
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Providing performance guarantees in an FDDI network

Permalink
https://escholarship.org/uc/item/6s55g39w

Authors
Long, DDE
Osterbrook, C
Cabrera, L-F

Publication Date
1993

DOI
10.1109/icdcs.1993.287693

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6s55g39w
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Providing Performance Guarantees in an FDDI Network

Darrell D. E. Long,+ Carol Osterbrockt Luis-Felipe Cabrera
Computer and Information Sciences
University of California, Santa Cruz

Abstract

A network subsystem supporting a continuous media
file system must guarantee a minimum throughput, a max-
imum delay, and a muximum jitter. We present a transport
protocol that provides these guarantees.

To support different types of service, our protocol is
built from modules selected to meet the requirements of
each communication session. A buffering technique is
used to provide jitter guarantees. To provide throughput
and delay guarantees, network performance is optimized
based on the required transfer rate.

The effects of controlling transmission rate and packet
size are presented. The resulting transport protocol is
modeled on a simulated FDDI network and the results are
analyzed. We show that the protocol provides the required
guarantees for the anticipated types of traffic.

1 Introduction

Digital multimedia data is characterized by high data
volume that must be transferred with strict performance
requirements. Each component of a multimedia system
must cooperate by providing guarantees that it can sustain
the required transmission rate.

A multimedia file system must also address the problem
that not all the components of the system can provide the
same performance. In particular, current disk technology
is insufficient to provide multimedia transfer rates. Thus,
it is necessary to distribute disk 1/0 over several storage
units that can operate in parallel to achieve high transfer
rates.

tsupported in part by the National Science Foundation under Grant
NSF CCR-9111220, by the Institute for Scientific Computing Research
at Lawrence Livermore National Laboratory and by the Office of Naval
Research under Grant N00014-92-5-1807,

Supported in part by the Institute for Scientific Computing Research
at Lawrence Livermore National Laboratory and by a CE/CIS Domestic
Graduate Research Assistantship

Computer Science Department
IBM Almaden Research Center

Swift [l] is an architecture for a distributed file system
to support the storage and processing of multimedia data.
It uses multiple storage repositories and processing units
to provide the required performance, and uses a local area
network for communication between the clients and the
storage units. To provide satisfactory service the archi-
tecture exposes parameters to be guaranteed during client
sessions.

The network subsystem must address two problems.
The first is meeting throughput requirements. Although
the storage of data may be divided among several reposito-
ries, all of the data must pass through the network. Recent
adv'ances in network technology, in particular FDD1 (Fiber
DistributedData Interface) [3] , begin to provide the neces-
sary data rates. The second is guaranteeing that the delay
between the sender and the receiver will not exceed the
required maximum. This can be achieved using known
properties of FDDI networks, and using buffering and rate
control to insure that jitter, or variability in delay, will fall
within the desired limits.

We present a brief overview of the Swift architecture
and then focus on the network transport protocol that we
have developed for it. In $2 we present background infor-
mation, including a brief description of the Swift architec-
ture and related research. We discuss which performance
parameters can be guaranteed in $3. In $4 we discuss how
the transport protocol was designed and how the design
decisions were made. The components of the protocol
are described in $5. A simulation of the protocol and the
performance results obtained using it are presented in $6.

2 Background

There are three main limitations to storing, retrieving,
and processing multimedia data: the speed of mass stor-
age devices, processors, and communications. Processors
are now fast enough to manipulate the data at the required
rates. Disk technology has improved, but the data rates
provided are still insufficient. With FDDI, network tech-

328

0-8186-3770-6/93 $3.00 0 1993 BEE

Client VI , , Communication I , Network , Storage
Agents

Figure 1: Components of the Swift Architecture

nology is approaching the point of providing sufficient
dzta rates.

2.1 The Swift Architecture

The goal of the Swift I/O architecture [l] is to support
high data rates in a general purpose distributed system.
It addresses data rate mismatches between the applica-
tion, the storage devices, and the interconnection network.
Swift provides high data rates by using a high-speed in-
terconnection medium and using multiple storage devices
operating in parallel. Swift can use any appropriate stor-
age technology including high-performance disk arrays.
It can thus adapt to technological advances to support ever
increasing 1/0 demands. The components of the Swift
architecture are depicted in figure 1.

