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Psychiatric drugs impact mitochondrial function in brain and 
other tissues
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aFunctional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of 
California, Irvine, United States of America

bSchool of Medicine University of California, Irvine, United States of America

cPsychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of 
California, San Diego, United States of America

Abstract

Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of 

mitochondria in SZ might be confounded by the effects of pharmacological treatment with 

antipsychotic drugs (APDs) and other common medications. This review summarizes findings on 

relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs 

including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest 

that APDs impair mitochondria function by decreasing Complex I activity and ATP production 

and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients 

with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in 

mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive 

and negative effects on mitochondria. The available evidence suggests three conclusions i) 

alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria 

alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of 

mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are 

both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both 

their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal 

mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered 

in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, 

pharmacological actions on mitochondria may be a worthwhile target for further APD 

development.
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1. Introduction

Schizophrenia (SZ) is a devastating psychiatric disorder characterized by recurrent psychosis 

leading to significantly impaired social and cognitive functioning. To date, there is no 

optimal treatment for patients with SZ, and the World Health Organization found that only 

about half of treated patients achieve favorable outcomes in terms of symptomology, 

employment, and Global Assessment of Functioning scores (Harrison et al. 2001). The 

pathogenesis of the disorder remains poorly understood, and the management of SZ is 

further complicated by the heterogeneous presentation and course of the illness. 

Antipsychotic drugs (APDs) are the first-line treatment for SZ, and because of psychiatric 

comorbidities including substance abuse, depression, and anxiety, polypharmacy is 

extremely common with psychotropic medications that have potentially harmful side effects 

and interactions. Suboptimal treatment of patients with SZ is often associated with 

medication discontinuation, and undesirable side effects lead to decreased treatment 

compliance. Together, these factors indicate that the current drugs and their targets do not 

lead to long periods of remission.

It has been proposed that in a subset of SZ patients there may be underlying mitochondria 

dysfunction. Whether this dysfunction is due to APD treatment or is part of the underlying 

pathophysiology of SZ has not been resolved. In seeking answers to this question of the role 

of mitochondria in etiology, APD treatment, and metabolic comorbidity of SZ, we review 

relevant literature in these areas.

1.1 Essential Biology of Mitochondria

In this section, the basic functions of mitochondria in cellular pathways are described 

(Figure 1).

The primary role of mitochondria is to provide energetic support to cells through the 

biosynthesis of ATP molecules through the Krebs cycle (2 ATP) and the electron transport 

chain (32 ATP), netting about 34 ATP molecules from each molecule of glucose (Lehninger, 

Nelson, and Cox 2013)’(Mitchell and Moyle 1965). In addition, mitochondria regulate 

apoptosis, calcium uptake, redox balance, and reactive oxygen species (ROS) production.

Mitochondria have a general role in cellular metabolism and signaling pathways, e.g. 

mitochondria are involved in basic metabolism of 17 amino acids (Guda, Guda, and 

Subramaniam 2007). Among the amino acids is glutamate which is interconverted into 

GABA in the mitochondria. The well-known neurotransmitter metabolic enzyme family 

(monoamine oxidases) is anchored to the mitochondria outer membrane and serves as a site 

for the oxidation of various neurotransmitters (serotonin, norepinephrine, epinephrine, and 

dopamine).
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Mitochondria generate ROS as a byproduct of oxidative phosphorylation by transferring one 

electron to molecular oxygen O2 to form a superoxide anion (O2
•−) (Murphy 2009). In this 

context, ROS functions as important signaling and regulatory molecule, and can also lead to 

toxic injury, cell death, and neurodegeneration when ROS levels become dysregulated 

(Angelova and Abramov 2018). ROS elevation occurs mainly in mitochondria via electron 

leakage and transfer of the electron to molecular oxygen transforming oxygen into a highly 

reactive free radical. Antioxidant scavenger proteins such as a mitochondria isoform of 

superoxide dismutase can accept electrons from ROS and shuttle those electrons to hydrogen 

peroxide (Murphy 2009). Chronic elevation of ROS can be caused by incremental damage to 

the mitochondria matrix. Initially, low production of ROS damages the mitochondria 

gradually causes further oxidative damage that ultimately exceeds the mitochondria’s ability 

to transfer electrons from all of the surplus of ROS molecules generated. This overall 

chronic oxidative stress resulting from elevated ROS can be one of the causes of 

mitochondria dysfunction along a spiraling pathway. Reactive nitrogen species (RNS) can be 

formed from nitric oxide (NO) and reaction with superoxide (O2
•−) to form peroxynitrite 

(ONOO•−). In biological tissues, both ROS and RNS can oxidize lipids, proteins, and DNA 

damaging the efficacy of these biomolecules.

The increase in ROS and RNS damage to biomolecules within the mitochondria will cause 

decreased coupling of electron flow in the electron transport chain thereby decreasing the 

production of ATP. With this uncoupling, cellular metabolism will likely shift to less aerobic 

conditions, and glycolysis will become a more preferred pathway for energy production. 

This results in the accumulation of lactate in mitochondria, hence in some classical 

mitochondrial disorders, increased lactic acidosis as well as a decrease in extracellular pH, 

are pathognomonic signs of mitochondria metabolic defect. With the general reduction in 

electron coupling, the mitochondria membrane potential can be reduced, causing a failure of 

the charge gradient used by mitochondria to produce ATP. Thus, from the induction of ROS 

or RNS, this triggers cascades of mitochondrial processes that can ultimately result in the 

release of cytochrome c and triggering cellular apoptosis.

The essential roles of mitochondria in synaptic transmission and plasticity, the involvement 

of mitochondria for LTP induction and maintenance (Kocsis et al. 2014), and mitochondria 

transport in dendrites and axons have been described (Cheng, Hou, and Mattson 2010). 

