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RESEARCH ARTICLE
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Abstract

Slow wave (or stage N3) sleep has been linked to a variety of cognitive processes. However,

the role of stage N3 in the elderly is debated. The link between stage N3 and episodic mem-

ory may be weakened or changed in the older adult population, possibly due to several

altered mechanisms impacting the cellular structure of the brain. The bases for the age-

related dissociation between stage N3 and cognition are not understood. Since APOEε4
status is the strongest genetic risk factor for cognitive decline, we assessed whether the ε4
allele is associated with stage N3 sleep. Participants were from the population-based Osteo-

porotic Fractures in Men (MrOS) cohort with polysomnography and APOEε4 genotype data

(n = 2,302, 100% male, mean age 76.6 years). Sleep stages were objectively measured

using overnight in-home polysomnography and central electroencephalogram data were

used to score stage N3 sleep. Cognitive function was assessed using the Modified Mini

Mental State Exam (3MS). The APOE rs429358 single nucleotide polymorphism, which

defines the APOEε4 allele, was genotyped using a custom genotyping array. Total time in

stage N3 sleep was significantly higher (p<0.0001) among the 40 MrOS participants carry-

ing two copies of the ε4 allele (62±5.2 minutes) compared with 43±1.5 minutes for carriers of

one ε4 allele (n = 515) and 40±0.8 minutes for ε4 non-carriers (n = 1747). All results were

independent of sleep efficiency, number of sleep cycles, and apnea hypopnea index. These

findings support an association between APOEε4 genotype and sleep stage N3 in the

elderly. Increased total stage N3 duration among ε4/ε4 carriers does not appear to reflect

compensation for prior cognitive decline and may reflect overactive downscaling of
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synapses during sleep. If confirmed, these results might in part explain the high risk of age-

related cognitive decline and AD among APOE ε4/ε4 carriers.

Introduction

Sleep disturbances and specific sleep disorders increase with advancing age [1–6] and elevate

the risk for a variety of diseases and conditions [7–22] including cognitive impairment [23–

33]. Recent research indicates that sleep may specifically impact the cellular structure of the

brain, including the ability of the brain to clear toxic metabolites that accumulate with normal

neuronal function [34]. This includes beta-amyloid [34], which accumulates in apolipoprotein

E (APOE) ε4 genotype carriers [35] and contributes to synaptic degeneration and cognitive

decline. While the APOEε4 allele is a well-established risk factor for Alzheimer’s disease (AD)

and age-related cognitive decline [36–42] as well as a risk factor for sleep apnea [43–51],

APOEε4 has not been assessed in relation to sleep stage distributions. To explore the hypothe-

sis that APOEε4 influences sleep architecture, we examined the effect of the APOEε4 allele on

sleep stage distribution measured in a large, population-based cohort of elderly participants

with a focus on stage N3, which represents the synchronization of cortical EEG activity and

has been implicated in memory formation in young populations [52–57]. Given the high risk

of cognitive decline and AD among APOEε4 carriers, identifying a genetic link with stage N3

sleep could advance the development of new approaches for interventions to slow the decline

in cognitive function among ε4 allele carriers and that may also benefit the health and well-

being of the elderly.

Materials and methods

Participants

Data were collected from participants of the Osteoporotic Fractures in Men (MrOS) Study

which included participants who were at least 65 years old and excluded participants who

required assistance with ambulation or had undergone bilateral hip replacement. In the MrOS

study, 5994 older men were recruited from six geographical areas (Birmingham, AL; the

Monongahela Valley near Pittsburgh, PA; Minnaepolis, MN; Palo Alto, CA; San Diego, CA;

and Portland, OR) between 2000 and 2002. The MrOS Sleep Study, an ancillary study of the

parent MrOS cohort, was conducted between December 2003 and March 2005 and recruited

3135 MrOS participants (68%) for a comprehensive sleep assessment and assessment of circa-

dian gene polymorphisms. Of the 2,859 men who did not participate in this ancillary study,

