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Woodframe construction is commonly used for single and multifamily residential buildings in the 

United States. In many parts of California, multifamily woodframe residential buildings are 

constructed with open first stories, which have much less strength and stiffness compared to the 

ones above. In older single-family residences, the “crawl space” is constructed with unbraced and 

unbolted cripple walls. Both these conditions lead to a soft-story response during seismic loading, 

resulting significant damage, economic losses and even collapse. This type of vulnerability is often 

addressed through seismic retrofits, which can be mandated by local jurisdictions (e.g., the Los 

Angeles Soft-Story Ordinance) or incentivized by state or local entities (e.g., the California 

Earthquake Authority Brace and Bolt Program). A key challenge in implementing these retrofit 

programs (mandated or incentivized) is quantifying the improvements in performance at the 

individual and portfolio scale and creating design procedures that maximize the overall benefit. 

This research integrates nonlinear structural modeling, performance-based assessments and 
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advanced statistical and machine learning techniques to quantify the benefit of soft-story 

woodframe building retrofit and develop optimal design solutions that maximize regional 

performance.  

The considered construction types include single-family houses with unbraced cripple walls 

developed as part of the recently completed Pacific Earthquake Engineering Research Institute 

(PEER) and California Earthquake Authority (CEA) project and multi-family residences with soft, 

weak and open front wall lines (SWOF). An end-to-end computational platform is developed to 

automate the construction and analysis of archetype numerical models in OpenSees and conduct 

seismic evaluations based on the PEER performance-based earthquake engineering framework. 

The performance of existing and retrofitted buildings is assessed in terms of collapse safety and 

direct (due to earthquake damage) economic losses. 

The effect of retrofit and various structural characteristics is illuminated for the single-family 

cripple wall houses. 2^k full factorial experiment design combined with hypothesis testing is used 

to identify the most influential structural properties. Two story buildings performed worse than 

their one-story counterparts and pre-1945 buildings performed better than pre-1955 construction. 

Building performance is found to be positively correlated with cripple wall heights and cripple 

wall retrofits provided significant overall improvements. Surrogate models are developed as a 

compact statistical link between key structural characteristics and seismic performance. Several 

machine learning algorithms are investigated for predicting the building median collapse intensity 

and expected annual loss using the cripple wall height, seismic weight, damping ratio and material 

properties as features. The XGBoost algorithm provides the most accurate prediction and on 

average, limits the prediction error to less than 10%. Using the well-developed machine learning 
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models, additional sensitivity analyses are conducted and the effect of model uncertainty on 

collapse safety and expected annual losses is quantified using Monte Carlo simulation.  

For the SWOF buildings, a multi-scale cost-benefit analysis of the Los Angeles Soft-Story 

Ordinance Retrofit is performed. Individual buildings take an average of four to five years for the 

reduced earthquake losses to exceed the one-time retrofit cost. At the portfolio-scale, the average 

cost-benefit ratio is found to be 0.32 for the hypothetical M 7.1 Puente Hills scenario earthquake. 

A stochastic event-set cost-benefit assessment is also performed, where all events (approximately 

8,000) that are significant to the region are considered. From this assessment, it is determined that 

the probability of achieving a desirable cost-benefit ratio (value between 0.0 and 1.0) within a 50-

year period is approximately 0.9. 

Lastly, a retrofit design optimization framework is proposed with the goal of maximizing 

performance-based benefits at the regional scale.  The methodology relies a machine learning-

based surrogate model to predict seismic performances of retrofitted buildings given the design 

parameters. Then, a stochastic optimization algorithm is implemented to find the retrofit designs 

that maximize the improvement in seismic performance for the entire portfolio under a set of pre-

defined constraints. The algorithmic retrofit leads to collapse losses that are comparable to the Los 

Angeles Ordinance guidelines while using only 60% of the resources. The performance-oriented 

framework is shown to address the inefficiency of conventional strength-based retrofit policies. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation and Background  

Buildings constructed with adjacent stories having large differences in strength and stiffness can 

lead to the formation of a single-story mechanism during earthquake shaking. This type of behavior 

is undesirable because inelastic deformation is concentrated in a few non-ductile components of a 

single story instead of being distributed along the height of the building, which can lead to 

sidesway collapse. In California, soft- and weak-story wood frame construction is prevalent in 

both single- and multi-family residential buildings. In multi-story apartment buildings, some or all 

of the first story is often used for parking or commercial space leading to less walls and partitions 

compared to the upper stories. Single-family residences with unbraced and unbolted cripple walls 

(surrounding the crawl space) are also susceptible to soft/weak-story failure.  

The vulnerability of soft and weak story wood frame buildings has been highlighted in several 

historical events, including as far back as the 1971 San Fernando earthquake (FEMA, 2012). Since 

then, wood frame building collapses attributed to the formation of soft-story mechanisms have 

occurred during the 1989 Lomo Prieta (Harris and Egan 1992) and 1994 Northridge earthquakes, 

where soft-story damage to apartment buildings resulted in tens of thousands of unoccupiable 

residential units (Holmes and Sommers 1996). Besides the human casualties and loss of housing, 

the concentration of collapsed and irreparably damaged soft-story buildings within a community 

can slow the overall pace of post-earthquake recovery (Comerio, 2006).  

Policy actions are often implemented to mitigate the effects soft-story vulnerabilities. The cities of 

Los Angeles and San Francisco have enacted Ordinances to mandate the retrofit of soft-weak and 

open-front (SWOF) multi-family residential buildings. For single-family residences, the 

earthquake brace and bolt program (https://www.earthquakebracebolt.com/) provides up to $3,000 



    

 

2 

to help pay the cost of cripple wall retrofits. Guidelines such as the FEMA P807 (FEMA, 2012a) 

and FEMA P50 (FEMA 2012b) documents have sought to develop systematic procedures for 

seismic retrofit and performance evaluation of soft/weak-story structures. A major challenge with 

developing such guidelines is being able to adequately capture the variations in structural 

configurations and material properties of the affected structures. Furthermore, multiple sources of 

uncertainties (i.e. structure dimensions, construction quality) must be addressed when developing 

retrofit techniques than can be generalized for a given portfolio. Lastly, the tools, methods and 

guidelines that are currently available for designing retrofits to provide adequate strength and 

inelastic deformation capacity. However, within the framework of performance-based seismic 

design (PBSD) (Moehle and Deierlein 2004), little or no consideration is given to earthquake-

induced economic losses.  

To address the challenges associated with developing portfolio-based seismic retrofit solutions, a 

performance-based analytical-driven (PBAD) methodology is proposed. The key elements of 

PBAD method include an (i) end-to-end computational platform that links retrofit design, 

nonlinear response simulation and economic loss assessment, (ii) surrogate models for robust 

uncertainty quantification and performance exploration in high-dimensional variable space and (iii) 

strategies for achieving optimal retrofits based on portfolio-scale performance objectives.  

1.2. Research Significance 

The main goal of the proposed research is to develop the tools, models and methods for 

implementing optimal portfolio-based retrofit strategies for wood frame structures. The detailed 

objectives are listed as follows: 

• Develop an “end-to-end” computational platform that links seismic retrofit, nonlinear 

response analyses and earthquake-induced losses of wood frame structures.  
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• Illuminate the relationship between the key structural parameters and the seismic response 

and earthquake-induced losses in wood frame structures. The goal here is to quantitively describe 

how different building features (e.g. cripple wall height, roof weight, and structure material 

parameters) influence building performance (e.g. stricture collapse capacity, engineering demand 

parameters, and expected losses).  

• Introduce surrogate models to quantify the uncertainty in the seismic performance and 

earthquake-induced losses in wood-frame structures. The surrogate models will enable robust 

uncertainty propagation and performance exploration in high-dimensional variable spaces while 

minimizing the number of explicit (or mechanics-based) (e.g. nonlinear response history, loss 

assessment) simulations.  

• Formulate a framework for realizing optimal portfolio-based retrofit schemes for wood 

frame structures. 

A schematic representation of the models, tools and methods developed as part of the proposed 

scope of work is shown in Figure 1.1. The entire body of work can be roughly divided into five 

modules. The “modeling module” is where the end-to-end tool for constructing nonlinear models 

for structural analysis and performance-based assessment is developed. The input building variants 

and output seismic performances are used to develop a woodframe building performance database. 

The “analysis module” uses the database for multi-scale seismic performance quantification, 

sensitivity analysis, uncertainty quantification and cost-benefit analysis. Machine learning (ML) 

surrogate models are developed using the structural responses and performance assessment results 

contained in the database. These ML-based surrogate models can either utilizes in the analysis 

module or optimization module, where the latter is used to find the most desirable retrofit scheme 

based on a predefined portfolio-scale performance objective. The effectiveness and efficiency of 
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this retrofit scheme is assessed within the “evaluation module”. Finally, a retrofit policy is 

proposed based on the results of the optimization and evaluation modules. Multi-scale seismic 

performance assessment and the development and application of analytics-driven methods are the 

core contribution of this dissertation.  

 

Figure 1.1 Schematic representation of the relationships among the models, methods and tools 

developed as part of the proposed scope of work 

 

1.3. Organization and Outline  

This thesis consists of seven chapters and the content of each chapter is elaborated below: 

Chapter 1 discusses the background, motivation, and objective of the research.  

Chapter 2 starts by providing a brief summary of prior studies on woodframe building numerical 

analysis and performance assessment. The end-to-end Python-based tool to generate mechanics-

based models in OpenSEES (McKenna et al. 2003), perform nonlinear numerical analysis and 

conduct post-processing and FEMA-P58 (2012) based loss assessment is then introduced. Details 

of the modeling and analysis procedures for single-family unbraced and unbolted cripple multi-

family soft-story woodframe buildings are presented. Some sample analyses results are presented 

for the purpose of demonstrating the modeling and analysis procedures.  

Modeling Module

Woodframe Building
Performance DatabaseAnalysis Module

Prediction Module Optimization Module

Evaluation Module
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Chapter 3 provides an overview of ML algorithms and their applications in solving structural 

engineering problems. Multiple ML models are constructed to predict building collapse safety and 

expected annual losses (EAL). A formal machine learning model derivation process for structural 

engineering regression problems is presented alongside the model development.  

Chapter 4 discusses the nonlinear structural response simulation, performance-based assessment, 

sensitivity analyses and uncertainty propagation for collapse risk and loss estimations of single 

family woodframe buildings. A preliminary sensitivity analysis study is first introduced using the 

full factorial experimental design for isolating the effects of different parameters on the seismic 

performances of single-family cripple wall buildings. Then, the ML models developed in Chapter 

3 are adopted for a more comprehensive sensitivity analysis. Lastly, the effect of model uncertainty 

on collapse risk and expected annual losses is assessed.  

Chapter 5 investigates various issues related to multi-family woodframe residences with soft, weak 

and open-front wall lines (referred to as SWOF buildings in the remainder of the dissertation). The 

effect of alternative retrofit schemes and key structural parameters on seismic performance are 

evaluated. A multi-scale cost-benefit analysis of SWOF building seismic retrofit is performed.  

Chapter 6 discusses a comprehensive framework for achieving optimal portfolio-based retrofit 

schemes for wood frame structures. The framework produces optimal retrofit designs that achieve 

the most desirable regional performance objective. The framework is implemented on the SWOF 

building inventory that is under the purview of the Los Angeles Soft-Story Ordinance.  

Chapter 7 summarizes the findings from the various studies and discusses ideas for future work.  
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CHAPTER 2. WOODFRAME BUILDING MODEL DEVELOPMENT AND 

PERFORMANCE ASSESSMENT  

2.1. Literature Review 

This section provides a detailed review of the development of woodframe building finite element 

modeling and performance assessment.  

2.1.1. Woodframe Building Modeling  

Three-dimensional models of woodframe buildings are developed as an aggregation of individual 

components. The major components considered in woodframe structures include the walls, floors 

and roof. These components are connected by intercomponent fasteners and connectors (i.e. nails 

and metal plates) (Kasal et al. 1994). The physical properties of wood, gaps between components 

and connections, connector properties govern the nonlinear behavior of woodframe structures. 

Among all components, the shear walls serve as the primary lateral force resisting system (Folz 

and Filiatrault 2001) and therefore have a significant impact on the performance of the entire 

structure. 

There is a large body of research on modeling woodframe shear walls, which comprise the framing, 

sheathing and sheathing-to-framing connectors. Lateral forces are resisted by sheathing materials 

and transferred to framing members by the connectors. The design of  woodframe structures have 

been informed by experiments involving monotonic or reversed-cyclic testing (Stewart 1987; 

Dolan and Madsen 1992; Yamaguchi 1998). Through these experiments, researchers have reached 

a consensus on characterizing the hysteretic behavior of wood shear walls. First, the force-

deformation behavior of the material combination is nonlinear under monotonic loading and 

experiences strength and stiffness degradation under cyclic loading (Folz and Filiatrault 2002). 

The global nonlinear response of the shear wall is similar to that of the individual sheathing-to-
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framing connector used in the wall (Dolan and Madsen 1992; Folz and Filiatrault 2001). Also, the 

hysteretic behavior of wood shear walls is superimposable when different materials are used on 

the interior and exterior (Folz and Filiatrault 2004; Pang et al. 2007; Van de Lindt et al. 2007). 

Multiple hysteretic models had been proposed to capture the load-deformation relationship for 

shear walls and sheathing-to-framing connectors. In the 1980s, piecewise linear models for 

different stages of the loading-unloading curve were meticulously fitted to experimental data 

(Polensek and Laursen 1984; Stewart 1987; Dolan and Madsen 1992). Then, the Bouc-Wen-

Baber-Noori (BWBN) model, which is a single element pinching model generally used for 

modeling steel and concrete structure under random vibration load, was introduced to timber 

structures by Foliente (1995). The Consortium of Universities for Research in Earthquake 

Engineering (CUREE) – Caltech Woodframe project was initiated in 1998 with the goal of 

reducing woodframe construction earthquake induced losses. Comprehensive shake table tests 

were conducted to investigate the damage characteristics and seismic behavior of wall finish 

materials, connections, anchorages, single shear walls, diaphragms, foundations, cripple walls and 

full-scale houses. A computing software, cyclic analysis of wood shear walls (CASHEW), 

specialized in nonlinear seismic analysis of woodframe buildings was developed as part of that 

project. Folz and Filiatrault (2001) proposed using a 10-parameter SDOF hysteretic model for 

capturing force-deformation responses of wood shear walls with nailed sheathing-to-framing 

connector. The modeled cyclic response is shown in Figure 2.1. The material monotonic force-

deformation response is defined based on the initial stiffness, yielding strength, two stiffness 

reduction factors, displacement at peak strength and residual displacement. An additional four 

parameters were introduced to capture responses under cyclic loading. The proposed model was 

validated using a large body of test data (Folz and Filiatrault 2002, 2004; Gatto and Uang 2002). 
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The seismic analysis of woodframe structures (SAWS) hysteretic model was incorporated in 

CASHEW. The SAWS model had been broadly used in light frame wood structure seismic 

response analysis. Christovasilis et al. (2009) used SAWS models for the index buildings 

developed in CUREE-Caltech project and performed incremental dynamic analysis (IDA) to 

assess building collapse safety. Pei and Van de Lindt (2011) delivered a ‘blind-prediction’ analysis 

between the numerical simulated seismic responses of a six-story light frame wood building 

modeled using SAWS with the testing results. Good agreements between the experimental and 

numerical responses were obtained for multiple engineering demand parameters (EDP). Bahmani 

et al. (2016) created numerical models using SAWS hysteretic springs for a full scale four-story 

soft-story building and evaluated its seismic performance. Even today, the SAWS model is still 

one of the most favorable hysteretic models for wood shear wall dynamic response modeling. 

Based on the SAWS model, Pang et al. 2007 proposed the evolutionary parameter hysteretic model 

(EPHM), which adopts exponential functions for the backbone curve instead of the linear functions 

used in the SAWS model. The NEESWood project which began in 2005 sought to investigate the 

dynamic behavior of woodframe constructions under seismic loading and develop a performance-

based seismic design philosophy for mid-rise woodframe buildings. Full-scale shake table tests 

and numerical analyses were conducted for a benchmark two-story residential building. The 

Seismic Analysis Package for Woodframe Structures (SAPWood) was developed as part of the 

NEESWood project (Pei and van de Lindt 2010a). The software is capable of conducting nonlinear 

analysis, incremental dynamic analysis (IDA), and loss assessment for bi-axial structure models, 

simplified MDOF models, and triaxial shear and bending models. Both the SAWS and EPHM 

models are included in the SAPWood software. Furthermore, the Nail Pattern (NP) module of 

SAPWood allows users to model structures at the fastener level. van de Lindt et al. (2010) 
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presented a numerical analysis for a full-scale woodframe building to verify the SAPWood model 

with testing data. 

 

Figure 2.1 SAWS hysteretic model (figure adapted from (Folz and Filiatrault 2002))  

 
The floors and roof are the other components considered in woodframe building structural 

modeling. Diaphragms are mainly used to transfer lateral loads to the lateral force resisting system. 

Similar to wood shear walls, wood diaphragm properties are influenced by the sheathing type and 

orientation, fastener type and spacing, and diaphragm dimensions (Falk and Itani 1989).  Amana 

(1967) first introduced the nail modules to account for fastener stiffness. In the 1980s, Itani and 

Cheung (Cheung and Itani 1983; Itani and Cheung 1983, 1984) developed finite element models 

for predicting static and dynamic responses of diaphragms considering the distribution and 

stiffness of sheathing-to-framing fasteners. Those models have shown great agreement with test 

data. Further, investigations into diaphragm flexibility were made in the 1990s and 2000s. Through 

performing 330 numerical analyses on rigid and flexible diaphragms in one-story timber structures, 
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Dolce et al. (1992) proposed that if the vertical stiffness is uniformly distributed, the diaphragm 

flexibility will not significantly impact the nonlinear responses. Folz and Filiatrault (2001) 

performed 14 experiments on different diaphragms and structure configurations to study the in-

plane rigidity of the diaphragm. Owing to the fact that nails provide diaphragm with enough 

strength and the vertical wood shear wall can be regarded as additional chord members, small 

rotation and rigid diaphragm assumptions generally hold when modeling the entire structure. 

However, the results from the NEESWood project suggested that the rigid diaphragm assumption 

may not be valid under some circumstances. Pang et al. (2012) also argued that these assumptions 

will lead to inaccurate boundary conditions and would be unable to predict incipient collapse 

properties of wood buildings. They proposed a new 3D frame element modeling method 

incorporating corotational formulation and large displacement theory to address the problems that 

arise from overly simplistic assumptions. In the analysis, SAPWood permits the consideration of 

connector stiffnesses to model semi-rigid or flexible diaphragms.  

2.1.2. Woodframe Building Performance Assessment  

The current state-of-art design philosophy advocates for the use of performance targets. 

Specifically, in the performance-based earthquake engineering (PBEE) framework, structures are 

supposed to be designed with enough strength to resist earthquake load and meeting target 

performance specifications. A brief introduction into the evolution of PBEE and its applications 

to woodframe buildings is presented in this section. 

The origin of PBEE can be traced back to displacement-based design. In the 1990s, the direct-

displacement design method was first developed by Priestley (Priestley 1993, 1999, 2000) and 

applied to concrete structures. Then, the Structural Engineering Association of California (SEAOC 

1996) and NEHRP Guidelines (Building Seismic Safety Council 1997) proposed the concept of 
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seismic design performance levels measured by drift limits. Different from traditional force-based 

design, these methodologies advocated for using drift as the basis for measuring performance. 

FEMA 273 (1997) and ATC-40 (1996) represent the first generation of PBEE assessment and 

design procedures. Within the 1st generation of the PBEE framework, buildings subjected to 

earthquake lateral loading experience nonlinear responses and results in different levels of 

damages. Quantitative measurements of component-level damage can be established on the basis 

of dynamic responses. Building performance targets such as immediate occupancy, life safety and 

collapse prevention were introduced. The performance of the entire structure was based on the 

worst-case-scenario for component-level damage. However, in this era, the engineering demands 

were mostly based on simplified analysis procedures which lacked calibration. No consistent and 

reliable component data was available to define the mapping from demands to damage. To address 

these issues, the Pacific Earthquake Engineering Research Center (PEER) initiated a research 

program to develop a more systematic and robust methodology for PBEE. In the 2nd generation of 

PBEE, probabilistic analysis procedures were developed. The overall methodology included 

hazard assessment, structural analysis, damage evaluation and loss estimation. The final outcome 

of the framework is a set of decision variables (DV), which represent the probability aggregation 

of engineering demand parameters (EDP), damage variables (DM) and intensity measures (IM) as 

illustrated by Equation (2.1) (Cornell and Krawinkler 2000; Krawinkler and Miranda 2004). The 

details of the methodology are provided in FEMA P-58. The discussion and analysis of woodframe 

building performances for the entire thesis will be based on FEMA P-58. 

B(@)) = ∫ ∫ ∫ F(@)|@;)HF(@;|I@J)HF(I@J|K;)HL(K;)	 (2.1) 

Prior studies on performance-based assessment of woodframe buildings is presented in this section. 

Filiatrault and Folz (2002) summarized the detailed procedure for conducting displacement-based 
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design and applied numerical analysis to verify the process. Rosowsky and Ellingwood (2002) 

provided an overview of performance-based design and its application to residential woodframe 

buildings. Performance requirements, limit state definition, system reliability and fragility 

modeling were examined in detail. Van de Lindt (2005) first proposed a reliability-based approach  

to calibrating a seismic damage model and quantify wood-frame building performance. Five 

component level criteria, including nailing behavior and sheathing out-of-plane movement, were 

used to define limit states. Fastener spacing was selected as the primary design variable, which 

was then regressed against the Park-Ang damage. The probability of failure calibrated to a 

lognormal distribution. Kim and Rosowsky (2005) applied fragility analysis to light-frame wood 

shear walls using CASHEW and developed the technical basis for the seismic design. The 

application of a new generation of PBSD to low- and mid-rise light-frame wood buildings was 

investigated in the NEESWood project. At this stage, building performance on the basis of 

economic losses was explored. Crowley and Bommer (2006) developed loss exceedance curves in 

Italy using the probabilistic seismic hazard analysis (PSHA) method and Monte Carlo simulation. 

Pei and van de Lindt (2010) proposed a probabilistic framework to estimate long-term earthquake 

related economic loss for wood frame buildings. A vulnerability-based approach was introduced 

to quantify model uncertainties, and Bayesian inferencing was used to improve the fragility 

prediction accuracy. Four levels of component damage were defined, including non-detectable, 

repairable, borderline repairable and not repairable/replace. Li and Ellingwood (2009) developed 

a multi-hazard performance evaluation and mitigation framework for woodframe residential 

building construction. Building hazard risk was quantified based on the probabilities of being in 

different damage states, which is a function of demand and capacity. The performance of two 

typical one-story woodframe residential buildings with minimum and strengthened hazard-
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resistant systems were evaluated under wind and seismic loading to compare the effectiveness of 

different hazard mitigation strategies. van de Lindt et al. (2013) summarized the outcomes of the 

NEESWood project and proposed a new performance-based design procedure. The design 

procedure is an iterative process where direct displacement design is performed, the design 

detailing and code requirements are evaluated for a given building plan, target performance and 

hazard level. The procedure was validated on a 6-story woodframe building used in the 

NEESWood capstone full-scale testing. 

2.2. Python Based End-to-End Tool for Nonlinear Structural Analysis and Performance-Based 

Assessment of Woodframe Structures 

An efficient end-to-end Python based tool is developed to construct and analyse 3D woodframe 

building numerical models in OpenSees and conduct performance-based assessments. The tool is 

capable of constructing OpenSees 3D models given the necessary structural parameter inputs, 

performing nonlinear static and dynamic analysis and evaluating seismic performances. The 

detailed modeling considerations and structural analysis procedures are introduced in this chapter. 

Modeling is discussed for single- and multi-family houses. The baseline single-family houses 

developed as part of the PEER-CEA project (Welch and Deierlein 2020) and multi-family SWOF 

buildings under the purview of the Los Angeles ordinance are used to demonstrate the modeling 

strategies. Two sample analysis results are presented to show the capability of the platform. 

An end-to-end workflow was programmed in Python to fulfill the large demand of woodframe 

building nonlinear modeling, analyses, and performance assessment. Figure 2.2 demonstrates the 

entire process. Overall, the tool takes in information about the structure configuration, material 

properties, analysis parameters and ground motions as input to generate 3D OpenSees (McKenna 

et al. 2003) models, and perform nonlinear analysis and performance-based assessment to obtain 
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EDPs, collapse performance and losses. Three different sets of OpenSees models are generated by 

the tool for a given set of inputs, which are used for eigen, nonlinear static and nonlinear dynamic 

analysis. The analysis and post-processor can conduct the desired analyses and data cleaning on a 

local machine or high performance clusters, such as the UCLA Hoffman2 and DesignSafe (Rathje 

et al. 2017). The analysis and post-processor are capable of parallel computing to speed up the 

nonlinear analysis. EDPs, collapse safety and losses can be extracted from the raw results as the 

final outcome of the end-to-end simulation. Furthermore, the input-output pairs constitute a 

woodframe building performance database. The database can be used for sensitivity analysis, 

uncertainty quantification and the development and verification of analytics-driven models. The 

entire platform was designed to be generic for any types of woodframe structures.  

 

Figure 2.2 Workflow of the Python-based end-to-end woodframe building modeling and 

performance assessment tool 

 

Figure 2.3 provides a schematic representation of a 3D OpenSees model of a woodframe building. 

It shows the general composition of a model. The considered components include the 

diaphragms/roof, shear walls (interior, exterior and cripple wall), leaning columns, and moment 
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frames (only applied in retrofitted cases). The wall elements are idealized as hysteretic springs 

representing the location and geometry of the wall. The material properties are either calibrated 

from experimental results or numerical nonlinear analysis under cyclic loadings. Rigid diaphragms 

are assumed at each story level. The detailed modeling process and analysis settings are 

demonstrated using prototype single- and multi-family houses. 

  

Figure 2.3 Schematic figure of 3D OpenSees model of a woodframe building  

 

2.3. General Description of the Considered Buildings  

2.3.1. Single-Family Dwellings 

The single-family house archetypes developed as part of the PEER-CEA Project are used herein 

(Welch and Deierlein, 2020). The layouts and wall dimensions of each floor are listed in Table 2.1. 

The overall building dimension is of 40ft × 30ft. For each wall presented in the floor plan, two 

parallel connected Pinching4 hysteretic springs (discussed later) located at the centroid of the wall 

are used to capture the location, dimension, and mechanical properties of the wall. The typical 

superstructure story height is 9ft and different heights are considered for the cripple wall level.  

Wood structural panels are introduced to retrofit the unbraced and unbolted cripple walls, which, 

in their original condition, represents a soft-story vulnerability. For the retrofitted buildings, the 

Wall

Leaning column

Diaphragm

Moment frame



    

 

16 

wood structural panels are placed at the two ends of each line of cripple walls. The lengths of the 

structural panels vary based on the FEMA P-1100 specification (FEMA 2018). The details of the 

retrofit designs are presented in section 1.2.1 of the PEER-CEA project technical report (Welch 

and Deierlein 2020). 
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Table 2.1 Floor plan and wall dimensions for the single-family woodframe houses 
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The archetypes developed as part of the PEER-CEA project include buildings constructed pre-

1945, 1945 to 1955, and 1956 to 1970 era. The main distinction between the different construction 

eras is the interior panel sheathing material. Listed in Table 2.2 are the exterior and interior wall 

material combinations for different construction era considered in the current study. Other building 

variants under consideration include the cripple wall height, seismic weight (discussed later), and 

number of stories. Cripple walls ranging in height from 2ft to 6ft are considered. For each material 

combination, 1- and 2-story buildings, with and without cripple wall (fixed base) are considered. 

Table 2.2 Wood panel sheathing material combinations for different construction eras 

 

Cripple Wall Superstructure 
Exterior Wall 

Superstructure 
Interior Wall 

Construction 
Era 

Stucco Stucco Gypsum 
1945 – 1955, 

1956 – 1970 

Horizontal wood siding Horizontal wood siding Gypsum 
1945 – 1955, 

1956 – 1970 

Stucco Stucco Plaster on wood lath 
Pre-1945, 

1945 – 1955 

Horizontal wood siding Horizontal wood siding Plaster on wood lath 
Pre-1945, 

1945 – 1955 

 

2.3.2. Multi-Family Dwelling  

The multi-family archetypes are based on the SWOF buildings under the purview of the Los 

Angeles Soft Story Ordinance. A survey of the SWOF inventory was conducted and used as the 

basis for developing the archetypes. A dataset containing the addresses of approximately 12,000 

of the SWOF buildings impacted by the LA Ordinance Retrofit Project was obtained from the Los 

Angeles Times (http://graphics.latimes.com/soft-story-apartments-needing-retrofit/). A survey of 

approximately 25% of the buildings on the Los Angeles Times list was then conducted using 

Google Street View. Figure 2.4 shows a map of the approximately 12,000 buildings from the Los 

Angeles Times list with the approximately 3,000 surveyed buildings highlighted. About 72% of 
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the surveyed buildings had two stories and about 23% had three stories. The remaining 5% 

included 4-, 5- and 6-story buildings. 

 

Figure 2.4 Map showing inventory of SWOF woodframe buildings in the City of Los Angeles 

with surveyed buildings highlighted 

 

The wall layout in the first story of SWOF woodframe buildings has strong implications to their 

collapse performance. From the results of the survey, four typical first-story wall layouts were 

identified. Figure 2.5 shows pictures of real SWOF buildings with the four typical first-story wall 

layouts, which are identified as L1 through L4. All four SWOF layouts have partially open first 

stories that include parking and an enclosed area that consists of living, laundry or storage space. 

The SWOF layouts identified as L1 and L2 have one wall line that is completely open and two that 

are partially open. For L1, the completely open wall line is in the “short” direction whereas the 
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“long” direction of L2 has the completely open wall line. L3 has a single completely open wall 

line that serves as the entrance to a parking garage that has walls on three sides. The parking area 

in L4 is located at the corner of the building where there are two partially open wall lines. 

Schematic isometric views of the four typical wall layouts are shown in Figure 2.6. The first-story 

wall layout of approximately one-third of the surveyed buildings (the ones that were clearly 

notable from Google Street View) was documented. Among those buildings, approximately 17%, 

2%, 61% and 20% had layouts L1, L2, L3 and L4, respectively.  

 

Figure 2.5 Photos of typical Los Angeles SWOF woodframe building configurations: (a) L1, (b) 

L2, (c) L3 and (d) L4 

(a) (b)

(c) (d)
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Figure 2.6 Schematic isometric views of typical SWOF woodframe building configurations 

identified from survey: (a) L1, (b) L2, (c) L3 and (d) L4 

 

A total of thirty-two archetype buildings are developed and used to represent the inventory of 

SWOF woodframe buildings in the City of Los Angeles. The properties of each archetype are 

summarized in Table 2.3. In addition to the four first-story wall layouts described earlier, variations 

in the number of stories, plan aspect ratio and type of interior panels are considered. As noted 

earlier, 95% of the surveyed buildings had either two or three stories. Therefore, only 2-story and 

3-story variants are included in the set of archetypes. Figure 2.7 shows the wall layout of the four 

typical 1st story plan configurations and the typical plan layout of the upper floors is shown in 

Figure 2.8. The floor layouts (1st and upper) are configured with one, two- and three-bedroom 

apartments, such that the wall densities (total wall length normalized by the floor area), which 

range from 0.1275/75! in the first story to 0.2075/75! in the upper stories, are comparable to real 

buildings. The story heights for all archetypes is taken to be 9’-3”. 

For each layout, the shorter plan dimension is denoted as "P" and the longer dimension is labeled 

"Q". Two variations in plan dimensions, which are based on the ratio	Q/P,  are included for each 

1st floor wall layout. The variant with higher Q/P is denoted as having a “large aspect ratio” the 

(a) (b)

(c) (d)



    

 

22 

other is described as having a “small aspect ratio”. The value of P and Q for each building case is 

summarized in Table 2.3. For each layout, detailed plan views (8 in total) showing all wall 

dimensions are provided in Appendix A.   

The exterior walls are taken to be constructed with stucco on the outside and either gypsum 

wallboard (GWB) or horizontal wood siding (HWS) on the inside. The interior partitions consist 

of either GWB or HWS on both sides. Including the GWB/HWS interior panel variant enables an 

evaluation of the effect of upper story strength and ductility on the shift in collapse from the 1st to 

the 2nd story after retrofit. None of the walls in the existing buildings have wood structural panels. 
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Table 2.3 Summary of SWOF woodframe building archetypes 

 

Building ID No. of 
Stories Plan Dimensions Interior Panel 

Type 
Exterior Panel 

Type 

L1-2S-60X30-GWB 2 L = 60'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L1-3S-60X30-GWB 3 L = 60'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L1-2S-100X30-GWB 2 L = 100'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L1-3S-100X30-GWB 3 L = 100'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L1-2S-60X30-HWS 2 L = 60'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L1-3S-60X30-HWS 3 L = 60'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L1-2S-100X30-HWS 2 L = 100'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L1-3S-100X30-HWS 3 L = 100'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L2-2S-60X50-GWB 2 L = 60'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L2-3S-60X50-GWB 3 L = 60'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L2-2S-100X50-GWB 2 L = 100'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L2-3S-100X50-GWB 3 L = 100'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L2-2S-60X50-HWS 2 L = 60'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L2-3S-60X50-HWS 3 L = 60'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L2-2S-100X50-HWS 2 L = 100'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L2-3S-100X50-HWS 3 L = 100'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L3-2S-50X30-GWB 2 L = 50'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L3-3S-50X30-GWB 3 L = 50'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L3-2S-80X30-GWB 2 L = 80'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L3-3S-80X30-GWB 3 L = 80'-0", B = 30'-0" 2 Layers GWB Stucco + GWB 
L3-2S-50X30-HWS 2 L = 50'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L3-3S-50X30-HWS 3 L = 50'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L3-2S-80X30-HWS 2 L = 80'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L3-3S-80X30-HWS 3 L = 80'-0", B = 30'-0" 2 Layers HWS Stucco + HWS 
L4-2S-60X50-GWB 2 L = 60'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L4-3S-60X50-GWB 3 L = 60'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L4-2S-100X50-GWB 2 L = 100'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L4-3S-100X50-GWB 3 L = 100'-0", B = 50'-0" 2 Layers GWB Stucco + GWB 
L4-2S-60X50-HWS 2 L = 60'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L4-3S-60X50-HWS 3 L = 60'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L4-2S-100X50-HWS 2 L = 100'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
L4-3S-100X50-HWS 3 L = 100'-0", B = 50'-0" 2 Layers HWS Stucco + HWS 
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Figure 2.7 First floor plan showing wall layouts: (a) L1, (b) L2, (c) L3 (L = 50’-0’’), (d) L3 (L = 

80’-0’’), (e) L4 (L = 60’-0’’) and (f) L4 (L = 100’-0’’) 
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Figure 2.8 Plan configuration in upper floors: (a) L1, L2, L3 (L = 80′-0′′) and L4 and (b) L3 (L = 

50′-0′′) 

 

2.4. Woodframe Shear Wall Material Models 

2.4.1. Introduction to Pinching4 Hysteretic Model 

Lowes et al. (2003) developed a two-dimensional beam-column joints nonlinear hysteretic model, 

which is known as Pinching 4 model. Compared to other models, Pinching4 can update the strength 

envelopes and unloading/reloading paths during the analysis. This property makes the Pinching4 

model capable of accurately capturing sheathing connection behavior. Thus, the Pinching4 

material is used to model the nonlinear response of the panels. Figure 2.9 shows the hysteretic 

response and associated parameter definitions of Pinching4 model in OpenSees. The response 

envelope (positive and negative) is multilinear, which includes degrading and constant-residual-

strength branches. Force and deformation parameters at each point where there is a change in 

stiffness (a total of sixteen parameters) are used to define the envelopes. Each unload-reload path 

is defined by six parameters, which includes the load-deformation point at which unloading occurs 
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and four other parameters defined by some fraction of the force and deformation at the unloading 

point. Fourteen parameters are used to define the hysteretic damage rules.  

 

Figure 2.9 A schematic representation of Pinching4 model under monotonic loading 

 

2.4.2. Single-Family Dwelling  

Loading protocols (Zareian and Lanning 2020) and a series of component experiments (Cobeen et 

al. 2020; Schiller et al. 2020a, b, c) was designed and conducted as part of the PEER CEA project 

to develop the required sheathing material mechanical properties to support numerical analyses of 

the single-family houses. Two parallelly connected Pinching4 hysteretic springs are used for the 

calibration. The two-spring assumption is capable of fitting a large variety of experimental data. 

The details of the calibration are presented in the PEER CEA technical background report (Welch 

and Deierlein 2020). During the calibration, ‘spring 1’ was used to capture the material cyclic 

behaviors under small displacement, and ‘spring 2’ was used to capture the strength degradation 

segments. Best estimates of the material properties, which are based on experimental data, 

knowledge of behavior, detailing of actual buildings, and observations from historical earthquakes, 

were adopted in the single-family building models (Welch and Deierlein 2020). The best estimates 

of the Pinching4 backbone and cyclic parameters for the materials used in the analyses are listed 

in Table 2.4 and  

Deformation

Force

(ePf 1, ePd1)

(ePf 2, ePd2) (ePf 3, ePd3)

(ePf 4, ePd4)

(eNf 1, eNd1)

(eNf 2, eNd2)(eNf 3, eNd3)

(eNf 4, eNd4)

(*, uForceP·ePf 3)
(rDispP·dmax, rForceP·f(dmax))

(dmax, f(dmax))

(*, uForceN·eNf 3)
(rDispN·dmin, rForceN·f(dmin))

(dmin, f(dmin))

Parameter Description

!"#!/!$#! Force points on the positive/negative response curve

!"%!/!$%! Deformation on the positive/negative response curve

&'()*"/&'()*$ Ratio of the deformation at which reloading occurs to the
maximum/minimum historic deformation demand

&+,&-!"/&+,&-!$ Ratio of the force at which reloading occurs to the
maximum/minimum historic deformation demand

.+,&-!"/.+,&-!$
Ratio of strength developed upon unloading from negative load

to the maximum/minimum strength developed under
monotonic loading

/01, /02, /03, /04, /06(7 Controlling cyclic degradation model for unloading stiffness
degradation

/'1, /'2, /'3, /'4, /'6(7 Controlling cyclic degradation model for reloading stiffness
degradation

/+1, /+2, /+3, /+4, /+6(7 Controlling cyclic degradation model for strength degradation

/8 Define maximum energy dissipation under cyclic loading.



    

 

27 

 

Table 2.5, respectively. The given backbone parameters are normalized by panel height and length.
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Table 2.4 Single-family house material Pinching4 backbone parameters 
 

Location Material Name  d1 (%) d2 (%) d3 (%) d4 (%) f1 
(lbs/ft) 

f2 
(lbs/ft) 

f3 
(lbs/ft) 

f4 
(lbs/ft) 

Superstructure 
Exterior Wall 

Horizontal Wood 
Siding 

Spring 1 0.24 1.16 4 15 32.8 78.75 57 12.1 
Spring 2 0.24 1.16 4 15 8.2 26.25 133 108.9 

Horizontal Siding + 
Plaster on Wood Lath 

Spring 1 0.08 0.3 1.1 2.2 121.6 303 157.5 20 
Spring 2 0.08 0.3 1.1 2.2 30.4 101 367.5 180 

Stucco + Gypsum 
Wallboard Best 

Estimate 

Spring 1 0.08 0.72 1.5 5.4 205.6 548.25 240 24 

Spring 2 0.08 0.72 1.5 5.4 51.4 182.75 560 216 

Stucco + Plaster on 
Wood Lath 

Spring 1 0.08 0.36 1.2 3.7 285.6 621.75 315 31.5 
Spring 2 0.08 0.36 1.2 3.7 71.4 207.25 735 283.5 

Superstructure 
Interior Wall 

Gypsum Wallboard 
Best Estimate 

Spring 1 0.12 0.36 0.8 5.65 84 138.75 63 6.3 
Spring 2 0.12 0.36 0.8 5.65 21 46.25 147 56.7 

Plaster on Wood Lath Spring 1 0.08 0.28 1.2 2.9 92 214.5 133.5 12.8 
Spring 2 0.08 0.28 1.2 2.9 23 71.5 311.5 115.2 

Cripple Wall 

2ft Stucco Best 
Estimate 

Spring 1 0.1 0.77 1.6 6.7 178.4 373.5 161.7 18.9 
Spring 2 0.1 0.77 1.6 6.7 44.6 124.5 377.3 170.1 

6ft Stucco Spring 1 0.08 0.32 1 3.17 201.6 369 196.8 28.4 
Spring 2 0.08 0.32 1 3.17 50.4 123 459.2 255.6 

2ft Retrofit Stucco 
Best Estimate 

Spring 1 0.1 1.4 5.5 12.5 279.2 1260 580.2 58 
Spring 2 0.1 1.4 5.5 12.5 69.8 420 1353.8 522 

6ft Retrofit Stucco Spring 1 0.08 0.65 2.9 9 308 1137.75 561 56.1 
Spring 2 0.08 0.65 2.9 9 77 379.25 1309 504.9 

Horizontal Wood 
Siding Best Estimate 

Spring 1 0.1 0.75 2 5 49.6 157.5 106.2 10 
Spring 2 0.1 0.75 2 5 12.4 52.5 247.8 90 

2ft Retrofit Horizontal 
Wood Siding Best 

Estimate 

Spring 1 0.1 2.06 6.5 12.1 283.2 1164.75 565.8 45.3 

Spring 2 0.1 2.06 6.5 12.1 70.8 388.25 1320.2 407.7 

6ft Retrofit Horizontal 
Wood Siding Best 

Estimate 

Spring 1 0.17 1.16 3.5 8.4 369.6 1006.5 546.3 39.6 

Spring 2 0.17 1.16 3.5 8.4 92.4 335.5 1274.7 356.4 
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Table 2.5 Single-family house material Pinching4 cyclic parameters 
 

Location Material Name  rDisp rForce uForce gK1 gKlim gD1 gDlim 

Superstructure 
Exterior Wall 

Horizontal Wood Siding 
Spring 1 0.18 0.35 -0.08 -0.1 -1 0.14 0.5 
Spring 2 0.5 0.12 -0.05 0 0 0.09 0.2 

Horizontal Siding + Plaster 
on Wood Lath 

Spring 1 0.06 0.31 0.14 -0.07 -0.5 0.14 0.3 
Spring 2 0.28 0.18 -0.11 -0.05 -0.2 0.11 0.3 

Stucco + Gypsum 
Wallboard Best Estimate 

Spring 1 0.06 0.26 -0.2 0 0 0.13 2 
Spring 2 0.06 0.17 -0.23 0.3 2 0.13 2 

Stucco + Plaster on Wood 
Lath 

Spring 1 0.06 0.26 -0.2 0 0 0.13 2 
Spring 2 0.06 0.17 -0.23 0.3 2 0.13 2 

Superstructure 
Interior Wall 

Gypsum Wallboard Best 
Estimate 

Spring 1 0.15 0.22 -0.21 -0.3 -1 0.1 2 
Spring 2 0.4 0.12 -0.19 0.2 2 0.12 2 

Plaster on Wood Lath 
Spring 1 0.06 0.31 -0.1 -0.07 -0.5 0.14 0.3 
Spring 2 0.28 0.18 -0.11 -0.05 -0.2 0.11 0.3 

Cripple Wall 

2ft Stucco Best Estimate 
Spring 1 0.05 0.2 -0.1 0 0 0.3 3 
Spring 2 0.25 0.16 -0.1 0 0 0.2 2 

6ft Stucco 
Spring 1 0.04 0.31 -0.05 -0.12 -0.75 0.3 3 
Spring 2 0.25 0.16 -0.25 -0.09 -0.3 0.2 2 

2ft Retrofit Stucco Best 
Estimate 

Spring 1 0.05 0.37 -0.05 0 0 0.15 2 
Spring 2 0.55 0.13 -0.07 0 0 0.1 0.5 

6ft Retrofit Stucco 
Spring 1 0.09 0.31 -0.05 -0.1 -0.3 0.21 2 
Spring 2 0.49 0.16 -0.15 0 0 0.1 1 

Horizontal Wood Siding 
Best Estimate 

Spring 1 0.18 0.37 -0.1 -0.1 -1 0.14 0.3 
Spring 2 0.4 0.34 -0.12 0 0 0.09 0.2 

2ft Retrofit Horizontal 
Wood Siding Best 

Estimate 

Spring 1 0.03 0.4 0.02 0 0 0.14 0.3 

Spring 2 0.55 0.14 -0.09 0 0 0.05 1 

6ft Retrofit Horizontal 
Wood Siding Best 

Estimate 

Spring 1 0.06 0.38 0.02 -0.1 -1 0.2 0.3 

Spring 2 0.55 0.2 -0.15 -0.1 -0.5 0.1 1 
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2.4.3. Multi-Family Dwelling  

The development of Pinching4 parameters for the multi-family dwelling modeling is slightly 

different from that of single-family houses. To obtain the Pinching4 parameters for each panel 

used in the retrofitted and un-retrofitted multi-family building, calibrations on numerical data was 

performed. More specifically, for the GWB, HWS and stucco panel material, the calibration was 

conducted using the hysteretic response of the 10-parameter SAWS material as the benchmark. 

For the WSP used in the retrofit, the hysteretic response obtained from the CASHEW program 

(Folz and Filiatrault 2001, 2002), which includes the nailing sizes and spacings as input. The 

SAWS/CASHEW-based hysteretic response of an 8’-0” long, 9’-3” tall panel is developed from 

the OpenSees/CASHEW program using the CUREE-Caltech loading protocol (Krawinkler et al. 

2001). The Pinching4 material parameters were then selected such that the hysteretic response 

under the CUREE-Caltech loading protocol is comparable with the SAWS/CASHEW response. A 

comparison between the hysteric response of panels with all six studied materials is shown in 

Figure 2.10, where it is observed that the calibrated Pinching4 material adequately captures the 

SAWS hysteric response. The Pinching4 model parameters for all panel types are summarized in 

Table 2.6. 

Table 2.6 Pinching4 model parameters for multi-family dwellings1 

Panel Type Force (lb/ft) Drift (%) Cyclic 
f1 f2 f3 f42 d1 d2 d3 d4 rDisp rForce uForce 

GWB 48 155 199 0 0.06 0.44 0.98 4.86 0.4 0.18 0.04 
HWS 18 59 159 0 0.11 0.87 7.30 8.32 0.02 0.25 0.05 
Stucco 140 424 693 0 0.04 0.21 0.97 7.75 0.3 0.22 0.04 

WSP 10d @ 4 
inches O.C. 277 752 845 0 0.05 0.38 0.96 6.43 0.45 0.16 0.03 

WSP 10d @ 2 
inches O.C. 526 1406 1521 0 0.06 0.44 0.98 6.17 0.45 0.15 0.06 

WSP 8d @ 4 
inches O.C. 280 754 829 0 0.06 0.46 1.09 6.44 0.3 0.1 0.02 

1The Pinching4 parameters not given in the table were set to 0 
2Residual strength not considered 
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Figure 2.10 Comparison between the hysteric response of the SAWS and Pinching4 materials for 
(a) GWB, (b) HWS, (c) Stucco, (d) WSP, 10d @ 4’’ O.C. panels, (e) WSP, 10d @ 2” O.C. 

panels, and (f) WSP, 8d @ 4’’ O.C. panels 
 

2.5. Component Modeling  

Similar modeling strategies are applied to the single- and multi-family houses. The wood panels 

are idealized using a two-node link element with horizontal springs that captures the force–

(a) (b)

(c) (d)

(e) (f)
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deformation behavior of the panel. The two nodes are located at the top and bottom of each panel 

at mid-length. It should be noted that this type of element is unable to capture the overturning 

response of the panels. Therefore, the effect of the flexibility of the connection between the panel 

and the foundation (e.g. via hold-downs) on the overall response, is not incorporated. For the 

SWOF buildings, ordinary moment frames (OMFs) were used as the retrofit elements and the 

beams and columns are modeled using elastic elements with concentrated plastic hinges, which 

incorporate the Modified Ibarra–Krawinkler deterioration model (Ibarra et al. 2005). The model 

parameters for the hinges are obtained from the empirical equations developed by Lignos and 

Krawinkler (2012).  

Nine leaning columns (one in each corner, one at mid-length of each exterior wall line and one at 

the centroid) are used to capture the spatial distribution of masses and P–Δ effects. Figure 2.11 

shows the position of the leaning columns. Each leaning column is modeled using an elastic-beam-

column element in OpenSees. The element has an artificially large cross-section area, torsional 

moment of inertia and second moment of area to ensure the leaning columns can capture P-D 

effects without providing additional stiffness.  
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Figure 2.11 Leaning column locations 
 

From prior numerical studies on woodframe building modeling, rigid diaphragm assumptions were 

generally used though it has inefficiencies under some scenarios. Considering all single- and multi-

family houses involved in the study are of rectangular shape with an aspect ratio (long to short 

dimension ratio) less than 2, the rigid diaphragm constraint is deemed a reasonable assumption. 

