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The effect of interorbital scattering on superconductivity in doped Dirac materials

David Dentelski,1, 2 Vladyslav Kozii,3, 4 and Jonathan Ruhman1, 2
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2Center for Quantum Entanglement Science and Technology, Bar-Ilan University, 52900, Ramat Gan Israel

3Department of Physics, University of California, Berkeley, CA 94720, USA
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Unconventional superconductivity has been discovered in a variety of doped quantum materials,
including topological insulators, semimetals and twisted bilayers. A unifying property of these
systems is strong orbital hybridization, which involves pairing of states with non-trivial Bloch wave
functions. In contrast to naive expectation, however, many of these superconductors are relatively
resilient to disorder. Here we study the effects of a generic disorder on superconductivity in doped
three-dimensional Dirac systems, which serve as a paradigmatic example for the dispersion near
a band crossing point in quantum materials. We argue that due to strong orbital hybridization,
interorbital scattering processes are naturally present and must be taken into account. We calculate
the reduction of the critical temperature for a variety of pairing states and interorbital scattering
channels using Abrikosov-Gor’kov theory. In that way, the role of disorder is captured by a single
parameter Γ, the pair scattering rate. This procedure is very general and can be readily applied
to different band structures and disorder configurations, including magnetic impurities. Our results
show that interorbital scattering has a significant effect on superconductivity, where the robustness of
different pairing states highly depends on the relative strength of the different interorbital scattering
channels. Our analysis also reveals a protection, analogous to the Anderson’s theorem, of the odd-
parity pairing state with total angular momentum zero (the B-phase of superfluid 3He). This odd-
pairty state is a singlet of partners under CT symmetry (rather than T symmetry in the standard
Anderson’s theory), where C and T are chiral and time-reversal symmetries, respectively. As a
result, it is protected against any disorder potential that respects CT symmetry, which includes a
family of time-reversal odd (magnetic) impurities.

I. INTRODUCTION

Anderson’s theory explains why conventional s-wave
superconductors are weakly affected by non-magnetic
disorder [1–3]. It is based on two essential conditions.
The first one is that the Cooper pairs in these super-
conductors form singlet states of time-reversed partners.
The second one is that the phase of the pair wave func-
tion is featureless over the entire Fermi surface. These
two ensure that the pairing interaction, written in the
basis that diagonalizes the disorder potential, remains
the same as in the clean limit. Consequently, one can al-
ways pair time-reversed partners with the same interac-
tion and the same transition temperature [4]. In contrast,
the Cooper pairs in unconventional superconductors vi-
olate one of these conditions and, as a result, are not
protected [5–22].

From the theoretical perspective, the conditions to pre-
fer pairing in non-s-wave channels are quite stringent,
even without the destructive effect of disorder. Nonethe-
less, a large body of recent experimental measurements,
performed in doped topological materials, are consis-
tent with an unconventional superconducting state [23–
36], which was predicted theoretically [37–42]. Surpris-
ingly, these superconductors are extremely robust to dis-
order [43–47].

Mechanisms based on the huge spin-orbit coupling
characterizing the topological materials have been sug-
gested to explain this robustness. The authors of Ref. [48]
studied the effect of disorder on an odd-parity paring
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FIG. 1. A schematic picture of different types of non-trivial
time-reversal-symmetric intra- and interorbital disorder po-
tentials in Bi2Se3. The solid and dashed lines represent the
Se and Bi layers in the quintuple unit cell, respectively. The
purple pz orbitals represent the itinerant states on the top and
bottom Se layers, which disperse as Dirac fermions close to
the Γ-point. (a) Disorder that breaks the symmetry between
top and bottom layers induces γ5 and γ3 potentials [our con-
vention for the γ matrices is given below Eq.(1)]. This can
be caused either by a polar impurity in the z-direction or
a charged impurity closer to one layer than the other (e.g.,
due to the intercalation of Cu). (b) Disorder causing squeez-
ing or stretching of the z-axis lattice constant modifies the
hopping between the layers and thus induces a mass term of
the form γ0. (c) An in-plane polar impurity cases, γ1 and
γ2 potentials. We note that in all cases we also anticipate
an intraorbital density potential (proportional to the identity
matrix).

state with zero total angular momentum (equivalent to
the B-phase in superfluid 3He). They found that an ad-
ditional chiral symmetry can protect this state from cer-
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tain types disorder when it is present. It was later sug-
gested that the pair wavefunction in doped Bi2Se3 is a
multi-component nematic state which breaks the rota-
tional symmetry of the crystal [39, 49]. Refs. [46, 50]
studied the effect of disorder on the nodal nematic state,
also arguing for some robustness, however their results
were based on less generic grounds. See also a recent
comprehensive study of the effects of scalar disorder on
unconventional paring in topological materials [51].

The studies mentioned above, however, focus only on
the effects of intraorbital scattering, which has equal
weight on all orbitals (i.e., density disorder). Because
topological materials are multiorbital systems with huge
orbital hybridization, interorbital scattering is not ex-
pected to be particularly weaker than density disor-
der. In Fig. 1 we schematically depict three types of
time-reversal-symmetric disorder potentials, which are
expected to be present in Bi2Se3 and lead to interor-
bital scattering. Thus, it is important to understand the
effects of interorbital scattering in the superconducting
topological materials.

The influence of interorbital scattering on pairing was
first emphasized by Golubov and Mazin [52] and was later
studied in the context of systems with multiple Fermi
surfaces (see, for example, Ref. [53–57]). We emphasize
that in topological materials the multiorbital nature is
embedded in the Bloch wave-functions rather than the
presence of multiple Fermi surfaces, making them some-
what different.

In this paper, we study the effect of short-ranged intra-
and interorbital scattering on superconductivity in three-
dimensional materials with massless Dirac dispersion.
Namely, we provide an extensive picture of how the tran-
sition temperature Tc in different pairing channels is af-
fected by all possible types of short-ranged scattering po-
tentials. The Dirac dispersion is a paradigmatic exam-
ple of dispersion in topological materials, which naturally
have large spin-orbit coupling [58].

Our results are expressed in terms of the pair-breaking
rate Γ, which also enters the Abrikosov-Gor’kov theory
of superconductors with magnetic impurities [2]; they are
summarized in Table II. We find that the only state ro-
bust to time-reversal symmetric (TRS) disorder is the s-
wave, in agreement with the Anderson’s theorem [1]. An-
other fully gapped isotropic state is the odd-parity state
with zero total angular momentum (analogous to the B-
phase in superfluid 3He), which does not exhibit such
robustness, in contrast to previous expectations [47, 48].
Despite being protected against certain types of disor-
der, it turns out to be very sensitive to some other types
of defects, such as mass and polar impurities, which we
expect to be generally present in topological materials.

