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Parallelizing Under-Determined Inverse Problems
for Network Applications

Mehdi Malboubi, Student Member, IEEE, Joshua Garrison, Chen-Nee Chuah, Fellow, IEEE and
Puneet Sharma, Fellow, IEEE

Abstract—In this paper, we introduce a new technique for
partitioning a large-scale under-determined linear inverse
problem into multiple smaller sub-problems that can be
efficiently solved independently, and in parallel. When it is
impossible or inefficient to solve a large-scale under-determined
linear inverse problem, this technique can be used to significantly
speed up the computation process without compromising the
accuracy of the solution. We present numerical results that
show the effectiveness of this approach when applied to network
inference problems including traffic matrix estimation and
network anomaly detection, both are important for managing
large, complex networks and cyber-security. Our proposed
framework is applicable to other emerging applications in
computational intelligence that can be formulated as UDLI
problems.

Keywords: Network Measurement and Inference, Traffic
Matrix Estimation, Anomaly Detection.

I. INTRODUCTION

Many problems in networking, signal processing, communi-
cations, machine learning, and Computational Intelligence (CI)
are formulated as Under-Determined Linear Inverse (UDLI)
problems [1] [2] [3] [4] [5]. In UDLI problems, the number
of measurements/observations are smaller than the number
of unknown attributes of interests. This is mainly due to
the practical limitations and hard constraint of measurement
resources where it is expensive and impossible or infeasible to
collect as many measurements as needed. Accordingly, UDLI
problems are naturally ill-posed as there are not sufficient
observations to uniquely and accurately estimate the solution
[5]. Therefore, side information from different perspectives
and multiple sources must be incorporated into the problem
formulation and/or underline intelligent computation engine to
improve the estimation precision, and cope with the complex-
ity of inference process [1] [5] [6] [7] [8] [9] [10] [11] [12]
[13].

A class of important UDLI problems is Network Inference
(NI) or Network Tomography (NT) problems. Network Infer-
ence (NI) or network tomography is the study of the internal
characteristics of a network using a set of limited end-to-end
and/or aggregated observations that can be measured directly.
An important NI problem is Traffic Matrix Estimation (TME)

At the time of this work, Mehdi Malboubi and Joshua Garrison were with
the Dept. of ECE at UC Davis. E-mail: {mmalboubi, jcgarrison@ucdavis.edu}

Chen-Nee Chuah is Professor at the Dept. of ECE at UC Davis. E-mail:
chuah@ucdavis.edu

Puneet Sharma is principal research scientist at HP-Labs, Palo Alto. E-mail:
puneet.sharma@hpe.com

which provides essential information for many networking
applications including network design, operation/management,
and security. A Traffic Matrix (TM) is the vector repre-
sentation of the size of all Origin-Destination Flows (ODF)
where a flow is the sequence of packets, sharing common
network identification attributes that can be extracted from
packet header fields. In TME, the main goal is to provide
the fine-grained estimate of the size of all network ODFs
[8] [14]. Due to limited measurement resources (e.g. flow-
table/TCAM entries, storage capacity, and processing power)
in network monitoring infrastructures, it is often infeasible
and/or inefficient to directly measure the size of every flow
(using NetFlow or sFlow) in large-scale networks [15]. In this
case, a TME problem is formulated as an UDLI problem where
the number of known SNMP link-load and/or flow aggregated
measurements are less than the number of unknown ODFs [8].

Existing studies generally attempt to infer TMs in a cen-
tralized manner where all measurements are collected and
processed at a central node by applying domain-specific in-
ference techniques and/or machine learning/intelligence algo-
rithms [1] [7] [8] [9] [10] [11] [12] [13] [16]. However, the
high computational complexity of these centralized inference
techniques/algorithms hinders their deployment in large-scale
and dynamic production networks where network inference
processes/algorithms must be performed at much faster time
scales for practical deployment [17]. Therefore, it is impor-
tant to provide computationally-efficient solutions for solving
large-scale NI problems.