Mitochondria can synthesize ATP for neurotransmission, buffer calcium in both pre- and 

post-synaptic compartments, synthesize glutamate, and regulate presynaptic vesicle release 

(Smith et al. 2016). For example, when mitochondria are present in presynaptic boutons, this 

effectively buffers calcium levels (Ruggiero et al. 2017) and influences the release of 

synaptic vesicles by correlation with the number and volume of mitochondria located in the 

presynaptic bouton. Neurotransmitter synthesis, glutamine → glutamate occurs in the 

mitochondria, packaging of glutamate into vesicles requires ATP, and the release of vesicles 

is ATP-dependent (Smith et al. 2016). Taken together, to maintain a structural LTP, local 

mitochondria are required (Fu et al. 2017). Without mitochondria tethered near an active 

presynaptic bouton, there will be decreased numbers of vesicles and a smaller area of 

postsynaptic density (Smith et al. 2016).
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Mitochondria play dynamic roles during brain development. There are key differences in the 

migration of interneurons depending on levels of mitochondria dysfunction (Lin-Hendel et 

al. 2016). The migratory distance of interneurons is dependent on levels of oxidative 

phosphorylation, while migration of projection neurons from the ventricular zone are not 

influenced. This would suggest that differences in inhibitory and excitatory neurons will be 

altered by mitochondria dysfunction occurring early in the wiring of brain circuitry. Healthy 

mitochondria respond to signals by increasing copy number, changing shape, size, motility, 

cellular location. The mitochondria copy number in the brain responds to aging and 

environment by nuclear genes involved in mitochondria transport (Lewis et al. 2018)’(Reddy 

2011), mitochondria biogenesis (Nisoli et al. 2004), fission and mitophagy (Pryde et al. 

2016)’(Cummins et al. 2019). A host of key molecules involved in the movement of 

mitochondria in axons, dendrites have been identified and are associated with Parkinson’s 

disease (Bose and Beal 2016) and Alzheimer’s disease (Cummins and Gotz 2018), but have 

not been studied in models of SZ.

1.2 Is there an etiological role for mitochondria in SZ?

As the brain is the most metabolically demanding organ of the body and the most 

functionally intricate and complex, imbalances in mitochondrial function may lead to severe 

downstream effects on neuronal processes and brain circuitry (Kim et al. 2019). The roles of 

mitochondria subserve a wide variety of functions beyond the energy-producing requirement 

of brain cells and have been studied as risk factors in psychiatric disorders including SZ 

(Somerville, Conley, and Roberts 2011; Robicsek et al. 2013; Rosenfeld et al. 2011b; Ben-

Shachar 2002; Goncalves et al. 2018; Hagen et al. 2018; Mamdani et al. 2014; Rollins et al. 

2018b), bipolar disorder (BD) (Kato 2006; Kato and Kato 2000; Kim et al. 2019), 

depression (Kim et al. 2018; Rollins et al. 2009; Karabatsiakis et al. 2014), and autism 

(Anitha et al. 2012; Schwede et al. 2018; Pei and Wallace 2018).

Classical mitochondria diseases often involve Complex I, making Complex I deficiency a 

hallmark of mitochondrial diseases, and there is support for Complex I dysfunction in SZ 

(Bergman and Ben-Shachar 2016; Rollins et al. 2018b). There are other classical signs of 

mitochondria dysfunction, reminiscent of mitochondria disorders, in SZ such as oxidative 

damage, increased brain lactate, altered copy number, and altered mitochondrial DNA 

(mtDNA) gene levels. Metabolic syndrome might also be associated with classical 

mitochondria disorders and SZ. Abnormal glucose metabolism has been reported in patients 

with SZ (Holmes et al. 2006; Fernandez-Egea et al. 2009) while CSF lactate concentrations 

were significantly higher in BD and SZ, 34% and 23% higher compared to control group, 

respectively (Regenold et al. 2009). The difference persisted after adjusting for CSF glucose 

which correlated positively with CSF lactate concentration (Regenold et al. 2009). This 

further evidence of subtle mitochondria imbalance of metabolism suggests that some 

patients may have a mitochondria dysfunction and could be identified and treated.

The expression of mtDNA encoded genes (Rollins et al. 2009; Hjelm et al. 2015) and protein 

alterations in mitochondrial pathways (Martins-de-Souza, Guest, Harris, et al. 2012; 

Martins-de-Souza, Maccarrone, et al. 2010; Martins-De-Souza, Dias-Neto, et al. 2010) have 

been associated with SZ. One highlighted example was the discovery that the expression of 
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11 mtDNA encoded genes is decreased in SZ in the dorsolateral prefrontal cortex (Shao et 

al. 2008).

Genetic association studies of mitochondria DNA variants with schizophrenia have been 

reviewed recently (Schulmann et al. 2019). In some studies of common mtDNA variants, 

those variants are ethnic defining polymorphisms where a spontaneous mutation arose in the 

ancestral population and was maternally transmitted. These mtDNA variants can define 

mitochondria haplogroup branches. Additional mutations could arise on the same ancestral 

line so that further sub haplogroup branches could be defined based on the distinct 

mutations. Further, during recent migrations over the past 5,000 – 20,000 years these 

mtDNA mutations were selected due to climatic adaptation and metabolic advantages in 

certain nuclear ancestry backgrounds. Since mtDNA does not recombine with other strands 

of mtDNA, it is incorrect to think of linkage disequilibrium of nuclear haplotypes as 

applicable to mitochondria genetics. However, heteroplasmy of mtDNA does occur, such 

that multiple variants at the same mtDNA position coexist within the brain and other tissues 

(Rollins et al. 2009).

A summary of recent evidence supports the association of mtDNA polymorphisms and SZ 

(Schulmann et al. 2019). Examples of common variants association in mtDNA and SZ were 

A15218G polymorphism in meta-analysis of four independent studies (total N = 47, 451, 

adjusted p-value of 2.15E-03). There was also a meta-analysis of T16519C showing 

association with schizophrenia (pooled OR = 0.894, 95% CI upper-lower: 0.80–0.98, p = 

0.027). In a third example, T195C was also significantly associated with SZ and BD (pooled 

total N = 8,559). These variants can be ethnic defining polymorphisms, especially A15218G 

for haplogroup G, while T16519C and T195C occur sporadically across multiple 

haplogroups. Nevertheless, the distribution of common mitochondrial haplogroups can be 

geographically stratified within a population sample. Compounding the issue of common 

mitochondrial haplogroups being stratified by country or ethnic group, there are nuclear 

ancestry differences between different mtDNA haplogroups. These layers of potential 

dependence in certain combinations of mtDNA and nuclear SNPs (mitochondria - nuclear 

crosstalk, ethnic stratification of mtDNA defining alleles, nuclear ancestry, population 

admixture) could have co-evolved or been subject to recent immigration and geographic 

isolation. This relationship can be called a mitonuclear dependence, mitonuclear interaction, 

or bi-genome interaction (Hagen et al. 2018; (Sloan, Fields, and Havird 2015; Hill et al. 