This assumption is one of the limitations of the current study, and more comprehensive analyses 

can be carried out in the future by modeling semi-rigid or flexible diaphragms.  

2.6. Gravity Loads and Masses 

2.6.1. Single-Family Dwelling  

As introduced in the preceding section, nine leaning columns are used to capture P–Δ effects. For 

single-family houses, the total gravity loads are computed based on contributions from the floors, 

panels (interior and exterior wall), and roof. The numbers vary by sheathing material, construction 

era and diaphragm type. Then, the resulting loads are assigned to each leaning column based on 

tributary diaphragm areas and wall lengths. Masses are directly calculated based on the assigned 
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gravity load. The weights in pounds per square foot for different diaphragms, roofs, exterior, 

interior and cripple walls are listed in Tables 2.7 through 2.11. The information in these tables are 

based on the PEER CEA technical background report (Welch and Deierlein 2020).   

Table 2.7 Summary of floor load weight take-offs for floor diaphragms (Welch and Deierlein 
2020) 

 

Load Type Description Weight 
(psf) 

1st Floor First floor diaphragm, used for all variants, no finish 
on underside 12 

2nd Floor, pre-1945, 
Light 

Second floor diaphragm, lath and plaster on ceiling 
below, used when shingle or composition roof 

assumed (light flooring) 
17.5 

2nd Floor, pre-1945, 
Heavy 

Second floor diaphragm, lath and plaster on ceiling 
below, used when concrete tile roof assumed 

(hardwood flooring) 
21 

2nd Floor, post-1955, 
Light 

Second floor diaphragm, gypsum wallboard on ceiling 
below, used when shingle or composition roof 

assumed (light flooring) 
12 

2nd Floor, post-1955, 
Heavy 

Second floor diaphragm, gypsum wallboard on ceiling 
below, used when concrete tile roof assumed 

(hardwood flooring) 
15.5 

 

Table 2.8 Summary of roof weight take-offs (Welch and Deierlein 2020) 
 

Roof Type Description Weight 
(psf) 

Weight 
6:121 
(psf) 

pre-1945, Light Asphalt or composition shingle roofing, lath and 
plaster on ceiling below 18.5 20.7 

pre-1945, Heavy Concrete tile roofing, lath and plater on ceiling below 26 29 

post-1955, Light Asphalt or composition shingle roofing, gypsum 
wallboard on ceiling below 13 14.5 

post-1955, 
Heavy 

Concrete tile roofing, gypsum wallboard on ceiling 
below 20.5 22.9 

1Roof flat load considering horizontal projection of an 6:12 roof pitch 
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Table 2.9 Summary of exterior wall load weight take-offs for superstructure walls (Welch and 
Deierlein 2020) 

 
Exterior Wall Material 

Type Description  Weight 
(psf) 

Stucco, pre-1945 Stucco exterior, lath and plaster interior 23 
Stucco, post-1955 Stucco exterior, gypsum wallboard interior 17 
Wood Siding, pre-

1945 
Horizontal wood siding exterior, lath and plaster 

interior 15 

Wood Siding, post-
1955 

Horizontal wood siding exterior, gypsum wallboard 
interior 7 

 

Table 2.10 Summary of interior partition wall load weight take-offs for superstructure walls 
(Welch and Deierlein 2020) 

 

Interior Wall Material Type Description Weight 
(psf) 

Plaster on Wood Lath, pre-
1945 Two sides of finish material 18 

Gypsum Wallboard, post-
1955 Two sides of finish material 7 

 

Table 2.11 Summary of cripple wall load weight take-offs for cripple walls (Welch and Deierlein 
2020) 

 

Cripple Wall Material Type Description Weight 
(psf) 

Stucco Stucco exterior, includes weight of wood 
sheathing 14 

Wood Siding Horizontal wood siding or plywood siding 
exterior 4 (6)1 

1Add 2psf to include 1’’ nominal wood sheathing behind siding for pre-1945 wood siding cases 

2.6.2. Multi-Family Dwelling  

For the multi-family houses, the seismic weight of each building is computed using 35	$%& as the 

typical floor dead load, 25	$%& for roof dead loads, 10	$%& for the weight of the interior partitions 

and 15	$%& for the exterior wall weight per square foot of wall. Details of the seismic weight each 
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archetype are summarized in Table 2.12. The calculated gravity loads are distributed to each of the 

leaning column based on the tributary area. 

Table 2.12 Multi-family baseline archetype seismic weight 
 

Building ID Seismic Weight (kips) 
L1-2S-60X30 185 
L1-3S-60X30 306 
L1-2S-100X30 284 
L1-3S-100X30 467 
L2-2S-60X50 287 
L2-3S-60X50 469 
L2-2S-100X50 437 
L2-3S-100X50 709 
L3-2S-50X30 151 
L3-3S-50X30 248 
L3-2S-80X30 242 
L3-3S-80X30 394 
L4-2S-60X50 292 
L4-3S-60X50 475 
L4-2S-100X50 444 
L4-3S-100X50 716 

2.7. Damping  

A brief review on the damping model development and treatment in woodframe building models 

is provided in this section. Table 2.13 presents a comparison among commonly adopted classical 

damping models in structure dynamic analysis. Classical damping refers to the case, where Φ!+Φ 

is a diagonal matrix (+ is the damping matrix and Φ is the modal shape). The assumption can be 

made where the damping mechanisms throughout the structure are similar. In woodframe building, 

damping effects primarily originate from inherent friction in materials, components and fasteners. 

Within the scope of current study, no soil-structure-interaction effects are incorporated in modeling. 

Caughey (Caughey and O’Kelly 1965) and Rayleigh damping are common choices for classical 

damping. Rayleigh damping takes a simplified form of Caughey damping, and it avoids the matrix 
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inversion calculation. Therefore, it is the most popular damping model in practice. Since the 

stiffness matrix is involved in the construction of the damping matrix, Rayleigh damping models 

could take two forms, which are initial and tangent stiffness proportional Rayleigh damping. For 

the former, the initial stiffness matrix of the structure is adopted and results in a relatively simple 

form of the damping matrix. For such damping model, ignoring stiffness degradation in inelastic 

analysis would overestimate the actual damping, eventually creating artificially high damping 

forces, which can lead to higher collapse resistance (Symans et al. 2008; Hardyniec and Charney 

2015). Also, as the stiffness changes, the modal periods changes in the analysis so that damping 

ratios at each mode will not correspond to the original damping ratio curve (Symans et al. 2008; 

Jehel et al. 2014). As for the latter, the tangent stiffness with an adaptively updated stiffness matrix 

is used in the damping matrix calculation. One tangent stiffness proportional Rayleigh damping is 

calculated, and the coefficients are fixed at the beginning of analysis. The other is updated with 

the periods and the coefficients are recomputed at each time step. The fixed coefficients method 

can create damping ratios that lie exactly lay the original curve (Symans et al. 2008; Jehel et al. 

2014). However, as stiffness degrades, the modal damping ratios corresponding to periods are less 

than the initial period, will have gradually larger differences between the original damping ratio in 

elastic stage. Using the updated coefficients method can re-anchor modes’ damping ratios at each 

time step and solve this issue. Nevertheless, performing eigen analysis at each step significantly 

increases the computational expense. Similar to the initial stiffness proportional Rayleigh damping, 

tangent stiffness proportional damping still potentially produces high artificial damping forces. 

More unrealistic, stiffness degradation might lead to negative damping forces. Modal damping 

could resolve the issues of spurious damping forces in Rayleigh damping model. Only the mass 
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matrix is involved in its formulation, and massless degree-of-freedoms would not contribute to the 

system damping.
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Table 2.13 Comparison among different classical damping models 
 

Damping Model Damping Matrix Pros Cons 

Caughey damping ! = #$ %!
"#$

!%&
[##$']! 

Damping matrix is 

diagonalizable, appropriate 

for classical damping 

assumption 

Matrix inversion is involved in 

implementation, 

computationally expensive 

Initial Stiffness Proportional 

Rayleigh Damping 
! = %&# + %$'& Simple form, easy to solve 

Overestimate actual damping 

forces, modal damping ratios 

change over the analysis 

Tangent Stiffness 

Proportional Rayleigh 

Damping with Fixed 

Coefficients 

! = %&# + %$'' 
Damping ratios lay on the 

original curve, update 

stiffness matrix real-time 

Lack of physical explanation, 

risk of negative damping force 

Tangent Stiffness 

Proportional Rayleigh 

Damping with Updated 

Coefficients 

! = %&,'# + %$,''' 

Update stiffness matrix and 

coefficients real-time, 

damping ratios maintain as 

set  

Computationally expensive, lack 

of physical explanation 

Modal Damping 
! = # *$2,!-!.!.!)

.!#.!)
"

!%$
/# 

 

Will not generate ‘spacious’ 

damping force in the analysis 
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Table 2.14 shows the damping models and ratios used prior woodframe building numerical studies. 

For woodframe structure modeling, a linear damping ratio is usually set within a range of 0.01 to 

0.05 (Chui and Smith 1989; Foliente 1995). In the CUREE project, viscous damping was assigned 

based on initial stiffness proportional damping (Folz and Filiatrault 2001). The damping 

characteristics were derived from shaking table testing using steady state input. 4.2% critical 

damping ratio was calculated under small amplitude excitation from the seismic test, while under 

large amplitude excitation reduced critical damping ratio should be used because shear walls’ 

hysteretic behaviors can account for most of structure damping (Folz and Filiatrault 2001). In other 

types of woodframe building numerical analysis and performance assumptions, 1% to 5% damping 

ratios were commonly adopted. 

Table 2.14 Damping models and ratios in prior woodframe building studies 
 

Study Damping Model Damping Ratio 
Foliente 1995 SDOF constant 1% to 5% 

Dinehart and Shenton III 2000 Constant damping 5% 
Folz and Filiatrault 2001 SDOF constant 1% 
Folz and Filiatrault 2004 Rayleigh damping 1% 

Pang et al. 2007 SDOF constant 1% 
Ellingwood et al. 2008 NA 1% 

Park and van de Lindt 2009 Constant damping 1% 
Yin and Li 2010 NA 1% 
Pozza et al. 2014 Rayleigh damping 2% 

Ghehnavieh 2017 
Initial stiffness proportional 

Rayleigh damping 
5% 

Roohi et al. 2019 
Initial stiffness proportional 

Rayleigh damping 
2% 

 

In the current study, a 2.5% tangent stiffness proportional Rayleigh damping is assumed for single-

family buildings (Welch and Deierlein 2020) and 1% initial stiffness proportional Rayleigh 

damping is used for the multi-family dwellings. The damping is anchored to the 1st and 3rd mode. 

The mass proportional damping is assigned to the leaning column nodes, where the masses are 

concentrated. The stiffness proportional damping is distributed to any components providing 

lateral resistances, including wood panels and moment frames.  
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2.8. Nonlinear Static Analysis 

Nonlinear static (pushover) analyses are performed on the numerical models to evaluate the 

strength and overall drift capacity of the buildings. Given that most of the woodframe buildings 

are of one- or two-story, the pushover analyses are conducted using the equivalent lateral force 

(ELF) specified in ASCE 7-16, Section 12.8-3 (ASCE 2016). The displacements are assigned to 

the central leaning column (labelled 1005 in Figure 2.11). The story drift ratios (SDR) and roof 

drift ratios are recorded at three leaning columns on the centerline perpendicular to the loading 

direction. Base shears are recorded at the base nodes of the components, including wood panels, 

leaning columns and moment frames (if present).  

2.9. Nonlinear Dynamic Analysis 

2.9.1. Ground Motion Selection 

2.9.1.1. Single-Family Dwelling  

The performance assessment for single-family houses is conducted through multiple stripe analysis 

(MSA). As part of the PEER-CEA Project, four sites representing a range of seismicity were 

selected for the numerical analyses. For each site, probabilistic seismic hazard analysis was 

conducted for 10 return periods ranging from 15 to 2500 years (Mazzoni et al. 2020). The ground 

motions selected for the San Francisco !!,#$ = 270&/( site is used in the single-family house 

MSA. Figure 2.12 shows the mean spectral accelerations of the selected ground motions for 16 

hazard levels with return periods ranging from 15 years to 4000 years. For the first 10 hazard levels 

(15- to 2500-year return period), ground motions were selected using the conditional spectra with 

a target conditioning period of 0.25s. Compared to the uniform hazard spectra selected ground 

motions, the mean conditional spectra are of lower values at periods away from the conditional 

period. As for the remaining six hazard levels, the ground motions selected for the 2500-year return 
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period hazard level were used with amplification factors of 1.2, 1.5, 1.8, 2.0, 2.2 and 2.5. These 

six hazard levels were used to assess the seismic performance of very stiff buildings (retrofitted or 

rigid-base buildings).  

 

Figure 2.12 Mean conditional spectra (conditioned on a period of )∗ = 0.2() of San Francisco 
!!,#$ = 270&/( site for 16 hazard levels (Mazzoni et al. 2020) 

 
2.9.1.2. Multi-Family Dwelling  

The performances of the multi-family dwellings are assessed using incremental dynamic analyses 

(IDAs). Nonlinear response history analyses are conducted using the 22 pairs of far-field ground 

motions specified in FEMA P695 (FEMA, 2009). For each of the pre-defined intensity levels, a 

uniform constant scaling factor is applied to all 22 pairs of ground motions. Then, the intensity 

measure of the corresponding intensity level is the mean spectra value of the 22 scaled ground 

motion pairs given the specified period. In the implementation, 15 intensity levels were determined 

using scaling factors ranging from 0.2 to 3.0 with 0.2 increment. Additionally, in the multi-family 

building IDA, the directions of the record-pairs are switched such that 44 analysis cases are 

conducted at each intensity.  
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2.9.2. Analysis Settings 

Collapse is defined as the condition where dynamic instability occurs, or the maximum story drift 

ratio exceeds 20% and 10% for single- and multi-family houses, respectively. At each intensity 

level, the maximum story drift ratio in all stories and the peak acceleration at all floor levels in 

both directions are recorded. These EDPs are needed to compute the non-collapse losses in the 

FEMA P-58 methodology. The maximum residual drift over all stories are also recorded and used 

to consider demolition losses for the multi-family dwellings. The median collapse intensity is 

calculated by minimizing the squared difference or maximizing the likelihood function to the 

empirical data. For model uncertainty consideration in single family houses, a FEMA P-58 default 

value of 0.35 is adopted (FEMA 2012). The final dispersion is given by the squared root sum of 

squares (SRSS) of record-to-record and model uncertainty. As for the multi-family buildings, a 

single dispersion value of 0.6 is used for all existing and retrofitted archetypes. This value includes 

both record-to-record variation and model parameter uncertainty (FEMA 2009). The spectral 

shape factor is computed for the individual archetypes based on their fundamental period and the 

period-based ductility obtained from nonlinear static analyses (FEMA 2009).  

2.10. FEMA P-58 Loss Assessment  

The FEMA P-58 methodology, which integrates seismic hazard assessment, nonlinear structural 

response simulation, damage evaluation and quantification of decision-metrics, is used to obtain 

the economic losses for the existing and retrofitted archetypes. The mean annual frequency of 

exceedance of specific ground motion intensity levels (or hazard curves) is obtained from 

probabilistic seismic hazard analysis applied to the site of interest. As described in Section 2.10, 

EDPs are generated from NRHAs. Component level fragility curves are used to link these EDPs 

to physical damage and statistical loss functions are used to describe the relationship between 



    
 

44 

physical damage and repair or replacement costs. Within the context of the FEMA P-58 

methodology, the cost of collapse, demolition and component-level repairs are probabilistically 

combined using an expected value calculation.  

The detailed analytical formulation of the loss estimation methodology can be found in several 

publications (Porter et al. 2001; Miranda et al. 2004; Ramirez et al. 2012). As part of the end-to-

end analysis platform, a FEMA P-58 based loss assessment module is developed to perform the 

intensity-based loss assessments. The module uses a Monte Carlo simulation-based procedure that 

is illustrated in Figure 2.13. For each intensity level, the NRHA results are used to compute the 

multivariate lognormal distribution parameters for the EDPs (SDRs, PFAs and RDRs). The 

probability of non-collapse is also computed from the collapse fragility curve. A set of randomly 

sampled +,-( is generated from the multivariate lognormal distribution. For a given random 

sample, if collapse occurs (i.e. maximum drift exceeds 10%) or the residual drift limit for 

demolition is exceeded, replacement cost is assumed (sometimes an additional 25% is for the cost 

of debris removal). Otherwise, the EDPs are used to sample realizations of the component-level 

damage from the fragility curves. The component-level repair or replacement costs, which are 

conditioned on the damage state, are then sampled from the loss functions. The non-collapse 

building repair cost is taken as the sum of the repair costs for the individual components over all 

directions and stories. The losses conditioned on a single intensity is taken as the mean loss over 

all Monte Carlo realizations.  
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Figure 2.13 FEMA P58 earthquake-induced building loss assessment procedure 
 

The considered damageable components for the single- and multi-family houses are shown in 

Table 2.15 and Table 2.16, respectively. For single-family houses, a series of damage fragilities 

and cost functions were adjusted on the basis of FEMA P-58 component database (Welch and 

Deierlein 2020). The modification was based on critical review of existing component database 

and additional information from PEER-CEA Earthquake Damage Workshop (Vail et al. 2020). 

Table 2.15 provides the assembly type and associated quantities for the components. The specific 

loss functions to use in the assessment are selected to match building materials. The fragility 

function and repair cost parameters are listed in the PEER CEA technical background report 

(Welch and Deierlein 2020). As for the multi-family houses, the component damage information 

from the FEMA P-58 database was adopted. Since the baseline archetypes vary by structure 

layouts, the dimensions and material types, only component names, types and applied cases are 

listed here. The associated quantities are summarized in Table B1 of Appendix B. A building 

replacement cost of $200 per square foot is assumed for both single- and multi-family dwellings 

(FEMA 2012; Welch and Deierlein 2020). To support the loss assessment, a SQL component 

database containing fragility and loss functions is established. 
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Table 2.15 Components and quantities considered in the single-family building loss assessment 
(Welch and Deierlein 2020) 

 

Assembly Type Unit First-Story or Cripple 
Wall Second Story 

  QX-1 QY-1 QX-1 QY-1 
Exterior Walls 100SF 7.20 5.40 7.20 5.40 

Interior Partitions/ 
Interior Wall Material 

100LF 0.94 0.735 0.80 0.875 

Ceramic Tile 100LF 0.13 0.12 0.13 0.12 
Wallpaper Finish 100LF 0.25 0.25 0.25 0.25 

2-foot tall cripple walls 100SF 1.60 1.20 NA NA 
6-foot tall cripple walls 100SF 4.80 3.60 NA NA 

 

Table 2.16 Components considered in multi-family building loss assessment 
 

Fragility Name Component Type Applied Case 

Light framed wood lateral walls Structural Existing and Retrofitted 

Steel Column Base Plates Structural Retrofitted 

Welded Steel Moment Connection Structural Retrofitted 

Prefabricated steel stair no seismic joint Non-structural Existing and Retrofitted 

Potable Water Piping Non-structural Existing and Retrofitted 

Heating Water Piping Non-structural Existing and Retrofitted 

Heating Water Pipe Bracing Non-structural Existing and Retrofitted 

Sanitary Waste Piping Non-structural Existing and Retrofitted 

HVAC Ducting Non-structural Existing and Retrofitted 

Fire Sprinkler Water Piping Non-structural Existing and Retrofitted 

Fire Sprinkler Drop Non-structural Existing and Retrofitted 

Low Voltage Switchgear Non-structural Existing and Retrofitted 

Wall Partition, Wood Stud Non-structural Existing and Retrofitted 

Clay tile roof Non-structural Existing and Retrofitted 
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2.11. Sample Analysis Results  

2.11.1. Single-Family Dwelling  

The nonlinear static, MSA, and loss assessment results for a light weight 1-story 2ft stucco cripple 

wall building with stucco exterior wall and gypsum interior wall (1L-S2-G2-2C-S2-EX) are 

presented in this section.  

Figure 2.14 shows the pushover analysis results for the baseline building. The curves are expressed 

as the relationship between the peak strength normalized by seismic weight and roof drift. Through 

comparing Figure 2.14 (a) with (b) and (c), the overall behavior of the single-family building with 

cripple wall can be assessed. The overall pushover curve is the superimposition of the curves of 

the individual panels.  The first sign of damage occurs in the cripple wall at a roof drift 

approximately 0.2% in both of the two directions. The cripple wall level continues to undergo 

damage and normalized (by seismic weight) peaks strengths of 65% and 48% are achieved in the 

X- and Y-direction, respectively. The majority of story drift demands are concentrated at cripple 

wall level. For the X-(Y-) direction, at peak strength level, the drift at the cripple wall level is 

approximately 2% (2%) while the superstructure only has 0.3% (0.2%) story drift. The curve starts 

to descend due to strength loss in the cripple wall. The ductility in two directions, defined as the 

roof drift corresponding to 80% of peak strength in the descending segment, are 0.73% and 0.72% 

in X- and Y-direction, respectively. At this point, the cripple wall level has already generated 

approximately 3% story drift demand, while superstructure only has around 0.2% story drift 

demand. 
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Figure 2.14 Pushover analysis results for 1L-S2-G2-2C-S2-EX: (a) base shear vs. roof drift in 
two perpendicular directions, (b) base shear vs. story drift in X-direction and (c) base shear vs. 

story drift in Y-direction 
 

Figure 2.15 shows the median story drift demands and mean non-collapse deformed shape at each 

MSA level. From Figure 2.15 (a), it is observed that, for all hazard levels, the superstructure 

maintains lower than 0.2% median story drift ratios. However, for the cripple wall level, median 

drift demands explode at around1.2g. More than 50% of cases collapse due to the cripple wall 

story drift exceeding 20%. Due to the differences in the strength and stiffness between the two 

levels, all collapse cases occur at cripple wall. For non-collapse cases, displacement demands 

concentrate at cripple wall level as expected.  

 

Figure 2.15 (a) Median story drift ratio at cripple wall and superstructure for each hazard level, 
(b) mean non-collapse structure deformed shape for each hazard level 

 
Figure 2.16 shows the empirical probability of collapse and fitted fragility curves. The maximum 

likelihood method fitted fragility has a median of 1.21g and ground motion record-to-record 

uncertainty 0.29. At the maximum considered earthquake (MCE) level, the probability of collapse 

(a) (b) (c)

(a) (b)
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without considering model uncertainty is 0.92. If the FEMA P-58 recommended 0.35 is adopted 

for model uncertainty, the probability of collapse at MCE level decreases to 0.81, which is an 

approximately 10% reduction compared to without model uncertainty cases.  

 

Figure 2.16 Fragility curve for 1L-S2-G2-2C-S2-EX 
 

Figure 2.17 presents the results from the FEMA P-58 based loss assessment for the 1L-S2-G2-2C-

S2-EX building. Due to the weak cripple wall present in the building, collapse loss governs in all 

intensity levels. The component loss curve has an increasing segment before 0.8g, and experiences 

a gradual reduction as collapse loss dominates the building performance. Since only story drift 

sensitive components are considered in the single-family house loss assessment, the component 

loss curve is consistent with the structure deformed shape shown in Figure 2.15 (b). The expected 

annual loss (EAL) is computed to be 0.46% of the building value. As expected, the majority of the 

contribution comes from collapse risk, which takes 83% of the total EAL. Component loss takes 

the rest 17% of EAL.  
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Figure 2.17 Loss Assessment results for 1L-S2-G2-2C-S2-EX: (a) intensity-based loss curve and 
(b) expected annual loss 

 
2.11.2. Multi-Family Dwelling  

Following the same analysis procedure, the nonlinear analysis and loss assessment results for the 

L1-2S-60x30-GWB archetype are presented as an illustration for the multi-family residential 

buildings. Figure 2.18 shows the pushover analysis results for the L1-2S-60x30-GWB archetype. 

Similar to the single-family residence, the soft story issue can be observed in the SWOF buildings 

as shown by the pushover analysis. For L1-2S-60x30-GWB, the X- and Y-direction have peak 

strengths of 33% and 35% of the seismic weight, respectively. The pushover curves are governed 

by drift demands in the 1st story. In other words, most of story drift demands concentrate at the 

SWOF level. In the X-direction, at peak strength point, the 1st story has a drift of approximately 

1% while the 2nd story only has a 0.2% drift demand. Since no residual strengths are considered in 

multi-family house materials, the pushover curves directly degrade to zero after peak strength. The 

pushover results will be used for computing the period-based ductility to account for spectra shape 

variations in the collapse performance assessment. The period-based ductility .& is defined as the 

ratio between the effective yield roof drift /'(( and ultimate roof drift /). In practice, /) is the 

roof drift corresponding to 20% strength loss, which are 0.28% and 0.44% in the two directions in 

(a) (b)
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this case. /'(( is the roof drift when building achieves its peak strength with initial stiffness, which 

are 0.12% and 0.20% for X- and Y-direction, respectively.  

 

Figure 2.18 Pushover analysis results for L1-2S-60x30-GWB: (a) base shear vs. roof drift in two 
perpendicular directions, (b) base shear vs. story drift in X-direction and (c) base shear vs. story 

drift in Y-direction 
 

Figure 2.19 presents the median story drift demands at the two stories and the mean non-collapse 

deformed shape. The soft-story mechanism similar to what was observed in the single-family 

residence with cripple walls is observed. Due to the presence of the missing wall line, almost all 

displacement occurs at the 1st story under dynamic loading. For all computed 15 intensity levels, 

collapse happens to the 1st story with the upper story remaining undamaged.   

 

Figure 2.19 (a) Median story drift ratio at 1st and 2nd story for each intensity level, (b) mean non-
collapse structure deformed shape for each intensity level 

 
Figure 2.20 shows the fragility curve fitted from the IDA empirical results. Based on FEMA P-

695 specification, the collapse margin ratio is required to be adjusted to account for spectral shape. 

A spectral shape factor (SSF) is obtained by interpolating the period and period-based ductility in 

(a) (b) (c)

(a) (b)
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Table 7-1a of FEMA P-695 (FEMA 2009). Since no instructions were provided for 3D buildings, 

the period-based ductility is computed as the average of the two directions. Based on the previous 

calculation, .& is 2.26 for the studied building, and the resulting SSF is 1.065. The solid blue curve 

in Figure 2.20 shows the adjusted fragility curve, where a deviation can be observed from the 

empirical collapse probabilities. Similar to the single-family residence example, when 0.35 is used 

for model uncertainty, the probability of collapse is lower than the one without model uncertainty.  

 

Figure 2.20 Fragility curve for the L1-2S-60x30-GWB archetype 
 

Figure 2.21 presents the loss assessment results for the L1-2S-60x30-GWB archetype. Demolition 

is based on 1% residual drift ratio and 25% of the building value is assumed for debris removal in 

the case of demolition. For intensity levels below 0.6g, the demolition loss increases with the 

intensity measure, and it dominates the total loss. Because most of the story drift demands occur 

at the 1st story, where the quantity of components is less than the second story, component loss is 

of lower in magnitude than the collapse and demolition losses. As the intensity increases, the 

building collapse risk increases and governs the total loss. The analyses with large residual drifts 

turn into collapse cases and leads to reduced demolition losses. Since component loss calculation 

is conditioned on non-collapse and non-demolition Monte Carlo realizations, the component loss 

degrades to almost zero in this stage. As for the aggregated EAL, it is computed to be 
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approximately 3% of the building value. The demolition loss is the predominant category, which 

accounts for 61% of the EAL. Collapse and component losses account for 30% and 9%, 

respectively. Though collapse loss dominates under high shaking intensities, the associated 

exceedance rates are low. Thus, the EAL contribution from collapse risk is less significant than 

demolition.  

 

Figure 2.21 Loss Assessment results for L1-2S-60x30-GWB: (a) intensity-based loss curve and 
(b) expected annual loss 

 
2.12. Summary  

To address the need for assess the performance of large numbers of buildings, a Python based end-

to-end platform for nonlinear structural analysis and performance-based assessments is developed. 

This chapter introduces the details involved in the numerical modeling and analysis procedure. 

The baseline archetypes developed in the PEER-CEA Project are used to demonstrate the analysis 

and performance assessment features for single-family dwellings. An archetype representing a 

SWOF building under the purview of the Los Angeles soft-story ordinance is considered for multi-

family dwellings.  

Two sample analysis results for single- and multi-family dwellings are provided. From the analysis, 

the soft story vulnerability is observed. The presence of a soft story (cripple wall in single-family 

(a) (b)

Total Loss
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and SWOF in multi-family residence) results in significant differences in strength and stiffness 

discrepancies along the building height. As a result, large displacement demands concentrate at 

the soft story under both static and dynamic loading. These observations motivate the investigation 

of the effect of different retrofit strategies on the seismic performance of single and multi-family 

woodframe residences. 

Use the end-to-end platform, performance evaluation and loss assessment for large number of 

archetypes can be realized, which can be incorporated in sensitivity analyses, uncertainty 

quantification, regional seismic performance evaluation and the development of analytics-driven 

models. In the following chapters, all numerical models, analyses and performance assessments 

are based on the procedure described here.  
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CHAPTER 3. DEVELOPMENT AND VERIFICATION OF ANALYTICS-DRIVEN 

MODEL 

3.1. Introduction 

3.1.1. Background on Machine Learning Application in Structural Engineering 

With the rapid evolution of computing hardware performance and better-developed open source 

libraries, machine learning (ML) has been widely adopted to solve different types of engineering 

problems. Within structural/earthquake engineering, there has been several state-of-the-art reviews 

of ML applications. Xie et al. (2020) summarized the state-of-art in applying ML methods to 

earthquake engineering problems. The studies reviewed in the paper were categorized based on 

the ML methods, topic area, data resources and scale of analysis. Popular algorithms including 

Artificial Neural Network (ANN), Support Vector Machine (SVM), Response Surface Model, 

Logistic Regression and Hybrid methods were discussed. The author also discussed a broad variety 

of prior ML studies on seismic hazard analysis, system identification and damage detection, 

seismic fragility assessment and structural control for earthquake mitigation. Sun et al. (2020) 

conducted a comprehensive review of ML applications for structural design and performance 

assessment (SDPA). The details of the formal model development procedure was presented along 

with related studies. Similarly, the ML-SDPA publications were characterized based on the 

following four topics: 1. Building response and performance assessment prediction, 2. Model 

development using empirical data from physical experiments, 3. Multi-media information retrieval, 

and 4. ML models developed using structural health monitoring and field reconnaissance data. In 

addition to summarizing the prior work, the authors also discussed the challenges that need to be 

addressed to enable practical applications of ML to build SDPA problems. 
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3.1.2. Objective and Scope 

As introduced in Chapter 1, the potential vulnerability of soft-story buildings is generally resolved 

by policy actions, which are implemented on a regional scale. From this perspective, when 

modeling woodframe buildings, there will be large numbers of design variants. These design  

variants will explicitly or inexplicitly impact building seismic performances and retrofit designs. 

The ability to quantify these underlying impacts would contribute to a better and more 

comprehensive understanding of the  effect of the proposed retrofit on seismic performance. Based 

on this understanding, specific target performance outcomes can be specified. However, on a 

regional scale, this computational expense is likely to be significant even with the end-to-end 

platform described in Chapter 2. Therefore, this chapter investigates the use of ML-based surrogate 

models to reduce the computational expense of regional impact assessments. These surrogate 

models will be  1. used to evaluate the sensitivity of seismic performance to different structural 

characteristics, 2. enable efficient and effective quantification  of model uncertainties, and 3. 

embedded within a regionally-targeted  seismic retrofit optimization framework.  

First, an overview of different ML models is provided with a focus on regression. The adopted 

models include linear regression, response surface method (RSM), LASSO regression, ridge 

regression, regression tree and ensemble trees. Then, a set of ML models are developed to predict 

the median collapse intensities and expected annual losses (EAL) for a set of building cases for 

different features that are generated using Latin Hypercube Sampling. The ML model development 

procedure is introduced alongside with the application. A baseline single family dwelling with 

stucco as the exterior wall material, gypsum wallboard as interior wall material, and stucco cripple 

wall is used to illustrate the model development. Lastly, the model performances are discussed and 

compared. The investigation here aims to present a general ML model development procedure, 
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their application and the interpretation of the results. More specifically, the ML models developed 

in this chapter will be used for sensitivity analysis and uncertainty quantification in Chapter 4 and 

regional performance-based retrofit design optimization in Chapter 6.  

3.2. Overview of Machine Learning Methods 

Machine learning (ML) refers to the mathematical models or algorithms that can ‘learn’ the 

inherent nature of a set of sample data (so-called training data) without being explicit programmed 

and perform decision making (Koza et al. 1996). An overview of the different categories of ML 

and a few classical algorithms are provided in Error! Reference source not found.. Generally 

speaking, ML algorithms can be characterized as supervised learning, unsupervised learning and 

reinforcement learning models depending on the objectives. For supervised learning, the task is to 

make predictions given input data/features. The training set is labeled, which means there exists 

responses/labels for each input datapoint. The supervised learning model parameters are derived 

through minimizing the differences between the predictions and actual responses. Based on the 

tasks, supervised learning can be further characterized as regression and classification. As for 

unsupervised learning, the training data is not labelled, and the algorithm tries to capture the 

inherent data structures and patterns.  Dimension reduction and clustering are the two main 

categories of unsupervised learning models. Reinforcement learning mainly aims to make an agent 

adaptively learn the environment, take actions and maximize the cumulative rewards from 

environment feedbacks. A well-known reinforcement learning application is AlphaGo, which 

performed surprisingly well in board games. The main objective of this Chapter is to develop 

machine learning models to predict building seismic responses and seismic performances given 

structural characteristics. The current study will only focus on regression models.   
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Figure 3.1 Brief overview of machine learning algorithm categories and examples 
 

3.2.1. Introduction of General Regression Algorithms  

Listed in Table 3.1 are some classical supervised learning regression models that will be introduced 

in this section. The selected algorithms are effective and efficient in handling regression tasks. 

These algorithms can be characterized as linear regression models and tree-based models. The 

mathematical background provided later would bring more insights into the differences between 

the two model classes. 
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Table 3.1 Summary of some common regression models 
 

Algorithm Original Work Model Structure 

Linear Regression Galton 1894; Pearson 1896 0 = 12 + 4 

Response Surface Method Box and Wilson 1951 0 = 12 + 4 

Lasso Regression Tibshirani 1996 0 = 12 + 4 

Ridge Regression Hoerl and Kennard, 1970 0 = 12 + 4 

Classification and 
Regression Tree 

Breiman et al. 1984 0 = ∑ 6** + 4 (Non-parametric) 

Random Forest Breiman 2001 
0 = ∑ 6*7*(9)* + 4  
(Non-parametric) 

Extreme Gradient Boosting Chen and Guestrin, 2016 
0 = ∑ 7*(9)* + 4  
(Non-parametric) 

 

Before presenting the detailed derivation of each model, some commonly used terminology are  

specified. As noted earlier, regression tasks seek to make predictions for continuous variables 

given the input vectors. 9*  with ; × 1 dimension, denoting the >+,  input vector with ; features. 

The matrix form 1-×/  is the row stacking of ? examples, where 1-×/ = (90, 91, … , 9-)& . The 

corresponding >+,  ground truth response is denoted as 0* , and the matrix form is 0 =

(00, 01, … , 0-)&. A regression model 7(. ; C) is essentially a mapping (parametrized by C) from the 

input vector to the response. The model outcome or prediction can be written as 7(9*; C) (7(9*) 

for simplicity) or  02D . The input matrix is split into training (1+34*-, 0+34*- ) and testing sets 

(1+'!+ , 0+'!+ ), with the goal of finding the best model parameters and examining the model 

performance, respectively. Model parameters C  are obtained by minimizing the differences 

between the ground truth response and model output on the training data. This process is called 

model training. Quantitative measurements of the aforementioned differences are defined as loss 

functions (denoted as E(7(1), 0)). In summary, the training process seeks to acquire model 
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parameters that minimize the loss function E(7(1), 0)  to on the training set. The model 

performance on the testing set informs the model generalizability on ‘unseen’ data.  

An important characteristic that distinguishes ML methods from other statistical analysis 

techniques is generalizability. The ML model is trained on a small set of known data, and is 

expected to perform predictions on unseen data. This desire has spurred the broad topic of error 

analysis in statistical learning theory. A brief introduction to error analysis, overfitting and bias-

variance trade-off is presented here. The discussion aims to provide a general sense on the sources 

of issues that may arise in the model development rather than delivering a comprehensive 

mathematical derivation. The generalizability of a ML model is measured by generalized error/out-

of-sample error, which is defined as the prediction accuracy on unseen data. The theoretical 

formulation of generalized error is given in Equation (3.1).  

FG7(9; C)H = I E(7(1), 0)J(1, 0)K1K0
5×6

	 (3.1) 

Where J(1, 0) is the joint probability distribution of 1 and 0. Since the predictions are performed 

on unknown data, the ground truth distribution J(1, 0)  is usually unknown. Instead, the 

empirical/training error shown in Equation (3.2) is accessed on the training set with finite a number 

of data. 

F7G7(9; C)H =
1
?
NE(7(9*), 0*)
-

*80

	 (3.2) 

Therefore, to make reliable predictions on unseen data, the differences between the empirical error 

and generalized error are needed to be minimized. Practically, the minimization is achieved by 

bounding the differences in probability as presented in Equation (3.3). 

- = -GFG7(9; C)H − F7G7(9; C)H ≤ 4-H ≥ 1 − /(4-)	 (3.3) 
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Where 4-  is the error bound and /  is a function of 4- . As shown in previous research (Abu-

Mostafa 1989; Dudley et al. 1991; Alon et al. 1997), the above expression converges with a rate 

for some types of models trained on finite number of data. The aforementioned references provide 

a solid foundation supporting the use of a finite number of training data to develop a broadly 

applicable predictive model. It is also the motivation behind splitting the dataset for the usage of 

training and testing.  

Recall Error! Reference source not found., all listed ML models take a general form of 0 =

7(9) + 4, where 7(9) is the model systematic structure and 4 is random noise. It turns out  that 

for any given form of 7(9), the mean squared error (MSE) can be decomposed into the linear 

combination of the model bias and variance as illustrated in Equations (3.4) through (3.6) (Trevor 

et al. 2009; James et al. 2013). 

+ RS0 − 7T(9; ,)U
1
V = WX>Y(9 S7T(9; ,)UZ

1
+ !Y[9 S7T(9; ,)U + \1	 (3.4) 

X>Y( S7T(9; ,)U = + S7T(9; ,)U − 7(9) (3.5) 

!Y[ S7T(9; ,)U = + _W+ S7T(9; ,)U −	7T(9; ,)Z
1
` (3.6) 

Where , is a dataset containing a finite number of examples, 7T(9; ,) refers to the prediction on 

the dataset ,, and \1 is the irreducible error. Intuitively, bias refers to the prediction error on the 

unseen data, and the variance represents the model performance on the training data. Given a 

constant unavoidable error  \1 , the model MSE inevitably makes a trade-off between model 

generalizability and training prediction accuracy. Consequently, in the process of minimizing 

training/empirical error, the overfitting issue may arise. Overfitting refers to the case where the 

model is too flexible or complex to absorb some spurious patterns within the training set and leads 

to high generalized error. In this case, the model performs perfectly on the training set while 
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sacrificing the accuracy on the testing data as a result of the variance-bias trade-off. This issue is 

affected by the  model selection and complexity, the size of the dataset, the number of features and 

other factors. In general, overfitting happens when training a more complex model on less 

abundant data. This issue can be avoided by using cross-validation and regularization in the models. 

Overfitting and the bias-variance trade-off is further discussed later in the chapter in the context 

of the surrogate model development. 

3.2.1.1. Linear Regression 

Linear regression uses a linear combination of features to predict responses, and its matrix form as 

shown in Equation (3.7). 

0 = 0b + 4 = 	12 + 4	 (3.7) 

Where  1  is feature matrix with ? × ;  dimension, including an intercept term. 2  is a ; × 1 

coefficient vector. 2 describes the average change in the response  0b caused by a unit change in 

the feature vector, which can be interpreted as feature sensitivity or importance. 4 is the random 

error, which is assumed to independently and identically normal c(0, \1) with a constant variance 

\1 . Based on the additivity of expectation, the observation 0 also follows normal distribution 

c(12, \1) . The main objective is to minimize the differences between prediction 0b  and 

observation 0  to obtain the coefficient vector 2 . Both minimizing residual sum of squares 

(Equation (3.8)) and maximum likelihood (Equation (3.9)) can give the estimator. The 

corresponding estimators are denoted as ordinary least square (OLS) estimator and maximum 

likelihood estimator (MLE).  

2T:;7 = arg<min	N(0* − 9*
&2)1

-

*80

= arg<min(0 − 12)&(0 − 12)	 (3.8) 



    
 

63 

2T=;> = arg<maxl
1

√2n\
exp _−

(0* − 9*
&2)1

2\1
`

-

*80

	 (3.9) 

The estimation of 2 derived from the two expressions take the same form as shown in Equation 

(3.10).  

2T = 2T:;7 = 2T=;> = (1&1)?01&0	 (3.10) 

The estimator takes a simple form and has a desirable unbiased property. The expectation of the 

coefficient 2T  is the same as the ground truth value 2 as proven in Equation (3.11). 

+G2TH = +((1&1)?01&0) = +((1&1)?01&12) = +(2)	 (3.11) 

The simple form and desirable property make linear regression suitable for the first model to be 

explored as part of supervised learning. Additionally, linear regression has good interpretability 

and is widely used in statistical analysis. The variance of 2T  can be computed using Equation (3.12). 

!Y[G2TH = !Y[((1&1)?01&0) = (1&1)?01&!Y[(0)((1&1)?01&)& = \1(1&1)?0	 (3.12) 

Based on the normality assumption for 4 2T  also follow a normal distribution c(2, \1(1&1)?0). 

With the distribution information, hypothesis testing can be applied to examine the statistical 

significance of one or several features’ impacts on the responses. Typical testing statistics include 

t-Test (Student 1908), F-Test/ANOVA (Welch 1951), likelihood ratio test (Wilks 1938) and Wald 

Test (Wald 1939). Other than hypothesis testing, a confidence interval can be obtained from the 

distribution.  

Another important use of the estimator is outlier detection. Several statistical measures can be used 

to evaluate a data point’s impact on the model and leverage. The leverage of the >+, data point 

ℎ** 	can be calculated using Equation (3.13). 

ℎ** = s** = (1(1&1)?01&)** 	 (3.13) 
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Where leverage is the >+, diagonal element of the matrix s. The variance for the >+, error term t*  

is given by Equation (3.14).  

!Y[(t*) = !Y[(0 − 9*
&2) = (1 − ℎ**)\1	 (3.14) 

For a close to 1 leverage, the variance of the error is close to zero such that the >+, data point ‘pulls’ 

the regression line towards itself. Intuitively, the >+, data point will have a greater impact on the 

slope of the regression line.  ℎ** is minimized when 9* = 9̅, and vise versa. Therefore, for a large 

ℎ**, the data point could potentially be an outlier. A general rule of thumb to identify outliers is 

ℎ** >
1/
-

, which is equivalent to two times the average leverage. This calculation will be adopted 

later to examine whether the dataset contains outliers.  

Recall Equation (3.10), 1&1 is needed to be full rank to calculate the matrix inversion. Therefore, 

the full rank requirement limits the model capability on correlated features, the so-called 

collinearity issue. When perfect or strong collinearity occurs, where some features are highly 

correlated or linear combinations of other features, 1&1 is not a full rank matrix. For such cases, 

though the inversion can be computed by pseudo inversion ((1&1)@), the estimator is sensitive to 

newly added data. Also, the coefficients would be unstable such that the estimation of feature 

sensitivity is not reliable. This is one of the primary motivations for introducing other ML 

algorithms to assess building performance sensitivity.  

3.2.1.2. Response Surface Method (RSM) 

RSM, which can also be regarded as second order polynomial regression, is a special case of linear 

regression. In RSM, when constructing the feature matrix 1, the independent features are their 

interactions are considered. The scalar form of RMS is presented in Equation (3.15). 

0b* =	2$ +N2A9*,A

/

A80

+N2AB9*,A9*,B
A,B

(3.15) 
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where 2$ is the intercept term, 2A is the coefficient of the w+, independent feature, and 2AB is the 

coefficient of the w+,and x+, features’ interaction effect. RSM can provide a statistical basis for 

capturing how the response variable changes when multiple features change at the same time. 

Though higher than two order effects can be introduced to form higher order polynomial regression, 

RSM is robust enough to handle the regression task covered in this chapter.  

As introduced earlier, complex models can easily overfit a given dataset. To reduce the risk of 

overfitting in linear regression, penalizations are added to loss functions. Based on different types 

of regularizations (y0 and y1), the LASSO and Ridge are two commonly used penalized linear 

regression models. The elastic net (Zou and Hastie 2005),  which uses a weighted average of y0 

and y1  penalization to address the shortcoming of Lasso Regression, is also sometimes used. 

However, elastic net is not considered here.  

3.2.1.3. LASSO Regression 

Introducing y0 penalization on coefficients to the loss function as presented in Equation (3.16) 

gives Lasso Regression. 

E(7(1), 0) = 	 (0 − 12)&(0 − 12) + z{|2|{C!
= (0 − 12)&(0 − 12) + z|2|	 (3.16) 

Where z is a hyperparameter that affects the level of penalization. However, the Lasso Regression 

loss function is not differentiable near 2 = 0, which forms a non-smooth optimization problem. 

By applying the subgradient method, the solution shown in Equation (3.17) can be derived for the 

case where all features are independent (1&1 = F) (Donoho and Johnstone 1995; Tibshirani 1996). 

2TB
;D77: = 	(>}?G2TB

:;7H W{2TB
:;7{ −

z
2
Z
@
= 	(>}?G2TB

:;7Hmax(0, {2TB
:;7{ −

z
2
) (3.17) 

Where 2TB
;D77: is the LASSO coefficient for the x+, feature. As for more general cases where the 

features are correlated, 2T;D77:  can be solved through numerical methods such as coordinate 
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descent and proximal gradient method. One desirable property of the LASSO estimator is that the 

coefficients of the features with low impacts on the responses are shrunk to zero. Thus, Lasso 

Regression can be used for feature selection. 

3.2.1.4. Ridge Regression   

Substituting the y0  with y1  penalization in Equation (3.16) gives the loss function for Ridge 

Regression as given by Equation (3.18). 

E(7(1), 0) = 	 (0 − 12)&(0 − 12) + z{|2|{C"
= (0 − 12)&(0 − 12) + z21	 (3.18) 

Much simpler than the Lasso estimator, the ridge estimator can be obtained by directly taking the 

partial derivative with respect to 2 and setting the derivative to be zero. The ridge estimator takes 

the form shown in Equation (3.19). 

2T3*EF' = G1&1 + zF/H
?0
1&0	 (3.19) 

Where F/ is a ; dimensional identity matrix. Compared to the OLS estimator, ridge regression 

estimator is shrunken by a constant value of 1 + z. Recall Equation (3.7), the model formed by 

the prediction 12 and random noise 4. Intuitively, such penalization prevents the model from 

leanrning too much unavoidable error (4+34*-) from the training set.   

Other than the preceding formular, ridge regression can take various forms. For example, mapping 

the inner product 1&1 to Hilbert Space can lead to kernel ridge regression. Considering the scope 

of this Chapter and some initial results from pilot studies, ridge regression transformations are not 

considered. 

3.2.1.5. Classification and Regression Tree (CART) 

The classification and regression tree (CART) model refers to a non-parametric function class 

which recursively partitions the input space and defines a model for each of the resulting sub-

spaces. The general procedure is to recursively: (1) perform prediction on the split sub-spaces, (2) 
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find the best split of the input space, until no further partition can be performed or meet some 

specified stopping rules. The process is an analogy of a family tree. The earlier partitions can be 

regarded as the ancestors of the later partitioned features and points. The formal process is 

described in the pseudo code in Table 3.2. The pseudo code uses group average for regression 

predictions. Alternatively, linear regression or other basic functions can be fitted locally to obtain 

a more robust CART model. 

Table 3.2 Pseudo code for CART generator (Algorithm 16.1 in Murphy 2012) 
 

Input: training set , = {(90, 00), … , (9-, 0-)}, node node, tree depth K 

function TreeGenerator(,,node, K): 

node.prediction = mean(0*: > ∈ ,)	or label distribution(0*: > ∈ ,); 

Gw∗, Ç∗, ,C'(+ , ,3*F,+H = split(,); 

if	StopSplitting(K, ÉÑ(Ö, ,C'(+ , ,3*F,+), then 

     return node 

else 

    node.left=TreeGenerator(,C'(+ ,	node, K + 1) 

    node.right=TreeGenerator(,3*F,+ ,	node, K + 1) 

     return node 

 

One critical point in the CART development process is to find the best ‘cut-off’ feature and value 

to split the dataset , into ,C'(+ and ,3*F,+. Generally, binary partition is performed to avoid non-

binary trees, where a small number of data may fall into a subtree and cause overfitting. For each 

partition manipulation, there exists an associated cost in the resulting subspaces. The value and 

feature to spit the dataset are determined through greedily minimizing the cost as illustrated in 

Equation (3.20) (Murphy 2012).  

