
UC San Diego
Technical Reports

Title
Scalable Causal Message Logging for Wide-Area Networks

Permalink
https://escholarship.org/uc/item/6s7109q3

Authors
Bhatia, Karan
Marzullo, Keith
Alvisi, Lorenzo

Publication Date
2000-04-21
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6s7109q3
https://escholarship.org
http://www.cdlib.org/


Scalable Causal Message Logging for Wide-area Environments

Karan Bhatia and Keith Marzullo

University of California, San Diego

Department of Computer Science and Engineering

fkbhatia,marzullog@cs.ucsd.edu

Lorenzo Alvisi

Department of Computer Sciences

The University of Texas at Austin

lorenzo@cs.utexas.edu

April 21, 2000

Abstract

Wide-area systems are gaining in popularity as an infrastructure for running scientific applications.

From a fault tolerance perspective, these environments are challenging due to their scale and their in-

herent variability. Causal message logging protocols have attractive properties that make them suitable

for these environments. They spread fault tolerance information around in the system providing high

availability. This information can also be used to replicate objects that are otherwise inaccessible due to

network partitions.

However, current causal message logging protocols do not scale to thousands or millions of pro-

cesses. We describe the Hierarchical Causal Logging Protocol (HCML) that uses a hierarchy of shared

logging sites, or proxies, to reduces the space requirements exponentially. These proxies also act as

caches for fault tolerance information and reduce the overall message overhead of causal message log-

ging protocols by as much as 50%. In addition, HCML leverages differences in bandwidth between

communicating processes by piggybacking more fault tolerance information over high bandwidth links.

Doing so improves overall message latency by as much as 97%.

1 Introduction

Computational grids such as Globus [11], Legion [25] and Nile [16] allow one to harness computers spread

across a wide-area network. Because of the availability of such middleware and the increasing interest in

scientific computing, the scale of large distributed applications is growing rapidly. Indeed, there is serious

talk of building applications that can involve the cooperation of many thousands to millions of computers.

In such an environment, the chance of a processor crashing or a network having a significant period of

outage can not be ignored. Hence, fault tolerance at some level needs to be addressed in the middleware for

computational grids.

The simplest systematic approach to fault-tolerance is to restart the processes of a crashed processor on

another processor. Message logging protocols [8] are designed just for this purpose. With the exception

of pessimistic message logging [6, 20], however, these protocols do not directly scale to large systems.

1



Pessimistic message logging can easily scale because the logging and recovery protocol operates in a very

localized manner. This advantage is also its limitation, however, because it prevents dynamic replication

of critical processes that may have become unreachable because of a network partition: to do so with any

kind of consistency, the information used during recovery must be replicated more widely than pessimistic

logging does.

Causal message logging protocols [4, 9, 17] are instead well-suited for dynamically replicating un-

reachable processes, because they log recovery information in the volatile memory of multiple application

processes. Using this information, it is possible to generate replicas that are causally consistent [1] with

the unreachable ones. Causal message logging protocols are generally considered efficient: because they

let processes keep their logs in volatile memory, they impose minimal overhead during failure-free exe-

cutions; furthermore, they send no extra messages to distribute the recovery information, which is instead

piggybacked on the ambient message traffic.

Nonetheless, applying causal message logging protocols to wide-area distributed systems is challeng-

ing. First, these protocols maintain data structure that grow quadratically in n, the number of processes in

the system. For a large n, the memory needed to maintain these data structures can easily become unman-

ageable. Second, the higher latency and decreased bandwidth of wide area computing can lead to a large

increase in the amount of data that these protocol piggyback on the ambient message traffic.

The contribution of this paper is to present Hierarchical Causal Message Logging (HCML), a new causal

message logging protocol that addresses these challenges. HCML groups processes based on a notion of

proximity defined in terms of inter-process bandwidth and communication latency. Each such group contains

a proxy that maintains the recovery information for the processes in the group and functions as a filter for

the recovery information that enters and leaves the group. Proxies can also be grouped, again based on a

notion of proximity, and each such group contains a higher-level proxy. This recursive grouping constructs

a hierarchy of proxies that can be as deep as desired.

