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Providing Performance Guarantees in an FDDI Network 

Darrell D. E. Long,+ Carol Osterbrockt Luis-Felipe Cabrera 
Computer and Information Sciences 
University of California, Santa Cruz 

Abstract 

A network subsystem supporting a continuous media 
file system must guarantee a minimum throughput, a max- 
imum delay, and a muximum jitter. We present a transport 
protocol that provides these guarantees. 

To support different types of service, our protocol is 
built from modules selected to meet the requirements of 
each communication session. A buffering technique is 
used to provide jitter guarantees. To provide throughput 
and delay guarantees, network performance is optimized 
based on the required transfer rate. 

The effects of controlling transmission rate and packet 
size are presented. The resulting transport protocol is 
modeled on a simulated FDDI network and the results are 
analyzed. We show that the protocol provides the required 
guarantees for the anticipated types of traffic. 

1 Introduction 

Digital multimedia data is characterized by high data 
volume that must be transferred with strict performance 
requirements. Each component of a multimedia system 
must cooperate by providing guarantees that it can sustain 
the required transmission rate. 

A multimedia file system must also address the problem 
that not all the components of the system can provide the 
same performance. In particular, current disk technology 
is insufficient to provide multimedia transfer rates. Thus, 
it is necessary to distribute disk 1/0 over several storage 
units that can operate in parallel to achieve high transfer 
rates. 
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Swift [l] is an architecture for a distributed file system 
to support the storage and processing of multimedia data. 
It uses multiple storage repositories and processing units 
to provide the required performance, and uses a local area 
network for communication between the clients and the 
storage units. To provide satisfactory service the archi- 
tecture exposes parameters to be guaranteed during client 
sessions. 

The network subsystem must address two problems. 
The first is meeting throughput requirements. Although 
the storage of data may be divided among several reposito- 
ries, all of the data must pass through the network. Recent 
adv'ances in network technology, in particular FDD1 (Fiber 
DistributedData Interface) [3 ] ,  begin to provide the neces- 
sary data rates. The second is guaranteeing that the delay 
between the sender and the receiver will not exceed the 
required maximum. This can be achieved using known 
properties of FDDI networks, and using buffering and rate 
control to insure that jitter, or variability in delay, will fall 
within the desired limits. 

We present a brief overview of the Swift architecture 
and then focus on the network transport protocol that we 
have developed for it. In $2 we present background infor- 
mation, including a brief description of the Swift architec- 
ture and related research. We discuss which performance 
parameters can be guaranteed in $3. In $4 we discuss how 
the transport protocol was designed and how the design 
decisions were made. The components of the protocol 
are described in $5. A simulation of the protocol and the 
performance results obtained using it are presented in $6. 

2 Background 

There are three main limitations to storing, retrieving, 
and processing multimedia data: the speed of mass stor- 
age devices, processors, and communications. Processors 
are now fast enough to manipulate the data at the required 
rates. Disk technology has improved, but the data rates 
provided are still insufficient. With FDDI, network tech- 
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Figure 1: Components of the Swift Architecture 

nology is approaching the point of providing sufficient 
dzta rates. 

2.1 The Swift Architecture 

The goal of the Swift I/O architecture [l] is to support 
high data rates in a general purpose distributed system. 
It addresses data rate mismatches between the applica- 
tion, the storage devices, and the interconnection network. 
Swift provides high data rates by using a high-speed in- 
terconnection medium and using multiple storage devices 
operating in parallel. Swift can use any appropriate stor- 
age technology including high-performance disk arrays. 
It can thus adapt to technological advances to support ever 
increasing 1/0 demands. The components of the Swift 
architecture are depicted in figure 1. 

Swift objects are managed by storage agents. An im- 
plementation operates as follows: when a client issues a 
request to <access an object, a storage mediator reserves 
resources from all the necessary storage agents and the 
communication subsystem. The storage mediator then 
presents a distribution agent with a transfer plan. Swift 
assumes that sufficient storage and data transmission ca- 
pacity can be preallocated and thus will be available. It 
supports negotiations between the client (which can be- 
have as a data producer or a data consumer) and the stor- 
age mediator to perform resource preallocation. A request 
that cannot be satisfied is denied, but may be reissued later 
when more resources are available. The distribution agent 
follows the transfer plan to store or retrieve client data at 
the storage agents. 

