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Abstract 

The ability to notice relational patterns across situations is 

crucial to learning. An important question is how people build 

transferable and generalizable knowledge by learning from 

examples. The study investigated the conditions that make 

comparison and explanation beneficial to learning by 

comparing learning outcomes of engaging in explanation or 

comparison in a categorization task and examining how 

varying degrees of instructional support affect these two 

processes. The results showed an advantage of comparison 

over explanation; however, this was specific to combination of 

relational labels and definitions and prompts to compare. These 

results add to existing research and extend our understanding 

of how best to support college students learning relatively 

difficult material. The findings also inform ways educators can 

support learning by developing instructional designs that 

support learning through analogical reasoning.  

Keywords: comparison; explanation; learning; transfer  

Introduction 

Research on analogical comparison (comparing or aligning 

two or more analogous cases) and explanation (answering 

why questions) has shown that both processes appear to aid 

knowledge transfer and are thought to support a capacity to 

make inferences and generalizations that go beyond the 

surface-level similarities between a previously learned and 

novel information (Hummel et al., 2014), but they have 

different instructional implications. Understanding when and 

how comparison and explanation foster learning and 

subsequent transfer and what instructional approaches might 

support students’ acquisition of relational-structural 

information across domains, is an important step in 

expanding our understanding of these cognitive processes 

and it can inform good practices in education.  

Although explanation and comparison aid transferable 

learning, they might rely on different cognitive mechanisms. 

One way in which comparison is thought to support learning 

is through difference detection. In addition to highlighting 

commonalities between two analogs, structural alignment 

also highlights alignable differences (i.e., which belong to the 

common relational structure). Since learners typically 

analyze these differences, comparison can enable them to 

notice deeper similarities and supports the formation of an 

abstract relational schema despite surface-level differences 

between compared cases (Gentner et al., 2009). One way in 

which explanation is thought to support learning is by 

increasing metacognitive awareness and providing a general 

boost to attention and cognitive engagement (Chi, 2000, 

2009; Roy & Chi, 2005). Another way, according to the 

unification and subsumption account, is that explanation 

leads learners to selectively prefer unifying patterns (Legare 

& Lombrozo, 2014; Lombrozo & Carey, 2006; Walker et al., 

2014; Williams & Lombrozo, 2010). Thus, explanation 

guides people to interpret the examples in terms of broader 

patterns.  

While considerable work shows that comparison and 

explanation individually can support transferable learning, a 

few studies investigate these processes in the same 

experimental task. Nokes-Malach et al. (2013) found that 

college students who explained solutions to worked physics 

examples outperformed students who compared pairs of 

examples on near transfer problems, however, both groups 

performed comparably on far transfer problems and 

outperformed the control group. Richey et al. (2015) found 

mixed efficiency of explanation and comparison on college 

students’ learning about electricity. Specifically, students 

who explained worked examples and those who compared 

them performed worse than the control group (who read 

instructional explications) on near transfer, whereas on 

intermediate transfer, students who explained outperformed 

those who compared. All groups struggled with the far 

transfer task, and on a task measuring preparation for future 

learning, the students in the control group outperformed those 

who compared. Gadgil et al. (2012) compared the effect of 

strategies aimed at promoting mental model revision (e.g., 

comparing one’s own mental model to an expert model) and 

strategies aimed at promoting revising false beliefs (e.g., self-

explaining the expert model alone) on college students’ 

knowledge of the human circulatory system. They found that 

students in the comparison condition were more likely to 

achieve conceptual change towards the expert model than 

those in the other conditions. While these studies offer insight 

into the conditions that make comparison and explanation 

beneficial to learning, it is still unclear what are the 

mechanisms by which these two processes foster learning and 

transfer.  

Several studies offer insights about how explanation and 

comparison might interact to support learning. Kurtz et al. 