On the other hand, we find that this fully isotropic
odd-parity state is protected from any disorder that re-
spects CT (assuming this symmetry is also present in the
clean system), where C and T are chiral and time-reversal
symmetries, respectively. The reason for such robustness
is that this state corresponds to a singlet pairing state of

CT partners, in perfect analogy to pairing of T -partners
in Anderson’s original argument [1]. Interestingly, this
result implies that this fully gapped odd-parity state is
protected against certain disorder potentials that are odd
under time-reversal T .

We also study the multicomponent states, which are
the O(3)-symmetry group analogs the nematic pairing
states in doped Bi2Se3. These states evolve into each
other when the symmetry group is reduced from the fully
isotropic O(3) to trigonal D3d group of Bi2Se3. We find
that these multicomponent pairing states can be more
robust than the corresponding states in systems with-
out spin-orbit coupling. However, they are still more
susceptible to disorder than what was previously sug-
gested [46, 50]. In addition, we consider the effect of
magnetic impurities and find that the multicomponent
states are also relatively robust (not completely though).
In particular, we find that these states are less suscep-
tible to magnetic disorder than the s-wave state. Thus,
nematic superconducting state can possibly be stabilized
by magnetic impurities. It should be added that when
time-reversal is broken the chiral state might be preferred
over the nematic one [59–62].

We emphasize that in this paper we consider the spe-
cific case of a massless Dirac systems at finite doping,
though it can be easily generalized to the finite mass
case and other topological dispersion relations, includ-
ing semimetals with the quadratic band touching points,
line-node semimetals and three band touching points.

The rest of this paper is organized as follows. In Sec. II
we present the basic ingredients of our model, namely, an
action for a massless Dirac fermion subjected to a generic
disorder potential and an attractive pairing interaction.
We project the disorder onto the Bloch basis of the con-
duction electrons near Fermi surface, which we will use
throughout this paper. In Sec. III we calculate the pair
breaking rate Γ in topological materials, which is the
main parameter that affects Tc and the whole thermody-
namics. Our results are presented in Sec. IV, where we
discuss the effect of different types of disorder on the vari-
ous pairing channels. Finally, Sec. V provides a summary
of our main results and a discussion of the application of
our method for other systems. Multiple technical details
of our calculation are delegated to Appendices.

II. THE MODEL

We start by describing the normal-state action of the
model. We consider massless Dirac fermions

S0 =
∑
ω,k

ψ†ω,k [−iω + ivk · γ0γ − εF ]ψω,k, (1)

where ψ†ω,k =
(
ψ†ω,k,+ ψ†ω,k,−

)
, ψω,k,± correspond to

two orbitals, each consisting of a Kramers pair. The or-
bitals are related to each other through inversion. v is
an isotropic velocity and εF is the Fermi energy. In addi-
tion, the γ matrices are taken to be Hermitian, γ = τ2s,
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γ0 = τ1s0 and γ5 = γ0γ1γ2γ3 = −τ3s0, where τ and s
are Pauli matrices in the orbital and spin basis, corre-
spondingly. Note that we neglect the mass term and any
higher order corrections in momentum.

The action in Eq. (1) can be conveniently di-
agonalized in the manifestly covariant Bloch basis
(MCBB), in which the electron spinor transforms
as an ordinary SU(2) spin-1/2 [40, 49, 63, 64]:

|k̂, 1, ζ〉 = 1
2

(
ζ − k̂z, −k̂+, ζ + k̂z, k̂+

)T
and |k̂, 2, ζ〉 =

1
2

(
−k̂−, ζ + k̂z, k̂−, ζ − k̂z

)T
, where ζ = ±1 corre-

sponds to conduction/valence band, respectively, k̂j =

kj/k, and k̂± = k̂x ± ik̂y. Without loss of general-
ity we assume electron doping (ζ = 1), and therefore
omit index ζ henceforth. The field operators are then
approximated by their weight on the band operators

ψk ≈ |k̂, 1〉ck,1 + |k̂, 2〉ck,2.
Finally, the action in Eq. (1) possesses inversion, chi-

ral, and time-reversal symmetries. The representation of
these symmetry operations in orbital basis is given by
I = γ0, C = γ5, and T = Kγ1γ3, respectively, where K is
complex conjugation.

Next, we consider the disorder potential. The crucial
element in our theory is the inclusion of interorbital scat-
tering. Within the Dirac notations, such (momentum-
independent) scatterings can be represented using the
Dirac matrices introduced above and their products. For
elastic short-ranged scattering (compared to kF ) we have

Sd =

15∑
m=0

Nm∑
l=1

∑
ω,k,p

Vl,m e
i(k−p)·rlψ†ω,pMmψω,k, (2)

where Nm is the number of impurities in channel m
and rl is the positions of these short-ranged impurities.
There are 16 different Hermitian matrices Mm represent-
ing different types of disorder. The representation of
these matrices in the orbital-spin τ ⊗ s basis and their
discrete symmetry properties are given in Table I. We
further clarify that m = 0 corresponds to simple density
disorder 1, which was considered in Refs. [46, 48, 50, 51].
m = 1 corresponds to mass disorder γ0, m = 2 is
odd-parity scalar disorder γ5, m = 3, 4, 5 correspond to
odd-parity dipolar disorder and the magnetic disorder
m = 6, 7, 8 correspond to a fully symmetric local mo-
ment with spin oriented along the axis Sα = −iεαβγγβγγ .
Some examples of non-trivial scattering matrices of this
type, which naturally appear in disordered Bi2Se3, are
shown schematically in Fig. 1. When projecting the dis-
order potential onto the MCBB, we obtain a set scatter-

ing matrices Qm(p̂, k̂) with non-trivial momentum de-
pendence:

Sd =

15∑
m=0

Nm∑
l=1

∑
ω,k,p

Vl,m e
i(k−k′)·rlc†ω,pQm(p̂, k̂)cω,k, (3)

where c†ω,p = (c†ω,p,1, c
†
ω,p,2), and we defined the matrices

Qαβm (p̂, k̂) ≡ 〈p̂α|Mm|k̂β〉, which are listed in Table I.

Before proceeding, we make a few important remarks
regarding the choice of disorder potential in Eq. (2).
First, we assume that the disorder is Gaussian correlated
with zero mean, 〈Vl,m〉 = 0. Next, we assume that there
is no spatial correlations, and that different types of dis-
order do not correlate. The latter assumption implies
that disorder potential does not break any symmetry on
average, leading to 〈Vl,mVl′,m′〉 = V 2

mδmm′δll′ . There
is one exception, however, which requires clarification.
In the absence of chiral symmetry, the density disorder
(m = 0) and the mass disorder (m = 1) can, in principle,
mix, since they belong to the same trivial representation.
We note that this is the reason why mass disorder is al-
ways present in Bi2Se3, even if it respects time-reversal
and inversion symmetries (as opposed to the claim made
in Ref. [46]). As we show in Sec. III, however, the corre-
lations between m = 0 and m = 1 disorder channels do
not affect the scattering rate or superconductivity.