2.2 Network Requirements 

There are several constraints on the delivery of data. 
First, data must be delivered at a nearly constant rate for 
the duration of the transmission. This requires the network 

to guarantee that a nearly constant fraction of the band- 
width will be available, and that there will be no delays 
in the transmission which exceed the requirements of the 
application. 

Second, messages must be kept in sequence, and mes- 
sage loss must be minimized. In order to meet time con- 
straints it may be necessary to allow part of a stream to be 
discarded instead of waiting for it to be received correctly. 
However, there are some types of communication, such as 
file transfer, where losing part of the data is unacceptable, 
and timing guarantees are not required. 

Third, available bandwidth may affect decisions made 
by clients. For instance, if there is insufficient bandwidth 
to transmit an uncompressed stream, the client may decide 
to use compression, even though that may degrade the 
quality of the data. Alternatively, the client may decide to 
wait, or change the parameters of the transmission. 

2.3 Types of Data Communication 

The performance requirements of the protocol depend 
on the type of data transfer. Ferrari [6] examines differ- 
ent types of data transfers and their associated require- 
ments. The primary types of transfer that need to use large 
amounts of network resources are audio, video, and large 
file transfers. 

One type of interactive audio or video session involves 
two clients transmitting voice or video streams to each 
other, for instance in teleconferencing. These types of 
transmission require that the delay be as small as possible, 
so that conversations take place naturally. 

A second type of interactive service involves the editing 
and combining of audio and video streams. This second 
type of session is a primary goal of Swift. The important 
constraint in this type of session is that the delays within 
the system should be as small as possible, because the 
user will want to be able to stop and start streams with 
imperceptible delay. 

A non-interactive continuous media session consists of 
data being recorded or played back. In this case, an initial 
delay can be tolerated, but the amount of jitter, or vari- 
ability in the delay, must be minimized. In addition, both 
voice and video have high bandwidth requirements and it 
may be necessary to synchronize streams which may not 
have been created together. 

Compression adds an additional complication to the 
transport service as the amount of compression that will 
occur for a given data stream is not known in advance and 
usually varies over the length of the stream. This means 
that the exact rate of data transfer will be unknown in 
advance and may vary over the duration of the session. 
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Necessary control messages occur unpredictably and 
must be delivered quickly and reliably. These short mes- 
sages use the available bandwidth left after the reserved 
tr&c has been allocated. Examples of control messages 
are the messages used to activate and deactivate connec- 
tions and acknowledgments used for flow control and reli- 
ability. Because of the nature of the FDDI channel some of 
the available bandwidth is always available for unguaran- 
teed messages, even when all of the guaranteed bandwidth 
is being used. 

The delivery time of control messages cannot always 
be controlled as no channel is completely reliable. When 
a control message is lost the sender retransmits it. Thus 
delivery time may be longer than e. I xted. The Swift 
transport protocol operates with the assumption that con- 
trol messages will be received within a bounded time, but 
if they are not the protocol can still proceed correctly. 

2.4 Related High-speed Protocols 

Several transport protocols have been developed to take 
advantage of recent advances in data communication per- 
formrlnce. They are called “light-weight” protocols be- 
cause they use as little bandwidth and processing as possi- 
ble for the protocol. None of them provides a satisfactory 
protocol for our needs given the diversity of traffic that 
need to be accommodated. Some light-weight transport 
protocols in use include Delta-t, NETBLT, Datakit, and 
XTP which are compared and analyzed by Doeringer, et 
al. [4]. Some of their common characteristics are: re- 
duced overhead to establish and bre,ak connections; mini- 
mal packet exchange for flow control; use of rate control 
to reduce contention; and fixed-size headers. 

Delta-t (At) [8,13] is a transport protocol for high-speed 
networks based on a timer mechanism. Both sender ‘and 
receiver maintain a timer, along with the rest of the infor- 
mation required for a sliding window protocol. The timer 
is used to decide when the connection is closed, and the 
connection is initiated by the first &?ta packet. By using 
data packets to open connections and timers to determine 
when connections are closed, Delta-t avoids the problem 
introduced by using non-data packets for handshaking. 
The sliding window can be moved without explicit ac- 
knowledgment messages. 