Recently in [18] and [19], we proposed an efficient and
robust framework for solving large-scale UDLI problems in a
decentralized manner. Our goal was to significantly reduce the
computational burden of large-scale network inference prob-
lems without compromising the accuracy of the solution. In
this framework, called Multiple Description Fusion Estimation
(MDFE), a large-scale network inference problem is decen-
tralized by intelligently dividing it into smaller sub-problems
(using greedy algorithms) and solving them independently
and in parallel. The results, solved in respective sub-spaces
and referred to as multiple local descriptions, are then fused
together to reconstruct the ultimate global estimate. When
(1) the observation matrix of a large-scale UDLI problem is
sparse, and (2) the partitioning of a large-scale UDLI problem
into multiple sub-problems with independent set of unknowns
is impossible, the MDFE framework is able to compute
an alternative solution by finding a convex combination of
redundant (overlapping) local estimates.

The distributed nature of the MDFE framework is com-
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patible with today’s multi-core/virtualized computing archi-
tectures and cloud-computing infrastructures where a large-
scale problem can be divided into smaller sub-problems and
distributed among multi-parallel processing units. In addition,
by exploiting the redundancy between sub-spaces, MDFE
can enhance the robustness against noise and failures in
network measurement and monitoring infrastructures. The
MDFE framework can also be applied to solve large-scale
NI problems in Software Defined Networks (SDNs) where
the data plane and control planes are separate [9]. A SDN
controller typically has a global view of the network and can
poll various switches and routers for measurement statistics.
Under MDFE, the SDN controller or central network controller
collects flow-aggregated measurements from network devices,
partitions the UDLI problem into sub-problems, and solves
them independently. The intermediate results (or local esti-
mates) are then fused together to derive the global estimate,
by considering the redundancy among local descriptions. In
[18] and [19], we demonstrated that the MDFE is a flexible
framework that can be applied to different UDLI problems, and
it is also complementary to the inference techniques proposed
previously for solving specific network inference problems. In
our previous studies in [18], [19] and [20], we have shown
the compatibility of the MDFE framework with different NI
techniques in different applications including traffic matrix
estimation, traffic matrix completion, and loss inference.

Building upon our MDFE framework in [18], [19] and [20],
this paper introduces a new partitioning technique for the
MDFE framework which remarkably speeds up the compu-
tation process of solving large-scale UDLI problems without
compromising the accuracy of estimation. This partitioning
technique is based on our upper bound for the least square
estimation error. We evaluate the performance of our proposed
MDFE framework by applying it to TM estimation and a new
application, namely, network anomaly detection. Due to space
limitations, we occasionally refer to [21] for further results
and mathematical proofs.

It should be noted that although in this paper we consider
TME in the context of large-scale IP networks, the MDFE is
also applicable to a variety of emerging CI problems which
can be formulated as UDLI problems. For instance, estimating
computation loads in cloud networks or multi-tenant data
centers, inferring origin-destination vehicular traffic streams
based on traffic intensity observed at smart intersections or
road side units along highways, or detecting anomalous be-
haviors (e.g., attacks, fraud) of new threats in large-scale and
complex computer networks with increasing attack surface
that arise with the proliferation of Internet-of-Things (IoT)
devices [22] [23] [24] [25] [26] [27]. In such cases, the MDFE
framework acts as a complementary solution to overcome
the high computational cost of implementing large-scale CI
algorithms.

II. CASE STUDY: TM ESTIMATION WITH MDEF

Traffic matrix estimation is the main network inference
problem that is used to demonstrate the efficacy of our MDFE
framework in this paper. TME is formulated as an UDLI

problem. Eq.(1) represents the general form of TME problem
in a network with N nodes, n := N(N − 1) ODFs, and
m links where m < n. In this equation, first, Y is an
(m×1) measurement vector of known link-loads and/or flow-
aggregated measurements (provided via network management
or OpenFlow protocols [28] [29]); second, H is typically a
sparse and binary routing and/or aggregation matrix where the
ijth entry hij shows the contribution of the jth flow on the ith

link and/or flow-table entry, and third, X is an (n× 1) vector
where the jth entry xj represents the size of jth ODF over a
specific time interval. Given Y and H , the main goal in solving
the TME problem is estimating the unknown vector X . The
general solution to this problem is of the form X̂ = X+XN

H

with XN
H denoting a solution from the span of the null space

of H , denoted by N (H).