(w∗, Ç∗) = arg min
A∈{0,…,/}

min
K∈L#

ÉÑ(ÖGÜ9* , 0*: 9*A ≤ ÇáH + ÉÑ(ÖGÜ9* , 0*: 9*A > ÇáH (3.20) 



    
 

68 

Where w∗ and Ç∗ are the optimal feature and value of the feature to split the dataset. ; is the total 

number of features and !A are all possible values of the w+, feature. For regression tasks, a common 

choice for the cost function is the squared sample deviation shown in Equation (3.21) (Murphy 

2012). 

ÉÑ(Ö(,) =N(0* − 0à)1

*∈9

(3.21) 

Where 0*  is the response in dataset ,  and 0à  is the sample mean. The StopSplitting function 

determines whether a specified stop rule is satisfied to stop growing a tree. Some commonly used 

stopping criteria include the cost relative to a target threshold, the tree depth relative to a defined 

maximum depth and the number of data points in the resulting subspaces relative to a predefined 

threshold. The stopping rules can help to prevent generating a deep tree and overfitting.   

The divide-and-conquer nature gives CART some superior properties compared to simple linear 

regression. Recursively splitting the data improves model interpretability. Each step in CART 

generation is analogous to decision making. Different policies/models are determined for each of 

the local regions. The selection of features as the basis of the data partitioning informs feature 

importance. In general, the responses are more sensitive to the features that are used early in the 

data splitting process. Quantitatively, features’ impacts can be computed by the cost 

reduction/information gain after applying split based on the feature under consideration. 

Additionally, CART can easily handle missing values in the dataset by assigning higher weights 

to the features with more complete data.  

Though as introduced above, CART is interpretable, informative, and not sensitive to missing data, 

it also easily overfits, especially for trees with complicated structure. More importantly, its divide-

and-conquer nature makes CART more appropriate to handle categorical variables than continuous 

variables, which is the main focus of the thesis. Ensemble methods provide a good supplement to 
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CART to address such problems. Ensemble models makes decisions through aggregating the 

outcomes from a series of so-called weak/base learners, herein CART. Large numbers of weak 

learners can be developed either parallelly or sequentially, which can then contribute to the final 

prediction. Some commonhhly used aggregation methods including bagging, boosting, and 

stacking. Random Forest and Extreme Gradient Boosting (XGBoost) have shown outstanding 

performances on the similar datasets generated in some pilot studies compared to other types of 

machine learning algorithms (e.g. Kernel Ridge Regression, Gradient Boosting and Ada Boosting). 

Additionally, they are representative of bagging and boosting models. Therefore, they are 

introduced here in details and implemented for building seismic performance predictive models.  

3.2.1.6. Random Forest  

As suggested by the name ‘Forest’, Random Forest is formed by combining a large number of 

CART models. Its fundamental structure is presented in Figure 3.2. Based on the Hoeffding 

inequality (Hoeffding 1994), the error rate of aggregated independent CART models declines 

exponentially with the number of models. Though the development of CART cannot be fully 

independent (given a same training set), introducing fluctuations when growing each tree can bring 

enough discrepancies in each base learner. As demonstrated by Figure 3.2, ? sub-training sets are 

first formed by bootstrap sampling from the original training set. Then, each data point has a  
0
M

 (c 

is the size of the original training set) probability of appearing in a sub-training set. Besides the 

input data, the features can also be sampled to determine whether they will be used when growing 

the CART. Then, ? CART models are derived on the basis of each sub-training set. Lastly, the 

outcomes of each CART model are aggregated to predict responses. The process can be 

parallelized.  
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Figure 3.2 Structure of the Random Forest model 
 

Different strategies can be adopted to bag single CART predictions. Common options include 

simple averaging, weighted averaging, majority voting and weighted voting. For the regression 

task this Chapter, simple averaging calculated using Equation (3.22) is applied.  

7(9) =
1
?
N)*

-

*80

	 (3.22) 

Where, ? is the total number of tree models and )*  is the prediction of the >+,  tree. From the 

perspective of bias-variance trade-off, the above expression explains how Random Forest reduces 

prediction variance. For approximately independent CART predictions, the variance of the 

aggregated predictions can be estimated using Equation (3.23). On average, the variance of the 

final prediction is lower than that of a single CART model. Therefore, Random Forest mainly 

focuses on reducing variance and improves generalizability.  

Tree 1 Tree 2 Tree !

Training Set

Prediction: "! Prediction: "" Prediction: "#

Final prediction: aggregate the
predictions

Training Set 1 Training Set 2 Training Set !…

…
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!Y[G7(9)H = !Y[ â
1
?
N)*

-

*80

ä =
1
?1
N!Y[()*)
-

*80

	 (3.23) 

3.2.1.7. Extreme Gradient Boosting (XGBoost) 

XGBoost combines the accuracy of ensemble learning, the high efficiency and flexibility of the 

gradient boosting model, the suitability for parallel computing and a low risk of overfitting. 

Different from Random Forest, XGBoost uses a sequenced rather than parallel set of tree-based 

models’ aggregation to predict the responses. Its fundamental structure is presented Figure 3.3. A 

decision tree model performs a piecewise division of the input domain generating predictions 

locally. In each step of XGBoost, a sub regression decision tree is developed on the residuals from 

previous trees, which adaptively boosts the performance of the new tree.  

 

Figure 3.3 Structure of the XGBoost model 
 

The XGBoost model predicts responses by summing over the predictions from individual tree-

based models as shown in Equation (3.24).  

!"! =$%"('!)
#

"$%
		 (3.24) 

Tree 1: !!(#)

Prediction: %&!!, %&"! … , %&#!

Residual =	%$−%&$!

Prediction: %&!", %&"" … , %&#"

Residual = 	%$−∑ %&$%$&!%'!

...

Final Prediction %&$ = ∑ !((#))('!

Prediction: %&!$ , %&"$ … , %&#$

Tree 2: !"(#)

Tree -: !$(#)

...
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where 7B is the x+, tree model computed by minimizing the objective function. 9* is the feature 

vector of data point >. 0b* is the prediction/response for the >+, data point.  

In practice, when a large number of individual trees are involved in XGBoost, the complexity of 

the model increases and can lead to overfitting, where high accuracy is achieved on the training 

set but with low generalizability. To balance the model performance and risk of overfitting, the 

objective function of the XGBoost model shown in Equation (3.25) is used. 

. = /(0) + Ω(0) =$3(!! , !"!) +	$Ω(%")
#

"$%

&

!$%
		 (3.25) 

where E(C)  computes the differences between the real response 0*  and prediction 0b*  over ? 

training samples to measure the model’s goodness of fit, Ω(C) is the regularization function that 

penalizes deep and complex models and C represents the model parameters. Common examples 

of loss functions used for regression include the mean squared error (åç+) and median absolute 

error (åé+). The regularization function sums the penalties for function 7*  over a total of è 

models. Specifically, for the XGBoost model, the penalty placed on model complexity is defined 

in Equation (3.26). 

Ω(%) = 67 +
1
2
9$:'

(
)

'$%
		 (3.26) 

where ê and z are the regularization magnitude, which are tuned as part of the model development 

process. ) and 6A  are the number of leaves and the score of leaf w in the tree-based model 7, 

respectively. The model complexity and penalty increase with the number of leaves and the scores.   

XGBoost accumulates new trees by reducing the residual from the previous step. At step Ö, the 

prediction can be computed using Equation (3.27). 

!"!
* = $%"('!)

*

"$%
		 (3.27) 
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To develop the model for step Ö + 1, the residual from step Ö is minimized and the introduction of 

a new model 7+@0 is penalized. The objective function for  7+@0 is given by Equation (3.28). 

.*+% = /*+%(0) + Ω*+%(0) =$3 =!! , !"!
* + %*+%('!)> +	$Ω(%")

*

"$%

&

!$%
+ Ω(%*+%)		 (3.28) 

Considering the åç+  loss function, the penalty term from the previous Ö  steps is fixed when 

developing the model for step Ö + 1 and the previous regularization term can be waived when 

minimizing the objective function. Equation (3.28) can be further simplified to Equation (3.29). 

.*+% =$@!! − (!"!
* + %*+%('!)B

(
&

!$%
+ Ω(%*+%) =$2@!"!

* − !!B%*+%('!) + %*+%('!)(
&

!$%
+ Ω(%*+%)		 (3.29) 

Equation (3.29) can be estimated using the Taylor series expansion keeping the second order term. 

The analytical solution of 7+@0 is computed by minimizing Equation (3.30). 

.*+% =$D3@!! , !"!
*B + E!%*+%('!) +	

1
2
ℎ!%*+%

( ('!)G
&

!$%
+ Ω(%*+%)		 (3.30) 

where }* and ℎ* are the first and second order partial derivative of the loss function with respect 

to the prediction for training > at step Ö, respectively. By removing the constant loss from the 

previous step, the finalized objective function for 7+@0is achieved through Equation (3.31). 

.*+% =$DE!%*+%('!) +	
1
2
ℎ!%*+%

( ('!)G
&

!$%
+ Ω(%*+%)		 (3.31) 

In the development of XGBoost, the penalization term Ω(%*+%) is defined as Equation (3.32) (Chen 2014). 

Ω(%*+%) = 67 +
1
2
9$:'

(
)

'$%
(3.32) 

Where, 6 is the penalization coefficient for the number of leaves (7) in the tree, and :' is the score of the 

I*, leaf. The aggregation of the leaves’ socres give final prediction (%*+% = ∑ :'
)
'$% ). 3( regularization is 

applied to penalize the leaf giving high scores. Thus, Equation (3.31) can be organized into Equation (3.33) 

(Chen 2014). 
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Where, 8(9$) refers to an indicator function : ∈ <,, which yields to 1 if the :!0 data point is assigned to the =!0 

leaf and 0 otherwise. The items in the square brackets in the equation above is a quadratic function 

parametrized by &,. Thus, for a given tree structure, optimal &, can be derived by minimizing the quadratic 

function. An optimal objective function value − #
)∑

1"#

2""3
-
,+# + -.  is achieved at &, = − 1"

2""3
, where @, =

∑ %$$∈/"  and A, = ∑ ℎ$$∈/" . The derivation further helps to quantify the feature importance. Recall the 

development of tree requires to select the best feature and value to split the dataset minimizing the cost. Each 

split manipulation would generate a unique indicator function : ∈ <, and resulting in different objective function 

values. The feature and value maximize the cost reduction after splitting are selected as a node the generate the 

following tree. Thus, the cost reduction can be used to quantify the feature importance. Mathematically, the cost 

reduction or total can be calculated by differences between objective function values of the resulting left and 

right trees and the original tree using Equation (3.34) (Chen 2014).  

KLMN =
1
2
O
@42

A4 + /
+

@62
A6 + /

−
(@4 + @6)2
A4 + A6 + /

P − 6		 (3.34) 

3.3. Development and Verification of Performance Prediction Model 

3.3.1. Literature Review of Regression Model Application in Structural Engineering  

Conventionally, nonlinear response history simulations are performed to assess building seismic 

performance under the framework of performance-based earthquake engineering (PBEE). Large 

numbers of structure parameter combinations, site conditions and uncertainties may create 

unaffordable computational burden in the assessment, especially for portfolio level analysis. ML 

methods are found to be good supplements to mechanics-based models by statistically linking 

critical analysis parameters to structural responses and seismic performance. Some prior 

investigations using ML algorithms to construct regression predictive models for structural 
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response and seismic performances are introduced here. The summary focuses on the studies 

adopting the algorithms discussed in section 3.2 for regression tasks. For each study, the applied 

algorithm, structure type, model predictors and predictions, performance metrics and model 

performances are listed, which help to inform the parameter selection and model assembling in the 

current study.  These studies cover a broad range of construction types, which demonstrates ML 

methods’ capability on structural engineering problems. Among them, Response Surface method 

is the most popular model for structure response and fragility prediction. The common response 

variables of interest are fragility parameters (median and dispersion) and engineering demand 

parameters (EDPs), which could serve as intermediate responses for loss associated performances. 

Though these works focus on different construction types, the predictors can generally be 

categorized as structure geometric parameters, material properties, component configuration and 

hazard exposure parameters. Commonly used model performance metrics for structural responses 

prediction include root mean squared error (RMSE), root mean absolute error (RMAE), coefficient 

of determination (ë1 ), and mean absolute relative difference (MARD). Besides developing 

promising ML models for regression tasks, these works also applied ML models in sensitivity 

analysis (Seo et al. 2012; Sichani et al. 2018; Xie and DesRoches, 2019), uncertainty analysis (Xie 

and DesRoches, 2019), performance-based optimization (Moradi and Burton, 2018) and 

regional/multi-hazard performance assessment.   
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Table 3.3 Summary of prior work on the development of regression ML models in structural response and performance prediction  
 

Study ML Algorithm Structure Type Predictors Prediction 
Performance 

Measure 

Model 

Performance* 

Seo et al. 2012 Response Surface model 
Steel Moment 

Frame 

Earthquake direction, steel yield strength, 

damping ratio, bottom floor height, year 

built, eccentricity, steel Young’s modulus 

Mean & standard 

deviation of peak inter 

story drift ratio 

NA NA 

Kameshwar and Padgett 

2014 
Response surface model 

Multi-span simply 

supported 

concrete girder 

bridge 

Concrete nominal strength, reinforcement 

yield strength, span length, column height 

& diameter, width of deck, number of 

spans, longitudinal & transverse 

reinforcement ratio, 

Column curvature 
RMSE, RMAE, 	

"! 

0.93(	
"!), 0.30 (RMSE), 

1.02 (RMAE) 

Burton et al. 2017 
OLS, LASSO regression, 

Ridge regression 

RC Infilled 

Frames 

Ground motion intensity measures, 

structural response parameters and 

physical damage indicators 

Aftershock building 

fragility parameters 
MARD 0.16 

Sichani et al. 2018 
Two-layer stepwise 

regression 

Concrete dry cask 

structures 

Structural, geometric, material properties, 

cask accelerations 

Cask horizontal 

displacement and 

rocking 

"! 0.94 

Moradi and Burton, 2018 Response surface model 

Controlled 

rocking steel 

braced frames 

Yield strength, initial stiffness, strain 

hardening ratio of the fuse, initial force and 

modulus of elasticity of the post-tensioning 

stands 

Peak roof drift, residual 

roof drift, peak floor 

acceleration 

"! 1.0 

Xie and DesRoches 2019 

OLS, stepwise 

regression, LASSO 

regression 

Highway bridge 
Soil structure interaction parameters, 

ground motion parameters 

Bridge component 

demand parameters and 

fragility estimates 

"! 0.826 

Mangalathu and Jeon 

2019 
Random Forest Bridge system 

Super structure, interior bent, deep 

foundation, exterior bent, bearing, gap and 

other parameters 

Seismic fragility 

parameters 
"!, MSE 

0.82(	
"!), 0.04 (MSE) 

*Best model performance among all investigated algorithms are listed in the table  

 

 



    
 

77 

3.3.2. Objective  

As introduced in Chapter 1, retrofit policies have been widely enacted in the west coast region to 

address woodframe building vulnerability issues. These policies focus on improving existing 

woodframe building seismic performance and strengthening the community-level resilience to 

seismic hazard. Within the framework of PBEE, structural seismic performance is derived through 

the combinations of Engineering Demand Parameters (EDPs), fragility functions and hazard 

information. On each stage of analysis, structural characteristics (e.g. structure configurations and 

mechanical properties) are expected to have significant impacts on the outcomes. Aggregating 

such impacts, evaluating performance metrics, convolving feature variations, studying feature 

sensitivities and quantifying model uncertainties would contribute to insightful understandings of 

individual building and regional scale seismic performances. Eventually, this type of knowledges 

would benefit the entire community including decision makers, insurers, site engineers and 

homeowners. Based on prior work, using predictive models to supplement mechanics-based 

models within the PBEE framework can inexplicitly integrate and simplify the analysis process 

while maintaining accuracy.  

Several ML models are developed following for performance-based assessment of single-family 

woodframe buildings with cripple walls using the end-to-end simulation tool. A standard 

regression ML model development process that involves dataset development, model training, 

model evaluation and selection. Linear regression, RSM, LASSO regression, ridge regression, 

Random Forest and XGBoost are compared in terms of predictive accuracy and generalizability. 

Then, a deep dive into the model applications is provided. The primary focus here is the adoption 

of the selected models for sensitivity analysis and quantification of uncertainty. Additionally, the 

entire process is universally applicable for similar structural engineering problems. 
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3.3.3. Model Development  

This section aims to develop different ML models to predict building level seismic performance 

given structural characteristics. Figure 3.4 shows a flow chart of the ML model development 

procedure. Overall, the entire process comprises of dataset development, model training, 

performance evaluation and model selection. At first, the dataset is generated to feed algorithms 

with training and testing datasets. The development process is supposed to be with a clear objective 

in mind. Based on the scope of the task, the considered variables and associated ranges should be 

proposed. Then, a set of parameters, which serve as input features, will be sampled from target 

distributions and ranges with appropriate sampling techniques. These parameters are further 

passed to the end-to-end tool to construct OpenSees models. Model seismic performance are 

obtained by conducting nonlinear response history analysis and performance assessment. The 

performance measures of interest will be the ML model output responses. Input feature and output 

response pairs form a complete dataset, which will be split into training and testing set for model 

training and performance measurement purposes. Focusing on the model training process, the 

training set is further split into training and validation sets to find the best set of model parameters 

and fine-tuning, respectively, where the latter seeks to acquire the optimal model hyperparameters 

or  pre-specified model settings that are not learnt from data. Cross-validation should be adopted 

to reduce the risk of overfitting. Finalized models are obtained by combining the outcome of model 

training and fine-tuning. Model performance is then evaluated on the testing set and will be used 

for the model selection criterion. The detailed process is presented in the following discussion on 

a cripple wall single-family woodframe dwelling.   
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Figure 3.4 Overview ML model development workflow 
 

3.3.3.1. Dataset Development  

As introduced in section 3.3.2, eventually the developed predictive model will be used for feature 

sensitivity analysis and uncertainty quantification. Thus, the generated dataset should satisfy some 

prerequisites to serve these purposes. A couple of guiding principles are used to design the dataset.  

To evaluate sensitivity, the features that might significantly contribute to building seismic 

performance must be considered. The random variables may or may not be independent from each 

other.  

To quantify model uncertainty, the considered sources must be explicitly used as the ML model 

input. The sampled variable distributions are not necessarily the same as the uncertainty 

distribution. However, the proposed variable ranges should at least cover all possible values for 

uncertainty consideration.  

Following the above principles, one baseline building with a fixed configuration, and sheathing 

material combination is selected. If different archetypes and materials types are introduced, either 

multiple predictive models or one predictive model with higher-level features (e.g. nonlinear static 

analysis results) are required to achieve desirable model performance. In such cases, the 
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uncertainties are accumulated through inter-dependent variables, which results in over-counted 

model uncertainties. Also, different archetypes usually have different structural and non-structural 

components to compute losses, which cannot be easily handled by ML models. Therefore, the 

post-1955 stucco exterior gypsum interior cripple wall single family house is selected for 

demonstration.   

A detailed feature generating procedure is discussed here. Table 3.4 lists the assumed ranges and 

distributions used for generating the random samples. The listed features are both performance 

sensitive-features and uncertainty sources. The critical features proposed in the ATC 110 project 

(Blaney et al. 2018) including the number of stories, cripple wall height, seismic weight and 

sheathing anchorage combination are incorporated. For single family woodframe buildings, 

cripple wall height usually ranges from 2 to 6ft. To quantify uncertainties on both sides of 2 and 6 

ft, 1.5 to 6.5 ft, a uniform distribution is assumed. The variations of seismic weight are introduced 

via uniformly distributed seismic weight adjustment factor. Seismic weights are first calculated 

using sampled cripple wall height and self-weight of the material, then a sampled adjustment factor 

is applied to intentionally decrease or increase the weight. The treatment of material properties is 

not trivial. Figure 3.5 provides a schematic figure showing the variations in the material force and 

displacement parameters. Recall that the Pinching4 model uses four force-displacement pairs to 

define the backbone curves. An adjustment parameter is sampled from truncated a normal 

distribution and applied to the best estimation of four force/displacement parameters at the same 

time. The superstructure and cripple wall materials are considered separately. For the 

superstructure, the exterior and interior wall materials are treated with a same factor. The relative 

contributions from the two parallel springs and Pinching4 hysteretic parameters remain unchanged. 

In summary, a total of four random numbers are used here to vary the superstructure and cripple 
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wall Pinching4 force and displacement parameters. Such simplification has the following 

advantages.  

100% correlation assumption for the force/displacement parameters reduces the number of random 

variables in the model. Also, it avoids possible numerical issues when different factors are applied 

to each of the variable (e.g. generating a yield strength that is higher than the peak strength). 

Considering the force and displacement parameters separately helps identify the relative 

importance of strength and ductility. The impact can be interpreted as the expected change in 

building seismic performance caused by a unit change in the superstructure/cripple wall 

strength/ductility. Woodframe building seismic performance is highly dependent on vertical 

distribution of strength and stiffness. Separating the superstructure from the cripple wall material 

helps to model the relative available strength and stiffness differences between them. 

 

Figure 3.5 Schematic representation of the treatment of Pinching4 force and displacement 
parameters 

 
Besides the parameters mentioned in ATC 110 project, the damping ratio and retrofit panel length 

are considered as additional building variants. Uniformly distributed damping ranging from 1% to 

5%, and the length of the retrofit panel is assumed to be uniformly distributed between10 to 15ft. 

The amount of retrofit panel is supposed to be determined following FEMA P-1100. Introducing 

(a) (b)
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structure panel length helps to simplify the development of retrofit design, meaning for each of the 

building variants combinations structural panel don’t have to be designed specifically.  

Table 3.4 Considered structural features range and distribution 
 

Variable Lower Bound Upper Bound Distribution 
Seismic Weight Adjustment Factor 80% (light) 120% (heavy) Uniform 

Damping Ratio 1% 5% Uniform 
Force Amplification (Super 

Structure) 0.2 NA !(1,0.5) 

Drift Shift (Super Structure) 0.2 NA !(1,0.5) 

Force Amplification (Cripple Wall) 0.2 NA !(1,0.5) 

Drift Shift (Cripple Wall) 0.2 NA !(1,0.5) 

Cripple Wall Height 1.5ft 6.5ft !(1,0.5) 
Retrofit Length* 10ft 15ft Uniform 

*Retrofit length is only sampled for retrofitted cripple wall buildings, it refers to the length of a single retrofit panel. 
 

For all the random variables mentioned above, 200 Latin Hypercube samples (LHS) are generated 

independently for 1- and 2-story, existing- and retrofitted-cripple wall buildings (a total of 800 

random models). OpenSees models with the sampled parameter sets are then created using the 

end-to-end modeling tool. For each model, nonlinear static analysis was conducted to obtain 

structural properties (peak strength, ductility, and etc.). Multiple stripe analysis (MSA) was 

performed using ground motions selected based on a conditional spectrum for the San Francisco 

VS30 = 270m/s site. The EDPs and collapse safety were extracted from the MSA and used for 

FEMA P-58 analysis. The FEMA P-58 loss assessments were performed following the procedure 

described in Chapter 2. The quantities of components remain the same as shown in Table 2.15 

except for the cripple wall elements, which are adjusted based on the sampled cripple wall heights. 

The performance metrics of interest are the median collapse intensity and expected annual losses 

(EAL). A few concerns for selecting the above two metrics as response variables are provided here.  
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Most woodframe building seismic retrofit policies aim to reduce collapse risk. Using ML models 

to predict median collapse intensities helps to inform the collapse performance under different 

scenarios at the building and regional level. 

Seismic induced loss is one of the critical outcomes of FEMA P-58 performance assessment 

framework. However, it is usually implicitly considered in building retrofit policies. Additionally, 

prior work on ML predictions in structural engineering has not placed a major focus on nloss-

based response variables.  

3.3.3.2. Model Training  

Table 3.5 provides basic information about the features used in the ML models. The features under 

consideration take different data type and ranges. Though this situation can be addressed by the 

tree-based algorithms (Random Forest and XGBoost), linear regression models are sensitive to 

input data scales and may lead to inappropriate interpretation of feature sensitivities. To address 

this issue, feature engineering is conducted here to unify the feature scales. Common choices for 

data normalization algorithm including min-max and standard scaler for continuous variables. 

Equation (3.32) and (3.33) demonstrate how min-max and standard scaler transfer the data, 

respectively.  

)!"#$!%&," =
)" −min())

max()) − min())
× (max()) − min())) + min())	 (3.32) 

)()%#*%+*," =
)" −mean())

789())
	 (3.33) 

Where )"  is the :),  data point and )  is the entire dataset. As shown above, min-max scaler 

transfers the data into a unit size by its relative magnitude in the dataset, and standard scaler 

standardizes the data into a standard normal distribution. Intuitively, the min-max and standard 

scaler suit the uniform- and normal-like distributions, respectively. Therefore, min-max scalers are 
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applied for the random variables sampled from the uniform distribution and standard scalers are 

applied to the truncated normal distributed variables. The number of stories and retrofit indicator 

are the only two categorical variables involved. Either continuous or categorical data type can be 

assigned to the number of stories, and retrofit indicator can be simply transferred to Boolean type.  

Table 3.5 ML model features 
 

Features Unit Type Sampled Distribution 

Number of Stories NA Categorical NA 
Retrofit Indicator NA Categorical NA 
Seismic Weight kips Continuous Uniform 
Damping Ratio NA Continuous Uniform 

Cripple Wall Height ft Continuous Uniform 
Force Amplification (Super Structure) NA Continuous Truncated Normal 

Drift Shift (Super Structure) NA Continuous Truncated Normal 
Force Amplification (Cripple Wall) NA Continuous Truncated Normal 

Drift Shift (Cripple Wall) NA Continuous Truncated Normal 
Retrofit Length ft Continuous Uniform 

 

A total of 800 feature-response pairs are further split into 70% for training the ML models and 30% 

for testing. To maintain similar sample sizes for existing- and retrofitted-cripple wall buildings 

with different number of stories, the split manipulation is performed separately within each 

building group. The same training and testing sets are used across all six ML methods such that 

their model performance can be suitably compared.  

As discussed earlier, cross-validation is implemented in the model training stage to reduce the risk 

of overfitting and determine the optimal set of model hyperparameters. This process can be waived 

for linear regression since it does not contain any hyperparameters and model penalization. K-fold 

cross-validation is one of the commonly adopted cross-validation techniques (Stone 1974), and K-

fold with random hyperparameter search is used. K-fold cross-validation divides the training set 

into ; equal-sized groups. For each iteration, a set of model hyperparameters is independently 
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sampled from a specified set of ranges and used to formulate the model. The model parameters are 

then trained using the  ; − 1 data subsets and the validation score is computed using the remaining 

data. Taking the average validation score over the ; validation cases as the final cross-validation 

score, the hyperparameter set with the highest score is selected. The negative median absolute 

error, as defined in Equation (3.34), is used to compute the cross-validation scores.  

7 = −
1

<
=|?" − ?@"|

#

"-.
		 (3.34) 

3.3.4. Model Performance Evaluation 

After obtaining the hyperparameter set with the best validation score, the testing dataset is fed into 

the model to check the performance on an “unseen” dataset. The BCDE and D/ computed using 

Equations (3.35) and (3.36) are selected to evaluate the model performance. BCDE can provide a 

quantified measure on how the model over- or under-estimates the actual value on average. D/ 

represents the proportion of response variance ‘explained’ by the model. 

BCDE =
1

<
=F
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#

"-.
		 (3.35) 

D/ = 1 −
∑ (?" − ?@")/"
∑ (?" − ?H)/" 		

	 (3.36) 

3.3.4.1. Median Collapse Intensity Predictive Model 

Six models using the previously introduced algorithms are constructed to predict the median 

collapse intensities. Table 3.6 reports the training and testing	BCDE and D/ scores for each the 

model. As expected, ordinary linear regression has the poorest performance since it takes the 

simplest model structure. No substantial difference between ordinary linear regression and 

penalized linear regression (LASSO and ridge regression) is observed. Their testing BCDE and 

D/ are approximately the same. This observation can be interpreted as the current features under 



    
 

86 

consideration are not complex enough to cause overfitting. Introducing penalization cannot boost 

the model predictive capability. Ensemble learning algorithms significantly enhances the model 

prediction accuracy relative to the linear regression algorithms. No overfitting issues are observed 

in all listed algorithms.  

Table 3.6 Median collapse intensity ML model BCDE and D/ scores 
 

Model 
JKLM L0 

Training Set Testing Set Training Set Testing Set 

Linear Regression 37.6% 37.5% 0.740 0.739 

RSM 25.5% 22.2% 0.887 0.908 

LASSO Regression 37.3% 37.3% 0.741 0.738 

Ridge Regression 37.4% 37.4% 0.740 0.738 

Random Forest 14.4% 14.7% 0.940 0.927 

XGBoost 6.54% 6.95% 0.963 0.968 
 

Figure 3.6 presents a box plot of the relative difference between the median collapse intensity 

predictions of the six ML models on the testing dataset. A box plot gives a simplified distribution 

representation of a target quantity. In the box plot, the green bar shows the position of median 

value. The box in the middle covers the 25% to 75% quantile of the population, which is denoted 

as interquartile range (IQR). The black bars on the top and bottom refer to the 75% quantile + 

1.5IQR and 25% quantile – 1.5IQR values of the population, respectively. The range defined by 

the two black bars approximately covers 99.7% of the data in any normal distribution. From Figure 

3.6, all models have close to zero relative errors, while the distributions of individual data points 

vary significantly. For linear, LASSO and ridge regression, the median collapse intensities can be 

overestimated by approximately 90% and underestimated by 75%. The error distribution is long-

tailed and slightly left-skewed, which illustrates that the model is biased towards under-estimating 
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the actual median collapse intensities. Also, the relative errors of these three algorithms are highly 

divergent. As for RSM, which accounts for higher order effects, the maximum and minimum 

relative error reduces to around 50% level. By comparing the testing D/ scores of linear regression 

and RSM in Table 3.6, the proportion of the variance accounted by the model increases from 0.74 

to 0.91. The comparison shows that second order feature interaction effects have unignorable 

impacts on the median collapse intensities. The relative error distributions of Random Forest and 

XGBoost are remarkably narrower than the linear models’. This is especially true for the XGBoost 

model, where the relative errors of more than 80% of the testing predictions are less than 10%.  

 

Figure 3.6 Box plot of relative difference for median collapse intensities 
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Though the linear regression model has the lowest accuracy, the results useful for checking the 

model assumptions and for data outlier detection. 

 

Figure 3.7 shows the quantile-quantile (Q-Q) plot and histogram of the diagonal elements of the 

hat matrix. As introduced in section 3.2, the linear model has a fundamental normality assumption, 

where the unavoidable error term N" is independent and identically follows a normal distribution 

!(0, O/)  with a constant variance O/ . The Q-Q plot helps to inform whether the prediction 

residuals follow normal distribution. In the Q-Q plot, all residual values are sorted in ascending 

order, and the corresponding percentiles are plotted against the theoretical quantile of a normal 

distribution. By visually inspecting whether the plotted data distribute on the 45-degree straight 

line (strict normal distribution), the normality assumption can be examined. In  Figure 3.7(a), most 

of the residuals lay around the theoretical red line, except for the two tails. The residuals are 

distributed closely to the normal distribution, but with slightly heavier tails at both ends. The 

normality assumption holds in this case. Figure 3.7(b) shows the histogram of ℎ"", where ℎ"" is the 

:), diagonal element of hat matrix from Equation (3.13). Greater than /1#   ℎ"" indicates that the :), 

data point ‘drags’ the regression line towards to itself, which can be identified as an outlier. By 

comparing /1#  with the histogram, there is no ℎ"" that exceeds the /1#  limit. It can also be concluded 

ℎ!! =
2$
%

(a) (b)
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that, the generated dataset is consistent with the process discussed in section 3.3.3.1 satisfies the 

requirements for deriving confident ML models.  

 

Figure 3.7 Linear regression diagnostics: (a) residual Q-Q plot and (b) ℎ"" histogram 
 

Some additional model performance diagnostics are presented in this section. Figure 3.8 shows 

the predicted and ground truth median collapse intensities of the testing dataset. Closer to 45-

degree straight line data points suggest more accurate predictions. The plots disaggregate the 

predictions into 1- and 2-story, existing- and retrofitted-buildings to examine how models perform 

under different scenarios. Similar patterns can be observed for linear, LASSO and ridge regression 

(Figure 3.8 (a), (c) and (d)). For the buildings with lower than 4g median collapse intensities, 

though predictions lay on both sides of the straight line, the errors are highly divergent. Model 

performances are biased towards specific building types. They tend to overestimate (above the 

straight line) most of 1-story existing and retrofitted and 2-story retrofitted buildings, especially 

for the buildings with lower than 2g median collapse intensities. For greater than 4g cases, the 

models constantly under-estimate ground truth values. Most of these cases are 1-story retrofitted 

cripple wall buildings. Higher level features, e.g. building peak strength and ductility, can be 

introduced to boost model performance. As observed in Figure 3.8 (b), RSM stabilizes the 

predictions within a band. The under-estimation issue for strong buildings is resolved, which 

ℎ!! =
2$
%

(a) (b)
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indicates that the second order feature interactions have higher impacts on stronger buildings than 

weaker buildings. A similar over-predicting issue can be found for buildings with greater than 5g 

median collapse intensities in the random forest model (Figure 3.8 (e)). Also, the random forest 

predictions for the existing building median collapse intensities are better than those of retrofitted 

buildings. Lastly, the XGBoost model delivers the most robust median collapse intensity predictive 

capability among all models. Most of the data points distribute closely to the 45-degree line. The 

model is unbiased across all building types, except for a few cases with greater than 6g median 

collapse intensities.  
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Figure 3.8 Testing set median collapse intensity prediction vs. ground truth value: (a) linear 
regression, (b) RSM, (c) LASSO regression, (d) ridge regression, (e) random forest and (f) 

XGBoost 

(a) (b)

(c) (d)

(e) (f)
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3.3.4.2. EAL Prediction Model 

Similarly, six regression models are established for the EAL predictions. Table 3.7 summarizes 

the BCDE and D/ scores for each of the predictive models. Since the magnitudes of EAL usually 

follow an order of 10$2 to 10$3, the response herein is transferred to logarithm scale. The BCDE 

and D/ are calculated using the exponential of the model outcomes and original EALs. Compared 

to the median collapse intensity prediction models, the EAL models do not perform as well. Linear 

and ridge regression models have around 0.1 D/ values on the testing set, which indicates the linear 

combinations of the features under consideration cannot explain building EAL well. Though 

LASSO has a slightly higher testing D/  score of 0.320, its BCDE  implies it over- or under-

estimates EAL by approximately 75% on average. RSM has a significantly superior performance 

than other linear models. The second order feature interaction effects help to reduce the testing 

BCDE from 63.3% in the linear regression to 22.4%. The two ensemble tree models random forest 

and XGBoost show more robust capabilities in the EAL prediction as expected. XGBoost has the 

best performance on BCDE  and D/ . Besides, its testing and training scores are close, which 

indicates that overfitting is not a concern. 

Table 3.7 EAL ML model BCDE and D/ scores 
 

Model 
JKLM L0 

Training Set Testing Set Training Set Testing Set 
Linear Regression 60.4% 63.3% 0.231 0.063 

RSM 22.6% 22.4% 0.842 0.447 
LASSO Regression 75.8% 75.7% 0.468 0.320 
Ridge Regression 60.7% 63.7% 0.276 0.101 
Random Forest 18.4% 17.8% 0.904 0.890 

XGBoost 14.3% 13.2% 0.955 0.964 
 

The box plot of the relative errors on the testing set shown in Figure 3.9 provides additional 

information for model selection. The relative errors of the linear, Lasso and ridge regression are 
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left-skewed. For the worst case, they exaggeratedly over-predict the EAL by more than 150%. 

Considering the EAL computation for single family cripple wall buildings, engineering demand 

parameters (EDP) and median collapse intensities contribute to component losses and collapse 

losses, respectively. The poor performances of the linear models indicate that the EDPs are less 

explainable than the median collapse intensities using the linear combination of the features under 

consideration. RSM significantly reduces the relative error ranges of other linear models, and 

random forest has a slightly narrower error distribution than RSM. XGBoost model gains one point 

in the relative error distribution compared with other models. It successfully limits the relative 

error on testing set within ±20% range. 

 

Figure 3.9 Box plot of absolute relative difference for EAL 
 

The EAL predictions against ground truth EAL values of the six models are shown in Figure 3.10. 

Overall, for all six models, the deviations from ground truth values are found to increase with 

increased EAL values. By comparing Figure 3.10 with Figure 3.8, though linear, LASSO and ridge 

regression have acceptable performance on the weak buildings’ median collapse intensity 

predictions, the EAL performance is not nearly as good. The observation further indicates that the 
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linear combination of the features cannot explain the component loss well. Besides, the linear 

models are biased towards the 1-story retrofitted buildings, for which they provide lower than 

ground truth predictions. As for the 1-story existing and 2-story retrofitted buildings, these three 

algorithms give an approximate constant prediction for the cases where the EAL is greater than 

1%. Compared to these linear models, RSM reduces the differences between the predictions and 

ground truth values, also it eliminates the biases in 1-story retrofitted buildings. However, the 

predictions are getting worse with increased EAL. As for random forest, the model provides better 

predictions overall, but it is biased on the testing set for buildings with greater than 1% EAL. It 

consistently under-estimates the EALs by approximately 50%. Lastly, the XGBoost model shows 

the most robust predictions for EALs. There are no biases that can be observed for specific building 

types. Additionally, it provides the best prediction for the largest EAL case (the greater than 4% 

case) among all models.  
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Figure 3.10 The testing set EAL prediction vs. ground truth value: (a) linear regression, (b) 
RSM, (c) LASSO regression, (d) ridge regression, (e) random forest and (f) XGBoost 

 
3.4. Summary  

To support sensitivity analysis and model uncertainty quantification involving large numbers of 

numerical analyses, ML based methods are investigated in this chapter to create a statistical link 

between building features and seismic responses. Several classical regression models including 

(a) (b)

(c) (d)

(e) (f)
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linear regression, RSM, LASSO regression, ridge regression, Random Forest and XGBoost are 

investigated to predict the median collapse intensity and EAL. A stucco cripple wall single-family 

house with stucco as the exterior superstructure wall material, gypsum wallboard as interior 

superstructure wall material, is used to demonstrate the model development.  

For the median collapse intensity model, all investigated ML algorithms provide some predictive 

capability. XGBoost, which has 7% MARD and 0.97 D/ score on the testing set, performs the best 

among all models. Random Forest is the next best model. RSM provides more accurate predictions 

than the ordinary linear regression model, indicating that the second order feature interaction 

creates unignorable impacts on the median collapse intensities. Though linear regression gives the 

least preferable performance, its underlying statistical model is useful for hypothesis testing. The 

analysis of the residual distribution and outlier detection illustrates the LHS generated dataset is 

representative and no outliers are present in the dataset. As for the EAL model, all linear 

regression-based models are not capable of giving stable predictions. Biased and diverged 

predictions are observed for these models under higher magnitudes of EAL. Still, XGBoost model 

performs the best, with only 13.2% MARD and 0.96 D/ score on the testing set. Boosted tree-

based models have revealed more powerful prediction capability given the limited number of 

inputs compared to the linear regression models.  

The model development and verification procedure presented in this section is generally applicable 

to other structural engineering regression tasks. A stable and reliable ML model serves as a solid 

foundation for further investigations in terms of sensitivity analysis, uncertainty quantification and 

optimization. In Chapter 4, the developed ordinary linear regression and XGBoost models are 

adopted to analyze the impacts of the building parameters on collapse risk and losses. In Chapter 
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6, a more comprehensive seismic retrofit optimization framework is established on the basis of the 

ML surrogate models.  
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CHAPTER 4. APPLICATIONOF THE ANALYTICS DRIVEN MODEL 

4.1. Background and Introduction 

4.1.1. Literature Review  

Prior research on sensitivity analyses on the woodframe building seismic performance and 

earthquake induced losses are introduced in this paragraph. Yin and Li (2010) conducted a 

comprehensive sensitivity analysis on the effect of woodframe building material properties 

impacts on building collapse risk. The SAWS material hysteretic parameters were treated as 

random variables, and the collapse performance of a one-story single-family house as assessed 

using Latin Hypercube sampled hysteretic parameters. The material initial stiffness, peak strength, 

intercept strength and material degradation were found to have the largest effect  on building 

collapse performance. Jayamon et al. (2019) conducted a similar sensitivity analysis for the SAWS 

hysteretic parameters. The implications to building collapse safety of P-delta effect and damping 

ratios were also examined. A total of 126 unique woodframe building cases were developed on the 

basis of the FEMA P-695 example. The intercept strength, displacement at peak strength and post-

peak stiffness were found to significantly impact the building collapse margin ratio. P-delta effects 

reduced the collapse margin ratios by about 10%, and 5% damping ratio buildings had on average 

13% higher collapse resistance than the 1% damping cases. Pei and van de Lindt (2010) performed 

a sensitivity analysis for seismic-induced losses. A two-story residential woodframe building was 

modeled in SAPWood, and three common nailing patterns with six levels of construction quality 

were used to vary the structural panel properties. 20 ground motions were selected for an event-

based loss estimation, and long-term loss assessments were also performed for three sites assuming 

5-, 30- and 75-year ownership. For the event-based assessment, the expected losses were not 

significantly affected by the structural properties for spectral acceleration levels below 0.3g and 
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greater than 2.6g. The effects were more observable under intermediate level shaking intensities. 

The high seismicity region was observed to have greater than collapse loss median long-term loss, 

while the low seismicity regions had essentially zero loss. The reduction in long-term loss obtained 

by altering the nailing pattern was limited, but the construction quality had a significant influence.   

Within the performance-based seismic design (PBSD) framework, the performance is assessed 

using a probabilistic-based procedure while considering collapse safety, demolition, the non-

collapse/non-demolition EDPs and seismic hazard. Uncertainties rise at all stage of performance 

assessment and eventually affect the loss estimation. The sources of uncertainties can be placed 

into three categories: resistance/strength, load/demand, and the analysis method. Resistance or 

strength uncertainties originates from variations in the material properties and construction quality. 

The uncertainty associated with variations in the construction quality cannot be avoided but may 

be reduced through strict construction supervision. The associated uncertainty is very difficult to 

consider within the PBSD framework and is not address here. The uncertainty in material 

properties influence the loss assessment through the EDPs generated from nonlinear response 

history analysis. Pei and van de Lindt (2010) noted that the initial stiffness and ultimate strength 

will have a significant  impact on the demands generated from nonlinear response history analysis 

(NRHA).  Pei and van de Lindt (2010) performed a loss sensitivity analysis on a two-story 

residential woodframe building incorporating material properties, low construction qualities and 

the seismic hazard level. Yin and Li (2010) performed an uncertainty quantification study on the 

SAWS model parameters using Monte Carlo simulation and Latin Hypercube sampling. They 

sampled model parameters from a truncated normal distribution and quantified the impact on the 

collapse capacity of a single wood shear wall. Gokkaya (2015) performed a comprehensive 

uncertainty quantification for concrete structures. Monte Carlo simulation with Latin Hypercube 
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sampling was implemented to investigate the performance sensitivity to the concrete frame 

backbone curve parameters. Neural Networks and the Response Surface method were explored to 

propagate uncertainties. Seismic hazard uncertainty is another generally considered source of 

uncertainty in the performance-based assessments. Seismic hazard uncertainty affects the loss 

assessment through NRHAs and probabilistic seismic hazard analysis (PSHA). In the structural 

nonlinear response history analysis, ground motion record-to-record uncertainty are known to have 

a significant impact on the response demands. Incremental dynamic analysis (Vamvatsikos and 

Cornell 2002) was proposed to address the record-to-record uncertainty. A set of ground motions 

are selected and scaled to match the spectral acceleration at the fundamental period of the structure, 

and NRHA is performed using this set of ground motions. The record-to-record uncertainty can be 

illustrated using a series of IDA curves describing the engineering demand parameters (EDP) at 

each intensity level from different ground motion records.  

4.1.2. Objective and Organization 

Sensitivity analyses and uncertainty quantification are performed for the single-family woodframe 

residences with cripple walls. The number of stories, seismic weight, construction era and retrofit, 

are considered. The 24 factorial experimental design technique is applied when designing required 

numerical analyses. Two-way ANOVA is presented to statistically quantify the features’ and 

feature interactions’ impacts on building collapse risk and expected annual losses (EAL). Then, 

the ordinary least square and XGBoost models developed in Chapter 3 are used for more 

comprehensive sensitivity study. Though the 24 experiment is able to provide insights into the 

parameter influences, the relative importance of the different features cannot be accessed. Machine 

learning (ML) models could deliver such information from the perspective of features’ 

contributions to the predictions. Lastly, the effect of model uncertainty building collapse 
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performance and EAL are quantified using the XGBoost model. The latter two analyses 

demonstrate the capability of ML methods beyond performing predictions.  

4.2. Statistical Analysis Sensitivity Study  

4.2.1. 24 Full Factorial Experiment Design  

The 24 full factorial refers to the experimental design with S different factors and each factor is at 

two levels (denoted as + and -). A total of 24 analyses/experiments covers all possible factor level 

combinations. Each factor level appears the same number of times (24$.) in the entire run, and 

each possible factor level pair also appears the same number of times (24$/). Thus, 24 full factorial 

experiment is a balanced and orthogonal experiment design method. The 24  full factorial 

experiment can be used for evaluating the effect of individual factors and factor interactions on the 

responses. The main effect (ME) of variant C on the response ? could be quantified simply using 

Equation (4.1). 

BT(C) = ?H(C +) − ?H(C −) (4.1) 

Where ?H(C +) is the average of the response with feature C set to its higher level and so on. 

Intuitively, it measures the difference between the average response with factor C set to its higher 

and lower level. The higher the main effect, the strong the impact of the feature. Similarly, the 

conditional main effect of factor U  given factor C  at the upper level is defined as shown in 

Equation (4.2). 

BT(U|C +) = ?H(U + |C +) − ?H(U − |C +) (4.2) 

With the conditional main effect, the second order factor interaction effects can be derived as 

shown in Equation (4.3) 

V!V(C, U) =
1

2
{BT(U|C +) −BT(U|C −)} (4.3) 
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Through the procedure above, the average influence of the features and feature interactions can be 

quantified. Statistical significance of the factors can be accessed through two-way analysis of 

variance (ANOVA). ANOVA is a frequentist methodology that is used to test whether the impact 

of a feature is statistically significant. ANOVA decomposes variance into the regression error and 

estimation residuals as shown in Table 4.1. The default null hypothesis Y5 is that the coefficient 

of the :), factor Z" is zero. The p-value is the probability of obtaining an observation that is at least 

as extreme as violating null hypothesis given null hypothesis is true. A lower than pre-specified 

significance level ([) p-value indicates that the factor is statistically significant to the responses. 

To be noted, the magnitude of the p-value cannot infer the relative importance of the factors. Two-

way ANOVA refers to the ANOVA test for both categorical and continuous variables.  

Table 4.1 ANOVA table 
 

Source of 
Variation 

Sum of Squares 
Degrees of 
Freedom 

Mean Square F Ratios 

Model \\D = 	= ] _̂" − Ĥ"`
/#

"-.
 a − 1 B\D =

\\D

a − 1
 b =

B\D

B\T
∼ b(a − 1, < − a) 

Residual \\T = 	= ] "̂ − _̂"`
/#

"-.
 < − a B\T =

\\T

< − a
  

Total \\d = 	\\D + \\T < − 1   
4.2.2. Building Variants  

The 24 full factorial experiment is used to design the required numerical analyses. For each factor 

or property, two levels are specified. The details of the considered factors and their variations is 

discussed in this section. Four baseline archetypes developed as part of the PEER-CEA Project are 

used here for the sensitivity study. The naming conventions are listed in Table 4.2. For each 

building, one- and two-story cases with un-retrofitted and retrofitted 2ft and 6ft cripple wall are 

modeled. Since only ground motions for San Francisco e(,35 = 270g/7 site were adopted for the 

multiple stripe analysis (MSA), the retrofit design based on high seismicity (\67 = 1.2i) is applied. 
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Heavy (concrete tile roof) and light (shingle or composition roof) seismic weights are considered. 