Proxies significantly reduce the size of the data structures maintained by each process: in HCML, this

size depends on the number of processes in each group, rather than the total number n of processes in the

system. Furthermore, if multiple processes within a group piggyback identical recovery information onto

messages directed to the same process in another group, the proxy hierarchy ensures that the information

is transferred only once. As a result, the total amount of data piggybacked by HCML is significantly lower

than in traditional causal logging protocol.

This paper is organized as follows. Section 2 describes the system model and introduces our notion of

locality. Section 3 describes the HCML protocol in detail. The experimental results are described in Section

4, and by Section 6 summarizes the results and discusses their implications.

2 System Model

We assume a system with a set P of n processes, whose execution is represented by a run, which is an

irreflexive partial ordering of the send events, receive events and local events based on potential causal-

2



ity [13]. Processes can communicate only by sending and receiving messages; communication is FIFO and

reliable. The system is asynchronous: there exists no bound on the relative speeds of processes, no bound on

message transmission delays, and no global time source. A deliver event is a local event that represents the

delivery of a received message to the application or applications running in that process. For any message

m from process p to process q, q delivers m only if it has received m, and q delivers m no more than once.

The potential causality relation ! is defined as follows: let e
p

and e

q

be events of process p and q,

respectively. The potential causality relation is the transitive closure of the following cases:

� p = q and process p executed e

p

before e

q

;

� e

p

is send
p

(m; q) (process p sends message m to process q) and e

q

is receive
q

(m; p) (process q

receives message m from process p);

Given two events such that e
p

! e

q

, we say that event e
p

happens before event e
q

. Given a message m

sent from process p to process q, we define the set Dep(m) to be the set of processes that have executed an

event e such that receive
q

(m; p)! e. Informally, this set is the set of processes that causally depend on the

delivery of message m including q once it has delivered m.

We assume that processes are piecewise deterministic [8, 20], i.e. that it is possible to identify all the

non-deterministic events executed by each process and to log for each such event a determinant [4] that

contains all the information necessary to replay the event during recovery. In particular, we assume that the

order in which messages are delivered is non deterministic, and that the corresponding deliver events are

the only non-deterministic events that a process executes. The determinant #m for the deliver event of a

message m includes a unique identifier for m as well as m’s position in the delivery order at its destination.

The contents of the message need not be saved because it can be regenerated when needed [4].

We define the set Log(m) as the set of processes that have stored a copy of #m in their volatile memory.

Definition 1 (Causal Logging Property) The causal logging specification defined in [2] requires that:

p 2 Dep(m) ) p 2 Log(m)

when the number of possible crashes is equal to n.

We define a locality hierarchy as a rooted tree H with the processes in P as the leaves of the tree.

Each interior nodes of the tree represent a locale, such as a specific processor, local-area network, or a stub

domain. Given H, we define the predicate

A

x

(y)

�

= (y = x) _ (y is an ancestor of x)

and define the functions

C(x; y)

�

= z : z is the least common ancestor of x and y;

height(v)
�

= the distance from the root to the node v.

3



v̂

�

= the parent of node v.

Each locale in H has associated with it a communication bandwidth characteristic that defines the avail-

able bandwidth for communication among the locale’s children. If two application processes s and t have

the same parent p in H, then the communication cost of a message m from process s to process t depends

on the bandwidth characteristics of their parent p. If s and t do not have the same parent, then the commu-

nication cost of message m depends on the bandwidth characteristics of the locale C(p; q). We assume that

all locales at the same height i have the same bandwidth BW
i

(measured in MB/sec).

The overhead of a message m, denoted as jmj, is the size in bytes of the fault tolerance information

piggybacked on m. The transmission overhead of m is a the time it takes to transmit jmj from its sender to

its destination m:dest:

time(m)
�

=

jmj

BW
i

where i = height(C(m:sender;m:dest)):

The total message overhead of a run is the sum of the message overhead for all the messages sent in the

run. The message overhead at depth i of the hierarchy is the sum of the message overhead of messages that

traverse locales at height i. The total transmission overhead is the sum of the transmission overheads for all

messages in the run.

3 Hierarchical Design

In this section we first review a simple causal message logging protocol that we call SCML. It is equivalent

to the protocol �
det

with f = n described in [3] and to Manetho [9]. We then discuss its limitations with

respect to scaling, and present a hierarchical and scalable causal message logging protocol.

