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[T]here are known knowns; there are things we know we know. We also know 

there are known unknowns; that is to say we know there some things we do not 

know. But there are also unknown unknowns; there are things we do not know 

we don't know. 

  Donald Rumsfeld  
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 The cell is a complex biological network that is capable of transitioning to 

a wide variety of states. Enumerating, defining, and understanding the 

mechanisms behind cellular states are important problems of Systems Biology. 

This document contains insights gleaned from the study of three systems wide 

problems: transcription regulation by NF-kB, oxidative stress in response to 

reactive oxidative species, and gene expression changes caused by creation of 



 
 

xxiv 

lentiviral mediated cancer models.  A consideration by literature review is 

provided of the historical problem formulations for studying mechanisms of NF-

kB target gene regulation. Previous formulations of regulation are useful as 

frameworks for experimental design of future experiments when considered 

without bias towards prior assumptions. A description of the construction of a 

network bridging the multitude of cell responses to hydrogen peroxide is provided 

along with failed attempts to validate that network. Potential regulation by heme 

in response to oxidative stress reveals an ever tighter relationship between ROS, 

metabolism, and cell death. Application of molecular signatures defined from 

human primary cancers is used for determining the suitability of mouse cancer 

models generated from lentiviral constructs for the study of human primary 

cancers. Mouse tumors generated artificially display a surprising degree of 

concordance with primary cancers. The ability of high throughput technologies to 

query nearly the entire state of the cell can lead to undesirable complexity. 

Application of simplifying assumptions derived from the consideration of the 

biological fundamental problem as opposed from technical limitations allows a 

reduction of in complexity that elucidates areas for future study. 



 

 1 

INTRODUCTION 

 

Bioinformatics and Systems Biology 

 Bioinformatics is a broad interdisciplinary field associated with large 

biological data sets. High throughput experimental techniques allow the 

generation of data sets that span thousands of genes across multiple conditions. 

This size exceeds the ability of a human being to manually organize and analyze, 

and has posed novel statistical problems complicating analysis. Systems biology 

arises from the need to understand these large understand data sets and to 

study relations or interactions that are not readily apparent such as emergent 

properties1. In a sense, systems biology is the study of cellular complexity, or the 

cell as a system. 

 This dissertation contains the study of three independent problems: 

searching for mechanistic insight of NF-kappaB binding, reconstructing cellular 

networks involved in response to oxidative stress, and relating lentiviral mediated 

mouse tumors to existing genetically engineered mouse models or primary 

human tumors. Data was generated on thousands of genes, across multiple time 

points, conditions, or mutations. The major issues associated with high 

throughput data are: intrinsic noise, either biological or technical; low number of 

replicates; multiple testing; undefined and unannotated genes. The bioinformatics 

aspect of this work is involved in fitting experimental data to known models. The 

systems biology aspect is an attempt to glean additional insights beyond the
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concerns of the original experimental designs, and to understand the interplay 

between cellular responses and pathways. 

 

Experimental Methods 

 High throughput technologies are based on extensions of standard 

experimental protocols. High throughput assays are capable of querying on the 

order of thousands of genes at a time, but this breadth comes at the expense of 

cost, specificity, and sensitivity. The fundamental techniques having been utilized 

in various combinations for all high throughput assays are hybridization, 

sequencing, molecule based detection, and amplification with low bias. While the 

dizzying pace of technology may complicate proper experimental design, many 

limitations of high throughput assays are directly related to the fundamental 

technologies upon which the assays are based. 

 Microarrays. Hybridization is the key process for all array based 

technologies and is an extension of Northern and Southern blotting2-4. 

Synthesized oligonucleotide sequences, typically twenty five to fifty base pairs in 

length, are placed on defined coordinates, or in an array, very small distances 

apart on a substrate. Sequences, or probes, for each position in an array consist 

of one defined, complementary sequence to ideally one target. Samples are 

typically labeled with a fluorophore and thus the intensity of a probe correlates 

with abundance of the target sequence. Transcriptome analysis can be 

performed by microarrays5 with corresponding coding DNA (cDNA) probes 
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mechanically spotted6, or placed using inkjet printer technology (Agilent). De 

novo oligonucleotide synthesis can also be performed in place using silicon 

lithography based techniques (Affymetrix), or even technology developed for 

televisions (Nimblegen). Microarrays have also been successfully applied to 

other assays such as comparative genomic hybridization7 (CGH), chromatin 

immunoprecipitation8 (ChIP), micro RNA (miRNA), single nucleotide 

polymorphism (SNP), and protein-DNA binding (PBM) detection9. Antibody 

arrays for detection of protein abundance are conceptually similar, with 

antibodies used as detectors instead of oligonucleotides sequences. While array 

technologies are mature and robust, a key disadvantage is the requirement of 

detectors to be selected a priori. 

  Next-Gen Sequencing. Sequencing is the method used to determine the 

order of nucleic acids in a DNA molecule: guanine (G), cytosine (C), adenine (A), 

and thymine (T). Rapid sequencing was made possible by Sanger sequencing10. 

Sequencing was critical for the generation of the human reference genome by 

the Human Genome Project11, and the mouse reference genome12. Current 

"next-gen" high throughput methods rely on pyrosequencing13, or massively 

parallel sequencing by synthesis. This methodology provides many more 

sequences, or reads, at a lower price point, but at the cost of sequenced length 

or read-through. This is not necessarily disadvantageous as most experiments 

rely on a resequencing strategy14. Reads are mapped to references genomes as 

opposed to requiring sufficient coverage to fully assemble a new genome 

sequence. Sequencing has been successfully applied to transcriptome analysis15 
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(RNA-seq), ChIP16 (Chip-seq), nuclear run on17 (Gro-seq), and chromosome or 

genome conformation capture18 (Hi-C). As a base technology, sequencing excels 

where the space of expected sequences is unknown or highly complex. 

  

Computational Methods 

 While high-throughput technology has shifted towards a greater usage of 

sequencing and away from array based technologies, many problems are 

universal to high throughput data sets and previous solutions are directly 

applicable14. Beyond simple parsing, typical bioinformatics tasks are data 

transformation into useful metrics, statistical testing accounting for low replicates 

and multiple testing, and projection of biological knowledge. 

 Preprocessing. Data transformation comprises of removal of poorly 

performing data points, normalization, reduction of noise, and generation of 

useful metrics. All high throughput experimental techniques are designed to 

generate data, and often return miscellaneous or nonsense data. For example, 

gene expression microarrays will return intensity values even if a target transcript 

is absent due to nonspecific cross hybridization. Therefore an important aspect of 

analysis is identification of systematic errors inherent to a particular experimental 

technique, and to eliminate affected data so that it will not skew the entire data 

set. A common step is setting a low intensity threshold, to automatically reject 

probes below the threshold and from which values always remain low19. It should 

be stressed that this step is done without consideration to the gene identity or 

any other information that would introduce bias.  
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 Normalization. Normalization in high throughput experiments is 

performed to eliminate technical sources of noise from within (intra-) and across 

(inter-) arrays. Loess, a popular method of intra-array normalization, is required 

for two color microarrays as dye bias and print deposition artifacts affect the 

distribution of probe intensity20. Inter-array normalization centers the distribution 

of separate samples so that they become comparable. Normalization is required 

to adjust changes in distribution due to variability arising from technical sources 

of noise such as the amount of starting material, labeling efficiency, hybridization 

efficiency, and scanning efficiency. Two common normalization methods are 

rescaling to the global median and quantile-quantile normalization21, 22. 

 Summarization. Arrays and even sequencing often provide multiple 

expression levels for one gene. Affymetrix arrays have multiple probes, typically 

twenty to forty, spread throughout exons of a gene, the collection of which is 

termed a transcript. The task of generating one unified value for a transcript is 

known as probe set summarization. The most popular method, RMA, is based on 

linear regression23. While having multiple transcripts per gene is an indication of 

splicing, such information may not be truly useful as there is not enough useful 

exon information to reconstruct specific splice variants; often information on a 

transcript level is contradictory. For simplicity, a common procedure is to average 

the values for all splice variants or transcripts of a gene to reach a consensus 

value.  

 Early microarray work concerned itself with variance transforming metrics 

due to the fact that low intensities have higher intrinsic noise than higher 
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intensities24. Ratios or fold changes are thus more susceptible to noise if the 

denominator is of low intensity, creating a highly noisy spread of ratios. However, 

these transformations have fallen out of favor with the application of the 

logarithmic base 2 function to reduce noise22. An important benefit is the 

calculation of base 2 fold changes by simple subtraction, which is favored for 

visual interpretation. 

 Differentially Expressed Genes. The challenges of identifying 

statistically significant differentially expressed genes are caused by the low 

number of replicates and multiple testing issues. P-values are random variables 

and are a product of the number of replicates and the true significance25. By the 

central limit theorem, p-values will trend towards the true significance given 

sufficient replicates. Simulations suggest sixteen to thirty two replicates are 

recommended for robust determination of a distribution. Due to cost constraints, 

however, samples are typically replicated only two to three times. This poses a 

severe mathematical issue as the standard deviation cannot be reliably 

calculated from so few replicates and many statistical tests perform poorly as a 

result.  

 Significance calling by arbitrary fold cutoff is not ideal26. Instead, many 

approaches are based on variants of the student's t-test, which is a common 

method to assess the statistical difference between two populations. Alternative 

computational methods based on the t-test have been developed that circumvent 

the low replicates per gene by inferring information from other probes19, 27. The 

most common are Significance Analysis of Microarrays28 (SAM), Limma29, and 
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Cyber-T30. The main difference between these methods is estimation of the 

underlying distribution via permutation versus calculation the standard deviation 

using information from neighboring probes. When the stronger assumptions used 

for Bayesian models are correct, Cyber-T and related approaches such as 

Vampire19 identify fewer false positives at lower fold changes. 

 Multiple Testing, A fairly unique problem to high throughput biological 

experiments is the sheer number of statistical tests. Counter intuitively, each 

gene or probe represents a separate instance and statistical test as opposed to 

each array. Statistical significance is based on the p-value, which represents the 

probability of an observation resulting from chance given a null hypothesis. For 

one hundred tests with a p-value cutoff of 0.05, the rough expectation is that five 

positive tests incorrectly reject the null hypothesis. As array technology is 

capable of surveying tens of thousands of genes, correction for multiple testing is 

required. The Bonferroni correction is an over adjustment by dividing the p-vale 

cutoff by the number of tests to be performed. A more practical alternative is the 

false discovery rate31 (FDR), which is an estimate of the number of false 

positives given the total number of positive calls. FDR is typically calculated by 

permutation28, although model based approaches are in use32. 

 Functional Annotation. There are several strategies to extract biological 

meaning from high throughput data sets. The most straightforward procedure is 

to focus on selected sets of known, biologically important genes for a given 

condition or treatment. A major hindrance to this strategy is knowledge regarding 
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genes is uneven; roughly one- of all genes have at most one published citation 

associated with them as shown in Table Introduction.1. 

Table Introduction. 1: Number of genes distributed by the number of Pubmed citations according 
to the NCBI gene database. Large percentages of genes have no associated publications while a 

significant fraction has more than thirty. 
 

Number of citation(s) Mouse Human 

0 8,050 12,190 

1 1,281 3,509 

2-5 2,020 4,387 

6-10 3,978 3,903 

11-15 4,828 2,568 

16-20 3,750 1,734 

21-25 1,844 1,161 

26-30 9,91 8,35 

30+ 4,121 4,716 

Total Genes 30,863 35,003 

 

In many cases, few citations indicate sequencing papers which simply list or 

describe the discovery of previously unknown transcripts without indicating 

function. Disregarding genes with fewer than two citations, the majority of genes 

have between two and fifteen papers published studying them as shown in 

Figure Introduction.1. In contrast, roughly 20% of the remaining genes have 

greater than thirty papers studying them. Only a subset of genes is well studied, 

with tenuous information or connections for other genes. By focusing on known 



9 
 

 
 

genes, there is less likelihood for studying or understanding novel functions and 

connections, but such an approach does provide confidence in the validity of the 

data. 

 

Figure Introduction. 1: Distribution of genes with more than one Pubmed citation and the number 
of associated citations. Genes with one or few citations were ignored. 

 

 In theory, automated procedures are attractive as they are less likely to 

introduce bias. The most basic is cluster analysis, to group genes by their 

expression33. The assumption is that genes will co-express and co-cluster due to 

commonality in regulation or function34. Significant functional terms can be 

identified through the application of the hyper geometric function35. Terms can be 

derived from assignment by Gene Ontology36, or from curated gene sets derived 

from primary literature. Unfortunately, that vast majority of genes have no 

associated annotation function as shown in figure Introduction.2. Assignment of 

function inferred microarray experiments or homology is often problematic as 

there is a strong tendency to propagate any errors. This can be understood 
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easily when considering a gene cluster of poorly annotated genes. The few 

annotations that are known may be incorrectly assigned to the cluster as a 

whole; however, there may be an unknown true function which in actuality is 

causing the genes to cluster. 

 

 

Figure Introduction. 2: Percentage of genes distributed by the number of functional annotations. 
Majority of genes have unknown functions. 

 

 As with differential gene expression, significance testing of multiple terms 

requires multiple testing correction. Gene Set Enrichment Analysis37 (GSEA) is a 

commonly used alternative to the hyper geometric that controls for multiple 

testing. GSEA is based on the non-parametric Kolmogorov-Smirnov statistic, and 

unlike the hyper geometric, it compares the difference in ranked expression of a 

gene list between two conditions. The background distribution is calculated by 

permutating the phenotype or gene labels, which is used to estimate the FDR. A 

more thorough discussion of GSEA are covered by others38, 39. 
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 Beyond functional annotation, advanced computational methods attempt 

to reconstruct the transcription network controlling gene expression. Typically, 

these methods rely on additional network information such as transcription factor 

binding40, protein-protein interactions41, and sequence information. In terms of 

computational methods, most rely on the hyper geometric, with more complicated 

variants relying on regression trees42. However, this is an area of continuing 

research, as very few models have been built that adequately describe the 

biological complexity observed.  

  

Experimental Design 

 The essential, critical step in high throughput experiments is the 

experimental design. The greatest barrier to successful design is a lack of 

experience, as many techniques are just reaching price points that are feasible 

for smaller scale iterative experiments. Many experimentalists rely too heavily on 

the global nature of high throughput experiments and fail to optimize their 

experimental conditions. Another common mistake is the exclusion of a universal 

baseline, such as a wild type or untreated condition in the mistaken assumption 

that no interesting information will be gained. High throughput assays are most 

reproducible across fold changes43, and having a proper baseline will help 

ensure data is comparable to related, outside data sources.  

 Cost concerns may also affect experimental design. A beneficial approach 

is to first consider the design without regard to cost. This shifts the focus onto 

selection of conditions that will best fulfill experimental goals. An important 
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aspect of design is to consider the outcome if the overarching hypothesis is 

correct. Potentially, consideration should be made to modifications to the 

experimental design with regards to the kind and type of data that could be 

necessary for further analysis. Conversely, if the hypothesis is incorrect, 

modifications should be made to the experimental design incorporate aspects 

that could still allow the generation of useful data. When minimizing cost, the 

number of conditions as opposed to the number of replicates is more important; 

biological trends trump statistical significance at such low number of replicates. 