(2001) asked college students to learn from dissimilar 

examples of heat flow and found that relative to students who 
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only described and explained the scenarios, students who also 

compared them found more similarities between them. In 

addition, comparison was most effective when students were 

asked to list corresponding similarities between the two 

examples. Sidney et al. (2015) compared college students’ 

learning about fraction division from worked examples; 

students were assigned in either explanation, comparison 

(indicating whether there are similarities and differences), 

both explanation and comparison, or a control condition. The 

results showed that procedural learning did not differ among 

conditions; however, participants who explained the 

examples showed more conceptual knowledge gain than 

those who compared them; the combined condition lead 

students to report more similarities and differences; students 

who only compared cases and were not asked to explain, 

showed less learning. Taken together, these results indicate 

that explanation fostered conceptual learning but simply 

noticing similarities and differences without making sense of 

them did not increase learning. Goldwater & Gentner (2015) 

asked participants to learn about causal systems by reading a 

causal label or a full explication of how the example fit the 

system; then some participants aligned pairs of examples 

belonging to the same system. The results showed that 

participants who compared pairs were more likely to sort new 

examples to match the causal system. Moreover, comparison 

was most beneficial when it was combined with the full 

explication. Edwards et al. (2019) asked participants to 

categorize robots according to rules by either engaging in 

explanation or comparison or neither and learning from pairs 

of category members (pair-wise comparison) or from all 

members of the category (group-level comparison). Overall, 

the results showed that prompts to explain increased the 

likelihood of discovering category rules. In addition, prompts 

to explain invited participants to compare to an even greater 

degree than actual prompts to compare did. Further, group-

level comparison (but not pair-wise comparison) partially 

mediated the effect of explanation on rule discovery. These 

results led the researchers to propose that explanation 

supports category learning by recruiting comparisons that 

support the identification of abstract commonalities. 

An important issue for education is that spontaneous 

analogical transfer is difficult, especially when the two 

domains are dissimilar at the surface level (Chi et al., 1981; 

Forbus et al., 1995; Gentner et al., 1993; Gick & Holyoak, 

1980, 1983). Importantly, transfer depends on how a learner 

would make sense of a new problem in terms of their prior 

knowledge (Goldwater & Schalk, 2016). The ability to 

transfer knowledge to a new case relies on both encoding the 

initial case, particularly in terms of relational information, as 

well as retrieving an appropriate base at the time of transfer. 

Thus, sometimes, failure to transfer might be caused by 

insufficient learning of the to-be-transferred concepts (Chi & 

VanLehn, 2012).  

One way to aid transfer is to support the encoding of the 

study material. Evidence from analogical reasoning research 

shows that providing a label for the relational schema or 

solution principle facilitates comparison (Christie & Gentner, 

2010; Son et al., 2010) and fosters transfer (Christie & 

Gentner, 2014; Gentner et al., 2011; Gick & Holyoak, 1983; 

Jamrozik & Gentner, 2020; Kubricht et al., 2017; 

Loewenstein & Gentner, 2005; Son et al., 2010). However, it 

is unclear whether providing more context-specific (e.g., full 

explication of an example) or more abstract information (e.g., 

definition of a principle) would support or hinder building an 

abstract schema to transfer to novel situations, as there are 

conflicting views on the effectiveness of definitions 

particularly in learning novel complex material. Forbus and 

Gentner (1986) proposed that the early stages of learning are 

governed by rich, context-specific representations thereby 

necessitating the need for learning from concrete examples 

rather than abstract schemas. Abstract definitions might be 

more poorly understood than specific cases and call for many 

different interpretations of a relational abstraction, meaning 

that people might encode the definition in a way that is 

incompatible with the example (Gentner et al., 2004) and 

completely abstract materials interfere with comprehension 

(Day & Goldstone, 2012). On the other hand, an appropriate 

abstract definition directly provides the relational schema and 

can aid schema induction and subsequent transfer 

(Eiriksdottir & Catrambone, 2011; Gick & Holyoak, 1983; 

Kubricht et al., 2017). Further, providing abstract labels of 

subgoals (principles) (Catrambone, 1998) or one’s own 

subgoal labels as scaffolds (Margulieux & Catrambone, 

2021) improves later problem-solving performance. 