Y = HX (1)

Figure 1 shows the general block-diagram of the MDFE
framework where link-load and flow-aggregated measurements
from all network devices, including SDN enabled devices,
are collected and processed at the Central Network Controller
(CNC). In the MDFE framework, the original (global) UDLI
problem represented in Eq.(1) is partitioned into L local
sub-problems represented in Eq.(2). These sub-problems are
independently solved and local/sub-space estimates {X̂i}Li=1

(i.e. local descriptions) are then fused together to provide an
accurate solution in a computationally-efficient way. The fu-
sion process is accomplished by applying appropriate weights
to each local estimate. This process is done at CNC where
all local descriptions are available. Eq.(3) describes the fusion
process (denoted by operator ⊕) where a convex combination
of local descriptions is computed as the ultimate global es-
timate X̂F

P . Note that, assuming H is a sparse matrix, then
not all entries of X can be observed in all sub-spaces. The
accuracy of the ultimate estimate X̂F

P is a joint function of sub-
space estimation technique, partition P , and fusion process
F . Since there is an NP-hard set partitioning problem at the
core of this joint optimization problem, we decouple and
independently address these three steps [18].

Y = HX ⇔

 Y1
...
YL

 =

 H1X1

...
HLXL

 (2)

X̂F
P = ⊕L

i=1ω
F
i X̂i where x̂FP j

=

L∑
i=1

ωjix̂ji

L∑
i=1

ωF
ji = 1 and 0 ≤ ωF

ij ≤ 1 for i = 1, ..., L and j = 1, ..., n

(3)
Although our illustrative example based on Figure 1 con-

siders one central SDN controller with the global view of
the network, the MDFE framework is also compatible to
the distributed controller scenarios. After obtaining partition
P , each partition can be assigned one SDN controller that
will poll various switches and routers to collect measurement
statistics and compute local estimates. Through coordination
between the SDN controllers (and perhaps involving a parent
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Fig. 1: The general block diagram of MDFE process where SDN
enabled devices use OpenFlow protocol, as an example.

central network controller), these local estimates can then be
fused to derive the global estimate. Due to space limitation,
we focus on the case of one central SDN controller for the
rest of our discussion.

III. THE IMPLEMENTATION OF MDFE

Many network inference problems in networking, communi-
cation, and signal processing are formulated as UDLI problems
that are solved by computing the Least Norm Estimates (LNE).
To develop the basic theory of MDFE, it is assumed that
the underlying sub-space estimation method is the LNE. It
should be noted that a well-designed MDFE framework is
compatible with different underline network inference tech-
niques [18], and its applications can be effectively extended
into cases where computationally expensive machine learn-
ing/intelligence algorithms are the underline NI methods.

A. Construction of Multiple Descriptions

Let I = {1, 2, ...,m} denotes the set of all indices of
observations and Ii denotes the ith set of disjoint indices
of measurements where I =

⋃L
i=1 Ii and Ii

⋂
Ij = ∅ for

i 6= j. Then, the partition P of set I is formed, and thus,
P =

⋃L
i=1 Ii. Let J = {1, 2, ..., n} denotes the set of all

indices of unknowns and Ji denotes the ith set of indices of
unknowns (observed at ith sub-space) where J =

⋃L
i=1 Ji. It

should be noted that: 1) the intersection of Ji and Jj (for
all i and j in {1, ..., L} where i 6= j) is not necessarily
empty, and 2) considering the sparsity of matrix H in practical
network inference problems, then in general, J 6= Ji (for
i ∈ {1, ..., L}). Now, let Yi := {yk}k∈Ii , Hi := H(Ii, Ji) and
Xi := {xk}k∈Ji . Thus, the original global problem Y = HX
in Eq.(1) (where H is of size m × n) is divided into L
sub-problems as Yi = HiXi (see Eq.(2)) where Hi is an
mi × ni matrix. Considering the fact that the original routing
(i.e. observation) matrix is sparse, the ith local routing matrix
Hi is also sparse where mi < m, ni < n and with high
expectations mi < ni. These local under-determined inverse

problems can be achieved by removing unknown entries that
are not observed in corresponding sub-problems.