Replicates should be designed against greatest source of biological noise. As 

high throughput assays are notoriously noisy, a tendency exists to artificially 

reduce noise by replicating across more technically stable conditions. However, it 

is better to reject during analysis trends and hypothesis formed from noisy data 

than to experimentally verify many false ones. 

 

Curse of Dimensionality 

 For multi-dimensional problems, the space of actual solutions is much 

smaller than the possible space. This is the basis on which principle component 

analysis and other such methods perform. However, when considering a 

multidimensional problem, it is not necessarily clear in which directions 

experimental observations should be collected. The problem of dealing with an 

extremely large variable space is known as the curse of dimensionality. For 

biological problems, this relates to finding the correct minimal set of observations 
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required to understand the maximal number of responses. A pertinent example is 

the exclusion of repeat regions from arrays ad sequencing as the length of 

oligonucleotide detectors or sequencing read through is insufficient to specifically 

identify an exact repetitive sequence. This excludes information that is potentially 

troublesome, but if the major effect involves repetitive sequence then no 

observations will be recorded. 

 The point being the use of assumptions forces the collapse of 

dimensionality, as certain portions of the solution space become unobservable. 

This is often done by design, as there are aspects of a system's behavior that are 

not of interest. At times assumptions are taken for practical reasons, in that the 

limitations of the assays involved impose deficiencies. However, if those 

assumptions are improper, the space of correct solutions may be unreachable. A 

key difficulty is when no correct solution is obtained, it is impossible to determine 

which assumptions may be incorrect without independently testing each 

assumption. The remaining solution space may still be intractable even with a 

correct set of assumptions.   
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CHAPTER 1 NF-kB BINDING 

 

Introduction 

 The genome is the collection of inheritable traits passed from parent to 

offspring2. In mammals and higher organisms, the genome is encoded as a DNA 

double helix, and condensed into superstructures or chromosomes to fit within a 

cell nucleus. The Central Dogma, as formulated by Crick, highlights the major 

cellular actors and describes the flow of residue specific sequential information 

between them44. A broader view of this framework is that the information 

encoded in DNA is transcribed to messenger RNA (mRNA); mRNA is translated 

by the ribosome to a polypeptide chain of amino acids, or protein; proteins act as 

the functional units of the cell2. 

 The genome is essentially the same for all cells within an multi-cellular 

organism; important exceptions being certain immunity and reproductive cells2. 

Therefore, mechanisms are required to control the activity of proteins as a 

specific cell type has a defined task with a requirement to react to specific 

extracellular responses. Besides controlling the activity of proteins through post-

translational modifications, the activity of a protein can be controlled by its 

abundance. Sequences for proteins may not be transcribed and translated until 

specific regulatory conditions are met, or the rate of transcription may increase or 

decrease. 
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 RNA polymerase II (POL II) is the enzyme that transcribes DNA into 

messenger RNA. Proteins that interact with POL II and affect the rate of 

transcription are known as transcription factors. The class of transcription factors 

that modulate transcription through direct binding of sequence based response 

elements are known as sequence specific transcription factors. A minority of 

sequence specific transcription factors have been well studied: the upstream 

signaling pathways and subsequent events required for transcription factor 

activation; typical interacting partners or additional events required for 

transcriptional regulation; collections of model or target genes; the three 

dimensional crystal structure with a bound response element; and predictive 

representations of the response element calculated from hundreds of sequences. 

Given the totality of knowledge regarding this select group, it is surprising that it 

remains difficult to accurately predict the expression patterns of target genes or 

to explain why a seemingly valid response elements is not active. 

 Representations of Response Elements. Protein-DNA interaction is 

best observed in its true three dimensional (3D) state. However, such crystal 

structures between transcription factor and response elements are rare, and do 

not adequately cover the possible interaction space. The local 3D structure of 

DNA is unknown and is often abstracted to a string a of simple sequences: A, C, 

G, T. For this reason response elements are typically simplified to sets of 

degenerate sequences, or collections of sequences that are specific but not 

absolutely so45. 
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  As response elements are degenerate, the collection of sequences can 

be represented as a motif or consensus binding site which is an average of 

nucleotide frequency46 (figure 1.1). Nucleotides with the highest frequency, or 

consensus, at each position represent that position in a winner take all fashion. 

As some response elements are inadequately represented in such a fashion, an 

alternate alphabet was described, IUPAC. As additional sequences are collected, 

the IUPAC representation is still insufficient to represent response elements. A 

frequency matrix, position specific scoring matrix (PSSMs), based on the 

appearance of each nucleotide for each position over all sequences can be 

calculated. Shannon's information of the frequencies can be used for visual 

purposes, and graphically represent PSSMs sequence logos (figure 1.2). A major 

assumption is that each position is independent; independence is known to be 

incorrect, yet position independent effects often outweigh the positional 

dependent effects47, such that PSSMs are adequate representations. In vitro 

protein-DNA binding data has been shown to be recapitulated by relatively 

simple models of binding, using positional independent models48.  

 

Figure 1. 1: Degenerate sequences of transcription factor binding sites can be represented as 
consensus, or winner take all, sequences. For more complex specificities, an alternate alphabet 

IUPAC was created. 
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Figure 1. 2: Position specific scoring matrices (PSSMs) can be calculated based on nucleotide 
frequencies in a set of binding sets. PSSMs can be visualized using Shannon Information as 
sequence logos. Larger letters contribute more information and indicate a nucleotide-position 

specific requirement. 

 

 NF-kappaB Family. Nuclear factor kappa-light-chain-enhancer of 

activated B cells, abbreviated as NF-kappaB or NF-kB, is a family of transcription 

factors that was originally observed to bind to a enhancer sequence found in the 

light chain kappa immunoglobulin gene49. At first thought to be B-cell specific, 

latent activity of NF-kB was found to be ubiquitous, and highly inducible by a 

wide variety of ligands50. Signaling pathways51, and the cross-talk between 

them52, involved the proper activation of NF-kB for the recruitment of Pol II have 

been elucidated53. 

 NF-kappaB family members RELA (p65), C-REL, and RELB have 

transcriptional activation domains that recruits POL II54 . NFKB1 and NFKB2 lack 

transcriptional activation domains and require dimerization with other family 

remembers or cofactors such as BCL3 to activate transcription. NF-kappaB 

family members are known to form multiple hetero- and homo-dimers, but the 

RelA/p50 heterodimers is the most ubiquitous and is synonymous with name NF-

kappaB or NF-kB. The crystal structure of DNA bound NF-kappaB has been 
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solved55. In vitro NF-kappaB dimer specific binding has been revealed to follow 

three general classes: homodimers of RelA or C-REL; heteodimers; and 

homodimers of p50 or p5256, 

 Key NF-kB targets are of considerable interest and have provided broad 

biological insights. TNF-alpha is a critical component of inflammation and is 

associated with many disease states. NFKBIA is a direct negative regulator and 

target gene of NF-kB, and acts as a biological negative feedback system57. The 

interferon beta gene has been used in vitro transcription to study the effects of 

enhancer and transcription factor binding58. A multitude of other target genes 

have been identified and reveal NF-kB to be an important regulator in many 

biological processes50, 59. 

 Yet given the totality of this information, it is not possible to accurately 

predict a priori above random chance if a gene will be regulated by NF-kB. NF-kB 

is so well studied that the term "NF-kappa BETA" yields enough Pubmed 

citations to be considered a well studied gene. NF-kB binding appears too 

widespread; finding enrichment for the consensus site is simpler than 

understanding the mechanism by which seeming valid response elements are 

not regulated. Historical formulations for understanding transcription factor 

binding to their response elements arose due to limitations in technology and the 

state of knowledge. As technology and the state of the field have advanced, 

subsequent problem formulations have become more complex. Revisiting earlier 

formulations may still provide useful insights when considering an experimental 

design, especially in light of new technology. 



19 
 

 

 

Secret Word Problem 

 Historical Perspective. Before the sequencing of the reference genomes, 

potential regulatory sequence of many genes was unknown. A successful 

strategy employed for the initial discovery of some transcription factors was 

usage of the electron mobility shift assay49. Regulatory sequences could be 

screened and shown to be significant with the use of unlabeled cold oligo. 

Screening of the regulatory sequences for putative target genes also revealed 

the presence of consensus sites. This introduced the misconception that the 

sequences transcription factors bind to were relatively rare, akin to a secret word.  

 Predictive Power. With the publication of reference genomes such as 

human and mouse, the predictive power of motifs, consensus sequences, and 

PSSMs is easily testable. As the NF-kappaB family are sequence specific 

transcription factors, prediction of target gene expression should be strongly 

correlated with presence of a consensus site. A simple search using PSSMs 

across upstream, proximal regulatory sequences for genes (promoters) reveals 

that nearly every promoter has at least one reasonable facsimile for a NF-kB 

binding site. Even applying relatively strict scoring thresholds, it is difficult to 

discern a putative target from a false positive. That is not to say this approach 

cannot generate interesting results (figure 1.3), only that is generates too many 

targets to functionally test. The difficulty becomes not in finding target genes but 

in rejecting or ranking them. 
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Figure 1. 3: NF-kB PSSMs from TRANSFAC predict multiple binding sites in the NFKBIA, a key 
target gene of NF-kB. Increasing of thresholds based on the standard deviation progressively 

filter hits. Hits 3.0 standard deviations above average the score represent the top 0.15%. Setting 
thresholds too highly quickly causes the rejection of true binding sites. 

 

 Conservation. As the number of reference genomes increased, an 

additional constraint of conservation was imposed. The argument for this 

approach is if a sequence is a true regulatory element, it is more likely 

conserved. It is known this assumption is grossly incorrect as species specific 

differences are purely genetic60, 61. Conservation as a filter is meant for 

convenience as opposed to being motivated by a biological underpinning (see 

figures 1.4 and 1.5). For example, microarray expression is filtered by a 

significance cutoff to reduce the number of false positive, not because the 

number of genes is cumbersome. Conservation would not be a bad assumption if 
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a putative gene is known to exhibit a similar expression pattern across multiple 

organisms, then filtering would be appropriate. 

 

 

Figure 1. 4: Conservation of binding sites between organisms falsely appears to be a reasonable 
approach to filter putative binding sites. In the case of ACT, the only high scoring site can be 

rejected on the basis of conservation. 

 

 

Figure 1. 5: Conservation is not a reliable indicator for the likelihood of NF-kB binding. TNF alpha 
is a critical gene in both mouse and human, but real binding sites can be lost if only conservation 

is considered. 
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  Given the disconnect between the expected number of target genes and 

the abundance of putative targets from genomic scans, aspects of PSSMs 

themselves were called into question. PSSMs were typically generated from a 

small number of sequences from in vitro assays62, and assumed positional 

independence. The true promoter length was unknown, and the length of 

average PSSMs were too short compared to the often arbitrarily chosen 

promoter sizes, creating a "twilight zone" in which subtle motifs are difficult to 

detect63.  A legitimate complaint against genome wide searches is the lack of 

context. The cell controls gene expression not only by sequence specific 

transcription factors, and searching only sequence (admittedly not by choice) 

expands the search space too large. However, the possibility that NF-kB binds 

many promoters in a wide spread fashion seemed unlikely and was largely 

rejected. 

 

Expression 

 Target Genes. As Pahl 1999 commented to be considered a "bonafide" 

target a gene must first be proven to have a bound regulatory element in a cell 

based system and said element must be mutated and proven to change 

expression50. Before sequence was readily available it seemed reasonable to 

define target genes solely on that presence of a consensus site. It is now known 

that expression and enrichment together are weak predictors of target gene 

regulation64, and lists of NF-kB targets likely contain false positives. 
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 Many model genes were identified as target genes due to their biological 

significance, and for being potently induced by NF-kB. These properties do not 

necessarily translate as representative of other NF-kB targets. This is not to 

downplay their significance, but their uniqueness may indicate their mechanisms 

of regulation may not be completely general. 

 Expression. Large scale microarray studies of inducers of NF-kB have 

indicated expression of many thousands of genes. Expression profiles in 

response to pathogens65, and purified components of pathogens66, 67, have 

indicated a common response with cell type specific and ligand specific 

components. A key assumption of gene expression analysis is that genes with 

similar function or regulation will co-express34. While true, this does not 

necessarily mean that clustered genes are co-regulated. For example, if two 

transcription factors with different direct targets behave in a similar fashion, their 

target genes will co-express. In addition, many transcription factor directly target 

other transcription factors68, and separating the difference between target genes 

and "dependent" genes is difficult.  

 Often motif and term enrichment is performed on clusters to derive 

biological significance. As motifs are over represented, it is not an easy task to 

determine the true biological significance of enrichment or interpret additional 

binding events. Term enrichment, such as using a list of NF-kB gene may be 

flawed as not all genes are really targets. High throughput assays have the ability 

to query the expression status of thousand of genes, yet in some respects 
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studying gene expression alone comes little closer to understanding the 

underlying rules of NF-kB regulation than sequence searching alone. 

 

Guilt by Association. 

 Chromatin immunoprecipitation (ChIP) allows the direct interrogation of 

DNA bound to proteins. The assumption is that binding of a transcription factor is 

a better predictor of regulation than sequence or expression. Saccani et al. 2003 

showed by ChIP experiments differing heterodimers exchanging occupancy on 

target genes69. This exchange was suggested as a mechanism that explained 

differential expression, as heterodimers vary in their interactions with other 

proteins that would affect transcription. Dimer binding was shown to be rare and 

restricted which increased the likelihood dimer exchange causing the differences 

in expression. 

 High throughput versions of ChIP are capable of studying the binding of a 

transcription factor on a genome-wide basis8. Martone et al described the 

occupancy of NF-kB across chromosome 22; NF-kB binds to many non-

canonical sequences and to sequences beyond the assumed promoter region70. 

Lim et al. 2007 observed similarly wide spread binding of NF-kB on a genome-

wide level71. Schreiber et al. 2006 observed different NF-kB family member 

occupancy, noting that highly expressed genes appear to be bound by multiple 

family members72. Kasowski et al. 2010 demonstrated that for only a small 

subset of genes, loss of activity could be traced to mutated NF-kB binding73; 

although Leung et al. 2004 had previously demonstrated a more interesting case 
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when mutation in NF-kB binding sequence lead to differential, as opposed to lost, 

expression74. Antonaki et al. 2011 described a high degree of non-functional 

binding of NF-kB to Alu-repeats75. 

 It is now apparent that NF-kB binds to many sequences outside expected 

regulatory regions, and many bound sequences do not match canonical motifs. 

NF-kB, while less than appearance of a consensus site, is an insufficient 

indicator of regulation. 

 

Cog in the Machine. 

 Transcription regulation is now studied as a complex mosaic of histone 

modifications, additional co-factors, multiple transcription factors, and cell-type 

specific enhancers76. ChiP-chip and Chip-seq have made rapid and major 

advances in the study of histone modifications and general mechanisms the 

genome is organized; high throughput ChIP assays have been an unabashed 

success in this arena. However, NF-kB is somewhat of an abstraction for any 

sequence specific transcription factor. The goal is not to better understand NF-kB 

mechanism, but broad based mechanisms that play a role in the expression of all 

genes. As histone modifications vary greatly across cell types, the best examples 

related to NF-kB are cell type specificity of inducible of enchancers77-79. 
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Discussion 

 Technology has constantly motivated the reformulation of an essential 

problem for understanding of NF-kB: how does NF-kB regulate target genes in 

such a way to generate specific gene expression patterns? Prior formulations 

were not completely incorrect due to faulty assumptions as once thought and a 

large amount of data suggest that true NF-kB binding is in fact wide spread and 

in many instances may play no cis regulatory function. The problem can now be 

rephrased as what are the mechanistic differences between response elements 

that lead a NF-kB bound sequence to become a regulatory element? At each 

turn, more and more of the state the cell is queryable; the problem has become 

successively more complex. Consensus binding sites are not restricted 

sequences; the accessible sequence of the genome while tightly regulated, is still 

quite large; a large degree of NF-kB binding appears to play no direct regulatory 

role. Previously, deficiencies in problem formulations were assumed to lead to a 

lack of clear cut observations, but widespread binding of NF-kB appears to be 

real. As such, a useful exercise when designing an experiment would be to 

reconsider prior formulations for insight or guidance. 