Second, a central assumption of our theory is that dis-
order naturally appears in the orbital basis. Indeed, the

set of matrices Qm(p̂, k̂) introduced in Eq. (3) and listed
in Table I is the result of starting from the orbital ba-
sis and projecting disorder potential onto the MCBB on
the Fermi surface. The additional momentum-dependent
form-factors in the scattering matrices could have been
easily overlooked if we started directly from the band
basis, constructing a phenomenological picture of disor-
der [65]. To emphasize this fact, we point out that even
the density channel obtains non-trivial momentum de-
pendence, which, as we show below, plays a crucial role
in protecting some unconventional pairing states from
density disorder.

The last ingredient required to estimate the supercon-
ducting transition temperature is the attractive interac-
tion which leads to the instability. We study the super-
conducting instability in the band basis, in the spirit of
the Bardeen-Cooper-Schrieffer (BCS) theory. We then
decompose the interaction into the irreducible represen-
tations in the Cooper channel:

SI = −1

2

∑
k,p,J

gJ

[
c†pF

†
J(p̂)c†−p

] [
c−kFJ(k̂)ck

]
, (4)

where FJ(k̂) are form-factors in the MCBB correspond-
ing to different representations J of the relevant symme-
try group (see Appendix B). A superconducting instabil-
ity can occur in any one of the channels depending on the
attractive strength of coefficients gJ . We are mainly in-
terested in systems with large spin-orbit coupling, char-
acteristic for topological materials, which do not have
spin-rotational symmetry. Instead, in this paper we focus
on the fully isotropic O(3) group of joint rotations of spin
and momentum. Different representations are labeled by
the total angular momentum J , and the corresponding
form-factors are listed in Table III. (Note that within
our notations J labels both different representations and
different components within the same representation.)
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m I T C Orbital Matrix - Mm Band Matrix - 〈p̂ζ|Mm|k̂ζ〉
0 + + + 1 = τ0s0 Q0(p̂, k̂) = 1

2

(
1 + p̂ · k̂ + i[p̂× k̂] · σ

)
1 + + - γ0 = τ1s0 Q1(p̂, k̂) = 1

2

(
1− p̂ · k̂ − i[p̂× k̂] · σ

)
2 - + + γ5 = −τ3s0 Q2(p̂, k̂) = ζ

2

(
p̂+ k̂

)
· σ

3 - + - γ1 = τ2s1 Q3(p̂, k̂) = ζ
2

{
i
(
p̂− k̂

)
x

+ [(p̂+ k̂)× σ]x
}

4 - + - γ2 = τ2s2 Q4(p̂, k̂) = ζ
2

{
i
(
p̂− k̂

)
y

+ [(p̂+ k̂)× σ]y

}
5 - + - γ3 = τ2s3 Q5(p̂, k̂) = ζ

2

{
i
(
p̂− k̂

)
z

+ [(p̂+ k̂)× σ]z
}

6 + - + iγ3γ2= τ0s1 Q6(p̂, k̂) = 1
2

{
−i[p̂× k̂]x + [1− p̂ · k̂]σx + [p̂xk̂ + p̂k̂x] · σ

}
7 + - + iγ1γ3= τ0s2 Q7(p̂, k̂) = 1

2

{
−i[p̂× k̂]y + [1− p̂ · k̂]σy + [p̂yk̂ + p̂k̂y] · σ

}
8 + - + iγ2γ1= τ0s3 Q6(p̂, k̂) = 1

2

{
−i[p̂× k̂]z + [1− p̂ · k̂]σz + [p̂zk̂ + p̂k̂z] · σ

}
9 - - + iγ0γ1 = −τ3s1 Q9(p̂, k̂) = ζ

2

{
(p̂+ k̂)x − i[(p̂− k̂)× σ]x

}
10 - - + iγ0γ2 = −τ3s2 Q10(p̂, k̂) = ζ

2

{
(p̂+ k̂)y − i[(p̂− k̂)× σ]y

}
11 - - + iγ0γ3 = −τ3s3 Q11(p̂, k̂) = ζ

2

{
(p̂+ k̂)z − i[(p̂− k̂)× σ]z

}
12 - - - iγ0γ5 = −τ2s0 Q12(p̂, k̂) = −i ζ

2

(
p̂− k̂

)
· σ

13 + - - iγ1γ5 = τ1s1 Q13(p̂, k̂) = 1
2

{
i(p̂× k̂)x − (p̂xk̂ + k̂xp̂) · σ + (1 + p̂ · k̂)σx

}
14 + - - iγ2γ5 = τ1s2 Q14(p̂, k̂) = 1

2

{
i(p̂× k̂)y − (p̂yk̂ + k̂yp̂) · σ + (1 + p̂ · k̂)σy

}
15 + - - iγ3γ5 = τ1s3 Q15(p̂, k̂) = 1

2

{
i(p̂× k̂)z − (p̂zk̂ + k̂zp̂) · σ + (1 + p̂ · k̂)σz

}
TABLE I. Table of the impurity scattering matrices in the orbital and band bases appearing in Eqs. (2) and (3). The table
also lists the discrete symmetry properties of each scattering process under I = γ0 = τ1s0, T = Kγ1γ3 = Kτ0(−isy), and
C = γ5 = −τ3s0, corresponding to inversion, time-reversal and chiral symmetries, respectively.

III. COMPUTATION OF THE SCATTERING
RATE

We now turn to the computation of the pair scattering
rate Γ, which enters the Abrikosov-Gor’kov theory and
dictates the thermodynamics of superconductors. The
procedure we employ consists of three main steps, which
are described diagrammatically in Fig. 2.