Providing a full explication might support building a rich, 

well-connected representation of the base analog, because it 

might increase comprehension and provides an opportunity 

for deep understanding (Chi & VanLehn, 2012). Moreover, 

prior knowledge interacts with the ability to extract relevant 

relations. For example, experts are thought to habitually 

encode new examples in the terms of key relational principles 

which contributes to their ability to retrieve relational 

matches (Goldwater et al., 2021). Conversely, contextual 

information can impede learning and transfer because it 

might distract from the structural information (Day & 

Goldstone, 2012; Ross, 1989). Indeed, reducing the 

“richness” of the learning material facilitates alignment and 

transfer (Markman & Gentner, 1993). To our knowledge, the 

effectiveness of different levels of support has not been 

systematically studied and much remains unknown about the 

conditions in which various degrees of support can promote 

or hinder learning and transfer.  

 In sum, substantial research shows that both explanation 

and comparison support learning and transfer; however, there 

still seems to be some inconsistency regarding whether 

explanation or comparison is more beneficial to learning and 

the degree to which they recruit one another. The current 

research investigates when and how comparison and 

explanation support learning. Additionally, the study aims to 

investigate the role of instructional support in learning and 

transfer as well as how different levels of instructional 

support interact with cognitive strategies to foster abstraction 

and generalization. We hypothesize that both explanation and 

comparison as engaging in active and constructive learning 

1500



(Fonseca & Chi, 2010) would support transfer of relational-

causal information. Regarding the levels of support, we 

expect to replicate previous findings on the role of relational 

labels, and do not have specific expectations regarding 

definitions and explications. 

Method 

Participants 

A total of 320 undergraduate students from the University of 

Kansas (Mage = 19.2, SDage = 1.259; 131 female, 131 male, 2 

non-binary, 56 did not respond) participated in exchange of  

course credit. Data from additional 421 participants were 

excluded because they failed at least one attention check 

explicitly asking them to sort 2 examples in the AST under a 

specific causal system. The study was conducted online via 

Qualtrics, and data were collected between Summer 2020 and 

Spring 2022. 

Design and Procedure 

A 3 (Training: Explanation, Comparison, No Training) X 3 

(Level of Support: Label, Definition, Explication) + 1 

(Baseline) design was used, thus yielding 10 conditions with 

all variables manipulated between participants. Participants 

in all but the Baseline condition were presented with ten short 

examples depicting five causal systems (common cause, 

common effect, causal chain, positive feedback, or negative 

feedback). Each example was accompanied by either a label, 

a label and a definition, or a label, definition, and explication. 

After reading the examples, participants were presented with 

the same examples either sequentially and were asked to 

explain how each fit a given causal system (Explanation 

conditions) or in pairs and were asked to describe the key 

parallels between them (Comparison conditions). Next, all 

participants proceeded to the assessment materials where 

they solved a sorting task and self-reported the amount of 

comparison and explanation during the Learning Phase. 

Materials 

Instruction Materials The instructional materials consisted 

of ten short examples depicting causal systems from two 

domains (e.g., electrical engineering and biodiversity; 

adapted from Rottman et al., 2012). In the first part of the 

Learning Phase, participants read the examples and the 

label/definition/explication that followed each of them. In the 

second part of the Learning Phase, participants received 

either an explanation prompt (e.g., “In your own words, 

explain why this description is an example of a [positive 

feedback] system.”) or a comparison prompt (e.g., “These 

two are examples of a [positive feedback] system. What are 

the key parallels between these two phenomena?”) and wrote 

their responses in a box provided on the screen. Next, they 

proceeded to the Transfer Phase consisting of the assessment 

materials. 

Assessment Materials Assessment materials consisted of the 

Ambiguous Sorting Task (AST; adapted from Rottman et al., 

2012). The AST consisted of 20 example phenomena 

composing a matrix of five causal systems crossed with five 

content domains. Because there were two types of sorts (e.g., 

according to domain or causal system), participants sorted the 

examples twice.  

