the

transits within each collection. Late fusion is a technique in

multi-view learning that allows the combination of learned

features from multiple views at a later stage in the learning

process (Feng et al., 2018; Lin and Kumar, 2018; Seeland

and M€ader, 2021; Su et al., 2015).

Two existing late fusion approaches we consider are (1)

late fusion (max), where the maximum value is calculated

for each of the features across the transits, and (2) late fusion

(concat), where a fixed number of feature vectors are

concatenated (Seeland and M€ader, 2021). Last, we imple-

ment a novel late fusion technique referred to as late fusion

(token), which is described below.

The forward propagation of a transit collection, CV ,

into encoder E produces a matrix, ZV , whose columns are

the feature vectors of length D¼ 128 from each transit in

the collection:

ZV ¼ zð1Þ; …; zðTVÞ
� �

¼ EðCVÞ 2 RD�TV : (1)

For late fusion (max), an element-wise maximum oper-

ation is applied for each of the D features, which produces

the vector

ẑV ¼ max
v

ZV 2 RD�1: (2)

For late fusion (concat), we concatenate k columns in

ZV to form a vector,

ẑV ¼ zð1Þ;…; zðkÞ
� �

2 RDk�1: (3)

If k < TV , we subsample the transits by randomly

selecting k columns without replacement. If k > TV we up-

sample the transits by randomly selecting k � TV columns

with replacement to duplicate and concatenate all features’

vectors. For each training fold, the value for k is empirically

determined to optimize performance on a validation set, as

outlined in Sec. II G.

Late fusion (token) combines ideas from scaled dot-

product attention and prompt tuning with the goal of auto-

matically weighting more informative transits (Jia et al.,
2022; Vaswani et al., 2017). A weight matrix, W 2 Rh�D,

is used to project the features in ZV into a lower dimension

of size h¼ 64. The projected features are then compared

against a learnable token, q 2 Rh�1. The similarity values

are then normalized using the softmax function. The nor-

malized values are then used to compute a weighted sum of

the original features:

ẑV ¼ softmax
qTWTZVffiffiffiffi

D
p

 !
� ZT

V 2 RD�1: (4)

A model trained with this multi-view approach will reduce

its loss by learning to assign larger weights (i.e., large simi-

larity with q) to transits that produce more reliable sound

speed estimates. An illustration of the late fusion (token)

method is shown in Fig. 4.

For all the aforementioned late-fusion methods, the

fused feature vector ẑV is forward propagated through the

regression network R to regress SSP.

G. Experimental setup

Our partitioning of the training and testing data was

deliberately crafted to emulate a real-world scenario, where

FIG. 4. (Color online) Our fusion method. Features ZV are passed through a

linear layer, followed by a dot product operation with a learnable token.

Orange boxes indicate learnable values. The green box indicates features

from encoder E. Blue boxes indicate a fixed mathematical operation.
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the model is trained on historical data and subsequently

deployed on future data. Data from the year 2017 were

divided into four distinct testing sets, each corresponding to

a specific season. These testing sets were created to ensure

non-overlapping periods and were defined as follows: winter

(January to March), spring (April to June), summer (July to

September), and fall (October to December). This partition-

ing allowed for the assessment of model performance in

relation to the different seasons of the year. We then per-

form fourfold cross-validation where for each fold, one sea-

son from 2017 is used for testing and the remaining data are

used for training. Neural network models use vessel descrip-

tor data, spectrograms, and hindcast profiles for training and

testing, whereas the baseline models utilize only the hind-

cast profiles. The fourfold data partitioning methodology is

illustrated in Fig. 5.

For all neural network-based models, 25% of each train-

ing set was allocated for validation-based early stopping

with a patience of 30 epochs. Optimization was performed

with the ADAM optimizer using a learning rate of 1 � 10–4

and a scheduler that decays this learning rate by a factor of

0.75 every 10 epochs. Regression loss is computed as root-

mean-square error (RMSE). Unless stated otherwise, a batch

size of 24 is used. The multi-transit models were trained

using a two-stage approach, where each stage uses the same

optimization process as described above: (1) for first-stage

training, the encoder network and regression network are

trained to estimate SSP from each transit, and (2) for

second-stage training, the layers of the encoder network are

fixed, and the parameters of the multi-view learning mecha-

nism (if applicable) and the regression network are trained.

To assess neural network model performance, we compare

the RMSE of our models to that of the baseline model. We

visualize the model’s performance by plotting model resid-

uals as a function of depth.

III. RESULTS

Our comparative modeling analysis revealed visual and

measurable differences in predicted spectrograms that were

produced by the same simulated vessel transit under differ-

ent SSPs (Fig. 6). Differences included the angles of the pre-

dicted large and small scale interference patterns between

approximately 5 and 200 Hz. This model is highly simplified

and does not reflect the anisotropic radiation pattern of a

real vessel; however, it supports the basic prediction that

information regarding the SSP may be embedded in the

recorded spectrograms when observing the evolution of the

recorded signal as a broadband source moves relative to our

acoustic receiver.