2019). Careful research into the putative association of common variants with SZ shows that 

when the variants are not equally distributed in a geographic location, this could confound 

the outcome due to stratification. In a study of Danes with schizophrenia, there was no 

difference in the overall mtDNA haplogroup distribution or nuclear ancestry distribution 

between cases and controls overall. The association of A15218G and SZ was significant in 

an analysis that corrected for nuclear ancestry stratification by using clusters defined by 

ADMIXTURE results. The association was not significant when the analysis was conducted 

by mtDNA haplogroup stratification (Hagen et al. 2018).

This question of how to analyze the mitonuclear relationship in genetic studies remains at 

the forefront of mtDNA genetic research into SZ Mismatches between the mitochondria and 

nuclear genomes could lead to mitochondria dysfunction while mtDNA mutations may be 
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dependent upon the nuclear background as shown in different model approaches (Zaidi and 

Makova 2019; Kenney et al. 2014). An example of a mismatch between mtDNA 

haplogroups is the alteration of electron transport respiration rates seen in cybrids from the 

same nuclear background but different mtDNA haplogroups (Kenney et al. 2014). Another 

example of nuclear mismatch with mtDNA is a study of two mice lines with identical 

nuclear DNA background, one line had a different mtDNA inserted into the oocyte, causing 

life-long changes in metabolism and healthy aging (Latorre-Pellicer et al. 2016). This is 

unequivocal evidence that pairings of nuclear DNA with different mtDNA will have 

profound influence across multiple tissues and physiological processes (mtDNA copy 

number (Zaidi and Makova 2019), telomere length, O2 consumption, ATP production, 

lifespan, weight, ROS production, mitochondria biogenesis, and mitochondria oxidative 

protein response) (Latorre-Pellicer et al. 2016). These examples illustrate the dependence of 

two-way signaling between mitochondria and nuclear genes and that a mismatch between 

these two genomes could lead to an imbalance in mitochondria regulation (Kenney et al. 

2014).

Recently, mitonuclear interactions in SZ were calculated, there was a suggestive association 

between the mtDNA and nuclear DNA variants in a GWAS of SZ (Schulmann et al. 2019). 

This recent study implicated mitonuclear gene pair associations in pathways such as neuron 

projection development, cell morphogenesis involved in neuron differentiation, excitatory 

synapse, and other specific neurodevelopmental pathways (Schulmann et al. 2019). A 

pioneering mitonuclear interaction study of BD also showed suggestive associations to 

mitonuclear gene pairs (Ryu et al. 2018). Both of these epistatic studies require larger 

sample sizes to determine if this joint interaction of mtDNA and nuclear DNA approach will 

yield credible associations.

Another mitochondria dysfunction occurring in mitochondria disorders is large somatic 

mtDNA mutations of mtDNA, which can accumulate in brain tissue (Rollins et al. 2009). 

These large deletions (> 1kb) usually do not involve 100% of the mtDNA copies in the 

brain, however, accumulation of large mutations could play an etiological role as large 

deletions have been associated with increased ROS and mitochondria dysfunction. However, 

the age-related large common deletion of mitochondria (Mamdani et al. 2014) shows a 

significant reduction in SZ compared to age-matched controls across 10 brain regions. This 

common deletion is only one of scores of somatic mtDNA large deletions occurring in brain 

tissue, thus screening for mtDNA deletions in the brain is underway (Hjelm et al. 2019).

Taken together, mtDNA copy number, somatic deletions, and mtDNA SNPs are relevant 

factors to consider in the etiology of SZ. A simplified hypothesis of mitochondria 

dysfunction in SZ is that the propagation of mtDNA errors can lead to an accumulation of 

oxidative stress and generation of small amounts of (ROS/RNS) with downstream 

consequences. The mitochondria lack histones to protect against oxidation, as well as error 

correction, resulting in propagation of mtDNA deletions in vulnerable neurocircuitry 

(Kasahara et al. 2017). This vicious cycle continues until loss of mitochondria function 

becomes apparent in neuronal functions such as firing rate, LTP, mitochondria movement, 

mitophagy, mitochondria biogenesis, and mitochondria fusion/fission events. Recent GWAS 

studies suggest an association of common mtDNA variants with SZ notwithstanding that 
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some variants might be subject to mitonuclear dependence in studies (Schulmann et al. 

2019; Hagen et al. 2018). The neurobiology of mitochondria in brain and psychiatric 

disorders is logical and compelling, and in animal models are an unequivocal causative 

factor in learning and memory deficits (Sharpley et al. 2012) and neurodegeneration.

2 Antipsychotic drugs

2.1 Impairment of mitochondria

First-generation APDs antagonize pre and postsynaptic dopamine D2 receptors with high 

affinity with variable effects on 5-HT2A, alpha-1 adrenergic, histaminergic, and muscarinic 

receptors. Most second-generation APDs antagonize both 5-HT2A and D2 receptors with 

additional activity at D3, D4, alpha-1 adrenergic, histaminergic, and muscarinic receptors. 

There are some unique exceptions of dopamine receptor partial agonism for medications 

such as aripiprazole, which has been referred to as a third-generation APD (Mailman and 

Murthy 2010). The diverse binding affinities of second-generation APDs lead to various side 

effects including metabolic syndrome, anticholinergic toxicity, cardiovascular toxicity, and 

hyperprolactinemia, but overall less occurrences of movement disorders and extrapyramidal 

effects.

An overview of pharmacological mechanisms of action on mitochondria function shows 

three different scenarios influencing mitochondria function that are not mutually exclusive: 

i) Receptor occupancy of drug causes alterations in ionic permeability of Ca++, K+, Zn++, or 

Cl− altering proton-motive force and mitochondria membrane potential. ii) Second 

messenger signaling pathways are altered by GPCR occupancy; those changes profoundly 

alter PKA and PKC levels which can bind to the mitochondria at specific A-kinase 

anchoring proteins. iii) Direct drug binding to mitochondria, presuming the drug is 

translocated across cellular membrane, at proteins such as TSPO, MAO, and Complex I. 

Drugs can compete with native ligands, such as neurotransmitters, in agonist or antagonist 

manner. Studies of isolated mitochondria might yield clues about potential binding to 

mitochondria; however, results of studies of isolated mitochondria, cells, and tissues may 

differ.

Both first- and second-generation APDs have been associated with mitochondrial 

impairment in multiple prior studies; as both classes share activity at dopamine (DA) 

receptors, these have been suggested to be responsible. For example, DA was found to 

inhibit Complex I activity, and closely related DA compounds (L-3,4-

dihydroxyphenylalanine (L-DOPA), 3,4-dihydroxyphenylaceticacid (DOPAC), 6-

hydroxydopamine (6-OHDA)) also inhibited the Complex I activity to a lesser extent than 

DA (Ben-Shachar et al. 2004). These findings were supported in a subsequent study in 

which DA dissipated mitochondrial membrane potential (MMP) without affecting cell 

viability, yet bypassing Complex I prevented DA-induced MMP depolarization, hence the 

interaction between DA and mitochondrial impairment likely involved Complex I (Brenner-

Lavie et al. 2008).