We also collected amount of self-reported comparison and 

explanation during the Learning Phase on a 7-point Likert 

scale. Finally, to examine whether prompts to compare and 

explain elicited comparison among the training groups, the 

explanations and comparisons students generated were coded 

for comparison. For each causal system, we coded whether 

students generated at least one comparison. Because we were 

interested in the quality of the comparison, we coded for 

broad and deep comparisons. Broad comparisons were cases 

in which a student is referring to a previous example or to 

both example phenomena. Deep comparisons were cases in 

which a student is explicitly mapping corresponding 

elements between two examples.  

Results 

A quasi-randomized order for the example phenomena in the 

AST was used, thus having two orders. A series of 

independent samples t-tests showed that this order predicted 

systematic differences in the types of sorts such that in the 

first sorting, participants who received Order 2 (N = 166, 

Mcausal = .215, SD = .185), sorted more causally (t(318) = 

2.132, p = .034) than those who received Order 1 (N = 154, 

Mcausal = .172, SD = .176). Participants who received Order 1 

(Mdomain = .498, SD = .206) sorted more by domain (t(318) = 

2.433, p = .016) than those who received Order 2 (Mdomain = 

.443, SD = .193). There were no differences between the two 

orders in the amount of error sorts across the two sorting’s, 

nor in the amount of causal and domain sorts in the second 

sorting. All subsequent analyses controlled for Order.  

Types of Sorts in the AST  

We first compared the rate of causal and domain sorts 

between the first and the second sorting among all groups, 

and among just the training groups. The second sorting was 

included to allow participants to show sensitivity to the 

causal-relational similarity across examples, even when their 

first sorting might have been dominated by domain sorts. 

Two separate repeated measures ANOVAs on the rate of 

causal and domain sorts with Sorting Set as within-subjects 

factor and Condition and Order as between-subjects factors 

found a main effect of sorting set such that there were fewer 

causal sorts in the 2nd sorting than the 1st (F(1,309) = 8.778, 

p = .003, ηp
2 = .028) as well as more domain sorts (F(1,309) 

= 9.233, p = .003, ηp
2 = .029). Additionally, the model found 

a main effect of condition in which students in the Baseline 

condition sorted less by causal system (F(9,300) = 4.256, p < 

.001, η2 = .081) and more by domain (F(9,309) = 4.588, p < 

.001, ηp
2 = .118) than students who were prompted to 

compare and received either a label or a definition. Table 1 

contains the results from the post-hoc analyses.  

Next, we compared the performance among the 9 training 

groups. A repeated measures ANOVA on the rate of causal 
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sorts, with Sorting Set  as within-subjects factor and Support, 

Training, and Order as between-subjects factors found a 

main effect of Sorting Set, F(1,272) = 8.630, p = .004, ηp
2 = 

.031; the rate of causal sorting was reliably less frequent in 

the 2nd sorting (M = .173) than in the first (M = .205), t(280) 

= 2.938, p = .004. There was also a main effect of Training, 

F(2,272) = 7.083, p = .001, ηp
2 = .05. Students who were 

prompted to compare sorted more by causal system than 

students who did not receive any training, t(194) = -3.746, p 

< .001. There was no main effect of Support, F(2,272) = 

1.340, p = .263, no main effect of Order, F(1,272) = 3.119, p 

= .078. There was no significant interaction between Sorting 

Set and Support, F(2,272) = 1.024, p = .360, nor between 

Sorting Set and Training, F(2,272) = 2.951, p = .054, nor a 

significant triple interaction between Sorting Set, Support, 

and Training, F(4,272) = .856, p = .491. 