NETBLT (NETwork BLock Transfer) [2] is a bulk data 
transfer protocol designed for use on the Internet. Since 
this protocol may encounter links with varying dam ca- 
pacity, it uses rate control to minimize network congestion 
and multiple buffering to minimize errors and to provide 
high throughput. This same rate control algorithm is used 
in Swift. Briefly, a transmission is divided into buffers 

of a size agreed upon by the sender and receiver. The 
buffer transmission rate is determined. The protocol then 
calculates the rate at which to transmit the network data 
packets that will be assembled from the buffers. It also 
calculates the burst size, the size of the largest continuous 
stream of packets, and burst rate, the effective rate of the 
largest burst. Based on these calculations, the protocol 
determines the correct routing, packet rate, and buffer size 
to complete the transfer. By thus regulating packet rate 
network congestion is controlled. 

3 What FDDI can Guarantee 

Fiber Distributed Data Interface (FDDI) is a specifi- 
cation for a high-speed physical and data link protocol 
to be used with fiber optic cable, although it can also 
be implemented on copper wire. FDDI uses a timed to- 
ken ring protocol to control access. Sevcik and Johnson 
[12] have analyzed the properties of the FDDI protocol 
and found that the upper bound on the token cycle time, 
and therefore on the time between two transmissions of 
synchronous frames, is less than twice the target token 
rotation time (’ITRT) when the synchronous allocation is 
done correctly. 

By using the FDDI synchronous mode the Swift trans- 
port protocol can operate with a known upper bound on 
the delay of any packet. This information is used in two 
ways. First, the protocol uses timers to decide if the con- 
nection is valid or if a packet has been lost. Since the 
upper limit on delay is known, it is possible to use the 
strictest possible bound. Second, maximum packet delay 
is used to set buffer sizes so as to guarantee the jitter seen 
by the application. 

4 Goals of the Transport Protocol 

We use the following terms to describe the functions 
of the protocol, the data structures, and the procedures 
involved. A transport service data unit (TSDU) is the 
basic unit of data used by the application. In the case of 
a video stream, a TSDU is a video frame. In the case of 
[an audio stream, a TSDU may be a sample or a sequence 
of samples. For file transfer applications, the TSDU is 
defined by the application. The TSDU may also be called 
the block size or frame size. A transport protocol data 
unit (TPDU) is the basic unit of data used by the transport 
protocol, also called a packet. It may be the same size as a 
TSDU, larger or smaller. In an FDDI network, the TPDU 
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size is generally kept as large as possible since it has been 
shown that the best utilization of resources occurs when 
the packets are large [51. 

4.1 The Swift Environment 

The transport level protocol was designed with the as- 
sumption that the other layers of the protocol stack also 
provide guarantees. It also assumes that the higher lay- 
ers deliver data at a known rate. In the case of real-time 
devices such as microphones or cameras the data rate is 
known. For storage devices the data rate is controlled by 
the storage subsystem [ 101. In general, the data rate is con- 
trolled according to the throughput requirements specified 
by the application. 

An important function of the protocol is insuring that 
the delivery rate at the receiver is guaranteed within the 
bounds specified. The rate that must be controlled is the 
rate of transmission of TPDUs across the network. The 
transport of TPDUs is controlled by a timer-based proto- 
col [8]. Rate control has been shown to be effective in 
reducing contention in large file transfers [2], and is well 
suited to the constant data flow that is characteristic of 
continuous media. 

Because the transfer rate is nearly constant, and the 
senders and receivers have guaranteed that they can pro- 
vide the resources to handle the rate specified, and because 
the protocol assumes that the network will deliver the dau 
reliably, little flow control is used. The nature of the data 
will often m‘ake it preferable to simply ignore a missing 
TPDU rather than attempt to have it retransmitted. The 
strength of the delivery guarantee depends on the nature 
of the data. For example, losing a video frame is less 
noticeable than losing an audio sample. 

When flow control is necessary it must be as transparent 
as possible. The method chosen is similar to the Delta- 
t [13] simplex connection method. This is a window- 
based flow control where acknowledgments are assumed 
if a negative acknowledgment is not received. The max- 
imum wait is computed from knowledge of the network. 
Acknowledgments may also be sent, but the protocol is 
designed so that the sender never has to wait for an ac- 
knowledgment to continue. If a packet is lost, the sender 
will receive a retransmission request. 

Buffering is used to minimize variations in delay, to 
avoid data starvation at the receiving end, and to avoid 
queuing delays at the sending end. The method of al- 
locating buffers to minimize jitter is discussed in $4.2. 
Because the buffers may hold large amounts of data the 
time it takes to copy data to and from buffers can be sig- 
nificant. To minimize the copying done the application 

loads data directly into the buffers and then releases them 
to the transport service. To enforce the guaranteed rate 
constraints the application waits for a buffer if none are 
available. 