3.1 Review of SCML

Like other message logging protocols, causal message logging is built using a recovery unit abstraction [20].

The recovery unit acts like a filter between the application and the transport layer. When an application

sends a message, the recovery unit records fault tolerance information on the message and hands it off to

the transport layer. Similarly, on the receiving end, the recovery unit reads the fault tolerance information

on the message and updates its in-memory data structures before passing the contents of the message to the

application layer.

The recovery unit for causal message logging maintains a determinant arrayH
s

at each process s. For

every process t,H
s

[t] contains the determinant of every message delivered by t in the causal past of s. H
s

[t]

is ordered by the order of message delivery at t. We denote withH
s

[t; i] the ith determinant inH
s

[t].

A simplistic way to maintainH
s

is as follows. When a process s sends a message m to t, it piggybacks

on m all determinants in H
s

. When process t receives m, it extracts these piggybacked determinants,

incorporates them into H
t

, generates the determinant for m, and appends #m to H
t

[t]. By doing so,

when process t delivers m it has all the determinants for messages that were delivered causally before and

4



Protocol 1 The Simple Causal Message Logging (SCML) Protocol

send

s

(m; t) :=

m:piggyback = f8 r 2 P 8 j : j > D

s

[t; r] j hr;H

s

[r; j]i g;

8 r : D

s

[t; r] = length(H

s

[r]);

recv

t

(m; s) :=

8 hr;#m

0

i 2 m:piggyback f

add #m

0 toH
t

[r] if not already there; let j be its position;

update D
t

[s; r] to be the max of j andD
t

[s; r];

update D
t

[t; r] to be the max of j andD
t

[s; r];

g

generate #m and append it toH
t

[t];

increment D
t

[t; t];

including the delivery of m and therefore satisfies the causal logging property. This method of maintaining

H, however, needlessly piggybacks many determinants. To reduce the number, each process s maintains a

dependency matrixD
s

. This is a matrix clock where the valueD
s

[t; u] is an index intoH
s

[u]. IfD
s

[t; u] =

j, then process s knows that all of the determinants inH
s

[u] up through H
s

[u; j] have been sent to t.

One can think of D
t

as process t’s estimate of the determinants that have been stored by each process

in its determinant array. It is a conservative estimate: if D
t

indicates that process s will eventually store a

determinant #m inH
s

, then process s will in fact do so if it does not crash first.

3.2 Scalability

The causal message logging protocol just described does not scale to a large number of processes. The

dependency matrixD is O(n

2

), and grid computation middleware is being designed for systems in which n

in the thousands or millions. Even if n were the relatively small value of 10,000, then each process would

need to maintain a dependency matrix whose size would be measured in gigabytes.

The determinant array H scales better than D in terms of n: its size is O(nd), where d is the max-

imum number of determinants generated by any process. In addition, the size of H can be controlled

by asynchronously writing determinants to stable storage and by having the processes take a coordinated

checkpoint.

The management of both D and H is complicated by the fact that the set of processes P can change

frequently. While techniques have been proposed for managing vector clocks in these environments, (for

example, [18]), they exact a cost in both space and time that depends both on n and on how often n changes.

The piggyback load on messages is affected by many factors, but in general it depends on both the size

of H and the accuracy of D. As we discuss in Section 5, previous work has shown hat without specific

information about process communication patterns, the simple protocol described here piggybacks, on av-

erage, the least amount of information [5]. Hence, it would appear that the best way to control the size of

5



the piggyback load is to control the size ofH.

3.3 Proxy Hierarchy

HCML addresses the scalability problems of causal message logging through hierarchy. Each process tracks

only a small subset of the processes, thereby effectively reducing n for each process. Doing so also reduces

the number of times a process is affected by another process joining or leaving the system; a process is

affected only when the joining or leaving process is in the subset of processes it tracks. The hierarchy we

use is based on the locality hierarchy H discussed in Section 2. The leaves in the HCML hierarchy are the

application processes, and the internal nodes (corresponding to locales in H) are HCML proxy processes

called simply proxies. There is no proxy corresponding to the root of H. In the degenerate case of a single

locale, the only processes are the application processes, and HCML degenerates to SCML.