Another repeated measures ANOVA on the rate of domain 

sorts between the Sorting Set as within-subjects factor and 

Support, Training, and Order as between-subjects factors 

found a main effect of Sorting Set, F(1,272) = 10.568, p = 

.001, ηp
2 = .037. The rate of domain sorting was reliably more 

frequent in the second sorting (M = .507) than in the first (M 

= .455), t(280) = -3.251, p = .001). There was also a main 

effect of Training, F(2,272) = 13.476, p < .001, ηp
2 = .09. 

Students who were prompted to compare sorted less by 

domain than students who did not receive any training, t(194) 

= 25.171, p < .001 and whose who were prompted to explain, 

t(182) = 2.117, p = .035. The students who were prompted to 

explain also sorted less by domain that the students who did 

not receive any training, t(183) = 2.906, p = .008. There was 

also a main effect of Order, F(1, 272) = 5.097, p = .025, ηp
2 

= .018. Students who received Order 1 sorted more by 

domain that students who received Order 2, t(280) = 2.258, p 

= .025. There was no main effect of Support, F(2,272) = 1.99, 

p = .139. There was no significant interaction between 

Sorting Set and Support, F(2,272) = 2.321, p = .1, nor 

between Sorting Set and Training, F(2,272) = 2.068, p = .128, 

nor a significant triple interaction between Sorting Set, 

Support, and Training, F(4,272) = .1.041, p = .387.  

Self-reported Comparisons and Explanations  

The analyses of the sorts in AST indicated that students who 

were prompted to compare sorted more causally than students 

who did not receive training and those who were prompted to 

explain. However, as reviewed at the beginning of this paper, 

comparison and explanation sometimes recruit each other. 

Thus, an interesting question is whether prompts to compare 

would elicit explanation processing and whether prompts to 

explain would elicit comparison processing. Relatedly, we 

sought to examine whether these prompts elicit comparisons 

and/or explanations. To determine what processes the 

prompts stimulated, we analyzed students’ self-reports of the 

frequency with which they engaged in comparison and 

explanation during the learning phase.  

A 3 (Support: Label, Definition, Explication) X 3 

(Training: No Training, Compare, Explain) ANOVA on the 

frequency of self-reported comparison revealed no 

significant main effects or interaction (support: F(2,230) = 

.826, p = .439, η2 = .007; training: F(2,230) = .574, p = .564, 

η2 = .005; interaction: F(4,230) = .887, p = .472, η2 = .015). 

Another 3 (Support: Label, Definition, Explication) X 3 

(Training: No Training, Compare, Explain) ANOVA on the 

amount of self-reported explanation also revealed no main 

effects or interaction (support: F(2,230) = .139, p = .871, η2 

= .001; training: F(2,230) = 1.082, p = .341, η2 = .009; 

interaction: F(4,230) = .530, p = .714, η2 = .009). Generally, 

students reported relatively high rates of both comparison and 

explanation. 

Rate of Comparison During Learning  

Three groups received only support but did not receive 

further training, while the remaining six groups received 

prompts to compare or explain. For these six groups, we 

collected verbal protocols of the explanations and 

comparisons students generated during learning and looked 

at the rate of broad and deep comparisons. There were 184 

participants: 87 were prompted to explain and 97 were 

prompted to compare; 58 received a label, 63 received a 

definition, and 63 received an explication. A total of 92 

students generated broad comparisons, and 34 of them 

generated deep comparisons.  

A 3 (Support: Label, Definition, or Explication) X 2 

(Training: Compare or Explain) ANOVA on the amount of 

broad comparisons found a main effect of Training, 

F(1,178) = 162.725, p < .001, ηp
2 = .478. Students who were 

prompted to compare generated significantly more broad 

comparisons than students who were prompted to explain, 

t(182) = -12.756, p < .001. There was no main effect of 

Support, F(2,178) = 2.018, p = .136. There was a significant 

interaction between Support and Training, F(2,178) = 3.798, 

p = .024, ηp
2 = .041, such that students in all comparison 

groups outperformed students in all explanation groups. In 

addition, students who were prompted to compare and 

received explications generated more broad comparisons 

than students who were prompted to compare and received 

definitions, t(65) = -3.324, p = .016. 