  The secret word problem essentially concerned with the proper 

representation of a complex 3D interaction projected onto a 2D sequence. While 

PSSMs and their like are drastic simplifications, additional sequence has not lead 

to drastically different PSSMs56. Thus increasing the number and resolution of 

bound sequences may not provide additional information. Rather, PSSMs 

suggest that complex protein-DNA interactions can be with successful 
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represented using simple models. Perhaps the local neighborhood of bound 

regulatory NF-kB resulting from increases in resolution to chromosomal 

conformation assays18, 80 could be similarly simplified. 

 Proper experimental design by maximizing expression differences can 

lead to novel insights using expression arrays. Amit et al. 2009 indentified 24 co-

regulators and 76 "fine-tuners" that explain specificity of pathogen sensing 

pathways by a combined approach of gene expression analysis, sequence 

search, and siRNA pertrubations81. Large previously published expression data 

sets could be used as guidelines to select ligands or inducers that appear to 

maximally differentiate NF-kB regulation. 

 NF-kB binding is too broad, but still much less than general transcription 

factors. Histone modifications have been powerful markers and tools for 

understanding general transcription because they efficiently divide the 

expression space to subclasses and types. In a similar fashion, putative 

cofactors of NF-kb that divide target genes could be screen. Lim et al. 2007 

showed E2F1 as an important coactivator in LPS stimulation. Barish et al. 2010 

demonstrated repression by Bcl-6 as a mechanism for controlling innate 

immunity.  

 Application of new technology has a tendency to increases the 

dimensionality and thus complexity of the observation space. For NF-kB 

regulation of target genes, this has still not lead to a reasonable solution. 

However, not all solutions demand more observations. Berman et al. 2002 

demonstrated a simple filtering procedure using motif enrichment overlap 
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between all regulatory factors in a specific stage in fly development was sufficient 

to predict novel regulator elements and target genes82. Segal et al. 2008 using a 

more complex computation approach was able to correctly predict a large degree 

of gene expression in fly development83. Both these approaches were based 

solely on PSSM enrichment to predict expression. Although it is not entirely clear 

the reasons for their success. Was that fly development is well understood, and 

the major transcription factors and their regulatory combinations are known? Or 

is it because development is a potentially more controlled cellular and physiology 

process than say innate immunity, which is required to react rapidly to a vast 

assortment of potential insults. Or is the just nature of NF-kB binding that is 

unusually more complex?  
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CHAPTER 2 OXIDATIVE STRESS 

 

Introduction 

 Oxidative stress occurs when reactive oxygen species (ROS) accumulate 

within the cell beyond the ability of the anti-oxidant defense systems to clear84. 

Oxidative stress can impair cell function, signaling, and stability85 as cells 

maintain a predominately reducing state by damaging proteins, lipids, and DNA. 

Oxidative stress is negatively associated with such disease states as Alzheimer's 

disease, atherosclerosis, cardiovascular disease, diabetes, lung disease, and 

Parkinson's disease85, 86 while conversely ROS are the main therapeutic agents 

of ionizing radiation and chemotherapy for the treatment of cancer87. 

 Potential outcomes of oxidative stress are clearance, “immunity”, and cell 

death via apoptosis or necrosis. The most destructive ROS, free hydroxyl 

radicals, can be generated from less reactive ROS. As such the cell maintains an 

energy intensive network of enzymes each of which eliminates a specific ROS88. 

However, ROS are endogenously generated, and significantly low basal levels of 

ROS are important mediators for redox cellular signaling pathways89, 90. Gap 

junctions and hemichannels rapidly uptake extracellular ROS in a cell type 

specific manner91. This highlights the importance of intracellular mechanisms 

dealing with oxidative stress caused by exogenous sources of ROS.

 A major detrimental effect of oxidative stress is genotoxic stress as ROS 

directly damages DNA92. In response, DNA repair pathways are activated and if 
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damage is not sufficiently reversed, this can lead to cell death. Cell death can be 

divided into two distinct processes, apoptosis and necrosis85. Apoptosis is a 

controlled method of cell death that is phenotypically characterized by shrinkage. 

The relevant apoptosis pathway for oxidative stress is the p53 dependent 

intrinsic pathway. Necrosis on the other hand appears to be a passive process 

due to acute injury that results in a phenotype of swelling. Necrosis is typically 

considered to be an uncontrolled cell death as it results in damage to nearby 

cells, unlike apoptosis. “Immunity” to oxidative stress has been speculated to be 

a major source of resistance to treatment of cancer93. Mechanisms of acquired 

immunity proposed so far include genomic instability leading to gene loss, 

mutational events leading to up-regulation of ROS clearance, DNA damage 

repair, or loss of p53 activity.  

 To study the biological processes and signaling events that lead from 

oxidative stress to cell death, a systems biology was undertaken approach to 

generate a global view of the cell to observe the changes to networks that deal 

with basal levels of ROS in addition to networks activated by oxidative stress. 

Oxidative stress led to widespread changes in cell signaling, DNA damage 

repair, pro- and anti-apoptotic pathways, and metabolic and energy related 

pathways, especially those dealing with the mitochondria.  
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Hydrogen Peroxide Induces Oxidative Stress in Primary Endothelial 

Cells 

 Hydrogen peroxide is a commonly used inducer of oxidative stress. 

Cultured Primary Human Lung Micro Vascular Endothelial Cells (HMVEC-L) 

grown in EGM2 media were treated with hydrogen peroxide. After exposing cells 

to increasing concentrations of H202 for 6 hours Lactate Dehydrogenase (LDH) 

release was measured to determine cell membrane leakage as a surrogate for 

cell viability and found the median lethal dose to be 100 μm (Figure 2.1). LDH 

release was assayed over time and median lethal concentration and time was 

found to be at 2 hours with 100 μm of hydrogen peroxide. Cells were assayed for 

viability with Calcein AM and ethidium bromide for live and dead cells 

respectively. Little ethidium bromide staining was observed at 6 hours, while  

strong staining at 12 hours and complete staining at 24 hours occurred.  

 

Figure 2. 1: LDH release (units in raw fluorescence) rises in response to increasing amounts of 
hydrogen peroxide (μm). LDH is sequestered in the cytosol in healthy cells. Median lethal dose 

occurs around 100 μm. 
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Figure 2. 2: LDH release (units in raw fluorescence) increases over time in response to 100 μm 
H202; near maximal release after 6 hours. Values not adjusted for LDH half life, which is 9 hours. 

 

 

Figure 2. 3: Live Dead assay with Calcelin AM (Green) measuring live cells and ethidium bromide 
(RED) measuring dead cells. Majority of HMVEC-L cells are dead after 12 hours induction of 100 

μm H202. 

 

 Cells were then treated and harvested at varying time points with 100 μm 

hydrogen peroxide for subsequent gene expression, mass spectrometry, and 
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phospho-protein high throughput experiments. High throughput expression data 

was collected for untreated, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours and 12 

hours. Antibody array data was collected for untreated, 2 hours, 4 hours, 12 

hours, and 24 hours. Data was analyzed using both unsupervised and 

supervised cluster and classification methods to identify pathways activated in 

response to oxidative stress. Supervised classification was derived from known 

ROS and oxidative stress related pathways using online databases and 

expanded with primary literature. 

 

Results 

 Hemichannels and Connexins. Gap junctions have been implicated to 

have a role in the intercellular transmission of apoptotic signaling, characterized 

as the bystander effect94. Gap junctions are formed by the connexin family of 

proteins, which form hemichannels two of which comprise a gap junction. 

Hemichannels themselves have been shown independently of composition in 

gap junctions to mediate early apoptotic signaling, as they allow the direct 

extracellular entry of some apoptotic stimuli such as ROS. In general connexin 

expression (GJA4, GJA2, GJB1, GJB2, GJB3, GJD3, and GJD4) was reliably 

down-regulated consistent with the loss of gap junctions as apoptotic bodies 

form. The exception was GJA1 which showed a reliable up-regulation. Pannexin 

genes were observed to follow a similar trend, as PANX2 and PANX3 were 

sharply down-regulated while PANX1 was highly up-regulated (data not shown). 
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 Cellular Sources of ROS. While excessive amounts of ROS are harmful, 

the cell tolerates a small basal level of hydrogen peroxide for cell signaling90. In 

response to extracellular hydrogen peroxide, changes in known endogenous 

sources of ROS were examined. The predominate sources of sub cellular ROS 

are generation of hydroxyl radicals by the Fenton reaction, generation of 

hydrogen peroxide by catalytic enzymes90, and generation of superoxide ions by 

the electron transport chain95.  

 In the presence of hydrogen peroxide, iron serves as a potent catalyst in 

the generation of hydroxyl radicals described by the Fenton reaction96. As such, 

iron is tightly sequestered as bound components of proteins, or sequestered by 

the ferritin family97. In response to hydrogen peroxide, only a slight increase in 

the transcriptional rate of FTH1 (ferritin heavy chain 1) was observed with no 

other discernible changes in other ferritin family members (data not shown). 

Transferritin is involved in the export of cellular iron, which is can then imported 

into other cells via the transferritin receptor96. Surprisingly, a marked decrease in 

transferritin expression, and a marked increase in transferritin receptor 

expression was observed. This suggest that the cell as a whole has a net deficit 

for iron, even given the excessive amounts of hydrogen peroxide and the 

increased potential to generate hydroxyl radicals. 

 The mitochondria have been implicated to be the major source of 

intracellular ROS, in particular superoxide95. Transcriptional response of 

enzymes that have been associated with ROS generation was examined (figure 

2.4). In general, enzymes associated with the activity of the citric acid cycle were 
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up-regulated while enzymes for other pathways were down-regulated. The mono 

amine oxidases did not exhibit changes in expression. Alpha – glycerophosphate 

dehydrogenase 1 (GPD1), A-ketaglutarate dehydrogenase complex (OGDH), 

Dihydrooratate dehyrdogenase (DHOH) showed strong down-regulation at later 

time points. Conversely, the cytochrome b5 reductase, aconitase, and pyruvate 

dehydrogenase complexes were increasingly up-regulated over time. The 

electron transport chain has been suggested as the major source of sub cellular 

ROS with 0.1% to 1% of reactions generating a superoxide ion95 (figure 2.5). 

Complex II, Cytochrome C, and enzymes responsible for biosynthesis of 

Coenzyme Q showed strong late expression. Complex I, III, and IV had members 

that were both strongly up and down regulated (data not shown). Taken as a 

whole, this suggests in response to oxidative stress mitochondrial activity is 

increased especially citric acid cycle activity. As many of these enzymes are 

associated with energy and in fact are up-regulated, it appears the cell has need 

for additional energy during oxidative stress beyond normal resting activity.  
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Figure 2. 4: Mitochondrial sources of hydrogen peroxide are not uniformly up- or down- regulated. 

. 

 

Figure 2. 5: Electron transport chain shows an increase in expression, indicating an increase in 
metabolic ability like due to an increase in energy demands of the cell. 

 

 NADPH oxidase (NOX) and dual oxidase (DUOX) family of proteins 

generate ROS species in a regulated manner98. They are structurally similar to 

phagocyte NADPH oxidase (PHOX), but generate low amounts of ROS to 
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mediate cell growth and signaling. No any noticeable expression changes in the 

NOX family were observed; however the two NOX accessory proteins, NOXO1, 

and NOXA1 showed a marked repression. NOXO1 and NOXA1 greatly increase 

the rate by which NOX1 generates hydrogen peroxide98 (see figure 2.6). This 

suggests the cell is potentially limiting ROS generation of redox signaling via this 

the NOX family. However, as a whole the cell does not down-regulate enzymes 

or activities associated with ROS generation. 

 

Figure 2. 6: NOX family of proteins is not statistically different, but de-regulation of accessory 
proteins NOXO1 and NOXA1 in response to hydrogen peroxide reduces ability of NOX1 to 

generate ROS. 

 

 ROS clearance. The three most common ROS are the hydroxyl radical 

(OH-), hydrogen peroxide (H202) and superoxide (O3-). Hydroxyl radicals are too 

reactive to clear before causing damage; hydroxyl radicals can be generated 

directly by the Fenton reaction96, which describes a self sustaining oxidization of 
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ferrous iron by hydrogen peroxide. Hydrogen peroxide in turn is generated by the 

reaction of superoxide and water (figure 2.6). To compensate, the cell utilizes a 

large and ROS-specific system of enzymes to efficiently clear intracellular ROS. 

Enzymes are localized in either the cytoplasm or mitochondria on a protein 

specific basis as opposed to ROS specific basis. 

 

Figure 2. 7: Major reactive species in the cell are Superoxide, Hydrogen Peroxide, and the 
hydroxl radical. The cell maintains a network of antioxidant cells to clear ROS, which are 

endogenously generated. 

 

 The superoxide dismutases (SODs) convert superoxide into hydrogen 

peroxide99. There was strong up-regulation of the mitochondrial SOD2 and weak 

up-regulation of SOD3, which has been suggested to have extracellular activity. 

This is consistent with our previous observation that mitochondrial sources of 

ROS are up-regulated due to the cell’s energy demand. 

 The three major protein families responsible for hydrogen peroxide 

reduction to water are the peroxiredoxins100, 101 (PRDX), glutathione 

peroxidases102(GPX), and catalse103 (CAT). In addition, a large accessory 

network comprised of the sestrins (SESN) and thioredoxins (TXN) is responsible 
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for the recycling of PRDXs as they are inactivated after processing ROS101. This 

is considered the mechanism by which cells tolerate a basal level of hydrogen 

peroxide for cell signaling purposes, while still maintaining clearance capabilities. 

In general ROS clearance enzymes are strongly up-regulated in response to 

oxidative stress, regardless of their cellular localization (figure 2.8). 

 

Figure 2. 8: Antioxidant proteins involved in ROS clearance become up-regulated in response to 
hydrogen peroxide 

 

 While it is not surprising that hydrogen peroxide and hydroxyl radical 

clearance mechanisms are up-regulated in response to oxidative stress, it is 

surprising to find SOD2 up-regulated to such a degree while SOD1 remains 

unchanged. This suggests mitochondrial activity is a specific concern with regard 
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to additional ROS burden experience by the cell. The ROS clearance network is 

itself energy intensive, and is a possible reason for increased cellular demand for 

energy. 

 MAPK/P38 signaling. The MAPK is a three tiered kinase cascade 

activated by cellular stress or extracellular ligands104. MAPK is a crucial pathway 

regulating proliferation, cell survival, differentiation and death. H202 has been 

reported to activate ERK1, ERK2, ERK5, JNK, and p38. JNK and p39 in 

particular are critical for stress induced cell death. Western blotting of MAPK 

phosphoproteins indicated increased activity of AKT, ERK, and JNK (figure 2.8). 