Swift objects are managed by storage agents. An im-
plementation operates as follows: when a client issues a
request to <access an object, a storage mediator reserves
resources from all the necessary storage agents and the
communication subsystem. The storage mediator then
presents a distribution agent with a transfer plan. Swift
assumes that sufficient storage and data transmission ca-
pacity can be preallocated and thus will be available. It
supports negotiations between the client (which can be-
have as a data producer or a data consumer) and the stor-
age mediator to perform resource preallocation. A request
that cannot be satisfied is denied, but may be reissued later
when more resources are available. The distribution agent
follows the transfer plan to store or retrieve client data at
the storage agents.

2.2 Network Requirements

There are several constraints on the delivery of data.
First, data must be delivered at a nearly constant rate for
the duration of the transmission. This requires the network

to guarantee that a nearly constant fraction of the band-
width will be available, and that there will be no delays
in the transmission which exceed the requirements of the
application.

Second, messages must be kept in sequence, and mes-
sage loss must be minimized. In order to meet time con-
straints it may be necessary to allow part of a stream to be
discarded instead of waiting for it to be received correctly.
However, there are some types of communication, such as
file transfer, where losing part of the data is unacceptable,
and timing guarantees are not required.

Third, available bandwidth may affect decisions made
by clients. For instance, if there is insufficient bandwidth
to transmit an uncompressed stream, the client may decide
to use compression, even though that may degrade the
quality of the data. Alternatively, the client may decide to
wait, or change the parameters of the transmission.

2.3 Types of Data Communication

The performance requirements of the protocol depend
on the type of data transfer. Ferrari [6] examines differ-
ent types of data transfers and their associated require-
ments. The primary types of transfer that need to use large
amounts of network resources are audio, video, and large
file transfers.

One type of interactive audio or video session involves
two clients transmitting voice or video streams to each
other, for instance in teleconferencing. These types of
transmission require that the delay be as small as possible,
so that conversations take place naturally.

A second type of interactive service involves the editing
and combining of audio and video streams. This second
type of session is a primary goal of Swift. The important
constraint in this type of session is that the delays within
the system should be as small as possible, because the
user will want to be able to stop and start streams with
imperceptible delay.

A non-interactive continuous media session consists of
data being recorded or played back. In this case, an initial
delay can be tolerated, but the amount of jitter, or vari-
ability in the delay, must be minimized. In addition, both
voice and video have high bandwidth requirements and it
may be necessary to synchronize streams which may not
have been created together.

Compression adds an additional complication to the
transport service as the amount of compression that will
occur for a given data stream is not known in advance and
usually varies over the length of the stream. This means
that the exact rate of data transfer will be unknown in
advance and may vary over the duration of the session.

329

Necessary control messages occur unpredictably and
must be delivered quickly and reliably. These short mes-
sages use the available bandwidth left after the reserved
tr&c has been allocated. Examples of control messages
are the messages used to activate and deactivate connec-
tions and acknowledgments used for flow control and reli-
ability. Because of the nature of the FDDI channel some of
the available bandwidth is always available for unguaran-
teed messages, even when all of the guaranteed bandwidth
is being used.

The delivery time of control messages cannot always
be controlled as no channel is completely reliable. When
a control message is lost the sender retransmits it. Thus
delivery time may be longer than e. I xted. The Swift
transport protocol operates with the assumption that con-
trol messages will be received within a bounded time, but
if they are not the protocol can still proceed correctly.

2.4 Related High-speed Protocols

Several transport protocols have been developed to take
advantage of recent advances in data communication per-
formrlnce. They are called “light-weight” protocols be-
cause they use as little bandwidth and processing as possi-
ble for the protocol. None of them provides a satisfactory
protocol for our needs given the diversity of traffic that
need to be accommodated. Some light-weight transport
protocols in use include Delta-t, NETBLT, Datakit, and
XTP which are compared and analyzed by Doeringer, et
al. [4]. Some of their common characteristics are: re-
duced overhead to establish and bre,ak connections; mini-
mal packet exchange for flow control; use of rate control
to reduce contention; and fixed-size headers.