Another 3 (Support: Label, Definition, or Explication) X 2 

(Training: Compare or Explain) ANOVA on the amount of 

deep comparisons found a main effect of Training, F(1,178) 

= 31.220, p < .001, ηp
2 = .149. Students who were prompted 

to compare generated significantly more deep comparisons 

than students who were prompted to explain, t(182) = -

12.756, p < .001. In fact, none of the students in the 

explanation groups generated any deep comparisons. There 

was no main effect of Support, F(2,178) = .920, p = .4, and 

no interaction between Support and Training, F(2,178) = 

.920, p = .4. 

Encouraged by this, we next asked whether individual 

differences in generating comparisons during learning 

predicts performance on the transfer tasks across all six 

groups. However, generating broad or deep comparisons did 

not correlate significantly with sorting causally in the AST 

(broad: r = .007, p = .929; deep: r = -.039, p = .528). 
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Table 1: Post-hoc comparisons of Baseline versus the 9 

training groups, Panel a) Causal Sorts; Panel b) Domain Sorts 

 
a) 

 

 Causal Sorts 

 Mean 

Difference 

SE t Cohen’s 

d 

L & C -0.150 0.034 -4.379*** -0.910 

L & E -0.088 0.036 -2.468 -0.533 

L only -0.031 0.035 -0.894 -0.188 

D & C -0.165 0.033 -4.924*** -0.998 

D & E -0.085 0.035 -2.435 -0.515 

D only -0.047 0.033 -1.414 -0.283 

FE & C -0.066 0.034 -1.946 -0.401 

FE & E -0.066 0.034 -1.912 -0.397 

FE only -0.062 0.034 -1.827 -0.376 

     

b)  Domain Sorts 

 Mean 

Difference 

SE t Cohen’s 

d 

L & C 0.133 0.039 3.435* 0.650 

L & E 0.081 0.040 2.005 0.395 

L only 0.002 0.039 0.057 0.011 

D & C 0.180 0.038 4.785*** 0.883 

D & E 0.115 0.039 2.908 0.561 

D only 0.053 0.037 1.437 0.262 

FE & C 0.125 0.038 3.251 0.610 

FE & E 0.096 0.039 2.475 0.468 

FE only 0.034 0.038 0.888 0.167 
 

* p < .05, ** p < .01, *** p < .001 

Note.  P-value corrected using the Bonferroni method. L = label, D 

= Definition, FE = Full Explication, C = Compare, E = Explain 

Discussion 

The study examined the effects of engaging in comparison 

and explanation, along with the level of support provided for 

learning the to-be-transferred material on learning and 

transfer of high-level causal system categories, such as 

positive feedback loop. Prior work suggests that these 

categories are not salient to college students without 

advanced training (Rottman et al., 2012). Our goal was to 

investigate the sorts of learning processes that facilitate 

students’ ability to recognize these patterns in the world, and 

to explore how different levels of instructional support might 

foster or hinder these processes.  

We hypothesized that explanation and comparison, as 

engaging in active and constructive learning (Fonseca & Chi, 

2010), would support transfer of relational-causal 

information. However, the overall results revealed learning 

advantages only for the Comparison groups. Compared to the 

baseline, students who were prompted to compare and 

received either causal labels or labels and definitions with the 

learning examples sorted more causally and less by content 

domain. Similarly, we found significant effects of training: 

students who were prompted to compare sorted more causally 

than students who did not receive training or who were 

prompted to explain. Taken together, these findings suggest 

that prompts to compare were more effective than prompts to 

explain in fostering students’ attention to the relational 

structure in the learning examples. Additional evidence for 

this interpretation comes from the finding that students who 

were prompted to compare sorted less by content domain than 

students who were prompted to explain and those who did not 

receive training.  