Assuming that the input vector X does not include unusual
inputs that differ in size by large order of magnitudes, the least
norm estimates for both global UDLI problem Y = HX and
local UDLI problems Yi = HiXi (for i = 1, ..., L) are com-
puted using the pseudoinverse of observation matrices H and
His [30], denoted by operator †. Eq.(4) and Eq.(5) respectively
denote the closed-form solutions of global and local LNEs
where the observation matrices H and Hi (for all i ∈ 1, ..., L)
are sparse and full low-rank. Here, the pseudoinverses of H
and His are accurately computed using the Singular Value
Decomposition (SVD) with computation complexity O(mn2)
and O(min

2
i ) flops, respectively. It should be also noted that,

the solution of global and local problems could be different
because the null-space of H are not necessarily equal to the
null space of His.

X̂G =H†Y = (HT (HHT )−1)Y (4)

X̂i = H†i Yi =
(
HT
i (HiH

T
i )−1

)
Yi for i = 1, ..., L (5)

B. Partition Design in MDFE Process

The accuracy of the ultimate estimate X̂F
P depends on the

construction of the local observation matrix Hi (i = 1, ..., L)
that is determined by the design of the set Ii in partition
P . However, in reality, it is very hard to directly relate the
ultimate performance of the sub-space inference technique to
the construction of Hi [31]. In practice, by accepting the
unavoidable sacrifice in performance, other metrics are utilized
to measure the estimation performance as a function of some
characteristics of the sub-space observation matrix [18] [19]
[31] [5]. To achieve the best possible performance using such
a metric, the design of partition P can be formulated as an
integer optimization problem which is an NP-hard problem
[32]. To simplify this problem and enhance the performance
of MDFE, we first introduce an auxiliary metric in Theorem 1,
and then a pseudo-optimal partitioning algorithm is developed
to design partition P . In Theorem 1, we show that the Mean
Square Error (MSE) for both global and MDFE estimates can
be respectively bounded proportional to:

SCN :=
√
nκ2(H) and SCNi :=

√
niκ2(Hi) (6)

where κ2(H) denotes the Condition Number (CN) of the
corresponding matrix. Our main goal in computing this upper
bound is to show that the ultimate accuracy of estimation
technique is proportional with the condition number of the
observation matrix and the number of unknowns. This is
intuitive since solving UDLI problems with an observation
matrix with a lower condition number, and with less number
of unknowns can potentially produce more accurate and stable
solutions [33].

Consequently, partition P can be designed by Alg. 1 where
metric SCNi is used to measure the effectiveness of sub-
spaces. Comparing to greedy partitioning algorithm in [18]
(where it only considers metric κ2(H)), Alg. 1 can provide
a better estimation accuracy in the majority of iterations,
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Algorithm 1 : Partitioning Algorithm

Initialization: I = {1, ...,m} and i = 1
while i ≤ L do

- Construct Ii by sequentially choosing K rows of H with
lowest

√
niκ2(Hi)

- Set I = I\Ii and i = i+ 1

end while

as it considers the multiplication of both related metrics in
accuracy, that is, κ2(H) and n; detailed derivation and further
discussion can be found in [21]. This algorithm starts from the
first row of H and sequentially chooses the row that minimize
the SCN of the sub-matrix. This continues to complete the
first sub-space I1 with K rows where K := dm/Le, and L
is appropriately designed [18]. After removing these K rows
from H , the algorithm repeats from the beginning. Also, the
fundamental search strategy in this algorithm is a pseudo-
optimal scheme and, of course, more effective search strategies
can be used for the design of partition P using the same metric.
In particular, heuristics algorithms can be utilized to solve the
NP-Hard partition design problem. For this purpose, the cost
function of a well designed heuristic algorithm, such as genetic
algorithm [34] or particle swarm algorithm [35], not only can
appropriately target the same metric in Alg. 1 but also it can
target the ultimate estimation accuracy, as we have shown in
[36].

Theorem 1: Assume LNE is the sub-space estimation tech-
nique and let X , X̂G and X̂F

P respectively represent the true
unknown vector, its global estimate (using Eq.(4)) and its
MDFE estimate (using Eq.(3)) for some partition P and fusion
weights {ωFi }Li=1 where X̂i is computed using Eq.(5). Then,
the Mean Square Errors (MSE) of global and MDFE estimates
are bounded as: (please refer to [21] for complete proof).∥∥∥X̂G −X

∥∥∥
2
≤ ‖X‖2 +

√
nκ2(H) ‖X‖2∥∥∥X̂F

P −X
∥∥∥
2
≤ ‖X‖2 +

L∑
i=1

(√
niκ2(Hi) ‖Xi‖2

) (7)