While mitochondrial dysfunction has been found to be associated with SZ in various studies, 

the directionality of the mitochondrial defect is less well understood, i.e. whether the 

Chan et al. Page 7

Schizophr Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial dysfunction precedes the development of SZ or whether mitochondrial 

dysfunction follows treatment of SZ with APDs. Some reports of mitochondria alterations at 

the proteomic, transcriptomic, and metabolomic levels of analyses in the brain found that 

these changes do not appear to be related to treatment with antipsychotic drugs in SZ 

(Prabakaran et al. 2004a; Middleton et al. 2002; Shao and Vawter 2008) or BD (Shao and 

Vawter 2008; Chen et al. 2013). Human studies in first episode psychosis subjects reported 

mitochondrial changes that were present prior to exposure to APDs that may be linked to 

differential expression of proteins involved in metabolic pathways (Martins-de-Souza, 

Guest, Mann, et al. 2012; Martins-de-Souza, Harris, et al. 2010) and altered levels of 

circulating insulin-related peptides and other neuroendocrine hormones (Guest et al. 2011). 

Gene-expression and proteomic studies in non-human primates treated with APDs helped 

determine the effects of APDs on mitochondrial gene expression (Mirnics et al. 2000; 

Middleton et al. 2002; Sweet et al. 2009). A microarray study of primate frontal cortex 

following chronic treatment with haloperidol and olanzapine did not show significant impact 

of APD treatment upon mitochondrial-related gene expression (Martin et al. 2015). 

Interestingly, upon reanalysis of the same dataset, a significant negative overlap was found 

between the transcriptomic alterations following treatment with APDs versus treatment with 

the psychotomimetic drug phencyclidine, which recapitulates the disease signature of SZ. 

One potential conclusion is rather than driving mitochondrial alterations, APDs may serve to 

normalize the mitochondrial dysfunction of SZ (Gandal et al. 2018). Thus, the direction of 

alteration on mitochondria functioning by chronic administration of APDs might 

compensate for decreased mitochondria function.

Conversely, there is a long history of reports showing mitochondrial impairment by APDs 

and dopamine agonists, in vitro, often measured in Complex I (Bachmann and Zbinden 

1979; Sagara 1998; Whatley et al. 1998; Casademont et al. 2007; Balijepalli, Boyd, and 

Ravindranath 1999; Balijepalli et al. 2001; Robicsek et al. 2013; Rosenfeld et al. 2011a; 

Brenner-Lavie, Klein, and Ben-Shachar 2009b; Ben-Shachar and Karry 2008; Karry, Klein, 

and Ben Shachar 2004; Ben-Shachar and Laifenfeld 2004; Dror et al. 2002; Ben-Shachar 

2002; Ben-Shachar et al. 1999; Holper, Ben-Shachar, and Mann 2019). Consistent data show 

that therapeutic levels of APD have long term effects on mitochondrial protein in 

synaptosomal preparations (Farrelly et al. 2014). APD use has been associated with 

mitochondrial dysfunction through depolarization of mitochondrial membranes (Babich et 

al. 2016), impairing gene and protein expression in glycolytic and oxidative phosphorylation 

pathways (Schubert et al. 2016; Farrelly et al. 2014; Prabakaran et al. 2004b; Scaini et al. 

2018), and antipsychotic-induced metabolic syndrome (Mittal et al. 2017; Parsons et al. 

2009). Some reports of an apparent lack of APD effects on mitochondria gene expression 

findings (Fatemi et al. 2012; Fatemi et al. 2006; Rice et al. 2014) are from brain homogenate 

which contradicts studies focusing on cells and subcellular compartments.

In a proteomic analysis of rat mitochondria from the cerebral cortex and hippocampus, Ji et 
al (Ji et al. 2009) found that following treatment with an APD, either chlorpromazine, 

clozapine, and quetiapine, 14 proteins showed significant changes in quantity, 6 proteins 

were involved in the electron transport chain, and ultimately inhibited the efficiency of the 

electron transport chain (ETC). Notably, 3 of the ETC member proteins, NDUFV1, 

NDUFV2, and NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75 kDa (NADH-
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coenzyme Q reductase) (NDUFS1) are subunits that form Complex I and the other 3 ETC 

member proteins were subunits of ATP synthase. While this study provided compelling data 

that mitochondrial components were altered following treatment with APDs, the cerebral 

cortex and hippocampus are heterogeneous brain regions with different cell types that have 

different binding-specificities. It may be that some cell types are more or less vulnerable to 

the effects of the APDs on mitochondrial function. An investigation of specific cell types 

would be helpful in elucidating the mechanism of APD-induced mitochondrial impairment.

Although both first- and second-generation APDs have been associated with mitochondrial 

impairment, they may impair mitochondria in different ways. Compared to atypical APDs, 

typical APDs inhibit mitochondria to a greater extent and cause more oxidative damage, as 

evaluated by disruption of MMP (Shinoda et al. 2016; Eftekhari et al. 2016), inhibition of 

electron transport chain complex activities (Burkhardt et al. 1993; Balijepalli, Boyd, and 

Ravindranath 1999), and reduction of NADH-coenzyme Q reductase level, both in rat and 

human studies (Casademont et al. 2007; Modica-Napolitano et al. 2003). In hepatocytes of 

postmortem patients with SZ, haloperidol, phenothiazines, olanzapine, and risperidone were 

found to differentially regulate gene expression profiles. Typical neuroleptics affected genes 

associated with nuclear protein, stress response, and phosphorylation, while atypical APDs 

affected genes associated with Golgi apparatus, endoplasmic reticulum, and cytoplasmic 

transport (Choi et al. 2009). Additionally, Choi et al found that genes involved with lipid 

metabolism were found to be downregulated by typical APDs compared to atypical APDs, 

and genes related to mitochondrial function were differentially regulated by typical vs. 

atypical APDs. Mitochondria genes (SOD2, PDK1, and NAPG) were upregulated by the 

typical APDs vs. atypical APDs, and 11 mitochondria-related genes including BDH1, 

ACAMD, C14orf68, and NAGS were downregulated in typical vs. atypical APDs. The 

typical APD phenothiazine especially affected genes related to stress responses and 

increased expression of C-reactive protein in hepatocytes, a marker of inflammation, which 

may ultimately lead to increased risk of liver toxicity in patients treated with phenothiazines 

such as chlorpromazine, fluphenazine, and thioridazine. It has also been reported that 

supratherapeutic doses of haloperidol reduced ROS production and oxygen consumption in 

lymphoblastoid cell lines (Hjelm et al. 2015). Although the experiments above utilized 

nonneuronal cell lines, the results consistently demonstrate mitochondrial hypofunction 

following APD treatment.

