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DETERMINATION OF GRAIN DENSITY IN SPACE FILLING GEOMETRIES 
FROM MEASURABLE T\\,O-DIMENSIONAL PARAMETERS 

by 

Kenton L. Hanson 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720, U. S. A. 

Abstract - A procedure for determining grain density, N v, in space filling geometries from 

measurable two-dimensional parameters is presented. A variety of microstructure morphologies 

are considered and all tend to obey N,,=(2.4150h -1.4552/}-3 where a = average grain area 

on a random two-dimensional section and 1 = the average intercept length of a random test line 

with grain surfaces. This relationship is verified by comparison with many computer simulated 

microstructures and various regular space filling geometries. 

Theoretical considerations are presented suggesting why this basic relationship is 

expected. A practical method for applying this relationship is described. An extension of this 

procedure to non space filling geometries is discussed. 

1. INTRODUCTION 

Quantitative stereologists are concerned with the science of inferring three-

dimensional microstructural features from two-dimension sections. While the expected surface 

density, Sv, and the expected edge density, Lv, in three-dimensional space are obtainable by 

measurements of their respective densities on two-dimensional sections, the density of grains 

{cells} in a space filling microstructure, N v, has remained elusive. This paper presents a 

method for determining the three-dimensional grain density from easily measurable parameters 

on a two-dimensional section. This method is confirmed by comparison with a variety of COl11-

puter generated space filling microstructures and three regular space filling geometries. 

Theoretical considerations are also presented suggesting why this basic relationship is expected. 

Finally, a practical method for estimating N v is described and an extension of this procedure to 

non space filling geometries is discussed. 
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2. FUNDAMENTAL RELATIONSHIPS 

Two fundamental equations relating the features of a three-dimensional microstruc-

lure (edges and surfaces) and their intersections with an arbitrary two-dimensional test section 

or test line are 

where 

2 
Sv=2NL=-= 

I 

Lv= density of lines per unit volume 

PA = density of line intersections per unit area 

Sv= density of surfaces per unit volume 

NL = 1/1= density of surface intersections per unit length of the test line 

The derivation of these relationships is described in detail in chapter 4 of reference 1. These 

relationships are valid if the edges and surfaces have no preferred orientation with respect to 

the test plane or line. However, if these features have preferential orientation, e. g. a simple 

cubic structure, care must be exercised to collect test data on a sufficient number of randomly 

orientated test planes and lines to ensure the validity of equations 1 and 2. 

These relationships will be used to determine the densities of surfaces Sv and edges 

Lv in three-dimensional space from two-dimensional sections. Our analysis will be concerned 

with space filling geometries where all surfaces are boundaries between two grains, and where 

edges are intersections of grain surfaces. Figure 1 shows some examples of two-dimensional 

sections of three-dimensional microstructures. Notice, that three-dimensional surfaces and 

edges appear as lines and points respectively in the two-dimensional section, i. e., their dimen-

sionality decreases by one. If, on a two-dimensional test plane, all points are the intersections 

of three and only three lines (see figure 2) then the density of points on the test plane, PA , is 
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estimated by 2/ii, where ii ( = 1/ NA ) is the average area per grain in a two-dimensional sec-

tion. This relationship can be inferred from the Euler relationship and combined with equation 

1 yields 

where 

NA = ~ = Number of grains per unit area 
a 

Thus, Lv can be inferred from ii. 

(3) 

If the average grain size, b (where b3 = average volurrie), is known and the average 

edge length per grain, e b (e is a numerical factor), is known, then 

where 

1 
Lv=-Nve b 

3 

Nv=~= the number of grains per unit volume 
b 

(4) 

The ; factor is necessary since each edge is shared by three grains. Solving for b in equation 4 

yields 

-J;f kLv f-
bL = --=--=kL va 

v 3Lv ~ v 
(5) 

where 

Similarly, if the average surface area per grain, s b2 (5 is a numerical factor), is known, then 

1 2 1 1 2 Sv=-Nvs b =--s b 
2 2 b3 

ie 
I 
i 
I 

I 

I 
\. 

l 
I 
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! 
I 
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S kSr -
bs =--=-=k~· I v 2Sv NL . v 

S 
ks =

v 4 

(6) 

The subscripts Lv and Sv denote the source of the calculation. e and S are strongly shape 

dependent and are difficult to determine for real microstructures. 