C. Fusion Process in MDFE

The fusion process F plays an important role in the MDFE
for providing accurate estimates, and it is performed by
computing the convex combination of local descriptions where
different weighting functions, with low computation overhead
[18], are applied to local estimates. The fusion function ωSCN ,
chooses xj from the sub-space with the lowest SCN , and
fusion function ωAvg computes the average of the observed
xj’s estimated at different sub-spaces. The optimal fusion
weight ωOpt is computed by the following supervised proce-
dure [20] [21]. First, apply MDFE framework on the training
data set XTest := {X1, ..., Xt, ..., XT0} where column vector
Xt ∈ Rn for t = 1, ..., T0 and T0 is small compare to the size
of the data (e.g. T0

T =0.1). Then for each t in t = 1, ..., T0,
generate LNE matrix X̂t =

[
X̂t1 , ..., X̂tL

]
with size n × L

(unobservable entries in each sub-space are zero), containing
L local descriptions. Next for each t, calculate the optimal
fusion weight using Eq.(8), where ωt is an n× L matrix that

GE = 1
T

∑T
t=1

‖X(t)−X̂G(t)‖
2

‖X(t)‖2
, FEw = 1

T

∑T
t=1

‖X(t)−X̂F
w (t)‖

2
‖X(t)‖2

, Gainw = 100× GE−FEw
GE

∆p = 100× O(mn2)−max({O(min
2
i )}

L
i=1)

O(mn2)
, ∆s = 100× O(mn2)−

∑L
i=1 O(min

2
i )

O(mn2)

TABLE I: Performance evaluation criteria.

equalizes local descriptions, and RS and .∗ denote row-sum
and componentwise multiplication operators, respectively. The
optimal weight ωOpt (an n×L matrix) is then computed using
Eq.(9). More effective and efficient fusion methods for MDFE
can also be implemented using information fusion techniques
[37] [38].

ω(:, :, t) =min
ωt

∥∥∥Xt −RS
(
ωt. ∗ X̂t

)∥∥∥
2

s.t. ωt ≥ 0 and {RS (ωt(j, :) = 1)}nj=1.
(8)

ωij
Opt =

1

T0

T0∑
t=1

ω(j, i, t) for i = 1, ..., L, and j = 1, ..., n (9)

IV. THE PERFORMANCE EVALUATION OF MDFE

To evaluate the performance of MDFE framework, the well-
known 14-Node Tier-1 PoP Topology [18] [8] is considered.
The routing matrix H of this network is a sparse and binary
matrix of size 50×182. We consider synthetics traffic traces,
including a set of T vectors {X(t)}Tt=1 where T = 250 and
for each t, X(t) is an n×1 vector. Synthetic traffic traces are
generated using three different distributions [8]: 1) Uniform
distribution where xj ∼ U(100, 500); 2) Gaussian distribution
where xj ∼ N (µj , 40) (where µj ∼ U [100, 500] ); 3)
Poisson distribution where xj ∼ Pois(λj), λj ∼ U [100, 500].
Moreover, two more realistic traffic distributions known as: 4)
Log-Normal distribution where xj ∼ Log − Normal(µ, σ)
with mean µ =100 and σ =2, and 5) Weibull distribution
where xj ∼Weibull(λw, kw) with scale parameter λw =170
and shape parameter kw =1, are considered [39]. Moreover,
in [21], the performance of MDFE framework on Abilene and
Geant networks have been evaluated.

The performance of the MDFE is evaluated using various
criteria that are introduced in Table I where X̂G(t) denotes
the global estimate and X̂F

w (t) denotes the MDFE estimate
resulted from MDFE framework. The subscription w denotes
the type of the fusion function used in the MDFE process,
which are defined in Section III-C and it could be SCN ,
Avg, and Opt. Quantities GE and FEw respectively measure
the accuracy of both global and MDFE estimates in the
normalized L2 sense. Also, Gainw quantifies the performance
improvement using our MDFE framework compared with
global estimation case.