As a further example of the complex relationship of medications and mitochondria, the 

activity of Complex I of the ETC was significantly decreased in patients with detectable 

psychotropic medications in pooled cases (both SZ and bipolar disorder (Rollins et al. 

2018a). The direction of Complex I activity compared to controls was opposite depending 

on the stratification of patients, where Complex I activity decreased in a subclass of patients 

with both medication and younger age of onset, while Complex I activity was increased in 

older onset non-medicated patients compared to controls. Although the medications that 

appeared in the toxicological analysis of brain samples were mixtures of classes (APD, 

anxiolytics, sedatives, and antidepressants), patients without any medications had elevated 

levels Complex I activity. The data suggest there might be a subgroup of more affected 

patients with mitochondria dysfunction characterized by a younger age of onset.
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In summary, significant evidence exists for a relationship between APDs, mitochondrial 

dysfunction, and the pathogenesis of SZ, although the exact directionality and mechanisms 

are not completely understood. Additional studies of mitochondria copy number, 

mitochondrial motility, mitochondria membrane potential, and intra neuronal localization 

conducted in conjunction with APDs and dopamine agonists may provide helpful data and 

open the door for the development of novel pharmacological targets and treatments to 

increase mitochondrial function in neurons in patients with SZ.

2.2 Metabolic syndrome

The constellation of metabolic side effects associated with the use of APDs such as weight 

gain, central obesity, insulin resistance, dyslipidemia, and hypertension make up metabolic 

syndrome. Baseline data from the Clinical Antipsychotic Trials of Intervention Effectiveness 

(CATIE) SZ Trial showed the prevalence of metabolic syndrome to range from 36% to 54% 

in patients with SZ treated with APDs (McEvoy et al. 2005; Meyer et al. 2005). While 

atypical APDs have lower risk of EPS than typical APDs, they are associated with a greater 

risk of developing metabolic syndrome (Henderson et al. 2015; Newcomer 2005; Brooks, 

Chang, and Krasnykh 2009). Among the atypical APDs, clozapine and olanzapine carry the 

highest risk (Leslie and Rosenheck 2004; Rummel-Kluge et al. 2010) and risperidone and 

quetiapine carry a moderate risk (Lieberman et al. 2005). While lurasidone, ziprasidone, and 

aripiprazole carry the lowest risk for metabolic syndrome, studies have shown that even 

these drugs may cause insulin resistance and other metabolic side effects in some people 

(Brooks, Chang, and Krasnykh 2009; Parsons et al. 2009; Newcomer 2005; Komossa et al. 

2009; Fleischhacker et al. 2013). While the mechanism of metabolic syndrome is not 

completely understood, previous studies suggest that i) neurotransmitter systems, including 

histamine H1 (Kim et al. 2007; Deng, Weston-Green, and Huang 2010; Masaki et al. 2004), 

muscarinic (Bymaster et al. 2003), dopamine D2 (Lencz et al. 2010; Volkow et al. 2008), and 

serotonin 5HT2C (Kirk et al. 2009) blockade; ii) satiety and energy homeostasis signaling 

via regulatory peptides adiponectin (Hanssens et al. 2008; Bai et al. 2009), leptin (Ragguett 

et al. 2017; Sentissi et al. 2008; Chen et al. 2018), and other inflammatory cytokines (Mori, 

McEvoy, and Miller 2015; Beumer et al. 2012); iii) genetic polymorphisms and gene-drug 

interactions that predispose to metabolic side effects (Malan-Muller et al. 2016; Roffeei et 

al. 2014; Risselada et al. 2012; Nsaiba et al. 2015) and/or lead to gene-drug interactions 

(Huang et al. 2014; Reynolds et al. 2013; Lett et al. 2012) may be involved in the 

development of metabolic syndrome.

More recently, mitochondrial interactions with APDs have been identified as a potential 

driver of metabolic syndrome, which is supported by the vital role of mitochondria in energy 

metabolism and homeostasis. In a study of cultured mouse neuroblasts, myoblasts, 

adipocytes, hepatocytes, and monocytes, treatment with clozapine was associated with 

altered mitochondrial morphology with increased mitochondrial volume, mitochondrial 

membrane depolarization, and reduced ATP levels in all cell lines (Contreras-Shannon et al. 

2013). The authors also found increased production of pro inflammatory cytokines following 

clozapine treatment, suggesting perhaps inflammatory signaling pathways are linked with 

cellular dysfunction at the level of mitochondria. Inhibition of complex I activity by APDs 

(Ben-Shachar et al. 2004; Brenner-Lavie, Klein, and Ben-Shachar 2009a) may be an 
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additional mechanism leading to mitochondrial dysfunction and subsequent metabolic 

syndrome, although the finding that typical APDs inhibit Complex I activity more than 

atypical APDs (olanzapine and clozapine are atypical APDs (Casademont et al. 2007; 

Modica-Napolitano et al. 2003) suggests a more complex interaction.

These findings are further supported by human studies. In a study of patients with SZ treated 

with APDs with different metabolic risk profiles, patients treated with high-risk APDs 

(olanzapine and clozapine) showed decreased mRNA levels of complex III and IV subunit 

genes, and patients treated with high- and medium-risk APDs (quetiapine and risperidone) 

showed decreased expression of nuclear-encoded mitochondrial complex I and II. 

Additionally, mitochondrial oxygen consumption and ATP production were reduced in 

lymphoblastoid cell lines from patients compared to healthy controls, and cells subsequently 

treated with high-risk APDs showed the most significant decreases in functional parameters 

of mitochondrial oxygen consumption and as well as ATP production (Scaini et al. 2018). 

Hence, treatment with APDs most strongly associated with metabolic syndrome resulted in 

the greatest downregulation of mitochondrial dynamic and repression of oxidative 

metabolism, which may explain the increased prevalence of metabolic syndrome in patients 

taking olanzapine and clozapine. In patients taking risperidone, quetiapine, and olanzapine 

from the CATIE sample, SNPs in thirty nuclear-encoded mitochondrial genes were 

associated with weight gain, of which three (CLPB, PARL, and ACAD10) were replicated in 

an independent prospectively assessed sample (Mittal et al. 2017). While no association was 

observed between mtDNA variants and weight gain, the studies to date are underpowered 

and may have missed effects that were not very large. Replication in larger samples may be 

warranted to further explore this preliminary data.