There were no differences in the frequency of self-reported 

comparisons and explanations between the training groups: 

students reported relatively high levels of explanation and 

comparison and seemed to have engaged equally in both 

processes. However, examining the actual frequency of 

comparisons generated in students’ written responses during 

learning showed that students in the comparison groups 

produced more comparisons than students in the explanation 

groups, and only students in the comparison groups generated 

deep comparisons (i.e., that include structural alignment). 

However, these individual differences in generated 

comparisons did not predict transfer performance. In fact, 

comparisons were not frequent: 79 students in the 

comparison groups, and 13 in the explanation groups 

generated broad comparisons, and 34 in the comparison 

groups generated deep comparisons. It is possible that while 

engaging with the examples facilitated students’ ability to 

notice and mention the similarity between them, it did not 

provide enough support for spontaneous structural alignment. 

We expected the deep comparisons to correlate with 

performance and find the lack of a correlation surprising.  

For broad comparisons, there was an interaction between 

support and training: students who were prompted to 

compare and received explications produced more broad 

comparisons. It is possible that receiving the explication 

improved students’ comprehension of the examples 

themselves, thus allowing them to be reminded of other 

analogous examples. However, the fact that we did not see 

improved transfer particularly in the comparison and 

explication group raises a question of how transferable that 

understanding was. It is possible that while the explication 

increased comprehension of the examples, it did so in a way 

that did not promote the abstraction of the causal schema and 

thus hindered subsequent transfer. Conversely, receiving 

labels or definitions might have promoted more abstract 

learning that while did not promote more broad comparisons, 

generally, led to improved transfer.  

We did not find consistent evidence of the effect of 

differing levels of instructional support. In fact, only labels 

and definitions, when combined with comparison, lead to 

more casual and fewer domain sorts. This result adds to 

existing evidence that relational labels invite comparison and 

improve learning and transfer (Christie & Gentner, 2010; 

Gentner et al., 2009; Jamrozik & Gentner, 2020; Kotovsky & 

Gentner, 1996; Novick, 1988; Son et al., 2010). Bowdle & 

Gentner (2005) differentiate between horizontal alignment 

(aligning representations that are at the same level of 

abstraction, e.g., two examples) and vertical alignment 

(aligning representation that are at different levels of 

abstraction, e.g., an example and a label). Here, the 

representation of the meaning of a label is more abstract than 

the representation of a full explication. Arguably, the 

representation of a definition would also be more abstract. 

Therefore, aligning an example with a label (or a definition) 
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is computationally less expensive than aligning an example 

and the full explication, because there are fewer extraneous 

(i.e., surface-level) matches to handle. Moreover, extraneous 

information can impede learning and transfer because the 

concrete details of the example may interfere with the 

students’ ability to transfer the causal-relational structure to 

novel situations even if these details promote comprehension 

of the example. Prior work suggests that providing simple 

rather than rich training materials can facilitate mapping and 

transfer (Markman & Gentner, 1993; Rattermann & Gentner, 

1998; Son & Goldstone, 2009). Furthermore, labels and 

definitions provide consistent language across examples 

which increases the likelihood that two things that are named 

with the same label or short definition would be encoded as 

members of the category and will be retrieved at transfer. 

Relatedly, Snoddy and Kurtz (2017) found that a study 

manipulation thought to foster learning via category-building 

promoted spontaneous analogical transfer. Considering their 

“category status hypothesis”, it might be possible that 

students who received labels or definitions with the learning 

examples abstracted the relational category they belong to 

and thus transferred it to novel examples. However, a more 

systematic investigation of encoding is necessary to further 

shed light on the role of encoding in learning and transfer. 

Regarding the results that students who received more 

support did not perform better, it is possible that, receiving 

explications has preempted their own active processing of the 

learning materials (Gerjets et al., 2006); see Marguleux & 

Catrambone (2019) for related evidence of optimal 

combination of support in learning subgoals. Additionally, 

the presence of full explications might have obviated the need 

for participants to generate explanations of their own, thus 

diminishing their learning (Bertsch et al., 2007; Freeman et 

al., 2014; Theobald et al., 2020).  