344 died before the sleep visit, 36 had already stopped participating in the study, 332 were not

invited because recruitment goals had already been met, 150 were not eligible and 1,997

refused. Among the participants of the MrOS Sleep Study, 2480 self-identified white men who

had DNA extracted for genetic studies. Details regarding the studies have been published pre-

viously [58,59]. All data were collected with written informed consent as approved by the insti-

tutional review boards of the clinical sites (University of Alabama at Birmingham; University

of Minnesota; University of Pittsburgh; Stanford University; Oregon Health & Science Univer-

sity, and University of California, San Diego) and the coordinating center (University of Cali-

fornia, San Francisco). The Outcomes of Sleep Disorders in Older Men Study (MrOS Sleep

Study) [60], an ancillary study of the parent MrOS Study, enrolled 3,135 participants from

2003–2005. Of the 3135 enrolled participants, 2911 had usable PSG data and, of these, 2745

(94%) with evaluable sleep staging data. The Modified Mini Mental State Exam [61,62] (3MS),
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an expanded 100 point version of the original MMSE, was administered in MrOS at the base-

line and sleep exams (~3 years) [63]. The Pittsburgh Sleep Quality Index (PSQI) and Epworth

Sleepiness Scale (ESS) questionnaires were administered at the sleep exam.

Polysomnography

In-home, single night sleep studies using unattended polysomnography (PSG, Safiro, Compu-

medics, Inc., Melbourne, Australia) were performed as previously described [64,65]. The

recording montage consisted of C3/A2 and C4/A1 electroencephalograms, bilateral electrocu-

lograms, a bipolar submental electromyogram, thoracic and abdominal respiratory inductance

plethysmography, airflow (using nasal-oral thermocouple and nasal pressure cannula), finger

pulse oximetry, electrocardiogram, body position (mercury switch sensor), and bilateral leg

movements (piezoelectric sensors). Trained certified staff members performed home visits for

setup of the sleep study units. After sensors were placed and calibrated, signal quality and

impedance were checked, and sensors were repositioned as needed to improve signal quality,

replacing electrodes if impedances were elevated, using approaches similar to those in the

Sleep Health Heart Study [66]. After studies were downloaded, they were transferred to the

Case Western Reserve University Reading Center (Cleveland, OH) for centralized scoring of

sleep stages and sleep disorders by a trained technician using standard criteria [67,68]. Sleep

was staged in 30-sec scoring epochs and electroencephalogram data were used to score stage

N3 using the criteria of Rechtschaffen and Kales [67]. Total time (minutes) and percent time

[100�(Number of minutes scored as stage 3–4)/(total sleep time)] in stage N3 were calculated

for these analyses. The apnea hypopnea index (AHI) was calculated as the total number of

apneas and hypopneas per hour of sleep (4% desaturation) [69]. Sleep cycles were defined

using a modified version of the rules detailed by Feinberg and Floyd [70]. A cycle was defined

as a period of at least 15 minutes of NREM sleep starting with stage N2 or N3 and terminated

by the end of a period of REM sleep lasting at least 5 minutes for all cycles except cycle 1, or a

period of wake or stage N1 lasting 15 minutes or longer. Two epochs of REM sleep separated

by no more than 15 minutes of NREM sleep or wake were merged into a single REM period.

Average absolute spectral power density in log10(uV^2/Hz) was calculated for each sleep cycle

for the following bands: Slow oscillation: 0.25–1 Hz, Delta: 1.25–4 Hz, Theta: 4.25–8 Hz,

Alpha: 8.25–12 Hz, Sigma: 12.25–15 Hz, and Beta: 15.25–20 Hz. There was excellent inter-

scorer reliability for the key sleep parameters, including stage N3 (ICCs >0.92). Several addi-

tional sleep parameters were scored, including: wake after sleep onset time and sleep

efficiency.

APOE genotyping

The APOE rs429358 SNP, which defines the APOEε4 allele, was genotyped using a custom Illu-

mina Golden Gate assay (Illumina, San Diego, CA, USA) that included 529 SNPs as previously

described [71]. All individuals in this study are of European ancestry and are unrelated. Of

2,745 MrOS participants with PSG, 2,302 were genotyped for the rs429358 C/T alleles, which

define APOEε4 status by the presence of the C allele. All participants in this analysis are of

European ancestry.