The storage mediator is responsible for allocating the 
bandwidth of the network to clients. If a request cannot 
be granted it may be possible to reschedule it for a later 
time or to relax the requirements. This must be negotiated 
by the storage mediator, sender, and receiver. If a client 
request does not includea bandwidth requirement, then the 
bandwidth allocation is set by the storage mediator. The 
bandwidth that is guaranteed is the greatest amount that 
the session can use so clients must request their maximum 
burst rate. 

4.2 Delay and Jitter Guarantees 

The variation in transmission delay is called jitter, and 
cannot be tolerated in continuous media streams. When 
high-quality output is desired, as in audio transmissions, 
jitter control can be more important than the actual amount 
of delay. Ferrari [7] presents an analysis of jitter in high- 
speed networks, and a method for jitter control on an 
internetwork. 

The goals of providing a guaranteed maximum jitter, a 
guaranteed maximum delay, and a guaranteed minimum 
data rate conflict. By using buffers large enough to hold 
all the data that is being transferred, and filling them at the 
beginning of the session, jitter can be eliminated. How- 
ever, the initial delay may be unacceptable, and the storage 
requirements could be impossible to meet. 

4.2.1 Guaranteed Maximum Jitter for Large Frames 

To guarantee that jitter will be minimized for large frames, 
it must be guaranteed that the TPDUs used to make the 
frames will be transmitted in a timely fashion. In order 
to make this guarantee, the following parameters must 
be considered: fn,  the time when frame 11 is expected 
to be completely received; rn, the time when all TPDUs 
that make up frame n have arrived at the receiver; &axl 

the maximum possible delay over the network; &,in, the 
minimum possible delay over the network; j n e t  = &a, - 
d,,, the maximum jitter due to network delays; p ,  the size 
of the data in a packet, or TPDU, b, the size of the data 
in a frame, or TSDU; 7, the maximum jitter due to rate 
control <and process switches; p, the arrival rate of TSDUs 
at the sender’s transport layer; and jmax, the guaranteed 
maximum jitter. 

The total jitter perceived by the transport layer will be 
j n e t  + 7. The goal of the transport service is to allocate the 
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buffers in such a way that this jitter can be smoothed, so 
that for every frame k, 

It is already known that the TSDUs will be arriving at 
the sender at rate p. They will then be split into packets of 
size p ,  and transmitted to the receiver. The delay given by 
T k + l  - f k  is the maximum allowable delay between the 
earliest time that frame k could have been used and the 
latest time that the last packet that makes up frame k + 1 
could arrive. It is assumed that the application layer will 
use packets at the constant rate p whenever possible, and if 
a packet is too late then the next packet will be used earlier 
in order to compensate for the late packet. It can be seen 
that as long as the maximum jitter provided is j,,,,,, this 
procedure will insure that the application receives packets 
within the jitter guarantees. 

With this assumption consider what constraint ( 1 )  really 
means. The start time for f k  should always be T, +k x 1 / p .  
The desired value of f k + l  is T, + (k + 1)  x l / p ,  so 
the difference between them is just l / p .  Therefore, the 
constraint ( 1 )  can also be stated as: 

ITk+l  - f k + 1  I 5 (2)  
In other words, the difference between the actual time 

the buffer is ready and the time it should ideally be ready 
cannot be greater than the guaranteed maximum jitter. 
In order to insure that this is always true, there should 
be enough buffers so that packets arrive early enough to 
compensate for network delays. In addition, packets that 
arrive earlier than required will be stored until they are 
needed, and not discarded. 

However, at no time can the bandwidth used exceed 
the bandwidth allocated, as was discussed in $4. If the 
exact bandwidth required is allocated, and the only delay 
allowed is the delay required to fill the first buffer, then the 
requirements can be met only if j,, + T is less than j,,,,,, 
and there are no losses. For the rest of this discussion, 
we will assume that there are no losses, since FDDI is in 
general very reliable. In order to minimize jitter, we look 
at what happens when extra bandwidth is allocated. 