Specific kinase inhibitors revealed caspase activity is predominately through 

ERK, JNK, and p38 (figure 2.9) as expected104. In addition, many members of the 

MAPK cascade showed an up-regulation in gene expression (figure 2.10). 

 

Figure 2. 9: Western of MAPK signaling cascade shows kinase activity. Cells were induced with 
H202 and harvested over a time course. p indicates against phosphorylated form. 
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Figure 2.10: Kinase specific inhibitors reveal caspase 3/7 activity is regulated by ERK, JNK, and 
p38. HMVEC-L cells were induced with 100 μm. 

 

 

Figure 2. 11: Gene expression profiles for the MAPK signaling pathway show an increase in 
expression correlating with increased activity. 
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 NRF Pathway. NFE2L2 (NRF2) is an important mediate of cellular 

response to oxidative stress105. Normally sequestered in the cytoplasm by 

KEAP1, ROS will oxidize residues on KEAP1 allowing NRF2 to translocate to the 

nucleus and activate target gene expression. In combination with the MAF family 

of proteins, NRF2 up-regulates the expression of significant antioxidant genes, 

including HMOX1 (see figure 2.12). BACH1 will terminate NRF2 activation by 

competition of response elements106, thus nuclear export of BACH1 is required 

for sustained activation.  

 

Figure 2. 12: ROS cause NRF2 to be released from KEAP1. NRF2 translocates to the nucleus 
and increases expression of antioxidant target genes such as HMOX1. 
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 DNA Repair Pathways. ROS are genotoxic as they can directly damage 

DNA either by oxidizing nucleotides or introducing double stranded breaks107. 

ATM and ATR are critical sensors of DNA damage, and phosphorylate many 

proteins critical for DNA damage repair. Five major DNA repair pathways have 

been characterized108: homologous recombination repair (HRR), base excision 

repair (BER), nucleotide excision repair (NER), mismatch repair (MMR),and non-

homologous end-joining (NHEJ). NHEJ was the complex most consistently up-

regulated in response to oxidative stress (figure 2.14). NHEJ involves the ligation 

bound by Ku (XRCC5/XRCC6) by DNA ligase 4 to double stranded breaks. The 

HRR and NER complexes also showed strong up-regulation, although several 

members in each were down-regulated. BER has been identified as the 

pathways involved in removing oxidized bases, but neither BER nor MMR 

exhibited a strong pattern of expression. 

 

Figure 2. 13: Non-homologous end-joining follows pattern of strong late induction. 

 

 For HRR, NHEJ, and NER, follow an increasing, late time point profile 

suggesting that DNA repair pathways remain active even as apoptosis is 

underway. DNA repair also has been suggested to require large amounts of 

cellular energy, with inefficient amounts leading to necrosis108. 
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Figure 2. 14: Members of the homologous recombination repair pathway exhibit strong patterns of 
expression. 

 

Figure 2. 15: Nucleotide excision repair pathways show a late pattern of up-regulation for some 
members. 

 

Figure 2. 16: Mismatch repair genes show weak expression profiles. 
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Figure 2. 17: Base excision repair members follow an inconsistent profile. 

  

 BCL2 Family. The mitochondrion is the primary energy powerhouse of 

the cell2. Apoptosis leads to loss of mitochondrial membrane potential, increased 

permeability, and eventual fission and fragmentation109. The mitochondria have 

two distinct membranes, an outer and inner membrane that allows the formation 

of an inter-membrane space and sequestered aqueous center called the matrix. 

p53 signals and mediates the BLC2 family of proteins, which contains both anti- 

and pro- apoptotic members110 (figure 2.18). Pro-apoptotic members allow the 

release of mitochondrial matrix products and cytochrome C into the cytosol, 

either through activation of existing pores or formation of new ones. This release 

plays a critical role in apoptosis through the formation of the apoptosome and the 

inactivation of inhibitor of apoptosis proteins111 (IAPs). 

 Inhibition of BCL2 (figure 2.18) has been shown to be regulated by NF-kB 

in response to chronic exposure to hydrogen promotes112. Additional repression 

of XIAP and up-regulation of TNF and FAS were also consistent with gene 

expression profiles (data not shown). NFKBIA was also consistently up-regulated 



46 
 

 

which indicates NF-kB activity (data not shown). However, NF-kB cell death was 

shown to act through caspase independent, but PARP1 dependent mechanism. 

  

 

Figure 2. 18: Bad gene expression profiles.  

 

 Loss of Mitochondria. Cytochrome C is a member of the electron 

transport chain, and thus resides on the inner membrane wall to utilize the 
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electrical gradient present109, 113. While the only member of the electron transport 

chain to be soluble, it has been estimated that only a small fraction of 

cytochrome C is free in the inter-membrane space. The inner mitochondrial 

membrane forms folds called cristae to allow increased oxidation. OPA1 is 

responsible for cristae remodeling, where the inner and outer membranes 

become fused to allow the efficient release of cytochrome C114. OPA1 and other 

fusion proteins were strongly up-regulated in response to oxidative stress (data 

not shown). Mitochondrial membrane potential (MMP) was observed from JC-1 

as a measure of healthy mitochondria. There was a distinct loss of MMP after 12 

hours of 100 μm H202 induction using JC-1 (data not shown). 

 Caspase Cascade. As a result of cell signaling and DNA damage, p53 

mediates the release of cytochrome C (CYCS) from the mitochondrial which 

forms the apoptosome with APAF1111. This complex signals through the caspase 

cascade which ultimately results in DNA fragmentation and cell death. Caspases 

are initially synthesized from genes as inactive pro-caspases. As a result of 

apoptotic signaling, the initiator caspases (CASP2, CASP8, CASP9, CASP10) 

are subsequently cleaved to their active forms2. These initiator caspases then 

cleave the executioner caspases (CASP3, CASP6, and CASP7); each 

subsequent cleaved protease amplifies caspase activity by cleaving additional 

caspases. Apoptosis is reversible however until executioner caspase activation. 

Execution caspases are responsible for cleaving a variety of protein substrates 

that lead to apoptosis. Both APAF1 and CYCS are transcriptionally up-regulated 

in response to hydrogen peroxide (figure 2.19). Caspase-Glo 3/7 showed a 
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strong induction of caspase 3/7 activity (figure 2.20) after 12 hours. According to 

expression profiling, the majority of caspases and in particular the executioners 

are strongly up-regulated (figure 2.19). Protein array data showed consistent loss 

of pro-caspase abundance indicating apoptosis at later time points (figure 2.21). 

Interestingly as caspase 8 typically initiates apoptosis through external stimuli, 

caspase 8 shows a marked down-regulation, and a loss of pro-caspase 

abundance.  

 

Figure 2. 19: Gene expression profiles of the caspase cascade indicate strong up-regulation 
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Figure 2. 20: Combined caspase 3 and 7 activity is greatly increased in response to hydrogen 
peroxide as measured by a peptide whose cleavage by caspases results in luminescence. 

. 

 

Figure 2. 21: Protein abundance against pro-caspase forms shows a lack of abundance as 
caspases are cleaved 

 

 TP53, ROS Clearance, and MTOR. Budanov et al. 2008 have a 

described a relationship between TP53, sestrins, and MTOR that leads to 

inhibition of cell growth115. SESN1 and SESN2 are target genes of TP53, and are 



50 
 

 

up-regulated upon genotoxic stress. The sestrins family of proteins is involved in 

the continual recycling of peroxiredoxins. As peroxiredoxins clear hydrogen 

peroxide they become inactivated; peroxiredoxins are recycled by the 

thioredoxins, which in turn are inactivated and require recycling by sestrins. 

Buadanov et al 2008 demonstrated that sestrins interact with the AMPK 

signaling. AMPK phosphorylates the TSC2 complex to reduce loading and 

activity of RHEB, a positive regulator of MTOR. 

 Gene expression profiles from microarray analysis indicate SESN1 and 

SESN2 are indeed activated with greater intensity in response to oxidative stress 

(figure 2.22). Corresponding proteins involved in peroxiredoxins recycling are 

also up-regulated. AMPK module shows an increase in expression, suggesting 

activation. However, the TSC complex is down regulated, and RHEB is up-

regulated. Antibody array data showed a decrease in protein abundance of 

MTOR (data not shown), so transcriptional events might be regulatory feedback 

in response to decreased MTOR activity. 
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Figure 2. 22: Relationship between genotoxic stress, p53, sestrins, and MTOR indicates a 
dynamic and active network in response to hydrogen peroxide. 

 

 Heme Function, Synthesis and Degradation. Genes involved in the 

synthesis, function, and degradation are significant expressed in response to 

hydrogen peroxide (figure 2.23). Heme is a chemical porphyrin, or iron containing 

compound116. Synthesis of heme originates from mitochondrial succinyl-CoA by 

the enzyme ALAS1. This step is known to be rate limiting in non-erythroid cells. 

Synthesis continues from the mitochondrion to the cytoplasm back into the 
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mitochondrion where attachment of the iron ion occurs. Synthesized heme must 

then be exported back into the cytoplasm to be bound by cytochrome C. 

 Release of cytochrome C from the inner mitochondrial membrane is a 

critical step in the intrinsic apoptosis pathway. Only active cytochrome C can bind 

with APAF1 and drive apoptosis117. Conversion of cytochrome C from apo- 

(inactive) to holo- (active) form requires binding of heme which can only occur at 

on the cytosolic side of outer mitochondrial memberane116. Binding of heme, 

specifically heme C, to CYCS is mediated by cytochrome c heme-lyase (HCCS).  

 Unbound heme has been shown to have a cyto-protective and anti-

oxidative effect by its degradation by the enzymes heme oxygenase 1 (HMOX1) 

and heme oxygenase 2 (HMOX2) 118. The HMOXs cleave heme into biliverdin, 

which has cyto-protective effects, and iron which requires sequestration by 

ferritin. It has been shown in HMOX1 knockouts that fibroblasts exposed to 

hydrogen peroxide are more susceptible to apoptosis.  
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Figure 2. 23: Critical interacting partners of heme are up-regulated in response to hydrogen 
peroxide: ALAS1, the rate limiting enzyme for the synthesis of heme; HCCS, which is required for 

binding to CYCS; CYCS, which is a major effector of metabolism and apoptosis; and HMOX1, 
which degrades free heme into biliverdin and iron. 

 

Reproducibility Issues 

 Verification of Microarray Trends.  A validation strategy was undertaken 

to confirm the importance of several factors. However, during screening using 

LDH and caspase 3/7 following hydrogen peroxide induction positive control 

wells failed and showed no change in response. Repeated experiments with 

multiple lots of HMVEC-L showed no significant LDH activity at 6 hours after 100 
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μm H202 induction (figure 2.24). Cells showed no caspase 3/7 activity, except 

when induced by staurosporine. Cells required a 10 X fold increase in hydrogen 

peroxide to detect LDH leakage/ Visual inspect of induced cells also showed no 

phenotypic difference until 1mM H202 (see figure 2.25) after 6 hours. Real time 

quantitative PCR was performed on a select number of target genes over varying 

concentrations of hydrogen peroxide to compare current experimental conditions 

with previous microarray data (figure 2.26). No concentration adequately 

validated trends from the microarray data, although H202 expression was 

markedly distinct from staurosporine. Ratios from 500 μm H202 were the most 

robust, although cells exhibited no signs of cell death. 

 

 

Figure 2. 24: LDH release of HMVEC-L cells in response to increasing concentrations of H202 
after 6 hours. Cells from two separate donor lots, 5F1577 and GF3497, were tested. 
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Figure 2. 25: White light images of HMVEC-L cells after 6 hours of (A) 0 μm H202, (B) 100 μm 
H202, (C) 1 mM H202, and (D) Staurosporine. No evidence of cell death until 1000 μm H202. 

Cells completely undergoing apoptosis in 6 hours with induction of Staurosporine (D). 
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Figure 2. 26: Microarray data from HMVEC-L cells induced with 100 H202 μm compared to real 
time quantitative PCR with increasing concentrations of H202. Cells were harvested after 30 
minutes, 2 hours, 4 hours and 6 hours. No concentration completely recapitulated microarray 

data. All values are fold changes calculated from time matched untreated. 

 

 Testing of H202 and HMVEC-L. As series of experiments were 

undertaken to isolate the cause of experimental variance. HMVEC-L cells stained 

for the endothelial markers CD31 and VWF, and were capable of uptake of 

acetylated LDL (figure 2.27). Cells tested negative for mycoplasma 

contamination. As hydrogen peroxide is a notoriously unstable compound, 

experiments were performed to test the activity of H202 using KMNO4 titration 

experiments (data not shown) and spectrophotometer data (figure 2.28). All 

experiments showed concentrations of h202 within manufacture specifications. 
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Figure 2. 27: Staining of (A) CD31, (B) VWF, (C) Acetylated DL uptake confirms cells are likely 
endothelial cells. Dapi is in blue. 

 

Figure 2. 28: Testing of H202 stock demonstrated performance to manufacture's specifications. 
Spectrophotometer data of 5 separate H202 lots at stock concentration of 9.8 M diluted to 100 
mM. Absorbance values and calculated concentrations are shown. B. Dilution series of H202 

from Lot 5. Absorbance and calculated concentrations are shown. 

 

 Calibration of Assays. The source of experimental issues was not 

isolated, the sensitivity and specificity of the assays was tested (figure 2.29 and 

figure 2.30). Positive controls for Cytox-One and Caspase 3/7-Glo were titrated 

for optimal signal. Sensitivity was tested using positive controls against serial 
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dilutions of cells. Assays performed up to manufacturers specifications and 

repeatedly indicated no cell death at low concentrations of hydrogen peroxide 

(data not shown).   

 

Figure 2. 29: Calibration of Cytox-One LDH release assay. (A) Titration of Triton X-100 
concentrations reveal high concentrations of triton x-100 do not interfere with the detection of 

LDH and provide a robust signal. Manufacturer's recommendation is addition of 0.18% Triton X-
100 as a positive control. (B) Addition of 1.44% Triton on decreasing confluence of cells (%) 

shows a generally linear response except for highly confluent wells. As 100 % confluence is 140 
% of 70% confluence, maximum signal is limited by the space available to cell attachment. 

 

Figure 2. 30: Calibration of caspase 3/7- glo assay. (A) Titration of staurosporine concentration. 
(B) Caspase activity across various seeding densities using 10 μm Staurosporine. 
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 Loss of Hydrogen Peroxide in Media. Given the high instability of H202, 

the rate of disippation of H202 using a colorimetric detection kit was measured, 

which found h202 activity was compeltely lost by two hours (data not shown). 

Further testing revealed that H202 likely reacts with basal EGM2 media alone, 

losing over half the added concentration after 10 minutes (figure 2.31). Addition 

of serum or growth factors, including ascorbic acid, did not change this effect. 

Testing of hydrogen peroxide in DMEM yielded similar results. However, H202 

does not react with PBS and remained stable past 1 hour indicating H202 was 

likely reacting with media components as opposed to disipatting. 