Delta-t (At) [8,13] is a transport protocol for high-speed
networks based on a timer mechanism. Both sender ‘and
receiver maintain a timer, along with the rest of the infor-
mation required for a sliding window protocol. The timer
is used to decide when the connection is closed, and the
connection is initiated by the first &?ta packet. By using
data packets to open connections and timers to determine
when connections are closed, Delta-t avoids the problem
introduced by using non-data packets for handshaking.
The sliding window can be moved without explicit ac-
knowledgment messages.

NETBLT (NETwork BLock Transfer) [2] is a bulk data
transfer protocol designed for use on the Internet. Since
this protocol may encounter links with varying dam ca-
pacity, it uses rate control to minimize network congestion
and multiple buffering to minimize errors and to provide
high throughput. This same rate control algorithm is used
in Swift. Briefly, a transmission is divided into buffers

of a size agreed upon by the sender and receiver. The
buffer transmission rate is determined. The protocol then
calculates the rate at which to transmit the network data
packets that will be assembled from the buffers. It also
calculates the burst size, the size of the largest continuous
stream of packets, and burst rate, the effective rate of the
largest burst. Based on these calculations, the protocol
determines the correct routing, packet rate, and buffer size
to complete the transfer. By thus regulating packet rate
network congestion is controlled.

3 What FDDI can Guarantee

Fiber Distributed Data Interface (FDDI) is a specifi-
cation for a high-speed physical and data link protocol
to be used with fiber optic cable, although it can also
be implemented on copper wire. FDDI uses a timed to-
ken ring protocol to control access. Sevcik and Johnson
[12] have analyzed the properties of the FDDI protocol
and found that the upper bound on the token cycle time,
and therefore on the time between two transmissions of
synchronous frames, is less than twice the target token
rotation time (’ITRT) when the synchronous allocation is
done correctly.

By using the FDDI synchronous mode the Swift trans-
port protocol can operate with a known upper bound on
the delay of any packet. This information is used in two
ways. First, the protocol uses timers to decide if the con-
nection is valid or if a packet has been lost. Since the
upper limit on delay is known, it is possible to use the
strictest possible bound. Second, maximum packet delay
is used to set buffer sizes so as to guarantee the jitter seen
by the application.

4 Goals of the Transport Protocol

We use the following terms to describe the functions
of the protocol, the data structures, and the procedures
involved. A transport service data unit (TSDU) is the
basic unit of data used by the application. In the case of
a video stream, a TSDU is a video frame. In the case of
[an audio stream, a TSDU may be a sample or a sequence
of samples. For file transfer applications, the TSDU is
defined by the application. The TSDU may also be called
the block size or frame size. A transport protocol data
unit (TPDU) is the basic unit of data used by the transport
protocol, also called a packet. It may be the same size as a
TSDU, larger or smaller. In an FDDI network, the TPDU

330

size is generally kept as large as possible since it has been
shown that the best utilization of resources occurs when
the packets are large [51.

4.1 The Swift Environment

The transport level protocol was designed with the as-
sumption that the other layers of the protocol stack also
provide guarantees. It also assumes that the higher lay-
ers deliver data at a known rate. In the case of real-time
devices such as microphones or cameras the data rate is
known. For storage devices the data rate is controlled by
the storage subsystem [101. In general, the data rate is con-
trolled according to the throughput requirements specified
by the application.

An important function of the protocol is insuring that
the delivery rate at the receiver is guaranteed within the
bounds specified. The rate that must be controlled is the
rate of transmission of TPDUs across the network. The
transport of TPDUs is controlled by a timer-based proto-
col [8]. Rate control has been shown to be effective in
reducing contention in large file transfers [2], and is well
suited to the constant data flow that is characteristic of
continuous media.