It is possible to send each frame slightly faster th<m the 
session requires. Depending on how much extra band- 
width is present and how large the buffers at the receiver 
can grow, each frame can arrive earlier than it is needed. 
For example, say that the frame is released to the sender at 
time t. If the session is only allowed the guaranteed daLi 
rate T ,  then it will take at least b / r  seconds to transmit the 
entire frame. However, if a factor A r  is added, then the 

time will be b/ (r  + A r ) ,  which is a shorter time interval. 
This means that the frame will be available at the receiver 
earlier and thus the maximum jitter in the transmission can 
be smaller. 

On the other hand, it is not possible or desirable to al- 
locate more buffers than are necessary. There are several 
reasons for this. First, when there are more buffers, the 
delay at the beginning of the session becomes larger. Sec-  
ond, the size of the buffers is limited by the amount of 
memory that can be allocated to the session. Third, the 
data arrives at a constant rate, so if there are more buffers 
allocated than necessary, the extra buffers will never be 
used. 

The method used to allocate buffers is to find the desired 
number of buffers such that the jitter constraint can be met 
and the initial delay constraint is not violated. Once the 
number of buffers has been found it is possible to compute 
the burst rate [9] required to keep these buffers ready to 
be delivered at the receiver when needed. 

5 Operation of the Protocol 

The Swift transport protocol was designed to provide 
high-speed, light-weight service with delivery guarantees. 
There are three main functions of the transport protocol: 
establishing the connection, transmitting the data, and re- 
moving the connection. Each is discussed below. 

5.1 Establishing the connection 

When the storage mediator notifies the sender and re- 
ceiver that a session has been initiated they each initialize 
the necessary modules to complete the connection with the 
given parameters. The sender starts the application inter- 
face for the type of application that is being initiated, and 
the packet builder that will construct the packets, either by 
splitting the buffers or by combining multiple buffers. The 
receiver starts the application interface for the correct type 
of application, and the packet builder that will perform the 
inverse operation of the sender’s packet builder. 

At the time the connection is established, the values of 
some of the parameters of the session are used to set up the 
protocol modules. The TSDU size is fixed, and is either 
set by the request or computed by the storage mediator. It 
is the same for both sender and receiver. The maximum 
number of buffers that can be active at each sL?tion is also 
fixed by the storage mediator when therequest is analyzed. 
The calculated throughput is communicated from the stor- 
age mediator along with the maximum possible network 
delay. 

332 



5.2 'hansmission Protocol 

The data transmission protocol consists of the sender 
protocol and the receiver protocol. The protocol relies on 
the fact that the application will be providing or using data 
at a nearly constant rate, and therefore the transport service 
needs to have buffers ready at that same rate in order to 
keep the flow of data within the bounds established when 
the connection is established. 

5.2.1 Sender 

The sender protocol state diagram is shown in figure 2. 

move window 

window full 

Figure 2: Smte diagram for sender protocol 

Sme 1 is the normal state of the protocol. The sender is 
ready to send TPDUs, but waiting for the 'ITRT timer T to 
expire. When the timer expires, the sender sends packets. 
After each packet is sent, it enters state 2. 

State 2 is reached after each packet is sent. If there are 
more packets ready to send, the protocol returns to state 1. 
If there are no more available buffers, the sender proceeds 
to state 3. 

State 3 is reached when no more buffers are available. 
From state 3, either the timer expires or a positive ac- 
knowledgment or negative acknowledgment is received. 
The protocol moves the buffer window past the acknowl- 
edged packets, and returns to state 1. If the timer expires 
for a packet, the packet is assumed to be acknowledged im- 
plicitly, since no negative acknowledgment was received. 
However, a packet can only be acknowledged if all the 
packets before it have been acknowledged. 

In state 3, if the timer for all unacknowledged packets 
expires, the protocol proceeds to state 4. 

State 4 is reached if the timer has expired for all of the 
active packets. The sender proceeds as if all the packets 
have been acknowledged since the receiver will take what- 
ever action is necessary to continue the communication. 
The protocol then returns to state 1. 

5.2.2 Receiver 

The receiver protocol state diagram is shown in figure 3. 

time out 

out of order 

Figure 3: State diagram for receiver protocol 

State 1 is the normal state of the protocol. The receiver 
is waiting to receive the next packet. When a packet 
is received the receiver enters state 2, while if the timer 
expires it enters state 4. 

In state 2, a packet has been received. If the packet is 
expected, it is added to the buffer and the protocol returns 
to state 1. If the packet is out of order, then an earlier 
packet was not received, and the protocol enters state 3, to 
request retransmission of the earlier packet. If thereceived 
packet is a duplicate, it is ignored and the protocol returns 
to state 1. 