Taken together, there appear to be APD effects in both CNS tissue and non-CNS tissues on 

mitochondria function that could be directly related to metabolic syndrome. The 

development of metabolic syndrome has been linked with increased medical comorbidity 

(Mitchell et al. 2013), cardiovascular risk factors (Sanchez-Martinez et al. 2018), and 

somatic preoccupation (Meyer et al. 2005), and patient dissatisfaction side effects may lead 

to drug switching or discontinuation (Stroup et al. 2011). Therefore, patients treated with 

medium- and high-risk APDs may benefit from pharmacologic and/or behavioral 

interventions, and a better understanding of the still elusive pathway between APDs and 

metabolic syndrome is crucial to the development of successful interventions.

3 Antidepressants and other psychoactive compounds

Prior studies have found that psychotropic medications in addition to APDs lead to 

impairment of Complex I activity (Corena-McLeod et al. 2013; Hroudova and Fisar 2012; 

Abdel-Razaq, Kendall, and Bates 2011; Adzic et al. 2016; Holper, Ben-Shachar, and Mann 

2019), and patients with SZ often receive concomitant treatment with antidepressants, 

anxiolytics, and other psychoactive drugs. The interactions between polypharmacy and 

mitochondrial activity may be clinically relevant in patients treated with APDs.
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3.1 Antidepressants

Many patients with SZ are also treated for mood symptoms. Indeed, while distinct, there is 

overlap in polygenic risk for major depressive disorder, bipolar disorder and SZ (Schulze et 

al. 2014). Protein components of the oxidative phosphorylation pathway were found to be 

upregulated in patients with MDD (Martins-de-Souza, Guest, Harris, et al. 2012); these 

proteins were downregulated in patients with SZ (Martins-de-Souza et al. 2011) as well as 

patients with psychotic depression (Martins-de-Souza, Guest, Harris, et al. 2012). 

Mitochondrial dysfunction is thought to play role in mood disorders by impairing 

neuroplasticity and hippocampal neurogenesis ultimately leading to depression (Caruncho et 

al. 2016; Allen et al. 2018), and antidepressant medications have been found to modulate 

mitochondrial activity at the cellular, proteomic, and genomic levels.

Existing studies on antidepressant drugs and effects on mitochondria are discordant with 

respect to whether antidepressants facilitate or inhibit mitochondrial activity, largely 

depending on different measures of mitochondria function. In rat hippocampus, fluoxetine, 

an antidepressant of the selective serotonergic receptor inhibitor (SSRI) class, has been 

found to differentially regulate 63 nonsynaptic mitochondrial proteins related to metabolic 

processes such as ATP synthesis and transduction, oxidative phosphorylation, and pyruvate 

and glutamate metabolism, with the effect of directing energy metabolism toward the Krebs 

cycle and oxidative phosphorylation (Filipovic et al. 2017). Acute treatment with fluoxetine 

increased citrate synthase, a proxy of mitochondria number in the striatum and increased 

complex I activity in the hippocampus in Wistar rats. Chronic treatment showed no change 

in citrate synthase activity in the prefrontal cortex, hippocampus, and striatum (Agostinho, 

Reus, Stringari, Ribeiro, Ferraro, et al. 2011) but decreased complex IV activity in the 

hippocampus (Agostinho, Reus, Stringari, Ribeiro, Ferreira, et al. 2011). Interestingly, 

fluoxetine in combination with olanzapine increased alterations in mitochondrial activity, 

where increased citrate synthase activity was seen in the prefrontal cortex and hippocampus 

in addition to the striatum (Agostinho, Reus, Stringari, Ribeiro, Ferraro, et al. 2011) and 

where increased complex II-IV activity was seen with acute treatment, and complex I 

activity remained increased with chronic treatment (Agostinho, Reus, Stringari, Ribeiro, 

Ferreira, et al. 2011). These studies illustrate how the effects of antidepressants in 

combination with antipsychotics (often seen in clinical practice) upon mitochondrial 

metabolism can be exceedingly complex and dependent on a number of variables such as 

treatment regimen, duration of treatment, brain area, and drug concentration. In summary, 

prior in vivo studies suggest that antidepressants generally lead to upregulation of 

mitochondrial activity in various metabolic pathways with acute treatment while chronic 

treatment leads to decreased or no change in mitochondrial activity. In combination with 

APDs, however, both acute and chronic treatment with antidepressants increased 

mitochondrial activity.

In contrast, in vitro studies in mitochondrial fractions extracted from pig brains found that 

antidepressants (amitriptyline, fluoxetine, tianeptine) were potent inhibitors of mitochondrial 

respiration, primarily at complex I and II, while mood stabilizers (lithium, valproate) had 

negligible effects (Hroudova and Fisar 2012). However, the tested drug concentrations were 

much higher than therapeutically active plasma concentrations used in vivo, therefore these 
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findings may have limited clinical applicability. The antidepressants, clomipramine, 

desipramine, and norfluoxetine (active metabolite of fluoxetine) caused apoptosis in a 

Chinese hamster ovary cell line as indicated by morphological changes and increases in 

caspase-3 activity (Abdel-Razaq, Kendall, and Bates 2011). Furthermore, clomipramine and 

norfluoxetine both reduced MMP in mitochondria isolated from rat hearts while there was 

no effect of tianeptine on MMP. Decreased complex II-IV activity was seen with 1 μM 

treatment with both tricyclic antidepressants (clomipramine, desipramine), while complex I 

activity was inhibited at concentrations > 20 μM, with the greatest inhibition by 

norfluoxetine (Abdel-Razaq, Kendall, and Bates 2011). Of note, while these drug 

concentrations are 2- to 40-fold greater than serum drug concentrations in vivo (Risch, Huey, 

and Janowsky 1979; Nelson 2017), they were lower than those used by Hroudova et al 
(Hroudova and Fisar 2012). The authors (Abdel-Razaq, Kendall, and Bates 2011) postulated 

that binding of mitochondrial complexes by antidepressants may lead to the production of 

ROS that disrupts the MMP resulting in decreased mitochondrial respiration; this may 

ultimately promote changes in transcription regulation that upregulate neuroprotection and 

adaptation in patients treated with antidepressants. Chronic tianeptine treatment in a prenatal 

stress model of depression increased a key component of the mitochondria proteome, 

isocitrate dehydrogenase (Glombik et al. 2017). This upregulation of the Krebs cycle 

enzyme indicates a positive change in mitochondria function by increasing the oxidative 

decarboxylation of 2-oxoglutarate, which generates energy in the form of NADH. In 

summary, in vitro studies have found that antidepressants may initially inhibit mitochondrial 

complex activity and cause disruption of MMP, although the downstream effects of this have 

the potential to be therapeutic for patients with mood disorders.