An application process can directly send messages to other application processes within its immediate

locale and to the one proxy associated with that locale which acts as a surrogate for all of the other application

processes outside of the locale. Proxies operates similarly to other processes: each proxy has a set of

sibling processes with which it can communicate directly. To communicate with any non-sibling, the proxy

forwards a message to its proxy.

Figure 1 An example of a simple run with HCML.

q

p r

s t u v

m

1

q

p r

s t u v

m

2

m

2;1

m

2;2

m

2;3

Figure 1 illustrates this hierarchy. The application processes s and t are siblings, and so s can send

m

1

directly to t. Process u, however, is not a sibling of t, and so t cannot send message m

2

directly to u.

Instead, t sends the message m

2;1

to its proxy p. Process u’s proxy r is a sibling of p, and so p can simply

forward the message (as m
2;2

) to r, which finally forwards the message (as m
2;3

) to the final destination u.

This routing of messages is done automatically by the communication layer and is invisible to the appli-

cation. Protocol 2 shows the algorithm. Consider a message m that is ultimately destined for u. When proxy

x receives m, if A
x

(u) then x forwards m to its child r for which A
r

(u). If instead A
x

(u) does not hold

but x has a sibling y for which A
y

(u) holds, then x forwards m to y. Finally, if neither A
x

(u) holds and

there is no sibling y of q for which A
y

(u) holds, then x forwards m to its parent x̂. These last two cases are

6



analogous to the actions of an application process sending a message to a local and a nonlocal application

process respectively.

Protocol 2 Determining the next hop in the HCML Routing protocol for message m destined for application

process u.

nexthop

x

(m;u) :=

if 9 r : (r is a child of x ^A

r

(u)) then r

else if 9 y : (y is a sibling of x ^A

y

(u)) then y

else x̂

Each proxy x implements A
u

(s) for all application processes s and proxies u that are siblings of x. This

implies that each proxy knows the identity of all application processes, which presents a scaling problem.

But, if the locales are defined in terms of the hierarchical naming structure used by the underlying transport

protocol, then this predicate can be efficiently implemented such that x need know only the identities of its

siblings.

3.4 Peers and Proxies

Each proxy in the system simultaneously runs two causal message logging protocols: one with its siblings

and parent in the role of a peer, and one with its children in the role of a proxy. Since application processes

are at the leaves of the hierarchy and have no children, they only run one causal message logging protocol

with their siblings and parent in the role of a peer. Hence, for a hierarchy containing i internal nodes, there

are i distinct protocols running at any time. We call this basic causal message logging protocol CML, and

we associate a CML protocol with each proxy in the system. Thus proxy x runs both CMLx̂ with its siblings

and parent and CMLx with its children. Application process s only runs CMLŝ.

CML is SCML with two differences: proxies have access to the determinants that are piggybacked on

messages and proxies do not generate determinants. The first difference is needed for coupling instances of

CML; as for the second, it is not necessary for proxies to generate determinants because their state can be

safely reconstructed even if their messages are delivered in another order during recovery.

To satisfy the Causal Logging property, a proxy x couples CMLx and CMLx̂. Process x acts as a proxy

to all of its children for all processes outside of its locale. Therefore, all determinants stored in Hx̂

x

and

assigned to remote processes are also stored inHx

x

and assigned to process x: it is always the case that

8r; d : (d 2 H

x̂

x

[r]) d 2 H

x

x

[x]): (1)

Process x also acts as a proxy to the processes in its peer group for its child processes. Therefore,

determinants stored inHx

x

are also stored inHx̂

x

: it is always the case that

8r; d : (d 2 H

x

x

[s] ) d 2H

x̂

x

[x]): (2)

We call the conjunction of Equations 1 and 2 the Coupling invariant.

7



It is easy to see that the Coupling invariant combined with CML satisfies the Causal Logging property.

Consider a message m sent from application process a to application process b. Let T = ht

1

; t

2

; : : : ; t

k

i be

the sequence of proxies that lead from a to b via C(a; b); thus, t
1

= â, t
k

=

^

b, and t

k=2+1

= C(a; b). From

the definition of nexthop, m is forwarded via CMLt

1

;CMLt

2

; : : :CMLt

k . For the (one or more) protocols

CMLt

1

;CMLt

2

; : : :CMLt

k=2+1 Equation 2 ensures that the determinants needed to satisfy the Causal Log-

ging property are forwarded. For the remaining (zero or more) protocols CMLt

k=2+2

;CMLt

k=2+3

; : : :CMLk

Equation 1 ensures that the determinants needed to satisfy the Causal Logging property are forwarded.