The details of the considered loading is provided in Table 2.7 and Table 2.8. The construction era 

is implicitly considered through the interior wall material. For pre-1945 construction, plaster on 

wood lath is adopted for the interior wall. For post-1955 cases, gypsum wallboard is used. From 

1945 to 1955 is a transition period, where both materials were used for the interior wall. Therefore, 

the effect of construction era can be assessed by comparing the performance of gypsum wallboard 

and plaster on wood lath buildings. The variations in material properties are not considered herein, 

and the best estimates for all materials are used in modeling. A total of 64 cases were modeled and 

analyzed. For each model, pushover analyses, MSAs and loss assessments are performed as 

introduced in Chapter 2 to obtain building nonlinear static response properties, the median collapse 

intensities (MCI) and the expected annual losses (EAL). Additional information such as the modal 

periods, peak strength, drift capacities, ductility, and engineering demand parameters (EDPs) are 

also recorded.  
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Table 4.2 The 2! full factorial experiment building variants index (table adapted from section 7.2 of Welch and Deierlein 2020) 
 

Baseline Description Variation 

"#$ − &1 − () −*& − +,2 − -.#-/ 
Horizontal wood siding exterior with plaster on 
wood lath interior (pre-1945 era), best estimate 
horizontal wood siding as cripple wall material 

": number of stories, 
#$: roof weight, + for heavy 

weight, ( for light weight 
*: cripple wall height, 2& for 

2ft cripple wall, 6& for 6ft 
cripple wall 

-.#-/: cripple wall design, 
-. for un-retrofitted cripple 
wall, ,1,12 for ,"# = 1.24 

retrofitted cripple wall 

"#$ − ,2 − 52 −*& − ,2 − -.#-/ 
Stucco exterior with gypsum wallboard interior 

(post-1955 era), best estimate stucco as cripple wall 
material  

"#$ − ,()2 − () −*& − ,2 − -.#-/ 
Stucco exterior with plaster on wood lath interior 

(pre-1945 era), best estimate stucco as cripple wall 
material 

"#$ −$2 − 52 −*& − +,2 − -.#-/ 
Horizontal wood siding exterior with gypsum 

wallboard interior (post-1955 era), best estimate 
horizontal wood siding as cripple wall material 
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4.2.3. Results Analysis  

The MSA and loss results together with detailed statistical analyses are presented and discussed in 

this section. Figures Figure 4.1 through Figure 4.4 present the median collapse intensities (MCI) 

and EAL for all analyzed 64 cases. The cubic representation of the 2!  experiments can 

demonstrate the effect of a single factor. In this representation, each vertex represents a factor level 

combination. For example, the case on the lower left vertex refers to 1 story, 2 ft cripple wall, light 

weight roof and un-retrofitted case, where all variants are set to their lower levels. The two cases 

connected by one edge differ from each other by a single factor level. By comparing the cases on 

the left surface with those on the right surface, the number of stories is found to negatively 

contribute to collapse risk and EAL (i.e. 2-story buildings have a higher collapse risk than 1-story 

cases). Considering the C1-LP un-retrofitted buildings (Figure 4.1 (a)), the two-story buildings on 

average have 30% lower MCI and 60% higher EAL. The impact is consistent across all four 

existing and retrofitted archetypes. The effect of the number of stories on the overall performance 

is complex. 2-story buildings have a larger seismic weight and longer period than their 1-story 

counterparts and the P-D effect is more significant. Seismic weight is observed to have a similar 

but less significant effect as the number of stories when the cases on the bottom surface are 

compared with those on the top. The cripple wall height is observed to have an overall positive 

influence on the building seismic performance (i.e. buildings with tall cripple walls perform better). 

Based on experimental testing data (Zareian and Lanning 2020), 6ft tall cripple wall was found to 

be about 20% stronger and have almost twice displacement capacity than 2ft tall cripple wall. 

Additionally, since the material properties were normalized by panel height and length, cripple 

wall level displacement capacity increases proportionally to panel height. These factors contribute 

to a stiffer cripple wall. Under such scenarios, the weak-story mechanism is reduced and the overall 
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collapse resistance improves. Interestingly, the impact of cripple wall height is not consistent 

between un-retrofitted and retrofitted buildings. For multiple retrofitted buildings, the cases with 

taller cripple walls have lower or the same MCI (e.g. 2L-S2-G2-2C-S2-SDS12 and 2L-S2-G2-6C-

S2-SDS12 in Figure 4.2 (b)). One possible explanation is that the increased cripple wall strength 

obtained from the retrofit and taller cripple wall reaches a critical point such that the adjacent story 

is weaker, which shifts the collapse mechanism to upper story. This effect has been highlighted 

and discussed in multiple prior soft-story building studies (Buckalew et al. 2015; Yi et al. 2020). 

The retrofit impacts can be assessed by comparing the results in (a) and (b) in Figures Figure 

4.1Figure 4.4. With strengthened structural wood panels, significant improvement in MCI and 

reduction in EAL is observed for all four archetypes.  

 

Figure 4.1 MCI and EAL for horizontal wood siding with plaster on wood lath buildings: (a) un-
retrofitted cripple wall cases, (b) retrofitted cripple wall cases  

1L-C1-LP-2C-HS2-EX
MCI = 0.57g
EAL = 2.00%

2L-C1-LP-2C-HS2-EX
MCI = 0.36g
EAL = 3.49%

1L-C1-LP-6C-HS2-EX
MCI = 0.97g
EAL = 1.08%

2L-C1-LP-6C-HS2-EX
MCI = 0.71g
EAL = 1.68%

2H-C1-LP-2C-HS2-EX
MCI = 0.35g
EAL = 3.62%

2H-C1-LP-6C-HS2-EX
MCI = 0.66g
EAL = 1.93%

1H-C1-LP-6C-HS2-EX
MCI = 0.91g
EAL = 1.23%

1H-C1-LP-2C-HS2-EX
MCI = 0.50g
EAL = 2.43%

Weight
Cripple Wall Height

Number of Stories

1L-C1-LP-2C-HS2R2-SDS12
MCI = 2.19g
EAL = 0.21%

2L-C1-LP-2C-HS2R2-SDS12
MCI = 2.02g
EAL = 0.40%

1L-C1-LP-6C-HS2R2-SDS12
MCI = 2.93g
EAL = 0.18%

2L-C1-LP-6C-HS2R2-SDS12
MCI = 2.05g
EAL = 0.38%

2H-C1-LP-2C-HS2R2-SDS12
MCI = 1.86g
EAL = 0.47%

2H-C1-LP-6C-HS2R2-SDS12
MCI = 1.85g
EAL = 0.47%

1H-C1-LP-6C-HS2R2-SDS12
MCI = 2.65g
EAL = 0.28%

1H-C1-LP-2C-HS2R2-SDS12
MCI = 1.99g
EAL = 0.33%

(a) (b)
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Figure 4.2 MCI and EAL for stucco with gypsum wallboard buildings: (a) un-retrofitted cripple 
wall cases, (b) retrofitted cripple wall cases 

 

 

Figure 4.3 MCI and EAL for stucco with plaster on wood lath buildings: (a) un-retrofitted cripple 
wall cases, (b) retrofitted cripple wall cases 

1L-S2-G2-2C-S2-EX
MCI = 1.22g
EAL = 0.46%

2L-S2-G2-2C-S2-EX
MCI = 0.81g
EAL = 1.1%

1L-S2-G2-6C-S2-EX
MCI = 2.38g
EAL = 0.26%

2L-S2-G2-6C-S2-EX
MCI = 1.40g
EAL = 0.59%

2H-S2-G2-2C-S2-EX
MCI = 0.73g
EAL = 1.5%

2H-S2-G2-6C-S2-EX
MCI = 1.26g
EAL = 0.76%

1H-S2-G2-6C-S2-EX
MCI = 2.02g
EAL = 0.39%

1H-S2-G2-2C-S2-EX
MCI = 1.03g
EAL = 0.74%

Weight
Cripple Wall Height

Number of Stories

1L-S2-G2-2C-S2-SDS12
MCI = 3.15g
EAL = 0.12%

2L-S2-G2-2C-S2-SDS12
MCI = 2.73g
EAL = 0.30%

1L-S2-G2-6C-S2-SDS12
MCI = 4.45g
EAL = 0.13%

2L-S2-G2-6C-S2-SDS12
MCI = 2.67g
EAL = 0.34%

2H-S2-G2-2C-S2-SDS12
MCI = 2.29g
EAL = 0.41%

2H-S2-G2-6C-S2-SDS12
MCI = 2.23g
EAL = 0.45%

1H-S2-G2-6C-S2-SDS12
MCI = 3.92g
EAL = 0.23%

1H-S2-G2-2C-S2-SDS12
MCI = 3.01g
EAL = 0.22%

(a) (b)

1L-SLP2-LP-2C-S2-EX
MCI = 0.88g
EAL = 0.95%

2L-SLP2-LP-2C-S2-EX
MCI = 0.54g
EAL = 2.21%

1L-SLP2-LP-6C-S2-EX
MCI = 1.69g
EAL = 0.47%

2L-SLP2-LP-6C-S2-EX
MCI = 0.95g
EAL = 1.11%

2H-SLP2-LP-2C-S2-EX
MCI = 0.51g
EAL = 2.43%

2H-SLP2-LP-6C-S2-EX
MCI = 0.88g
EAL = 1.28%

1H-SLP2-LP-6C-S2-EX
MCI = 1.45g
EAL = 0.62%

1H-SLP2-LP-2C-S2-EX
MCI = 0.80g
EAL = 1.18%

Weight
Cripple Wall Height

Number of Stories

1L-SLP2-LP-2C-S2R2-SDS12
MCI = 2.35g
EAL = 0.19%

2L-SLP2-LP-2C-S2R2-SDS12
MCI = 2.23g
EAL = 0.39%

1L-SLP2-LP-6C-S2R2-SDS12
MCI = 3.51g
EAL = 0.20%

2L-SLP2-LP-6C-S2R2-SDS12
MCI = 2.46g
EAL = 0.40%

2H-SLP2-LP-2C-S2R2-SDS12
MCI = 2.16g
EAL = 0.45%

2H-SLP2-LP-6C-S2R2-SDS12
MCI = 2.17g
EAL = 0.51%

1H-SLP2-LP-6C-S2R2-SDS12
MCI = 3.29g
EAL = 0.30%

1H-SLP2-LP-2C-S2R2-SDS12
MCI = 2.19g
EAL = 0.29%

(a) (b)
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Figure 4.4 MCI and EAL for horizontal wood siding with gypsum wallboard buildings: (a) un-
retrofitted cripple wall cases, (b) retrofitted cripple wall cases 

 

Although the preceding figures enable comparison of the buildings’ seismic performances, the 

results are not always easily interpretable. Also, the effect of the construction year is difficult to 

isolate. The box plots of the MCI and EAL in Figure 4.5 and Figure 4.6 provides a clearer 

illustration of the main effect of the factors of interest. For the buildings where horizontal wood 

siding or stucco is used as the exterior wall panel, 32 cases are aggregated to compare the average 

seismic performance. The relative main effect of different factors can also be compared. MCI has 

an overall negative correlation with EAL. Similar to the findings in the cubic representation of the 

2! experiment, the number of stories and seismic weight are negatively correlated with MCI, while 

the cripple wall height and retrofit are positively correlated. Unsurprisingly, the cripple wall 

retrofit is found to provide the most significant improvement in the building seismic performances 

followed by the cripple wall height. The construction era is also negatively correlated with seismic 

performance. Post-1945 buildings with gypsum wallboard as the interior panels have on average 

higher collapse resistance and lower EAL than pre-1955 construction with plaster on wood lath on 

the interior. Although collapse is expected to occur at the cripple wall level, higher available 

strength in the superstructure still plays an important role in the collapse resistance.  The difference 

1L-W2-G2-2C-HS2-EX
MCI = 0.84g
EAL = 0.97%

2L-W2-G2-2C-HS2-EX
MCI = 0.57g
EAL = 2.02%

1L-W2-G2-6C-HS2-EX
MCI = 1.32g
EAL = 0.57%

2L-W2-G2-6C-HS2-EX
MCI = 0.98g
EAL = 1.00%

2H-W2-G2-2C-HS2-EX
MCI = 0.52g
EAL = 2.25%

2H-W2-G2-6C-HS2-EX
MCI = 0.92g
EAL = 1.15%

1H-W2-G2-6C-HS2-EX
MCI = 1.15g
EAL = 0.77%

1H-W2-G2-2C-HS2-EX
MCI = 0.70g
EAL = 1.52%

Weight
Cripple Wall Height

Number of Stories

1L-W2-G2-2C-HS2R2-SDS12
MCI = 4.51g
EAL = 0.10%

2L-W2-G2-2C-HS2R2-SDS12
MCI = 2.87g
EAL = 0.24%

1L-W2-G2-6C-HS2R2-SDS12
MCI = 5.12g
EAL = 0.10%

2L-W2-G2-6C-HS2R2-SDS12
MCI = 2.84g
EAL = 0.25%

2H-W2-G2-2C-HS2R2-SDS12
MCI = 2.38g
EAL = 0.35%

2H-W2-G2-6C-HS2R2-SDS12
MCI = 2.32g
EAL = 0.37%

1H-W2-G2-6C-HS2R2-SDS12
MCI = 3.86g
EAL = 0.21%

1H-W2-G2-2C-HS2R2-SDS12
MCI = 4.11g
EAL = 0.20%

(a) (b)
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between construction era are more significant for horizontal wood siding buildings than stucco 

buildings.  

 

Figure 4.5 Box plot of responses for stucco as exterior buildings: (a) MCI, (b) EAL 
 

 

Figure 4.6 Box plot of responses for horizontal wood siding as exterior buildings: (a) MCI, (b) 
EAL 

 
Figures Figure 4.7 through Figure 4.10 show feature interaction plots for MCI and EAL for stucco 

and horizontal wood siding buildings, respectively. The ‘ " -against- # ’ interaction plot 
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demonstrates the change in the response caused by the joint effect of " and #. If the two lines in 

the interaction plot are parallel, the effect of " is synergistic with changes in factor #. If the slopes 

of the two lines are of opposite sign (plot is antagonistic), the effect of factor " is reversed when 

# is set to different levels. Overall, almost all feature interactions are synergistic. The effect of the 

number of stories on MCI and EAL is unform when the seismic weight is changed for both stucco 

and horizontal wood siding buildings. Thus, their interaction is not significant on MCI and EAL. 

Similar observations can be observed for the interaction between seismic weight and cripple wall 

height and construction era. The effect of the number of stories is not uniform for 2ft and 6ft cripple 

wall buildings. Increased number of stories leads to higher reduction in the MCI for 6ft cripple 

wall buildings compared to the 2ft case. It worth noting that cripple wall height and retrofit have 

antagonistic effects on EAL (Figure 4.8 and Figure 4.10). More specifically, taller cripple walls 

lead to reduced EAL on un-retrofitted buildings, while for retrofitted buildings, the EAL remains 

almost the same or increases slightly. The interaction plots provide insight into the biased MCI 

and EAL predictions by the linear regression model developed in section 3.3.4, since this second 

order interaction effect was not included. 
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Figure 4.7 MCI factor interaction plot for stucco exterior buildings 
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Figure 4.8 EAL factor interaction plot for stucco exterior buildings 
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Figure 4.9 MCI factor interaction plot for horizontal wood siding exterior buildings 
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Figure 4.10 EAL factor interaction plot for horizontal wood siding exterior buildings 
 

Most of the preceding discussion was based on visual inspections of the response plots. 

Quantitative measurements are required to determine whether the features of interest are 

statistically significant to the responses. The two-way ANOVA is used for this purpose. The p-

values are calculated for main and interaction effects on MCI and EAL for the stucco and 

horizontal wood siding buildings (shown in Tables Table 4.3 through Table 4.6). For a 95% of 

confidence level, all individual factors are statistically significant to both MCI and EAL. The p-

values are consistent with the observations from the box plots. For the MCI, the only significant 



    
 

115 

interaction effects are between the number of stories and cripple wall height and construction era 

and retrofit. On the other hand, three additional interaction effects are statistically significant for 

EAL. The differences in the feature sensitivities explain the linear regression models poorer 

performance on EAL relative to MCI. Also, it provides additional motivation for the response 

surface method where the compound effects of different features are incorporated.  

Table 4.3 P-values for individual and interacting factors for stucco exterior buildings’ MCI 
 

 Number of 
Stories 

Cripple Wall 
Height 

Seismic 
Weight 

Construction 
Era Retrofit 

Number of 
Stories 2.74E-09* 1.05E-05* 7.26E-01 1.03E-02* 1.78E-02* 

Cripple Wall 
Height 

 1.30E-08* 2.69E-01 5.29E-01 3.55E-01 

Seismic Weight   2.10E-03* 2.38E-01 2.78E-01 

Construction Era    1.27E-06* 3.71E-01 

Retrofit     7.18E-15* 
*Statistically significant for 95% confidence level  

Table 4.4 P-values for individual and interacting factors for stucco exterior buildings’ EAL 
 

 Number of 
Stories 

Cripple Wall 
Height 

Seismic 
Weight 

Construction 
Era Retrofit 

Number of 
Stories 5.12E-08* 3.24E-02* 8.91E-01 5.12E-02* 4.20E-05* 

Cripple Wall 
Height 

 1.11E-05* 5.97E-01 8.10E-02* 4.62E-06* 

Seismic Weight   6.10E-03* 7.90E-01 2.70E-01 

Construction Era    1.17E-05* 1.69E-04* 

Retrofit     1.93E-10* 
*Statistically significant for 95% confidence level  
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Table 4.5 P-values for individual and interacting factors for horizontal wood siding exterior 
buildings’ MCI 

 

 Number of 
Stories 

Cripple Wall 
Height 

Seismic 
Weight 

Construction 
Era Retrofit 

Number of 
Stories 3.19E-06* 2.03E-01 5.21E-01 3.93E-03* 3.02E-04* 

Cripple Wall 
Height 

 7.05E-03* 4.99E-01 5.79E-01 3.51E-01 

Seismic Weight   1.93E-02* 2.14E-01 8.63E-02* 

Construction 
Era 

   7.07E-07* 6.39E-05* 

Retrofit     4.06E-13* 
*Statistically significant for 95% confidence level  

 

Table 4.6 P-values for individual and interacting factors for horizontal wood siding exterior 
buildings’ EAL 

 

 Number of 
Stories 

Cripple Wall 
Height 

Seismic 
Weight 

Construction 
Era Retrofit 

Number of 
Stories 3.91E-07* 2.89E-02* 5.10E-01 1.30E-01 4.93E-05* 

Cripple Wall 
Height 

 7.27E-08* 5.45E-01 2.02E-02* 9.06E-08* 

Seismic Weight   7.28E-03* 8.26E-01 1.95E-01 

Construction Era    2.70E-07* 6.47E-06* 

Retrofit     5.20E-14* 
*Statistically significant for 95% confidence level  

 

4.3. Machine Learning Model-Based Sensitivity Analysis  

A preliminary sensitivity analysis for the median collapse intensity and EAL was presented in the 

preceding section where the main and interaction effects were evaluated for a full factorial 

experiment. Although this approach provides a simple and interpretable analysis, there are a 

number of drawbacks. The required number of numerical analysis cases associated with the full 
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factorial design increases exponentially with the number of factors of interest. In the prior analyses, 

only 6 variants were examined, and other dynamic response parameters such as the damping ratio 

and material properties were fixed. To consider additional features, a much larger number of 

numerical analyses must be incorporated. The stated statistical analysis procedure was based on 

two-level experiment design. Whether the conclusion is universally applicable is questionable. 

More importantly, the ANOVA is established based on an underlaying linear regression model. 

However, such models (ordinary least square and RSM) showed predictive performance for EAL 

so the conclusions might be misleading. Using the ML models developed in section 3.3, the 

building seismic performance sensitivity to the input features can be conveniently assessed. Since 

the ML models were established on large number of randomly sampled parameters and numerical 

simulations, more generalizability is expected. Also, tree-based models showed superior predictive 

performance relative to linear regression. Therefore, the conclusion is expected to be more reliable. 

In this section, the linear regression and XGBoost models are selected evaluate the effect if 

different features on the building seismic performance. Although it has been shown linear 

regression has the poorest predictive capability among the derived models (especially for EAL), 

the regression coefficients are still a useful measure of feature importance. Linear regression has 

the scaler form shown by Equation (4.4). 

$%" = '# +	*'$+",$
&

$'(
	 (4.4) 

Where, '# is the intercept term, '$ is the regression coefficient of the 0)* feature, and +",$ is the 

value of the 0)* feature of the 1)* data point. The regression coefficient '$ can be interpreted as the 

expected change in the prediction  $%" caused by a unit variation in +",$. Since all features have been 
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unified during the development of the linear regression model, the coefficients can be directly 

compared to measure relative importance.  

XGBoost explains the importance of individual features based on their contribution to the 

prediction. Recall that in Equation (3.34), the subtrees are developed on the basis of ancestor nodes 

by maximizing the gain. More specifically, a binary split of the dataset would create costs, which 

are measured by within sub-dataset deviations for regression tasks. The feature and value 

generating the lowest costs (highest reduction in the cost) are selected to execute the split. 

Conceptually, the features that are selected to split the tree in the earlier stages of the model 

development and generates lower cost or higher gain have the greatest impact on the response. The 

detailed mathematical derivation was provided in section 3.2.1.3. 

4.3.1. Median Collapse Intensity Sensitivity Analysis 

Listed in Table 4.7 are the linear regression model coefficients and XGBoost gain scores used for 

evaluating the sensitivity of the median collapse intensity to the input features. Overall, the relative 

feature impacts derived from linear regression and XGBoost models are similar. For the linear 

regression coefficients, the seismic weight is the most impactful feature and retrofit length and 

retrofit indicator have the next highest influence. More specifically, the linear regression model 

shows that the building retrofit could increase the median collapse intensity, on average, by 0.8g. 

Also, for every 5 feet increase in the length of the retrofit wood panel (a total of 40 feet in the 

entire building), the median collapse intensity increases by 1.3g. As expected, the cripple wall 

height and strength also contribute significantly to the building collapse safety. The cripple wall 

height is positively correlated since the material properties are defined based on drift. Taller cripple 

walls provide more displacement capacity and stiffness compared to shorter ones. These two 

features together with the superstructure strength affects the strength distribution along the 
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building height and determines the position of the weak story. The number of stories and seismic 

weight decrease the collapse safety at the same time since they are synchronized. Considering the 

same building and weight distribution, an additional one story approximately reduces the median 

collapse intensity by 1g. The two displacement parameters are the least impactful features. The 

coefficients are consistent with the observations from the box plots in section 4.2.3. 

As for the XGBoost gain scores, retrofit length has the highest score while the retrofit indicator 

does not contribute to the prediction. The reason is that existing buildings have zero retrofit length 

and zero retrofit indicator, and there are no differences when splitting the dataset on either of the 

two features. The retrofit length is more effective in reducing the cost, so the retrofit indicator was 

not adopted in the tree growth. For the same reason, the seismic weight and number of stories have 

very high and low gain scores, respectively. The seismic weight and cripple wall strength 

parameters are the 2nd and 3rd predominant features. Other than the number of stories, the two 

material displacement parameters are the least impactful features, which is consistent with the 

linear regression coefficients. Although the XGBoost gain score captures the relative importance 

of features from the perspective of contribution to the predictions, the feature impacts cannot be 

directly quantified.  

Table 4.7 Linear regression and XGBoost median collapse intensity model feature sensitivity 
 

Features Linear Regression 
Coefficient XGBoost Gain Score 

Seismic Weight -2.48 1740 

Retrofit Length 1.30 2838 

Retrofit Indicator 0.80 0 

Cripple Wall Height 0.68 91 

Cripple Wall Force 0.63 1438 

Damping Ratio 0.57 78 

Super Structure Force 0.27 832 
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Number of Stories -0.16 18 

Cripple Wall Displacement 0.08 71 

Super Structure Displacement 0.06 22 

 

Additionally, a sensitivity analysis using variable control method and XGBoost model is presented 

here. Figure 4.11 shows how XGBoost predicted median collapse intensity changes when shifting 

different building variants. The horizontal axis in the figure refers to a reduction/amplification 

factor applied to the feature, and the vertical axis shows the associated EAL values predicted by 

the XGBoost model. 11 ratios starting from 0.75 to 1.25 with 0.05 increment are adopted. The 

point with applied ratio equal to 1 refers to the baseline building with 2ft high cripple wall, standard 

seismic weight (67 kips) and best estimation of the material properties. One- and two-story un-

retrofitted cases share very similar sensitivity patterns. Same as the previous discussion, building 

seismic weight and cripple wall strength are the two most predominant features. Seismic weight 

negatively and cripple wall strength positively influence the collapse resistance. Increasing seismic 

weight by 20% (compared to baseline case) approximately reduce the median collapse intensity 

by 40%. The two-story case benefits more than one-story case from increased cripple wall strength. 

20% stronger cripple wall level nearly improves collapse resistance by 40%. Other factors don’t 

reveal significant contribution to median collapse intensities. Situation is more complicated on the 

retrofitted buildings. For the one-story retrofitted case, structural panel length is the most 

influential factor, while only increased structural panel length shows a difference. As for the two-

story retrofitted building, superstructure strength rather than retrofit structural panel length is the 

most impactful factor. From comparing these two cases, the two-story retrofitted building reaches 

the retrofit threshold, where upper level is relatively weaker than the retrofitted cripple wall level. 

Therefore, increasing structural panel length cannot further benefit collapse resistance while 
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strengthening superstructure could. The ‘one-side’ impacts of weaker cripple wall could also 

provide additional clue to the explanation.  

 

Figure 4.11 XGBoost feature impacts on MCI: (a) 1-story existing building, (b) 2-story existing 
building, (c) 1-story retrofitted building, and (d) 2-story retrofitted building 

 
4.3.2. EAL Sensitivity Analysis 

A slightly different sensitivity analysis is conducted for EAL. Since the linear regression model 

delivers poor predictions for EAL, the coefficients cannot be used for quantifying the relative 

feature importance. As for the XGBoost gain scores, although the relative impacts can be compared, 

the scores are difficult to interpret. Also, the gain score cannot reflect the whether the feature is 

positively or negatively correlated with the performance. Therefore, the variable control method 

is adopted here on the basis of XGBoost model to examine the sensitivity of EAL.  

Figure 4.12 presents the variations in the EAL when changing an individual feature while fixing 

the rest. The analysis settings remain the same as the preceding section. The results are shown for 

the 1- and 2-story, existing- and retrofitted-buildings, respectively. Aside from a few exceptions, 

the two existing-/retrofitted-buildings share similar feature sensitivities. For the existing buildings, 

(a) (b)

(c) (d)
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the seismic weight, superstructure displacement and cripple wall strength parameters are the three 

predominant features. Compared with the baseline building, increasing the seismic weight by 25% 

almost double the EAL and vice versa. The effect of seismic weight on EAL is complex. As 

discussed earlier, the seismic weight is negatively correlated with the median collapse intensity, 

resulting in higher collapse losses under heavier loads. As for non-collapse losses, the seismic 

weight determines building natural period and mode shape, which further impacts the damping 

assignment and ground motion spectral acceleration. These factors contribute to the magnitudes 

and vertical distributions of EDPs. The impact of seismic weight on EAL is approximately uniform 

over the investigated range. The superstructure displacement and cripple wall strength parameters 

are the other two most influential features. Increasing the superstructure displacement parameters 

leads to reduced stiffness and higher displacement capacity. Thus, higher story drift ratios are 

expected in the superstructure. The effect of the cripple wall force parameter is similar, However, 

the effect of the two features are not the same on the one-story un-retrofitted case. A stiffer 

superstructure and weaker cripple wall minimally affect the EAL. In the baseline building, the 

presence of the cripple wall creates a weak story mechanism. Collapse and the highest drift 

demands occur at cripple wall level. Reducing these two parameters exacerbate the stiffness and 

strength differences. The cripple wall level is expected to suffer slightly higher component damage 

and the collapse risk is reduced, but the changes in EAL are not significant. More variations can 

be observed in retrofitted cripple wall buildings when the parameters are changed. As with the 

existing buildings, the seismic weight, superstructure force and displacement parameters and 

cripple wall strength parameters are significant. However, the superstructure displacement 

parameters contribute in both directions. The superstructure strength parameters dominate the EAL 

of the retrofitted buildings. These observations are related to the relative strength and stiffness of 
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the superstructure and cripple wall levels. The retrofit wood panel can balance the strength and 

stiffness differences between the cripple wall and superstructure, and the weak story mechanism 

is suppressed. In such cases, the superstructure strength, stiffness and ductility determine the EDP 

magnitude, vertical distribution and collapse safety. Given that most of the damageable 

components are in the superstructure, the retrofitted buildings are more sensitive to the 

superstructure material properties. Thus, the effect of a stronger superstructure is more observable, 

and the reduced superstructure displacement has an impact on the retrofitted building EAL. For 

the rest of the parameters, the EAL fluctuations are comparable with the model prediction error. 

Consequently, they can be categorized as EAL non-sensitive features.   

 

Figure 4.12 XGBoost feature impacts on EAL: (a) 1-story existing building, (b) 2-story existing 
building, (c) 1-story retrofitted building, and (d) 2-story retrofitted building 

 
4.4. Machine Learning Model Uncertainty Quantification  

Within the scope of current study, the ground motions for assessing building collapse performance 

are selected based on the conditional spectrum therefore effect of spectra shape is explicitly 

considered. Figure 4.13 provides a flow chart showing the procedure used to numerically perform 

(a) (b)

(c) (d)
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uncertainty quantification in PBSD. To begin with, a set of random parameters that are known to 

affect the building performance is specified. For each random parameter, the range and distribution 

of interest are needed. Then, a set of random samples are generated from these distributions using 

an appropriate technique (e.g. Monte Carlo, Latin Hypercube Sampling). A set of finite element 

models are constructed using the sampled parameters. The target response variables of interest (e.g. 

collapse performance, earthquake induced losses, EDPs) are obtained through formal numerical 

analysis and performance assessment procedure. Lastly, the response variables distributed are 

analyzed to obtain the propagated uncertainties. In this procedure, a large computational burden 

arises during the numerical analyses. Besides, the number of required samples are usually 

unknown to achieve a stable outcome. ML models can be used to complement the numerical 

analyses. For any given set of sampled parameters, the responses can be estimated using the ML 

model without numerical evaluation. Additionally, the number of random samples can be 

arbitrarily large until stable results are obtained with the associated computational expense 

remaining unchanged. This section demonstrates the process of using previously-developed 

XGBoost models to quantify the effect of model uncertainties on collapse safety.  
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Figure 4.13 Flow chart showing uncertainty propagation methodology 
 

4.4.1. Effect of Model Uncertainty on Median Collapse Intensity  

Based on the sensitivity analysis, the features used to construct the ML models will be introduced 

as the sources of model uncertainty. These features are statistically significant to the wood frame 

building collapse performance, and are also commonly considered in building performance 

uncertainty analysis (Porter et al. 2002; Liel et al. 2009; Yin and Li 2010; Frangopol and Liub 

2011; Jiang and Ye 2020). Table 4.8 lists the statistical distribution information of the uncertainty 

sources.  

Table 4.8 Uncertainty sources statistical characteristics 
 

Random Variable Distribution Mean CV Reference 

Seismic Weight Normal 67 kips 0.1 Ellingwood 1980; Haselton 2006 

Cripple Wall Height Normal 2 ft 0.2 Ellingwood 1980; Haselton 2006 

Damping Ratio Normal 0.025 0.4 Porter et al. 2002 

Specify uncertainty sources

Target uncertainty sources
range and distribution

Sampled parameters for
uncertainty sources

Assemble finite element
models using the sampled

parameters

Obtain responses

Propagate uncertainties in
responses

ML response
predictive
models
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Cripple Wall 
Displacement 

Parameters 
Lognormal 1.0 0.3 

Jiang and Ye 2020 

Cripple Wall 
Strength Parameters 

Lognormal 1.0 0.3 

Superstructure Wall 
Displacement 

Parameters 
Lognormal 1.0 0.3 

Superstructure Wall 
Strength Parameters 

Lognormal 1.0 0.3 

 
To estimate the probability of collapse given the intensity measures, other than building median 

collapse intensity, the dispersion of the lognormal distribution is required. Thus, an additional 

XGBoost model is developed to predict the dispersion. The detailed model derivation follows the 

same procedure described in section 3.2. The final XGBoost model has a testing 2"34 of 15% 

and 3+ score of 0.81.  

With the specified uncertainty distributions, the median collapse intensity and dispersion 

prediction models, the Monte Carlo (MC) method is executed. A total of 1000 independent random 

samples are generated, and the corresponding collapse medians and dispersions are estimated using 

the XGBoost models. Then, a fragility curve with model uncertainty is estimated through 

aggregating all 1000 fragility curves. Specifically, at each intensity level, the expected empirical 

number of collapse cases with model uncertainty is taken as the average collapse probability of 

the 1000 cases. A new lognormal distribution is fitted using the aggregated collapse probability at 

each intensity level. The resulting dispersion includes both model and ground motion record-to-

record uncertainty. The empirically estimated ',  is taken as the square root of the difference 

between the square of the total and record-to-record dispersion, which is shown in Equation (4.5). 
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', = 5'-+ − '.-.+ (4.5) 

where '.-. is the record-to-record dispersion and '- is the total dispersion. Using this procedure, 

the model uncertainty associated with the collapse fragility is propagated for the 2-ft high cripple 

wall stucco exterior gypsum wallboard interior building. Table 4.9 lists the median collapse 

intensity with and without ', . One major difference between the FEMA P-58 and ML-based 

approach to evaluate the effect of model uncertainty is the median collapse intensity. Within 

FEMA-P58 framework, model uncertainty is directly added to the ground motion dispersion using 

SRSS without affecting the median collapse intensity. However, as shown by the ML models, the 

fragility curve with model uncertainty has a different median collapse intensity. Except the 2-story 

retrofitted cases, the rest median collapse intensities with model uncertainty have on average 15% 

higher collapse resistance. As for the 2-story retrofitted case, with considering model uncertainty, 

the MCI decreases by 10%. One possible explanation could be the features’ impacts on the building 

median collapse intensity and dispersion are not uniform and consistent across different cases. For 

example, the cripple wall force strength parameters were shown to only affect the building collapse 

risk when it increases in the 1-story buildings. Table 4.10 presents the estimated model uncertainty 

for the 1- and 2-story, existing- and retrofitted-cases. FEMA P-58 recommends that the total 

uncertainty is calculated using SRSS with '.-. 	 assuming a ',  of 0.35. Overall, with the 

introduction of model uncertainty, the total dispersion increases by approximately 20% to 50% 

depending on the building type. Table 4.9 shows that, the measured ', is lower than the 0.35 

recommended by FEMA P58 for the 1-story existing and 2-story retrofitted buildings. However, 

the opposite is true for the 2-story existing and 1-story retrofitted buildings   
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Table 4.9 Measured median collapse variations due to model uncertainty obtained from 
XGBoost model 

 

Building Type 
Median Collapse Intensity without 

', 
Median Collapse Intensity with 

', 

1-story Existing 1.22 1.45 

2-story Existing 0.81 0.97 

1-story 
Retrofitted 

3.15 3.39 

2-story 
Retrofitted 

2.73 2.46 

 

Table 4.10 Measured model uncertainty obtained from XGBoost model  
 

Building Type '.-. Estimated '- Estimated ', 

1-story Existing 0.310 0.457 0.335 

2-story Existing 0.398 0.568 0.405 

1-story Retrofitted 0.303 0.443 0.434 

2-story Retrofitted 0.517 0.609 0.322 

 

The fragility curve without model uncertainty, with the FEMA P-58 recommended model 

uncertainty and with the model uncertainty derived from XGBoost models are provided in Figure 

4.14. The light grey fragility curves are from the individual MC samples. The estimated fragility 

curve with ', (blue curve) is developed by averaging the probability of collapse at each intensity 

level of all MC samples. Note that the model uncertainty also affects the median collapse intensity 

value. The red dash curve was derived through applying ', to the fragility curve without model 

uncertainty (orange curve). The green curve, which uses 0.35 as ',, is provided as reference. By 

considering additional model uncertainty, fragility curves have flattened. The probabilities of 
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collapse beyond median collapse intensity decrease and vice versa. The detailed probabilities of 

collapse under the design basis earthquake (DBE) (1.2g) and maximum considered earthquake 

(MCE) (1.8g) are listed in Table 4.11. At MCE level, for the 1- and 2-story existing buildings. 

Incorporating model uncertainty reduces the probability of collapse by 7% to 10%. However, for 

the retrofitted buildings, the probability of collapse at the DBE increases. The magnitude of the 

change in the probability of collapse is determined by the intensity level relative to the median 

collapse intensity.  

 

Figure 4.14. Collapse fragility with propagated model uncertainty using the XGBoost model: (a) 
1-story existing building, (b) 2-story existing building, (c) 1-story retrofitted building, and (d) 2-

story retrofitted building 
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Table 4.11 Probabilities of collapse under the MCE and DBE with different uncertainty considerations 
 

Building 
Type 

MCE  DBE  

Fragility 
Without 
!! 

Fragility 
with 0.35 
!! 

Fragility 
with 

Estimated 
!! 

Estimated 
Fragility 
with !! 

Fragility 
Without 
!! 

Fragility 
with 0.35 
!! 

Fragility 
with 

Estimated 
!! 

Estimated 
Fragility 
with !! 

1-story 
Existing 0.90 0.80 0.80 0.68 0.48 0.49 0.49 0.34 

2-story 
Existing 0.98 0.93 0.92 0.86 0.84 0.77 0.75 0.65 

1-story 
Retrofitted 0.03 0.11 0.10 0.08 0.00 0.02 0.01 0.01 

2-story 
Retrofitted 0.21 0.25 0.25 0.30 0.06 0.09 0.09 0.12 
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4.4.2. EAL Uncertainty Quantification 

A similar approach is used to quantify the effect of model uncertainty on EAL. Recalling the 

FEMA P-58 loss assessment procedure, the ground motion uncertainty is incorporated in the 

resulting loss curve and EAL through the fragility dispersion and EDP covariance matrix. Model 

uncertainty can be combined with the dispersion of the fragility curve and covariance matrix using 

SRSS. With the help of the ML model, this step can be bypassed and the variations in EAL caused 

by model uncertainty can be quantified. To quantify the effect of model uncertainty on EAL, a ML 

model is constructed on EAL without model uncertainty incorporated in the loss assessment is 

required. Following the same procedure introduced in section 3.2, an XGBoost model is derived 

for EAL, where no model uncertainty is considered. MC simulation is again performed, where 

1000 independent random samples are generated to estimate the associated EALs using the 

developed XGBoost model. The simulation was performed on the same 2ft high cripple wall stucco 

exterior and gypsum wallboard interior building.  

The MC simulation results are presented in terms of a histogram for 1- and 2-story, existing and 

retrofitted buildings as shown in Figure 4.15. Overall, incorporating model parameter uncertainty 

into EAL, the empirical distributions are left-skewed with long right tails. A beta distribution was 

used to fit the empirical probability density functions. The detailed statistics of the EAL with model 

uncertainty, the fitted beta distributions, and EAL without model uncertainty are provided in Table 

4.12. The derived coefficients of variation (COV) across the MC samples range from 0.49 to 0.54 

with an average of 0.51. COV values are stable across different archetypes. The average EALs 

from the MC samples are observed to be higher than the EALs with 0.35	"!  for the existing 

buildings, but lower for the retrofitted cases. The EALs without incorporating model uncertainty 

are slightly lower in magnitude than those with model uncertainty. For the FEMA P-58 approach, 
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introducing model uncertainty increases the probability of collapse under the intensities lower than 

the median collapse intensity. These intensities have higher rates of occurrence, therefore, the 

expected annual collapse loss increases.  As for the EALs with ML-based model uncertainty, the 

effect of model uncertainty varies based on the archetype.  

 

Figure 4.15 EAL with propagated model uncertainty using XGBoost model: (a) 1-story existing 
building, (b) 2-story existing building, (c) 1-story retrofitted building, and (d) 2-story retrofitted 

building 
 

 

 

 

 

 

(a) (b)

(c) (d)
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Table 4.12 Statistics of EAL with different "! consideration 
 

Building 
Type 

Mean 
EAL with 
Estimated 

#" 

Coefficient 
of 

Variation 

Mean EAL 
of Fitted 

Beta 
Distribution  

Coefficient 
of Variation 

of Fitted 
Beta 

Distribution 

EAL 
without 
#" 

EAL 
with 0.35 
#" 

1-story 
Existing 0.34% 0.51 0.34% 0.51 0.34% 0.46% 

2-story 
Existing 1.00% 0.50 1.00% 0.50 0.98% 1.1% 

1-story 
Retrofitted 0.18% 0.49 0.18% 0.49 0.09% 0.12% 

2-story 
Retrofitted 0.32% 0.54 0.32% 0.54 0.25% 0.30% 

 

4.4.3. Convergence Analysis 

As discussed earlier, the ML model enables computation of the intensity-conditioned collapse 

probability without additional NRHAs. Thus, a simple convergence check is presented using the 

1-story existing to determine the total required computational expense without the ML model. In 

Figure 4.16, model uncertainty in the 1-story existing single-family house is calculated using 15 

different numbers of MC samples ranging from 10 to 1000. As shown by the trend, the fluctuation 

of effect of model uncertainty decreases with the number of samples. After approximately 600 

samples, the quantified effect of the model uncertainty remains relatively stable. This suggests that 

at least 600 randomly generated samples are required to achieve a stable estimation of model 

uncertainty for either the ML model-based method or conventional numerical method. Recall a 

total of 800 models and NRHA are involved in the development of ML model, and this includes 

the 1- and 2-story, existing and retrofitted buildings. To achieve the estimation accuracy, 2400 

numerical models are needed. The number increases with the number of random parameters. A 
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60% computational cost saving can be expected by using ML models. More importantly, the ML 

models can be used for other tasks, e.g. sensitivity analysis and optimization. 

 

Figure 4.16 Estimated model uncertainty using different number of MC samples 
 

4.5. Summary  

In this chapter, a sensitivity study using 2#  experiment design method was first presented to 

illuminate the building variants’ impact on seismic performances. In this preliminary analysis, 

factors’ main effect and interaction effect were evaluated. For single-family cripple wall buildings, 

the collapse resistance and EAL contribution from building seismic weight, number of stories, 

cripple wall height, construction era and retrofit benefit were examined. Among the five variants, 

seismic weight and number of stories were found to negatively and positively affect MCI and EAL, 

respectively. The opposite is true for the rest three factors. Retrofitting contributes most 

significantly to the improved collapse safety and reduced earthquake losses. Additionally, 

ANOVA tables suggest that aforementioned feature interactions have unignorable contribution to 

building seismic performances, which explains the poor predictive capability of ordinary linear 

regression models in Chapter 3.  
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Not limited to predictive capabilities, the ML model can also be adopted for feature sensitivity 

analysis and model uncertainty quantification. A more comprehensive sensitivity analysis 

involving more building factors was presented for building collapse safety and EAL using linear 

regression and XGBoost models. The critical takeaways are summarized here: 

(1) Seismic weight is found to be the most predominant feature for median collapse intensity in 

both linear regression and XGBoost models. The length of the panel used in the retrofit, cripple 

wall height and cripple wall strength parameters also impact the collapse safety by changing 

the difference between the cripple wall and superstructure strength. The seismic weight and 

number of stories are the only two features that are negatively correlated with building the 

collapse performance.  

(2) The superstructure and cripple wall level displacement parameters are the least influential 

features for the median collapse intensity.  

(3) The EAL sensitivities to different features are different for existing- and retrofitted-buildings. 

The is explained by the fact that the relative strength and stiffness between the cripple wall 

level and superstructure have significant influence on the engineering demand parameter 

distributions.  

(4) The seismic weight is the most influential feature, and its impact on EAL is approximately 

linear.  

(5) For the existing buildings, the superstructure material displacement parameter and cripple wall 

level material strength parameters are the other two critical features. The he impact is 

especially prominent in weaker superstructures and stronger cripple wall. Other than these two 

features, the superstructure level material strength parameters dominate for the retrofitted 

buildings. All these features influence the EAL through the mechanism discussed in bullet (3).  



    
 

136 

Motivated by the conclusions from the sensitivity analysis, the effect of model uncertainty on 

collapse performance and EAL is quantified. In this regard, the ML model provides with an 

efficient alternative to conventional numerical analyses. First, the statistical distributions of the 

random parameters are specified. Then, Monte Carlo simulation is implemented to generate 

sample sets of these random parameters. The building collapse performance is then estimated using 

the sampled features. Finally, the collapse fragility curve with model uncertainty was derived by 

aggregating the fragility curves for the randomly sampled buildings. The model uncertainty 

dispersions for 1- and 2-story, existing- and retrofitted- buildings are 0.335, 0.405, 0.434 and 0.322, 

respectively. These values have varying levels of differences with the FEMA P-58 recommended 

0.35. With the introduction of model uncertainty, the probability of collapse decreases for intensity 

levels higher than the median collapse intensity, and vice versa. A similar approach was used to 

propagate uncertainty in the EAL. The average coefficient of variation in the EAL with model 

uncertainty is 0.51. The value is found to be fairly stable across different building heights and for 

the existing and retrofitted cases. Lastly, convergence check is used to assess the number of 

random samples required to achieve stable uncertainty quantification. As shown from the results 

of multiple rounds of MC simulations, at least 600 samples are needed to have reliable estimates. 

Additionally, the results demonstrate that the ML model reduces the computational expanse by at 

least 60% compared to conventional numerical analyses.  

In this chapter, the benefit of ML models for sensitivity analysis, uncertainty propagation and 

quantification were demonstrated. this chapter is focused on a baseline single family woodframe 

house with cripple walls and fixed material type. Obviously, the formal model derivation 

procedure is generally applicable for other construction types (e.g. multi-family woodframe 
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buildings, steel moment frames, concrete buildings) and responses (e.g. EDPs, resiliency). In 

Chapter 6, ML models are also used for retrofit design optimization. 
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CHAPTER 5. EVALUATING THE IMPLICATIONS OF LOS ANGELES ORDINANCE 

OF SOFT, WEAK, OPEN-FRONT WALL LINE BUILDINGS 

5.1. Introduction  

5.1.1. Background 

Woodframe construction is commonly used for residential buildings in the United States. For 

multi-unit residential woodframe buildings in the Los Angeles metropolitan area, it is common for 

the first story to be used for parking or commercial spaces. To increase the accessibility to these 

types of spaces, a lower wall density is used relative to the upper stories. This can lead to 

substantial differences in the stiffness and strength of adjacent stories and the formation of a single-

story mechanism during earthquake shaking. Numerous complete or partial woodframe building 

collapses have been attributed to soft-story damage in prior seismic events including the 1971 San 

Fernando, California (FEMA 2012b), 1989 Loma Prieta, California (Harris and Egan 1992) and 

1994 Northridge, California earthquakes (Holmes and Sommers 1996).  

Los Angeles is one of several cities in California that has established policies to address the seismic 

risk to soft-story woodframe buildings. The City of San Francisco enacted the first mandatory soft-

story retrofit program for woodframe multi-family buildings in 2013. In southern California, the 

Cities of Santa Monica and West Hollywood established soft-story retrofit programs in 2017. A 

similar program was instituted in the City of Oakland in 2019. The Los Angeles Soft-Story 

Ordinance, which was signed into law in 2015 and later amended, was part of the city’s Resilience 

by Design initiative (https://www.lamayor.org/resilience-design-building-stronger-los-angeles). 

The ordinance mandates the retrofit of multi-family (more than three units) woodframe buildings 

with permit applications for new construction submitted prior to January 1, 1978 and at least one 

soft, weak and open front (SWOF) wall line. A SWOF wall line is defined as having at least one  



    
 

139 

of the following characteristics: (a) stiffness that is less than 70% of the wall immediately above 

(i.e. soft), (b) strength that is less than 80% of the wall immediately above (i.e. weak) or (c) there 

is a diaphragm above with a cantilever that is more than 25% of the distance between lines of 

lateral resistance from which the cantilever extends (i.e. open). Approximately 12,060 SWOF 

buildings have been identified in the City of Los Angeles (Xia and Schleuss, 2016). 

With the objective of reducing the collapse risk of SWOF buildings, the Ordinance permits four 

alternative retrofit procedures. The Los Angeles Department of Building and Safety (LADBS) has 

established its own Structural Design Guidelines (LADBS 2015). Alternatively, the retrofit 

procedures described in the 2012 IEBC (International Existing Building Code) Appendix Chapter 

A4 (IEBC 2012), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings) (ASCE 

2017) and FEMA P807 (Seismic Evaluation and Retrofit of Multi-Unit Woodframe Buildings with 

Weak First Stories) (FEMA 2012b), can be adopted. 

5.1.2. Previous Research on Seismic Performance of Soft-Story Woodframe Buildings and Cost-

Benefit Analysis 

This section provides a brief overview of prior research on assessing the seismic performance of 

woodframe buildings. The review is primarily focused on seismic evaluation of soft-story 

buildings, however, several other more general studies on numerical modeling and performance 

assessment of woodframe buildings are also discussed. As part of the Network for Earthquake 

Engineering Simulation Soft Story (NEES-Soft) project (van de Lindt et al. 2012), two full scale 

test programs were conducted to investigate the seismic performance of retrofitted and 

unretrofitted soft-story buildings. Bahmani et al. (2016) tested a full-scale 4-story building to 

collapse. The test specimen was designed to represent typical soft-story woodframe building 

construction in the San Francisco Marina and Mission Districts from the 1950’s. The upper stories 
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of the building had two 2-bedroom apartment units and the first story had an open layout for 

parking and laundry and storage rooms. The maximum story drift at incipient collapse was 19.3% 

and the maximum residual drift in the penultimate test was 16.4%. Collapse occurred in the 1st 

story with the upper stories exhibiting near rigid body displacement. Hybrid testing to collapse of 

a 3-story soft-story building was also included in the series of NEES-Soft experiments (Jennings 

et al. 2015). The primary goal of this experiment was to evaluate the shift in collapse to the upper 

stories caused by over-strengthening the first story. Collapse occurred in the second story, which 

was constructed using archaic materials, at an intensity corresponding to approximately 125-150% 

of the maximum considered earthquake (MCE) and a story drift of 8%. Several numerical studies 

on the seismic performance of the NEES-Soft test specimen were also conducted. One, by 

Bahmani et al. (2016), used incremental dynamic analyses (IDAs) to evaluate the performance of 

the as-built and retrofitted 3-story specimen. One of the earliest numerical studies on collapse 

performance assessment of woodframe buildings was conducted by Christovaslis et al. (2009). 