 

Figure 2. 31: 100 μm hydrogen peroxide is rapidly dissipated in cell-free culture media but not 
PBS. Approximately half of H202 concentration is lost after 10 minutes. Detection performed 

using an h202 colorimetric detection kit from Enzo Life Sciences.  
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 Assay Conditions. Protocols were adjusted to compensate for H202 loss, 

such that h202 was stored in a working solution of PBS, and added within in two 

minutes of addition to media. While cells did exhibit some degree of cell death at 

lower concentrations, hydrogen peroxide was still required at greater than 700 

μm to observe adequate LDH release. Caspase 3/7 activity was detected though 

for concentrations as low as 500 μm. As assay half lives are 9 hours, data 

presented is an under representation of the true signal however. Visually, cells at 

700 μm rapidly died in response to hydrogen peroxide while cells exposed to 500 

μm died at time points past 6 hours. 

  

Figure 2. 32: Rapid of addition of H202 increases degree of cell membrane leakage. 700 μm 
H202 killed approximately half of all cells at 9 hours. As half life of LDH is 9 hours, all cells were 

likely dead at post 18 hours given the robust response at 12hr and 24hr. 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

untreated 300 uM 500 uM 700 uM Max 
Release 

Percent 
Difference 

6 hr 

9 hr 

12 hr 

24 hr 



61 
 

 

 

Figure 2. 33: Caspase 3/7 activity was observed for concentrations as low as 500 μm after 12 
hours. At 24 hours, activity had rapidly decreased which suggested only initial small population of 

cells had undergone apoptosis. 

 

 Real Time-PCR data. Given a more robust response to hydrogen 

peroxide, a select number of target genes were tested by real time PCR. The 

majority of target genes did not show similar trends to microarray data (data not 

shown). Only general stress and HMOX1 mimicked microarray data (figures 

2.34-2.39). Induction was seen to be dependent on concentration, as 700 μm of 

H202 reliably produced a pronounced, delayed pattern. Induction with 500 μm 

h202 appeared to most resemble microarray data for this limited set of genes. 

However, viability assays of cells done alongside of the microarray data had 

indicated nearly complete cell death. 500 μm H202 currently shows a minimal 

amount (figure 2.23). 
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Figure 2. 34: IER2 is a generic stress response gene that only shows a short burst of 
transcription. (A) Microarray gene expression profile. (B) Real-Time PCR. 300 μm and 500 μm of 

hydrogen peroxide induce an early burst of transcription as seen in the array data. 700 μm 
induces a delayed response. 

 

Figure 2. 35: FOS is an early immediate transcription factor that responds to a wide variety of 
stressors. (A) Microarray gene expression profile. (B) Real-Time PCR. Higher levels of H202 

induce a significantly different expression profile. 
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Figure 2. 36: ATF3 is an oxidative stress specific response gene. (A) Microarray gene expression 
profile. (B) Real-Time PCR 

  

 

Figure 2. 37: HMOX1 is an antioxidant gene that degrades free heme. (A) Microarray gene 
expression profile. (B) Real-Time PCR. HMOX induction was greatly increased compared to 

microarray data. 
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 High throughput data generated in this instance allowed a global view of 

oxidative stress and reconstruction of the cellular network involved in cellular 

response to oxidative stress. Oxidative stress is well studied, but from a 

fragmented perspective that leads to difficult understanding the overall 

importance of a gene or pathway. Gene expression profiles had a large degree of 

concordance with published and expected trends. The data seems sensible as in 

response to oxidative stress, the cell increases ROS clearance mechanism and 

DNA repair pathways. Independently, apoptotic processes proceed resulting in 

the loss of mitochondria and cell death. Many known oxidative stress specific 

exceptions to the canonical activity or mechanism for some processes or 

pathways were recapitulated in the microarray data. As such, it would have been 

an ideal platform to perturb such actors to quantify the global effect they have on 

apoptosis due to oxidative stress. 

 However, the network failed verification, and a satisfactory explanation for 

the discrepancy was not obtained. Low throughput assays were contradictory 

and inconsistent from previous results, casting doubt onto the high throughput 

data. While verification of microarray trends by RT-PCR was in general 

discouraging, stress response and genes related to heme activity were 

consistent. 

 Heme. The possibility of heme as a small molecular regulator of oxidative 

stress is intriguing; as a bound partner of cytochrome C, heme plays a vital role 

in the metabolism and apoptosis. Free heme is a significant cyto-protective 

molecule. HMOX1 nonreversible degrades heme to bilirubin and free iron as 
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opposed to succinyl-CoA; the cell must divert additional energy from the citric 

acid cycle to synthesize new heme molecules. Iron must be sequestered by 

ferritin to avoid the oft repeated Fenton reaction. Excess intracellular iron has 

also been identified by Dixon et al 2012 as an important factor for ferroptosis: a 

non-necrotic, non-apoptotic form of cell death119. As ferroptosis is mediate by 

ROS, perhaps antioxidant response involving heme is playing a role, although 

the mechanism of cell death in ferroptosis is non-apoptotic and unrelated to the 

mitochondria. 

 Takahashi and Masudada 2009 have described a methodology to easily 

determine the abundance of free heme120. Cytosolic lysates in conjunction with a 

reconstituted apo- form of horseradish peroxidase reacts with common western 

reagent for sensitive chemiluminescent detection. Perturbations could be made 

not only against heme related proteins, but heme abundance could be tested 

against perturbations of pathways important to oxidative stress induced 

apoptosis. 

 

Methods 

 Cell Culture. Human lung microvascular endothelial cells (HMVEC-L) 

cells from Lonza were cultured according to manufacturer instructions in EGM2 

media bullet kits. Mycoplasma detection kit was also obtained from Lonza. 

 Cell Staining. Cells were stained with antibodies from Abcam according 

to manufacture instructions. 
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Inducers. Hydrogen peroxide was acquired from Fischer scientific. To obtain 100 

uM of H202 in media, stock 8M solution was first diluted to 100 mM. 

 Spectrophotometry. H202 concentration was calculated using the 

published millimolar extinct coefficient for hydrogen peroxide on a Nanodrop 

2000. 

 Hydrogen Peroxide Colormetric kit. To detect low H202 peroxide 

concentrations used for cell experiments, a kit was acquired from ENZO Life 

Sciences and used according to manufacture instructions. 

 LDH assay. Cytox-ONE LDH detection kit was acquired from Promega 

and used according to manufacturer's instructions. 

 Caspase Activity. Caspase 3/7-Glo kit was acquired from Promega and 

used according to manufacturer's instructions. 

 Total RNA Preparation. After induction, cells were harvested using 

Qiashredders. Total RNA was harvested using RNAeasy kits from Qiagen 

according to manufacturer's instructions and stored at -80C. 

 RT-PCR. Total RNA was subjected DNAse treatment by using Ambion 

DNAfree Turbo. Reverse transcription using Superscript VILO acquired from 

Invitrogen. Primers were added to 10 ng of cDNA per reaction and real time PCR 

perform on an ABI 4000 machine using powersybr mix. PCR primer sequences 

are listed in appendix Real Time PCR Primers. 

 Microarray Analysis. Total RNA was labeled and hybridized using 

Agilent two color Human Gene Expression V2.0 arrays. Treated samples were 

hybridized against time matched untreated. 
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 Data analysis. Microarray data was preprocessed from Agilent spot and 

intensity calls. Data was normalized using LOESS, and median normalized 

across arrays. Normalized data was used with VAMPIRE19 for significant gene 

detection. 

 Pathways. Initial pathways were derived from BioCarta. Pathways were 

drawn using Pathway editor121. Only genes that were called significantly 

significant in at least one time point were considered. Ratios were rescaled for 

comparative purposes. 

 

Figure 2. 38: Expression ratios on all pathways are rescaled for comparative and visualization 
proposes. 
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CHAPTER 3 LENTIVIRAL MEDIATED MOUSE CANCER MODELS 

 

Introduction 

 Cancer is an aberrant cellular state in which individual cells cease 

cooperating for the benefit of a multi-cellular organism2. A conceptual model has 

been proposed and refined that defines significant characteristics or hallmarks of 

cancerous cells122, 123. While initially meant as a simplifying intellectual 

framework, these hallmarks have been expanded to include: sustaining 

proliferative signaling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, activating invasion and 

metastasis, reprogramming energy metabolism, and evading immune detection. 

In addition, two enabling characteristics are highlighted: genome instability and 

mutation, and reprogramming energy metabolism. Beyond the characterization of 

genetic mutations that lead to cancer, the intellectual goal of any cancer model 

would be to extend and illuminate the mechanisms by which a cancer achieves 

these hallmarks, or any other defined set of central features. 

 Practically, a more immediate milestone for cancer models is general 

acceptance of their applicability to human cancers; a goal that is based upon 

current knowledge and thus a continually moving target. The end result is a 

requirement for increasingly complex models that better mimic the progression 

and nuance of human cancers. This chapter focuses on an emerging aspect of 

characterization of cancer models by comparison to molecular signatures. Mouse 
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cancer models generated by lentiviral mediated approaches in combination with 

genetically engineering mice (GEM) are compared with previously defined 

molecular signatures for both human primary glioblastoma and GEM lung 

adenocarcinoma.  

 Oncogenes and Tumor Suppressors. Genes involved in tumorigenesis 

are mainly divided into two categories, oncogenes and tumor suppressors124. 

Oncogenes are genes in which over expression or constitutive activation promote 

tumor formation. Conversely, tumor suppressors are genes in which their 

reduced or lost activity no longer prevents tumorigenesis. In both cases, point 

mutations within genes can lead to changes in activity, or larger scale 

chromosomal defects leading to duplications or deletions of the entire gene can 

occur. An additional category of genes, caretaker genes124, affect the global 

mutation rate of the genome and are often associated with DNA repair pathways. 

Caretaker genes do not actively prevent or promote tumorigenesis, but are 

responsible to prevent or correct the mutation of all genes, and most importantly 

in this instance oncogenes or tumor suppressors. This is an important function 

because as a general rule tumorigenesis requires mutations in multiple genes124. 

Both cancer models studied in this chapter involve expression of a mutated RAS 

oncogene in combination with loss of the tumor suppressor TP53.  

 RAS. RAS is a family of proteins involved in the signal transduction 

between cell surface growth receptors and downstream effectors pathways125. 

RAS proteins revolve between a guanosine triphosphate (GTP) -bound active 

state, and guanosine diphosphate (GDP) -bound inactive state. GTPase-
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activating proteins (GAPs) regulate RAS inactivation by GTP hydrolysis. 

Inactivation of GAPs activities are accomplished by somatic mutations to specific 

RAS residues126, particularly Q61, G12, and G13. The mutated RAS proteins 

remain constitutively active and lead to sustained induction of downstream 

transcription factors associated with cell growth or survival: FOS, SRF, JUN, 

EK1, ATF2, and NF-kappaB . While mutations appear to be interchangeable, 

individual RAS oncogenes have displayed tissue specificity125. KRAS is 

frequently mutated in colorectal tumors, lung carcinomas (non-small-cell lung 

cancer), and in pancreatic carcinomas. Mutated HRAS tumors are found in the 

skin, head and neck. NRAS mutations are typically observed in hematopoietic 

malignancies. 

 RAS oncogenes induce hyper proliferation and enhanced survival, but at 

the cost of replicative stress which leads to DNA damage and activation of DNA 

damage response. As such tumorigenesis requires additional mutations to 

escape either senescence or apoptosis. A critical nexus is CCND1 (Cyclin D1), 

which acts in concert with CDK4 and CDK6 to override RB mediated cell cycle 

arrest127. Important upstream mediators of CCND1 activated by oncogenic RAS 

are the PI3K and RAF pathways. In addition to regulation of CCND1, both 

pathways increase cell survival125. PI3K down-regulates prop-apoptotic proteins 

such as BAK1, and up-regulates anti-apoptotic proteins through NF-kappaB. 

RAF suppresses apoptosis by down-regulation of PAWR (PAR4), and up-

regulation of BCL2. RAF and PI3K mediate BAD phosphorlyation leading to an 

inactive complex with 14-3-3. Oncogenic RAS induces sustained proliferation by 
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activation of growth factors such as VEGFA, FGF2, and PDGF and down 

regulating anti-angiogenesis factors THBS1 and THBS2. RAS also plays a role in 

remodeling of the tumor micro environment and tumor metastasis. HRAS is 

known to up-regulate MMP2, MMP9, and PLAU which are important enzymes in 

the removal of the neighboring extracellular matrix. RAS up-regulates SNAI1 

(SNAIL) and SNAI2 (SLUG) which degrade E-cadherin and allow cell mobility. 

The oncogenic effects of RAS manifest in a context-dependent manner with sub-

cellular, cellular and tissue environments determining its functional output.  

 P53. TP53 (p53) is a shorted-lived transcription factors that regulates 

cellular tumor suppression128. An important step of the pathway is the release of 

TP53 from the negative regulators MDM2 and MDM4 which leads to 

accumulation of stable TP53. TP53 induces a wide range of genes, leading to 

DNA damage repair, growth arrest, or apoptosis129. Loss or mutation of TP53 

predisposes the cell to a range of spontaneous and induced tumors; TP53 is 

disabled during the pathogenesis of most human cancers. However, TP53 does 

not influence the rate of tumor initiation or mutation, but prevents malignant 

progression of tumor cells. Further, restoration of TP53 expression can promote 

tumor regression and clearance in vivo130-132. Initiation of apoptosis by TP53 

depends on the type and intensity of stress, cell type, and genetic background 

along with other pathways such as RB. The common principle is protection by 

maintaining integrity of the cell and its genome or preventing proliferation of 

nascent cancer cells. DNA damage response pathways potentially activate TP53, 

but classical induction is through the ARF tumor suppression pathway. 
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 Mouse Models of Cancers. The creation of transgenic mice has allowed 

the study of inheritable "traits" that lead to the formation of tumors. According to a 

perspective by Hanahan et al. 2007, 

Before these developments, cancer was largely modeled by tissue 
culture of cell lines established from human and animal tumors, and 
by inoculation (transplantation) of such cell lines under the skin of 
immunodeficient mice, where lump-like solid tumors would form. 
While of clear utility in studying parameters of tumor growth, such 
models did not necessarily recapitulate the subtleties observed in 
human tumors arising in different organs, in terms of polymorphic 
genetic susceptibility, histological characteristics, and progression 
from benign premalignant lesions to tumors of increasing 
aggressiveness133. 

 

Generation of a tumor is therefore insufficient, i.e. a tumor in the brain is not in 

and by itself necessarily a useful model of glioblastoma. As expressed by Dyke 

and Jacks (2002), 

... there is a common (and not unreasonable) expectation that 
these mouse models will "model" human cancer; that is, cancer in 
the mouse should look and act like that disease. Mouse tumors 
should have the same or similar histological features of comparable 
human tumors; they should progress through the same stages and 
cause the same physiological and systemic effects on the host; the 
same genes and/or pathways should be affected in tumor initiation 
and progression; the response of a given tumor to a particular 
therapy in the mouse should accurately reflect the response in 
human patients; and the results from preclinical testing of 
experimental therapies in mouse models should ultimately predict 
the efficacy of such therapies in clinical trials in humans134. 

 

 While there are no concrete guidelines, the general criteria for acceptability of 

cancer models to human cancers can be broadly considered as expressing or 

acquiring a corresponding set of genetic mutations, displaying a similar 
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phenotype, showing an increase in tumor progression from the cell of origin or 

tumor initiating cell, and responding in a therapeutically similar manner.  

 CRE-LOX. Special consideration has been given to the controlled 

expression of oncogenes or tumor suppressors. Earlier models had sustained 

increased or reduced expression of the gene of interest, while latter models have 

increasing specificity with regard to tissue specificity or with respect to time. A 

powerful tool for controlled expression is the CRE-LOX system135. Cre is a P1 

phage derived recombinase that act by restricting and ligating adjacent loxP 

sites. Efficient excision of specific genomic sequences is possible as loxP sites 

are not normally found in the mouse genome. Strategic placement of loxP site 

enables generation of conditional knockouts, knockins, and other variants. 