Single-particle lifetime – We start with computing the
single-particle lifetime. The bare electronic Green’s func-
tion in the band basis is given by (ζ = 1)

G0(iω,k) =
1

iω − vk + εF
. (5)

Summation of the diagrams in Fig. 2 (a) leads to a self-
energy correction to the Green’s function, G−1(iω,k) =
G−10 (iω,k)−Σ(iω). Using Eqs. (3) and (5), we find that
the self-energy is given by Σ(iω) =

∑
m Σm(iω), with

Σm(iω) =
nmV

2
m

8π3

∫
d3pQm(k̂, p̂)G0(iω,p)Qm(p̂, k̂)

=
nmV

2
mk

2
F

4π2

∫ ∞
−∞

dp

iω − vp
= − i sign (ω)

2τm
, (6)

where

τm ≡
1

πν0nmV 2
m

. (7)

(𝑎)

(𝑏)

(𝑐)

= + + …+

= …++ +

= …++ +

FIG. 2. A diagrammatic representation of the summation of
the Gor’kov ladder. (a) The summation over the scattering
processes from all types of impurities within the first Born
approximation, which leads to the self-energy correction to
the full Green’s function, Eq. (6). (b) The Cooperon vertex
correction BJ(iω), Eq. (12), which results from the summa-
tion over the bare pairing propagators A(iω), Eq. (9). (c)
The summation of the Gor’kov ladder. The building block of
the ladder, PJ , is given by the sum of BJ(iω) over Matsubara
frequencies, see Eq. (14).

Here nm = Nm/L
3 is the density of impurities in chan-

nel m, which arises after averaging over the positions
of the impurities, and ν0 = k2F /2π

2v is the density of
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states at the Fermi level per pseudospin. We note a fac-
tor of 2 difference in the definition of the scattering time
compared to a parabolic band (see Appendix A), which
is a feature of topological touching points of two bands.
Thus, we have obtained that the single-particle scattering
rate decomposes into a sum over the different scattering
channels:

1

τ
≡
∑
m

1

τm
. (8)

We remind that disorder is uncorrelated among dif-
ferent channels, which results from the assumption that
disorder does not break any symmetry on average. Mass
and density disorder are an exception, since they both
belong to the trivial representation. However, we note
that even if cross correlations between mass and density
impurities are present, they vanish after angle integra-
tion over p̂ in Eq. (6), making Eq. (8) a generic result
within the leading Born approximation.

Vertex correction – In addition to the single-particle
processes, it is also important to take into account the ef-
fect of pair scattering. Namely, now we calculate the cor-
rection to the BCS vertex due to intermediate scattering
on disorder. In the limit of weak disorder, εF τ � 1, the
most important correction to the Gor’kov ladder comes
from the diagrams with non-intersecting impurity lines
(so-called Cooperon), as shown in Fig. 2 (b) [3].

To compute the disorder contribution to the vertex
we need two ingredients. First, we calculate the bare
propagator of a Cooper pair:

A(iω) =
∑
p

Tr
[
G(iω,p)F †J(p̂)GT(−iω,−p)FJ(p̂)

]
=

k2F
2π2

∫ ∞
−∞

dp

(ω + sign (ω)/2τ)
2

+ v2p2
=

2πτν0
1 + 2τ |ω|

.

(9)

This propagator links between the scattering events on
the Gor’kov ladder and corresponds diagrammatically to
the first term on the r.h.s. of Fig. 2 (b) [i.e., it forms the
legs of the ladder]. When decomposing a generic pair-
ing interaction into the irreducible representations [as in
Eq. (4)], the Gor’kov ladder decomposes into scattering

channels of the orthogonal basis functions FJ(k̂), which
are labeled by J . Thus, when writing Eq. (9), we as-
sume that the Cooper pair propagator is contracted on
both sides with the interaction lines in the corresponding
channel J .

The next important ingredient for calculating the
Gor’kov ladder is the scattering amplitude from a sin-
gle impurity in particle-particle basis, which the building
element of a Cooperon and shown diagrammatically as
the second term on the r.h.s. of Fig. 2 (b). Thus, we
need the scattering amplitude of a Cooper pair with any
momenta k and −k into a pair with any other momenta
p and −p due to an impurity of type m. This amplitude

FIG. 3. A diagrammatic representation of the decomposition
from particle-hole to particle-particle channels, see Eq. (10).
Matrices M, Q, F, and b are defined in Eqs. (2), (3), (4),
and (11) [see also Tables I, III, and Eq. (B1)].

is given by the product of two single-particle events:

nmV
2
mQ

αβ
m (p̂, k̂)Qγδm (−p̂,−k̂)c†pαckβc

†
−pγc−kδ = (10)

=
1

πν0

∑
J

bJm
τm

c†pF
†
J(p̂)c†−p c−kFJ(k̂)ck,

where

bJm =

∫
dΩkdΩp

(4π)2
Tr
[
Qm(p̂, k̂)F †J(k̂)QT

m(−p̂,−k̂)FJ(p̂)
]

(11)

is a matrix of weights corresponding to the conversion
from the particle-hole to particle-particle basis (similar
to the Fierz identity [42]) and dΩk = d(cos θk)dφk is
the solid angle element. The matrix in Eq. (11) is given
explicitly in Appendix B, here we only note that |bJm| ≤
1/2. The procedure of decomposition from particle-hole
to particle-particle basis is shown schematically in Fig. 3.

Contracting the two ingredients, Eq. (9) and Eq. (10),
and using the orthogonality of the superconducting form-

factors FJ(k̂), we obtain for the disorder corrected block
of the Gor’kov ladder, shown schematically in Fig. 2 (b):

BJ(iω) =
A(iω)

1−A(iω)
∑
m bJm/πν0τm

=
πν0

ΓJ/2 + |ω|
,

(12)
where

ΓJ =
∑
m

ΓJm ; ΓJm ≡
1− 2bJm

τm
(13)

is the pair scattering rate, which is a sum of independent
scattering rates ΓJm originating from the different intra-
and interorbital disorder channels m. The values for the
partial pair scattering rates from Eq. (13) are the main
result of this paper and are listed in Table II.

Computation of Tc – The final step of the calculation is
to use the disorder-modified interaction in the supercon-
ducting channel J to compute the renormalized pairing
vertex. To do that, we insert a Cooperon in each block
of the Gor’kov ladder [this step give us factor BJ(iω)],
perform the summation over intermediate Matsubara fre-
quencies ωn = πT (2n+ 1), and sum up all the blocks [as
shown in Fig. 2 (c)]. The result reads as
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1 γ0 γ5 γ1 γ2 γ3 iγ3γ2 iγ1γ3 iγ2γ1 iγ0γ1 iγ0γ2 iγ0γ3 iγ0γ5 iγ1γ5 iγ2γ5 iγ3γ5
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T + + + + + + - - - - - - - - - -
I + + - - - - + + + - - - - + + +
C + - + - - - + + + + + + - - - -