In state 3, a packet must be retransmitted. First, the 
packet's timer is compared to the round trip time. If the 
timer will expire before the packet can be received no 
negative acknowledgment request is sent. If there is time 
to retransmit the packet then a request for retransmission 
is sent to the sender. Whether or not the request is sent the 
protocol retums to state 1. 

In state 4 nothing has been received in the time-out 
interval. The receiver must request retransmission of all 
packets starting with the next one that is expected up to the 
window end. It enters state 3 to request retransmission. 
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5.3 Terminating the Connection 

The connection can be terminated by the sender, the 
receiver, or the storage mediator. The storage mediator 
sends a message to both the sender and receiver to in- 
form that a connection is terminated. When the receiver 
does not receive any packets after the computed At for 
the connection, the connection is implicitly closed and 
the receiver sends a termination message to the storage 
mediator. 

When the sender receives a connection termination mes- 
sage it immediately signals to the application that the con- 
nection is no longer available and stops transmitting pack- 
ets. It then releases all the buffers it held and sends a 
message to the storage mediator that the session is closed. 
The sender then completes. If the termination message 
arrives while there are still packets to transmit the sender 
opens a new connection with the same parameters as the 
previously existing connection. 

When the receiver receives a connection termination 
message it places a mark after the last buffer that was 
completely received indicating the end of the transmis- 
sion. It then discards any of this session's packets that it 
receives after the termination message. When the end-of- 
transmission marker has been placed a message is sent to 
the storage mediator that the session is closed. After all 
of the received buffers have been processed by the appli- 
cation the receiver releases all the buffers allocated to the 
task. 

After the storage mediator has sent messages to the 
sender and receiver, and received session close confirma- 
tion messages, it removes the session from the list of active 
sessions. 

6 Simulation 

We have simulated the perform'mce of the protocol us- 
ing CSIM [ 111. CSIM is designed for simulation of net- 
works and contains tools for setting up processes ,and com- 
munication links as well as many tools for generating test 
events and gathering statistics. 

The protocol simulation allows us to specify any num- 
ber of audio, video, or general data sessions. The simula- 
tion assumes that the incoming data is arriving as guaran- 
teed, that is, that it is being provided at the rate that was 
requested by the storage mediator. The simulation also 
assumes that each session is using a separate processor. 

To test the behavior of the network under realistic load 
constraints, various combinations of audio, video, 'and 

block transfers were tested. For the simulation, video 
streams have adatarate of 3600 kilobytes/second, which is 
30 frames/second and 120 kilobytes/frame. Audio streams 
have a data rate of 8 kilobytes/second, which is a typical 
audio sampling rate. The file transfer rate was set at 100 
kilobytes/second. The tests combined different types of 
streams, or used all the same type. The simulation time 
varied from 10 to 60 seconds. In addition, the number 
of stations on the ring was varied from 2 to 100. The 
stations were assumed to be evenly distributed around the 
ring with the distance between the senders and receivers 
chosen randomly. 

The protocol simulation takes the buffers as they are 
passed in and either splits them or combines them to form 
network packets. The size of the packets that are built 
is dependent on the type of network being simulated (for 
FDDI, packets are 4500 bytes). These packets are then 
passed to the network layer according to the rate control 
constraints necessary to fulfill the guarantees. 

The performance parameters of interest are measured 
throughput for each stream, maximum delay, and jitter. 
The mrurimum delay is reported directly. Throughput is 
found by measuring the duration of the session and di- 
viding that time into the number of bytes transmitted. To 
find the maximum jitter, the "gaps" between buffers were 
measured. A gap is the time between reception of the last 
packet of buffer 71 and the last packet of buffer 11 - 1. 
There is a target value for these gaps, which is the arrival 
rate of the buffers at the sender. The jitter measured is the 
maximum variation over the target arrival time. This is 
because a buffer available early will not cause jitter, since 
it goes unused until it is needed. 

The assumptions for these measurements are that 
throughput is guaranteed for the simulated load and that 
the maximum delay and maximum jitter for each session 
are guaranteed to be twice the target token rotation time 
(2x"I'). The measured throughput, maximum delay, 
,md m'urimum jitter were plotted as a function of the num- 
ber of senders and the load. 