Parallel and sequential processing gains (∆p and ∆s)
measure the reduction in computational complexity using
the MDFE structure where the computational complexity of
LNE is approximated as: C(m,n) = mn2 [18]. Note that
the sequential processing gain can also be an indication of
the reduction in required processing power using the MDFE
framework.
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Distribution GE FEAvg FESCN FEOptGAvg%GSCN%GOpt% ∆p ∆s

Uniform 0.4271 0.3604 0.3763 0.3531 15.62 11.89 17.33

Gaussian 0.4552 0.4075 0.4412 0.3508 10.48 3.07 22.94

Poisson 0.4630 0.3819 0.3966 0.3266 17.52 14.34 29.46 94.8982.78

Log-Normal0.4240 0.3482 0.3668 0.3357 17.87 13.49 20.83

Weibull 0.4337 0.3726 0.3882 0.3660 14.08 10.49 15.61

Uniform 0.4271 0.3536 0.3645 0.3473 17.21 14.66 18.68

Gaussian 0.4552 0.3995 0.4272 0.3596 12.24 6.15 21.00

Poisson 0.4630 0.3664 0.3817 0.3241 20.86 17.55 30.00 97.8790.73

Log-Normal0.4240 0.3394 0.3524 0.3274 19.95 16.88 22.78

Weibull 0.4337 0.3675 0.3787 0.3611 15.26 12.68 16.74

TABLE II: The performance of TM estimation with MDFE for L = 5,
and L = 7 (rows in gray) of the 14-PoP network [18]. Please refer
to [21] to see the results on Abilene and Geant networks for different
values of L.

A. MDFE Applications (1): TM Estimation

The performance of MDFE framework on TM estimation
for different distributions of input traffic is shown Table
II. It indicates that the MDFE framework with least norm
estimation technique can noticeably enhance the estimation
accuracy compared with the global LNE. For the majority of
traffic distributions, this improvement is obtained over almost
all iterations, as we have shown in [21]. Among these, the
estimation precision of the optimal fusion technique [20] is
higher than heuristic fusion techniques, which can be simply
applied without using learning data. The SCN fusion method
is of particular importance in distributed implementation of
MDFE framework [18], where it can significantly reduce the
communication costs and/or delays. This table also shows
that the MDFE framework is able to remarkably enhance the
processing gains. These high processing gains are obtained
where communication delays are negligible in comparison
with processing times that is compatible with the architecture
of today’s multi-core processors. The high processing gain in
the sequential MDFE case (∆s), where local descriptions are
sequentially produced, indicates that the MDFE framework
can also reduce the required processing power due to the fact
that the processing power is a function of the complexity of
the process.

In summary, the MDFE framework with partitioning Alg. 1
can significantly speed up the process of computation without
compromising the accuracy of solution in the majority of
cases. In fact, comparing to our greedy partitioning algorithms
in [18], the MDFE framework with partitioning Alg. 1 can
achieve higher improvement ratio, defined as the percentage of
iterations in which MDFE outperforms the estimation accuracy
of centralized/global LNE. This is mainly due to the use of
both the condition number of observation matrix (κ2(H))
and the number of unknowns (n) in partitioning Alg. 1,
as in Theorem 1 we have shown the upper bound error is
proportional to

√
nκ2(H). Please refer to [21], [18] and [20]

for more details and further results where we have shown
the compatibility of the MDFE frameworks on Abilene and
Geant networks, and analyzed the performance of MDFE for
different values of L and in the presence of noise and failure.

B. MDFE Applications (2): Network Anomaly Detection for
Cyber Security

To deal with influx of new threats in large-scale and
complex computer networks, along with increasing attack
surface that arise with the proliferation of Internet-of-Things
(IoT) devices, the ability to detect anomalous behaviors (e.g.,
attacks, fraud) in a timely manner is crucial. The MDFE
framework can be applied to network anomaly detection to
speed up the process without compromising accuracy. For this
purpose, we model the dynamic of the network’s flows as [26]:

X(t+ 1) = CX(t) +W (t) , Y (t) = HX(t) + V (t) (10)

where W (t) and V (t) are respectively process and measure-
ment noises which are modeled as WGN [14], [26]. Also,
matrix C (with size n × n) models network’s flow dynamics
and matrix H (with size m× n) is the routing matrix.