In a classic paper J. L. Meijering [2] calculates e and s exactly for microstructures 

created by random nucleation and gro\\-1h. In his "cell model" nucleation sites are random in 

space and each volume element belongs to that grain whose nucleus is nearest. The resulting 

microstructure consists of space filling irregular polyhedrons whose surfaces are points equidis-

tant from two nucleation sites but no closer to any other nucleus. In the "cell model" 

5 ) 

e= (41T~3 3 3 r( ~ ):=:::17.4956 

s=( 25tr ) + r( ; ):=:::5.82087 

The corresponding values of ksv and kLv are 1.4552 and 1.2075 respectively. Therefore, given 

a microstructure defined by Meijering's "cell model" we can calculate the average grain density 

by either measuring a or Ton a two-dimensional test section. Although other microstructures 

will have different values for ks and kL , we shall use Meijering's values extensively since they v v 
f} 

are exactly derivable for a non-regular microstructure. An inherent difficulty in the experimen-

tal analysis of real microstructures is the determination of b. To overcome this difficulty a 

variety of non-regular microstructures are computer modeled where b is precisely known. The 

computer modeling technique and results follow .. 
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3. COMPUTER MODELING PROCEDURE 

A Meijering "cell model" is computer simulated by I1rst generating random nuclea

tion sites in a three-dimensional unit cube with periodic boundary conditions.' Then sophisti

cated computer techniques are used to construct a connected graph where nodes are corners of 

the resulting irregular polyhedrons and paths are polyhedron edges that connect corners. Nodes 

are locations in space equidistant from four nucleation sites but no closer to any other nucleus. 

Edges are lines equidistant from three nucleation sites but no closer to any other nucleus. 

Once the connected graph is constructed all three-dimensional information including volume, 

surface and edge distributions are calculated precisely. Two-dimensional test planes are chosen 

(see figure 1) and the corresponding two-dimensional features are extracted. Lines are scribed 

onto the two-dimensional section to determine NL . The simulation code samples 100 evenly 

spaced planes and 100 scribed lines on each plane. The computer model is verified by testing 

all of the previously described fundamental relationships and Meijering's constants for the cell 

model. The first two cases in table 1 show the two and three-dimensional agreement for a 

simulated Meijering "cell model." The first half of table! is calculated from two-dimensional 

data while the second half is calculated from three-dimensional data. The agreement between 

columns 3 and 6 simply verifies equation 1 and similarly the agreement between columns 4 and 

7 verifies equation 2. All results in table 1 are expressed in units of b. 

The microstructure modeling technique described does not require random nuclea

tion sites. The simulation can be used to study a variety of microstructures created by pre

ferred nucleation sites and· isotropic growth until impingement. Transformed microstructures 

are generated by chosing a density of preferred sites (corners, edges or surfaces) from a previ

ous microstructure. Figure 1 shows examples of a "cell model" and various transformed 

microstructures. Any criteria can be used to select nucleation sites, enabling examination of 

the effects of preferred nucleation sites on microstructure morphologies. 

The computer simulation technique described has been used for a variety of 



Sa 

Case N, 
Two-dimensional data Three-dimensional data 

f--- \ 

bl,v b,\,v 2b -b, bl,v b,\,v 2b -b, 
1,1' Sv I, v '\1' .' 