Construction quality and ground motion directionality were found to have a significant impact on 

the seismic collapse fragility of two multi-story woodframe buildings. Li et al (2010) evaluated 

the effect of construction practices and site-specific hazard on the collapse risk of a 1-story 

woodframe building. Yin and Li (2010)  quantified the effect of aleatory and epistemic uncertainty 

on the collapse risk of a 1-story woodframe building. As part of an independent review of the 

FEMA P-807 guidelines, Maison et al. (Maison et al. 2014) developed a numerical model and 

performed collapse simulation on a four-story soft-story building. Sutley and van de Lindt (2016) 

chronicled the evolution of seismic design requirements of woodframe buildings from 1959 to the 

current state-of-the-art. In the same study, the performance of 37 archetypes was evaluated, 

including as-built and retrofitted (using FEMA P-807) variants of a 4-story soft-story woodframe 
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building. The retrofit provided life-safety performance at the design basis earthquake (DBE) level 

and reduced the probability of collapse at the MCE. Park and van de Lindt (2015) used a genetic 

algorithm to find the optimal FEMA P807-based retrofit solution for multistory residential 

woodframe buildings with soft stories. 

A brief summary of prior studies on cost-benefit analysis of building and bridge seismic retrofit is 

presented in this section. As part of the CUREE-Caltech Woodframe Project, Porter et al. (Porter 

et al. 2006) examined the cost-effectiveness of seismic enhancements to four hypothetical 

woodframe dwellings. Stochastic structural models incorporating uncertainties in mass, damping 

ratio and force-deformation properties were developed for four types of woodframe buildings that 

differed based on the quality of construction and whether vulnerable buildings are retrofitted or 

replaced with modern code-based designs. Earthquake induced losses were quantified using the 

Assembly Based Vulnerability method. The benefit in terms of US dollars and benefit-cost ratios 

were computed for each design across different California zip codes considering a 30-year 

planning period. Retrofit and redesign were found to be cost-effective in half of the investigated 

locations in California. The median savings ranged from $1,000 to $10,000 over 30 years. Padgett 

et al. (Padgett et al. 2010) incorporated cost-benefit analyses as part of a broader project on  bridge 

seismic retrofit. Expected life-cycle costs were quantified by integrating probabilistic damage and 

loss with seismic hazard for four types of multi-span concrete and steel bridges. Five different 

retrofit measures were considered. With the goal of maximizing cost-benefit ratio, the ideal seismic 

retrofits were selected for each studied location. The authors concluded that the best retrofit option 

depends on the seismic hazard and/or location. Liel and Deierlein (Liel and Deierlein 2013) 

performed cost-benefit evaluations for a set of pre-1970 and modern reinforced concrete frame 

buildings with assumed locations in high seismicity areas. Performance-based economic loss 
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assessment was conducted and the cost-benefit implications of retrofitting or replacing (with new 

modern designs) the pre-1970 buildings was evaluated based on the reduction in expected annual 

losses (&'() considering the repair/replacement and fatality costs of earthquake damage. The 

cost-benefit ratio over a 50-year period and the break-even retrofit cost were used to assess the 

replacement and retrofit cost-effectiveness, respectively. Replacement of the vulnerable buildings 

significantly improved life safety and reduced repair cost. Retrofitting was found to be favorable 

when the cost is less than 50% of the replacement cost. As part of a comprehensive cost-benefit 

analysis, the National Institute of Building Science (NIBS) showed that federally funded 

earthquake mitigation projects can save $3 for every $1 spent when both direct and indirect losses 

are considered (NIBS 2017). Cardone et al. (Cardone et al. 2019) performed a cost-benefit analysis 

considering different retrofit strategies for reinforced concrete frame residential buildings in Italy. 

The FEMA P-58 loss assessment methodology was implemented. Net present values of the retrofit 

investment were computed over a 50-year period, and the breakeven time for retrofit interventions 

was calculated and used to evaluate the effectiveness of different strategies. Replacing masonry 

infills and partitions was found to be preferable in terms of cost efficiency while strength-based 

retrofit techniques had longer break-even times and lower reduction in losses.  

5.1.3. Scope and Organization  

Given the vulnerability of SWOF buildings in earthquake events and widely implemented 

retrofitting policy, in Chapter 4, the main objective is investigating how retrofit impacts seismic 

performance at individual building and regional scale. A comprehensive assessment focusing on 

Los Angeles Ordinance retrofit is presented here. The discussion mainly aims to address (1) 

horizontally comparing different retrofit alternatives’ strength and collapse safety enhancements; 

(2) vertically studying Basic Ordinance retrofit benefits in earthquake induced losses and cost-
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effectiveness. The set of existing multi-family woodframe building archetypes (32 unique 

archetypes) developed in Chapter 2 is adopted in the study. Firstly, four alternative retrofit 

procedures permitted by the Ordinance Guideline, including the requirements documented in the 

LADBS Structural Design Guidelines (LADBS, 2015), 2012 IEBC (International Existing 

Building Code) Appendix Chapter A4 (henceforth referred to as IEBC A4) (IEBC, 2012), ASCE 

41-13 (Seismic Evaluation and Retrofit of Existing Buildings) (ASCE, 2013) and FEMA 

P807(Seismic Evaluation and Retrofit of Multi-Unit Woodframe Buildings with Weak First 

Stories) (FEMA, 2012) are introduced and implemented. A performance-based assessment of the 

set of existing and retrofitted SWOF woodframe building archetypes to compare the incremental 

increase in collapse safety that results from applying the four alternative retrofit procedures is then 

presented. Lastly, a FEMA P-58 based loss assessment and cost-benefit study seeking to assess 

the cost-benefit implications of the Los Angeles Ordinance at the individual building and regional 

scales is developed. In the cost-benefit analysis, only the LADBS Structural Design Guideline 

retrofit procedure is considered. 

5.2. Summary of Retrofit Alternatives  

LADBS developed a set of structural guidelines that provide the basic engineering requirements 

for retrofitting SWOF buildings in accordance with the Ordinance. In lieu of the requirements 

provided in the Structural Design Guidelines (LADBS, 2015), the following alternative retrofit 

methods that enhance the performance of the entire first story and are at least equivalent to the 

Ordinance requirements are also permitted: ASCE 41-13, FEMA P-807 and IEBC A4. In other 

words, if either of these three alternative guidelines are used, the entire weak first story must be 

analyzed and designed. The engineering requirements of the four alternative retrofit methods are 

described in this section with the key differences summarized in Figure 5.1. 
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Figure 5.1 Summary of engineering requirements for alternative retrofit procedures 

 
5.2.1. Basic Ordinance (BO) Retrofit 

The engineering requirements for retrofitting SWOF buildings in accordance with the Ordinance 

are outlined in the Structural Design Guidelines prepared by LADBS. The forces used to retrofit 

the SWOF wall lines are based on 75% of the design base shear obtained from the ASCE 7-16 

standard. The design forces can be obtained from a two-dimensional analysis of the SWOF wall 

line using the equivalent lateral force procedure in Section 12.8 of ASCE 7-16. The tributary base 

shear for the wall line is determined based on a flexible diaphragm assumption. Steel moment 
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frames, wood structural panels (WSP) and cantilevered columns are permitted to be used as 

strengthening elements. In accordance with Table 12.2-1 of ASCE 7-16, ordinary moment frames 

(OMFs) are generally not permitted in seismic categories D, E and F and intermediate moment 

frames are not permitted in seismic design categories D and E. However, in cases where (a) the 

building height does not exceed 35 feet, (b) the roof and floor dead loads do not exceed 35 psf and 

(c) the wall dead loads do not exceed 20 psf, steel OMFs can be used in seismic design categories 

D and E and intermediate moment frames can be used in seismic design category F. Concrete and 

masonry walls and steel braced frames cannot be used. The R-Factor used to design the retrofit 

elements must be less than or equal to that of the existing lateral force resisting elements in the 

story above but does not need to be less than 3.5. The story drift limit is based on the smaller of 

the allowable deformation compatible with all vertical load resisting elements (generally assumed 

to be 2%) and 2.5% (SEAOSC, 2017). 

5.2.2. ASCE 41-13 

ASCE 41-13 is a comprehensive standard that provides procedures and performance criteria for 

conducting seismic evaluation or retrofit of all building types and sizes. The Ordinance requires 

SWOF buildings retrofitted using ASCE 41-13 to achieve the Life Safety performance level in the 

BSE-1E event (20% in 50-year hazard level). However, the strength of the retrofitted story should 

not exceed 1.3 times the strength of the story above (LADBS, 2015). Four analysis procedures are 

included in the ASCE 41-13 guidelines: linear static, nonlinear static, linear dynamic and nonlinear 

dynamic. The linear static procedure (LSP) is consistent with the analysis approach permitted by 

the Ordinance. Two component-level strength checks are required for the LSP. First, the product 

of the expected strength of the deformation-controlled element (*$%), the component capacity 

modification factor (m), which accounts for ductility and knowledge factor (+), cannot exceed the 
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demand (*&'). For buildings with structural irregularities such as soft-stories, the ratio *&'/*$%  

cannot exceed 3.0. There are no drift requirements in the ASCE-41 procedures. 

5.2.3. IEBC A4 

The retrofit procedures in IEBC A4 were developed specifically for SWOF woodframe buildings. 

The analysis procedures, design base shear, strength reduction factor, element strength and drift 

requirement are the same as the Basic Ordinance Retrofit. However, IEBC A4 does not permit 

vertical elements that are not sheathed structural panels (WSPs) to be considered as providing 

structural resistance. 

5.2.4. FEMA P-507 

The FEMA P-807 retrofit guidelines incorporate a performance-based approach and relies on the 

statistical evaluation of hundreds of surrogate models that were analyzed using nonlinear response 

history analyses. The guideline considers the consequence associated with providing “too much” 

strength in the first story which could lead to excessive damage in the upper stories. The 

performance of the existing and retrofitted buildings is defined in a probabilistic manner. 

According to the LADBS Structural Design Guidelines, the spectral acceleration corresponding to 

0.5SMS per ASCE 7-10 must be used for a FEMA P807 retrofit, except for buildings located in site 

class E, where the value of Fa must be taken as 1.3 (LADBS, 2015). The target performance 

objective is based on achieving a 20% maximum probability of exceeding (POE) drift demands 

corresponding to the onset of strength loss (OSL) in the seismic force-resisting woodframe 

elements. 

5.3. Retrofit Designs for SWOF Buildings  

In this section, each of the 32 SWOF archetypes is retrofitted using the four procedures described 

in the previous section for a total of 128 retrofitted archetypes. A histogram showing the 
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distribution of -!( values for the sites of the surveyed buildings, which ranges from 0.16g to 2.99g, 

is shown in Figure 5.2. All retrofits are developed based on the median -!( (2.2g) for the surveyed 

sites. The corresponding -!) = 1.21. Risk Category II, importance factor I = 1.0 and soil site 

class D is assumed for all archetypes. The seismic weight of each building is computed following 

the same way introduced in Chapter 2. Details of the seismic weight and empirical period (ASCE 

7-16 Equation 12.8-7) of each archetype are summarized in Table 5.1.  

 

 

Figure 5.2 Histogram showing distribution of SMS values at sites of surveyed SWOF buildings 
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Table 5.1 Summary of seismic weights and ASCE 7-16 estimated period for the existing 
woodframe building archetypes 

Building ID Seismic Weight (kips) Code Period, CuTa (s) 
L1-2S-60X30 185 0.25 
L1-3S-60X30 306 0.25 
L1-2S-100X30 284 0.34 
L1-3S-100X30 467 0.34 
L2-2S-60X50 287 0.25 
L2-3S-60X50 469 0.25 
L2-2S-100X50 437 0.34 
L2-3S-100X50 709 0.34 
L3-2S-50X30 151 0.25 
L3-3S-50X30 248 0.25 
L3-2S-80X30 242 0.34 
L3-3S-80X30 394 0.34 
L4-2S-60X50 292 0.25 
L4-3S-60X50 475 0.25 
L4-2S-100X50 444 0.34 
L4-3S-100X50 716 0.34 

 

The locations and types of retrofit elements used for each of the four procedures is shown in Figure 

5.3. Since only a single floor plan is shown for each unique layout, the elements shown encompass 

all associated archetypes and retrofit methods. The details of each retrofit element (frame beam 

and column wide flange section and WSP length and nailing) including the applicable archetype 

and retrofit method are summarized in Appendix C of the thesis. A 15’-0” one-bay steel OMF is 

used in the open wall lines for all four retrofit methods and archetypes. However, as noted earlier, 

the Basic Ordinance procedure only requires the SWOF wall lines to be retrofitted. Therefore, the 

steel OMF placed on the partially or completely open wall line is the only retrofit element used for 

this method. The force demands used to design these elements are computed using a seismic 

response modification coefficient and deflection amplification factors of 2 = 3.5 and 5' = 3.0, 

respectively, which are consistent with stucco, GWB and HWS serving as the lateral force resisting 
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elements in the upper stories (LADBS, 2015). Since the strength of the existing panels cannot be 

considered for the IEBC A4 retrofits, WSPs are used together with the OMFs, where the demands 

are computed using the same R and CD factors as the Basic Ordinance Method. As shown in Figure 

5.3, the WSPs are used to replace portions of the existing stucco walls.  

The OMF-WSP combination is also used as needed for the ASCE-41 retrofit procedure, where the 

site parameters corresponding to the BSE-1E event (20% in 50-year earthquake) are S*+ = 2.2g 

and S*) = 1.2g. The site coefficients Fa and Fv (from ASCE 41-13 Tables 2-3 and 2-4) are the 

same as the ones obtained from ASCE 7-16. As discussed earlier, the LSP is used for the ASCE 

41-13 retrofit. To compute the pseudo seismic force (ASCE 41-13 Equation 7-21), the product of 

C) (modification factor used to relate expected inelastic displacements to elastic displacements) 

and C, (modification factor to account for hysteresis shape) is taken as C)C, = 1.1 based on Table 

7-3 of ASCE 41-13. The effective mass factor to account for higher modal mass participation 

effects (Table 7-4 of ASCE 41-13) C- = 1.0. The component-demand modification factor (m-

factor) corresponding to the life safety limit state is 3.6, 4.7, 2.3 and 3.0 for stucco, GWB, HWS 

and WSP (Table 7-4 of ASCE 41-13), respectively and 6.0 for the OMF beams and columns (Table 

9-4 of ASCE 41-13). The expected panel strengths (Q./) are based on Table 12-1 of ASCE 41-13. 

The knowledge factor is taken as κ = 0.75 because the default strength and stiffness values are 

used. Note that all ASCE 41-13 retrofits are controlled by the LADBS Structural Guideline 

provision, which states that the strength of the retrofitted 1st story need not exceed 1.3 times the 

strength of the story above.  

The FEMA P-807 retrofits are developed using the target performance objective of a 20% 

maximum POE drift demands corresponding to the OSL for a spectral acceleration corresponding 

to 0.5S*+ = 1.1g, in accordance with the LADBS Structural Guidelines. First, the performance of 
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the existing structure is evaluated. The plan layout and seismic weight of the existing building are 

imported into the FEMA P-807 computer-aided tool including the location of every interior and 

exterior panel and the short period spectral acceleration demand corresponding to 0.5S*+. The 

nonlinear load-deflection curves for the stucco, GWB and HWS are based on Table 4-1 of FEMA 

P-807. The performance of the structure is evaluated and retrofit is required for the cases/directions 

where the spectral capacity of the existing first story corresponding to 20% POE at the OSL limit 

state is less than 0.5S*+. For the cases where the required strength of the retrofit elements exceeds 

the upper limit (to avoid excessive damage in the 2nd story), an “optimized” solution is adopted, 

whereby the between 90% of the required strength and 110% of the upper limit strength is provided. 

Like ASCE 41-13 and IEBC A4, a combination of steel OMFs on the open wall lines and WSPs 

replacing portions of the existing panels, are used for the FEMA P-807 retrofits. 
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Figure 5.3 First floor plan showing wall layouts and locations of retrofit elements including 
moment frames and wood structural panels (WSPs): (a) L1, (b) L2, (c) L3 (L = 50’-0”), (d) L3 

(L = 80’-0”), (e) L4 (L = 60’-0”) and (f) L4 (L = 100’-0”) 
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5.4. Performance Evaluation of Existing and Retrofitted Buildings 

To evaluate the aforementioned four retrofit alternatives’ strength and collapse safety 

improvement, three-dimensional numerical model is created following the procedure described in 

Chapter 2 in OpenSees for each of the existing building and retrofitted buildings (a total of 156 

buildings with 32 existing and 128 retrofitted buildings). Details of results are presented and 

discussed in this section. 

5.4.1. Nonlinear Static Analysis  

Nonlinear static (pushover) analyses are performed on the numerical models to investigate the 

effect of retrofit on the strength and overall drift capacity of the SWOF buildings. The overall base 

shear versus drift for the Y-Direction (longer dimension direction) of buildings L1-S2- 60X30-

GWB and L1-S2-60X30-HWS is shown in Figure 5.4. The pushover responses for the existing 

SWOF buildings are shown in Figure 5.4 (a), (b) including the roof, 1st and 2nd story drift where, 

most of the drift is concentrated in the first story with very low demand in the upper story. 

Consistent with earlier observations regarding the panel force–deformation envelope, the strength 

of the GWB building is slightly greater than the HWS building. However, the response of the HWS 

building is the more ductile of the two.  

Figure 5.4 (c), (d) show the pushover response in terms of roof drift for the existing and retro- 

fitted GWB and HWS structures, respectively. As expected, all four retrofit cases increase both 

the strength, =012, and drift capacity, >3, of the existing building, where the latter is defined as the 

roof drift demand corresponding to 20% strength loss. The IEBC A4 retrofit is the only one that 

completely ignores the existing panels and therefore adds the most strength. As discussed later, 

this is an observation that holds true for all buildings. For the GWB building case shown in Figure 

5.4 (c), the ASCE 41-13 and FEMA P807 retrofit designs are the same and thus, the pushover 
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curves overlap exactly. The >3, for that same building ranges from 0.95% in the existing SWOF 

to 2.4% in the IEBC A4 retrofitted case. For the HWS building, >3	is 1.3% and 4.2% in the existing 

SWOF and IEBC retrofitted cases, respectively.  

 

Figure 5.4 Y-Direction normalized base shear (V/W) versus drift for existing SWOF (a) L1-S2-
60X30-GWB and (b) L1-S2-60X30-HWS buildings and the four retrofitted (c) L1-S2-60X30-

GWB and (d) L1-S2-60X30-HWS buildings 
 

Figure 5.5 shows the ratio between the maximum base shear of the existing and retro- fitted cases 

(=012,567589./=012,62;<7. ) for all buildings. The goal is to inform the relationship between an 

increase in pushover strength and the improvement in collapse safety of the retrofitted structures. 

All four building properties including the type of interior wall panel, number of stories, plan layout 

and aspect ratio, are identified in Figure 5.5, where the following conclusions can be drawn:  

Roof 2nd Story 1st Story

Existing Basic Ordinance ASCE 41-13 IEBC A4 FEMA P807
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• The Y-Direction of the buildings with layout L1 derive the greatest benefit in terms of increase 

in pushover strength. The same is true about the X-Direction of buildings with layout L2.  

• On average, =012,567589./=012,62;<7.  is 20% higher in buildings with HWS interior panels 

compared to the cases where the interior panels are GWB.  

• The size of the building in plan has only a small effect on =012,567589./=012,62;<7., which on 

average, is only approximately 4% higher for the large aspect ratio cases.  

• For the IEBC A4 retrofit, =012,567589./=012,62;<7. for the 2-story buildings is higher (31%) than 

the 3-story cases. However, for the other three retrofit cases the average =012,567589./

=012,62;<7. is only approximately 3% higher for the 2-story buildings.  

• The overall increase in pushover strength is highest for the IEBC A4 retrofit (an average of 

84%) and comparable for the other three retrofit methods where the average =012,567589./

=012,62;<7. is 35%, 33% and 36% for the Basic Ordinance, FEMA P807 and ASCE 41-13 

retrofits, respectively.  
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Figure 5.5 Ratio of maximum base shear from pushover response between existing and 
retrofitted SWOF building (=012,567589 =012,62;<7⁄ ): (a) basic ordinance, Y-Direction, (b) basic 
ordinance, X-Direction, (c) FEMA P807, Y-Direction, (d) FEMA P807, X-Direction, (e) IEBC 
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A4, Y-Direction, (f) IEBC A4, X-Direction, (g) ASCE 41-13, Y-Direction and (h) ASCE 41-13, 
X-Direction 

Figure 5.6 shows a scatter plot with the ratio between the ultimate roof drift capacity for the 

existing and retrofitted cases (>3,567589./>3,62;<7.) versus =012,567589./=012,62;<7.. Overall, a strong 

trend is observed between the two metrics. However, Figure 5.6 also reveals that, while the trend 

is generally very strong for the Basic Ordinance, FEMA P807 and ASCE 41-13 retrofit methods, 

it is moderate for the IEBC retrofit. A detailed examination of the >3,567589./>3,62;<7.dataset 

provided further insight into this and other issues related to the effect of each retrofit method on 

drift capacity.  

For some building properties (plan layout, plan aspect ratio and type of interior panel), the effect 

on >3,567589./>3,62;<7. and =012,567589./=012,62;<7. are very similar. However, there are also some 

key differences. For instance, unlike =012,567589./=012,62;<7., the mean value of >3,567589./>3,62;<7. 

for all IEBC A4 retrofits (48%) is comparable to the other methods (between 44 and 60%). Also, 

when the effect of retrofit on >3  is disaggregated based on the number of stories, IEBC A4 

provides the least benefit for the 3-story cases where the mean >3,567589./>3,62;<7. is only 14%. This 

is significantly smaller than the other three retrofit methods where the mean >3,567589./>3,62;<7. is 

between 41 and 54%. Whereas, for the 2-story building cases, the mean >3,567589./>3,62;<7.  is 

highest for the IEBC A4 retrofits (approximately 81%) compared to the other three (49% to 70%). 

This series of observations points to a key finding: the high levels of strength that the IEBC retrofit 

adds to the 1st story (because the existing panels are ignored), on average, also provide a benefit 

in terms of roof drift capacity. However, this benefit is significantly eroded as the number of stories 

is increased where the drift demands begin to concentrate in the 2nd story. The implications of this 

finding to collapse safety is discussed in the next section.  
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Figure 5.6 Plot showing relationship between increase in strength and drift capacity provided by 
alternative retrofit methods 

 
5.4.2. Collapse Performance Assessment  

The collapse safety of the existing and retrofitted building cases is assessed using incremental 

dynamic analyses (IDAs), where each ground motion pair is scaled until the collapse point is 

reached. The collapse analysis is performed using the far-field record set of 22 component pairs of 

the ground motions specified in the FEMA P695 (FEMA, 2009) guidelines using bi-directional 

loading. Since the primary focus of the current study is the relative change in median collapse 

capacity due to the alternative retrofit methods, adjustments for spectral shape and modeling 

uncertainty are not considered.  

Collapse fragility curves for the existing and retrofitted SWOF buildings L1-2S-60X30- GWB and 

L1-3S-60X30-GWB are shown in Figure 5.7. The only difference between these two building 

cases is the number of stories. The median collapse intensity for the existing 2- (Figure 5.7a) and 

3-story (Figure 5.7b) building cases is 1.08 g and 0.77 g, respectively. It is not surprising that the 

existing 3-story case has a lower median collapse capacity com- pared to its 2-story counterpart 
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since the two buildings have the same first story wall layout (where most of the drift demands are 

concentrated) but the former has a higher seismic weight. For the 2-story case, the IEBC A4 retrofit, 

which increases the median collapse capacity by a factor of approximately 1.9, provides the 

greatest benefit to collapse safety. The increase in the median collapse capacity is approximately 

40% for the FEMA P807 and ASCE 41-13 retrofits and 50% for the Basic Ordinance retrofit.  

Relative to the 2-story, the IEBC A4 retrofit results in a smaller increase in the median collapse 

capacity (approximately 53%) for the 3-story case. The increase in the median collapse capacity 

is 60% for Basic Ordinance and FEMA P807 and 45% for ASCE 41-13. This finding is consistent 

with earlier results where, even though the IEBC A4 retrofit provides the greatest increase in the 

pushover strength for the 3-story case, the overall impact on drift capacity is minimal and less than 

the other three retrofit methods.  

 

Figure 5.7 Collapse fragility curves for existing and retrofitted SWOF buildings: (a) L1-2S-
60X30-GWB and (b) L1-3S-60X30-GWB 

 
Figure 5.8 shows the ratio of the median collapse capacity between the existing and retrofitted 

buildings @-AB=8>,567589./-AB=8>,62;<7.C for the complete set of archetypes. Like Figure 5.5, each plot 
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corresponds to a different retrofit method and is annotated to highlight the effect of the various 

building properties. The almost identical mean -AB=8>,567589./-AB=8>,62;<7. values for the high and low 

aspect ratio cases points to the fact that the size of the building in plan did not play a major role in 

the effect of retrofit collapse safety. Consistent with the findings related to pushover strength, the 

overall benefit of retrofit to collapse safety is highest for layouts L1 and L2, where the average  

-AB=8>,567589./-AB=8>,62;<7. is 1.63 and 1.74, respectively. -AB=8>,567589./-AB=8>,62;<7. is approximately 

20% higher for the buildings with HWS interior panels compared to GWB. This small difference 

reflects the few cases where the 1st story retrofit results in 2nd story collapse (no collapses occurred 

in the 3rd story) and the HWS buildings benefit from the higher ductility of the interior panels. 

Overall, retrofit increases the collapse safety of the 2- and 3-story building cases with the same 

mean -AB=8>,567589./-AB=8>,62;<7.  (50%). While the IEBC retrofit provides the highest overall 

improvement in collapse safety, benefits vary significantly between the 2- and 3-story cases. For 

the 2-story cases, the improvement in collapse safety is significantly higher than the other retrofit 

methods with a mean -AB=8>,567589./-AB=8>,62;<7. of 78% compared to 39% - 44% for the other three 

methods. On the other hand, compared to the other three methods, IEBC A4 provides 

approximately the same benefit to the 3-story building cases with a mean -AB=8>,567589./

-AB=8>,62;<7.of 50%. This result further highlights the importance of considering the building height 

or number of stories when selecting an appropriate retrofit method. 



    
 

160 

 

Figure 5.8 Ratio of median collapse capacity between existing and retrofitted SWOF buildings: 
(a) basic ordinance (b) FEMA P807, (c) IEBC A4 and (d) ASCE 41-13 

 
Figure 5.9 shows a plot of =012,567589./=012,62;<7. versus -AB=8>,567589./-AB=8>,62;<7. where it can be 

observed that the increase in pushover strength has an overall strong correlation with the 

improvement in collapse safety. However, consistent with earlier observations, the benefit of added 

strength varies across the different retrofit methods. The higher degree of “scatter” in the IEBC A4 

datapoints reflects the differences in the how much the 2- and 3-story SWOF buildings benefit from retrofit. 

More importantly, the plot provides critical insights on the development of machine learning 

building performance prediction models, and it further motivates the implementation of prediction 

module discussed in Chapter 6.  
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Figure 5.9 Effect of =012,567589./=012,62;<7. on -AB=8>,567589./-AB=8>,62;<7. 
 

5.5. Cost-Benefit Analysis for Los Angeles Ordinance Retrofit 

In the previous section, the strength and collapse safety improvements were compared across 

different retrofit alternatives permitted by Ordinance Retrofit Guideline. In the past 5 years since 

the implementation of mandatory retrofit plan, more than 43% inventories have been in a 

compliance status of fully retrofitted (level 3 – complete construction). Therefore, from the 

perspective of engineering practice, the evaluation of earthquake induced losses is informative for 

house owners, decision makers, insurers and etc. In this section, a multi-scale cost-benefit study is 

conducted to assess the cost-benefit implications of the Los Angeles Ordinance at the individual 

building and regional scales. The set of existing archetypes developed in Chapter 2 is adopted for 

the current study, however, only the LADBS Structural Design Guideline retrofit procedure is 

considered. For each existing archetype, retrofits are developed based on two site seismicity groups. 

At the individual building scale, comparative loss assessments based on the FEMA P-58 

methodology are performed on the existing and retrofitted archetypes. The cost-effectiveness of 

the individual building retrofits is assessed based on intensity-based and expected annual losses. 
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At the regional scale, the cost-benefit of the ordinance-mandated retrofits for the approximately 

12,000 affected buildings are first assessed for a Mw 7.1 Puente Hills event (Chen et al. 2016). 

Lastly, a first-of-its-kind stochastic-event-set-based cost-benefit analysis is performed using 8,313 

events from the Uniform California Earthquake Rupture Forecast Version 2 (UCERF2) model 

(Field et al. 2009). 

The retrofits for the current study are based on the procedure described in the LADBS Structural 

Design Guidelines (LADBS, 2015). Recall Figure 5.2, to consider the variation in design forces 

based on building location, the existing archetypes are retrofitted using two -!( values and the 

corresponding seismic design parameters. More specifically, the maximum of the 0-50th and 50th-

100th percentile values (2.2g and 2.96g) are used for the retrofit designs. The corresponding -!) 

values are 2.2 g and 3.0 g, respectively. All retrofit designs are based on site class D, Risk Category 

II and an importance factor D = 1.0 in accordance with the LADBS guidelines (LADBS 2015). 

All other retrofit design settings remain the same as discussed in section 4.5. For all archetypes, 

the retrofit element consists of a 15’-0” one-bay steel OMF that is placed at the center of the SWOF 

wall line (recall Figure 5.3). The member sizes used for all retrofits (a total of 64 corresponding to 

2 retrofit cases for each of the 32 archetypes) are summarized in Appendix D of the dissertation. 

5.5.1. Nonlinear Structure Response Simulation  

Three-dimensional numerical models were created for all existing and retrofitted buildings (a total 

of 96 models). The modeling procedure follows the details introduced in Chapter 2. To access the 

earthquake induced losses, FEMA P-58 methodology is used as the basis for the cost-benefit 

analysis of the ordinance-mandated SWOF retrofits. The process requires probabilistic 

quantification of engineering demand parameters (&EFG) and the demolition and collapse limit 

state. These are obtained by performing bi-directional nonlinear response history analyses using 
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the 22 pairs of far-field ground motions specified in FEMA P695 (FEMA 2009). For each 

structural model, incremental dynamic analyses (IDAs) are performed using increments 

corresponding to 10% of the first mode spectral acceleration level at the maximum considered 

earthquake (MCE) (-B?!,!$%). A single scale factor is applied such that the median spectra for the 

ground motion set matches the target intensity. Additionally, the directions of the record-pairs are 

switched such that 44 analysis cases are conducted at each intensity. Collapse is defined as the 

condition where dynamic instability occurs (zero or near-zero slope of the IDA plot), or the 

maximum story drift ratio exceeds 10% (FEMA 2000). At each intensity level, the maximum story 

drift ratio in all stories and the peak acceleration at all floor levels in both directions are recorded. 

These EDPs are needed to compute the non-collapse losses in the FEMA P-58 methodology. The 

maximum residual drift over all stories are also recorded and used to consider demolition losses. 

The median collapse intensity is calculated by assuming a lognormal distribution and minimizing 

the squared loss in the empirical data. A single dispersion value of 0.6 is used for all existing and 

retrofitted archetypes, which includes both record-to-record variation and model parameter 

uncertainty (FEMA 2009). The spectral shape factor is computed for the individual archetypes 

based on their fundamental period and the period-based ductility obtained from nonlinear static 

analyses (FEMA 2009).  

Figure 5.10 shows the ratio between the median of the maximum non-collapse and non-demolition 

story drift ratio (-E2) (considering the 1st story and longer dimension direction) for the retrofitted 

(-E2567589) and existing (-E262;<7) archetypes. These -E2567589/-E262;<7 values provide some 

initial insight into the effect of the SWOF retrofit on losses associated with repairing drift-sensitive 

non-structural components. An intensity level corresponding to 25% of the design basis earthquake 

(EH&) is used to ensure that the analysis results are not dominated by either collapse or demolition 
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responses. Figure 5.10a and Figure 5.10b show results for the retrofit cases based on the median 

and maximum -!(  (considering all sites in the study region), respectively. Most -E2567589/

-E262;<7 values shown in Figure 5.10 are less than 1.0, which means that, on average, the SWOF 

retrofits are able to reduce the peak non-collapse, non-demolition story drift ratios. The average 

reduction is 11.2% for the median -!( retrofits and 5.6% for the maximum -!( retrofits. Figure 

5.10 also shows that, compared to those with 2 stories, -E2567589/-E262;<7 is consistently higher 

for the 3-story archetypes. It is also observed that the archetypes with the L2 and L1 1st story wall 

layout derive slightly greater benefit from the SWOF retrofit (in terms of non-collapse, non-

demolition story drift ratios). Note that there are several cases with greater than 1 ratio, which 

suggests that after being retrofitted, the building has greater non-collapse non-demolition SDR. In 

these situations, the residual drift threshold for demolition is exceeded for several ground motions 

(which are not excluded) in the existing building but not in the retrofitted case, which can lead to 

higher non-demolition SDRs in the latter.   

 

Figure 5.10. Ratio of the maximum story drift ratio between the retrofitted and existing SWOF 
buildings: (a) median -!( and (b) maximum -!( retrofit 
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Figure 5.11 compares the ratio between the peak non-collapse, non-demolition story drift ratio in 

the 2nd and 1st stories (-E2,@A/-E2)<7)  of the retrofitted and existing buildings i.e. 

(-E2,@A/-E2)<7)	567589/(-E2,@A/-E2)<7)	62;<7. The goal here is to provide some insight into 

how the SWOF retrofits affect the distribution of peak story drifts (and the associated component-

level repair costs) along the height. A high (-E2,@A/-E2)<7)	567589/(-E2,@A/-E2)<7)	62;<7 

value means that the retrofit reduces the concentration of drifts in the first story. This also means 

that, relative to the existing case, the 2nd story drift demands could be higher in the retrofitted case.  

For both the median and maximum -!(  retrofit cases, the (-E2,@A/-E2)<7)	567589/(-E2,@A/

-E2)<7)	62;<7 values are highest in the L1 and L2 archetypes. In other words, these two archetypes 

experience the highest level of drift “redistribution” from the 1st to the 2nd story. As discussed later 

in the paper, this observation has implications to where damage to drift-sensitive non-structural 

components is concentrated.  

 

Figure 5.11. Ratio of 2nd to 1st story maximum drift ratio between the retrofitted and existing 
SWOF buildings: (a) median -!( based retrofit and (b) maximum -!( based retrofit 

 
The ratio between the median non-collapse, non-demolition peak floor acceleration (FI') for the 

retrofitted (FI'567589) and existing (FI'62;<7)archetypes is shown in Figure 5.12. FI'567589/
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FI'62;<7 is observed to be greater than 1.0 for almost all cases, indicating that the SWOF retrofit 

has an overall stiffening effect on the structure, which increases the peak floor accelerations. The 

impact is highest for the 3-story archetype with the L1 and L2 1st story wall layout. It is not 

surprising that FI'567589/FI'62;<7 is 50% higher in the maximum -!( retrofit cases (compared 

to the median -!(  retrofit cases) for the L1 and L2 archetypes because the designs produce 

stronger and stiffer moment frames. These results provide some initial insight into the effect of the 

SWOF retrofit on damage and losses associated with acceleration-sensitive components.   

 

Figure 5.12. Ratio of peak floor acceleration between retrofitted and existing SWOF buildings: 
(a) median -!( and (b) maximum -!( retrofit 

 
The effect of the SWOF retrofits on peak residual story drifts (2E2) serves as a preliminary 

indication of the implication to demolition losses. To this end, Figure 5.13 shows the ratio of non-

collapse 2E2G  between the retrofitted (2E2567589)  and existing (2E262;<7)  buildings. The 

analyses used to generate these results are also performed at the 25% DBE hazard level. The 

2E2567589/2E262;<7 values for all cases is less than 1.0, indicating that the SWOF retrofit reduces 

the non-collapse residual drift demands. Unlike -E2 and FI', the number of stories and design 

intensity (median versus maximum -!() have less of an influence on how the SWOF retrofit 
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affects residual drift demands. However, consistent with the other two EDPs, the archetypes with 

the L1 and L2 1st story wall layout benefit the most from the retrofit in terms of reduced residual 

drifts.  

 

Figure 5.13. Ratio of maximum residual drift between retrofitted and existing SWOF buildings: 
(a) median -!( and (b) maximum -!( retrofit 

 
The effect of the SWOF retrofit on collapse performance is summarized in Figure 5.14, which 

shows the collapse margin ratio (5J2)   between the retrofitted and existing (5J2567589/

5J262;<7) archetypes. The 5J2 is defined as the ratio between median collapse intensity and 

-B?),!$% . This metric is chosen because it informs the relative improvement given different 

seismic design parameters. It’s interesting that the average 5J2567589/5J262;<7  value for 

retrofits based the median (47%) and maximum (51%) -!( are comparable. In other words, the 

additional strength and stiffness provided in the maximum -!( retrofit does not provide significant 

additional benefit in terms of collapse safety. The reason is that, at some threshold of strength 

added to the 1st story, the collapse mechanism moves to the 2nd story and providing additional 1st 

strength beyond this upper limit does not improve the collapse safety. In fact, 6 out of the 32 

archetypes retrofitted based on the maximum -!(  have slightly lower 5J2567589/5J262;<7  
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values than the median -!( retrofitted cases. Similar to the EDPs, the archetypes with the L1 and 

L2 1st story wall layouts benefit the most from the SWOF retrofit. Both have average 

5J2567589/5J262;<7 values of approximately 1.7 compared to 1.3 and 1.2 for the L3 and L4 

retrofits, respectively. Compared to the 2-story buildings, 5J2567589/5J262;<7 is 18% and 10% 

higher in the 3-story archetypes for the median and maximum -!( retrofits, respectively. Because 

of the higher ductility, 5J2567589/5J262;<7is approximately 20% higher for the archetypes with 

HWS panels compared to those with GWB. The aspect ratio has a minimal effect of how much the 

SWOF retrofit affects collapse safety. 

 

Figure 5.14. Ratio of collapse margin ratio between retrofitted and existing SWOF buildings: (a) 
median -!( and (b) maximum -!( retrofit 

 
5.5.2. FEMA P-58 Loss Assessment  

The FEMA P-58 methodology, which integrates seismic hazard assessment, nonlinear structural 

response simulation, damage evaluation and quantification of decision-metrics, is used to obtain 

the economic losses for the existing and retrofitted archetypes. The mean annual frequency of 

exceedance of specific ground motion intensity levels (or hazard curves) is obtained from 

probabilistic seismic hazard analysis applied to the site of interest. As described in Section 4.7.1, 
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&EFG are generated from NRHAs. Component level fragility curves are used to link these &EFG 

to physical damage and statistical loss functions are used to describe the relationship between 

physical damage and repair or replacement costs. Within the context of the FEMA P-58 

methodology, the cost of collapse, demolition and component-level repairs are probabilistically 

combined using an expected value calculation.  

The process outlined in the Chapter 2 produces a building-level loss function, which describes the 

expected losses conditioned on the ground motion intensity level. Figure 5.15 and Figure 5.16 

present the loss function for the L1-2S-60x30-GWB and L4-2S-100x50-GWB archetypes, which 

experience the most and least reduction in expected annual losses after being retrofitted, 

respectively. The losses are disaggregated based on the contributions from collapse, demolition 

and component repairs. Using a -1value of 0.5g (34% and 25% DBE for median and maximum 

-!( retrofits, respectively) as the intensity-based point of comparison, the reduction in total losses 

for the L1-2S-60x30-GWB archetype is approximately 70% for both the median and maximum 

-!( retrofits. At the same intensity, the losses in the L4-2S-100x50-GWB archetype are reduced 

by 5% and 17% for median and maximum -!( retrofits, respectively. For both buildings, the two 

retrofit cases (based on the median and maximum -!() result in an overall reduction in the collapse 

and demolition losses and an increase in the losses due to component repairs.  Figure 5.15 shows 

that the collapse loss at -1 = 0.51 is reduced by 73% and 82% for the median and maximum -!( 

retrofits, respectively. At the same intensity level, the demolition losses decrease by 89% and 86%, 

while the component-level repair costs increase by 53% and 57%, respectively. The reduction in 

the collapse and demolition losses is consistent with the results shown in Figure 5.15 and Figure 

5.16. Two factors explain the increase in component-level repair costs after retrofit. First, there is 

an increase in damage to acceleration sensitive components, which is also reflected in the FI' 



    
 

170 

comparison shown in Figure 5.12. Second, the first story retrofit increases the drift demands in the 

upper stories, where there are more damageable components (relative to the more open first story). 

Consequently, at lower intensity levels where component repair dominates the total losses, the 

retrofitted buildings experience a higher total loss than the existing buildings. 

 

Figure 5.15. L1-2S-60x30-GWB intensity-based loss curve: (a) existing building, (b) median -!( 
and (c) maximum -!( retrofit 

 

Figure 5.16. L4-2S-100x50-GWB intensity-based loss curve: (a) existing building, (b) median 
-!( and (c) maximum -!( retrofit 

 
Expected annual losses (&'() are computed by numerically integrating the loss functions with 

site-specific hazard curves. To highlight the building-specific &'( comparisons, hazard curves are 

obtained from the United States Geological Survey (USGS) (USGS 2019) for two sites 

corresponding to the median (34.0453, -118.456) and maximum -!( (34.3237, -118.449) retrofits. 

The total and disaggregated &'(  for the L4-2S-100x50-GWB and L1-2S-60x30-GWB archetypes 

Lo
ss
Ra
tio

(a) (b) (c)

Total Collapse Demolition Component

Sa (g)

Total Collapse Demolition Component

Lo
ss
Ra
tio

Sa (g)

(a) (b) (c)



    
 

171 

are shown in Figure 5.17 and Figure 5.18, respectively. The SWOF retrofit has a small but 

measurable effect on the &'( for L4-2S-100x50-GWB, with reductions of 18% and 6.5% for the 

median and maximum -!(  retrofits, respectively. Whereas the total &'(  is reduced by 

approximately 60% for the two retrofit cases of the L1-2S-60x30-GWB archetype. Most of this 

reduction is attributed to the demolition losses, which decreases by almost one half after retrofit 

(both cases). Consistent with earlier observations, the &'(G attributed to component repairs are 

higher for the retrofitted cases.  

 

Figure 5.17. Disaggregated  for L1-2S-60x30-GWB archetype: (a) median -!( existing, (b) 
median -!( retrofit, (c) maximum -!( existing and (d) maximum -!( retrofit 

 

 

Figure 5.18. Disaggregated  for L4-2S-100x50-GWB archetype: (a) median -!( existing, (b) 
median -!( retrofit, (c) maximum -!( existing and (d) maximum -!( retrofit 
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5.5.3. Cost-Benefit Analysis  

5.5.3.1. Introduction and Assumptions  

The cost-benefit analysis of the SWOF retrofit is presented in this section. While the main focus 

is on the regional scale, building-specific results for the best and worst case (in terms of cost-

benefit) are also presented. The cost of the retrofit is determined based on information provided 

by general contractors (Soft Story Retrofit Pros 2019). Generally, this cost primarily depends on 

the number and type of retrofit elements, which, in this study, comprise of ordinary steel moment 

frames and the associated strip footing foundation. The average retrofit cost per unit ranges from 

approximately $4,000 to $6,250 and is proportional to total number of units (Soft Story Retrofit 

Pros 2019). In other words, the per unit retrofit cost is generally lower for buildings with more 

units. To consider inherent uncertainties, the per unit retrofit cost is assumed to take on a uniform 

distribution that is centered at the average per unit cost (conditioned on the number of units) with 

a range that is equal to the average cost plus/minus $400. The number of units associated with each 

archetype is determined by the plan layout specified in Appendix A.  

Two types of earthquake induced losses are considered: direct losses due to repair or replacement 

of the damaged building and the cost of fatalities. Fatality costs are determined by assigning a 

dollar value to human life. Previous studies have adopted values ranging from $2 to $5 million per 

human life (Mitrani-Reiser 2007). The current study initially adopts a lower-bound value of $2 

million for each human life and the sensitivity of the cost-benefit ratio to this assumption is 

examined. The fatality assessment is performed using the SP3 tool, which implements the FEMA-

P58 methodology.  For both the building-specific and regional-scale assessments, the cost-benefit 

ratio is computed as the retrofit cost divided by the reduction in losses due to the retrofit. The only 

difference is that, for the latter, the retrofit cost and loss-reduction for the individual buildings are 
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aggregated for the entire portfolio before computing the regional cost-benefit ratio. The value of 

the cost-benefit ratio can be interpreted as follows: (i) a negative cost-benefit ratio means that the 

loss associated with the retrofitted building is greater than that of the existing one i.e. the 

denominator is negative (least desirable), (ii) a positive cost-benefit ratio that is less than 1.0 means 

that the cost of the retrofit is less than the reduced losses (most desirable), (ii) a positive cost-

benefit ratio that is greater than 1.0 means that the cost of the retrofit is higher than the reduced 

losses. Besides the cost-benefit ratio, the effectiveness of the retrofit can be assessed based on the 

break-event time, which is obtained by solving for K in Equation (5.1) (Padgett et al. 2010) 

L562;<7,7

?

7BC

= 5567589 +L5567589,7

?

7BC

				 (5.1) 

Where ∑ 562;<7,7?
7BC  and ∑ 5567589,7?

7BC  are the accumulated annual costs for the existing and 

retrofitted buildings, respectively, over a period K and 5567589is the cost of the retrofit. The break-

even time evaluates the duration needed to recoup the cost of the investment with lower values 

being more desirable. Unlike the cost-benefit ratio, which considers event-based or ground motion 

intensity-based losses, the break-even time considers expected annual losses (i.e. the probabilistic 

combination of all shaking intensities). However, like the event-based or intensity-based losses, it 

considers the cost of earthquake-induced damage and fatalities. Another more tangible 

interpretation of the break-even time can be obtained if there is a reduction in the cost of earthquake 

insurance if the building is retrofitted. In that case, the break-even time would consider the time it 

takes for annual premium discount plus &'( reduction to equal the upfront cost of the retrofit.  A 

3% annual discount rate is considered when computing the break-even time (Lee and Ellingwood 

2015). 
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5.5.3.2. Building-Specific Cost-Benefit Analysis 

First, a building-specific cost-benefit assessment is performed for the L4-2S-100x50-GWB and 

L1-2S-60x30-GWB archetypes and the median and maximum -!( retrofit designs. Considering 

the losses due to earthquake damage and fatalities, the cost-benefit ratios corresponding to the 

DBE and MCE events are shown in Figure 5.19.  Among the cases that are shown, only the median 

-!( retrofit for the L1-2S-60x30-GWB evaluated at the DBE level has a cost-benefit ratio that is 

less than 1.0. A general observation is that the cost-effectiveness of the retrofit decreases as the 

ground motion intensity increases from the DBE to the MCE hazard level where collapse and 

demolition losses dominate for both the retrofit and existing cases.  

 

Figure 5.19. Cost-benefit ratios for the L1-2S-60x30-GWB and L4-2S-100x50-GWB archetypes 
at the DBE and MCE shaking intensities 

 
Using Equation (5.1), the break-even time is computed for the L4-2S-100x50-GWB and L1-2S-

60x30-GWB archetypes and the median and maximum -!(  retrofit designs. The cost 
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considerations include the expected annual earthquake losses (building damage and fatalities), the 

retrofit investment and the annual cost of earthquake insurance premiums. In other words, the 

break-even analysis is performed with and without considering earthquake insurance.  The 

expected annual losses are obtained directly from SP3. Estimating earthquake insurance premiums 

requires a detailed assessment that considers the building age, configuration, contents, seismic 

vulnerabilities and site hazard. However, in the current study, upper and lower bound values of  

$800 and $5,000, respectively are used for the annual premium cost (Andrew Blankstein and 

Monica Alba 2014). The California Earthquake Authority offers insurance premium discounts 

ranging from 10% to 25% for retrofitted multi-family homes (California Earhtquake Authority 

2019). In the current study, a 10% reduction in the earthquake insurance premium is assumed for 

the retrofitted buildings. For the cases where earthquake insurance is considered, the premium is 

included in the annual cost.  