In the presence of anomaly, the set of network flows X(t)
are contaminated with the output of a two states Markov-
Chain (MC) with silent and active states, denoted by S and
A, respectively. The transition probability from state S to A is
denoted by PSA and the transition probability from state A to
S is denoted by PAS . In the silent state, there is no anomaly
and xi(t) remains unchanged. Assuming that the MC is in
active state in the interval ∆ = [t1, t2], then xi(∆) is corrupted
as xi(∆) = αxi(t1)+xi(t2)

2 where α is a constant, controlling
the power of the anomaly.

Anomaly detection is accomplished using the method intro-
duced in [26] where in the first step a Kalman filter is used
to filter out the normal traffic. This is done by comparing our
future predictions of the traffic matrix state to an estimate of
the actual traffic that is made using more recent measurement
data than those used for prediction. In the second step the
residual filtered process (denoted by τ(t) in [26]) is then
examined for anomalies (please refer to [26] for details).

In our model, the existence of an anomaly in the residual
process is recognized by a falling-edge followed by a rising-
edge. In the global case, the anomaly detection is performed
by comparing the residual process τ(t) with a particular
threshold. In our MDFE framework, the residual processes
{τi(t)}Li= from sub-spaces are fused by computing the average
of residual processes using ωAvg [21], that is, τAvg(t) =
⊕Li=1ωAvgiτi(t). Accordingly, the anomaly detection is per-
formed by comparing the residual process τAvg(t) with an
appropriate threshold. In both cases, we experimentally set
the threshold to get the best achievable performances.

To evaluate the performance, we consider the 14-PoP net-
work in [18]. The flows are generated according to Eq.(10)
[26] where, for simplicity and according to [14], matrix C is
modeled as C = In. The link-load measurement process Y (t)
is a noisy process with SNR=43 dB [1]. Here, to consider a
harder scenario for anomaly detection, we assume that α=2.
To apply our MDFE framework, we use Alg. 1 to partition the
set of observations into L = 7 sub-spaces where the estimation
in sub-spaces is performed by applying the Kalman Filter on
each sub-problem.

The performance and reliability of network anomaly de-
tection process are evaluated by computing the probability
of detection (Pd) and the probability of false alarm (Pfa),



6

(πA,PAS ) πA = 0.05 πA = 0.1 πA = 0.15 πA = 0.2

PAS = 0.1 (0.81,0.84) (0.68,0.76) (0.63,0.71) (0.60,0.68)
PAS = 0.2 (0.70,0.84) (0.60,0.75) (0.57,0.69) (0.56,0.67)
PAS = 0.3 (0.63,0.82) (0.57,0.71) (0.55,0.67) (0.53,0.64)
PAS = 0.4 (0.61,0.79) (0.53,0.68) (0.52,0.64) (0.51,0.63)
PAS = 0.5 (0.56,0.75) (0.51,0.66) (0.50,0.63) (0.49,0.61)

TABLE III: The pair of probability of detections (PG
d ,PFE

d ).

(πA,PAS ) πA = 0.05 πA = 0.1 πA = 0.15 πA = 0.2

PAS = 0.1 (0.33,0.31) (0.36,0.34) (0.40,0.36) (0.40,0.37)
PAS = 0.2 (0.39,0.33) (0.41,0.35) (0.41,0.36) (0.42,0.37)
PAS = 0.3 (0.40,0.33) (0.41,0.34) (0.42,0.35) (0.41,0.35)
PAS = 0.4 (0.42,0.34) (0.40,0.33) (0.41,0.33) (0.41,0.34)
PAS = 0.5 (0.39,0.31) (0.39,0.31) (0.39,0.33) (0.39,0.33)

TABLE IV: The pair of probability of false alarms (PG
fa,PFE

fa ).

defined in Eq.(11). These two metrics are evaluated through
a Monte-Carlo simulation and their averages are shown in
Table III and Table IV. In this table, πA = PSA

PSA+PAS
denotes

the long term proportion of time spent in state A where πA
changes from 0.05 to 0.2, which is a reasonable range in
networking applications [40]. Having, πA and PAS , we can
determine PSA as PSA = PAS

πA

1−πA
. Tables III and IV show

the performance of our MDFE framework in comparison with
the global case where superscripts G and FE denote the
performance metrics computed in global and MDFE cases,
respectively. It is clear that by applying MDFE, the detec-
tion performance is improved. This improvement in detection
performance is achieved while the computational complexity
is significantly reduced because smaller-size problems can be
solved in parallel.