1 1011 .9998 .9996 1.0001 

2 1000 .9999 1.0012 .9986 .9997 .9992 1.0002 

3 671 .9608 .9322 .9894 .9614 .9342 .9887 

4 1000 .9505 .8951 1.0059 .9533 ,9065 1.0002 

5 1000 .9819 ,9641 .9997 .9860 ,9732 .9987 

6 1000 .9699 .9471 ,9927 .9659 .9372 .9946 

7 1000 .9835 .9491 1.0178 ,9775 .9543 1.0006 

8 1000 .9902 .9800 1.0004 .9945 .9885 1.0006 

9 510 .9621 .9369 .9873 

10 1011 ,9577 .9244 .9910 

11 2732 .9591 .9287 .9894 

12 2698 .9628 .9356 .9900 

13 2423 .9867 .9808 .9926 

14 2839 .9849 .9806 .9893 

15 256 1.0330 1.0786 .9874 

16 500 1.0314 1.0736 .9891 

17 500 1.0302 1.0706 .9898 

18 500 1.0301 1.0698 .9905 

19 500 1.0316 1.0739 .9892 
i' 

20 500 1.0327 1.0766 .9887 

21 1000 .8538 .8051 .9025 .9304 .8793 .9815 

22 1000 1.0565 1.1216 .9914 1.0550 1.1197 .9902 

23 1.0906 1.1318 1.0494 

24 .9859 .9701 1.0017 

25 1.0445 1.0952 .9939 

26 1.0299 1.0889 .9708 

XBL 786-9099 
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scientific applications. In the interest of completeness all results are reported, including those 

obtained before the two-dimensional subroutine was written. N v is the number of cells per 

unit volume of the final microstructure. b=Nvl/ 3, was used to normalize table 1. Cases 1 and 

2 were created by chosing random nucleation sites. Cases 3 through 14 were created by first 

generating microstructures from random nucleation sites and then creating a new microstruc

ture by randomly nucleating on either surfaces, edges, or corners. Cases 13 and 14 were 

created by a double transformation involving nucleation on all corners of the initially randomly 

nucleated "cellular" microstructure and then nucleating on all corners of the resultant micros

tructure. Cases 3, 9, 10, 11 and 12 were created by nucleating on all corners of an initially ran

dom microstructure. Case 6 was created by nucleating on 1000 random corners of an initially 

randomly nucleated microstructure containing 200 cells (not all corners were nucleated.) Cases 

4 and 5 were created by nucleation of 1000 random sites on edges and surfaces respectively of 

an initial microstructure containing 100 randomly nucleated cells. Cases 7 and 8 are identical to 

4 and 5 respectively, except that the original microstructure contained 200 cells. In cases 3 

through 14 each transformation consumes the previous microstructure. 

Cases 15 through 20 were created by considering high densities of hard spheres in 

various semi-ordered and random configurations. The centers of these spheres were used as 

nucleation sites for the resultant microstructures. Case 21 was created by nucleating 1000 ran

dom sites on five equally space planes. The two-dimensional planes represent a random nuclea

tion in two-dimensions. These planes were used in table 1 and therefore do not represent ran

dom sections. However, the corresponding three-dimensional results are surprisingly good and 

would be expected if randomly oriented sections had been examined. 

Case 22 was generated by chosing x, y and z nucleation coordinates independently 

with a density proportional to their distance from the center of their respective axes, i. e., cell 

density decreases near the center. Case 23 is for a "Johnson Mehl" microstructure where 

nucleation occurs randomly in time and space [2]. Cases 24, 25 and 26 are regular space filling 

geometries created by nucleation at simple cubic, body center cubic and face center cubic lattice 
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sites respectively. The cell shape for case 25 is a truncated octahedron ( e=22/36.J3 and 

s=25/63 ). The cell shape for case 26 is a rhombic dodecahedron ( e=25/69 and 

4. RESULTS 

Table 1 containes the estimated values (equations 5 and 6) for bLv and bsv using 

Meijering's "cell model" constants ( e = 17.4956 and s = 5.82087) for a variety of microstruc-

tures. The error in these estimated values reflect the microstructural dependence of kLv and 

ksv. However, the error in bsv is approximately twice that of bLv suggesting the following rela-

tionship, 

b=2bL -bs v v 
(7) 

Columns 5 and 8 in table 1 were calculated from equation 7. Although the grain size predicted 

by either equation 5 or 6 independently vary significantly, equation 7 yields a value usually 

within 1 % of the actual value. Therefore, the linear extrapolation suggested by equation 7 is 

relatively insensitive to microstructure morphologies. 