Protocol 3 shows the protocol run by a proxy x. As an example, consider Figure 1 once again. In this

Protocol 3 The HCML proxy protocol.

recv

x

(m; y) :=

if m received via CMLx̂

f

8 hr;#m

0

i2 m:piggyback f

add #m

0 toHx̂

x

[r] if not already there;

update Dx̂

x

[y; r];

update Dx̂

x

[x; r];

g

send

y

(m;nexthop

x

(m;m:dest)) via CMLx

g

else m received via CMLx

f

8 hr;#m

0

i2 m:piggyback f

add #m

0 toHx

x

[r] if not already there;

update Dx

x

[y; r];

update Dx

x

[x; r];

g

send

x

(m;nexthop

y

(m;m:dest)) via CMLx̂

g

scenario, processes s, t, u, and v are application processes. Process s sends m
1

to process t. Since s is an

application process, it uses CMLŝ to send m

1

, and since t is a peer of s, the message is sent directly to t.

For both processes, CMLŝ updates the determinant arrays and dependency matrices following the SCML

protocol. In particular, t creates determinant #m

1

, adds it toH
p

t

, and sets D
p

t

[t; t] to 1. Message m is then

delivered to the application layer.

Next, process t sends m
2

to process u. Since u is not a peer of t, this message is redirected first to ^

t,

which is the proxy p. Since D
p

t

[p; t] = 0, ht;#m

1

i is piggybacked on m

2;1

. Proxy p receives the message

via CMLp which adds #m

1

to Hp

p

[t] and to Hq

p

[p]. Dp

p

is updated so Dp

p

[t; t] = 1 and Dq

p

[p; p] = 1. The

proxy then forwards m
2

to proxy r via CMLp̂. This time, it carries the piggyback hp;#m

1

i.

Proxy r receives the message m

2;2

. It adds the determinant #m

1

to both Hq

r

[p] and to Hr

r

[r], and

8



D

q

r

[p; p] and Dr

r

[r; r] are updated. It then forwards m
2

to u via CMLr. This time, the message piggybacks

hr;#m

1

i.

Process u receives m
2

. It extracts the determinants, adds #m

1

toHr

u

[r], and setsDr

u

[r; r] to 1. Then, a

determinant is created for m
2;3

, is added toHr

u

[u], andDr

u

[u; u] is incremented. Finally, m
2

is delivered to

the application layer with the causal logging property satisfied.

3.5 Recovery

While there is significant opportunity to optimize the recovery protocol using the locality hierarchy, the

recovery protocol for an application process in HCML is essentially that for SCML. Failure of proxies can

be dealt with by simply restarting the process and informing its peer and proxy group of the failure. Since

the proxies are simply caches for determinants, the caches will get refilled as the proxy forward messages.

4 Performance

Using the proxy hierarchy ensures that no process needs to track the causality of a large number of processes.

This technique provides an exponential space reduction as compared to tracking the full causality. For

example, assume that the locality hierarchy has depth of five and the fanout is 10 at each node. Such an

architecture can accommodate 100; 000 application processes, yet each process only tracks either six or

twelve processes (depending on whether it is an application process or a proxy respectively). With SCML,

on the other hand, each application process would maintain a dependency matrix with 10

5

� 10

5

= 10

10

entries.

However, the tradeoff is that HCML will over-estimate the causality as compared to SCML and and

more often needlessly piggyback determinants to processes that are not dependent on them. In addition,

HCML will send more messages than SCML because all non-local messages are relayed through the proxy

hierarchy. This, however, is offset by the fact that the proxies act as local caches for determinants. This

caching of determinants reduces the overall message overhead by over 50% percent. More importantly,

HCML reduces the message overhead over slower communication channels and reduces the effective mes-

sage communication latency.

In this section, we first describe our application, the proxy hierarchy, and the scheduling of processes

within the hierarchy. We then discuss the performance results.