The proposed single-transit model provided an average

error reduction of about 36% compared to the baseline

model across the testing folds (Table II). We attribute the

observed performance improvement to the inclusion of the

acoustic data, as its exclusion (the noAudio model) led to a

performance level comparable to historical averaging. The

performance improvement of the single-transit model was

variable across the folds. Specifically, during the summer

and fall testing seasons, the single-transit model achieved

substantial reductions in estimation error, with improve-

ments of 44% and 43%, respectively. In contrast, its perfor-

mance improvement was relatively modest during the spring

testing season, with only a 13% reduction in error observed.

Model error was reduced by an additional 8% by aver-

aging estimates obtained from multiple transits (Table II).

The best performing multi-transit model was late fusion

(token), which provided an average error reduction of

13.5% compared to the single-transit model and a 5.5%

error reduction compared to the single-transit (avg) model.

Late fusion (token) performed similarly to, or slightly better

than, late fusion (concat). However, late fusion (concat)

requires finding the optimal number of transits to select (k),

FIG. 5. (Color online) Illustration of the fourfold cross-validation approach for the baseline and neural network models. For each fold, models are tested on

data from a single season in 2017, shown in orange. Neural network models use vessel descriptor data, spectrograms, and hindcast profiles from the time

windows considered in each fold, whereas the baseline models utilize only the hindcast profiles. Note that time regions with mixed colors indicate that data

were used to train both models.
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which necessitated running seven times as many experi-

ments (Fig. 7).

To understand what features the model uses for predic-

tion, we produced a visual representation of the 16 filters

learned by the single-transit model after being trained on

the summer fold (Fig. 8). Noteworthy are seven filters, out-

lined in red, which display patterns highly reminiscent of

the striation patterns associated with the waveguide invari-

ant. This suggests that the network is leveraging informa-

tion regarding the waveguide invariant to inform its

predictions.

RMSE of the model predictions was evaluated as a

function of four predictor variables and ship types (Fig. 9).

The consistent vertical dispersion of points in each subplot

highlights the absence of discernible performance trends,

indicating stability and reliability across predictor variables.

IV. DISCUSSION

Neural network models were able to make improved

SSP estimations when provided with spectrograms of ship

noise and AIS data relative to baseline models using sea-

sonal averages and AIS only data. The relatively lower esti-

mation bias of the neural network models compared to the

baseline suggests that the neural network is able to learn rel-

evant patterns and relationships that can generalize across

the seasons. The estimation error was found to be highest in

the near-surface regions of the SSP. In order to mitigate

these errors, we propose that future work should explore the

integration of additional observational modalities, such as

satellite-derived sea surface temperature estimates.

Oceanic SSPs have inherent seasonal regularity; how-

ever, year-to-year variability is strongly evident in this data-

set. The reconstructed hindcast profiles at the study site

FIG. 6. (Color online) (A) Predicted range-frequency spectrogram using a representative winter SSP [blue line in panel (F)]. (B) Predicted range-frequency

spectrogram using a representative summer SSP [red line in panel (F)]. (C) Difference between panels (A) and (B). (D) Real range-frequency spectrogram

of the ship used in this example, recorded in January 2016. (E) Horizontal range at each range step for the ship transit used in this example. (F) SSPs.

TABLE II. Model performance of SSP estimation across the four test seasons.

Test fold

RMSE (m/s) fora

Baseline

Single-transit

(noAudio) Single-transit

Multi-transit

Single-transit

(avg)

Late fusion

(max)

Late fusion

(concat)

Late fusion

(token)

January to March 2.4 2.43 1.69 1.59 1.59 1.58 1.52

April to June 2.11 2.07 1.71 1.48 1.52 1.52 1.47

July to September 2.84 2.1 1.58 1.45 1.55 1.55 1.48

October to December 3.83 3.91 2.18 2.04 1.93 1.69 1.72

Average 2.8 2.63 1.79 1.64 1.65 1.59 1.55

aPerformance is reported in terms of RMSE in meters per second. The best performing model for each season is shown in boldface.
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reflect this variability, and it is particularly noticeable com-

paring profiles from the year 2015 to other years (Fig. 2). In

2015, El Ni~no conditions lead to the development of warm

water “Blob” in the northeast Pacific (Tseng et al., 2017). It

is expected that the presence of strong interannual variabil-

ity in the data would result in estimation bias in both the

baseline and single-transit models. However, although both

models exhibited estimation bias, the residual plots in Fig.

10 indicate that the deep learning-based approach experien-

ces comparatively less estimation bias than the baseline

model. For example, in Fig. 10(D), the prediction error dis-

tributions from the two models generally follow the same

trend, but the estimations from the single-transit model are

more closely centered on the zero line than the baseline.