L S J
0 0 0g F0g 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2
1 1 0u F0u 0 2 0 2 2 2 2 2 2 2 2 2 0 0 0 0
1 1 11 F11 1/3 5/3 5/3 1/3 5/3 5/3 5/3 1/3 1/3 1/3 5/3 5/3 5/3 1/3 5/3 5/3
1 1 12 F12 1/3 5/3 5/3 5/3 1/3 5/3 1/3 5/3 1/3 5/3 1/3 5/3 5/3 5/3 1/3 5/3
1 1 13 F13 1/3 5/3 5/3 5/3 5/3 1/3 1/3 1/3 5/3 5/3 5/3 1/3 5/3 5/3 5/3 1/3
1 1 2 F2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE II. Top: Indicates different types of intra- and interorbital scattering matrices and their properties under the discrete
symmetries. The scattering matrices are labeled by m = 0, . . . , 15 and appear as gamma matrices and their products. T =
Kγ1γ3, I = γ0, and C = γ5 correspond to time-reversal, inversion, and chiral symmetries, respectively. Bottom: The values
of the dimensionless pair scattering rate τmΓJm = 1 − 2bJm [where the matrix bJm is defined in Eq. (11)], which dictates
how disorder affects superconductivity. It is clear that the F0g state is protected from disorder that respects T symmetry
(Anderson’s theorem), while the F0u state is protected from disorder that respects CT symmetry. In the last line, F2 implies
all the pairing states with J = 2, i.e., F21 − F25. The result for all of these states is the same.

g̃J = gJ/(1 + gJPJ), (14)

where PJ = −T
∑
ωn
BJ(iωn), and T is temperature.

The transition temperature Tc,J in the channel J is de-
termined as a singularity (vanishing denominator) in
Eq. (14), leading to the result that has the Abrikosov-
Gor’kov form

log

(
Tc,J
Tc,J,0

)
= Ψ(1/2)−Ψ (1/2 + ΓJ/4πTc,J) , (15)

where Ψ(x) is the digamma function, and Tc,J,0 is the
transition temperature in the absence of any disorder.
For the detailed calculation of the transition temper-
ature, see Appendix C. An alternative derivation of
this result via the method of Gor’kov Green’s functions
(which also gives a solution below Tc) is presented in Ap-
pendix D.

The solution of Eq. (15) predicts that superconductiv-
ity is completely suppressed at

ΓJcr. = πe−γeTc,J,0 ≈ 1.76Tc,J,0, (16)

(γe ≈ 0.577... is the Euler’s constant), as shown in Fig. 4.

IV. RESULTS

In Section III, we described how the pair scattering
rates in Eq. (13) affect the transition temperature. As
we show in Appendix D, the effect of these rates is ac-
tually much more general as they dictate the entire low-
temperature thermodynamics of these superconductors
(up to phase fluctuation effects) [2, 3]. For example, we
recall that the gap may close in the superconducting state
when disorder is sufficiently strong.

0 1 2 3 4
/T

c,0

0

0.2

0.4

0.6

0.8

1

T
c
/T

c,
0

FIG. 4. Tc/Tc,0 as a function of Γ/Tc,0 obtained from the
solution of Eq. (15).

Having established the importance of the pair scatter-
ing rates in Eq. (13) for superconductivity in doped Dirac
systems, we now turn to discuss their value for different
pairing states and different interorbital disorder poten-
tials. The results are summarized in Table II, which in-
cludes both non-magnetic (m = 0, . . . , 5) and magnetic
(m = 6, . . . , 15) impurities.

As mentioned above, the elements of the matrix bJm in
Eq. (11) range between 1/2 and −1/2 (see Appendix B).
Consequently, the rates ΓJm appearing in Table II, which
shows the values of 1− 2bJm, range between 0 and twice
the single particle scattering rate 1/τm. The former im-
plies that disorder in channel m does not affect super-
conductivity in channel J , while the latter corresponds
to the most severe effect possible.

Indeed, for the s-wave channel (J = 0g), we find that
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the pair scattering rate vanishes, Γ0g = 0, for all the T -
even disorder matrices m = 0, . . . , 5, which is manifestly
the Anderson’s theorem for non-magnetic impurities.

Additionally, we recover the well known Abrikosov-
Gor’kov result for magnetic impurities, that the pair scat-
tering rate is twice that of single particles [2], such that
overall the pair-breaking rate is given by

Γ0g =

15∑
m=6

2

τm
. (17)

Another limit of interest is the odd-parity state with
total angular momentum zero (J = 0u), which is equiv-
alent to the B-phase of superfluid 3He [66]. We notice
that, similar to the s-wave state F0g, this pairing state is
completely protected from certain types disorder, namely
m = 0, 2 and 12, . . . , 15. Inspecting Table II we identify
that the common symmetry of these disorder potentials
is that they are all even under the product of chiral and
time reversal CT . What makes this result even more

interesting is that some of the CT -even matrices are T -
odd. Thus, the F0u is protected from certain types of
magnetic impurities. We identify this protection with
similar results for superconductors with multiple Fermi
surfaces [52].

To understand this protection we now show that the
F0u is essentially a singlet pairing state between partners
related to each other by CT . Thus, in complete equiva-
lence to the Anderson’s original argument [1], it follows
that as long as the disorder potential does not violate CT
symmetry, we can always pair CT partners in the basis
that diagonalizes the disorder potential.

Let us show that the F0u pairing state is indeed a sin-
glet state built out of CT partners. This is most eas-
ily seen in the orbital basis. We find it convenient to
rotate the orbital basis by π/2 about the τ2 axis first.
This transforms from the basis of chirality to the basis
of parity (i. e., the orbitals are labeled by their parity
τ = ±). Note that this does not affect the operation of
time-reversal T . Then the action of chiral symmetry is
implemented by C = γ̃5 = τ1s0 and the corresponding
pairing state F0u is

∆0u =
1

2
ψkT γ̃5ψk =

1

2
[ψ↓+(k)ψ↑−(−k)− ψ↑+(k)ψ↓−(−k)− ψ↑−(k)ψ↓+(−k) + ψ↓−(k)ψ↑+(−k)] (18)

where ψsτ (k) is a field operator in the rotated basis. Af-
ter inspecting this pairing state, it is evident that it is
fully antisymmetric and that each term consists of a pair
of operators related to each other by CT symmetry.

However, the F0u state becomes vulnerable to disor-
der when CT symmetry is not present, such as in doped
Bi2Se3. In that case mass belongs to the same represen-
tation as density and is always present. Moreover, we
argue that Dirac materials are often polar ionic crystals
(e.g. Bi2Se3, SnTe, PdTe etc.), therefore, it is likely that
the disorder potential also induces dipolar moments of
type m = 3, 4, 5. This argument should be contrasted
with the claim made in Ref. [67], where it was stated
that only density disorder should be present. Overall, we
find that the pair-breaking rate in the F0u channel equals

Γ0u =
2

τ1
+

11∑
m=3

2

τm
. (19)

It should also be noted that the authors of Ref. [48]
were the first ones to identify that the F0u state can be
protected from disorder in the massless limit. However,
they concluded that it is protected by C symmetry. As we
show here, it is actually protected by CT symmetry. To
emphasize this distinction between the two, we point out
that the F0u state is immune to some disorder potentials
that are odd under C, such as m = 12, . . . , 15.