4.1 Effect of the Hierarchy

In order to gauge the effect of the hierarchy on both the message overhead and the message cost for HCML

and SCML, we analyzed the performance of an application of 256 processes where, on average, each process

communicates with four other processes selected randomly. The application proceeds in rounds. At each

round, each process sends a message to its neighbors and delivers the messages sent in the previous round.

The run ends after approximately 5,000 messages have been delivered.

9



An execution completely defines a run, but the performance of the run using HCML depends on the

structure of the hierarchy and on how the processes are scheduled in the hierarchy. We then considered

proxy hierarchies of different depths:

1. A depth-one hierarchy consisting of one locale containing all 256 application processes and no prox-

ies. As stated earlier, this is identical to SCML.

2. A depth-two hierarchy with four locales (hence four proxies), each containing 64 application pro-

cesses.

3. A depth-three hierarchy with sixteen application processes per lowest level locale. Their proxies have

three siblings each, and so there are 20 proxies total.

4. A depth-four hierarchy that divides each of the application process locales of the previous hierarchy

by four. Thus, there are four application processes per lowest level locale, and there are 84 proxies

total.

The application processes are placed into locales independently of the communication patterns that they

exhibit.

We used the Network Weather Service [24] to measure the available bandwidth for processes com-

municating in different locales. The values we measured ranged from over 200 MB/s for communica-

tion within the locale of a simple workstation to less than 0.4 MB/s for the wide area locale contain-

ing San Diego and western Europe. Thus, we set BW
1

= 1MB=s (intercontinental communications),

BW
2

= 10MB=s (intra-stub domain communications), BW
3

= 100MB=s (local area network communi-

cations), and BW
4

= 1; 000MB=s (intra-high performance multiprocessor communications). 1 Figure 2

shows the total message size for the run using both HCML and SCML as a function of depth. Because

SCML does not take advantage of the locale hierarchy, its performance is constant with respect to the depth.

HCML, on the other hand, relays non-local messages through the hierarchy and therefore sends more mes-

sages overall. Hence, one might expect that HCML would have a higher total message overhead. As the

figure shows, the caching of the determinants actually improves the message overhead of HCML over SCML

by as much as 50%. As the hierarchy gets deeper, the net effect of the caches is reduced. For a depth of four,

for example, the locales at depth 3 have only four processes in them each and so the opportunity to benefit

from caching is low.

To see how the caches reduce the communication costs, consider the example from the last section once

again. After m
2

is finally delivered to process u, the determinant for message m
1

is stored at the intermediate

nodes p and r as well as the application process u. Consider what happens if a third message m

3

is sent

from process t to process v. In SCML t simply piggybacks #m

1

on m

3

which gets sent from the locale of

1For hierarchies of depth less than three, we assigned bandwidths starting with BW
1

. While doing so is unrealistic—for

example, one would not expect a program to consist of 256 processes, each running in its own stub domain—it is at least well

defined and no less arbitrary than any other choice. Furthermore, doing so does not affect the relative total transmission overheads

for a fixed depth.

10



p to the locale of r. Using HCML, however, m
3

is redirected to node p which knows that r already has a

copy of #m

1

. Therefore p does not need to piggybacked #m

1

again. Process r does not know whether v

has stored #m

1

, and hence piggybacks the determinant to v.

A secondary effect of the proxies is that more of the communication occurs lower in the hierarchy, where

there is more bandwidth available. Figure 2 also shows the total transit overhead for SCML and HCML. In

the case of depth 3 hierarchy, HCML reduces the total transit overhead by 97%. It should be noted that this

metric does not include any added latency arising from the processing time of proxies.

We have found similar results for different application with different communication properties. In most

cases, HCML is able to leverage the locality and produce a net reduction in both the total message overhead

and the total message transit time. In addition, HCML performs better when the communication pattern the

application processes use biases communication to be mostly within the higher bandwidth locales. Hence,

we believe that HCML can only benefit from the the careful scheduling of grid-based applications.

Figure 2 The performance of HCML compared with SCML in terms of both total message overhead and

total transmission overhead.