Because the transfer rate is nearly constant, and the
senders and receivers have guaranteed that they can pro-
vide the resources to handle the rate specified, and because
the protocol assumes that the network will deliver the dau
reliably, little flow control is used. The nature of the data
will often m‘ake it preferable to simply ignore a missing
TPDU rather than attempt to have it retransmitted. The
strength of the delivery guarantee depends on the nature
of the data. For example, losing a video frame is less
noticeable than losing an audio sample.

When flow control is necessary it must be as transparent
as possible. The method chosen is similar to the Delta-
t [13] simplex connection method. This is a window-
based flow control where acknowledgments are assumed
if a negative acknowledgment is not received. The max-
imum wait is computed from knowledge of the network.
Acknowledgments may also be sent, but the protocol is
designed so that the sender never has to wait for an ac-
knowledgment to continue. If a packet is lost, the sender
will receive a retransmission request.

Buffering is used to minimize variations in delay, to
avoid data starvation at the receiving end, and to avoid
queuing delays at the sending end. The method of al-
locating buffers to minimize jitter is discussed in $4.2.
Because the buffers may hold large amounts of data the
time it takes to copy data to and from buffers can be sig-
nificant. To minimize the copying done the application

loads data directly into the buffers and then releases them
to the transport service. To enforce the guaranteed rate
constraints the application waits for a buffer if none are
available.

The storage mediator is responsible for allocating the
bandwidth of the network to clients. If a request cannot
be granted it may be possible to reschedule it for a later
time or to relax the requirements. This must be negotiated
by the storage mediator, sender, and receiver. If a client
request does not includea bandwidth requirement, then the
bandwidth allocation is set by the storage mediator. The
bandwidth that is guaranteed is the greatest amount that
the session can use so clients must request their maximum
burst rate.

4.2 Delay and Jitter Guarantees

The variation in transmission delay is called jitter, and
cannot be tolerated in continuous media streams. When
high-quality output is desired, as in audio transmissions,
jitter control can be more important than the actual amount
of delay. Ferrari [7] presents an analysis of jitter in high-
speed networks, and a method for jitter control on an
internetwork.

The goals of providing a guaranteed maximum jitter, a
guaranteed maximum delay, and a guaranteed minimum
data rate conflict. By using buffers large enough to hold
all the data that is being transferred, and filling them at the
beginning of the session, jitter can be eliminated. How-
ever, the initial delay may be unacceptable, and the storage
requirements could be impossible to meet.

4.2.1 Guaranteed Maximum Jitter for Large Frames

To guarantee that jitter will be minimized for large frames,
it must be guaranteed that the TPDUs used to make the
frames will be transmitted in a timely fashion. In order
to make this guarantee, the following parameters must
be considered: fn, the time when frame 11 is expected
to be completely received; rn, the time when all TPDUs
that make up frame n have arrived at the receiver; &axl

the maximum possible delay over the network; &,in, the
minimum possible delay over the network; j n e t = &a, -
d,,, the maximum jitter due to network delays; p , the size
of the data in a packet, or TPDU, b, the size of the data
in a frame, or TSDU; 7, the maximum jitter due to rate
control <and process switches; p, the arrival rate of TSDUs
at the sender’s transport layer; and jmax, the guaranteed
maximum jitter.

The total jitter perceived by the transport layer will be
j n e t + 7. The goal of the transport service is to allocate the

331

buffers in such a way that this jitter can be smoothed, so
that for every frame k,

It is already known that the TSDUs will be arriving at
the sender at rate p. They will then be split into packets of
size p , and transmitted to the receiver. The delay given by
T k + l - f k is the maximum allowable delay between the
earliest time that frame k could have been used and the
latest time that the last packet that makes up frame k + 1
could arrive. It is assumed that the application layer will
use packets at the constant rate p whenever possible, and if
a packet is too late then the next packet will be used earlier
in order to compensate for the late packet. It can be seen
that as long as the maximum jitter provided is j,,,,,, this
procedure will insure that the application receives packets
within the jitter guarantees.