Expression of the Cre enzyme can be controlled via tissue specific promoters or 

drug inducible elements such as tetracycline136. To date, many hundreds of cre-

transgenic mice have been generated137. The rate limiting step in generating 

mouse cancer models is breeding of mice with appropriate loxP flanked 

constructs to study a gene of interest. 

 Tumor Progression. Many cancers require several mutational events to 

proceed from benign to malignant tumors. The classical model for such tumor 

progression is colorectal cancer138 as it arises over many decades from 

successive acquired mutations. However, the cancer initiating cell may not be the 

cell stem cell which propagates tumor growth139. For cancers that exhibit tumor 

heterogeneity, differing cell of origins could be an alternative source of cancer 

subtypes as opposed to different sets of oncogenic mutations. Lineage tracing140 
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is an important aspect to identify the cancer initiating cell, however cell-lineage 

specific promoters and markers are not commonly available for all tissues and 

organs. 

  Lentiviral Mediated Models. The lentivirus is a engineered form of HIV 

that is capable integrating a delivered sequence into the genome of almost all 

cells, including non-dividing ones141, 142. Originally a major tool of gene 

therapy143, significant issues have arisen in this application such as those 

highlighted by the X-SCID trials144, 145. In contrast with gene therapy, viral vectors 

can be used to deliberately induce tumorigenesis. Use of viruses to generate 

cancers is hardly novel133, but more sophisticated viral vectors coupled with Cre-

Loxp technology has allowed generation of more sophisticated, tissue specific 

models146. The main advantages of lentivirus according to Xia, Y. et al. 2011 are: 

(1) lentiviruses infect almost any type of cell, and transgene 
expression can be controlled by a tissue-specific promoter, which 
enables a more precise tracing of the origin of the cancer cell; (2) 
lentiviruses integrate into genomic DNA so that it is possible to 
stably deliver oncogenes and short hairpin RNAs (shRNAs) against 
tumour suppressors, and bypass the requirement of numerous 
conventional genetic crossings; (3) viral titres can be controlled to 
infect only a few cells, to more faithfully recapitulate human cancer 
initiation147. 

 

The issues with generating cancer models using a lentiviral system are the 

selection of appropriate oncogenes or tumor suppressors and the selection of a 

tissue specific promoter that is not too "leaky." The chosen promoter may in 

reality be expressed at low levels in other cell types or tissues. These issues may 

not be easily solvable as the mutations required to initiate a tumor may differ 
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from the mutations acquired to sustain one. Closely related cell types within a 

tissue may also share common regulatory transcription factors, or cell type 

specific promoters may not be known. As such it is necessary to prove that any 

tumors generated are in fact generally applicable to human cancers as opposed 

to a random cancerous cell. 

 Biomarkers and Molecular Signatures. Classification of human tumors 

in a clinical setting is predominately done by pathohistological and morphological 

characteristics. High throughput image analysis of tumors is not yet common148, 

149, but the study of somatic mutations150 and associated gene expression 

patterns and their relation to clinical outcomes is a well worn path151-154. Many 

cancers exhibit gene expression patterns that naturally cluster into multiple 

subtypes for a given cancer; however, when comparing mutations, often only a 

fraction of a subclass will exhibit the same sets. This suggests that differing sets 

of mutations can lead to the same subclass or phenotype. When a pattern has 

been reduced to a smaller set of genes with the ability to classify, it is often 

referred to as a molecular signature. Molecular signatures differ from traditional 

markers in that the signature as a whole will be enriched while individual genes 

will not be statistically significant across all samples of subtype. Given the 

increasing availability, breadth, and resolution of high throughput data for primary 

human cancers150, 155-159, classification and prediction of clinical outcomes by 

molecular signatures will like intensify.  
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KRASLA2 Lung Adenocarcinoma Model 

 KRAS is frequently mutated in lung adenocarcinomas125; nearly 60% of 

lung adenocarcinomas have mutually exclusive mutations in either KRAS or 

EGFR157. A key disadvantage of transgenic KRAS genetically engineered mice is 

that they express the oncogene in all cells of a tissue type. A latent, oncogenic 

KRAS model has been developed that employs "hit-and-run" strategy in that one 

(KRASLA1) or both alleles (KRASLA2) are capable of spontaneous activation160. 

All KRASLA2 mice were observed to develop lung carcinomas, which followed 

normal carcinoma progression similar to non-small cell lung cancer. NF-kappaB 

was implicated in this model to play a significant role in tumor progression161, 162, 

especially upon p53 restoration162. 

 Lentiviral constructs containing CA2 (carbonic anhydrase 2) promoter 

driven CRE and shTP53 specifically transduce alveolar epithelial cells147. 

KRASLA2 mice were infected intratracheally and were crossed with floxed 

IKBKB (IKK2) mice to study the loss of NF-kB activity. Phenotypically, IKK2 

knockout (KO) mice early on exhibited reduced tumor burden, but end point 

tumor load was similar to IKK2 wild type (WT). To understand which significant 

pathways were differentially expressed, microarray analysis was performed on 

primary mouse tumors and cell lines derived from these tumors. 

 Molecular Signatures. KRASLA2 mice have been previously compared 

to primary human lung adenocarcinomas and other mouse models using gene 

expression arrays. Sweet-Cordero et al. 2005 developed a strategy to identify 

sequentially smaller gene sets163 that contained: genes from tumors that were  
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Figure 3. 1: Lentiviral mediated KRASLA2, IKK2 wildtype (WT) and IKK2 knockout (KO) tumors 
display similar KRAS expression signatures as genetically engineered mouse tumors (Sweet-
Cordero). Absolute expression of Normal (N) and Tumor (T) samples, where UP markers were 

found to be significantly expressed in tumors while DOWN markers were higher in normal 
tissue163. Red indicates higher expression levels than average, blue below average, and values 

close to the average are in white. 
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significant up regulated when compared to normal lung, KRAS up signature; 

genes that were significantly down regulated, KRAS down signature; up 

regulated genes that were in common with human adenocarcinomas, 

adenocarcinoma signature; and common genes up regulated in pancreatic 

adenocarcinomas, KRAS signature (see Appendix Sweet-Cordero for gene sets). 

To validate the applicability of the lentiviral mediated lung cancer model, we 

applied these molecular signatures to tumor data compared against normal lung 

tissue from the Affymetrix test platform data set (Figure 3.1). Tumors showed 

statistically significant enrichment for all signatures using GSEA (table 3.1). On 

this basis, the lung adenocarincomas mediated by lentivirus are qualitatively 

identical on a gene expression level to tumors arising solely from genetically 

engineered mice. 

 
Table 3. 1: KRAS signatures, as defined by Sweet-Cordero, are enriched in lentiviral mediated 
tumors as called by GSEA. Normalized Enrichment Scores (NES) are provided; higher positive 
numbers indicate enrichment of gene set in normal lung tissue while negative numbers indicate 

enrichment in tumor. All signatures pass a FDR < 10% cutoff. 

Signature Sweet-Cordero IKK2 WT IKK2 KO 
KRAS up -5.4 -2.8 -3.0 

KRAS down 4.4 4.7 4.7 
Adenocarcinoma -4.6 -2.5 -2.6 

KRAS -4.0 -2.0 -2.0 

 

 For comparison, KRASLA2 signatures were applied to array data from 

putative glioblastomas generated from mutated HRASV12, shTP53 mouse 

tumors164, 165. Tumors showed significant enrichment for all signatures when 

glioblastomas were compared to brain, but not in comparison to lung (Table 3.2). 

This result calls into question the specificity of the molecular signatures to lung 



79 
 

 
  

adenocarcinomas as was originally claimed163. At the same time, the general 

approach is likely still valid as these glioblastomas have a RAS family mutation 

that likely leads to the same gene expression patterns as the KRAS lung 

adenocarcinomas, and signatures were only significant when compared to the 

correct tissue of origin. 

Table 3. 2: Glioblastomas exhibit enrichment of lung adenocarcinoma specific KRAS signatures 
when compared to normal brain. Negative values are enriched in tumor over normal tissue. Loss 
of proper directionality for  up-regulated signatures when compared to normal lung. Values with a 

FDR < 10% are in bold. 
 

Signature Brain Lung 
KRAS up -3.2 1.8 

KRAS down 1.5 3.55 
Adenocarcinoma -3.8 1.5 

KRAS -2.9 1.5 
 

 Effect of NF-kappaB. To test the effect of NF-kappaB, a gene set of NF-

kappaB targets from nf-kb.org was derived59 (see appendix NF-kappaB targets). 

Using GSEA, NF-kappaB target genes were consistently enriched in normal lung 

as opposed to tumors (Table 3.3). No difference in enrichment was observed in 

IKK2 KO versus IKK2 WT tumors, but IKK2 WT cell lines derived from primary 

tumors showed enrichment of NF-kappaB targets over IKK2 KO cells. 

Table 3. 3: NF-kappaB target genes are enriched in normal tissue when compared to IKK2 WT 
and KO tumors. No statistically significant difference in expression between WT and KO primary 

tumors, but enrichment of NF-kappaB targets in IKK2 WT derived cell lines compared to IKK2 KO 
cell lines. Positives vales are enriched in condition 2 over condition 1. Values with a FDR < 10% 

are in bold. 

Condition 1 Condition 2 NF-kappaB 
Mice IKK2 WT Normal Lung 2.7 
Mice IKK2 KO Normal Lung 2.7 
Mice IKK2 KO Mice IKK2 WT 1.1 
Cell IKK2 KO Cell IKK2 WT 2.4 
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 GSEA. Automated functional analysis by GSEA using gene sets derived 

from gene ontology and pathway databases revealed every significant term as 

enriched in lung over mouse tumors (see Appendix Lung Tumors GSEA). When 

comparing IKK2 KO and IKK2 WT primary mouse tumors and cell lines, the 

majority of statistically significant terms are cell cycle related (Table 3.4; see  

Table 3. 4: Common functional annotations enriched in both mouse tumors and derived cell lines 
when comparing IKK2 wild type to IKK2 knockout. Majority of terms are cell cycle related. 

Term Mouse Cell 

MITOTIC_CELL_CYCLE 3.7 1.7 

CELL_CYCLE_PROCESS 3.6 1.8 

REACTOME_CELL_CYCLE_MITOTIC 3.6 2.7 

CELL_CYCLE_PHASE 3.5 1.8 

M_PHASE_OF_MITOTIC_CELL_CYCLE 3.3 2.1 

M_PHASE 3.3 2.1 

MITOSIS 3.3 2 

REACTOME_MITOTIC_PROMETAPHASE 3.2 2.6 

KEGG_CELL_CYCLE 3 1.7 

REACTOME_G1_S_TRANSITION 2.8 2.5 

DNA_REPLICATION 2.6 2.3 

RESPONSE_TO_DNA_DAMAGE_STIMULUS 2.4 1.8 

DNA_REPAIR 2 1.8 

KEGG_PYRIMIDINE_METABOLISM 1.9 1.9 

RESPONSE_TO_ENDOGENOUS_STIMULUS 1.8 1.8 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 1.7 1.7 
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Appendix IKK2 KO/WT GSEA). This is in agreement with other experimental 

observations that NF-kappaB is not acting through anti-apoptotic pathways, but 

encouraging cell proliferation by sustained activation of ERK147. 

 

Glioblastoma Multiforme Model 

 Glioblastoma multiforme (GBM) is a highly aggressive and lethal 

intracranial brain cancer166, 167. GBMs display a wide degree of heterogeneity in 

terms of pathology, genomic mutations, and gene expression. Genetically 

engineered mice are potentially useful tools to identify the cell of origin168, the 

potential order and combination of mutations, and as a therapeutic test bed for 

novel treatments. GBMs have been subjected to intensive query by a variety of 

high throughput technologies: copy number alterations169, somatic mutations158, 

and transcriptional analysis155, 158, 170. Mutations were observed to 

overwhelmingly occur to members of the TP53, RB, and RTK/RAS/PI3K 

pathways158, 167. 

 Lentiviral Mediated Mouse Model. Marumoto et al 2009 developed a 

"proof of principle" lentiviral mediated model of glioma164. Within the lentiviral 

construct, red fluorescent protein (RFP) is floxed and placed between a CMV 

promoter and tumorigenic payload. When injected into a transgenic CRE mouse 

and transduced into a CRE expressing cell, RFP is excised and the CMV 

promoter is then able to drive oncogene expression. For this study, the 

tumorigenic payload is HRASV12, a constitutively active mutant of HRAS, and a 
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small hairpin targeting TP53. GFAP-, SYN-, and NES- CRE transgenic mice 

were used to target astrocytes, neurons, and neuronal stem cells respectively. 

Constructs were injected into: the cortex of SYN-CRE mice (SYN); the 

hippocampus of NES-CRE mice (NES); and the cortex (CTX), hippocampus 

(HP), and subventricular zone (SVZ) of GFAP-CRE mice. Along with tumors that 

arose from these injections, normal cortex (NCTX) and hippocampus (NHP) 

tissue were also harvested and microarray analysis was performed. 

 Clustering. Hierarchical clustering of highly variable genes revealed two 

completely opposite clusters (Figure 3.2), excluding genes on the X and Y 

chromosome (data not shown). Tumors from the same injection site and 

construct do not reliably cluster together. In contrast, normal tissues exhibited 

very tight correlations, even between hippocampus (NHP) and cortex (NCTX) 

samples. For this reason, the lack of cohesion between promoters and injection 

sites is suggestive of tumor heterogeneity rather than noisy data  
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Figure 3. 2: Dendrogram of tumors reveal two clusters that exhibit opposite patterns of 
expression. Samples are joined based upon the correlation coefficient, with higher correlation on 

the bottom. Tumors do not cleanly cluster based on the CRE promoter or the injection site. 

 

 Verhaak Molecular Signatures. The Cancer Gene Atlas (TCGA) 

surveyed 200 glioblastomas and identified four major clusters, or molecular 

subtypes, based on gene expression: Classical (CL), Mesenchymal (MES), 

Neural (NL), and Proneural (NL)159. Verhaak et al 2010 also introduced a 

computational method for calculating GSEA for single samples (SSGSEA). 

Signatures for the four subtypes using a modified SSGSEA procedure were 

scored (see Methods and Appendix Verhaak for details). Corresponding to 

clustering results of our data, tumors aligned into two groups (see figures 3.3 and 

3.4). One group of arrays, including normal tissue samples, scored highly for the 

proneural and neural signatures. The second group scored highly for 

mesenchymal signatures with weak classical scores. Others have shown results 

in GEM for the proneural class168, 171, but to our knowledge the mesenchymal or 

neural subtypes have not been previously generated in mice. 
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Figure 3. 3: Tumors score highly for mesenchymal signatures or present double neural/proneural 
signatures. Tumors do not score similarly based upon their promoter or injection site, but follow 

closely with clusters in figure 3.2. 

 

 

 

Figure 3. 4: Normal tissues present a double neural, proneural signature. 

 

 Normal samples in the TCGA data set were mentioned to have high 

neural scores according to Verhaak et al (2010)159. When samples were scored 

according to our modified procedure, a double signature similar to our mouse 

normal samples (NCTX, NHP) was observed. In addition, normal samples in 

TCGA on average have higher neural subtype scores than neural tumors. 