Figure 5.20 through Figure 5.23 show the yearly accumulated costs in US dollars for L1-2S-60x30-

GWB and L4-2S-100x50-GWB. The considered cases include combinations of the existing and 

retrofitted (median and maximum -!( ) buildings, with and without considering earthquake 

insurance for annual premiums of $800 and $5,000. The accumulated costs are disaggregated 

based on the earthquake losses and insurance premiums (where considered). Figure 5.20 and 

Figure 5.22 show that, for the L1-2S-60x30-GWB archetype, the break-even time is between one 

and two years with and without earthquake insurance. In contrast, Figure 5.21 and Figure 5.23 

show that the accumulated cost of the retrofitted L4-2S-100x50-GWB archetype (including the 

upfront retrofit cost) is higher than the existing one during the first ten years. Also, the break-even 

time for the maximum -!(  design is approximately 40 years for both insured and uninsured 

buildings. It is noteworthy that, at the $5000 level and considering a 40-year period, the 
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accumulated annual insurance premium is still less than 20% of the total accumulated cost. On 

average, the break-even time for the Ordinance retrofit considering all archetypes is between 4 to 

5 years. Also, consistent with earlier results, the L1 and L2 archetypes have the shortest break-

even times compared to L3 and L4.  

 

Figure 5.20. Accumulated cost versus time for the L1-2S-60x30-GWB archetype and median 
-!( retrofit: (a) with 800$ earthquake insurance premium and (b) with 5,000$ earthquake 

insurance premium 
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Figure 5.21. Accumulated cost versus time for the L4-2S-100x50-GWB archetype and median 
-!( retrofit: (a) with 800$ earthquake insurance premium and (b) with 5,000$ earthquake 

insurance premium 
 

 

Figure 5.22. Accumulated cost versus time for the L1-2S-60x30-GWB archetype and maximum 
-!( retrofit: (a) with 800$ earthquake insurance premium and (b) with 5,000$ earthquake 

insurance premium 
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Figure 5.23. Accumulated cost versus time for the L4-2S-100x50-GWB archetype and maximum 
-!( retrofit: (a) with 800$ earthquake insurance premium and (b) with 5,000$ earthquake 

insurance premium 
 

5.5.3.3. Regional-Scale Single-Scenario Assessment  

The cost-benefit analysis is performed at the regional scale considering the approximately 12,000 

SWOF buildings in the City of Los Angeles. The M7.1 Puente Hills event is used for this 

assessment (Chen et al. 2011). Figure 5.24 shows the spatial distribution of median spectral 

acceleration at a period of 0.2 seconds (-BC.,<) for this scenario obtained from the Scenario 

ShakeMap Calculator application in OpenSHA (Field et al. 2003). The latitude and longitude of 

the earthquake epicenter, the boundary of the study region and several earthquake rupture 

parameters (e.g. rupture type, fault surface, magnitude) are the OpenSHA inputs. The median 

-BC.,< map and residuals (inter-event and intra-event) are based on the Boore and Atkinson ground 

motion prediction equation (Boore and Atkinson 2008). The Jayaram and Baker model (Jayaram 

and Baker 2009) is used to generate the spatially correlated shaking intensities. As the epicenter is 

located in East Los Angeles, the magnitude of the median simulated shaking intensities decays 

from the east to west. 
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Figure 5.24. Spatial distribution of median -BC.,< values for the Mw 7.1 Puente Hills Scenario 
 

Given the shaking intensity at each site, the earthquake-induced losses (building damage and 

fatalities) are obtained from the building specific loss functions described earlier (e.g. Figure 5.15 

and Figure 5.16). Fifty shake maps are generated for the considered event and the cost-benefit ratio 

for each building is computed as the retrofit cost divided by the reduced losses over all events. In 

addition to the spatial distribution of building-specific cost-benefit ratios, the value for the entire 

portfolio is computed as the total retrofit cost divided by the total reduced earthquake losses. The 

mean portfolio-based cost-benefit ratio is 0.32, which implies that, under the M7.1 Puente Hills 

event, on average, the aggregated cost of the SWOF retrofit is only 32% of the reduced building 

damage and fatality losses. The spatial distribution and a histogram of the building-specific cost-

benefit ratios are presented in Figure 5.25. The histogram shows that 94% of the buildings in the 

portfolio have cost-benefit ratios between 0.0 and 1.0. Note that the shaking intensities from the 

Puente Hills event are generally lower than the DBE intensity for the two -!( categories. This 

explains the much better cost-benefit ratio obtained for the regional scenario-based assessment 
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compared to the building-specific assessments (Figure 5.19). The cases with greater than 1.0 cost-

benefit ratios are all associated with the L4-2S-100x50-GWB, L4-2S-100x50-HWS and L4-2S-

60x50-GWB archetypes. Among these, only one is the L4-2S-60x50-GWB archetype, and 41% 

and 59% are associated with the L4-2S-100x50-GWB and L4-2S-100x50-HWS archetypes, 

respectively. It is also important to note that, considering all L4-2S-100x50-GWB and L4-2S-

100x50-HWS archetypes, 36% and 53.4%, respectively, have greater than 1.0 cost-benefit ratios. 

These three cases correspond to the archetypes with the least improvement in collapse safety and 

reduction in expected annual losses after being retrofitted. Figure 5.25 (a) shows the spatial 

distribution of cost-benefit ratios under the scenario event. Comparing Figure 5.25 (a) and Figure 

5.24, the distribution of cost-benefit ratios does not follow that of the shaking intensities. In the 

high shaking intensity areas of East Los Angeles, many buildings have cost-benefit ratios between 

0.0 and 1.0. Also, greater than 1.0 cost-benefit ratios can be found in West and South Los Angeles.  

 

Figure 5.25. Results for Mw 7.1 Puente Hills scenario: (a) spatial distribution and (b) histogram 
of building-specific cost-benefit ratio 
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approximately 25% of the portfolio). To evaluate the sensitivity of the portfolio cost-benefit ratio 

to this randomized placement, a Monte Carlo simulation-based assessment is performed. For each 

realization, a randomized archetype distribution is generated (maintaining the same probability of 

each archetype) and the portfolio-cost-benefit ratio is computed. Using 100 realizations, a 

coefficient of variation of less than 1% is obtained for the portfolio cost-benefit ratio, which 

indicates that the randomized placement has a minimal effect. The sensitivity of the portfolio cost-

benefit ratio to the assumed loss of $2 million per fatality is also examined. The portfolio cost-

benefit ratio corresponding to fatality costs ranging from $2 to $5 million is 0.33 to 0.30, and the 

relationship is shown to be approximately to be linear. The retrofit cost is expected to have a direct 

influence on the cost-benefit ratio. Therefore, the sensitivity of the cost-benefit ratio to the average 

per unit retrofit cost is investigated. As noted earlier, the per unit retrofit cost is assigned a uniform 

distribution that is centered at $4,000 to $6,250 (depending on the number of units). Also, the 

range corresponds to the center-value plus and minus $400. The cost-benefit ratios are recomputed 

after applying factors of 0.5 and 2.0 to the center values while maintaining the $400 on both sides 

of the mean. For these two factors, the corresponding mean regional cost-benefit ratios range from 

0.16 to 0.65, respectively and the relationship is approximately linear. This shows that the cost-

benefit ratio is very sensitive to the retrofit cost. However, the mean cost-benefit ratio for the 

portfolio is still less than 1.0 even when the default average per unit retrofit cost is doubled. 

5.5.3.4. Regional-Scale Stochastic Event Assessment 

In the previous section, the cost-benefit analysis was performed for a single scenario event. To 

consider a range of possible events and their associated rates of occurrence, a stochastic event set-

based cost-benefit analysis is performed at the regional scale. To this end, the OpenSHA Intensity 

Measure (IM) Event Set Calculator application (Field et al. 2003),  the UCERF2 source model 
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(Field et al. 2009, p. 2) and the Boore and Atkinson (Boore and Atkinson 2008) ground motion 

prediction equation, are used to consider all the seismic events that are significant to the study 

region. The catalogue of events includes more than 8,000 rupture scenarios generated by the IM 

Event Set Calculator application of OpenSHA. Stochastic ground motion maps can be used to 

calculate the exceedance rate for a quantity of interest (Miller 2014), including  the ground motion 

intensity hazard maps or other metrics more closely related to building seismic performance. The 

rate of exceedance for a target quantity or performance measure (O) is computed using Equations 

(5.2) and (5.3).  

PDE2 =LP; × F(O ≥ S|U)	
F"

;B)

(5.2) 

F(O ≥ S|U) = &VD[O ≥ S|U]Y =LD[O ≥ S|U]ZD|;(S|U)
D

	 (5.3) 

The summation in Equation (5.2) is over all earthquake scenarios in the catalogue of events, P; is 

the rate of exceedance of event U and F(O ≥ S|U) is the probability of exceeding the quantity of 

interest O given the occurrence of event U. F(O ≥ S|U) is calculated using Equation (5.3) where 

D[O > S|U]  is an indicator function that yields 1.0 for O ≥ S  and zero otherwise. ZD|;(S|U) 

represents the probability mass function of the quantity of interest	O given the occurrence of event 

U. The expectation is taken over all ground motion maps generated for event U.  

Figure 5.26 shows the annual rate of exceedance for cost-benefit ratios. The grey lines are cost-

benefit ratios for individual buildings at different locations and the black line is for the portfolio. 

When calculating the indicator function value in Equation (5.3) for the portfolio cost-benefit ratio, 

the total retrofit cost and reduced losses for the entire inventory is adopted. The annual rate of 

exceedance for the portfolio cost-benefit ratio between 0 and 1 is 0.048 (computed as the difference 
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between the rates corresponding to the two values). It is observed that lower cost-benefit ratios 

have higher annual rates of exceedance or lower return periods.  

 

Figure 5.26. Annual rate of exceedance for cost-benefit ratios 
 

A more interpretable result from the stochastic event set assessment can be obtained by examining 

the probability of observing desirable portfolio cost-benefit ratios (between 0 and 1.0) over a 

specified duration. To do so, the event corresponding to achieving a portfolio cost-benefit ratio 

between 0 and 1.0 is assumed to follow a Poisson Distribution. Therefore, the probability that this 

even occurs at least once in a period of \ can be computed using Equation (5.4) 

F]^_(K < \) = 1 − bHI7		 (5.4) 

For 10-, 20- and 50-year periods, the probability that the portfolio cost-benefit ratio is between 0 

and 1.0 for the Los Angeles Ordinance retrofit is 0.38, 0.62 and 0.91, respectively. As expected, 

the probability of a desirable cost-benefit ratio increases with the length of the considered period. 

In other words, the effectiveness of the Ordinance retrofit at the portfolio scale increases with the 

post-retrofit service life of the building stock. 

Portfolio  
Individual Sites 
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5.6. Summary and Key-Takeaways 

Given the vulnerability of woodframe buildings (soft, weak, open-front wall lines in multifamily 

houses or single-family houses with cripple wall) observed in the past earthquakes, policies are 

enacted often to reduce the earthquake risk. The primary focus of this Chapter is the performance 

improvement, including strength/drift capacity, collapse safety, earthquake induced losses and 

retrofit cost-effectiveness, brought by retrofitting. Started in 2015, Los Angeles Ordinance that 

mandates the retrofit of woodframe residential buildings with soft, weak and open-front (SWOF) 

wall lines was enacted by the City of Los Angeles to reduce their collapse risk. The study aims to 

quantify retrofitted building seismic performances from aforementioned perspectives. The Los 

Angeles Department of Building and Safety (LADBS) developed a prescriptive method for 

retrofit- ting soft-story buildings in accordance with the Ordinance (herein referred to as the Basic 

Ordinance method), which only addresses the SWOF wall lines. Besides, the LADBS guidelines 

also permit the use of three additional alternative full-story retrofit procedures based on Appendix 

A4 of the 2012 International Existing Building Code (IEBC A4) and the ASCE 41-13 and FEMA 

P807 documents.  

Firstly, a comparative assessment of the improvement in collapse safety provided by the four 

alternative retrofit methods was conducted. Incremental Dynamic Analyses (IDAs) to collapse 

using bi-directional ground motions was performed on three-dimensional structural models of a 

set of archetype buildings that capture variations in the salient building properties of Los Angeles 

SWOF buildings. The archetypes were developed based on a survey of real SWOF buildings under 

the purview of the Ordinance, which has been discussed in detail in Chapter 2. The effect of the 

(a) number of stories, (b) first (soft) story wall layout, (c) type of interior wall sheathing and (d) 
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building size in plan, on the improvement in collapse safety provided by the four retrofit methods 

was also assessed.  

The important observations from the comparative assessment are documented here. Overall, the 

retrofit strength added to the first story was found to increase both the drift capacity (defined by 

the roof drift ratio corresponding to a 20% loss of post-peak strength) and collapse safety. However, 

the benefit obtained from increased first story strength varied significantly between 2- and 3-story 

archetypes. For instance, the IEBC A4 retrofit is the only one among the four methods requiring 

the lateral resistance provided by walls without wood structural panels (all existing walls) to be 

ignored and therefore results in the greatest increase in first story strength of the SWOF buildings. 

As a result, the greatest benefit to the 2-story SWOF buildings, both in terms of drift capacity and 

enhanced collapse safety, was achieved by the IEBC A4 retrofit. To put this into further 

perspective, on aver- age, the IEBC retrofit provided a 78% increase in the median collapse 

capacity compared to 39–44% for the other three retrofit methods. Relative to the 2-story cases, 

the 3-story SWOF buildings derived much less benefit from the IEBC A4 retrofit where the 

average increase in the median collapse capacity was 50%. The value of the same metric ranged 

from 48 to 51% for the other three methods. While it was not the main focus of the study, it is 

worth noting that, for both the existing and retrofitted cases, the 2-story buildings always had 

higher collapse capacities than their 3-story counterparts.  

The number of SWOF wall lines in a building had a significant effect on the overall improvement 

in collapse safety provided by the retrofits. The average increase in the median collapse capacity 

was found to be 68% and 36% for buildings with three and one open (partially or completely) wall 

line(s) respectively. When the increase in first story strength caused the collapse mechanism to 

shift to the second story (no collapses were observed in the third story), the retrofitted archetypes 
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with the more ductile interior panels performed better. As a result, the buildings with horizontal 

wood sheathing (HWS) interior panels benefitted more from the SWOF retrofits compared to those 

with gypsum wall board (GWB). More specifically, the average increase in median collapse 

capacity provided by the four retrofit methods was 38% and 64% for the GWB and HWS 

archetypes, respectively. The size of the building in plan did not have a significant effect on the 

improvement in collapse safety provided by the retrofits.  

Later in this Chapter, a comprehensive loss assessment was conducted within the framework of 

FEMA P-58 for the existing and retrofitted archetypes. Only Basic Ordinance retrofit is considered 

in this study. Using the LADBS design guideline, two sets of ordinary moment frame (OMF) 

retrofits were implemented for each SWOF archetype based on two site seismicity categories based 

on the median and maximum -!( values for all sites associated with the inventory. Several key 

observations were made when examining the intensity-based loss curves for each archetype. Under 

high shaking intensities (e.g. greater than the design basis earthquake level), both the existing and 

retrofitted archetypes are dominated by near complete (100%) losses so there is very little 

difference between the two. Whereas, for very low shaking intensities, component-level repair 

costs dominate and was often higher in the retrofitted cases. Under intermediate level of shaking 

intensities, the retrofit provides significant reduction in collapse and demolition losses, which lead 

to high reductions in the total loss. Expected annual losses (&'() were computed by integrating 

the intensity-based loss curve over site-specific hazard curves. The archetypes that benefitted the 

most and least from the retrofit had 60% and 6% &'(  reductions, respectively. After 

disaggregation, it was determined that the reduction in the demolition losses played the most 

significant role in lowering the total &'(. Consistent with the intensity-based losses curve, the 

retrofit caused a slight overall increase in the &'( associated with component repairs. 
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In the last part of the discussion, the cost-effectiveness of the retrofit is assessed at the individual 

building (intensity- and time-based) and portfolio scale (single scenario and stochastic event-set) 

based on the reduction in the building damage and fatality related losses. More specifically, the 

cost-benefit ratio is computed as the ratio between the retrofit cost and the reduction in earthquake-

induced losses where positive values between 0.0 and 1.0 are most desirable. For the building-

specific intensity-based assessment, the retrofit is generally not cost effective for higher intensities 

(e.g. higher than design basis earthquake level). The reason is that, as noted earlier, at these 

intensities, both the existing and retrofitted are dominated by complete (100% of replacement cost) 

losses. The concept of break-even time was used to evaluate the duration required for accumulated 

annual reduction in earthquake-induced losses to cover the initial retrofit costs. Across all 

archetypes, it takes an average of 4 to 5 years to recoup the initial investment of the retrofit. The 

range is from approximately two years for the archetype that benefitted the most from the retrofit 

(L1 first story layout) to as much as forty years for the one that derives the least benefit. Retrofitted 

buildings that are insured and receive a reduction in premiums require a shorter time to recoup the 

initial cost of the retrofit.  

Some of the key findings from the cost-benefit analysis are summarized as following. A regional 

(or portfolio) scale cost-benefit analysis was first performed by only considering the hypothetical 

Mw 7.1 Puente Hills event. For this single scenario, the average portfolio cost-benefit ratio was 

0.32. This number implies that the reduction in earthquake-induced losses that result from the 

Ordinance retrofit is approximately three times the total retrofit cost. A stochastic-event-set cost 

benefit analysis was also performed at the regional scale, where all events that are significant for 

the region and their associated rates of occurrence are considered. The annual rate of occurrence 

for the event that the portfolio cost-benefit ratio is between 0 and 1 is 0.048. More insightfully, for 
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10-, 20- and 50-year periods, the probability that the Ordinance retrofit benefit is greater than the 

cost is 0.38, 0.62 and 0.91, respectively. Sensitivity analyses were performed to evaluate the 

implications of the assumed values (based on the best available information) for several key 

variables. It was determined that the portfolio-scale cost-benefit ratio is not very sensitive to the 

assumed per person fatality cost. Variations in the assumed retrofit cost (on a per unit basis) 

significantly affected the portfolio cost-benefit ratio. However, it is important to note that, even 

when the baseline retrofit cost was doubled, the average cost-benefit ratio for the Puente Hills 

scenario was still less than 1.0. 
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CHAPTER 6. DEVELOPMENT AND IMPLEMENTATION OF AN EFFECTIVE AND 

EFFICIENT METHODOLOGY FOR PORTFOLIO-SCALE SEISMIC RETROFIT 

USING MACHINE LEARNING AND STOCHASTIC OPTIMIZATION  

6.1. Introduction 

6.1.1. Building Seismic Retrofit Policies 

Numerous past earthquakes have highlighted the seismic risk to older existing buildings both in 

terms of human lives and the financial well-being of communities. Across different construction 

types (concrete, steel, masonry and wood), there are buildings with known seismic vulnerabilities. 

One mechanism that has been used to mitigate the risk to buildings with known seismic 

deficiencies is to enact policies that mandate their retrofit. Several California cities including Los 

Angeles, Santa Monica, West Hollywood, San Francisco and Oakland, have enacted ordinances 

that mandate the retrofit of soft-weak and open-front (SWOF) wall line multi-family residential 

buildings. The earthquake brace and bolt program (https://www.earthquakebracebolt.com/) 

provides up to $3,000 to offset the cost of retrofitting single-family woodframe buildings with 

unbraced and/or unbolted cripple walls. In 2014, the city of Portland launched a mandatory retrofit 

plan for unreinforced masonry structures (https://www.portlandoregon.gov/bds/article/588418).  

Guidelines such as the ones provided in FEMA P807 (FEMA 2012a) and FEMA P50 (FEMA 

2012b) have sought to develop systematic seismic retrofit and performance evaluation procedures 

for soft/weak-story structures. ASCE 41 (ASCE 2017) and IEBC (IEBC 2012) are often 

recommended as permissible alternative (to the local ordinance approach) guidelines for 

retrofitting a range of structure types and vulnerabilities including soft/weak and non-ductile 

buildings. The general design philosophy used in many retrofit methods (e.g. local ordinance 

procedures or national standards) is based on achieving some building-specific performance target. 
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Retrofit components are designed to supply the building with the necessary strength and ductility 

to achieve the desired performance objective. Most procedures utilize a strength check at the 

component level, and seismic performance factors (e.g. 2 factors in IEBC and d factors in ASCE 

41) are used to account for nonlinear behavior. Additionally, inelastic drift limits are either 

implicitly or explicitly stipulated as a design constraint. To limit the financial burden that will be 

placed on building owners, there is often a need to develop ordinance-mandated retrofit solutions 

that are both efficient and effective. Because of differences in the structural configuration and 

hazard exposure, achieving both effectiveness (in terms of target performance) and efficiency (in 

terms of cost) in portfolio-targeted retrofits is very challenging. 

Several prior studies have examined the performance implications of seismic retrofits to SWOF 

woodframe buildings. Buckalew et al. (2015) compared the performance of three- and four-story 

San Francisco buildings retrofitted using the FEMA P807, ASCE 41 and IEBC procedures. Three 

retrofit designs were proposed based on each specification, and pushover and incremental dynamic 

analysis (IDA) were conducted to quantify the strength and performance improvement. The IEBC 

and ASCE 41 designs provided the building with significantly higher strength than the FEMA 

P807 design. From the results of the IDA, it was observed that adding too much strength in the 

soft/weak first story could lead to collapse in the upper story. Maison et al. (2014) performed an 

independent review of the FEMA P807 guidelines using a four-story soft-story building. The 

authors concluded that the P807 procedure can provide efficient retrofit design solutions but raised 

questions about the accuracy of building performance prediction module. Burton et al. (2018) 

performed a comparative assessment of the collapse performance of SWOF woodframe buildings 

designed using alternative procedures, including the LA Ordinance, FEMA P807, IEBC, and 

ASCE 41. Detailed finite element models were created for 32 representative archetypes, and 
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nonlinear static and IDA analyses were conducted to examine and compare the collapse safety 

improvements provided by different retrofit alternatives. It was concluded, on average, the IEBC 

provides the greatest increase (78%) in the median collapse capacity. The number of SWOF wall 

lines was found to have the most significant impact on the retrofit benefits. The same authors 

conducted a follow-up study to evaluate the regional scale cost effectiveness of the LA Ordinance 

retrofit (Yi et al. 2020). Cost-benefit ratios were computed at the individual building and regional 

scales. For the latter, both a single event and stochastic earthquake catalogue was considered. 

Under a hypothetical M7.1 event, the Ordinance retrofit achieved a cost-benefit ratio of 0.32. 

Based on the results of the stochastic event assessment, the probability that the Ordinance retrofit 

produces an effective cost-benefit ratio (between 0 and 1) within a 50-year period was computed 

to be 0.9. 

6.1.2. Seismic Retrofit Optimization  

There have been a small number of studies on the performance-based optimization of seismic 

design and retrofit of new and existing buildings, respectively. Pei and van de Lindt (2009) 

developed a loss-based design optimization framework for light frame wood structures. 

Conventional force-based design procedures were embedded in an iterative binary search until 

there is a match between the resulting and target loss curves. The procedure was used to optimize 

the design of a single-family house to match two loss-based performance targets. Dong et al. (2014) 

proposed a bridge network retrofit optimization framework to mitigate economic impacts. A bridge 

network in Orange County was selected to illustrate the framework. The main goal was to find the 

best retrofit timeline for the bridges in the network that achieves the maximum reduction in the 

expected economic loss while minimizing the upfront cost of the retrofit. A genetic algorithm was 

implemented to obtain the optimal retrofit plan. Jennings (2015) developed a multi-objective 
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seismic retrofit optimization framework for a portfolio of woodframe buildings. The goal was to 

optimize for community resilience as measured by several socioeconomic performance indices. 

The objective function was defined based on a weighted combination of the retrofit cost, 

earthquake-induced economic loss, the number of fatalities and the recovery time. A set of 37 

archetypes buildings was developed based on 5 plan configurations, 5 design codes and 2 retrofit 

methods. A genetic algorithm was used to determine the optimal allocation of funding to maximize 

the resilience of the neighborhood. Note that while the Dong et al. and Jennings studies focused 

on regional scale seismic performance, neither addressed the optimization of the final structural 

design.  

6.1.3. Objective and Scope  

This chapter proposes a framework for determining the optimal building seismic retrofit designs 

to achieve the most desirable performance at the portfolio scale. The overall methodology 

comprises distinct but connected modules for performance prediction, optimization and evaluation 

of the final solution. The prediction module utilizes machine learning-based surrogate models to 

provide a compact but accurate link between the building seismic retrofit parameters and building-

specific performance outcomes. The surrogate models are embedded in an optimization routine 

that finds the retrofit parameters that give the best overall performance for the portfolio. The 

effectiveness and efficiency of the optimized retrofit solution is then evaluated by benchmarking 

its performance against conventional ordinance-mandated procedures. The framework is 

demonstrated by applying it to the portfolio of SWOF woodframe buildings that are under the 

purview of the Los Angeles ordinance. The remainder of the chapter is organized as follows: 

Section 2 provides and overview of the framework including a discussion of the three modules. 

Section 3 applies the framework to the inventory of SWOF buildings in Los Angeles. The paper 
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concludes with a brief summary of the study, a discussion of the key findings and limitations and 

ideas for future work.  

6.2. Overview of Proposed Framework 

A schematic overview of the methodology for developing retrofit procedures that achieve optimal 

portfolio-scale seismic performance is presented in Figure 6.1. The framework is comprising of 

prediction, optimization and evaluation modules. The algorithm takes in a set of preliminary 

retrofit design parameters as input, which are linked to performance outcomes via the prediction 

module. The optimization algorithm then iteratively searches for the set of retrofit design 

parameters that achieve the most desirable value of the objective function. The retrofit design that 

is proposed by the optimization module is then evaluated for one or more earthquake scenarios. 

The outcome of the framework is the best retrofit design recommendation based on structural 

characteristics of the target inventory, the spatial variation of seismic hazard and any predefined 

constraints. 
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Figure 6.1 Schematic overview of the portfolio-scale seismic retrofit optimization framework 
 

The prediction module links the performance outcome of individual retrofitted buildings to the 

design parameters without the explicit need for nonlinear response history analyses (NRHAs). 

Considering the differences in structural parameters, the spatial variation in seismic hazard, and 

the iterative search that is embedded in the algorithm, performing NRHAs in each stage of 

distributed system optimization is intractable. The introduction of a surrogate model in the 

prediction module significantly reduces the number of NRHAs that need to be performed to 

achieve an optimal solution. A performance prediction model provides a directly link between the 

retrofit design and the performance improvement relative to the existing building, which makes 

the iterative search for an optimal solution more feasible. To develop such a model, variables 

related to the building configuration and structural and dynamic properties, are initially considered 

as potential input parameters (or features). Then, an appropriate model selection procedure can be 

used to reduce the number of predictors. To maintain the interpretability of the surrogate model, 
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parameters that are familiar to designers should be used even if their contribution to predict 

performance of the model is limited. The chosen model response variable (or output parameter) 

must be consistent with the target portfolio performance metric. This facilitates computation of the 

regional performance metric through aggregating the individual building performances.  

The optimization module, which is the core of the framework, uses an appropriate algorithm to 

search for the best retrofit strategy under a given spatial distribution of seismic hazard, building 

configuration and structural properties and the specified design constraints. A key decision in this 

stage of the framework is selecting the seismic hazard definition that is used as the basis for the 

optimal retrofit search. One approach is to use the spatial distribution of shaking intensities 

corresponding to a single representative scenario as the basis for finding the optimal retrofit 

solution. However, this event-specific approach would not be general enough for a retrofit policy 

that is intended to minimize the impacts associated with future possible events. Alternatively, a 

stochastic catalogue approach could be used where all possible events and their associated ground 

motion maps can be used in the optimization search. Sometimes, for large urban centers such as 

Los Angeles where the number of impactful events in the stochastic catalogue is on the order of 

tens of thousands, the computational burden could be onerous, even with the use of the surrogate 

models described in the previous section. To reflect a diverse and more realistic set of spatial 

shaking intensity distributions, a subset of representative events from the entire stochastic event is 

used within the optimization framework.  

Besides the hazard definition, another important decision is the choice of the portfolio performance 

metric. One or some combination (weighted by level of importance) of metrics related to building 

damage, economic loss, fatalities, recovery or even environmental impacts, can be used. The 

selection of this (or these) performance metric(s) should be consistent with the objective of the 
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retrofit design. The objective function, which is used as the basis of the optimization, is then 

created by introducing the appropriate constraints (applied to the retrofit design parameters) and 

penalty terms (applied to the objective function). Note that the optimality of the final design is 

closely associated with how the objective function is formulated. Generally, constraints are created 

to place practical limits on the search space of the retrofit design. To ensure the efficiency of the 

retrofit scheme, a penalty function is introduced, which represents the “cost” (not necessarily in 

dollars) of the retrofit. An appropriate algorithm has to be chosen to serve as the search engine that 

finds the optimal retrofit design in the specified target space. Common choices for this purpose 

include gradient based (Newton Raphson Algorithm, Quasi-Newton Algorithm and etc.) and 

stochastic (Genetic Algorithm, Bayesian Optimization and etc.) optimization algorithms. In the 

context of portfolio-scale retrofit, the feasibility of a given optimization algorithm is influenced by 

the surrogate model used in the prediction module and the formulation of the objective function.  

The evaluation module takes the optimal retrofit solution that is generated by the optimization 

module and assesses the portfolio performance under one or multiple events. Regional 

performance metrics (same or different from the one adopted in the optimization module) are 

recomputed using the proposed retrofit design for the scenario(s) of interest. Ultimately, this 

module is used to benchmark the performance of the portfolio for the optimal retrofit solution 

relative to the existing inventory and/or more conventional (e.g. code-based) procedures.  

6.3. Application of the Methodology to the Seismic Retrofit of Soft, Weak, and Open-Front 

Wall Line Buildings in the City of Los Angeles 

6.3.1. Background on Existing Ordinance and Its Inefficiencies  

For multi-unit residential woodframe buildings in the Los Angeles metropolitan area, it is common 

for the first story to be used for parking or commercial spaces such that a lower wall density is 
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used relative to the upper stories. This can lead to substantial differences in the stiffness and 

strength of adjacent stories and the formation of a single-story mechanism during earthquake 

shaking. Numerous complete or partial woodframe building collapses have been attributed to soft-

story damage in prior seismic events including the 1971 San Fernando, California (FEMA, 2012a), 

1989 Loma Prieta, California (Harris and Egan 1992) and 1994 Northridge, California (Holmes 

and Sommers 1996) earthquakes. Several cities in California have established policies to address 

the seismic risk to soft-story woodframe buildings. In Los Angeles, an ordinance was passed to 

mandate the retrofit of the approximately 12,060 SWOF wall line buildings in the city (Xia and 

Schleuss, 2016).  

Prior numerical analysis studies have highlighted some inefficiencies in woodframe soft story 

retrofits. For example, providing too much strength in the first story increases the level of damage 

to the upper stories (Burton et al. 2016; Buckalew et al. 2015). Additionally, Yi et al. (2020) 

determined that, for some configurations, a  40% increase in the strength of the lateral system 

provided by the retrofit elements, only achieves a 6% average increase in the median collapse 

capacity. In summary, at some threshold of strength difference between the 1st and 2nd story, the 

collapse mechanism moves to the 2nd story. Strengthening the 1st story beyond that limit 

significantly reduces the incremental benefit or efficiency of the retrofit. 

6.3.2. Prediction Module 

The primary goal of prediction module is to create a surrogate model that links important structural 

properties to the building-specific seismic outcomes, such that the computational expense 

associated with parameter variations and iterative search can be minimized. The two main stages 

that comprise this module are the dataset preparation and prediction model development, the 

details of which are summarized in Figure 6.2. In the data preparation stage, the building 
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configuration and structural model parameters are first sampled to create a diverse dataset. 

Nonlinear structural models are then constructed in the Open System of Earthquake Engineering 

Simulation (OpenSees) (McKenna et al. 2003) on the basis of the sampled parameters. Modal, 

nonlinear static and dynamic analyses are then performed. Some structural properties together with 

additional building information can be used as the features in the surrogate model to predict 

responses. In practice, the selection of features is an iterative process. One approach is to start with 

all available parameters and reduce the number using a feature-selection technique. The results 

from nonlinear analyses will be further used to assess the building seismic performances, which 

are the response variables that are to be estimated by the surrogate model. The generated data is 

divided into training and testing sets. The former is used to determine the best prediction model 

parameters by minimizing the differences between the prediction and actual values. Once an 

appropriate model is derived, parameter selection can be executed to reduce the number of features. 

However, this step is optional and will not be discussed in detail in this paper. Lastly, the testing 

set is used to reveal the model performance on an “unseen” dataset. If the model performance is 

acceptable under the testing set, the surrogate model can be finalized. The implementation of 

prediction module for the retrofitted SWOF buildings is discussed in the next section.   
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Figure 6.2. Prediction module workflow 
 

6.3.2.1. Woodframe Building Modeling and Performance Assessment  

To develop a surrogate model, a large dataset needs to be generated and used for training and 

testing. Considering the number of buildings in the entire portfolio, the 32 representative existing 

SWOF archetypes described in Chapter 2 are used. Ordinance moment frames (OMF) are designed 

following the LADBS guideline (LADBS 2015) to retrofit the existing buildings. Eight designs 

are established for each archetype (a total of 256 retrofitted cases) to capture the variations in the 

seismic design parameters. The design details are provided in Appendix E. The performance 

outcomes of these retrofitted buildings will be used to construct the surrogate model and for the 

portfolio-scale seismic evaluation. For each existing and retrofitted building, a three-dimensional 

structural model is constructed using the end-to-end modeling tool. Incremental dynamic analyses 

were conducted following the procedure introduced in Chapter 2. The median collapse intensities 

were obtained, and a single dispersion value of 0.6 is used for all existing and retrofitted archetypes. 

This value includes both record-to-record variation and model parameter uncertainty.  
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6.3.2.2. XGBoost Model Development and Performance Evaluation  

Several machine learning algorithms are investigated as candidates for the surrogate model used 

to estimate the performance improvement provided by the retrofit relative to the existing building 

given some features. The Extreme Gradient Boosting (XGBoost) model (Chen and Guestrin, 2016), 

which is an ensemble learning technique, is found to be the most robust for accomplishing this 

task. XGBoost combines the accuracy of ensemble learning, the high efficiency and flexibility of 

the gradient boosting model, the suitability for parallel computing and a low risk of overfitting. 

The superior performance of XGBoost on the datasets generated in the current study has been 

determined through a preliminary comparative assessment with other types of machine learning 

algorithms (e.g. Kernel Ridge Regression, Gradient Boosting and Random Forest).  

Several machine learning algorithms are investigated as candidates for the surrogate model used 

to estimate the performance improvement provided by the retrofit relative to the existing building 

given some features. The Extreme Gradient Boosting (XGBoost) model (Chen and Guestrin, 2016), 

which is an ensemble learning technique, is found to be the most robust for accomplishing this 

task. XGBoost combines the accuracy of ensemble learning, the high efficiency and flexibility of 

the gradient boosting model, the suitability for parallel computing and a low risk of overfitting. 

The superior performance of XGBoost on the datasets generated in the current study has been 

determined through a preliminary comparative assessment with other types of machine learning 

algorithms (e.g. Kernel Ridge Regression, Gradient Boosting and Random Forest).  

The 256 retrofitted archetypes (8 designs based on 8 intensity bins for each of the 32 archetypes), 

their features, and the associated $!J#$%#&'
$!J$()*%

 values, are split into 70% for training the XGBoost 

model and 30% for testing. Additionally, 32 edge cases without retrofit eK#$%#&'
K$()*%

= 1; $!J#$%#&'
$!J$()*%

=
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1g are added to the training dataset to improve the model performance near the boundary condition. 

The final training and testing set include 212 and 76 cases, respectively i.e. 88% for training and 

12% for testing. During the training process, cross-validation with random parameter search is 

implemented to reduce the risk of overfitting while finding the optimal XGBoost parameters. K-

fold cross-validation divides the training set into h equal-sized groups. For each iteration, a set of 

model hyperparameters is independently sampled from a target range and used to formulate the 

model. The model parameters are then trained using the  h − 1 data subsets and the validation 

score is computed using the remaining data. Taking the average validation score over the h 

validation cases as the final cross-validation score, the hyperparameter set with the highest score 

is selected. The Huber loss function (Huber 1992), as defined in Equation (6.1), is used to compute 

the cross-validation scores because it is less sensitive to outliers than J-& and also has a median-

unbiased property similar to J'&.  

iL(j; , jl;) = m

1
2
(j; − jl;),,			for |j; − jl;| ≤ o

o p|j; − jl;| −
1
2
oq ,	otherwise		

		 (6.1) 

After obtaining the hyperparameter set with the best validation score, the testing dataset is fed into 

the model to check the performance on an “unseen” dataset. Figure 6.3 shows the predicted versus 

the actual $!J#$%#&'
$!J$()*%

 for both the training and testing datasets. The mean absolute relative difference 

(J'2E) computed using Equation (6.2) is selected to evaluate the model performance.  

!"#$ = 1
'(

|*! − *,!|
*!

"

!#$
		 (6.2) 

The J'2E values for the training and testing sets are 1.50% and 1.44%, respectively. This implies 

that the median absolute error is less than 2% of the actual values for both the training and testing 
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sets. Figure 6.3 (a) shows that the data points are evenly distributed around a 45-degree angled 

straight line, which indicates low model bias. The residuals (difference between predicted and 

actual value) for the testing set in Figure 6.3 (b) have normal-like distribution that is centered at 

zero which also indicates low model bias. Also, more than 99% residuals are within mean plus and 

minus one standard deviation range demonstrating the presence of very few outliers.  

 

Figure 6.3. XGBoost model diagnostics: (a) predicted versus actual $!J#$%#&'
$!J$()*%

 and (b) histogram 
of testing set residuals 

 
6.3.3. Optimization Module 

Overall, the optimization module takes in a preliminary set of retrofit designs for the portfolio as 

input and iteratively adjusts them to maximize the objective function value under the specified 

constraints. The workflow implemented in the SWOF building retrofit optimization for the city of 

Los Angeles is shown in Figure 6.4. The parameter to be optimized is the additional strength 

provided by the retrofit normalized by the peak strength of the existing building. Facilitated by the 

prediction module, the median collapse intensities of the SWOF retrofitted building conditioned 

on the percentage of added strength can be rapidly assessed. The collapse losses for the portfolio 

is used as the performance metric because the ordinance is specifically targeted at reducing 
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collapse risk and does not focus on other metrics such as repair costs or recovery. The optimization 

is performed on a representative subset of the stochastic event catalogue for Los Angeles that 

includes 20 scenarios. An inversion function is then developed and used to penalize excessively 

strong retrofits. The penalty function introduces a cost-related measure into the objective function 

to improve the retrofit efficiency. The objective function is taken as the sum of the penalty function 

and portfolio collapse loss. Constraints are also introduced to define upper and lower bound retrofit 

designs. After setting up the objective function, Bayesian optimization is implemented to find the 

retrofit scheme that maximizes the objective function. The details of each step are outlined in the 

following subsections. 

 

Figure 6.4. Optimization module workflow 
 

6.3.3.1. Objective Function  

6.3.3.1.1. Retrofit Design (Optimization Parameter) 

As observed from the nonlinear analysis results and consistent with prior studies, the improved 

collapse margin ratio is highly correlated with the increase in peak strength provided by the retrofit. 

To better capture this phenomenon, the retrofit strategy is quantified as the percentage of peak 
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strength added to the existing building. Listed in Table 6.1 are the peak strength (in the percentage 

of seismic weight) for each existing archetype in the two orthogonal directions.  

Table 6.1 Normalized (by seismic weight) peak strength of the existing archetypes 
 

Archetype ID Peak Strength X-Direction 
(% of Seismic Weight) 

Peak Strength Z-Direction 
(% of Seismic Weight) 

L1-S2-60x30-GWB 34% 35% 
L1-S3-60x30-GWB 20% 21% 
L1-S2-100x30-GWB 44% 25% 
L1-S3-100x30-GWB 26% 15% 
L1-S2-60x30-HWS 26% 25% 
L1-S3-60x30-HWS 15% 15% 
L1-S2-100x30-HWS 34% 17% 
L1-S3-100x30-HWS 20% 10% 
L2-S2-60x50-GWB 38% 33% 
L2-S3-60x50-GWB 22% 20% 
L2-S2-100x50-GWB 42% 21% 
L2-S3-100x50-GWB 25% 12% 
L2-S2-60x50-HWS 27% 19% 
L2-S3-60x50-HWS 16% 11% 
L2-S2-100x50-HWS 30% 12% 
L2-S3-100x50-HWS 18% 7% 
L3-S2-50x30-GWB 60% 34% 
L3-S3-50x30-GWB 36% 20% 
L3-S2-80x30-GWB 60% 36% 
L3-S3-80x30-GWB 36% 21% 
L3-S2-50x30-HWS 48% 28% 
L3-S3-50x30-HWS 29% 17% 
L3-S2-80x30-HWS 45% 22% 
L3-S3-80x30-HWS 27% 13% 
L4-S2-60x50-GWB 37% 48% 
L4-S3-60x50-GWB 23% 29% 
L4-S2-100x50-GWB 42% 33% 
L4-S3-100x50-GWB 26% 20% 
L4-S2-60x50-HWS 28% 29% 
L4-S3-60x50-HWS 17% 18% 
L4-S2-100x50-HWS 30% 19% 
L4-S3-100x50-HWS 18% 12% 
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6.3.3.1.2. Constraints 

Constraints are used to establish upper and lower bound strengths for the retrofits. As discussed 

earlier, the optimization parameter is parametrized as the additional percentage of peak strength 

provided by the retrofit. Also, at some threshold where the first story is stronger than the second 

story, the collapse mechanism is pushed to the second story and there is no benefit provided by 

additional strength. ASCE 41-17 (ASCE 2017) addresses this concern by specifying that the 

strength of first story should not exceed 30% of the adjacent story. This 30% is used as the upper 

bound for the additional peak strength added to the existing building.  

It is also important to consider that the improvement provided by the retrofit varies across different 

shaking intensities. Under extremely high shaking intensities, the existing and retrofitted building 

have equally high probabilities of collapse and associated losses. This is considered by creating 

eight shaking intensity bins, and the same percentage of added strength is used to retrofit all sites 

falling into the same intensity bin. To be consistent with Ordinance retrofit, eight intensity bins 

ranging from 0.7g to 1.5g with 0.1g increments are created based on the spectral acceleration 

associated with 75% DBE (Reference LADBS Guideline). Figure 6.5 shows the spatial distribution 

and a histogram of the shaking intensities corresponding to 75% DBE. In summary, 8 parameters 

are defined to be optimized, which represent the percentage of additional peak strengths for the 

buildings within each of the intensity bins. 
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Figure 6.5. Shaking intensities corresponding to 75% DBE: (a) spatial distribution, (b) histogram 
 

6.3.3.1.3. Portfolio Performance 

The objective of the optimization is to develop a SWOF retrofit strategy that efficiently achieves 

the best performance for the entire building portfolio under the specified constraints. The 

optimization is performed for 20 representative scenarios and the total collapse loss in United 

States Dollars (USD) is used as the performance metric. The procedure for selecting the 

representative events and performance metric are discussed in this section.  

The OpenSHA’ IM Event Set Calculator application (Field et al. 2003) is used to generate ground 

motion maps for each of the SWOF sites located in the city of Los Angeles. At each site, all faults 

that have a significant contribution to the seismic hazard in the region are incorporated by using 

the Uniform California Earthquake Rupture Forecast 2 (UCERF2) source model (Field et al. 2009). 

For a given  magnitude-distance pair, the Boore and Atkinson (2008) ground motion model (GMM) 

is used to calculate the median intensity measure (IM) along with the corresponding  inter-event 

and intra-event standard deviations at each site. A catalogue of 8,313 UCERF2 events is generated 

by the OpenSHA Event Set Calculator. The Jayaram and Baker (2009) model is used to generate 

(b)(a)
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100 shake maps with spatially correlated shaking intensities. A representative subset of 20 

scenarios are selected using the K-Means algorithm, which first groups all events into clusters 

based on a measure of the distance between the median spectral acceleration at a period of 0.2 

seconds (-BC.,<) at each site (Jayaram and Baker 2010). The event closest to the cluster centroid 

is selected as the representative event for that cluster. The return period, magnitude and source 

information for the 20 scenarios are listed in Table 6.2 below.  

Table 6.2. Basic information for the 20 representative scenarios 
 

Event ID Return Period Magnitude Source/Fault 
1 476744 7.95 Elsinore;W+GI+T+J+CM 
2 62026 7.25 San Jacinto;SJV+A 
3 1132780 7.25 Elsinore 
4 801413 7.25 S. San Andreas 
5 138001 6.65 Anacapa-Dume, alt 2 
6 12427 6.55 Hollywood 
7 105551 7.55 Hosgri 
8 371731 6.65 Newport-Inglewood, alt 1 
9 1602211 7.25 Newport Inglewood Connected alt 1 
10 1635059 6.65 Newport Inglewood Connected alt 2 
11 768713 7.45 Newport Inglewood Connected alt 2 
12 707708 6.85 Palos Verdes Connected 
13 129575 6.65 Puente Hills 
14 130612 6.75 San Gabriel 
15 68992 6.65 Santa Monica, alt 2 
16 269044 6.65 Santa Monica Connected alt 1 
17 346173 6.65 Santa Monica Connected alt 2 
18 247448 7.05 Santa Monica Connected alt 2 
19 125181 6.95 Sierra Madre Connected 
20 27148 6.85 White Wolf 

The portfolio performance is calculated by averaging the regional performance over all shake maps 

and events. The total financial losses due to building collapse is computed using the FEMA P-58 

methodology. The expected collapse loss ((7871>)	is computed using Equation (6.3). 
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where, 4)*)"%+ is the number of considered events, 4,'-+ is the number of shake maps for each event, 

s<;76< is the number of considered building sites, P@5^iiBZGbu?!123C is the probability of collapse 

at site v under the shaking intensity, ?!!./, corresponding to the Bth shake map and the Cth scenario, 

and (# is the collapse loss corresponding to the building at site v. The collapse loss is taken as the 

sum of the building value and the fatality loss. The fatality loss for a single building is a function 

of its use purpose, dimension, the time of day when the earthquake occurs and the assigned 

financial losses for human life. The (#M G are obtained from the Seismic Performance Prediction 

Program (SP3) (Haselton Baker Risk Group, 2019) and assumed to be the same for each archetype. 

The probability of building collapse conditioned on the shaking intensity is computed using 

Equation (6.4). 

Pr EF899:;<=G?!!*,/H = I J9'6?!!./@ − ln(7!/)
M N		 (6.4) 

where, w  is the standard normal cumulative distribution function (CDF), 5J#  is the median 

collapse intensity at location v , which can be predicted using the XGBoost model given the 

building features and the increase in peak strength and x is the lognormal standard deviation, 

which is set to 0.6 to account for record-to-record dispersion and model parameter uncertainties 

(FEMA, 2012). 

6.3.3.1.4. Penalty Function 

With only the above constraints, the algorithm would simply retrofit all buildings to achieve the 

maximum reduction in collapse losses i.e. 30% peak strength added since the portfolio 

performance metric selected in this case is a monotonically increasing function. However, this will 
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lead to an inefficient retrofit scheme from the perspective of benefit-cost ratio. To address this 

issue, a penalty term that is a function of the retrofit strategy, herein the percentage of peak strength, 

is added as part of the objective function. The penalty term can be interpreted as the cost of the 

retrofit such that unnecessarily high strength retrofits would be suppressed. The second order 

inversion function shown in Equation (6.5) is adopted. 

P = 	 ( Q
(R! − S! + U)5

0+")!

!#$
		 (6.5) 

where y; is the upper limit for the optimization target S; and z is the penalty weight, sN;@< is the 

number of shaking intensity bins. The magnitude of the penalty weight directly influences the 

retrofit design efficiency. The results from a sensitivity analysis (discussed later) showed that using 

z = 300,000 results in a penalty weight that provides high efficiency while maximizing the 

reduction in collapse losses. To avoid numerical conversion problems, a small number ({) is added 

to the denominator. 

Combining the collapse loss, the specified constraints and the penalty function, the final objective 

of the optimization problem is to find the strength S# added to the existing building that maximizes 

Equation (6.6). 

! = − 1
%,-,./0%0123,4250 & & & &'()*+,-673. − ln+1234456(83).
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6?@
	− B(83)		 (6.6) 

where, D@-BOP%'R%+ ∈ ZC  is an indicator function that yields 1 if the spectral acceleration 

corresponding to 75% DBE at the vth site -BOP%'R%+ falls in the Zth intensity bin and 0 otherwise. 

A conceptual interpretation of the objective function is that the goal is to find the retrofit design 

that achieves the highest reduction in portfolio collapse losses while adding the least amount of 

retrofit strength. 
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6.3.3.2. Stochastic Optimization Algorithms  

6.3.3.2.1. Bayesian Optimization 

Bayesian optimization is a generic algorithm for finding the maximum or minimum value of a 

function }(S) over the input domain Χ. The algorithm recursively creates a probabilistic surrogate 

model to link input features to function responses and recommends the next subspace to explore 

based on the chances that the optimal value is in that subspace. This probabilistic model is the 

critical element that distinguishes Bayesian optimization from other algorithms. Using the 

posterior information, the algorithm gives the probability distribution over the function values and 

quantifies the uncertainties in the function space. This property balances exploration and 

exploitation trade-off (Auer 2002) and avoids  local optima. Also, in each step, the algorithm 

recommends a small number of points to evaluate the target function, which limits the total number 

of times the objective function is evaluated. This is especially advantageous to cases where 

evaluating the target function is expensive. Additionally, Bayesian optimization does not require 

the target function }(S) to take on a specific form, which makes it suitable for non-parametric and 

non-convex optimization problems. In this study, the objective function formulated in Equation 

(5.6) is solved by the XGBoost model and is therefore non-parametric and non-differentiable, 

which makes Bayesian optimization a suitable algorithm.  