Furthermore, some well known space filling geometries are examined with respect to 

equation 7. A simple cubic structure has a surface area per grain of 6b2 and an average edge 

length of 18b if each edge is shared by only three cubes. This can be visualized by perturbing 

each edge slightly such that it is really two edges (see figure 2). This is especially convenient 

since a measure of Lv for a cubic structure using jj (equation 3) on random test planes would 

predict 18b. Similarly, for a cube-octahedron the surface area is 5.315b2 and the edge density is 

i: 
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I, 
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16.04b. Table 1 shows the estimated values of b for these structures using equation 7. In both 

cases the predicted value of b is surprisingly good considering the constants for equation 7 are 

derived for a non-regular microstructure. The errors, although small, indicate that equation 7 

is not an exact relationship. However, equation 7 provides a very accurate estimate of grain 

density, N v, for all morphologies considered . 

5. THEORY 

Many space filling microstructures have been examined and all tend to obey the 

relationship suggested by equation 7. To analyze this relationship one must consider how Sv 

and Lv will vary when the geometry of a microstructure is altered. Given a microstructure, it 

can be transformed to another microstructure by moving and distorting grain boundaries. A 

completely general accounting of grain boundary distortion appears mathematically intractable. 

However, we consider two mathematically calculable distortions, compression and elongation. 

Consider a randomly oriented microstructure of known grain density ( b=bsv=bLv ). 

If this system is compressed at constant volume (e.g. the rolling of metals), S v and L v will be 

altered changing the bsv and bLv predicted by equations 5 and 6. For our deformation parameter 

we chose e, where 

e=~h-z2 

where z is the ratio of compressed axis to the elongated axes. 

Then the change in bsv and bLv as a function e (see appendix) can be calculated . 

iibs/e)=b-bs/e) (8a) 

~ s:~~) /1-+h2) -t+O_.2) t In«1+1:0 -<» n (Sb) 
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(9a) 

(9b) 

where 

Sv(O)=Sv at zero deformation 

Lv(O)=Lv at zero deformation 

The ratio of equation 8 to equation 9 is plotted in figure 3. This ratio goes to 2 asE-O. Con-

sider the following limits for equations 8 and 9, 

(10) 

(1 I) 

Solving for b in terms of bSv(E) and bL/E) using equations 8a, 9a, 10 and 11 yields 

(12) 

which in the limit of E-O, is identical to equation 7. A similar analysis for elongation (e.g. 

wire drawing procedures) yields identical results for equations 10, 11 and thus 12. 

The derivation makes no assumptions about initial values of ksv or kLv' Also equa-

tion 12 is additive, i. e., different parts of the microstructure can be compressed and elongated 

to different degrees and the cumulative results will still yield equation 12. This result suggests 

why equation 7 is expected. 

I 

I 
i 
b 
i 
I 
I , 
i 
l. 
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6. A METHOD FOR EVALUATING N v 

To determine the average grain density in a three-dimensional microstructure from 

two-dimensional sections we suggest using equation 7 with Meijering's "cell model" coefficients 

(kLv = 1.2075 and ksv = 1.4552). Then b is given by 

b=2.4150~ -1.45521 

N _( 2.4150 
v-.J}i"; 

(13a) 

(I3b) 

As previously indicated, the sample plane(s) must be randomly orientated with respect to the 

microstructure. 

a can be measured by first selecting a random rectangular area on the test plane. 