However, TCGA Neural subtype tumors on average only score highly for the 

neural signature (see figure 3.5). Based only on molecular signatures, mouse 

tumors appear to belong to either mesenchymal or neural subtypes. It is not 
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definitive, however, that the neural tumors are not proneural based upon 

molecular signatures alone.  

 

Figure 3. 5: Comparison of TCGA normal samples, neural tumors, and proneural tumors to 
mouse neural/proneural tumors. For TCGA, normal samples score highest in neural, but also 

present a proneural signature which is similar to mouse normal samples. 

 

 Phillips Signature. Phillips et al. 2006 defined three subtypes based on 

genes in their data set that positively or negatively correlated with survival170. It 

should be noted that these subtypes do not perfectly match Verhaak subtypes. 

The overlap between the two classifications using TCGA data is: Verhaak 

proneural is largely Phillips proneural with double proliferative signatures; 

Verhaak neural is split between Phillips proneural and proliferative; Verhaak 

classical is predominately mesenchymal with some proliferative; and Verhaak 

mesenchymal is predominately Phillips mesenchymal (data not show). Clustering 

on the 35 Phillips signatures genes (figure 3.6 and Appendix Phillips) divides a 

distinctly proneural subtype and a cluster with mixed high mesenchymal and 

proliferative signatures.  
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Figure 3. 6: Samples hierarchically clustered based upon 35 key signature genes from Phillips et 
al. 2006 

 

 Using full gene sets from Phillips for the three molecular subtypes, 

samples were also scored using SSGSEA (see Appendix Phillips). High scores 

for all three subtypes were present in the data (Figure 3.7), although there was 

not complete agreement between SSGSEA and clustering results. It may be 

likely that the tumors belonging to the proliferative and mesenchymal clusters are 

in fact one subtype, as they both contain highly expressed mesenchymal 

signature genes. As Phillips et al. 2006 (and Verhaak et al. 2010) rely on various 

forms of z-scaling; it probably that the lack of a true proliferative or mesenchymal 

tumor is skewing results. Again, tumors do not classify solely based on promoter 

or injection site. 
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Figure 3. 7: SSGSEA scores for the full gene sets of molecular subtype signatures from Phillips et 
al 2006. 

  

 Cell of Origin. A significant area of interest in the study of glioblastoma is 

the cell of origin167. Verhaak et al. (2010) and others applied cell type specific 

signatures for the brain172 to glioblastomas159, 168, 171. For comparative purposes, 

tumors were scored using molecular signatures from Lei et al (2011, but derived 

from Cahoy et al. (2008) which contained signatures for oligodendrocyte 

precursor cells (OPC), oligodendrocytes, astrocytes, neurons, and cultured 

astroglia (see Appendix Cahoy). SSGSEA results showed little correlation with 

the expected cell of origin (figure 3.8); GFPA- and SYN- Cre are not astrocytic or 

neuronal and instead predominately cultured astroglia. Obviously, there are no 

cultured astroglia in the brain. Nes-CRE tumors are predominately score highly 

for all three of the differentiated cell signatures along with OPC. These results 

are in sharp contrast compared to normal samples, which display extremely 

strong neuronal cell signatures (figure 3.9). Given these results, cell type specific 

signatures of terminal tumors do not necessarily indicate the cell of origin. 
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Figure 3. 8: Cell type specific signatures as calculated from SSGSEA do not correspond to the 
expected cell of origins. 

 

Figure 3. 9: Cell type specific signatures for normal samples display only a strong positive 
signature for neurons. 

 

 Combined Signatures. While cell type specific signatures do not match 

the expected cell of origin, they do correlate well with the molecular 

subclasses159, 168, 171 (figure 3.10). Signatures for the average of all tumors in a 

subclass were calculated from the TCGA data set (figure 3.11). As the cell type 

specific signatures in human samples were very weak, reanalysis of those 

signatures for use in humans might be recommended. In general, CL tumors 

exhibit OPC, astrocytic and cultured astroglia cell type specific signatures. 

Mesenchymal solely score high for cultured astroglia. Neural subtype exhibits 

high oligodendrocytic, astrocytic, and neuronal signatures. Finally, proneural 
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tumors have high OPC and oligodendrocytic signatures. These average 

signatures were then correlated with scores from the signatures for each tumor 

(figure 3.12). Correlation coefficients were very strong for the final subtype, 

typically R2 = 0.77.  

 

Figure 3. 10: Cell type specific signatures follow closely with molecular subtype. Mesenchymal 
tumors display a strong signature cultured astroglia. Other tumors typically display signatures for 

the remaining cell types. 

 

Figure 3. 11: Signatures for the average of all tumors in a subtype were calculated using TCGA 
data. While the cell type specific signatures are much weaker than compared to mouse, they still 

show preferences to particular subtypes. 
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Figure 3. 12: Correlation coefficients for each tumor compared to the signatures of the TCGA 
subtypes. The highest correlation coefficient for each tumor was on average 0.77, which indicates 

a high degree of correlation. 

 

 

Discussion 

 As with any set of tools, progress can be considered in terms of invention 

or innovation. The technological and computational methods utilized in this 

chapter are not unique, novel nor inventive or innovative. The original and novel 

aspect of this work is the use of lentiviral vectors to express oncogenes or to 

knockdown tumor repressors to create mouse cancer gene models in 

combination with genetically engineered mice. According to results presented 

here, mouse cancer models generated by lentiviral constructs have significant 

molecular signatures identifiable to both a mouse genetically engineered lung 

cancer model, and primary human glioblastomas. Importantly, the computational 

methods utilized are nearly identical to the original characterizations and 

incorporate molecular signatures as correspondingly defined. This is not to say 

that existing methods are perfect, only it is more intellectually direct and less 
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distracting to prove applicability by using previous methodology. As high 

throughput data sets for primary cancers increase in scope and abundance, the 

demand for characterization via molecular signature is rapidly becoming 

mandatory. 

 Molecular signatures are of great utility as a bioinformatics approach to 

proving applicability of mouse cancer models. Primary tumors can exhibit 

heterogeneity in terms of mutations and chromosomal defects. However, 

different mutations may lead to a common set of repeating patterns of expression 

across multiple tumors. Given the lack of defined criteria, proving the applicability 

of a cancer model is a difficult endeavor, and molecular characterization is a 

powerful tool to prove the internal mechanisms may be similar. For the lung 

cancer mouse model, both the IKKWT and IKKKO tumors exhibited substantial 

enrichment of both KRAS and adenocarcinoma gene sets. For the glioblastoma 

mouse models, brain tumors matched substantially to some of the subtypes 

defined by Verhaak et al. 2010 and all subtypes defined by Phillips et al. 2006. 

 From a clinical standpoint, segregation of tumors into subtypes highly is 

advantageous if those subtypes could direct diagnosis and treatment for better 

outcomes167. For glioblastoma, multiple subtype classifications have been 

presented based on pathology, critical pathways, molecular signatures, and 

image analysis. Verhaak et al. 2010 started from high variable genes and ended 

with subtypes that displayed clinical significance159. Phillips et al. 2006 clustered 

based on genes correlated with survival170. Disappointedly, these classification 
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schemes appear to share significant overlap between them or to known 

pathways that are highly mutated158, yet they all claim clinical significance. 

 Given the known and marked heterogeneity of glioblastomas166, it should 

not have been surprisingly that tumors display a wide degree of transcriptional 

heterogeneity. In fact, the TCGA data set yields 70% of all genes as differentially 

expressed (data not shown). This in and by itself does not pose a drastic difficulty 

as long as it is not a high indication of noise. Rather, the largest challenge to 

application of molecular signatures is the lack of orthogonality between 

signatures173, meaning the signatures are not independent of each other. For a 

thorough analysis of these issues please see Marko et al 2011.  

 Lack of orthogonality is further impacted by the use of rescaling 

procedures required in Phillips et al. 2006 and Verhaak et al. 2010. If samples do 

not sufficiently cover the tumor space, rescaled estimates could falsely score 

high signatures if there are not enough extreme values in the data set. Use of a 

standard or uniform baseline is desirable, but it is not surprising that matching 

normal brain tissue was not collected as this would likely be harmful to the donor. 

A major advantage of mouse models is the ability to compare against genetically 

identical normal tissue, and molecular signatures derived from such comparison 

are more likely to be stable. However, this is not necessarily the best solution, as 

the sensitivity of the brain prevented the harvesting of matching human tissue to 

begin with. 

 As such, it should be stressed that characterization by molecular signature 

is not sufficient alone. As demonstrated from the IKK2 WT/KO lung cancer 
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models, defining a unique gene set for a specific cancer is not yet a simple task. 

In that case, Sweet-Cordero et al. 2005 defined gene sets specific to 

adenocarcinomas. Yet adenocarcinomas specific gene sets were found to be 

statistically significant in mouse glioblastomas, yet the signatures were explicitly 

filtered against human primary GBMs when created. However, the molecular 

signatures were only statistically significant when compared to the matching 

normal tissue (see table 3.2). The fundamental approach is valid, but signatures 

should if possible be linked to underlying oncogenes and tumor suppressors in 

relation to originating tissue or organ as opposed to be considered as static, 

definitive, and stand-alone. 

 A particularly troubling aspect of molecular signatures is the lack of 

agreement on methodology, for both the generation of gene lists and application 

as signatures. Cahoy et al. 2008 was subsequently reanalyzed by multiple 

groups, who used different selection criteria, size of the gene list, and even 

differing number of cell types. Complicating this problem is most of these lists 

have not been published. As GSEA does not penalize scores if a gene is not 

present in a list (not on the array or filtered from further analysis), the trend 

towards ever increasing gene sets is deeply troubling; care must be taken to do 

extend the net too far. In reality, only a very small fraction of genes contribute 

significantly to the final scores. Unfortunately, it is not always the same set of 

genes across data sets.  

 As bioinformatics has been dominated by statisticians, it is not surprising 

the majority methods are based on statistical tests. However, for molecular 
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signatures only one replicate typically exists per tumor, calling into doubt the 

wisdom of relying statistics. This in many respects is a product of disagreement 

in how to measure functional enrichment in general though, and not cancers in 

particular. On the surface, classification and feature selection are standard 

engineering practices, and methodology from engineering or computer science 

would likely be beneficial. However, the greatest impediment to this approach is 

a lack of expert assignment of cancer subtypes which also leads to a 

disagreement on the meaning of the classifications. Clinical significance may 

simply be a result of false correlation, instead of a mechanistic underpinning to 

molecular subtypes. 

 Differential expression detected from gene expression microarray may not 

correspond to the initial oncogenes or tumor suppressors. In the mouse 

KRASLA2 mutated model, KRAS maintains a statistically significant over 

expressed state (data not shown). However, no statistically significant change in 

TP53 gene expression has been detected, which suggests silencing of the 

shRNA against TP53. In the GBMs, neither HRAS nor TP53 show detectable 

changes in expression (data not shown). This may indicate the mutations 

required to sustain a cancer is not the same as the mutations required to initiate 

a cancer139, the entire construct has been silenced. Another possibility exists that 

TP53 and HRAS have no relation to tumor initiating mutations but allow the 

transduced cell to escape cell death and senescence until actual glioblastoma 

initiating mutations can occur. This seems unlikely however, given the number of 

tumors with mutations in RTK/RAS/PI3K and p53 pathways158, 167. 
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 While cell type specific markers do not always indicate the cell of origin 

when applied to tumors, they can still provide clues as to the progression of 

tumors. Tumors display cell type specific signatures matching the TCGA tumors 

as opposed to the expected cell of origin (see figure 3.10). Constructs targeting 

differentiated cell types (GFAP- and SYN-CRE) typically generate mesenchymal 

subtypes (CTX, HP, SYN) with cultured astroglial signatures. This strongly 

suggests that dedifferentiation is required for the generation of mesenchymal 

subtype tumors.  

 In contrast, NES-CRE, which should target neuronal stem cells, generates 

neural subtype tumors with signatures for all cell types except cultured astroglial. 

This does seem to be a coordinated phenomenon, as it differs from normal 

samples which display only a neuronal cell type signature (see figure 3.9). In 

addition, there is a strong negative correlation of cultured astroglia signature, 

which suggests neuronal subtypes do not simply randomly express all genes. 

Intriguingly, this suggests mutations required for neural subtypes preferentially 

maintain cancer cells in a semi-differentiated state. 

 A small number of constructs generate subtypes opposite of the majority. 

It is unclear if there are additional, but rare mutations that can lead the cell of 

origin to different subtype tumor cancer cells as in the genetic mutation model139, 

or if this is simply a product of promoter leakiness where the CRE transgene is 

expressing or at a low level of expression in the wrong cell type. This is in sharp 

contrast with results published from others regarding proneural subtype tumors, 

which showed consistent oligodendrocytic and OPC signatures and only arose 
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from those lineages168, 171. However, as the cell of origins and set of all initiating 

mutations for human primary glioblastomas are unknown, care should be taken 

when defining the cell of origin for a particular subtype. All that can be definitely 

stated is it is possible to generate Mesenchymal and Neural subtypes given 

initiating mutations to TP53 and HRAS in neurons, astrocytes, and neuronal 

precursor cells. 

  Given the large quantity of data, a systems biology approach to 

reconstructing the underlying oncogenic network is of significant value174. Carro 

et al. 2010 applied the ARACNe175 (algorithm for the reconstruction of accurate 

cellular networks) to discover critical transcription factors driving the 

mesenchymal subtype176. In the end, a focus on a causative approach to cancer 

subtypes may be stronger than relying on correlative characterization by 

molecular signatures. From a systems biology perspective, lentiviral mediated 

models are a boon to rapid testing of hypotheses for cancer networks. 

Combinations of putative driver mutations could be tested and compared, with 

tumorigenesis or chemotherapy resistance as strong end measurements. More 

complicated experimental designs may address the cell of origin issue for the 

different GBM subtypes, or possibly the order of critical mutations through 

inducible constructs.  

 

Methods 

 Transcriptome Analysis. Samples were prepared from Trizol and 

hybridized against Affymetrix Mouse Gene ST 1.0 arrays. 
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 Mouse to Human Mapping. Gene annotations were updated to the latest 

identifiers using data from NCBI and ENSEMBL. Mapping from mouse to human 

and vice versa was performed through matching of official gene symbols and 

homology data. 

 Z-scaling and Rescaled Estimates. The z-score, or standard score, is a 

method of rescaling each gene to have identical distributions across samples and 

allows them to be directly comparable. The z-score is calculated by subtracting 

the mean across all samples and dividing by the standard deviation. Verhaak et 

al. 2010 reweighted factor analysis gene estimates177 by multiplying by the 

median absolute difference (MAD), which is the median of the median subtract 

from all samples. 

 Clustering. Initial clustering of gene expression data was performed to 

test the replication of similar samples. Absolute expression measures were 

filtered for genes that had deviations greater than typically 1. Hierarchical 

clustering was performed using the Cluster 3.0 program178 and visualized with 

java treeview179. 

 Differential Gene Expression. Significantly expressed genes were 

identified using Cyber-T30, with a p-value cutoff < 0.05 and a PPDE > 0.95 (FDR 

< 5%). 