Statistical analyses

Associations between APOEε4 status and sleep staging were based on 2,302 MrOS participants

with both PSG and rs429358 genotype data. All PSG and cognition measures were treated as

continuous variables in analyses examining both additive and dominant genetic models to

examine APOEε4 associations for total time and percent time spent in stage N3. All regression

APOE and slow wave sleep
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models were adjusted for age and clinic site with additional models including measures of

sleep duration (TST), quality (WASO time and sleep efficiency) and AHI. Cognitive function

change (~3 years) from the visit prior to sleep assessment was calculated and used to stratify

stage N3-cognition analyses into high and low decline groups. All analyses were analyzed

using SAS version 9.4 (SAS Institute Inc, Cary, NC).

Results

Differences in age, cognition, sleep performance and stage N3 across three APOEε4 categories

are shown in Table 1. Total stage N3 time was significantly higher among 40 MrOS partici-

pants carrying two copies of the ε4 allele (62±5.2 minutes) compared with 43±1.5 minutes for

carriers of one ε4 allele (n = 515) and 40±0.8 minutes for ε4 non-carriers (n = 1747). The

APOEε4 association with stage N3 time (p = 0.0002) was not altered by adjustment for 3MS

(p = 0.0001). We examined the APOEε4-stage N3 association among MrOS participants who

had experienced either�2 point decline or <2 point decline (based on median change) from

the previous 3MS assessment to the 3MS measured at the sleep visit. Total stage N3 time was

significantly higher among participants carrying two copies of the ε4 allele when compared to

the other genotype categories in both the group with�2 point 3MS decline (p<0.0001) and

the group with<2 point decline (p = 0.0002) and the test for interaction between APOE allele

and 3MS decline was not significant (p = 0.21). In addition, the APOEε4 association with 3MS

Table 1. Characteristics of MrOS participants with PSG sleep staging and APOE genotyping.

APOEε4 alleles

0 1 2 p-valuea p-valueb

n (%) 1747 (75.8) 515 (22.5) 40 (1.7)

mean (SE) mean (SE) mean (SE)

Age, y 76.6 (0.1) 76.5 (0.2) 75.6 (0.9) 0.48 0.13

3MS (0 to 100)� 93.4 (0.1) 92.4 (0.2) 90.2 (0.8) < .0001 0.003

Change 3MS�c -1.01 (0.1) -1.47 (0.2) -3.34 (0.7) 0.0025 0.0026

Time in stage N3 (min)� 40 (0.8) 43 (1.5) 62 (5.2) < .0001 < .0001

Change 3MS� -2 41 (1.0) 42 (1.8) 61 (7.4) 0.03 0.008

Change 3MS < -2 38 (1.4) 45 (2.5) 64 (7.5) 0.0005 0.002

Time in REM (min)� 70 (0.7) 68 (1.2) 65 (4.5) 0.21 0.13

Time in stage N1 (min)� 24 (0.3) 24 (0.6) 22 (2.1) 0.68 0.48

Sleep efficiency (%)� 76 (0.3) 76 (0.5) 81 (1.9) 0.05 0.01

Wake after sleep onset (min) 115 (1.6) 116 (2.8) 86 (10) 0.02 0.005

Apnea hypopnea index (4% desat)� 13 (0.3) 12 (0.6) 14 (2.1) 0.57 0.56

Number of sleep cycles� 4.7 (0.03) 4.6 (0.1) 4.6 (0.2) 0.50 0.97

Spectral power density- SOsc (log10(uV^2/Hz))�d 1.9 (0.01) 1.9 (0.02) 2.0 (0.6) 0.15 0.06

Arousal index 24 (0.3) 23 (0.5) 24 (1.9) 0.10 0.93

PSQI� 5.6 (0.1) 5.5 (0.1) 5.3 (0.5) 0.69 0.55

ESS� 6.1 (0.1) 6.1 (0.2) 5.7 (0.6) 0.76 0.47

Hypnotics, n 38 10 0

�Adjusted for age
a Linear p-value across three genotypes
b P-value comparing carriers of two ε4 alleles to all others
c Baseline to sleep visit ~ 3 years.
d Spectral power density of the C3-A2 EEG in the slow oscillation (0.25–1 Hz) band for the final sleep cycle.