Then counting the number of grains in the test area, counting grains that intersect the edges 

and corners as half and quarter grains respectively. a is found by dividing the test area by the 

number of grains. I can be measured by first drawing lines across the rectangle. Then counting 

the number of line intercepts, i. e., where the scribed lines intersect grain boundaries. lis the 

total test lin~ length divided by the number of intersections. 

7. DISCUSSION 

Much controversy has existed regarding whether grain size should be measured 

using a (ASTM and Jeffery's method) or I (Heyn's method). The former method is related to 

Lv while the later is related to Sv. Neither method can be directly correlated to grain density 

(see table 1) because of varying cell shape geometries encountered in different microstructures. 

However, we have presented a method using both parameters, Lv and Sv, to more precisely 

estimate N v. Inversely, this additional knowledge combined with Lv and Sv should provide 

i 
I 
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useful information about microstructure geometries and stability. For example, the stability of 

microstructures can be correlated with surface area per grain, i. e., a microstructure with high 

surface area per grain has a corresponding high surface energy per grain. It should prove 

instructive to study phenomenon such as grain growth wi~h respect to stored surface energy per 

grain. 

In general, equation 13 enables three-dimensional grain density, N v, to be estimated 

from two-dimensional quantities, a and T. While stereologists can estimate Lv and Sv from 

these two-dimensional parameters, we have exhibited a method for also estimating the three

dimensional grain density, N v . In contrast to previous methods [1, 4, 5, 6], this procedure 

does not require information about shape or size distribution of the features. 

This procedure also holds for certain non space filling features, i. e., where the 

volume fraction is < 1. For example, if any of the microstructures considered herein were 

allowed to dissociate leaving free space between grains, a and T for these particles would not 

change, enabling application of equation 13a. If equally sized spherical inclusions are con

sidered, equation l3a predicts a sphere size within 3.6% of the actual size. 
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APPENDIX 

Determination of Lv and Sv at constant volume during compression and elongation 

as a function of deformation can be done by specifing and solving equivalent problems. First 

we consider compression where the axes orthogonal to the compressed axis expand uniformly 

to maintain constant volume (and thus constant cell density). If we consider a volume element 

that contains randomly oriented surfaces, the expected surface density for any given orientation 

is identical to that of any other orientation. Another geometry that has the equivalent property 

is the surface of a sphere (or hemisphere). Therefore, we can insert a sphere of unit area 

inside the volume element and relocate all grain boundary surfa~es to portions of the sphere 

having the same orientation without altering the density of surfaces with respect to orientation. 

If the volume element including the sphere is compressed uniformly at constant volume, then 

the sphere will be transformed into an oblate spheroid having the same volume as the initial 

sphere. The surface area and volume of the oblate spheroid are 

where 

then, 

b2 
surjace=21ra 2+7T-In«(l +e)/(l-e» 

e 

e=-J1-( !)2 

(AI) 

(A2) 

(A3) 

where a and b are the major and minor axis respectively of the oblate spheroid. (Note, a and b 

have different meaning in this appendix, and should not be confused with the main text.) 

A similar analysis for an elongated prolate spheroid yields 

(A4) 

1 

i I 
I 

i 
i 
I 

~i 
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where a and b are the major and minor axis respectively of the prolate spheroid. 

To calculate the change in L v we use a similar analysis. Again we consider a 

volume element where lines in three-dimensional space are randomly oriented. If we consider 

• a sphere where the density of diameters is everywhere equally probable, then the normalized 

density of diameters as a function of 0 is cosO, where 0 is the angle between a diameter and the 

t plane perpendicular to the axis of compression (see figure 4). Again the density of diameters 

with respect to orientation is random. If the sphere is compressed at constant volume, the den-

sity of diameters is given by 

7T 

(A5) 

where 

e=.J1-( !)2 
Recasting this equation solely in terms of e yields 

Lv(e) =.l!O-e2) + +O-e2) -i sin-I; I 
Lv(O) 2 . e 

(A6) 

A similar expression for elongated material where a and b are the major and minor 

axis of the prolate spheroid yields 

(A7) 

• 
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