Pd =
1

n

n∑
j=1

Pr
(

correct anomaly detection for jth flow
)

Pfa =
1

n

n∑
j=1

Pr
(

detecting anomalies when there are not (for jth flow)
) (11)

It is interesting to note that, as it was expected, by increasing
πA and PAS (or equivalently in the presence of more-frequent
short-bursty anomalies) the detection performance is degraded.
Among these, the probability of detection is decreased more
noticeably, that is, it is more difficult to detect an anomaly
with the rapid transitions between two silent and active states.
This behavior is reasonable and it shows that short-bursty
anomalies/attacks are more difficult to detect. Accordingly,
it is of particular importance in network monitoring to use
more powerful anomaly detection techniques for detecting
anomalies with more-frequent short-bursty behaviors.

Figure 2 shows the gain in the performance of anomaly
detection using the MDFE framework where GPd and GPfa
are respectively defined as: GPd = 100 × PFE

d −PG
d

PG
d

and

GPfa = 100 × PG
fa−P

FE
fa

PG
fa

. Although these gains are positive
for different values of πA and PAS ; however, for a fix πA the
gain is higher for larger values of PAS . Hence, the MDFE
framework can improve the detection performance in the
presence of more-frequent short-bursty anomalies, which is
of particular importance in network monitoring applications.
Such a gain is achieved by fusing local estimates which can
significantly reduce the effect of noise, and it can be increased
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Fig. 2: Gain in anomaly detection using MDFE

by computing the optimal fusion weights [20].

V. MDFE AND COMPUTATIONAL INTELLIGENCE

The MDFE framework can be applied to a variety of
emerging applications in Computational Intelligence (CI) that
can be formulated as UDLI problems. Demand estimation in
smart grids, urban traffic estimation, traffic intensity estimation
and detection in vehicular networks, and network anomaly
detection are the examples of large-scale applications [24] [25]
[26] [27] where the MDFE framework can be applied to speed
up the process of applying highly complex computational
intelligence algorithms, and provide a timely estimate of un-
knowns without compromising the accuracy of solution. In this
regard, MDFE is complementary to a variety of CI methods
by reducing the associated computational cost, a commonly
perceived bottleneck for large-scale CI applications.

In networking applications, for example in TME using
neural networks [10], the MDFE framework can partition a
large-scale TME problem into multiple sub-problems where
smaller-size neural networks can be quickly trained to provide
sub-space estimate of unknown TMs. Furthermore, the fusion
operation in MDFE can be implemented using advanced data
fusion techniques [37] [38]. For example a neural network can
be trained to optimally fuse local estimates. Accordingly, an
alternative accurate estimate of TMs can be quickly obtained.

In addition, the MDFE framework can be used to speed-up
the implementation of Evolutionary Optimization Algorithms
(EOA), such as Genetic Algorithm (GA), where a near-optimal
solution to a large-scale optimization problem can be obtained
by running the principles of natural evolution on populations
of solution representations (e.g. chromosomes in GA) over the
large number of iterations. For example in solving large-scale
NI problems, the MDFE framework can remarkably reduce
the complexity of evaluating the target fitness function (as the
main highly complex component of EOAs), and accordingly,
speed-up the the process of converging to a near-optimal
solution in large-scale evolutionary optimization problems
[36]. Moreover, evolutionary algorithms can be utilized to
solve the NP-hard partition design problem in MDFE. For
this purpose, the cost function of a well designed heuristic
algorithm, such as genetic algorithm [34], can appropriately
target the same metric in Alg. 1 to design the partition P .
Furthermore, EOAs can directly target the ultimate estimation
accuracy (e.g. FEw in Table I) to design a more effective
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partition P in the MDFE framework with higher estimation
accuracy [36].

VI. CONCLUSION

We developed a new algorithm for partitioning large-scale
UDLI problems into multiple smaller sub-problems, based on
our theoretical upper bound for the least square estimation
error. We showed that by applying our MDFE framework,
the computational complexity of solving a large-scale UDLI
problem is significantly reduced without compromising the
accuracy of solution. This is of particular importance where
the computational complexity is the main bottleneck in ap-
plying effective machine learning/intelligence algorithms in
large-scale CI problems. To show the effectiveness of MDFE
framework, its performance was evaluated on network TM
estimation and anomaly detection.
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