Next, we consider the odd-parity pairing states with
total angular momentum J = 1. These states (more

accurately, the nematic Eu states of the D3d symmetry
group of Bi2Se3, which derive from the J = 1 represen-
tation by breaking the rotational symmetry from spher-
ical to trigonal) are of special interest experimentally,
since they are considered to be the pairing state in doped
Bi2Se3 [28–35, 39, 49]. We find that all disorder channels
affect superconductivity with this pairing symmetry, and
the dimensionless rate τmΓm takes two possible values
5/3 and 1/3. Thus, depending on the relative weight in
these channels, the scattering rate can vary significantly.
In particular, for density disorder, the rate Γ1j,0 = 1/3τ0
is much smaller than in systems without spin-orbit cou-
pling, where it is expected to be 1/τ0 [5, 11]. This is
consistent with the findings of Refs. [46, 50, 51]. How-
ever, the m > 0 channels are actually more harmful. For
example, if polar disorder is present, then an average over
all possible directions gives Γ1j,3−5 = 11/9τ3, where we
assume τ3 = τ4 = τ5 by symmetry.

V. DISCUSSION

In this paper, we construct a rigorous method to eval-
uate the effect of both intra- and interorbital disorder on
superconductivity in doped Dirac materials. We argue
that generic disorder potential always induces interor-
bital scattering processes given by Eq. (2) and listed in
Table I. We compute the contribution of each type of
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intra- and interorbital scattering channels to the pair-
breaking rate for a given pairing potential, which dictates
the entire thermodynamics of a superconductor. This
result is summarized in Table II. Our main conclusions
from this analysis are as follows:

• We have found a version of the Anderson’s theorem
which is based on the pairing of CT -partners rather
than T -partners (C is chiral and T is time-reversal
symmetry). The odd-parity state with total angu-
lar momentum zero (J = 0u) is such a pairing state.
Consequently, it is protected from disorder that re-
spects CT symmetry, which includes certain types
of T -odd impurities. This also generalizes the re-
sults of Ref. [48]. It is interesting to understand in
the future if such a symmetry can exist (or nearly
exist) in a solid state material.

• As expected from the Anderson’s theorem, the s-
wave (J = 0g) pairing state is protected from
all non-magnetic scattering processes, including in-
terorbital ones.

• The J = 1 states, which can be considered as the
O(3) analog of the multicomponent nematic candi-
date state for doped Bi2Se3 [28–35, 39, 49], can be
weakly affected by disorder, depending on the spe-
cific details of the impurity potential. By “weakly”
we mean significantly weaker than Larkin’s result
for p-wave superconductivity in systems without
spin-orbit coupling [5].

We emphasize that the results obtained in this pa-
per are based on a model where the mass term in the
single-particle Hamiltonian, Eq. (1), was assumed to be
zero. It should be noted, however, that in the majority of
doped topological materials which become superconduct-
ing, such a mass term exists. We neglected it because of
two reasons. The first one is that, in most cases, the
Fermi energy is much larger than the mass (band gap).
The second one is that the omission of the mass term al-
lows us to obtain universal values for the scattering rates,
as appears in Table II. As shown in Ref. [48], the inclu-
sion of this term would modify these numbers towards
their known values without spin-orbit coupling [2, 5]. In
particular, it will remove the protection of the F0u state.

The analysis performed in this work assumes a short-
ranged disorder potential. However, in doped materials,
one may also anticipate a correlated potential emerging
from charged impurities [68]. Therefore, it is important
to also understand the influence of a soft potential on
superconductivity.

Another question which was not addressed in this pa-
per is the microscopic origin of pairing and how it is
affected by disorder [69]. In particular, doped topologi-
cal materials are characterized by small electronic density
and small density of states. As a result, the pairing inter-
action must be more singular [64]. Such an interaction is
expected to be sensitive to the presence of disorder [70].

Finally, our results hold only for the case of a finite
Fermi energy and weak disorder, implying εF � ∆ and
εF τ � 1. It would be interesting to consider the limit
of low density, where both conduction and valence bands
are important. However, the methods used in this work
are not powerful enough to deal with that limit [71].

Looking forward, we argue that our theory is useful
to many other systems with strong orbital hybridization.
In particular, Eq. (11) is easily generalizable to differ-
ent Hamiltonians and reduced dimensions. Of special
interest are semimetallic systems, including a quadratic
band touching point relevant to the half-Heusler com-
pounds [72], line-node semimetals, Weyl semimetals that
emerge when inversion is broken in a Dirac material [64],
and higher-order band touching points [73].

Before concluding this paper we note that arguments
for robustness of unconventional superconductivity were
recently casted in terms of the so-called “superconduct-
ing fitness” function [74]. As shown in Ref. [75], one
can assess if disorder affects superconductivity by look-
ing at the minimal excitation of a system and compar-
ing it with the clean limit. When TRS is present, this
is translated into the condition that the full Hamilto-
nian including disorder commutes with the gap function,
[Ĥ + V̂ , ∆̂] = 0 [47]. Our results are consistent with
this picture. However, when the commutation relation is
non-zero, as in some of the cases considered in this pa-
per, it is not always straightforward to see the effect of
disorder on the various pairing states based on the su-
perconducting fitness. In particular, it is not clear to us
how, using the fitness approach, to predict the protec-
tion of the F0u state by CT symmetry or to obtain the
significantly reduced pair-breaking rate in the F1j states
for certain types of disorder.
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Appendix A: Comparison with a parabolic
dispersion: computation of Γ

Here we show the derivation of the Anderson’s theorem
for the case of a metal with parabolic dispersion without
spin-orbit coupling. We use the method described in the
main text. We start with the normal-state action for a
clean metal:

S0 =
∑
ω,k

ψ†ω,k
[
−iω + k2/2m− εF

]
ψω,k, (A1)
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where the notations are the same as in the main text. We
only consider density disorder in this Appendix, which
corresponds to the m = 0 term in Eq. (2). As for the
pairing potential, we focus on the s-wave channel, which
is given by FJ = F0g in Eq. (4).
Single-particle lifetime – The self-energy within the

first Born approximation (after linearizing near the Fermi
energy) is given by

Σ(iω) =
niV

2k2F
2π2

∫ ∞
−∞

dk

iω − vF k
= −i sign(ω)

2τ
. (A2)

Here V 2 is the variance of the disorder potential Vl which
has zero mean, τ−1 = (2πV 2niν0) is the scattering time,
ν0 = k2F /2π