PSQI = Pittsburgh Sleep Quality Index; ESS = Epworth Sleepiness Scale

https://doi.org/10.1371/journal.pone.0191281.t001
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(p<0.0001) was not altered by adjustment for stage N3 time (p<0.0001) and the test for inter-

action between APOEε4 and stage N3 time in the association with 3MS was statistically signifi-

cant (p = 0.006). The APOE ε4/ε4 genotype was associated with higher sleep efficiency and

lower WASO but not the PSQI or ESS assessments. Spectral power density of the C3-A2 EEG

in the slow oscillation (0.25–1 Hz) band was calculated for the final sleep cycle and did not dif-

fer among APOE alleles (Table 1). The total number of sleep cycles did not differ among APOE
alleles (Table 1). The APOE associations with total stage N3 time did not change after addi-

tional adjustment for sleep efficiency (ε4/ε4 = 59±5.2 minutes, p = 0.0003), wake after sleep

onset (ε4/ε4 = 60±5.2 minutes, p = 0.0002), number of sleep cycles (ε4/ε4 = 64±5.6 minutes,

p = 0.0001), or AHI (ε4/ε4 = 62±5.1 minutes, p<0.0001).

Discussion

In the present study of>2,300 older men, we confirmed a significant association between

APOEε4 status and lower cognitive function scores and unexpectedly found that APOEε4 was

associated with increased stage N3 duration. Average total stage N3 time was>50% longer

among elderly APOE ε4/ε4 carriers (those who at the highest risk of developing AD and age-

related cognitive decline [36–42]) when compared to those with one or no copies of the ε4

allele. While those with the APOE ε4/ε4 genotype had more stage N3 time, stage N3 was not

associated with cognitive decline in MrOS [72], even after adjustment for APOEε4 statusCon-

sistent with increased stage N3 time among ε4/ε4 genotype carriers, the APOE ε4/ε4 genotype

was also associated with higher sleep efficiency and decreased WASO, indicating overall less

arousability. This finding was unexpected but could reflect a compensatory mechanism

wherein the consolidation process is upregulated in reaction to declining cognition. In order

to test this possibility we examined the APOEε4-stage N3 association among APOE ε4/ε4 par-

ticipants who had experienced either high or low ~3-year decline from the previous 3MS

assessment. Total stage N3 time did not differ between participants who had experienced

either high or low declines suggesting that the longer stage N3 time among ε4/ε4 carriers is

not compensating for prior cognitive decline. It has been suggested that the negative correla-

tions previously observed between stage N3 and subsequent learning in older adults is unlikely

due to memory consolidation [73], and might be explained by another function of stage N3

such as synaptic downscaling or pruning [74]. During waking hours, encoding leads to

increased synaptic weights which eventually results in the saturation of synaptic networks. The

downscaling of certain synapses which takes place during stage N3 likely serves to ensure the

maintenance of balanced synaptic input. The negative correlations observed between stage N3

and memory in older adults, however, may reflect an altered balance between daytime encod-

ing and nighttime downscaling wherein older adults engage in less daytime encoding than

younger adults [75] but over-downscale if they are still gaining relatively high amounts of stage

N3. Thus, an age-related proportional increase in downscaling would presumably become det-

rimental to memory functioning if synapses that could otherwise help encode new memories

are pruned. Such sleep-dependent synaptic downscaling has been observed in Drosophila

[76,77].

Synaptic plasticity and scaling are crucial mechanisms in memory flexibility and AD onset

[73,78,79] with experimental downscaling of AMPA receptors contributing directly to AD

pathology [78]. In light of the genetic association data presented herein, it is possible that

APOE ε4/ε4 carriers are experiencing “overactive downscaling” [73]. APOE is produced by

the glia in the central nervous system [80], while APOE receptors are expressed on the neuro-

nal cell surface where they mediate lipoprotein uptake and signal transduction [81,82]. It has

been proposed that APOE isoforms may differentially accelerate synapse dysfunction and AD

APOE and slow wave sleep
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dementia by interfering with APOE receptor-dependent neuromodulation [81]. Of the three

APOE isoforms (ε2, ε3, and ε4), APOEε4 selectively impairs synaptic plasticity and NMDA

receptor phosphorylation by Reelin, a modulator of synaptic strength [79]. This selective

impairment of APOE receptor signaling by the APOEε4 isoform leads to a decrease in synaptic

responsiveness [79]. The APOEε4 isoform also reduces glutamate receptor function and syn-

aptic plasticity by selectively impairing APOE receptor recycling in primary neurons [79].