The current findings are compatible with prior work 

demonstrating that engaging in comparison supports learning 

and fosters transfer (Gadgil et al., 2012; Gick & Holyoak, 

1980, 1983; Goldwater & Gentner, 2015; Kurtz et al., 2001; 

Loewenstein et al., 2003). While other work shows that 

engaging in explanation is beneficial to learning (Chi, 2000; 

Lombrozo, 2012; Rittle-Johnson & Loehr, 2017), sometimes 

even more beneficial than comparison (Nokes-Malach et al., 

2013; Richey et al., 2015; Sidney et al., 2015), the current 

results do not seem to support that. It is possible that the 

students in our study engaged in suboptimal explanations. 

The benefit of explanation found in prior research generally 

has been attributed to the quality of explanations generated 

by participants (Brown & Kane, 1988; Chi et al., 1989; Cho 

& Jonassen, 2012; Crowley & Siegler, 1999; de Koning et 

al., 2010; Rittle-Johnson et al., 2015). While we did not 

investigate the quality of the student generated explanations, 

it is possible that students who generated good quality 

explanations would show greater transfer, and future work 

could explore this possibility. Furthermore, other research 

suggests that one mechanism via which explanation may 

support learning is by inviting comparison (e.g., Chin-Parker 

& Bradner, 2010, 2017; Edwards et al., 2019; Hummel et al., 

2014; Needham & Begg, 1991). It is possible that students 

who were prompted to explain focused on context-specific or 

idiosyncratic information and thus did not attend to the 

relational structure in a way that could allow them to 

recognize it in analogous cases.  

Our findings contrast with those of Goldwater and Gentner 

(2015), who examined the effects of comparison instructions 

combined with either labels or full explications and found 

that the combination of explication and structural alignment 

lead to the highest rate of causal sorting. One reason for the 

different results obtained in the current study may be that we 

did not scaffold the alignment the way Goldwater and 

Gentner (2015) did. The current research used a more general 

prompt inviting participants to focus on the key parallels 

between the cases but did not require them to find 

corresponding elements. It is possible that a more scaffolded 

procedure would increase the amount and quality of the 

comparison.  

The current findings add to existing research showing that 

comparison can lead to relational understanding that 

facilitates transfer. Furthermore, the results align with other 

work arguing for a broader role of analogical reasoning in 

learning and transfer (Day & Goldstone, 2012; Doumas & 

Hummel, 2013; Gentner, 2003, 2010; Goldwater & Schalk, 

2016). The AST designed by Rottman et al. (2012) tests 

transfer as a more generalized ability to notice key patterns. 

Thus, the current findings add to existing research that the 

effects of analogical reasoning go beyond inference 

projection (Gentner, 2010; Goldwater & Gentner, 2015; 

Kurtz et al., 2001) and are consistent with the argument that 

the mutual structural alignment of examples supports 

deriving causal system abstractions that aid subsequent 

transfer by supporting the uniform encoding of relations 

(Gentner, 2010).  

The current findings have implications for educational 

practice and pedagogical strategies that can promote 

transferable learning and adds to a body of work suggesting 

that supporting analogical comparison could improve 

learning in educational settings, particularly related to math 

and science (Alfieri et al., 2013; Gentner et al., 2016; 

Richland et al., 2007; Rittle-Johnson & Star, 2009; 

Thompson & Opfer, 2010). Furthermore, the findings related 

to instructional support have implications for understanding 

the appropriate level of detail that should accompany the 

cases being learned, at least for college students.  

The current study has some methodological limitations that 

need consideration. Specifically,  conducting the study online 

might have affected the students’ engagement which could 

have attenuated learning effects of our manipulation. Future 

studies should have better control to ensure that participants 

engage with the study materials. Additionally, we plan to 

systematically study the role of differing levels of 

instructional support in encoding the learning materials and 

achieving transferable learning. Last, we hope to explore the 

benefits and drawbacks of learning from within- versus cross-

domain examples more systematically in future work.  
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