2vF = mkF /2π
2 is the density of states

(DOS) at the Fermi level per one spin, and ni = Ni/L
3

is the total density of impurities. The resulting Green’s
function is then given by

Gs,s′(iω,k) =
δs,s′

i[ω + sign(ω)/2τ ]− εk
, (A3)

where s, s′ are the spin indices.
Vertex correction – Using the definition of the bare

propagator of a Cooper pair, Eq. (9), we obtain

A(iω) =
2πτν0

1 + 2τ |ω|
. (A4)

L S J I Basis function

0 0 0 + F0g =

√
1

2
(−iσy)

1 1 0 - F0u =

√
1

2
(−iσy[k̂ · σ])

F11 =

√
3

4
(−iσy[−k̂zσy + k̂yσz])

1 1 1 - F12 =

√
3

4
(−iσy[k̂zσ

x − k̂xσz])

F13 =

√
3

4
(−iσy[−k̂yσx + k̂xσy])

F21 =

√
3

4
(−iσy[k̂xσ

y + k̂yσx])

F22 =

√
3

4
(−iσy[k̂yσ

z + k̂zσy])

1 1 2 - F23 =

√
3

4
(−iσy[k̂xσ

z + k̂zσx])

F24 =

√
3

4
(−iσy[k̂xσ

x − k̂yσy])

F25 =

√
1

4
(−iσy[−k̂xσx − k̂yσy + 2k̂zσ

z])

TABLE III. Different representations of the time-reversal-
invariant order parameters FJ . Note that for every total an-
gular momentum J there are 2J + 1 states |J, Jz〉, where Jz
gets integer values between −J and J . Thus, the two dif-
ferent states with J = 0 both have Jz = 0 and are distin-
guished by their transformation properties under inversion,
either even (g) or odd (u).

The ladder summation of Eq. (A4) with the non-
crossing impurity lines (Cooperon) gives

BJ(iω) =
A(iω)

1− V 2niA(iω)
=
πν0
|ω|

. (A5)

Computation of Tc – Finally, we perform the summa-
tion over Matsubara frequencies ωn = πT (2n + 1) and
find

P = −T
∑
ωn

BJ(iωn) = −ν0 logωD/Tc, (A6)

where ωD is the cut-off Debye frequency. Consequently,
the effective interaction constant is given by

g̃ =
g

1 + gP
, (A7)

and the instability occurs at gP + 1 = 0. The critical
temperature then equals

Tc = ωDe−1/gν0 , (A8)

which is the well-known BCS result. We see that den-
sity disorder does not modify the transition temperature
for the s-wave pairing, which is exactly the statement
of the Anderson’s theorem [1]. As we also show below
in Appendix D, non-magnetic disorder does not change
the whole thermodynamics of the s-wave superconduc-
tors [3].

Appendix B: Table of the basis functions FJ(k̂) and
the conversion matrix bJm

In Eq. (4) of the main text, we assumed that the at-
tractive interaction is already projected onto the Fermi
surface and decomposed into different pairing channels,
which correspond to the representations of the point
group symmetry. For simplicity, in this paper we focus on
the O(3) symmetry group of joint rotations of momentum
and spin. Different superconducting channels are char-
acterized then by total angular momentum J , while spin
S and orbital L angular momenta are not good quan-
tum numbers because of strong spin-orbit coupling. The

basis functions FJ(k̂) corresponding to different chan-
nels up to order J = 2 (and L = 1) were obtained in
Refs. [40, 49, 63] and are listed in Table III.

Finally, the matrix elements bJm from Eq. (11), where
m = 0 − 15 numerates different types of disorder, equal
to
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bJm =


1/2 1/2 1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1/2 1/2 1/2 1/2
1/3 −1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3 1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3 −1/3
1/3 −1/3 −1/3 −1/3 1/3 −1/3 1/3 −1/3 1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3
1/3 −1/3 −1/3 −1/3 −1/3 1/3 1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 .

(B1)

The last line of this matrix describes all channels with J = 2 [i.e., F21(k̂)− F25(k̂)].

Appendix C: Calculation of Tc

Using the condition for the superconducting instabil-
ity, Eq. (14) of the main text, we obtain that P ≡
−Tc

∑
ω B(iω) = −1

g
. Note that the derivation in this

Appendix is independent of the pairing channel, so we
omit the subscript J for brevity. We now plug in the
result for B(iω) as obtained in Eq. (12) and find

1

g
= Tc

∑
n

πν0
Γ/2 + |ωn|

. (C1)

Using the definition of Matsubara frequencies ωn =
2πT (n+ 1/2), this equation can be rewritten as

2

gν0
=
∑
n

1

Γ/4πTc + |n+ 1/2|
. (C2)

Following Abrikosov and Gor’kov [2], we make use of the
fact that in the clean limit one has∑

n≥0

1

n+ 1/2
= log

(
4eγe

π

ωD
2Tc

)
, (C3)

where γe is the Euler’s constant. Thus, we can rewrite
Eq. (C2) as

1

gν0
=
∑
n≥0

1

Γ/4πTc + (n+ 1/2)
=
∑
n≥0

[
1

Γ/4πTc + (n+ 1/2)
− 1

n+ 1/2

]
+ log

(
4eγe

π

ωD
2Tc

)

=
∑
n≥0

[
1

(n+ 1/2 + Γ/4πTc)
− 1

(n+ 1)
+

1

(n+ 1)
− 1

(n+ 1/2)

]
+ log

(
4eγe

π

ωD
2Tc

)
.

(C4)

We can identify the two terms inside the square brackets
as digamma function

Ψ(z) = −γe +
∑
n≥0

[
1

(n+ 1)
− 1

(n+ z)

]
, (C5)

and we know from Eq. (C3) that
1

gν0
=

log

(
4eγe

π

ωD
2Tc,0

)
, where Tc,0 is the critical temper-

ature for a clean system. Consequently, we obtain

log

(
4eγe

π

ωD
2Tc,0

)
= Ψ(1/2)−Ψ(1/2 + Γ/4πTc)+

+ log

(
4eγe

π

ωD
2Tc

)
,

(C6)

or

log

(
Tc
Tc,0

)
= Ψ(1/2)−Ψ(1/2 + Γ/4πTc), (C7)

which coincides with Eq. (15) of the main text.

Appendix D: Abrikosov-Gor’kov equations at
arbitrary temperature: gapless superconductivity.

Now we present the complementary approach to de-
rive the effect of disorder on superconductivity, which
exploits the formalism of Gor’kov Green’s functions [76].
The advantage of this method is that it allows to treat
the problem at arbitrary temperature and study thermo-
dynamic and electromagnetic properties of a disordered
superconductor at temperatures down to T = 0.