With this assumption consider what constraint (1) really
means. The start time for f k should always be T, +k x 1 / p .
The desired value of f k + l is T, + (k + 1) x l / p , so
the difference between them is just l / p . Therefore, the
constraint (1) can also be stated as:

ITk+l - f k + 1 I 5 (2)
In other words, the difference between the actual time

the buffer is ready and the time it should ideally be ready
cannot be greater than the guaranteed maximum jitter.
In order to insure that this is always true, there should
be enough buffers so that packets arrive early enough to
compensate for network delays. In addition, packets that
arrive earlier than required will be stored until they are
needed, and not discarded.

However, at no time can the bandwidth used exceed
the bandwidth allocated, as was discussed in $4. If the
exact bandwidth required is allocated, and the only delay
allowed is the delay required to fill the first buffer, then the
requirements can be met only if j,, + T is less than j,,,,,,
and there are no losses. For the rest of this discussion,
we will assume that there are no losses, since FDDI is in
general very reliable. In order to minimize jitter, we look
at what happens when extra bandwidth is allocated.

It is possible to send each frame slightly faster th<m the
session requires. Depending on how much extra band-
width is present and how large the buffers at the receiver
can grow, each frame can arrive earlier than it is needed.
For example, say that the frame is released to the sender at
time t. If the session is only allowed the guaranteed daLi
rate T , then it will take at least b / r seconds to transmit the
entire frame. However, if a factor A r is added, then the

time will be b/ (r + A r) , which is a shorter time interval.
This means that the frame will be available at the receiver
earlier and thus the maximum jitter in the transmission can
be smaller.

On the other hand, it is not possible or desirable to al-
locate more buffers than are necessary. There are several
reasons for this. First, when there are more buffers, the
delay at the beginning of the session becomes larger. Sec-
ond, the size of the buffers is limited by the amount of
memory that can be allocated to the session. Third, the
data arrives at a constant rate, so if there are more buffers
allocated than necessary, the extra buffers will never be
used.

The method used to allocate buffers is to find the desired
number of buffers such that the jitter constraint can be met
and the initial delay constraint is not violated. Once the
number of buffers has been found it is possible to compute
the burst rate [9] required to keep these buffers ready to
be delivered at the receiver when needed.

5 Operation of the Protocol

The Swift transport protocol was designed to provide
high-speed, light-weight service with delivery guarantees.
There are three main functions of the transport protocol:
establishing the connection, transmitting the data, and re-
moving the connection. Each is discussed below.

5.1 Establishing the connection

When the storage mediator notifies the sender and re-
ceiver that a session has been initiated they each initialize
the necessary modules to complete the connection with the
given parameters. The sender starts the application inter-
face for the type of application that is being initiated, and
the packet builder that will construct the packets, either by
splitting the buffers or by combining multiple buffers. The
receiver starts the application interface for the correct type
of application, and the packet builder that will perform the
inverse operation of the sender’s packet builder.

At the time the connection is established, the values of
some of the parameters of the session are used to set up the
protocol modules. The TSDU size is fixed, and is either
set by the request or computed by the storage mediator. It
is the same for both sender and receiver. The maximum
number of buffers that can be active at each sL?tion is also
fixed by the storage mediator when therequest is analyzed.
The calculated throughput is communicated from the stor-
age mediator along with the maximum possible network
delay.

332

5.2 'hansmission Protocol

The data transmission protocol consists of the sender
protocol and the receiver protocol. The protocol relies on
the fact that the application will be providing or using data
at a nearly constant rate, and therefore the transport service
needs to have buffers ready at that same rate in order to
keep the flow of data within the bounds established when
the connection is established.

5.2.1 Sender

The sender protocol state diagram is shown in figure 2.

move window

window full

Figure 2: Smte diagram for sender protocol

Sme 1 is the normal state of the protocol. The sender is
ready to send TPDUs, but waiting for the 'ITRT timer T to
expire. When the timer expires, the sender sends packets.
After each packet is sent, it enters state 2.

State 2 is reached after each packet is sent. If there are
more packets ready to send, the protocol returns to state 1.
If there are no more available buffers, the sender proceeds
to state 3.