As indicated by the performance of single-transit (avg),

averaging multiple estimates helps to mitigate the effects of

random errors or outliers by simply leveraging a larger sam-

ple. However, calculating an average considers all estimates

to have equal weight in the final average and provides no

mechanism for leveraging complimentary information or

discard outliers. Multi-view learning techniques provide the

opportunity for extracting such information by pooling fea-

tures extracted across the different observations.

Our results using the traditional multi-view techniques

(max and concat) were similar to those of Seeland and

M€ader (2021), where the multi-view methods with learnable

solutions provided the best results. However, using feature

concatenation is complicated in this application because the

number of transits is variable. This means that a fixed num-

ber, k, of transits need to be sampled, which introduces the

trade-off: if k is too small, there is less information to lever-

age, but if k is too large, the number of trainable parameters

grows linearly, potentially leading to over-fitting. This pro-

duces a U-shape error curve with variable k where the

FIG. 7. (Color online) Late fusion (concat) prediction RMSE on seasonally

aggregated testing data with varying transit sampling number k. The graph

generally reveals distinct U-shape curves, demonstrating that low and high

values of k result in suboptimal performance, while an intermediate range

of k values yields the highest model performance.

FIG. 8. (Color online) Visualization of 16 learned filters from the single-transit model trained on the summer testing fold. Notably, seven filters (highlighted

with red boxes) exhibit patterns reminiscent of the striation pattern associated with the waveguide invariant property.
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optimal value for k needs to be found through experimenta-

tion (Fig. 7).

Our proposed token learning method has the advantage

of scaling to arbitrary input size while maintaining a fixed

and relatively small number of trainable parameters, which

may improve generalizability. Moreover, in this application,

we anticipate that employing a weighted sum, where all fea-

tures within the transit receive the same weight, rather than

using feature-specific fusion, will improve performance.

Most multi-view models are developed under the implicit

assumption that each observation is uniquely informative

regarding the target variable. In other words, each observa-

tion contains predictive information that the other observa-

tions do not contain (e.g., consider two images of the same

plant, where one image captures the detail of the leaf and

the other captures the flower). For our application, it is

unlikely that different transits contain this kind of comple-

mentary information. Instead, some transits exhibit higher

FIG. 9. (Color online) (Top) Scatterplots illustrating RMSE of the single-transit model across the four continuous valued predictor variables, vessel speed

over ground (SOG), closest point of approach (CPA), draught, and length, with color-coding representing the seven ship types. (Bottom) A box plot shows

RMSE by ship type. This visualization incorporates aggregated testing data from all four testing folds. The number of data points from each ship type is

shown in parentheses next to each ship name in the legend. The consistent vertical dispersion of points in each subplot highlights the absence of discernible

performance trends, indicating stability and reliability across predictor variables.

3024 J. Acoust. Soc. Am. 155 (5), May 2024 Walker et al.

https://doi.org/10.1121/10.0025920

 16 August 2024 00:32:11

https://doi.org/10.1121/10.0025920


saliency compared to others, and the goal of leveraging mul-

tiple observations is to rank the salience, in contrast to pool-

ing information across the transits. This approach may have

broad applicability in oceanographic acoustic observation

problems involving large amounts of weakly curated data in

which feature salience is variable in time and space, particu-

larly if the salience of relevant features is difficult to estimate

a priori. If multiple sensors were available, fusion approaches

could be used to incorporate simultaneous views.

An important limitation of this approach is the avail-

ability of SSP estimates for model training. Although quar-

terly in situ measurements were available from a nearby

CalCOFI station and periodic local glider transits, these

were determined to be too infrequent for training; therefore,

this study used data assimilative hindcasts for training.

Agreement between these regionally specific hindcasts and

the available in situ measurements was high for this well-

sampled, highly studied region. Further experimentation is

needed to evaluate whether this approach could be used

to refine or improve hindcast estimates, particularly in

under-sampled regions. Additionally, the proposed method

represents a preliminary exploration aimed at evaluating the

feasibility of extracting sound-speed relevant features from

single sensor acoustic recordings. Further development will

be required to adapt this method for use across different

recording environments.

V. CONCLUSION

In this paper, a neural network-based model, which uses

acoustic recordings of URN of transiting ships and their

transit metadata, is proposed to predict SSPs. Additionally,

we propose a data fusion strategy suitable for large observa-

tional acoustic datasets, in which data are weakly curated

and feature salience differs between observations used for

prediction. Our results show that the addition of vessel tran-

sit recordings markedly improved the estimation of SSPs

compared to the use of historical averages. We show that

multiple transit recordings can be leveraged together to

improve SSP estimation and compare multiple techniques

for combining available information. We note that this work

serves as a first approach in estimating oceanic SSPs from

vessel URN, and there still exist sources of error in the esti-

mations of the best performing model. Future work incorpo-

rating other data modalities and alternative hydrophone

configurations may help further reduce this estimation error.
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are not shown. (Top) Comparison of baseline (yellow) and single-transit (blue). (Bottom) Comparison of single-transit (blue) and late fusion (token [red]).
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