6.1 Results 

The results of the simulations are shown in figures 4,5, 
and 6 for al'TRT of 2 milliseconds. The loads chosen were 
various combinations of audio, video, and block dzzta. The 
points were plotted by finding the total load due to all the 
sending stations. Each run has a duration of 60 seconds. 
The largest load that can be allocated to guaranteed traffic 
is slightly less than 12.5 megabytedsecond, which is the 
total capacity of theFDDI channel. The exact amount that 
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can be allocated depends on the length of the chrlnnel and 
the number of stations, and the TRT. 

Load in Kilobytes/second Number of Senders 0 -0 

Figure 4: Throughput: lTRT 2 milliseconds 
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Load in Kilobytes/second Number of Senders 0 0  

Figure 5:  Maximum Delay: 'ITRT 2 milliseconds 

It can be seen that the throughput is consistently equal 
to the load. This is consistent with the analysis of FDDI 
by Sevcik and Johnson [12]. In addition, the delay and 
jitter fall within the guaranteed maximum, which is 4 mil- 
liseconds for a 'ITRT of 2 milliseconds. 

In all the simulations the maximum jitter was the same 
as or less than the maximum delay. This is because the 
protocol is designed to have packets arrive earlier than they 
are needed by sending them at a slightly faster rate than the 
exact data throughput rate. In most cases when a buffer 
was needed it was already present and the jitter was zero. 
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Load in Kilobvteslsecond Number of Senders 0 0  

Figure 6: Maximum Jitter: TTRT 2 milliseconds 

The only time jitter greater than zero resulted was when 
the delays of the packets making up the buffer combined 
so that the last packet arrived later than the expected use 
time. This happened mainly on block file transfers where 
the buffer size was equal to the packet size, so any delay 
in packet delivery is also jitter for the application. 

It can be seen that the FDDI network has no trouble 
providing the throughput required. This is true even at 
the highest loads that were simulated. The network also 
provided the guaranteed maximum delay and jitter. In 
most of the experiments the maximum jitter was less than 
the 'ITRT. This is once again because the protocol reserves 
extra bandwidth and uses multiple buffers in order to send 
the data before it will be needed. 

There are several data points where the maximum jitter 
was above the 'ITRT but it was still under the guaranteed 
maximum of 4 milliseconds. These are isolated points 
where the simulated load was heavy and therefore the 
traffic level was high. Since the simulations were run 
several times for each combination of load and number of 
senders, it is not unexpected that in one experiment there 
may be a value of jitter that is higher than the rest. In no 
experiment did the value exceed the guaranteed maximum. 

These results indicate that the protocol can provide the 
required performance guarantees when the underlying net- 
work is a FDDI network capable of providing synchronous 
transmission mode, the application is able to deliver the 
data in guaranteed buffer sizes at a guaranteed rate, and 
the operating system is able to guarantee fair access to 
processing cycles and shared memory. 
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7 Conclusions 

The Swift transport protocol provides mechanisms to 
emblish guarantees for the speed of the transfer of mul- 
timedia data and for delays in delivery. The protocol is 
customized for the application when a connection is es- 
tablished, so that the necessary services can be provided. 

The Swift protocol is a light-weight protocol that in- 
sures high bandwidth utilization. Swift uses rate control 
to ensure that all sessions can provide guaranteed service. 
In addition, when necessary, it uses sliding window flow 
control to make sure that all the data is delivered in order. 
The protocol is designed to provide the type of service re- 
quested by the application which may be continuous media 
or file transfer. 

Continuous media data is guaranteed a bandwidth and 
a maximum jitter. If requested a maximum end-to-end 
delay c;an also be guaranteed. Data is delivered as reliably 
as possible, but if a packet is lost, reliability is sacrificed 
in order to maintain the bandwidth and jitter guarantees. 

File transfer data is also guaranteed a bandwidth. This 
is not strictly necessary, but since other sessions need to 
reserve bandwidth, it is necessary that any session using a 
significant portion of the bandwidth must do so via reser- 
vations. Since there are no delay or jitter requirements 
data is transferred reliably with the guarantee that no data 
will be lost. 

The protocol was simulated under realistic FDDI net- 
work conditions. Performance was found satisfactory and 
to provide good resource utilization. The protocol relies 
on the network providing guarantees of delivery time and 
delay. The simulations show that the protocol will behave 
correctly when the assumptions about the characteristics 
of the other components of the architecture are satisfied. 
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