State 3 is reached when no more buffers are available.
From state 3, either the timer expires or a positive ac-
knowledgment or negative acknowledgment is received.
The protocol moves the buffer window past the acknowl-
edged packets, and returns to state 1. If the timer expires
for a packet, the packet is assumed to be acknowledged im-
plicitly, since no negative acknowledgment was received.
However, a packet can only be acknowledged if all the
packets before it have been acknowledged.

In state 3, if the timer for all unacknowledged packets
expires, the protocol proceeds to state 4.

State 4 is reached if the timer has expired for all of the
active packets. The sender proceeds as if all the packets
have been acknowledged since the receiver will take what-
ever action is necessary to continue the communication.
The protocol then returns to state 1.

5.2.2 Receiver

The receiver protocol state diagram is shown in figure 3.

time out

out of order

Figure 3: State diagram for receiver protocol

State 1 is the normal state of the protocol. The receiver
is waiting to receive the next packet. When a packet
is received the receiver enters state 2, while if the timer
expires it enters state 4.

In state 2, a packet has been received. If the packet is
expected, it is added to the buffer and the protocol returns
to state 1. If the packet is out of order, then an earlier
packet was not received, and the protocol enters state 3, to
request retransmission of the earlier packet. If thereceived
packet is a duplicate, it is ignored and the protocol returns
to state 1.

In state 3, a packet must be retransmitted. First, the
packet's timer is compared to the round trip time. If the
timer will expire before the packet can be received no
negative acknowledgment request is sent. If there is time
to retransmit the packet then a request for retransmission
is sent to the sender. Whether or not the request is sent the
protocol retums to state 1.

In state 4 nothing has been received in the time-out
interval. The receiver must request retransmission of all
packets starting with the next one that is expected up to the
window end. It enters state 3 to request retransmission.

333

5.3 Terminating the Connection

The connection can be terminated by the sender, the
receiver, or the storage mediator. The storage mediator
sends a message to both the sender and receiver to in-
form that a connection is terminated. When the receiver
does not receive any packets after the computed At for
the connection, the connection is implicitly closed and
the receiver sends a termination message to the storage
mediator.

When the sender receives a connection termination mes-
sage it immediately signals to the application that the con-
nection is no longer available and stops transmitting pack-
ets. It then releases all the buffers it held and sends a
message to the storage mediator that the session is closed.
The sender then completes. If the termination message
arrives while there are still packets to transmit the sender
opens a new connection with the same parameters as the
previously existing connection.

When the receiver receives a connection termination
message it places a mark after the last buffer that was
completely received indicating the end of the transmis-
sion. It then discards any of this session's packets that it
receives after the termination message. When the end-of-
transmission marker has been placed a message is sent to
the storage mediator that the session is closed. After all
of the received buffers have been processed by the appli-
cation the receiver releases all the buffers allocated to the
task.

After the storage mediator has sent messages to the
sender and receiver, and received session close confirma-
tion messages, it removes the session from the list of active
sessions.

6 Simulation

We have simulated the perform'mce of the protocol us-
ing CSIM [111. CSIM is designed for simulation of net-
works and contains tools for setting up processes ,and com-
munication links as well as many tools for generating test
events and gathering statistics.

The protocol simulation allows us to specify any num-
ber of audio, video, or general data sessions. The simula-
tion assumes that the incoming data is arriving as guaran-
teed, that is, that it is being provided at the rate that was
requested by the storage mediator. The simulation also
assumes that each session is using a separate processor.

To test the behavior of the network under realistic load
constraints, various combinations of audio, video, 'and

block transfers were tested. For the simulation, video
streams have adatarate of 3600 kilobytes/second, which is
30 frames/second and 120 kilobytes/frame. Audio streams
have a data rate of 8 kilobytes/second, which is a typical
audio sampling rate. The file transfer rate was set at 100
kilobytes/second. The tests combined different types of
streams, or used all the same type. The simulation time
varied from 10 to 60 seconds. In addition, the number
of stations on the ring was varied from 2 to 100. The
stations were assumed to be evenly distributed around the
ring with the distance between the senders and receivers
chosen randomly.