A similar relationship between ROS production and MMP disruption was described in an 

early study evaluating the effects of imipramine, clomipramine, and citalopram in human 

acute myeloid leukemia cells, where treatment with all three compounds activated apoptosis, 

with the generation of ROS preceding the loss of MMP. In response, the myeloid leukemia 

cells upregulated antiapoptotic proteins Bcl-2 and Bcl-XL, this prevented antidepressant-

induced apoptosis and MMP uncoupling but did not prevent ROS production (Xia et al. 

1999). Although myeloid leukemia cells are quite distinct from brain cells, psychoactive 

drugs may also exert effects at the systemic level, as mentioned, and this study demonstrates 

that cells have self-regulatory mechanisms to respond to and thrive in the presence of drug-

induced oxidative stress. Other antidepressants associated with increased ROS production 

and decreased MMP include selegiline, a monoamine oxidase inhibitor (Simon et al. 2005), 

amitriptyline (Villanueva-Paz et al. 2016), fluoxetine, sertraline (Elmorsy et al. 2017), and 

bupropion (Luethi, Liechti, and Krahenbuhl 2017). Nefazodone, an atypical antidepressant, 

was also found to induce MMP collapse in human hepatocellular carcinoma cell lines, 

although the authors were unable to analyze the relationship between MMP collapse and 

mitochondrial ROS levels (Silva et al. 2016).

To address the contradictory data on antidepressant effects on mitochondria and more deeply 

understand the mitochondrial mechanisms of SSRIs at the molecular level, a sub-cellular 

study was performed to evaluate protein activity in mitochondrial metabolic pathways in 

presynaptic light mitochondria (LM), heavy mitochondria (HM) (intra-synaptic), and post-

synaptic free mitochondria (FM) (non-synaptic) isolated from rat hippocampus. Following 
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sub-chronic 21-day pharmacologic treatment, only desipramine but not fluoxetine increased 

malate dehydrogenase and decreased enzymatic activity in the ETC complexes in LM and 

HM, while both desipramine and fluoxetine enhanced cytochrome oxidase and glutamate 

dehydrogenase in FM (Villa et al. 2017). This study utilized a novel proteomic approach to 

localize drug effects within the micro-heterogeneity of brain mitochondria; however, the 

resolution of findings would be improved if the receptor-binding specificities (e.g. 5-HT vs. 

DA) of the isolated synapses were accounted for in the analysis.

Serotonin and dopamine receptor signaling appears to regulate mitochondrial trafficking 

through pre-synaptic and post-synaptic compartments. Serotonin (5-HT) via 5-HT1A 

receptors, promotes axonal transport through increased Akt activity. On the other hand, D1 

antagonism and D2 agonism decrease Akt activity and may block the stimulatory effect of 5-

HT on axonal transport (Chen, Owens, and Edelman 2008). Therefore by understanding the 

presence and ratios of 5-HT vs. DA binding cell types it may have helped determine the 

distribution of energy sources in neurons to further localize changes in mitochondrial 

enzymatic activities with antidepressant treatment in the study by Villa et al (Villa et al. 

2017).

The effects of antidepressant treatment on energy balance in neural tissue reflect both 

increased and decreased energy production, causing alterations in MMP, ROS, apoptosis, 

and gene expression among many diverse effects. There is some evidence that polypharmacy 

with antidepressants and antipsychotics perturbs mitochondria differently than treatment 

with antidepressants alone. However, this interaction will require further study to quantify 

mitochondrial changes as increased versus decreased activity will not suffice to deduce the 

diverse nature of their interactions. Additionally, variability in intracellular processes likely 

participates in interindividual differences of the response to treatment with antidepressant or 

in drug resistance (Del Campo et al. 2018). Further studies of the effects of mood disorders, 

antidepressants and mood stabilizers on the molecular level are necessary to understand their 

roles in signaling pathways and influences on energy metabolism of neurons. They are 

expected to be helpful both in the search for biological markers of mood disorders or 

predictors of efficiency of the treatment with antidepressants and in the search of new 

psychotropic treatments.

3.2 Other psychoactive compounds

Benzodiazepines, opioids, and amphetamines are additional prescribed medications and 

drugs that patients with SZ often take concurrently with antipsychotics and/or 

antidepressants. Current studies suggest that benzodiazepines may have neuroprotective 

effects by reducing the production of free radicals and maintaining mitochondrial functions 

under metabolic (Baez et al. 2017) and acute physical stress (Mendez-Cuesta et al. 2011), 

increasing antioxidant activity (Arbo et al. 2017) and reducing neuronal excitotoxic injury. 

Additionally, JM-20, a benzodiazepine-dihydropyridine hybrid molecule whose 

dihydropyridine moiety does not interfere with its GABAergic properties, has been shown to 

prevent calcium-induced mitochondrial swelling, MMP dissipation, and release of the pro-

apoptotic protein cytochrome c (Nunez-Figueredo et al. 2014), while PK11195 (isoquinoline 

carboxamide), a peripheral benzodiazepine receptor antagonist, caused mitochondrial 
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swelling, cytochrome c release, and mitochondrial uncoupling (Li, Wang, and Zeng 2007). 

Overall, benzodiazepines appear to have a neuroprotective role, particularly under conditions 

of metabolic stress such as glucose deprivation and hypoxia. Interestingly, clozapine was 

found to increase the binding of the translocator protein formerly known as the 

benzodiazepine receptor in rat brain and peripheral steroidogenic tissues, suggesting a 

possible interaction between certain classes of APDs, benzodiazepines, and neural and 

metabolic activity (Del Campo et al. 2018).