Transmission Overhead

depth of locality hierarchy

to
ta

l 
m

es
sa

g
e 

tr
an

sm
is

si
o
n
 o

v
er

h
ea

d

0

5e+07

1e+08

1.5e+08

1 2 3 4

H

H
H H

S

S S S

Message Overhead

depth of locality hierarchy

to
ta

l 
m

es
sa

g
e 

o
v
er

h
ea

d

0

5e+07

1e+08

1.5e+08

1 2 3 4

H

H

H
H

S S S S

Overhead at level 1
Overhead at level 2
Overhead at level 3
Overhead at level 4

5 Related Work

Causal message logging protocols face the challenge of limiting both the number of determinants piggy-

backed on application messages, and the size of the data structures that each process must maintain to do so

effectively. This is a problem because a process running causal message logging does not have the global

knowledge necessary to determine which processes have received and logged a given determinant: there-

fore, it is hard to avoid that processes receive the same determinant multiple times. Causal protocols try to

prevent this redundancy by tracking causal dependencies. In particular, for all messages m, causal message

logging tracks the processes whose state causally depends on the delivery of m. To reduce the cost of causal

11



message logging, previous research has therefore focused on building protocols that better estimate causal

dependencies, and on devising space-efficient schemes for encoding these dependencies without sacrificing

accuracy too much.

Numerous causal protocols have been proposed to help a process estimate causal dependencies more

precisely [3]. These protocols require senders to piggyback on messages not just the determinants, but

additional data that can help receivers improve their estimates. Unfortunately, the extra cost involved in

piggybacking this additional information often outweighs any reduction in the number of determinants being

piggybacked [5].

The standard mechanisms for tracking causality are based on vector clocks [10, 14]. Any representation

of a vector clock, though, is O(n) where n is the number of processes whose events are being tracked [7].

It is this property that leads to the O(n

2

) space requirements of causal message logging.

There has been considerable research in reducing the overhead of maintaining vector clocks. Singhal

and Kshemkalyani [19] proposed an improved implementation for vector clocks that saves communication

bandwidth at the cost of increased storage requirements. They proposed to append only those entries of the

local clock that have changed since last sending a message to that process. Prakash and Singhal [15] noted

the scalability problem associated with vector clock implementations, and in particular the problems when

the number of elements in the system fluctuates. They proposed alternative implementations of vector clocks

targeted specifically for their mobile computing environments. Torres-Rojas and Ahamad [23] proposed the

use of fixed-sized plausible clocks instead of vector clocks that approximate causality. The improvement in

overhead is offset by the false causality introduced in the system. They showed that for some applications

the rate of false causality is low.

A different approach to reduce the cost of causality tracking is to modify the protocols so that the number

of elements that need to be tracked by vector clocks is reduced. This can be accomplished by using shared

logging sites [4]. By grouping processes together by their shared logging site and tracking causality only

at the level of granularity of these groupings, this method reduces n from the number of processes to the

number of shared logging sites. As the number of shared logging sites increases, however, scalability again

becomes a problem.

6 Conclusions

We have developed a scalable version of causal message logging. Our preliminary measurements indicate

that it can easily scale to the largest grid-based computing environments that are being envisioned. Not only

are the data structures that are maintained by each application process reduced by an exponential amount, but

a caching effect reduces the message overhead as well when compared to traditional causal message logging.

To attain these benefits, one sets up a hierarchy of proxies, each serving both as a router of causal message

logging communication and as a cache of recovery information. Indeed, an interesting open question is if

the routing of fault-tolerant information could be implemented as part of the underlying network routing

function.

12



The protocol as described here is very simple, and appears to be amenable to refinement. For example,

each proxy p manages an instance CMLp̂ of a causal message logging protocol. It seems straightforward

to allow CMLp̂ to be replaced with a pessimistic message logging protocol. One would do so to limit the

spread of recovery information to be below p in the locale hierarchy. Another refinement we are developing

would allow one to give specific failure model information about locales, thereby allowing one to replicate

recovery information more prudently.

One spreads recovery information for the purpose of recovery, which is not discussed in any detail in

this paper. In fact, we have designed HCML to allow us to experiment with recovery in the face of partitions.

HCML does not appear to be hard to extend to support dynamic replication of a process (or an object) when a

partition makes it inaccessible to a set of clients that require its service. The approach we are developing has

some similarities with other dynamic replication services [12, 22] and with wide-area group programming

techniques [21].

References

[1] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: Definitions, implementation,

and programming. Distributed Computing, 9(1):37–49, 1995.