To start with, we introduce the Nambu space (N) for
the MCBB electron operators according to

Ψk =


ck,1
ck,2
c†−k,1
c†−k,2


N

. (D1)

In this basis, the bare (without disorder) Gor’kov
Green’s function takes form [65, 77]
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Ĝ0(iωn,k) = − iωnτ̂0 + ξkτ̂3 + ∆̂k

ω2
n + ξ2k + ∆2

k

, (D2)

where

∆̂k =
√

2∆

(
0 F †(k̂)

F (k̂) 0

)
N

, (D3)

and

∆2
k ≡ ∆2TrF †(k̂)F (k̂). (D4)

Matrices τ̂0 and τ̂3 here are the corresponding Pauli ma-
trices in the Nambu space (not to be confused with the

Pauli matrices in the orbital basis). The factor
√

2 in
Eq. (D3) is introduced for convenience only, and simply

reflects the normalization condition for functions F (k̂).
The form of the Gor’kov Green’s function (D2) holds for
the states with unitary pairing, i.e., satisfying the re-

lation ∆̂†k∆̂k ∝ 1. The non-unitary states [77], which
do not satisfy this relation and can be realized in multi-
component superconductors, will be considered in future
works.

The matrices Qαβm (p,k) ≡ 〈p̂α|Mm|k̂β〉, describing the
scattering of electrons on the impurities of type m in the
MCBB basis, in the Nambu space become

Qm(p̂, k̂)→ Q̂m(p̂, k̂) =

(
Qm(p̂, k̂) 0

0 −QTm(−k̂,−p̂)

)
N

.

(D5)
The self-energy due to disorder is then given by

Σ̂m(iωn, p̂) = nmV
2
m

∫
d3k

(2π)3
Q̂m(p̂, k̂)Ĝ(iωn,k)Q̂m(k̂, p̂).

(D6)
We notice that the self-consistency requires us to use full
Green’s function Ĝ, instead of the bare one Ĝ0. Following
Ref. [2], we look for a solution of the form

Ĝ(iωn,k) = − iω̃nτ̂0 + ξkτ̂3 + ∆̃n,k

ω̃2
n + ξ2k + ∆̃2

n,k

, (D7)

with

∆̃n,k =
√

2∆̃n

(
0 F †(k̂)

F (k̂) 0

)
N

, (D8)

and

∆̃2
n,k ≡ ∆̃2

nTrF †(k̂)F (k̂). (D9)

Performing integration over ξk first, we obtain the very
general expression which applies to any superconducting
state with unitary pairing:

Σ̂m(iωn, p̂) = −nmV 2
mπν0

∫
dΩk

4π
Q̂m(p̂, k̂)×

× iω̃nτ̂0 + ∆̃n,k√
ω̃2
n + ∆̃2

n,k

Q̂m(k̂, p̂). (D10)

The above expression can be easily used to reproduce
the result for the transition temperature Tc,J , Eq. (15).

Neglecting ∆̃2
n,k in the denominator and performing in-

tegration over Ωk and summation over m, we find for the
channel J

Σ̂(iωn, p̂) ≡
∑
m

Σ̂m(iωn, p̂) =

= − iτ̂0sign(ω̃n)

2τ
+

∆̃n,p(1− τΓJ)

2τ |ω̃n|
, (D11)

where ΓJ is given by Eq. (13). In deriving the last equa-
tion, we also used Eqs. (10) and (11). Utilizing further

Dyson equation Ĝ−1 = Ĝ−10 − Σ̂, we easily obtain

ω̃n = ωn +
sign(ω̃n)

2τ
,

∆̃n = ∆ +
∆̃n(1− τΓJ)

2τ |ω̃n|
, (D12)

which can be readily resolved yielding

ω̃n = ωn +
sign(ωn)

2τ
,

∆̃n = ∆

(
1− 1− τΓJ

2τ |ω̃n|

)−1
. (D13)

Finally, using the gap equation in the channel J

∆̂k,αβ = gJTc
∑
n,p

F †Jαβ(k̂)FJγδ(p̂)
∆̃n,p,δγ

ω̃2
n + ξ2p

, (D14)

we obtain after summation over p

1 = πgJTcν0
∑
n

1

ΓJ/2 + |ω̃n| − 1
2τ

=

= πgJTcν0
∑
n

1

ΓJ/2 + |ωn|
, (D15)

which is identical to Eq. (C1) and leads eventually to
Eq. (15).

We emphasize that Eq. (D10) is very general and can
be used to study thermodynamic properties of any (uni-
tary) superconducting state. As an example, we focus
on the fully isotropic pairing functions F0g and F0u. Per-
forming integration over Ωk in Eq. (D10), we find a set

of coupled equations for ω̃n and ∆̃n:
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ω̃n = ωn +
ω̃n

2τ
√
ω̃2
n + ∆̃2

n

,

∆̃n = ∆ +
∆̃n(1− τΓJ)

2τ
√
ω̃2
n + ∆̃2

n

, (D16)

accompanied with the gap equation

∆ = πgJTν0
∑
n

∆̃n√
ω̃2
n + ∆̃2

n

. (D17)

These equations, in principle, can be solved numerically
to find the value of the pairing gap ∆ at arbitrary temper-
ature and study the thermodynamic properties of a su-
perconductor. For instance, in the case of non-magnetic
(T -even) disorder for the s-wave F0g pairing or CT -even
disorder for the p-wave F0u pairing, we have ΓJ = 0,
and Eq. (D16) admits simple solution ω̃n/∆̃n = ωn/∆.
In these cases, the latter result implies that the gap
equation (D17) is not modified by disorder at all, con-

sequently, the transition temperature and all the ther-
modynamic properties below Tc remain unchanged com-
pared to the clean case.

Abrikosov and Gor’kov have analyzed Eqs. (D16)
and (D17) in detail (with ΓJ 6= 0) for the most inter-
esting limiting cases in Ref. [2]. In particular, they found
that there is a range of the impurity concentration where
superconductivity is not entirely suppressed, while be-
coming gapless. In our language, this corresponds to the
threshold value of the pair-breaking rate Γ′J , above which
the gap in the spectrum of elementary excitations van-
ishes:

Γ′J = 2e−π/4ΓJcr. ≈ 0.91 ΓJcr., (D18)

where the critical value ΓJcr. is given by Eq. (16). As a
result, the low-temperature behavior of the specific heat
changes from exponential to T -linear in the range Γ′J <
ΓJ < ΓJcr..

The analysis of this Appendix can be straightforwardly
generalized to study the effect of different types of dis-
order on the anisotropic nematic pairing states in doped
Bi2Se3 compounds [39, 49] or non-unitary chiral pairing
in Majorana superconductors [49, 78]. We leave these
and related interesting questions to a future publication.
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