Meanwhile, opioids have been found to impair neural activity possibly through 

mitochondrial dysfunction. Tramadol, a partial opioid agonist, has been shown to inhibit 

mitochondrial complex I, II, and IV (Mohamed, Ghaffar, and El Husseiny 2015) and 

increase ROS and mitochondrial swelling and induce MMP collapse in brain cells of male 

rats (Mehdizadeh et al. 2017). However, inhibition of mitochondrial complexes only 

occurred at very high doses that exceeded the maximum recommended daily therapeutic 

doses for adult humans. Fentanyl, a full mu receptor opioid agonist, slightly reduced 

mitochondrial complex-specific respiration and cellular ATP content without changing cell 

morphology and mitochondrial permeability in human hepatocytes (Djafarzadeh et al. 2016), 

and concurrent morphine administration with transactivator of transcription (Tat) 

exacerbated the excitotoxic synapto-dendritic injury by disrupting calcium homeostasis and 

increasing MMP instability (Fitting et al. 2014). Amphetamine abuse has been associated 

with cognitive impairment (Wang et al. 2017; Scott et al. 2007), and chronic, but not acute 

amphetamine treatment increased ROS production in the submitochondrial particles of the 

prefrontal cortex and hippocampus in male Wistar rats (Frey et al. 2006). It is important to 

note that these drugs in varying combinations may interact at the level of mitochondria 

function with significant downstream effects. Please refer to Table 1 for a summary of 

psychotropic medication-induced changes in mitochondrial structure and function.

4 Conclusion and future directions

Both pharmacotherapy and psychiatric illness in schizophrenia are reported to modulate 

mitochondria; these overlaps are seen in respiratory chain activity declines and alterations in 

ROS and MMP. It is challenging to delineate whether mitochondrial dysfunction occurs 

secondary to pharmaceutical treatment or whether it is a result of the underlying disease 

process itself. While the MMP is important for ATP production, maintenance of calcium 

regulation, and homeostasis of synaptic functions, perhaps transient perturbations of MMP 

can lead to positive downstream effects. For example, a hypermetabolic (mitochondria) state 

may interfere with mtDNA transcription regulation, leading to the accumulation of mtDNA 

deletions and copy number alterations.

Due to varying degrees of polypharmacy, the mitochondrial effects are unknown, however, it 

is important to note that polypharmacy likely interacts at the level of mitochondria with 

significant downstream effects in multiple tissues leading to the potential for metabolic 

syndrome. The direction and mechanism of these downstream effects may differ for each 

class of drug and cell surface receptors, resulting in a myriad of pro- and anti-energetic 

phenomenon at the level of mitochondria metabolism and mitogenesis. Development of new 
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drugs that can alter the mitochondria defects found in aging, mood disorders, and first-

episode subjects should be explored for potential therapeutic benefit.
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Figure 1. 
Energy production, metabolism of carbohydrates, fatty acids and amino acids, and regulation 

of neurotransmitter degradation are important facets of mitochondria biochemistry.
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Figure 2, 
adapted from (Shao et al. 2008). The mitochondria genome is a circular double stranded 

DNA with 37 genes: 13 protein-coding genes in Complexes I, III, V; 22 tRNA genes, and 2 

rRNA genes. A detailed map of each locus is found at www.mitomap.org. There are over 

1,200 nuclear proteins imported into each mitochondria for functions described in Figures 1 

and 2, a comprehensive list of those genes can be obtained from Mitocarta (Calvo, Clauser, 

and Mootha 2016) and Mitominer (Smith and Robinson 2019).

Chan et al. Page 28

Schizophr Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mitomap.org/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chan et al. Page 29

Table 1.

Summary of psychotropic medication-induced changes in mitochondrial structure and function.

Psychotropic Medication(s) Effect on Mitochondrial Structure and Function References

Antipsychotics

Aripiprazole, 
Chlorpromazine, Clozapine, 
Fluphenazine, Haloperidol, 
Olanzapine, Quetiapine, 
Risperidone

Inhibition of Complex I activity Casademont et al. 2007, Balijepalli et al. 2001, 
Holper, Ben-Shachar, and Mann 2019

Haloperidol, Olanzapine, 
Trifluoperazine

Depolarization of mitochondrial membranes with 
disruption of mitochondrial membrane potential

Shinoda et al. 2016, Eftekhari et al. 2016, 
Babich et al. 2016

Chlorpromazine, Clozapine, 
Haloperidol, Olanzapine, 
Quetiapine, Risperidone

Impairment of gene and protein expression in glycolytic 
and oxidative phosphorylation pathways

Schubert et al. 2016, Farrelly et al. 2014, Scaini 
et al. 2018, Ji et al. 2009

Haloperidol, Olanzapine, 
Phenothiazine, Risperidone

Dysregulation of gene expression profiles in lipid 
metabolism, mitochondrial genes, and inflammatory 
pathways

Choi et al. 2009

Clozapine, Olanzapine, 
Quetiapine, Risperidone

Increased mitochondrial volume, mitochondrial membrane 
depolarization, downregulation of mitochondrial oxidative 
phosphorylation genes, and activation of pro-inflammatory 
signaling pathways as drivers of metabolic syndrome

Contreras-Shannon et al. 2013, Scaini et al. 
2018

Antidepressants

Fluoxetine Acute treatment leads to upregulation of mitochondrial 
activity in various metabolic pathways including Krebs 
cycle and oxidative phosphorylation; chronic treatment 
leads to decreased or no change in mitochondrial activity

Filipovic et al. 2017

Amitriptyline, Fluoxetine, 
Tianeptine

Inhibition of mitochondrial respiration, primarily at 
Complex I and II

Hroudova and Fisar 2012

Clomipramine, 
Desipramine, Norfluoxetine

Reduction of mitochondrial membrane potential, inhibition 
of Complex II-IV activity

Abdel-Razaq, Kendall, and Bates 2011

Amitriptyline, Bupropion, 
Imipramine, Clomipramine, 
Citalopram, Fluoxetine, 
Selegiline, Sertraline

Generation of reactive oxygen species preceding loss of 
mitochondrial membrane potential

(Villanueva-Paz et al. 2016, Luethi, Liechti, 
and Krahenbuhl 2017, Xia et al. 1999, Elmorsy 
et al. 2017, Simon et al. 2005

Other Psychoactive Compounds

4′-chlorodiazepam, 
Diazepam

Reduction of free radical production, increased antioxidant 
activity

Baez et al. 2017, Mendez-Cuesta et al. 2001, 
Arbo et al. 2017

Tramadol Inhibition of Complex I, II, and IV Mohamed, Ghaffar, and El Husseiny 2015

Tramadol Increase reactive oxygen species production, induce 
mitochondrial membrane potential collapse

Mehdizadeh et al. 2017

Fentanyl Reduction of mitochondrial complex-specific respiration 
and cellular ATP content

Djafarzadeh et al. 2016

Amphetamine Chronic treatment increased reactive oxygen species 
production

Frey et al. 2006
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