The protocol simulation takes the buffers as they are
passed in and either splits them or combines them to form
network packets. The size of the packets that are built
is dependent on the type of network being simulated (for
FDDI, packets are 4500 bytes). These packets are then
passed to the network layer according to the rate control
constraints necessary to fulfill the guarantees.

The performance parameters of interest are measured
throughput for each stream, maximum delay, and jitter.
The mrurimum delay is reported directly. Throughput is
found by measuring the duration of the session and di-
viding that time into the number of bytes transmitted. To
find the maximum jitter, the "gaps" between buffers were
measured. A gap is the time between reception of the last
packet of buffer 71 and the last packet of buffer 11 - 1.
There is a target value for these gaps, which is the arrival
rate of the buffers at the sender. The jitter measured is the
maximum variation over the target arrival time. This is
because a buffer available early will not cause jitter, since
it goes unused until it is needed.

The assumptions for these measurements are that
throughput is guaranteed for the simulated load and that
the maximum delay and maximum jitter for each session
are guaranteed to be twice the target token rotation time
(2x"I'). The measured throughput, maximum delay,
,md m'urimum jitter were plotted as a function of the num-
ber of senders and the load.

6.1 Results

The results of the simulations are shown in figures 4,5,
and 6 for al'TRT of 2 milliseconds. The loads chosen were
various combinations of audio, video, and block dzzta. The
points were plotted by finding the total load due to all the
sending stations. Each run has a duration of 60 seconds.
The largest load that can be allocated to guaranteed traffic
is slightly less than 12.5 megabytedsecond, which is the
total capacity of theFDDI channel. The exact amount that

334

can be allocated depends on the length of the chrlnnel and
the number of stations, and the TRT.

Load in Kilobytes/second Number of Senders 0 -0

Figure 4: Throughput: lTRT 2 milliseconds

:50001 3 4000

Load in Kilobytes/second Number of Senders 0 0

Figure 5: Maximum Delay: 'ITRT 2 milliseconds

It can be seen that the throughput is consistently equal
to the load. This is consistent with the analysis of FDDI
by Sevcik and Johnson [12]. In addition, the delay and
jitter fall within the guaranteed maximum, which is 4 mil-
liseconds for a 'ITRT of 2 milliseconds.

In all the simulations the maximum jitter was the same
as or less than the maximum delay. This is because the
protocol is designed to have packets arrive earlier than they
are needed by sending them at a slightly faster rate than the
exact data throughput rate. In most cases when a buffer
was needed it was already present and the jitter was zero.

1o 5000

'2 3000
c

f 2000

5 0

.-
E

1000

15000

Load in Kilobvteslsecond Number of Senders 0 0

Figure 6: Maximum Jitter: TTRT 2 milliseconds

The only time jitter greater than zero resulted was when
the delays of the packets making up the buffer combined
so that the last packet arrived later than the expected use
time. This happened mainly on block file transfers where
the buffer size was equal to the packet size, so any delay
in packet delivery is also jitter for the application.

It can be seen that the FDDI network has no trouble
providing the throughput required. This is true even at
the highest loads that were simulated. The network also
provided the guaranteed maximum delay and jitter. In
most of the experiments the maximum jitter was less than
the 'ITRT. This is once again because the protocol reserves
extra bandwidth and uses multiple buffers in order to send
the data before it will be needed.

There are several data points where the maximum jitter
was above the 'ITRT but it was still under the guaranteed
maximum of 4 milliseconds. These are isolated points
where the simulated load was heavy and therefore the
traffic level was high. Since the simulations were run
several times for each combination of load and number of
senders, it is not unexpected that in one experiment there
may be a value of jitter that is higher than the rest. In no
experiment did the value exceed the guaranteed maximum.

These results indicate that the protocol can provide the
required performance guarantees when the underlying net-
work is a FDDI network capable of providing synchronous
transmission mode, the application is able to deliver the
data in guaranteed buffer sizes at a guaranteed rate, and
the operating system is able to guarantee fair access to
processing cycles and shared memory.