Figure 6.6 summarizes the main steps in the Bayesian optimization algorithm. A preliminary 

evaluation of the target function is first conducted to construct the prior function. The prior 

function is a probabilistic model linking input features to function responses. The posterior 

distribution is then updated by the prior function and further used to create an acquisition function, 

which estimates the objective function on the unevaluated domain. In the next step, the algorithm 

then evaluates the target function at the point that maximizes the acquisition function. This 
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evaluation point is used as the input to calculate the objective function value, and the input-output 

pair updates the prior function that is used in the next step. The detailed derivation of the prior 

function, posterior distribution and acquisition function are discussed in the following subsections. 

 

Figure 6.6. Bayesian Optimization algorithm flow chart 
 

• Prior Function 

The prior represents the probability distribution of function values in the input space given a finite 

set of observations. The target function values are drawn from the prior function. The Gaussian 

process (Rasmussen 2003) @} ∼ ÄF(Å, Σ)C	is the most natural and robust choice for the prior 

function because its conditional and marginal distribution follow the same distribution. It is 

assumed that the function values at any finite É pre-specified points follow an É-dimensional 

multivariate normal distribution as shown in Equation (6.7).  

}(S)), … , }(S@) ∼ s e@Å(S)), … , Å(S@)C, Σ(S), … , S@)g		 (6.7) 

where }(S) is the target unknown function, Å(S) and Σ(S), … , S@) are the mean and covariance 

functions, respectively. The mean function could be either parametric or non-parametric and the 

covariance function reflects the deviations from the mean. One common choice for the covariance 

function for a pair (S, SM) is the squared exponential shown in Equation (6.8). The intuition behind 

the exponential covariance function is that adjacent points would share close function values. 

Σ(S, SM) = Ö, expâ−
|S − SM|,

x,
ä		 (6.8) 

Initial Evaluation
of Target Function Prior Function

Evaluate System Using
Proposed Input

Acquisition Function Propose Next Possible
Optimal Point
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where Ö  and x  are unknown hyperparameters that control the magnitude and smoothness, 

respectively. The choice of hyperparameters generally follows the principal of maximum a 

posteriori probability (MAP), the details which are provided in Gelman et al. (2014).  

The prior function is constructed on the basis of a set of known values. Given the É points in the 

input space where function values have been revealed as vector O, the mean, covariance and 

probability density function can be estimated by Equations (6.9) through (6.11). 

&@}(O)C = Å(O)		 (6.9) 

& ç@}(O) − Å(O)C?@}(O) − Å(O)Cé = Σ(O, O)		 (6.10) 

Z(}(O)|O, Å, Σ) = (2è)H
@
,|Σ(O, O)|H

)
, expâ−

1
2 @}

(O) − Å(O)C?Σ(O, O)H)@}(O) − Å(O)Cä		(6.11) 

Since the above model is estimated through finite observations of the target function, the 

observations may or may not incorporate noise as illustrated in Equations (6.12) and (6.13), 

respectively. In the case study, each observation is acquired by plugging the input vector into the 

objective function, therefore, a noise free model is a reasonable choice.  

j = }(S) + ê		 (6.12) 

j = }(S)		 (6.13) 

Based on the noise free model, the joint probability distribution of the function value at the 

observed points and any unseen point S∗ in the input domain can be derived using Equation (6.14).  

Z ëâ
}(O)
}(S∗)äí = s ëâ

Å(O)
Å(S∗)ä , â

Σ(O, O)
Σ(S∗, O)

Σ(O, S∗)
Σ(S∗, S∗)äí		

(6.14) 

By partitioning the joint distribution, the probability of the function value at the unexamined points 

}(S∗) conditioned on available information }(S) is computed using Equation (6.15).   
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Z@}(S∗)u}(O)C =
Z@}(O), }(S∗)C

Z@}(O)C
= s eÅ9(2∗)|9(D)(S∗), Σ9(2∗)|9(D)(S∗, O)g		 (6.15) 

From Equation (6.15), the function values at new points still follow a multivariate normal 

distribution, where the mean and covariance function for new data are computed using Equations 

(6.16) and (6.17). 

Å9(2∗)|9(D)(S∗) = Å(S∗) + Σ(S∗, O)Σ(O, O)H)@}(O) − Å(O)C		 (6.16) 

Σ9(2∗)|9(D)(S∗, O) = Σ(S∗, S∗) − Σ(S∗, O)Σ(O, O)H)Σ(O, S∗)		 (6.17) 

Equation (6.16) can either be used as the posterior distribution of the Gaussian Process or a 

predictive distribution for unseen points. The posterior distribution is passed into the acquisition 

function to query the next point used to evaluate the objective function.  

• Acquisition Function 

The acquisition function is used to recommend the next step in the optimization search based on 

the posterior distribution. The queried point for the next evaluation S@627  is the ones that 

maximizes the acquisition function (Equation (6.18)). 

S@627 = argmax
2
Bñó(S)		 (6.18) 

where Bñó(S) is the acquisition function parametrized by the input feature vector S. Multiple 

forms can be used for the acquisition function. The following discussion will concentrate on the 

acquisition function options incorporated in the Bayes-Opt python library (Brochu et al. 2010; 

Snoek et al. 2012). The expected improvement acquisition function is selected for Bayesian 

optimization since it balances exploration and exploitation trade-off and does not involve 

hyperparameter tuning.  

Expected Improvement Acquisition Function 
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The expected improvement acquisition function defined in Equation (6.19) represents the increase 

in the target function value at any point compared to the current known maximum function value.  

Bñó%V(S∗) = &(max(0, }(S∗) − }@))		 (6.19) 

where S∗ is the new evaluation point, }(S∗) is the corresponding observation, }@ is the maximum 

of all previous evaluations. A closed form solution to Equation (6.19) can be derived as Equation 

(6.20) using integration by parts and the Gaussian Process posterior distribution from Equation 

(6.15) (Frazier 2018). 

Bñó%V(S∗) = max(0, Å(S∗) − }@) + σ(S∗)ô â
Å(S∗) − }@
σ(S∗) ä − |Å(S∗) − }@|Φâ

Å(S∗) − }@
σ(S∗) ä		(6.20) 

where  Å(S∗)  and σ(S∗) = õΣ(S∗, S∗)  are the posterior mean and standard deviation from 

Equation (6.16) and (6.17), σ(S∗) . ô(∙)  and Φ(∙)  are the probability density and cumulative 

distribution functions of the standard normal distribution, respectively. 

Probability of Improvement  

The probability of improvement computed in Equation (6.21) represents the probability that the 

target function value is higher than the current known maximum function value, which can be 

calculated from the posterior distribution. This form of the acquisition function tends to sample 

from locations that result in the highest probability of improvement rather than the highest 

improvement. 

BñóWV(S∗) = Pr(}(S∗) ≥ }@) = Φâ
Å(S∗) − }@
σ(S∗) ä		 (6.21) 

Gaussian Process Upper Confidence Bound  

The upper confidence bound is the upper bound of the function value with a specified level of 

confidence. Given the posterior distribution of the Gaussian Process, the upper confidence bound 

of the function value is computed using Equation (6.22). 
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BñóXWH&$R(S∗) = Å(S∗) + ùx(S∗)		 (6.22) 

where ù is the hyperparameter governing the exploration and exploitation trade-off. When a large 

ù is selected, the algorithm tends to query points with high uncertainties (exploration) and the 

algorithm recommends points with high rewards (exploitation) when ù is small.  

6.3.3.2.2. Genetic Algorithm 

Genetic algorithm (GA) is a heuristic search technique that mimics the process of natural selection on the 

fittest individuals to produce offspring. It has been widely applied in the aforementioned regional scale 

structure optimization problems (Dong et al. 2014; Jennings 2015). Each iteration in the GA search 

algorithm follows the flow chart shown in Figure 6.7. First, a set of individuals forms an initial population. 

Each individual is a solution to the problem. An individual contains Genes, which represent the values of 

different parameters. For each individual in the initial population, the fitness is calculated to evaluate its 

performance. Then, a selection procedure is conducted to find the fittest individuals to pass their genes to 

the next generation. The selected ‘parents’ form a mating pool, where each pair can generate their offspring. 

The procedure of generating offspring involves crossover and mutation. By conducting crossover, new 

offspring is generated combining half Genes from both sides of parents. After a new offspring formed, 

some of their genes can be subjected to a mutation with a specified random probability to reflect the 

randomness. All offspring forms the new initial population for the next round of search.  

 

Figure 6.7 Genetic algorithm flow chart 

Initial Population

Evaluate Fitness

Crossover/Mutation

Select Parents by Fitness
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Similar to Bayesian Optimization, GA is generally applicable for non-parametric and non-

differential objective functions. Its interpretability and generalizability make it widely applied in 

structural engineering field. However, due to its crossover nature, where offspring inherit 

properties from ancestor populations, the convergence rate and associated computational cost are 

highly sensitive to the choices of initial population selection, crossover strategy and mutation rate. 

Back to the optimization problem this chapter focusing on, large number of retrofit strengths is 

generated at beginning as initial population. Each of strength combinations are evaluated to obtain 

portfolio seismic performance as fitness. When large number of earthquake scenarios are involved 

in the regional performance assessment, significantly heavier computational burden (than 

Bayesian Optimization) would rise in fitness evaluation process in GA. Though GA can provide 

similar optimization results, the computational expanse makes it less feasible for the objective 

function constructed in section 6.3.3.1 than Bayesian Optimization.  

6.3.3.3. Optimization Results   

For the surveyed buildings (25% of the inventory), the archetype assignment is consistent with the 

observed configuration. For the buildings not included in the survey, a randomized archetype 

assignment is adopted based on the proportions determined from the survey. One hundred 

randomized archetype assignment realizations are generated, and the optimization algorithm is 

implemented for each one. Figure 6.8 shows the median and median ± one standard deviation 

(based on the 100 simulations) of the optimal ratio (as determined by the Bayesian optimization 

algorithm) between the strengths of the retrofitted and existing buildings conditioned on the 

intensity bins. The median values are also listed in  Table 6.3. Recall that the optimal percentage 

of peak strengths are based on an intensity map corresponding to 75% of the DBE. It is observed 

from Figure 6.8 that below 1.1g, the strength added by the retrofit has a strong positive correlation 
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with the intensity level. Whereas, at values higher than 1.1g, the added percentage of peak strength 

becomes negatively correlated with the ground motion intensity. Since almost two thirds of the 

buildings fall within the 1.0g to 1.2g intensity (see histogram in Figure 6.5), the algorithm tends 

to provide those buildings with higher strength to acquire more rewards in the objective function. 

The regional performance under the 20 scenarios following presented in the evaluation module. 

 

Figure 6.8. Percentage of peak strength added by the optimal retrofit scheme as a function of the 
intensity bin 

 
Table 6.3. Median ratio of peak strength between the optimally retrofitted and existing buildings 

for each intensity bin 
 

75% of DBE Median Y-./-01
Y.234/

 

0.7g ~ 0.8g 1.09 
0.8g ~ 0.9g 1.13 
0.9g ~ 1.0g 1.14 
1.0g ~ 1.1g 1.19 
1.1g ~ 1.2g 1.18 
1.2g ~ 1.3g 1.15 
1.3g ~ 1.4g 1.13 

> 1.4g 1.11 
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The number of iterations needed for the Bayesian optimization routine provides insight into the 

computational efficiency that is achieved through the introduction of the surrogate model. The 

construction of XGBoost the model required performing IDAs on 300 OpenSees models. The 

XGBoost surrogate model enables the evaluation of regional seismic performance within the 

optimization algorithm without additional IDAs. If the optimization algorithm is executed using 

mechanics-based-based models, IDAs would need to be performed on each unique retrofitted 

archetype during each iteration. For 100 Bayesian optimization iterations (Figure 6.6 shows the 

steps involved in each iteration), a minimum of 3200 IDAs are required. Moreover, the number 

would proportionally increase with the number of iterations. The net result is that the optimal 

portfolio scale retrofit is achieved using 10% of computational expense compared to if the 

surrogate is not used.  

6.3.3.4. Sensitivity Analysis 

As noted earlier, the algorithm achieves a high level of efficiency because it balances the gain from 

reducing collapse losses with the cost or penalty from adding lateral strength. Obviously, the 

chosen penalty function and penalty weight have significant impacts on the optimal solution. 

Although the penalty is supposed to reflect the cost of the retrofit, it is difficult to assign an 

appropriate value to each retrofit design during the iterative search. A penalty weight of 300,000 

is adopted in the optimization based on the outcome of a sensitivity analysis. More specifically, 

the sensitivity of the optimal retrofit scheme to the chosen penalty weight is evaluated by 

implementing the algorithm using 10 values of the latter that range from 0 to 800,000. Figure 6.9 

shows how the reduction in collapse loss (red curve) (as a percentage of the losses for the existing 

inventory) and added strength (blue curve) (as a percentage of the existing building strength) 

provided by the algorithmic retrofit are affected by the penalty weight. It is observed that, as the 
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penalization increases, the reduction in losses achieved by the algorithm as well as the total added 

strength decrease. In the areas where the slope of the red line is high, the rate of reduction in the 

effectiveness of the retrofit with increasing penalty is higher. However, beyond some threshold (a 

penalty weight of approximately 400,000), the reduction in effectiveness with increasing penalty 

becomes negligible. For the blue line, a high slope indicates that the gain in efficiency with 

increasing penalty is high. The most desirable penalty weight is one that is in the region where the 

rate of loss of effectiveness is balanced by the rate of efficiency gain. A penalty of 300,000 is 

chosen because it corresponds to the point beyond which an increase in the penalty provides a 

minimal decrease in strength (blue curve) at the cost of a substantive reduction in effectiveness 

(red curve).   

 

Figure 6.9. Effect of the penalty weight on the reduction in collapse losses and added strength, 
both normalized by values associated with the existing inventory 

6.3.4. Evaluation Module 

In this section, the algorithmic retrofit scheme is first evaluated by comparing the regional collapse 

losses and cost (added lateral strength) for the 20 scenarios used for optimization. Then, the 
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algorithm retrofit scheme is similarly evaluated using events outside the ones used as the basis of 

the optimization. Three events are considered for this purpose, which vary based on the severity 

of the shaking intensities and associated collapse losses. The first is the hypothetical M 7.1 Puente 

Hills scenario which has been used in several other studies (e.g. Field et al. 2005; Rowshandel et 

al. 2006). The Puente Hills scenario is generally considered to be a “rare” event that would cause 

severe earthquake shaking in the city of Los Angeles. The two additional M 6.4 and M 6.8 

hypothetical events are selected from the stochastic event set to represent moderate and low levels 

of earthquake induced shaking and losses. Due to the further distance between the target region 

and the earthquake sources, the relative impacts of these two events are significantly lower than 

the Puente Hill event. The goal here is to evaluate the effectiveness and efficiency of the 

algorithmic retrofit for “unseen” events over a range of impact levels. 

6.3.4.1. Evaluation for 20 Representative Scenarios 

First, the retrofit scheme is evaluated with respect to the scenarios used in the optimization. The 

inventory is retrofitted based on the median percentage of peak strength values shown in Table 6.3. 

The mean regional collapse loss ratios (as a percentage of the inventory replacement cost) for the 

20 scenarios are listed in Table 6.4. The existing inventory loss ratio ranges from 0.01% to 45%, 

which demonstrates the diversity in terms of impact level for the selected subset of scenarios. The 

mean loss ratio for the existing inventory is 18.5% compared to 13.3% for the Ordinance-

retrofitted inventory, which represents a 29% reduction. When averaged over all scenarios, the 

algorithmic retrofit reduces the collapse loss of the existing inventory by 21% and the 

corresponding collapse losses are only 11% higher than that of the Ordinance-retrofitted inventory. 

To compare the efficiency of the algorithmic and Ordinance retrofit, the total strength added to the 

inventory is used as a metric of the retrofit cost. When the inventory is retrofitted based on the 



    
 

221 

optimization algorithm, the total added strength is approximately 60% of what Ordinance provides. 

In other words, the algorithm uses 60% of the strength provided and results in a regional collapse 

loss that is 11% higher than the Ordinance. 

Table 6.4. Mean loss ratios for the existing and retrofitted inventories subjected to the 20 
scenarios 

 

Event ID Existing Inventory Mean 
Loss Ratio 

Algorithm 
Retrofitted 

Inventory Mean 
Loss Ratio 

Ordinance 
Retrofitted 

Inventory Mean 
Loss Ratio 

1 19.6% 14.8% 12.9% 
2 0.8% 0.5% 0.4% 
3 2.6% 1.7% 1.4% 
4 5.6% 3.8% 3.2% 
5 19.4% 14.7% 12.9% 
6 44.9% 37.4% 33.9% 
7 0.017% 0.008% 0.006% 
8 34.3% 27.7% 24.8% 
9 7.9% 5.7% 4.8% 
10 23.0% 17.8% 15.7% 
11 22.8% 17.6% 15.4% 
12 6.3% 4.5% 3.8% 
13 35.9% 29.4% 26.4% 
14 16.6% 12.7% 11.1% 
15 44.8% 37.3% 33.8% 
16 6.2% 4.3% 3.7% 
17 11.5% 8.4% 7.2% 
18 40.5% 33.5% 30.5% 
19 26.6% 21.1% 18.7% 
20 0.51% 0.32% 0.26% 

 

Figure 6.10 shows the spatial distribution of the mean normalized (by the replacement cost) 

collapse losses for the existing, ordinance-retrofitted and algorithm-retrofitted inventories. For the 

buildings located in downtown and west Los Angeles where the mean loss ratios exceed 20% 

(yellowish and reddish points), both the algorithm and Ordinance retrofit reduce the losses to 

below 17%. The Ordinance retrofit has observably better performance for buildings located in the 
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downtown area. Figure 6.10 also provides insight into the spatial pattern of the collapse risk for 

the stochastic event catalogue. For the existing inventory, downtown, eastern, and western Los 

Angeles suffered more collapse loss compared to northern and southern Los Angeles. Therefore, 

the retrofit work for these regions should be prioritized to maximize the collapse risk reduction.  

 

Figure 6.10. Spatial distribution of normalized (by building replacement cost) collapse loss: (a) 
existing, (b) ordinance-retrofitted and (c) algorithm retrofitted inventories 

 
6.3.4.2. Evaluation of Three Single Events  

Other than the events adopted in optimization module, the algorithmic retrofit scheme is further 

evaluated using ‘unseen’ events. Three events (denoted as the Puente Hill, M 6.8 and M 6.4 events) 

representing a range of shaking intensities and collapse losses are selected.  The basic information 

for the three events are summarized in Table 6.5, and Figure 6.11 shows the associated spatial 

distribution of median spectral accelerations at 0.2s (-BC.,) for 50 shake maps. For the three 

scenarios, the median -BC.,	ranges from 0.2g to 1.8g, 0.12 to 0.83g and 0.03g to 0.12g for the 

Puente Hill, M 6.8 and M 6.4 events, respectively. In addition to differences in the severity of 

ground shaking, there are also spatial variations where the highest intensities are located for each 

(a) (b) (c)
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event. For the Puente Hill, M 6.8 and M 6.4 events, the highest shaking intensities are in the east, 

west and south, and north Los Angeles, respectively. 

 

Figure 6.11. Spatial distribution of -BC.,	for the: (a) Puente Hill Scenario, (b) M 6.8 event, (c) M 
6.4 event 

 
Table 6.5. Basic information for the three considered scenarios 

 
Event ID Magnitude Source 

Puente Hill 7.1 Puente Hill 
M 6.8 6.8 Palos Verdes 
M 6.4 6.4 North Channel 

 

Some key results are summarized in Table 6.6. The normalized collapse losses for the existing 

inventory averaged over all shake maps is 50.5%, 13.6% and 0.15%, for the Puente Hill, M 6.8 

and M 6.4 events, respectively. It is observed that the benefit derived from the retrofit (algorithmic 

and Ordinance) decreases with the severity of the impact. For example, the Ordinance retrofit 

reduces the collapse loss for the existing inventory by 16.4%, 37.5% and 61.5% for the Puente 

Hill, M 6.8 and M 6.4 events, respectively. For the same three events, the losses associated with 

the algorithmic retrofit are 6%, 21% and 33% higher than the Ordinance retrofit, respectively. This 

result indicates that the effectiveness of the algorithm relative to the Ordinance increases with the 

(a) (b) (c)



    
 

224 

severity of the event. Recall that the algorithm only uses 60% of the strength required by the 

Ordinance retrofits.  

Table 6.6. Evaluation results for the three “unseen” events 
 

 Puente Hill Event M 6.8 Event M 6.4 Event 

Existing 50.5% 13.6% 0.15% 

Algorithm Retrofitted 46.4% 10.4% 0.08% 

Ordinance Retrofitted 43.7% 8.6% 0.06% 
 

The spatial distribution of the mean collapse loss ratios associated with the Puente Hills event 

considering all shake maps are shown in Figure 6.12. Similar to -BC.,, the collapse losses for the 

existing and retrofitted buildings decay from east to west. Note that the actual loss ratios sometimes 

exceed 100% of building replacement cost because fatality costs are incorporated. Due to the 

extremely high -BC., in East Los Angeles, even some of the retrofitted buildings suffer complete 

losses, which leads to lower efficiency of Ordinance retrofit. This also results in relatively 

comparable regional performance of the algorithmic and ordinance retrofitted inventory.  

 

 

(a) (b) (c)
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Figure 6.12. Spatial distribution of building collapse loss under the Puente Hills scenario: (a) 
existing, (b) algorithm retrofitted and (c) ordinance retrofitted buildings 

 
Figure 6.13 presents the spatial distribution of mean loss ratios under the M6.8 event. The 

normalized collapse loss for the existing inventory of 13.6% is reduced to 10.6% and 8.4% by the 

algorithmic and ordinance retrofit, respectively. Unlike the Puente Hill event, none of the buildings 

in the existing inventory suffer complete losses. Additionally, only approximately 1% of the 

buildings in the existing inventory have collapse losses that exceed 50% of the building value 

(including fatalities). The percentage of buildings with losses greater than 25% of the building 

value is reduced from 7.6% for the existing inventory to 3.9% (algorithmic retrofit) and 3.1% 

(ordinance retrofit). As for the existing buildings with greater than 10% loss ratios, the algorithmic 

and ordinance retrofit reduces the proportion from 60% to 38.6% and 26.5%, respectively. Based 

on these different threshold comparisons, it is observed that the ordinance retrofit provides greater 

benefit than the for intermediate loss ratios (from 10% to 20%).  Comparing the loss distribution 

in Figure 6.13 (a), (b) and (c), the most significant reduction in collapse loss is in the downtown 

and west Los Angeles areas for both retrofit designs, where most of existing buildings have loss 

ratios ranging from 9% to 18%. Additionally, the ordinance retrofit shows noticeably superior 

performance compared to the algorithmic retrofit scheme in these areas.  



    
 

226 

 

Figure 6.13. Spatial distribution of building collapse loss under M 6.8 event: (a) existing 
buildings, (b) algorithm retrofitted buildings, (c) ordinance retrofit schema retrofitted buildings 

 
Figure 6.14 presents the same performance metric for the M 6.4 event. Major losses in existing 

buildings are concentrated around northern Los Angeles. Due to low shaking intensities, the 

maximum collapse loss ratio for the existing buildings is only 2.6% and is to 1.4% and 0.9% by 

the algorithmic and ordinance retrofit schemes, respectively. It is also observed that the reduced 

loss is positively correlated to existing building losses. In regions with higher existing building 

losses (north Los Angeles), the differences between the ordinance and algorithmic retrofit are more 

noticeable.  On the other hand, in the area where the existing building collapse losses are lower 

(relative to the other areas for the same event), the effects of retrofitting are subtle (downtown and 

(a) (b) (c)
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east Los Angeles). As a result, no major differences in the benefit derived from the two retrofit 

approaches is observed.  

 

Figure 6.14. Spatial distribution of building collapse loss under M 6.4 event: (a) existing (b) 
algorithm retrofitted and (c) ordinance retrofitted buildings 

 

Besides the associated efficiency, the results from the algorithmic retrofit can be used to inform 

the priority of retrofit implementation. For example, buildings with moderate to severe site 

seismicity can be prioritized since they contribute the most to the regional seismic collapse risk. 

Whereas buildings corresponding to the lowest hazard level can be given the least priority since 

the associated risk is relatively low. Ultimately, the adopted retrofit scheme should be based on a 

more comprehensive evaluation that the one presented in this study.  

6.4. Development of A Retrofit Policy Based on Results from Optimization  

Practically speaking, the retrofit scheme generated by the optimization algorithm cannot be used 

as a retrofit policy in its current form. More specifically, the level of granularity in the algorithm-

optimized retrofit scheme is such that it cannot be directly used as a retrofit policy. However, the 

results from the optimization can be used to develop a set of rules that are general enough to serve 

(a) (b) (c)
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as a policy. The following guidelines are presented as a roadmap for generating a retrofit policy 

based on the optimization results:  

1. Identify the structures that warrant retrofitting: Examples of such criteria include (i) buildings 

with first story wall lines that are more than 20% less than that of the above story should be 

retrofitted or (ii) buildings where the strength and/or stiffness of the 2nd story is more than 20% 

that of the first. Note that example (i) is used in the Los Angeles Ordinance retrofit. 

2. The next step is to determine the design force that will be used to the retrofit buildings. First, 

the peak lateral strength in the direction under consideration should be determined using a 

pushover analysis. Then, the intensity level corresponding to 75% of the DBE hazard level 

@-B?),OP%'R%C is computed using ASCE 7-16 (ASCE 2016) and the associated site seismicity 

parameters. The design base shear is taken as 20% of the peak strength if -B?),OP%'R% > 1.01 

(based on the results summarized in Table 6.3).  For the remaining cases, 14% of the peak 

strength should be used to compute the design force (also based on results in Table 6.3).  

3. Select and design the lateral force resisting system to provide the required additional strength. 

4. The designed retrofit alternative should have at least the same drift capacity at peak strength 

as the existing system. This recommendation is based on the results from this  and other studies 

(Buckalew et al. 2015; Burton et al. 2019) which have shown that the collapse safety is less 

sensitive to the ductility of the retrofit components than to strength.  

6.5. Conclusion and Future Work 

A framework for optimizing seismic retrofits based on regional seismic performance metrics is 

developed in this paper. The overall procedure comprises a prediction module, an optimization 

module and an evaluation module. The prediction module uses surrogate models to estimate 

retrofitted building performance conditioned on key retrofit design variables. The surrogate model 
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is shown to significantly reduce the large computational expense associated with assessing 

regional seismic performance while considering variations in the structural characteristics of the 

inventory, the spatial variation of seismic hazard and the iterative search used in the optimization 

algorithm. The optimization module is used to find the retrofit design that maximizes the objective 

function value, which is defined based on regional scale seismic performance. Reasonable 

constraints on the input parameters are used to confine the search space. Additionally, a penalty 

function is added to the portfolio performance metric to suppress unnecessarily high retrofit 

strengths. The evaluation module benchmarks the regional performance of the algorithmic retrofit 

scheme against the existing inventory and another retrofit scheme that uses more conventional 

approaches. A case study that is based on the Los Angeles Ordinance that mandates the retrofit of 

soft, weak and open front (SWOF) wall line buildings is used to demonstrate the capabilities of 

the framework.  

As part of the prediction module, a machine learning model based on the XGBoost algorithm is 

used to rapidly estimate the collapse margin ratio of individual retrofitted buildings using their 

structural characteristics and the strength added by the retrofit (relative to existing buildings) as 

features or input variables. The performance of the XGBoost model was evaluated by computing 

the median absolute relative error, which was 1.4%. the results from residual diagnostics also 

revealed low bias and high predictive accuracy.  

Bayesian optimization was used to find the most desirable retrofit solution for the approximately 

12,000 SWOF buildings in Los Angeles. A set of 20 scenarios deemed representative for the region 

is used as the basis of the optimization and the collapse losses for the inventory is used as the 

performance metric. In terms of the retrofit design, the percentage of the existing building peak 

strength added by the retrofit was the parameter to be optimized. To account for the spatial 
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variation in seismic hazard, eight intensity are established based on 75% of the shaking intensity 

corresponding to the design basis earthquake. The objective function was formed by coupling the 

collapse losses with an inversion penalty. Based on the results of a sensitivity study, a penalty 

weight of 300,000 is used to balance the effectiveness (reduction in collapse losses) and efficiency 

(avoided unnecessarily added strength) of the algorithm retrofit. The XGBoost model was shown 

to reduce the computational expense (relative to if only mechanics-based assessments were 

performed) by more than 90%.  

For the 20 events used as the basis of the optimization, the average regional collapse loss ratio 

(with respect to inventory replacement cost) for the existing inventory is reduced from 18.5% to 

14.7% and 13.3% by the algorithm and Ordinance retrofit, respectively. The algorithm retrofit was 

shown to be highly efficient, utilizing only 60% of the added lateral strength relative to the 

Ordinance. The algorithm retrofit as also evaluated for three “unseen” (i.e. not considered in the 

optimization routine): the M 7.1 Puente Hill event and M 6.8, and M 6.4 events. These events 

were chosen to evaluate the effectiveness and efficiency of the algorithm retrofit using events with 

varying severity in terms of collapse losses. The collapse loss ratios for the M 7.1, M 6.8, and M 

6.4 events were 50.2%, 13.6% and 0.15%, respectively. For the same three scenarios, algorithm 

retrofit reduces the losses for the existing inventory by 11.2%, 24%, and 44.6%, respectively, 

which suggests that its effectiveness increases with the severity of the event. Relative to the 

Ordinance, the much lower cost (as quantified by the added strength) and comparable performance 

of the algorithm serve as compelling evidence of its overall ability to achieve effective and efficient 

retrofits.  

This study has demonstrated the great potential of using advanced optimization and machine 

learning methods for balancing the effectiveness and efficiency of portfolio retrofit designs. 
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However, there are areas where additional work is needed to solidify the usefulness as the proposed 

framework. The collapse performance of the archetype buildings was assessed using the FEMA 

P695 ground motions (FEMA 2009). This was then used as the basis for regional seismic 

assessments where there are significant variations in the site characteristics. Issues such as near-

source ground motion and local site effects should be considered when selecting ground motions 

for similar future studies. K-means clustering was the primary means by which the set of 20 

scenarios (intended to represent the stochastic catalogue for the region) used as the basis of the 

optimization was selected. Future studies should explore the use of more advanced techniques such 

as active learning for selecting such an event subset. Alternatively, if the computational power 

permits, the entire stochastic catalogue can be used as the basis of the optimization to increase its 

generalizability. This approach would also enable the use of risk-based performance metrics in the 

objective function. Lastly, because the SWOF retrofits are targeted towards life safety, the regional 

collapse losses were used as the performance metric. However, the proposed framework can also 

be used to establish design parameters for new buildings that maximize regional performance 

where other more resilience-related metrics (e.g. total economic losses, recovery trajectory) can 

be considered. 
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CHAPTER 7. CONCLUSION 

7.1. Summary 

The presence of crawlspace in single-family houses and soft, weak, open, front wall in multi-

family houses forms single story mechanism and results in severe damage risk under earthquakes. 

Policy actions are usually taken to address such issues. The thesis focuses on the implications of 

woodframe building retrofit and proposing a quantitative way to optimize performance-oriented 

retrofit policy.  

To fulfill the objective, reliable numerical analyses are required to access building mechanical 

properties, seismic performances and earthquake induced losses. In Chapter 2, an end-to-end 

Python based woodframe building OpenSees modeling and analyzing workflow was developed. 

The tool is capable of generate numerical models in OpenSEES, perform nonlinear numerical 

analysis, conduct post-processing and FEMA-P58 based loss assessment given structural 

configurations, material properties and specified analysis settings. Detailed modeling procedure at 

OpenSees component level for single-family cripple wall houses developed in PEER-CEA Project 

and Los Angeles soft, weak, open-front wall line (SWOF) multi-family houses were discussed. 

The sample pushover and nonlinear dynamic response analyses identify the vulnerability of soft 

story buildings.  

With the help of the modeling tool, larger number of numerical analyses can be realized with 

affordable computational expanse. Chapter 3 investigated the potential opportunities of developing 

machine learning (ML) models using the woodframe building performance database generated by 

the tool. Detailed mathematical derivation of the algorithms and formal ML model development 

procedure involving dataset development, model development and verification were introduced. 

Six ML algorithms, including ordinary linear regression, response surface method (RSM), LASSO 
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regression, ridge regression, Random Forest and XGBoost, were used for establishing predictive 

models for a PEER-CEA Project single family cripple wall house’s median collapse intensities 

(MCI) and expected annual losses (EAL). Derived XGBoost models were found to be capable of 

delivering the most accurate and stable predictions on both MCI and EAL.  

Chapter 4 started with a preliminary sensitivity analyses, where a full factorial experiment design 

was adopted to detect the impacts of single-family house number of stories, seismic weights, 

cripple wall heights, construction era and retrofit. Using the analysis of variance (ANOVA) 

method, all studied five variants were found to be statistically significant on both building MCI 

and EAL. Then, a more comprehensive sensitivity study was presented with the ML involved. 

Ordinary linear regression and XGBoost model developed in Chapter 3 were used to quantitatively 

identify the relative contributions to building seismic performance of number of stories, seismic 

weights, material properties, damping ratios and retrofitting panel lengths. Lastly, the XGBoost 

models developed on the same dataset were used for measuring model uncertainties on building 

MCI and EAL. The introduction of ML method provides promising estimation on the uncertainties 

while maintaining affordable level of computational burden. 

Chapter 5 concentrates on the implications of Los Angeles Ordinance retrofit of SWOF buildings. 

The benefits of four different retrofit alternatives permit by Ordinance Guideline (LADBS 2015) 

on building strength, ductility and collapse risk were quantified and compared. Specifically, for 

Guideline based retrofit, a multi-scale cost-benefit analysis was presented. Two sets of retrofit 

designs were proposed capturing the site seismicity variation following the Guideline. Cost-benefit 

ratios and break-even time were calculated for each of the archetype to assess retrofit design cost-

effectiveness under different assumptions (with and without earthquake insurance premium). 

Innovatively, cost-effectiveness was further evaluated for the entire city of Los Angeles under a 
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single earthquake event and a stochastic event catalogue. Such analyses facilitate a deeper 

understanding on retrofit benefit and its long-term implications.  

In Chapter 6, an exhaustive framework was proposed for performing portfolio seismic 

performance oriented retrofit policy optimization for wood frame structures. The framework 

comprises of prediction module, optimization module and evaluation module. The prediction 

module constructs ML models to rapidly access retrofitted building seismic performance given 

retrofit design. The outcome of prediction module helps to form the objective function in the 

optimization module with building exposure, shaking intensity spatial distribution and appropriate 

constraints applied on retrofit designs. Then, powerful optimization engine solves the stochastic 

optimization problem and propose an optimal retrofit schema. Lastly, the derived retrofit schema 

is passed into evaluation module to obtain regional seismic performance outcomes. An 

optimization was performed on LA SWOF building retrofit, and the proposed retrofit schema was 

compared with ordinance retrofit. The outcome was found to be able to address the inefficiencies 

in ordinance retrofit.  

7.2. Conclusion  

The presence of soft story, crawlspace in single-family dwellings and open wall line in multi-

family dwellings, forms single-story mechanism. From the pushover and response history analyses, 

the majority of story drift demands concentrate at the weak story. Under dynamic loading, collapse 

occurs at soft story, and the adjacent story almost suffer no structural damage. These observations 

result from the relative stiffness and available strength between the soft story and upper level. 

Retrofitting, either through structural wood panels or moment frames, addresses the imbalanced 

vertical distribution of strength and stiffness issues. Building strength capacity, ductility capacity 

and collapse safety are significantly improved, and associated earthquake losses reduce. Such 
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benefits are limited by an upper bound. For ‘soft-story-only’ retrofit, increasing additional strength 

added at the soft story, the strength differences between the soft story and adjacent level are 

eliminated until some threshold. It results in a shift of soft story from original level to its adjacent 

level. Beyond the threshold, providing extra strength cannot further improve building seismic 

performance. The impacts of retrofit also differ by shaking intensities. Under extremely intensive 

ground shaking, even retrofitted building experience a total loss. As for subtle shaking intensities, 

un-retrofitted building is expected to have close to zero losses. In both cases, the reductions in 

earthquake induced losses are limited, which further result in inefficient retrofit cost-benefit ratios.  

Woodframe building seismic performances under portfolio scope are highly diverged. Building 

number of stories and seismic weight are found to negatively contribute to collapse safety and 

losses. Construction era, damping ratio, and retrofitting work through a positive way. The impacts 

of these features can be summarized into two categories: strength and dynamic behavior. Changes 

in the building available strength and strength vertical distribution significantly variates building 

capacity. Number of stories, seismic weight, construction era and material properties could lead to 

such differentiations. Dynamic behavior including the period, inherent damping and hysteretic 

energy dissipation. Number of stories, seismic weight and material properties either explicitly or 

inexplicitly contribute to this aspect. Though such impacts can be assessed theoretically, no 

analytical form could be derived to quantitatively describe the influences. ML models are found 

to be able to handle this situation. A well-developed ML model can consistently deliver accurate 

predictions on building seismic performances. Such models could be utilized to quantify the 

uncertainties, measure features’ importance and even exploit high-dimensional feature space for 

an optimal solution. More importantly, the investigation with ML model could control the number 
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of nonlinear analysis to an affordable level. It provides alternatives to the earthquake engineering 

problems with exhausting amount of analyses involved.   

7.3. Limitations and Future Work 

This study has demonstrated the great potential of using advanced machine learning methods for 

prediction, sensitivity analyses and uncertainty quantification. However, there are areas where 

additional work is needed to solidify the usefulness as the proposed methodologies. In the 

modeling part, rigid diaphragm assumption was adopted. The impact on seismic performances of 

semi-rigid or flexible diaphragm should be investigated. The ground motion uncertainty was not 

well addressed in the thesis. The analyses on single family houses only used conditional spectra 

selected ground motions for San Francisco =<,ZC = 270	d/G  site. The variations in building 

seismic performances caused by site effect were not incorporated. The collapse performance of 

the multi-family buildings was assessed using the FEMA P695 ground motions. Issues such as 

near-source ground motion and local site effects should be considered when selecting ground 

motions for similar future studies. In the retrofit design optimization, K-means clustering was the 

primary means by which the set of 20 scenarios (intended to represent the stochastic catalogue for 

the region) used as the basis of the optimization was selected. Future studies should explore the 

use of more advanced techniques such as active learning for selecting such an event subset. 

Alternatively, if the computational power permits, the entire stochastic catalogue can be used as 

the basis of the optimization to increase its generalizability. This approach would also enable the 

use of risk-based performance metrics in the objective function. Lastly, because the SWOF 

retrofits are targeted towards life safety, the majority discussion on regional scale seismic 

performance focuses on collapse safety and loss. Regional performances with other more 

resilience-related metrics (e.g. total economic losses, recovery trajectory) can be considered. 
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7.4. Future  

One of the most attractive findings from the thesis is the utilization of ML method in solving 

structural engineering problems. Right now, with the help of high-performance clusters and 

powerful personal computers, we are standing at a point where any desired analyses with different 

fidelities and numbers of variants are doable. Built on the top of mechanics-based-based models, 

ML allows researchers to step further into a more chaotic domain to model the real-world. A few 

personal thoughts on the possibilities of earthquake engineering are presented here to intrigue other 

researchers. Figure 7.1 presents a conceptual workflow for an evolutional performance-based 

design facilitated by design database, traditional ML predictive model, cloud computing and deep 

learning algorithms. Under the traditional performance-based design catalogue, the design 

procedure is iterative. Nonlinear analysis is required to determine whether the performance 

objective is achieved. In this process, the numerical analyses performed prior to the final design 

are ‘wasted’. Within the evolutional design scope, all analyses histories could be gathered and 

form into a performance database, where design and associated performance outcome pairs are 

stored. The database could be used to construct predictive model using conventional ML 

algorithms. Similarly, the evolutional framework starts with a desired performance. More 

abundant metrics not limited to seismic performance could serve for performance objective, such 

like resiliency index and socioeconomic impact. A direct search on the performance database could 

be performed to check whether any analyses histories deliver desired performance objective. 

Alternatively, the prediction model could be used for adaptively proposing possible designs in the 

unknown domain achieving performance objective. Once a proposal design is specified, cloud 

computing and deep learning are able to boost the nonlinear analyses and performance assessment. 
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The outcome of ground truth performance is then compared with objective to guide the next round 

of iteration. The analyses generated meanwhile could enrich the database and prior knowledge.  

 

Figure 7.1 A conceptual idea on evolutional performance-based design 

Another thinking the author wants to deliver here is ML is not supposed to be abused. There is a 

well-known aphorism saying, “all models are wrong, but some are useful”. ML models are 

constructed on the basis of data. They are expected to explain the inherent structure and 

relationship of the data rather than the nature. ML model is more used as a supplement to 

mechanics-based-based model to tackle the problems without analytical solutions in the thesis. It 

has its own limitation. Therefore, every details of ML model development including data 

wrangling, experiment design, feature engineering, model training, fine tuning, parameter 

selection, model selection and interpretation are supposed to be well treated. Additionally, 

engineering researchers are supposed to chase more fundamental and interpretable representations 

of ML model to fill in the gap between engineering practice and researches.  
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Appendix A. Floor Plan Dimensions of SWOF Building Archetypes  
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Fig. A.1 SWOF building floor plans and dimensions  
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Appendix B. Component Information for SWOF Building Archetypes 

Table B.1 Component quantities of SWOF building archetypes (for entire building) 
 

Building Name 

Structural Components  

Light framed 
wood lateral walls 

Steel Column Base 
Plates (only retrofitted 

case applied) 

Welded Steel Moment 
Connection (only 

retrofitted case applied) 

L1-2S-60X30-GWB/HWS 25.9 6 3 
L1-3S-60X30-GWB/HWS 40.17 6 3 
L1-2S-100X30-GWB/HWS 38.62 6 3 
L1-3S-100X30-GWB/HWS 58.63 6 3 
L2-2S-60X50-GWB/HWS 32.8 6 3 
L2-3S-60X50-GWB/HWS 50.83 6 3 
L2-2S-100X50-GWB/HWS 44.94 6 3 
L2-3S-100X50-GWB/HWS 69.09 6 3 
L3-2S-50X30-GWB/HWS 27.03 2 1 
L3-3S-50X30-GWB/HWS 40.17 2 1 
L3-2S-80X30-GWB/HWS 32.64 2 1 
L3-3S-80X30-GWB/HWS 47.09 2 1 
L4-2S-60X50-GWB/HWS 36.44 4 2 
L4-3S-60X30-GWB/HWS 54.59 4 2 
L4-2S-100X50-GWB/HWS 49.4 4 2 
L4-3S-100X50-GWB/HWS 73.85 4 2 

 

Table B.1 cont. Component quantities of SWOF building archetypes (for entire building)   
 

Building Name 

Non-Structural Components 

Prefabricated 
Steel Stair No 
Seismic Joint 

Potable 
Water 
Piping 

Heating 
Water 
Piping 

Heating 
Water 
Pipe 

Bracing 

Sanitary 
Waste 
Piping 

HVAC 
Ducting 

L1-2S-60X30-GWB/HWS 4 1.306 0.036 0.018 0.872 0.18 

L1-3S-60X30-GWB/HWS 6 1.959 0.054 0.027 1.308 0.27 

L1-2S-100X30-GWB/HWS 4 2.178 0.06 0.03 1.452 0.3 

L1-3S-100X30-GWB/HWS 6 3.267 0.09 0.045 2.178 0.45 

L2-2S-60X50-GWB/HWS 4 2.178 0.06 0.03 1.452 0.3 

L2-3S-60X50-GWB/HWS 6 3.267 0.09 0.045 2.178 0.45 

L2-2S-100X50-GWB/HWS 4 3.63 0.1 0.05 2.42 0.5 

L2-3S-100X50-GWB/HWS 6 5.445 0.15 0.075 3.63 0.75 

L3-2S-50X30-GWB/HWS 4 1.09 0.032 0.016 0.728 0.15 
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L3-3S-50X30-GWB/HWS 6 1.635 0.048 0.024 1.092 0.225 

L3-2S-80X30-GWB/HWS 4 2.904 0.08 0.04 1.936 0.4 

L3-3S-80X30-GWB/HWS 6 2.613 0.072 0.036 1.74 0.36 

L4-2S-60X50-GWB/HWS 4 2.178 0.06 0.03 1.452 0.3 

L4-3S-60X30-GWB/HWS 6 3.267 0.09 0.045 2.178 0.45 

L4-2S-100X50-GWB/HWS 4 3.63 0.1 0.05 2.42 0.5 

L4-3S-100X50-GWB/HWS 6 5.445 0.15 0.075 3.63 0.75 

 

 

Table B.1 cont. Component quantities of SWOF building archetypes (for entire building)  
 

Building Name 

Non-Structural Components 

Fire 
Sprinkler 

Water 
Piping 

Fire 
Sprinkler 

Drop 

Low 
Voltage 

Switchgear 

Wall 
Partition, 

Wood Stud 

Clay tile 
roof 

L1-2S-60X30-GWB/HWS 0.792 0.432 2 5.32 18 

L1-3S-60X30-GWB/HWS 1.188 0.648 3 8.87 18 

L1-2S-100X30-GWB/HWS 1.32 0.72 2 13.9 30 

L1-3S-100X30-GWB/HWS 1.98 1.08 3 11.57 30 

L2-2S-60X50-GWB/HWS 1.32 0.72 2 8.5 30 

L2-3S-60X50-GWB/HWS 1.98 1.08 3 13.42 30 

L2-2S-100X50-GWB/HWS 2.2 1.2 2 10.58 50 

L2-3S-100X50-GWB/HWS 3.3 1.8 3 16.54 50 

L3-2S-50X30-GWB/HWS 0.66 0.36 2 3.96 15 

L3-3S-50X30-GWB/HWS 0.99 0.54 3 6.74 15 

L3-2S-80X30-GWB/HWS 1.76 0.96 2 5.14 24 

L3-3S-80X30-GWB/HWS 1.584 0.864 3 7.91 24 

L4-2S-60X50-GWB/HWS 1.32 0.72 2 8.3 30 

L4-3S-60X30-GWB/HWS 1.98 1.08 3 13.5 30 

L4-2S-100X50-GWB/HWS 2.2 1.2 2 10.58 50 

L4-3S-100X50-GWB/HWS 3.3 1.8 3 17.06 50 
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Table B.2 Component information of SWOF building archetypes 
 

Component Name Fragility 
Unit Demand Parameter Direction 

Light framed wood lateral walls 100 SF Story Drift Ratio Directional 

Steel Column Base Plates 1 EA Story Drift Ratio Directional 

Welded Steel Moment Connection 1 EA Story Drift Ratio Directional 

Prefabricated steel stair no seismic joint 1 EA Story Drift Ratio Directional 

Potable Water Piping 1000 LF Peak Floor Acceleration Non-directional 

Heating Water Piping 1000 LF Peak Floor Acceleration Non-directional 

Heating Water Pipe Bracing 1000 LF Peak Floor Acceleration Non-directional 

Sanitary Waste Piping 1000 LF Peak Floor Acceleration Non-directional 

HVAC Ducting 1000 LF Peak Floor Acceleration Non-directional 

Fire Sprinkler Water Piping 1000 LF Peak Floor Acceleration Non-directional 

Fire Sprinkler Drop 100 EA Peak Floor Acceleration Non-directional 

Low Voltage Switchgear 1 EA Peak Floor Acceleration Non-directional 

Wall Partition, Wood Stud 100 LF Story Drift Ratio Directional 

Clay tile roof 100 SF Peak Floor Acceleration Non-directional 
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Appendix C. Details of SWOF Building Retrofit Elements for Four Alternatives 

Table C.1 Retrofit elements information for SWOF buildings 

Building ID 

Basic Ordinance FEMA P807 

F1 F2 F3 F1 F2 F3 

Beam Column Beam Column Beam Column Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10  W10x15 W8x10  W10x15 W8x10  W10x15 8X13 8X13 8X13 8X13 8X13 8X13 

L1-3S-60X30-GWB W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 10X12 10X12 8X13 8X13 8X13 8X13 

L1-2S-100X30-GWB W8x10  W10x15 W8x10  W10x15 W8x10  W10x15 10X12 10X12 10X12 10X12 10X12 10X12 

L1-3S-100X30-GWB W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 10X12 10X12 10X17 10X17 10X17 10X17 

L1-2S-60X30-HWS W8x10  W10x15 W8x10  W10x15 W8x10  W10x15 10X12 10X12 10X12 10X12 10X12 10X12 

L1-3S-60X30-HWS W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 10X19 10X19 10X19 10X19 10X19 10X19 

L1-2S-100X30-HWS W8x10  W10x15 W8x10  W10x15 W8x10  W10x15 10X22 10X22 10X19 10X19 10X19 10X19 