Sleep also impacts the cellular structure of the brain, including the ability of the brain to

clear beta-amyloid, contributing to synaptic degeneration and cognitive decline [34]. For

example, chronic sleep restriction increases amyloid-B plaque formation in the amyloid pre-

cursor protein transgenic mic [34]. Sleep also impacts the ability of the brain to remove poten-

tially toxic biomolecules that accumulate with normal neuronal function, including beta-

amyloid [34], which accumulates in APOEε4 genotype carriers [35]. This "glymphatic system"

is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly

by shrinkage of astroglial cells, leading to clearance activity. Clearance during sleep is as much

as two-fold faster than during waking hours [34]. Thus, glymphatic dysfunction may play a

role in the pathogenesis of neurodegeneration as well as maintenance of cognition. However,

it is also possible that accumulation of beta-amyloid and other toxic metabolites may influence

synaptic connectivity, and thus influence neurophysiological mechanisms of sleep, altering

sleep state distributions [83].

Few studies have examined the role of APOE genotype in both sleep and cognitive perfor-

mance [84,85]. In a study of 126 cognitively normal adults (30–70 years), chronic daytime

somnolence was associated with a distinctive decline in verbal memory among APOE ε4/ε4

carriers as compared to APOEε4 heterozygotes and noncarriers [84]. A second study examined

how sleep parameters in AD patients change over time as a function of APOEε4 status [85].

Among forty-four community-dwelling adults with a diagnosis of probable AD there was

greater deterioration on sleep parameters (increased WASO time and decreased TST and sleep

efficiency) in non-APOEε4 carriers when compared with positive APOEε4 carriers [85]. Asso-

ciations between sleep performance and cognition also differed between APOEε4 carriers and

non-carriers [85]. The APOEε4 allele has also been identified in studies as a risk factor for

sleep apnea, although the associations have not been consistent [43–51]. Despite these previous

APOEε4 -sleep associations, the APOEε4-stage N3 results reported herein were independent

of objective measures of sleep continuity as well as apnea hypopnea index.

In conclusion, these findings support a role for APOEε4 genotype in the regulation of stage

N3 in the elderly. Despite the established role of stage N3 in executive function [52,53] and

memory consolidation [54–57] in younger and middle-aged adults, the link between stage N3

and cognitive function may be weakened or changed in older adult population [73,86–89]

(including the MrOS study [72]). The negative correlations between stage N3 and subsequent

learning in older adults could involve several altered mechanisms [74,90] (including memory

consolidation, synaptic downscaling, or other macromolecular changes during stage N3 [83]).

As demonstrated in previous studies, increased stage N3 might predicts worse episodic mem-

ory consolidation in the elderly [88] and may be detrimental to morning recall [73,91–94].

Similar changes to the sleep–memory link have also been reported for old rodents [95,96]

showing that normal hippocampal reactivation is not preserved in older rats and that deep

sleep was associated with worse memory performance as measured by performance on the

Morris Water Maze task. Further research is needed to confirm the APOEε4- stage N3 associa-

tions and to identify the mechanism(s) by which APOEε4 alterations impact sleep architecture.

Quantitative EEG analysis will be useful also to elucidate whether APOE influences homeo-

static drive and sleep dynamics, and whether such changes associate with cognition. The

important strengths of this study are the large number of participants with overnight PSG,

APOE and slow wave sleep
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longitudinal cognitive function measures, and APOEε4 genotyping. An additional study

strength is the use of a large cohort of older adults who were not selected on the basis of sleep

or cognition characteristics. This study, however, was limited to white men and may not be

generalizable to other populations or women. If it is confirmed that increased total stage N3

time among APOE ε4/ε4 carriers reflects an overactive downscaling of synapses during sleep,

these results might in part explain the high risk of AD and age-related cognitive decline among

APOE ε4/ε4 carriers.
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