335

7 Conclusions

The Swift transport protocol provides mechanisms to
emblish guarantees for the speed of the transfer of mul-
timedia data and for delays in delivery. The protocol is
customized for the application when a connection is es-
tablished, so that the necessary services can be provided.

The Swift protocol is a light-weight protocol that in-
sures high bandwidth utilization. Swift uses rate control
to ensure that all sessions can provide guaranteed service.
In addition, when necessary, it uses sliding window flow
control to make sure that all the data is delivered in order.
The protocol is designed to provide the type of service re-
quested by the application which may be continuous media
or file transfer.

Continuous media data is guaranteed a bandwidth and
a maximum jitter. If requested a maximum end-to-end
delay c;an also be guaranteed. Data is delivered as reliably
as possible, but if a packet is lost, reliability is sacrificed
in order to maintain the bandwidth and jitter guarantees.

File transfer data is also guaranteed a bandwidth. This
is not strictly necessary, but since other sessions need to
reserve bandwidth, it is necessary that any session using a
significant portion of the bandwidth must do so via reser-
vations. Since there are no delay or jitter requirements
data is transferred reliably with the guarantee that no data
will be lost.

The protocol was simulated under realistic FDDI net-
work conditions. Performance was found satisfactory and
to provide good resource utilization. The protocol relies
on the network providing guarantees of delivery time and
delay. The simulations show that the protocol will behave
correctly when the assumptions about the characteristics
of the other components of the architecture are satisfied.

Acknowledgements

We are grateful to M. Long, B. Montague, K. B. Sriram,
K. Taylor, M. Thakur, and A. Varma for their many helpful
comments.

References

[l] L.-E Cabrera and D. D. E. Long, “Exploiting multi-
ple I/O streams to provide high data-rates,’’ Comput-
ing Systems, vol. 4, no. 4, 1991.

[2] D. D. Clark, M. L. Lambert, and L. Zhang, “NET-
BLT: A bulk data transfer protocol,” RFC 11 12, Net-
work Working Group, 1987.

[3] Digital Equipment Corporation, A Primer to FDDI:
Fiber Distributed Data Interface. Digital Equipment
Corporation, 1991.

[4] W. A. Doeringer et al., “A survey of light-weight
transport protocols for high-speed networks,” IEEE
Transactions on Communications, vol. 38, Nov.
1990.

[SI D. Dykeman and W. Bux, “Analysis and tuning of the
FDDI media access control protocol,” IEEE Journal
on Selected Areas in Communications, vol. 6, July
1988.

[6] D. Ferrari, “Guaranteeing performance for real-time
communicaton in wide-area networks,” Technical
Report, University of California at Berkeley, 1990.

[7] D. Ferrari, “Design and applications of a delay jitter
control scheme for packet-switching intemetworks,”
in Network and Operating System Support for Digital
Audio and Video, Nov. 1991.

[8] J. G. Fletcher and R. W. Watson, “Mechanisms for
a reliable timer-based protocol,” in Computer Net-
works 2, North-Holland Publishing Company, 1978.

[9] T. Little, “Protocols for bandwidth-constrained mul-
timediatraffic,” in Proceedings of the 4” IEEE Inter-
national Workshop on Multimedia communications,
1992.

[101 D. D. E. Long and M. N. Thakur, “Scheduling real-
time disk transfers for continuous media applica-
tions,” in Proceedings of the 12fi Symposium on
Mass Storage Systems, IEEE, Apr. 1993.

[111 H. Schwetman, “CSIM reference manual (revision
lS),” Tech. Rep. ACT-ST-252-87, Microelectronics
and Computer Technology Corporation, 1991.

[121 K. C. Sevcik and M. J. Johnson, “Cycle time proper-
ties of the FDDI token ring protocol,” IEEE Trans-
actions on Software Engineering, vol. 13, Mar. 1987.

[131 R. W. Watson, “Delta-t protocol specification,” Tech.
Rep. UCID- 19293, Lawrence Livermore National
Laboratory, 1983.

336