L1-3S-100X30-HWS W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 10X22 10X22 10X26 10X26 10X26 10X26 

L2-2S-60X50-GWB W10x15 W10x26 W8x10 W8x15 W10x15 W10x26 8X13 8X13 8X13 8X13 Adequate Adequate 

L2-3S-60X50-GWB W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 10X17 10X17 10X17 10X17 8X13 8X13 

L2-2S-100X50-GWB W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 10X12 10X12 10X12 10X12 10X12 10X12 

L2-3S-100X50-GWB W10x33 W10x54 W8x13 W10x22 W10x33 W10x54 10X17 10X17 10X17 10X17 8X13 8X13 

L2-2S-60X50-HWS W10x15 W10x26 W8x10 W8x15 W10x15 W10x26 10X19 10X19 10X19 10X19 8X13 8X13 

L2-3S-60X50-HWS W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 10X30 10X30 10X30 10X30 8X13 8X13 

L2-2S-100X50-HWS W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 10X22 10X22 10X22 10X22 10X12 10X12 

L2-3S-100X50-HWS W10x33 W10x54 W8x13 W10x22 W10x33 W10x54 10X26 10X26 10X26 10X26 8X13 8X13 
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L3-2S-50X30-GWB W8x10 W10x17 

NA 

8X13 8X13 

NA 

L3-3S-50X30-GWB W8x13 W10x22 8X13 8X13 

L3-2S-80X30-GWB W8x10 W10x17 8X10 8X10 

L3-3S-80X30-GWB W8x13 W10x22 8X10 8X10 

L3-2S-50X30-HWS W8x10 W10x17 10X19 10X19 

L3-3S-60X30-HWS W8x13 W10x22 10X22 10X22 

L3-2S-80X30-HWS W8x10 W10x17 10X22 10X22 

L3-3S-80X30-HWS W8x13 W10x22 8X10 8X10 

L4-2S-60X50-GWB W8x10 W8x15 W8x10 W8x15 

NA 

8X13 8X13 8X10 8X10 

NA 

L4-3S-60X30-GWB W8x10 W10x15 W8x10 W10x15 10X19 10X19 8X13 8X13 

L4-2S-100X50-GWB W8x10 W8x15 W8x10 W8x15 8X10 8X10 8X10 8X10 

L4-3S-100X50-GWB W8x10 W10x15 W8x10 W10x15 8X10 8X10 8X13 8X13 

L4-2S-60X50-HWS W8x10 W8x15 W8x10 W8x15 8X13 8X13 10X19 10X19 

L4-3S-60X50-HWS W8x10 W10x15 W8x10 W10x15 10X30 10X30 10X19 10X19 

L4-2S-100X50-HWS W8x10 W8x15 W8x10 W8x15 10X19 10X19 10X19 10X19 

L4-3S-100X50-HWS W8x10 W10x15 W8x10 W10x15 10X12 10X12 8X13 8X13 
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Table C.1 cont. Retrofit elements information for SWOF buildings  

Building ID 

IEBC A4 ASCE 41-13 

F1 F2 F3 F1 F2 F3 

Beam Column Beam Column Beam Column Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W10x12 W10x49 W8x13 W10x22 W8x13 W10x22 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L1-3S-60X30-GWB W10x22 W10x39 W10x12 W10x49 W10x12 W10x49 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L1-2S-100X30-GWB W10x33 W10x54 W10x12 W10x39 W10x12 W10x39 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L1-3S-100X30-GWB W10x33 W10x54 W10x33 W10x54 W10x33 W10x54 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L1-2S-60X30-HWS W10x12 W10x49 W8x13 W10x22 W8x13 W10x22 W10x12 W10x30 W10x12 W10x17 W10x12 W10x17 

L1-3S-60X30-HWS W10x22 W10x39 W10x12 W10x49 W10x12 W10x49 W10x12 W10x30 W10x12 W10x17 W10x12 W10x17 

L1-2S-100X30-HWS W10x33 W10x54 W10x12 W10x39 W10x12 W10x39 W10x12 W10x30 W10x12 W10x33 W10x12 W10x33 

L1-3S-100X30-HWS W10x33 W10x54 W10x33 W10x54 W10x33 W10x54 W10x12 W10x30 W10x12 W10x33 W10x12 W10x33 

L2-2S-60X50-GWB W10x12 W10x45 W10x33 W10x54 W10x12 W10x45 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L2-3S-60X50-GWB W10x33 W10x54 W10x33 W12x58 W10x33 W10x54 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L2-2S-100X50-GWB W10x33 W10x54 W10x33 W12x58 W10x33 W10x54 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L2-3S-100X50-GWB W12x35 W14x61 W10x33 W12x58 W12x35 W14x61 W8x10 W8x10 W8x10 W8x10 W8x10 W8x10 

L2-2S-60X50-HWS W10x12 W10x45 W10x33 W10x54 W10x12 W10x45 W10x12 W10x12 W10x12 W10x12 W10x12 W10x12 

L2-3S-60X50-HWS W10x33 W10x54 W10x33 W12x58 W10x33 W10x54 W10x12 W10x12 W10x12 W10x12 W10x12 W10x12 

L2-2S-100X50-HWS W10x33 W10x54 W10x33 W12x58 W10x33 W10x54 W10x12 W10x30 W10x12 W10x30 W10x12 W10x30 

L2-3S-100X50-HWS W12x35 W14x61 W10x33 W12x58 W12x35 W14x61 W10x12 W10x30 W10x12 W10x30 W10x12 W10x30 

L3-2S-50X30-GWB W10x12 W10x49 

NA 

W8x10 W8x10 

NA 

L3-3S-50X30-GWB W10x33 W10x54 W8x10 W8x10 

L3-2S-80X30-GWB W10x33 W12x58 W8x10 W8x10 

L3-3S-80X30-GWB W12x35 W14x61 W8x10 W8x10 

L3-2S-50X30-HWS W10x12 W10x49 W10x12 W10x17 

L3-3S-60X30-HWS W10x33 W10x54 W10x12 W10x17 

L3-2S-80X30-HWS W10x33 W12x58 W10x12 W10x12 
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L3-3S-80X30-HWS W12x35 W14x61 W10x12 W10x12 

L4-2S-60X50-GWB W12x35 W14x61 W12x35 W14x61 

NA 

W8x10 W8x10 W8x10 W8x10 

NA 

L4-3S-60X30-GWB W12x35 W14x61 W12x35 W14x61 W8x10 W8x10 W8x10 W8x10 

L4-2S-100X50-GWB W10x33 W10x54 W10x33 W10x54 W8x10 W8x10 W8x10 W8x10 

L4-3S-100X50-GWB W12x35 W14x61 W12x35 W14x61 W8x10 W8x10 W8x10 W8x10 

L4-2S-60X50-HWS W12x35 W14x61 W12x35 W14x61 W10x12 W10x39 W10x12 W10x17 

L4-3S-60X50-HWS W12x35 W14x61 W12x35 W14x61 W10x12 W10x39 W10x12 W10x17 

L4-2S-100X50-HWS W10x33 W10x54 W10x33 W10x54 W10x12 W10x33 W10x12 W10x30 

L4-3S-100X50-HWS W12x35 W14x61 W12x35 W14x61 W10x12 W10x33 W10x12 W10x30 
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Appendix D. Location and Sizes of Two Ordinance Guideline Based SWOF Building 

Retrofit Elements  

 

 

Figure D.1 Location of moment frames used in retrofit: (a) L1, (b) L2, (c) L3 and (d) L4 
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Table D.1 Frame sizes for median !!" retrofit 
 

Building ID 
Median SMS Retrofit 

F1 F2 F3 
Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10   W10x15 W8x10   W10x15 W8x10   W10x15 
L1-3S-60X30-GWB W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 
L1-2S-100X30-GWB W8x10   W10x15 W8x10   W10x15 W8x10   W10x15 
L1-3S-100X30-GWB W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 
L1-2S-60X30-HWS W8x10   W10x15 W8x10   W10x15 W8x10   W10x15 
L1-3S-60X30-HWS W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 
L1-2S-100X30-HWS W8x10   W10x15 W8x10   W10x15 W8x10   W10x15 
L1-3S-100X30-HWS W8x13 W10x22 W10x15 W10x22 W10x15 W10x22 
L2-2S-60X50-GWB W10x15 W10x26 W8x10 W8x15 W10x15 W10x26 
L2-3S-60X50-GWB W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 
L2-2S-100X50-GWB W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 
L2-3S-100X50-GWB W10x33 W10x54 W8x13 W10x22 W10x33 W10x54 
L2-2S-60X50-HWS W10x15 W10x26 W8x10 W8x15 W10x15 W10x26 
L2-3S-60X50-HWS W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 
L2-2S-100X50-HWS W10x22 W10x39 W8x10 W10x15 W10x22 W10x39 
L2-3S-100X50-HWS W10x33 W10x54 W8x13 W10x22 W10x33 W10x54 
L3-2S-50X30-GWB W8x10 W10x17 

NA 

L3-3S-50X30-GWB W8x13 W10x22 
L3-2S-80X30-GWB W8x10 W10x17 
L3-3S-80X30-GWB W8x13 W10x22 
L3-2S-50X30-HWS W8x10 W10x17 
L3-3S-60X30-HWS W8x13 W10x22 
L3-2S-80X30-HWS W8x10 W10x17 
L3-3S-80X30-HWS W8x13 W10x22 
L4-2S-60X50-GWB W8x10 W8x15 W8x10 W8x15 

NA 

L4-3S-60X30-GWB W8x10 W10x15 W8x10 W10x15 
L4-2S-100X50-GWB W8x10 W8x15 W8x10 W8x15 
L4-3S-100X50-GWB W8x10 W10x15 W8x10 W10x15 
L4-2S-60X50-HWS W8x10 W8x15 W8x10 W8x15 
L4-3S-60X50-HWS W8x10 W10x15 W8x10 W10x15 
L4-2S-100X50-HWS W8x10 W8x15 W8x10 W8x15 
L4-3S-100X50-HWS W8x10 W10x15 W8x10 W10x15 
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Table D.2 Frame sizes for maximum !!" retrofit 
 

Building ID 
Maximum "#$Retrofit 

F1 F2 F3 
Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W10x15 W8x18 W10x15 W10x17 W10x15 W10x17 
L1-3S-60X30-GWB W10x15 W10x26 W10x17 W10x30 W10x17 W10x30 
L1-2S-100X30-GWB W10x15 W8x18 W10x15 W10x17 W10x15 W10x17 
L1-3S-100X30-GWB W10x15 W10x26 W10x17 W10x30 W10x17 W10x30 
L1-2S-60X30-HWS W10x15 W8x18 W10x15 W10x17 W10x15 W10x17 
L1-3S-60X30-HWS W10x15 W10x26 W10x17 W10x30 W10x17 W10x30 
L1-2S-100X30-HWS W10x15 W8x18 W10x15 W10x17 W10x15 W10x17 
L1-3S-100X30-HWS W10x15 W10x26 W10x17 W10x30 W10x17 W10x30 
L2-2S-60X50-GWB W10x15 W10x45 W8x10 W10x15 W10x15 W10x45 
L2-3S-60X50-GWB W10x33 W10x54 W10x15 W10x17 W10x33 W10x54 
L2-2S-100X50-GWB W10x33 W10x54 W10x15 W10x17 W10x33 W10x54 
L2-3S-100X50-GWB W10x45 W10x68 W10x15 W10x26 W10x45 W10x68 
L2-2S-60X50-HWS W10x15 W10x45 W8x10 W10x15 W10x15 W10x45 
L2-3S-60X50-HWS W10x33 W10x54 W10x15 W10x17 W10x33 W10x54 
L2-2S-100X50-HWS W10x33 W10x54 W10x15 W10x17 W10x33 W10x54 
L2-3S-100X50-HWS W10x45 W10x68 W10x15 W10x26 W10x45 W10x68 
L3-2S-50X30-GWB W8x13 W10x22 

NA 

L3-3S-50X30-GWB W10x22 W10x26 
L3-2S-80X30-GWB W8x13 W10x22 
L3-3S-80X30-GWB W10x22 W10x26 
L3-2S-50X30-HWS W8X13 W10x22 
L3-3S-60X30-HWS W10x22 W10x26 
L3-2S-80X30-HWS W8X13 W10x22 
L3-3S-80X30-HWS W10x22 W10x26 
L4-2S-60X50-GWB W8x10 W10x15 W8x10 W10x15 

NA 

L4-3S-60X30-GWB W10x15 W10x17 W10x15 W10x17 
L4-2S-100X50-GWB W8x10 W10x15 W8x10 W10x15 
L4-3S-100X50-GWB W10x15 W10x17 W10x15 W10x17 
L4-2S-60X50-HWS W8x10 W10x15 W8x10 W10x15 
L4-3S-60X50-HWS W10x15 W10x17 W10x15 W10x17 
L4-2S-100X50-HWS W8x10 W10x15 W8x10 W10x15 
L4-3S-100X50-HWS W10x15 W10x17 W10x15 W10x17 
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Appendix E. Location and Sizes of Eight Ordinance Guideline Based SWOF Building 

Retrofit Elements  

 
Figure E.1 Location of moment frames used in retrofit: (a) L1, (b) L2, (c) L3 and (d) L4 
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Table E.1 Ordinance Retrofit Ordinary Moment Frame in the X Direction1 

 

Building Index ID 
SMS 

1.6g 1.8g 2g 2.2g 
Beam Column2 Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L1-2S-60X30-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L1-3S-60X30-GWB W8x13 W10x17 W8x15 W10x19 W8x15 W10x22 W10x12 W12x19 
L1-3S-60X30-HWS W8x13 W10x17 W8x15 W10x19 W8x15 W10x22 W10x12 W12x19 

L1-2S-100X30-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L1-2S-100X30-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L1-3S-100X30-GWB W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L1-3S-100X30-HWS W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L2-2S-60X50-GWB W8x18 W10x19 W8x18 W10x22 W10x15 W12x19 W10x12 W12x22 
L2-2S-60X50-HWS W8x18 W10x19 W8x18 W10x22 W10x15 W12x19 W10x12 W12x22 
L2-3S-60X50-GWB W10x12 W12x26 W10x15 W12x26 W10x12 W12x35 W10x12 W12x35 
L2-3S-60X50-HWS W10x12 W12x26 W10x15 W12x26 W10x12 W12x35 W10x12 W12x35 

L2-2S-100X50-GWB W10x12 W12x26 W10x15 W12x26 W10x12 W12x35 W10x17 W12x35 
L2-2S-100X50-HWS W10x12 W12x26 W10x15 W12x26 W10x12 W12x35 W10x17 W12x35 
L2-3S-100X50-GWB W10x17 W12x35 W10x19 W12x40 W10x19 W12x45 W10x22 W12x50 
L2-3S-100X50-HWS W10x17 W12x35 W10x19 W12x40 W10x19 W12x45 W10x22 W12x50 
L3-2S-50X30-GWB                 
L3-2S-50X30-HWS                 
L3-3S-50X30-GWB                 
L3-3S-50X30-HWS                 
L3-2S-80X30-GWB                 
L3-2S-80X30-HWS                 
L3-3S-80X30-GWB                 
L3-3S-80X30-HWS                 

L4-2S-60X50-GWB W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 W8x10 W8x15 
L4-2S-60X50-HWS W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 W8x10 W8x15 
L4-3S-60X50-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-3S-60X50-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 

L4-2S-100X50-GWB W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 
L4-2S-100X50-HWS W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 
L4-3S-100X50-GWB W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-3S-100X50-HWS W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 

1The table summarizes the OMF component sizes in X direction specified in Figure A1. If more than 1 OMFs presented in X direction, they are of 

the same size. 

2Each OMF has 2 columns that of the same size.  
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Table E1 cont. Ordinance Retrofit Ordinary Moment Frame in the X Direction 
 

Building Index ID 
SMS 

2.4g 2.6g 2.8g 3g 
Beam Column Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L1-2S-60X30-HWS W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L1-3S-60X30-GWB W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 W10x12 W12x26 
L1-3S-60X30-HWS W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 W10x12 W12x26 

L1-2S-100X30-GWB W8x10 W10x17 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L1-2S-100X30-HWS W8x10 W10x17 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L1-3S-100X30-GWB W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 
L1-3S-100X30-HWS W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 

L2-2S-60X50-GWB W10x12 W12x26 W10x15 W12x26 W10x15 W12x26 W10x12 W12x35 
L2-2S-60X50-HWS W10x12 W12x26 W10x15 W12x26 W10x15 W12x26 W10x12 W12x35 
L2-3S-60X50-GWB W10x17 W12x35 W10x19 W12x40 W10x19 W12x40 W10x19 W12x45 
L2-3S-60X50-HWS W10x17 W12x35 W10x19 W12x40 W10x19 W12x40 W10x19 W12x45 

L2-2S-100X50-GWB W10x19 W12x40 W10x19 W12x40 W10x19 W12x45 W10x22 W12x50 
L2-2S-100X50-HWS W10x19 W12x40 W10x19 W12x40 W10x19 W12x45 W10x22 W12x50 
L2-3S-100X50-GWB W10x26 W12x50 W10x30 W12x50 W10x33 W12x53 W10x39 W12x58 
L2-3S-100X50-HWS W10x26 W12x50 W10x30 W12x50 W10x33 W12x53 W10x39 W12x58 

L3-2S-50X30-GWB                 
L3-2S-50X30-HWS                 
L3-3S-50X30-GWB                 
L3-3S-50X30-HWS                 
L3-2S-80X30-GWB                 
L3-2S-80X30-HWS                 
L3-3S-80X30-GWB                 
L3-3S-80X30-HWS                 

L4-2S-60X50-GWB W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-2S-60X50-HWS W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-3S-60X50-GWB W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L4-3S-60X50-HWS W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 

L4-2S-100X50-GWB W8x10 W8x15 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-2S-100X50-HWS W8x10 W8x15 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-3S-100X50-GWB W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L4-3S-100X50-HWS W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
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Table E.2 Ordinance Retrofit Ordinary Moment Frame in the Z Direction3 

 

Building Index ID 
SMS 

1.6 (g) 1.8 (g) 2 (g) 2.2 (g) 
Beam Column Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L1-2S-60X30-HWS W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L1-3S-60X30-GWB W8x10 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 
L1-3S-60X30-HWS W8x10 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 

L1-2S-100X30-GWB W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L1-2S-100X30-HWS W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L1-3S-100X30-GWB W8x10 W10x15 W8x10 W10x17 W8x13 W10x19 W8x15 W10x19 
L1-3S-100X30-HWS W8x10 W10x15 W8x10 W10x17 W8x13 W10x19 W8x15 W10x19 
L2-2S-60X50-GWB W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x15 
L2-2S-60X50-HWS W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x15 
L2-3S-60X50-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L2-3S-60X50-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 

L2-2S-100X50-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L2-2S-100X50-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L2-3S-100X50-GWB W8x10 W10x17 W8x13 W10x17 W8x15 W10x19 W8x18 W10x19 
L2-3S-100X50-HWS W8x10 W10x17 W8x13 W10x17 W8x15 W10x19 W8x18 W10x19 
L3-2S-50X30-GWB W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 
L3-2S-50X30-HWS W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 
L3-3S-50X30-GWB W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L3-3S-50X30-HWS W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L3-2S-80X30-GWB W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 
L3-2S-80X30-HWS W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 
L3-3S-80X30-GWB W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L3-3S-80X30-HWS W8x13 W10x17 W8x13 W10x19 W8x18 W10x19 W8x15 W10x22 
L4-2S-60X50-GWB W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 W8x10 W8x15 
L4-2S-60X50-HWS W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 W8x10 W8x15 
L4-3S-60X50-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-3S-60X50-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 

L4-2S-100X50-GWB W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 
L4-2S-100X50-HWS W8x10 W8x10 W8x10 W8x10 W8x10 W8x13 W8x10 W8x13 
L4-3S-100X50-GWB W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-3S-100X50-HWS W8x10 W8x13 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
3The table summarizes the OMF component sizes in Z direction specified in Figure A1. If more than 1 OMFs presented in Z direction, they are of 

the same size. 
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Table E2 cont. Ordinance Retrofit Ordinary Moment Frame in the Z Direction 
 

Building Index ID 
SMS 

2.4 (g) 2.6 (g) 2.8 (g) 3 (g) 
Beam Column Beam Column Beam Column Beam Column 

L1-2S-60X30-GWB W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L1-2S-60X30-HWS W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L1-3S-60X30-GWB W8x18 W10x22 W10x12 W12x19 W10x12 W12x22 W10x12 W12x22 
L1-3S-60X30-HWS W8x18 W10x22 W10x12 W12x19 W10x12 W12x22 W10x12 W12x22 

L1-2S-100X30-GWB W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 
L1-2S-100X30-HWS W8x10 W8x18 W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 
L1-3S-100X30-GWB W8x18 W10x19 W8x18 W10x22 W10x12 W12x19 W10x15 W12x19 
L1-3S-100X30-HWS W8x18 W10x19 W8x18 W10x22 W10x12 W12x19 W10x15 W12x19 

L2-2S-60X50-GWB W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 
L2-2S-60X50-HWS W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 
L2-3S-60X50-GWB W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L2-3S-60X50-HWS W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 

L2-2S-100X50-GWB W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L2-2S-100X50-HWS W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L2-3S-100X50-GWB W8x18 W10x22 W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 
L2-3S-100X50-HWS W8x18 W10x22 W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 

L3-2S-50X30-GWB W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 
L3-2S-50X30-HWS W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 
L3-3S-50X30-GWB W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 
L3-3S-50X30-HWS W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 
L3-2S-80X30-GWB W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 
L3-2S-80X30-HWS W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 W8x18 W10x19 
L3-3S-80X30-GWB W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 
L3-3S-80X30-HWS W10x12 W12x19 W10x15 W12x19 W10x12 W12x22 W10x12 W12x26 
L4-2S-60X50-GWB W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-2S-60X50-HWS W8x10 W8x18 W8x10 W8x18 W8x10 W8x18 W8x10 W10x15 
L4-3S-60X50-GWB W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 
L4-3S-60X50-HWS W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 W8x15 W10x19 

L4-2S-100X50-GWB W8x10 W8x15 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-2S-100X50-HWS W8x10 W8x15 W8x10 W8x15 W8x10 W8x18 W8x10 W8x18 
L4-3S-100X50-GWB W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 
L4-3S-100X50-HWS W8x10 W10x15 W8x10 W10x17 W8x13 W10x17 W8x13 W10x19 

 

 



    
 

257 

References  

Abu-Mostafa YS (1989) The Vapnik-Chervonenkis dimension: Information versus complexity in 
learning. Neural Computation 1:312–317 

Alon N, Ben-David S, Cesa-Bianchi N, Haussler D (1997) Scale-sensitive dimensions, uniform 
convergence, and learnability. Journal of the ACM (JACM) 44:615–631 

Amana E (1967) Theoretical and experimental studies on nailed and glued plywood stressed-skin 
components, Part I. Theoretical study. J of the Institute of Wood Sci 4:43–69 

Andrew Blankstein, Monica Alba (2014) Why do so few California homeowners have earthquake 
insurance? NBC News 

ASCE (2016) Minimum design loads and associated criteria for buildings and other structures. 
American society of civil engineers 

ASCE (2017) ASCE 41-17: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings. 
Proceedings of the SEAOC 

ASCE (2013) ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings. 
Proceedings of the SEAOC 

Auer P (2002) Using confidence bounds for exploitation-exploration trade-offs. Journal of 
Machine Learning Research 3:397–422 

Bahmani P, van de Lindt JW, Gershfeld M, et al (2016) Experimental seismic behavior of a full-
scale four-story soft-story wood-frame building with retrofits. I: Building design, retrofit 
methodology, and numerical validation. Journal of Structural Engineering 142:E4014003 

Blaney C, Cobeen C, Filiatrault A, et al (2018) Vulnerability Based Seismic Assessment and 
Retrofit of One-and Two-Family Dwellings (ATC-110 Project) 

Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal 
component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 
10.0 s. Earthquake Spectra 24:99–138 

Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. Journal of the 
royal statistical society: Series b (Methodological) 13:1–38 

Breiman L (2001) Random forests. Machine learning 45:5–32 

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC 
press 

Brochu E, Cora VM, De Freitas N (2010) A tutorial on Bayesian optimization of expensive cost 
functions, with application to active user modeling and hierarchical reinforcement learning. 
arXiv preprint arXiv:10122599 



    
 

258 

Buckalew J, McDonald B, McCormick D, et al (2015) Example Case Studies of Soft-Story 
Retrofits Using the San Francisco Ordinance. In: Improving the Seismic Performance of 
Existing Buildings and Other Structures 2015. pp 548–559 

Building Seismic Safety Council (1997) NEHRP guidelines for the seismic rehabilitation of 
buildings 

Burton H, Rad AR, Yi Z, et al (2019) Seismic collapse performance of Los Angeles soft, weak, 
and open-front wall line woodframe structures retrofitted using different procedures. 
Bulletin of Earthquake Engineering 17:2059–2091 

Burton HV, Sreekumar S, Sharma M, Sun H (2017) Estimating aftershock collapse vulnerability 
using mainshock intensity, structural response and physical damage indicators. Structural 
safety 68:85–96 

California Earhtquake Authority (2019) California Earthquake Authority Premium Discounts. 
https://www.earthquakeauthority.com/California-Earthquake-Insurance-
Policies/Earthquake-Insurance-Policy-Premium-Discounts 

Cardone D, Gesualdi G, Perrone G (2019) Cost-benefit analysis of alternative retrofit strategies 
for RC frame buildings. Journal of Earthquake Engineering 23:208–241 

Caughey T, O’Kelly ME (1965) Classical normal modes in damped linear dynamic systems 

Chen R, Branum DM, Wills CJ (2011) Hazus scenario and annualized earthquake loss estimation 
for California. California Geological Survey, California Department of Conservation 

Chen R, Jaiswal K, Bausch D, et al (2016) Annualized earthquake loss estimates for California 
and their sensitivity to site amplification. Seismological Research Letters 87:1363–1372 

Chen T (2014) Introduction to boosted trees. University of Washington Computer Science 22:115 

Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd 
acm sigkdd international conference on knowledge discovery and data mining. pp 785–794 

Cheung CK, Itani RY (1983) Analysis of sheathed wood-stud walls. In: Electronic computation. 
ASCE, pp 683–696 

Christovasilis IP, Filiatrault A, Constantinou MC, Wanitkorkul A (2009) Incremental dynamic 
analysis of woodframe buildings. Earthquake engineering & structural dynamics 38:477–
496 

Chui Y, Smith I (1989) Quantifying damping in structural timber components 

Cobeen K, Mahdavifar V, Hutchinson T, et al (2020) Large-Component Seismic Testing for 
Existing and Retrofitted Single-Family Wood-Frame Dwellings, A Report for the 
“Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single 



    
 

259 

Family Wood-Frame Buildings” Project. Pacific Earthquake Engineering Research Center, 
University of California, Berkeley, CA 

Cornell C, Krawinkler H (2000) Progress and challenges in seismic performance assessment. 
PEER Center News, Spring 2000 

Council (ATC) AT (1996) Methodology for evaluation and upgrade of reinforced concrete 
buildings. California Seismic Safety Commission Sacramento, CA 

Council (US) BSS, Council AT (1997) NEHRP guidelines for the seismic rehabilitation of 
buildings. Federal Emergency Management Agency 

Crowley H, Bommer JJ (2006) Modelling seismic hazard in earthquake loss models with spatially 
distributed exposure. Bulletin of Earthquake Engineering 4:249–273 

Dinehart DW, Shenton III HW (2000) Model for dynamic analysis of wood frame shear walls. 
Journal of engineering mechanics 126:899–908 

Dolan J, Madsen B (1992) Monotonic and cyclic nail connection tests. Canadian Journal of Civil 
Engineering 19:97–104 

Dolce M, Lorusso V, Masi A (1992) Inelastic seismic response of building structures with flexible 
diaphragm. In: Proceedings of the Tenth World Conference on Earthquake Engineering, 
Madrid. pp 3967–3972 

Dong Y, Frangopol DM, Saydam D (2014) Pre-earthquake multi-objective probabilistic retrofit 
optimization of bridge networks based on sustainability. Journal of Bridge Engineering 
19:04014018 

Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. 
Journal of the american statistical association 90:1200–1224 

Dudley RM, Giné E, Zinn J (1991) Uniform and universal Glivenko-Cantelli classes. Journal of 
Theoretical Probability 4:485–510 

Ellingwood B (1980) Development of a probability based load criterion for American National 
Standard A58: Building code requirements for minimum design loads in buildings and 
other structures. US Department of Commerce, National Bureau of Standards 

Ellingwood BR, Rosowsky DV, Pang W (2008) Performance of light-frame wood residential 
construction subjected to earthquakes in regions of moderate seismicity. Journal of 
structural engineering 134:1353–1363 

Falk RH, Itani RY (1989) Finite element modeling of wood diaphragms. Journal of Structural 
Engineering 115:543–559 

FEMA (2012a) Seismic Performance Assessment of Buildings: Volume 1—Methodology (P-58-
1) 



    
 

260 

FEMA (2018) Vulnerability-Based Seismic Assessment and Retrofit of One- and Two-Family 
Dwellings, Volume 1 – Prestandard. Applied Technology Council for the California 
Earthquake Authority (Sacramento, CA) and the Federal Emergency Management Agency 
(Washington, DC) 

FEMA (2009) Quantification of Building Seismic Performance Factors 

FEMA (2012b) Seismic evaluation and retrofit of multi-unit wood-frame buildings with weak first 
stories 

FEMA (2000) Recommended seismic design criteria for new steel moment-frame buildings. Fema 
Washington, DC. 

FEMA (2012c) Simplified Seismic Assessment of Detached, Single-Family, Wood-Frame 
Dwellings 

Field EH, Dawson T, Felzer K, et al (2009) Uniform California earthquake rupture forecast, 
version 2 (UCERF 2). Bulletin of the Seismological Society of America 99:2053–2107 

Field EH, Jordan TH, Cornell CA (2003) OpenSHA: A developing community-modeling 
environment for seismic hazard analysis. Seismological Research Letters 74:406–419 

Field EH, Seligson HA, Gupta N, et al (2005) Loss estimates for a Puente Hills blind-thrust 
earthquake in Los Angeles, California. Earthquake Spectra 21:329–338 

Filiatrault A, Folz B (2002) Performance-based seismic design of wood framed buildings. Journal 
of Structural Engineering 128:39–47 

Foliente GC (1995) Hysteresis modeling of wood joints and structural systems. Journal of 
Structural Engineering 121:1013–1022 

Folz B, Filiatrault A (2001) Cyclic analysis of wood shear walls. Journal of Structural Engineering 
127:433–441 

Folz B, Filiatrault A (2002) A computer program for seismic analysis of woodframe structures. 
Consortium of Universities for Research in Earthquake Engineering 

Folz B, Filiatrault A (2004) Seismic analysis of woodframe structures. II: Model implementation 
and verification. Journal of Structural Engineering 130:1361–1370 

Frangopol D, Liub M (2011) Structure and infrastructure engineering: Maintenance, management, 
life-cycle design and performance. Struct Infrastruct Eng 7:389–413 

Frank McKenna, Gregory L Fenves, Michael H Scott, others (2003) the open system for 
earthquake engineering simulation. University of California, Berkeley, CA 

Frazier PI (2018) A tutorial on bayesian optimization. arXiv preprint arXiv:180702811 

Galton F (1894) Natural inheritance. Macmillan and Company 



    
 

261 

Gatto K, Uang C-M (2002) Cyclic response of woodframe shearwalls: Loading protocol and rate 
of loading effects. Consortium of Universities for Research in Earthquake Engineering 

Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis (Vol. 2). Boca Raton, 
FL: Chapman 

Ghehnavieh EZ (2017) Seismic Analysis of Light-Frame Wood Building with a Soft-Story 
Deficiency 

Gokkaya BU (2015) Seismic reliability assessment of structures incorporating modeling 
uncertainty and implications for seismic collapse safety. PhD Thesis, Stanford University 

Hardyniec A, Charney F (2015) An investigation into the effects of damping and nonlinear 
geometry models in earthquake engineering analysis. Earthquake Engineering & Structural 
Dynamics 44:2695–2715 

Harris SK, Egan JA (1992) Effects of ground conditions on the damage to four-story corner 
apartment buildings. The Loma Prieta, California, Earthquake of October 17, 1989–Marina 
District F181–F194 

Haselton Baker Risk Group (2019) Seismic Performance Prediction Program 

Haselton CB (2006) Assessing seismic collapse safety of modern reinforced concrete moment 
frame buildings. PhD Thesis, Stanford University 

Henry V. Burton, Aryan Rezaei Rad, Jonathan Buckalew (2016) A Comparative Assessment of 
the Collapse Performance of Soft, Weak or Open-Front Wall Woodframe Buildings 
Retrofitted using Alternative Procedures. Maui, HI 

Hoeffding W (1994) Probability inequalities for sums of bounded random variables. In: The 
Collected Works of Wassily Hoeffding. Springer, pp 409–426 

Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. 
Technometrics 12:55–67 

Holmes W, Sommers P (1996) Northridge earthquake of January 17, 1994. Reconnaissance Report, 
Vol. 2. Supplement C to. Earthquake Spectra 12:1–278 

Huber PJ (1992) Robust estimation of a location parameter. In: Breakthroughs in statistics. 
Springer, pp 492–518 

Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and 
stiffness deterioration. Earthquake engineering & structural dynamics 34:1489–1511 

IEBC (2012) 2012 International Existing Building Code 

Itani R, Cheung C (1983) Dynamic response of wood diaphragms in low-rise wood-framed 
buildings. Final Report, Part I, NSF Grant No CEE 8114530: 



    
 

262 

Itani RY, Cheung CK (1984) Nonlinear analysis of sheathed wood diaphragms. Journal of 
Structural Engineering 110:2137–2147 

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer 

Jayamon JR, Line P, Charney FA (2019) Sensitivity of Wood-Frame Shear Wall Collapse 
Performance to Variations in Hysteretic Model Parameters. Journal of Structural 
Engineering 145:04018236 

Jayaram N, Baker JW (2009) Correlation model for spatially distributed ground-motion intensities. 
Earthquake Engineering & Structural Dynamics 38:1687–1708 

Jayaram N, Baker JW (2010) Efficient sampling and data reduction techniques for probabilistic 
seismic lifeline risk assessment. Earthquake Engineering & Structural Dynamics 39:1109–
1131 

Jehel P, Léger P, Ibrahimbegovic A (2014) Initial versus tangent stiffness-based Rayleigh damping 
in inelastic time history seismic analyses. Earthquake Engineering & Structural Dynamics 
43:467–484 

Jennings E, van de Lindt JW, Ziaei E, et al (2015) Full-scale experimental verification of soft-
story-only retrofits of wood-frame buildings using hybrid testing. Journal of Earthquake 
Engineering 19:410–430 

Jennings EN (2015) Multi-objective community-level sesimic retrofit optimization combining 
social vulnerability with an engineering framework for community resiliency, A. PhD 
Thesis, Colorado State University. Libraries 

Jiang L, Ye J (2020) Quantifying the effects of various uncertainties on seismic risk assessment of 
CFS structures. Bulletin of earthquake engineering 18:241–272 

Kameshwar S, Padgett JE (2014) Multi-hazard risk assessment of highway bridges subjected to 
earthquake and hurricane hazards. Engineering Structures 78:154–166 

Kasal B, Leichti RJ, Itani RY (1994) Nonlinear finite-element model of complete light-frame wood 
structures. Journal of Structural Engineering 120:100–119 

Kim JH, Rosowsky DV (2005) Fragility analysis for performance-based seismic design of 
engineered wood shearwalls. Journal of structural engineering 131:1764–1773 

Koza JR, Bennett FH, Andre D, Keane MA (1996) Automated design of both the topology and 
sizing of analog electrical circuits using genetic programming. In: Artificial Intelligence in 
Design’96. Springer, pp 151–170 

Krawinkler H, Miranda E (2004) Performance-based earthquake engineering. Earthquake 
engineering: from engineering seismology to performance-based engineering 9:1–9 



    
 

263 

LADBS (2015) Mandatory wood frame soft-story retrofit program: structural design guidelines. 
Los Angeles 

Lee JY, Ellingwood BR (2015) Ethical discounting for civil infrastructure decisions extending 
over multiple generations. Structural Safety 57:43–52 

Li Y, Ellingwood BR (2009) Framework for multihazard risk assessment and mitigation for wood-
frame residential construction. Journal of structural engineering 135:159–168 

Li Y, Yin Y, Ellingwood BR, Bulleit WM (2010) Uniform hazard versus uniform risk bases for 
performance-based earthquake engineering of light-frame wood construction. Earthquake 
Engineering & Structural Dynamics 39:1199–1217 

Liel AB, Deierlein GG (2013) Cost-benefit evaluation of seismic risk mitigation alternatives for 
older concrete frame buildings. Earthquake Spectra 29:1391–1411 

Liel AB, Haselton CB, Deierlein GG, Baker JW (2009) Incorporating modeling uncertainties in 
the assessment of seismic collapse risk of buildings. Structural Safety 31:197–211 

Lignos DG, Krawinkler H (2012) Development and utilization of structural component databases 
for performance-based earthquake engineering. Journal of Structural Engineering 
139:1382–1394 

Lowes LN, Mitra N, Altoontash A (2003) A beam-column joint model for simulating the 
earthquake response of reinforced concrete frames 

Maison B, McDonald B, McCormick D, et al (2014) Commentary on FEMA P-807 for retrofit of 
wood-frame soft-story buildings. Earthquake Spectra 30:1359–1380 

Mangalathu S, Jeon J-S (2019) Stripe-based fragility analysis of multispan concrete bridge classes 
using machine learning techniques. Earthquake Engineering & Structural Dynamics 
48:1238–1255 

Mazzoni S, Gregor N, Al Atik L, et al (2020) Probabilistic Seismic Hazard Analysis and Selecting 
and Scaling Ground-Motion Records, A Report for the “Quantifying the Performance of 
Retrofit of Cripple Walls and Sill Anchorage in Single Family Wood-Frame Buildings” 
Project. Pacific Earthquake Engineering Research Center, University of California, 
Berkeley, CA 

Miller MK (2014) Seismic risk assessment of complex transportation networks. PhD Thesis, 
Stanford University 

Miranda E, Aslani H, Taghavi S (2004) Assessment of seismic performance in terms of economic 
losses. In: Proceedings, International Workshop on Performance-Based Seismic Design: 
Concepts and Implementation. Pacific Earthquake Engineering Research (PEER) Center, 
University of …, pp 149–160 



    
 

264 

Mitrani-Reiser J (2007) An ounce of prevention: probabilistic loss estimation for performance-
based earthquake engineering. PhD Thesis, California Institute of Technology 

Moehle J, Deierlein GG (2004) A framework methodology for performance-based earthquake 
engineering. In: 13th world conference on earthquake engineering 

Moradi S, Burton HV (2018) Response surface analysis and optimization of controlled rocking 
steel braced frames. Bulletin of Earthquake Engineering 16:4861–4892 

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press 

NIBS (2017) Natural hazard mitigation saves 2017 interim report: summary of findings 

Padgett JE, Dennemann K, Ghosh J (2010) Risk-based seismic life-cycle cost–benefit (LCC-B) 
analysis for bridge retrofit assessment. Structural Safety 32:165–173 

Pang W, Rosowsky D, Pei S, Van de Lindt J (2007) Evolutionary parameter hysteretic model for 
wood shear walls. Journal of structural engineering 133:1118–1129 

Pang W, Ziaei E, Filiatrault A (2012) A 3D model for collapse analysis of soft-story light-frame 
wood buildings. World 15:19 

Park S, van de Lindt JW (2009) Formulation of seismic fragilities for a wood-frame building based 
on visually determined damage indexes. Journal of performance of constructed facilities 
23:346–352 

Pearson K (1896) VII. Mathematical contributions to the theory of evolution.—III. Regression, 
heredity, and panmixia. Philosophical Transactions of the Royal Society of London Series 
A, containing papers of a mathematical or physical character 253–318 

Pei S, Van de Lindt J (2011) Seismic numerical modeling of a six-story light-frame wood building: 
Comparison with experiments. Journal of Earthquake Engineering 15:924–941 

Pei S, van de Lindt J (2010a) User’s manual for SAPWood for Windows: Seismic analysis package 
for woodframe structures. NEEShub (nees org) 

Pei S, van de Lindt J (2010b) Influence of structural properties and hazard level on seismic loss 
estimation for light-frame wood structures. Engineering structures 32:2183–2191 

Pei S, van de Lindt J (2009) Systematic seismic design for manageable loss in wood-framed 
buildings. Earthquake spectra 25:851–868 

Polensek A, Laursen HI (1984) Seismic Behavior of Bending Components and Intercomponent 
Connections of Light Frame Wood Buildings. Oregon State University 

Porter KA, Beck JL, Shaikhutdinov RV (2002) Investigation of sensitivity of building loss 
estimates to major uncertain variables for the Van Nuys testbed. PEER Report 2002/03 



    
 

265 

Porter KA, Kiremidjian AS, LeGrue JS (2001) Assembly-based vulnerability of buildings and its 
use in performance evaluation. Earthquake spectra 17:291–312 

Porter KA, Scawthorn CR, Beck JL (2006) Cost-effectiveness of stronger woodframe buildings. 
Earthquake Spectra 22:239–266 

Pozza L, Scotta R, Trutalli D, et al (2014) Experimental and numerical analyses of new massive 
wooden shear-wall systems. Buildings 4:355–374 

Priestley M (1999) Displacement-based approaches to rational limit states design of new structures. 
In: Proc. 11th Eur. Conf. Earthquake Eng.: Invited Lectures. pp 317–335 

Priestley M (2000) Performance based seismic design. Bulletin of the New Zealand society for 
earthquake engineering 33:325–346 

Priestley MN (1993) Myths and fallacies in earthquake engineering-conflicts between design and 
reality. Bulletin of the New Zealand National Society for Earthquake Engineering 26:329–
341 

Ramirez C, Liel A, Mitrani-Reiser J, et al (2012) Expected earthquake damage and repair costs in 
reinforced concrete frame buildings. Earthquake Engineering & Structural Dynamics 
41:1455–1475 

Rasmussen CE (2003) Gaussian processes in machine learning. In: Summer School on Machine 
Learning. Springer, pp 63–71 

Rathje EM, Dawson C, Padgett JE, et al (2017) DesignSafe: new cyberinfrastructure for natural 
hazards engineering. Natural Hazards Review 18:06017001 

Roohi M, Hernandez EM, Rosowsky D (2019) Nonlinear seismic response reconstruction and 
performance assessment of instrumented wood-frame buildings—Validation using 
NEESWood Capstone full-scale tests. Structural Control and Health Monitoring 26:e2373 

Rosowsky DV, Ellingwood BR (2002) Performance-based engineering of wood frame housing: 
Fragility analysis methodology. Journal of Structural Engineering 128:32–38 

Rowshandel B, Reichle M, Wills C, et al (2006) Estimation of future earthquake losses in 
California. California Geological Survey, Menlo Park, California 

Schiller B, Hutchinson T, Cobeen K (2020a) Cripple Wall Small-Component Test Program: Dry 
Specimens, A Report for the “Quantifying the Performance of Retrofit of Cripple Walls 
and Sill Anchorage in Single Family Wood-Frame Buildings” Project. Pacific Earthquake 
Engineering Research Center, University of California, Berkeley, CA 

Schiller B, Hutchinson T, Cobeen K (2020b) Cripple Wall Small-Component Test Program: Wet 
Specimens I, A Report for the “Quantifying the Performance of Retrofit of Cripple Walls 
and Sill Anchorage in Single Family Wood-Frame Buildings” Project. Pacific Earthquake 
Engineering Research Center, University of California, Berkeley, CA 



    
 

266 

Schiller B, Hutchinson T, Cobeen K (2020c) Cripple Wall Small-Component Test Program: Wet 
Specimens II, A Report for the “Quantifying the Performance of Retrofit of Cripple Walls 
and Sill Anchorage in Single Family Wood-Frame Buildings” Project. Pacific Earthquake 
Engineering Research Center, University of California, Berkeley, CA 

SEAOSC (2017) SEAOSC design guide: City of Los Angeles soft, weak and open-front wall line 
building ordiance. Structural Engineers Association of Southern California, Los Angeles 

Seo J, Dueñas-Osorio L, Craig JI, Goodno BJ (2012) Metamodel-based regional vulnerability 
estimate of irregular steel moment-frame structures subjected to earthquake events. 
Engineering Structures 45:585–597 

Sichani ME, Padgett JE, Bisadi V (2018) Probabilistic seismic analysis of concrete dry cask 
structures. Structural Safety 73:87–98 

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning 
algorithms. In: Advances in neural information processing systems. pp 2951–2959 

Soft Story Retrofit Pros (2019) Soft Story Retrofit Pricing. : 
http://www.softstoryretrofitpros.com/pricing 

Stewart W (1987) The seismic design of plywood sheathed shear walls. 

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the 
Royal Statistical Society: Series B (Methodological) 36:111–133 

Student (1908) The probable error of a mean. Biometrika 1–25 

Sun H, Burton HV, Huang H (2020) Machine Learning Applications for Building Structural 
Design and Performance Assessment: State-of-the-Art Review. Journal of Building 
Engineering 101816 

Sutley EJ, van de Lindt JW (2016) Evolution of predicted seismic performance for wood-frame 
buildings. Journal of Architectural Engineering 22:B4016004 

Symans M, Charney F, Whittaker A, et al (2008) Energy dissipation systems for seismic 
applications: current practice and recent developments. Journal of structural engineering 
134:3–21 

Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society: Series B (Methodological) 58:267–288 

Trevor H, Robert T, Jerome F (2009) The elements of statistical learning. Springer Science+ 
Business Media, LLC 

USGS (2019) USGS Unified Hazard Tool 



    
 

267 

Vail K, Lizundia B, Welch DP, Reis E (2020) Earthquake Damage Workshop, A Report for the 
“Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single 
Family Wood-Frame Buildings” Project. Pacific Earthquake Engineering Research Center, 
University of California, Berkeley 

Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthquake engineering & 
structural dynamics 31:491–514 

Van de Lindt J (2005) Damage-based seismic reliability concept for woodframe structures. Journal 
of Structural Engineering 131:668–675 

Van de Lindt JW, Liu H, Pei S (2007) Performance of a woodframe structure during full-scale 
shake-table tests: Drift, damage, and effect of partition wall. Journal of performance of 
constructed facilities 21:35–43 

van de Lindt JW, Pei S, Liu H, Filiatrault A (2010) Three-dimensional seismic response of a full-
scale light-frame wood building: Numerical study. Journal of structural engineering 
136:56–65 

van de Lindt JW, Rosowsky DV, Pang W, Pei S (2013) Performance-based seismic design of 
midrise woodframe buildings. Journal of Structural Engineering 139:1294–1302 

van de Lindt JW, Symans MD, Pang W, et al (2012) Seismic risk reduction for soft-story 
woodframe buildings: the nees-soft project. World 15:19 

Wald A (1939) Contributions to the theory of statistical estimation and testing hypotheses. The 
Annals of Mathematical Statistics 10:299–326 

Welch BL (1951) On the comparison of several mean values: an alternative approach. Biometrika 
38:330–336 

Welch DP, Deierlein GG (2020) Technical Background Report for Structural Analysis and 
Performance Assessment, A Report for the “Quantifying the Performance of Retrofit of 
Cripple Walls and Sill Anchorage in Single Family Wood-Frame Buildings” Project, 
Report PEER 2020/XX. Pacific Earthquake Engineering Research Center, University of 
California, Berkeley, CA 

Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite 
hypotheses. The annals of mathematical statistics 9:60–62 

Xia R, Schleuss J (2016) LA releases addresses of 13,500 apartments and condos likely to need 
earthquake retrofitting. Los Angeles Times 

Xie Y, DesRoches R (2019) Sensitivity of seismic demands and fragility estimates of a typical 
California highway bridge to uncertainties in its soil-structure interaction modeling. 
Engineering Structures 189:605–617 



    
 

268 

Xie Y, Ebad Sichani M, Padgett JE, DesRoches R (2020) The promise of implementing machine 
learning in earthquake engineering: A state-of-the-art review. Earthquake Spectra 
8755293020919419 

Yamaguchi N (1998) Dynamic performance of wooden bearing walls by shaking table test. 
Proceedings of the 5th WCTE, Montreux, Switzerland, 1998 2:26–33 

Yi Z, Burton HV, Shokrabadi M, Issa O (2020) Multi-scale cost-benefit analysis of the Los 
Angeles Soft-Story Ordinance. Engineering Structures 214:110652 

Yin Y-J, Li Y (2010) Seismic collapse risk of light-frame wood construction considering aleatoric 
and epistemic uncertainties. Structural Safety 32:250–261 

Zareian F, Lanning J (2020) Development of Testing Protocol for Cripple Wall Components, A 
Report for the “Quantifying the Performance of Retrofit of Cripple Walls and Sill 
Anchorage in Single Family Wood-Frame Buildings” Project. Pacific Earthquake 
Engineering Research Center, University of California, Berkeley, CA 

Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. Journal of the 
royal statistical society: series B (statistical methodology) 67:301–320 

 