[2] L. Alvisi, B. Hoppe, and K. Marzullo. Nonblocking and orphan-free message logging protocols. In

Proceedings of the 23rd Fault Tolerant Computing Symposium, pages 145–154, June 1993.

[3] L. Alvisi and K. Marzullo. Trade-offs in implementing causal message logging protocols. In Proceed-

ings of the 15th ACM Annual Symposium on the Priciples of Distributed Computing, pages 58–67, Jan

1996.

[4] L. Alvisi and K. Marzullo. Message logging: pessimistic, optimistic, causal, and optimal. IEEE

Transactions on Software Engineering, 24(2):149–159, Feb. 1998.

[5] K. Bhatia, K. Marzullo, and L. Alvisi. The relative overhead of piggybacking in causal message

logging protocols. In Proceedings Seventeenth IEEE Symposium on Reliable Distributed Systems,

pages 348–353, Jan. 1998.

[6] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault tolerance. In Proceedings of

the Symposium on Operating Systems Principles, pages 90–99. ACM SIGOPS, Oct. 1983.

[7] B. Charron-Bost. Concerning the size of logical clocks in distributed systems. Information Processing

Letters, 39(1):11–16, July 1991.

[8] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of rollback recovery protocols in message

passing systems. Technical Report CMU-CS-99-148, CMU, June 1999.

13



[9] E. Elnozahy and W. Zwaenepoel. Manetho: transparent roll back-recovery with low overhead, limited

rollback, and fast output commit. IEEE Transactions on Computers, 41(5):526–531, May 1992.

[10] C. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proceedings

of the 11th Australian Computer Science Conference, pages 55–66, 1988.

[11] I. Foster and C. Kesselman. The Globus project: a status report. In Proceedings Seventh Heterogeneous

Computing Workshop (HCW’98), pages 4–18, 1998.

[12] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy replication.

ACM Transactions on Computer Systems, 10(4):360–391, Nov. 1992.

[13] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the

ACM, 21(7):558–565, July 1978.

[14] F. Mattern. Virtual time and global states of distributed systems. In Proceedings of the International

Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

[15] R. Prakash and M. Singhal. Dependency sequences and hierarchical clocks: efficient alternatives to

vector clocks for mobile computing systems. Wireless Networks, 3(5):349–360, 1997.

[16] F. Previato, M. Ogg, and A. Ricciardi. Experience with distributed replicated objects: the Nile project.

Theory and Practice of Object Systems, 4(2):107–115, 1998.

[17] S. Rao, L. Alvisi, and H. Vin. The cost of recovery in message logging protocols. In Proceedings

Seventeenth IEEE Symposium on Reliable Distributed Systems, pages 10–18, Oct. 1998.

[18] O. G. Richard III. Efficient vector time with dynamic process creation and termination. Journal of

Parallel and Distributed Computing, vol.55,(1):109–120, Nov. 1998.

[19] M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks. Information Process-

ing Letters, 43(1):47–52, Aug. 1992.

[20] R. E. Strom, D. F. Bacon, and S. A. Yemini. Volatile logging in n-fault-tolerant distributed systems. In

Proceedings of the Eighteenth Annual International Symposium on Fault-Tolerant Computing, pages

44–49, June 1988.

[21] J. Sussman and K. Marzullo. The Bancomat problem: an example of resource allocation in a partition-

able asynchronous system. In Procedings of 12th International Symposium on Distributed Computing,

pages 363–377, Sept. 1998.

[22] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, et al. Managing update conflicts in Bayou,

a weakly connected replicated storage system. In Proceedings of the Fifteenth ACM Symposium on

Operating System Principles, pages 172–183, Dec. 1995.

14



[23] F. Torres-Rojas and M. Ahamad. Plausible clocks: constant size logical clocks for distributed systems.

Distributed Computing, 12(4):179–195, 1999.

[24] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: a distributed resource performance

forecasting service for metacomputing. Future Generation Computer Systems, 15(5-6):757–768, Oct.

1999.

[25] W. A. Wulf and A. S. Grimsaw. Legion – a view from 50,000 feet. In Proceedings of the Fifth IEEE

International Symposium on High Performance Distributed Computing, pages 89–99, Aug. 1996.

15