 GSEA. Functional term enrichment was performed using Gene Set 

Enrichment analysis37 by permuting across gene sets. A FDR cutoff of < 10% 

was arbitrarily chosen. 
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 Single Sample Gene Set Enrichment Analysis. Verhaak et al. 2010 

defined a modification to the GSEA procedure to provide enrichment for single 

samples. Briefly, all genes in a gene list are ranked according to absolute 

expression. For a gene set, the empirical cumulative distribution function is 

calculated using a decreasing hit weighted, or a static miss score. In practice 

usage of this weight score is problematic as the distribution of gene expression 

was not truly Gaussian. The CalNC clusters defined by Verhaak et al. 2005 

provided a better partitioning of the subtypes, but contained both positive and 

negative correlated genes. We modified SSGSEA by ranking by signed 

expression and scoring up and down components separately. A final score of a 

signature was calculated by subtracting the down component from the up 

component score. For normalization purposes, scores were divided by the 

maximum possible score which is closely related to the number of genes in the 

gene list. Testing of modified SSGSEA on the TCGA data set demonstrated an 

improvement in resulting subtype scores and a lower misclassification rate (data 

not shown). 

 Verhaak Signatures. Subtype signatures were derived from assignments 

of the CalNC clusters from Verhaak et al. 2010. Genes in all signatures are 

provided in Appendix Verhaak. 

 Phillips Signatures. Clustering was performed on the 35 signature genes 

were provided for that purpose in Phillips et al. 2006. SSGSEA scores were 

calculated using the full set of differentially expressed genes used to determine 

the subtypes. Genes are provided in Appendix Phillips. 
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 Cahoy Signatures. While Cahoy et al 2008 provided a top 25 list of 

potential marker genes; the underlying data has been subsequently reanalyzed 

for better coverage. Cell type specific signatures were directly taken as defined 

by Lei et al. 2011 as they provided their cell type specific list. Genes are listed in 

Appendix Cahoy. 

 Combined Signatures. To calculate the final classification of a tumor, the 

highest correlation coefficient between all signatures of a tumor and the average 

signature profile of tumors from the TCGA data set was chosen. The average of 

the highest coefficient values was 0.77, representing a high degree of correlation. 
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APPENDIX 

Real Time PCR Primers 

Name Forward Reverse 

ACTB_idt1 ACCTTCTACAATGAGCTGCG CCTGGATAGCAACGTACATGG 

ACTB_idt2 GTCTTCCCCTCCATCGTG GTACTTCAGGGTGAGGATGC 

ADNP_harvard AGCAGGGTAGTCACACTAACA GGGCATCCCTCAGATTGTATGT 

ADNP_idt GAGGATGTAGGACTGTGGGA TCTTCACTATGGACATTGCGG 

ALAS1_harvard TGCCGTTAAGAAAGAGGGTGC TGGTCTCTGCTTTTGCATGAT 

ALAS1_idt TCTGCAAAGCCAGTCTTGAG CCTCCATCGGTTTTCACACTA 

APBB1_harvard GGACAGTGGAAGGGACTTTGC GGTGGCGATGTTCTTGGCA 

APBB1_idt CCCTGGACCACTCTAAACTTG GCCCCATTAATCACATCTACCC 

ATF3_harvard GAGGATTTTGCTAACCTGACGC GGCTACCTCGGCTTTTGTGAT 

ATF3_idt AGAAGGAACATTGCAGAGCTAAG GGATTCTAGAGGTACACAGGAAG 

ATP5B_harvard CTATGCGGCGCAAACATCTC GGTGGTAGTCCCTCATCAAACT 

ATP5B_idt GATCCTCTAGACTCCACCTCTC AGAAAGTTCATCCATACCCAGG 

B2M_harvard GTGGCCTTAGCTGTGCTCG ACCTGAATGCTGGATAGCCTC 

B2M_idt GGCATTCCTGAAGCTGACAG TGGATGACGTGAGTAAACCTG 

BAX_IDT ACGGCAACTTCAACTGGG CCAATGTCCAGCCCATGAT 

BIRC3_HARVARD AAGCTACCTCTCAGCCTACTTT CCACTGTTTTCTGTACCCGGA 

BRCA1_IDT CAGAAACCGTGCCAAAAGAC TGCTTTGTCCTCAGAGTTCTC 

C7_harvard GGCGGTCAGTTGCTGTGTAT TCCTCTGTTGGACATCCTCTTG 

C7_idt  CAGCCTTGTGTTGGAAATGC  TCACAGTCAGAATCCCCATTG 

CASP7_HARVARD GGGACCGAGTGCCTACATATC CGCCCATACCTGTCACTTTATCA 

CASP8_harvard AGAGCCAGGGTGGTTATTGAA GCAGTCTCCGAGTCCCCTA 

CASP8_idt AAATGAAAAGCAAACCTCGGG CTTCAAAGGTCGTGGTCAAAG 

CASP8_idt GGAAATCTCCAAATGCAAACTGG TGGGCACAGACTCTTTTCAG 

CCR3_harvard ATACAGGAGGCTCCGAATTATGA ATGCCCCCTGACATAGTGGAT 

CCR3_idt TGCTGAGTTGTATTGGAGAAGTG CCATCAGTGCTCTGGTATCAG 

CD86_harvard GAACTGTCAGTGCTTGCTAACT ACCGTGTATAGATGAGCAGGTC 

CD86_idt TCCCTGATGTTACGAGCAATATG ATCCAAGGAATGTGGTCTGG 

CYC1_harvard CCAGGGAAGCTGTTCGACTA GCACGATGTAGCTGAGGTCA 
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CYC1_idt CTTCAACCCCTACTTTCCTGG CCTTGGCTATCTGGGACATG 

CYCS_IDT AATCTCCATGGTCTCTTTGGG TCCATCAGTGTATCCTCTCCC 

CYCS_idt1 GCGAGTTTGGTTGCACTTAC TGCCTTTCTCAACATCACCC 

CYCS_idt2 GTGCCACACCGTTGAAAAG AGTGTATCCTCTCCCCAGATG 

DKK1_harvard ATAGCACCTTGGATGGGTATTCC CACAGTCTGATGACCGGAGA 

DKK1_idt GTTACTGTGGAGAAGGTCTGTC GTTCACTGCATTTGGATAGCTG 

DUSP1_harvard CCAGTACAAGAGCATCCCTGT AGTGGACAAACACCCTTCCTC 

DUSP1_idt ACCACAAGGCAGACATCAG AAGGTAAGCAAGGCAGATGG 

EGR1_harvard ACCTGACCGCAGAGTCTTTTC GCCAGTATAGGTGATGGGGG 

EGR1_idt CAGCACCTTCAACCCTCAG AGTCGAGTGGTTTGGCTG 

EIF4A2_harvard TGGAGATTGAGTTCAAGGAGACC CAAGTGCCAGAATTACCTTTTGG 

EIF4A2_idt CCACATTTGCTATTTCCATCCTG GCTCCCATATAGTCTCCAAGTG 

FANCC_harvard AAGGTCTTGGGTATGCACCTA TCGCCTTTGAGTGTTAAATCCAT 

FANCC_idt ACTTCTCCATCTCTTGCCATG TGGTCTTCAACTGCTTCTCTG 

FOS_harvard GGGCAAGGTGGAACAGTTATC CCGCTTGGAGTGTATCAGTCA 

FOS_idt TTGTGAAGACCATGACAGGAG CCATCTTATTCCTTTCCCTTCGG 

GAPDH_harvard CATGAGAAGTATGACAACAGCC AGTCCTTCCACGATACCAAAGT 

GAPDH_idt ACATCGCTCAGACACCATG TGTAGTTGAGGTCAATGAAGGG 

GCSH_IDT TCACAGAGAAACACGAATGGG CCAACTTCAGGGAGACTACAAT 

GPX8_IDT CTGAGACTTCCCTCTAGAATCC GCATAGAACTATAGACAGCAAAACTG 

HDAC4_harvard GGCCCACCGGAATCTGAAC GCTGCGTTTTCCCGTACCA 

HDAC4_idt ACAAGGAGAAGGGCAAAGAG GCGTTTTCCCGTACCAGTAG 

HMOX1_harvard CAGTGCCACCAAGTTCAAGC GTTGAGCAGGAACGCAGTCTT 

HMOX1_idt TCAGGCAGAGGGTGATAGAAG TTGGTGTCATGGGTCAGC 

HPRT1_IDT TGCTGAGGATTTGGAAAGGG ACAGAGGGCTACAATGTGATG 

IER2_harvard CAAAGTCAGCCGCAAACGAC CAGACGGGCTTTCTTGCTC 

IER2_idt AACTTCAGTTTCCCTTCCAGG CACCCAGGCCCTTTTATACC 

KEAP1_harvard CTGGAGGATCATACCAAGCAGG GAACATGGCCTTGAAGACAGG 

KEAP1_idt AACAGAGACGTGGACTTTCG GTGTCTGTATCTGGGTCGTAAC 

MBD4_IDT GTGGCTCTGAAATGGACAAC TCTTTCTATCTGTGTTCGTGGG 

MYC_harvard CCACAGCAAACCTCCTCACAG GCAGGATAGTCCTTCCGAGTG 

MYC_idt TTCGGGTAGTGGAAAACCAG AGTAGAAATACGGCTGCACC 

NFKBIZ_harvard AGCCACACTACACCCACAAAC GGCAAAACTGTGATTCTGGACC 
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NFKBIZ_idt AAGGATGCAGATGGTGACAC CAAGAACATAGGAAAGTGCCC 

POU2F1_harvard CCCTGTCTCAGCCCATACAGA GCTGCAAATTGGTGGTTGGAT 

POU2F1_idt CAGCATAGAGACCAACATCCG GAACCAAACACGAATCACCTC 

PRDX1_HARVARD CATTCCTTTGGTATCAGACCCG CCCTGAACGAGATGCCTTCAT 

PSMB4_HARVARD GAAGCGTTTTTGGGGTCGC GAGTGGACGGAATGCGGTA 

PTGS2_harvard ATATGTTCTCCTGCCTACTGGAA GCCCTTCACGTTATTGCAGATG 

PTGS2_idt ACAGGCTTCCATTGACCAG TCACCATAGAGTGCTTCCAAC 

RHEB_idt1 AAGACCTGCATATGGAAAGGG CTGCCTCCAAAATTATCCTTCG 

RHEB_idt2 GCGGTTGATGTGGTTGGG TCGTAGGAGTCCACAAATTGG 

RRAD_harvard TGCACGGCAAACAGATGATGT GCCGCTGATGTCTCAATGAAC 

RRAD_idt GAAACCCTAAAGTCCGAGTCC GTTCAGGGTCATCGCGTC 

SDHA_harvard TCGCTATTGCACACCTTATATGG GCACAGTGCGATGACACCA 

SDHA_idt TGGTTGTCTTTGGTCGGG GCGTTTGGTTTAATTGGAGGG 

SESN1_HARVARD TCAAATACCGAGTCTTCGGATGG AGGGACACCTCTTAGAAAGCA 

SF3A1_harvard AGCCCAAGTAATCCAAGAGACC CTTCACCACATCCAAGTCGAA 

SF3A1_idt TTGACTTTCTCCGCCCAC ACCTGATCCAAAACTTCTCGG 

SIRT6_harvard TGTAAGACGCAGTACGTCCGA CCCCTGCAATGAGGAAGCTG 

SIRT6_idt AGGATGTCGGTGAATTACGC GAAGACTGCCAGACCAGC 

SOD2_harvard CTGCTGGGGATTGATGTGTGG TGCAAGCCATGTATCTTTCAGT 

SOD2_idt CCTGGAACCTCACATCAACG GCTATCTGGGCTGTAACATCTC 

SRXN1_harvard ACAACTCCACGAAGGTAGGG CGCAGACATGATTCTTGGGGATA 

SRXN1_idt AGCATCCACACCAGACTTG ACCCCTGCTATCCCTTCTG 

TOP1_harvard TACTTGGCTGGTTTCCTGGAC GCCGAGCAGTCTCGTATTTC 

TOP1_idt CTGTAGCCCTGTACTTCATCG CTACCACATATTCCTGACCATCC 

tsc1_HARVARD CCATGCTACCAATGATTCCACA TGATGACAGACGGCCAAAAATG 

UBC_idt GATTTGGGTCGCAGTTCTTG CCTTATCTTGGATCTTTGCCTTG 

VHL_harvard TTGTGCCATCTCTCAATGTTGAC TCTCAGGCTTGACTAGGCTCC 

VHL_idt TGCCAATATCACACTGCCAG GTCTTTCTGCACATTTGGGTG 

YWHAQ_IDT AATAACCCAGAGCTTGCCTG TGAGGGTGCTGTCTTTGTATG 

YWHAZ_harvard CCTGCATGAAGTCTGTAACTGAG GACCTACGGGCTCCTACAACA 

YWHAZ_idt CTACCGTTACTTGGCTGAGG CCAGTCTGATAGGATGTGTTGG 
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Sweet-Cordero 

KRAS Up Signature 

0610010K14RIK, 1100001G20RIK, 1110008P14RIK, 1190002H23RIK, 1600029D21RIK, 

1810046J19RIK, 2410004N09RIK, 2610005L07RIK, 4933407C03RIK, 5730469M10RIK, 

6330416G13RIK, A630007B06RIK, AA516738, AASS, ACADL, ACE2, ACLY, ACSL4, ACSL5, 

ACTN1, ACTN4  ///  CAPN12, ADAM19, ADCY7, ADIPOR2, ADSSL1, AES, AI596198, AK1, 

ALDOA, ALDOC, Ank3, ANXA4, APEX1  ///  TMEM55B, APOC1, APRT, ARCN1, AREG, Arf6, 

ARG1, ARG2  ///  VTI1B, Arglu1, ARL8B, ATOX1, ATP11A, ATP1A1, ATP1B1, ATP5C1, 

ATP5F1, ATP5G1, ATP6V0A1, ATP6V0C, ATP6V0D1, ATP6V1C1, ATXN10, AU021092, AVPI1, 

AXIN1, AXL, AZIN1, B3GAT3, B4GALNT1, B4GALT3, BASP1, BCL2A1A  ///  BCL2A1D  ///  

BCL2A1B  ///  BCL2A1C, BCL2A1B  ///  BCL2A1D  ///  BCL2A1A, BCL2A1D  ///  BCL2A1A  ///  

BCL2A1B  ///  BCL2A1C, BEX1, BEX4, Bhlhe40, BMP4, BOP1, BRAF, BRD7, Brix1, BSG, BST1, 

BTG1, BTG3  ///  GM7334, C1QB, C1QC, C330027C09RIK, C77080, CAMSAP1, CAPZA3, 

CAR8, CASK, CCL6, CCL9, CCND1, CCR5  ///  CCR2, CCT3, CD14, CD44, CD63, CD68, CD74, 

Cd8b1, CD9, CDK2AP2, CDKN1A, CEACAM1, CEBPA, CES3, CH25H, CHCHD7, CHD4, 

CHI3L1, CHI3L3, CHIA, CHL1, CHRNB1, Cisd1, CITED2, CKMT1, CKS2, CLCN5  ///  

LOC100045272, CLDN3, CLDN7, CLDND1, CLIC1, CLTC, CLU, CNDP2, CNIH2, COL15A1, 

COL18A1, COTL1, CPOX, CRB3, CRLF1, CRYGD, CSF2, CSF2RB2, CSRP2, CSTB, CTAGE5, 

CTNND2, Ctsa, CTSB  ///  FDFT1, CTSC, CTSD, CTSE, CTSH, CTSK, CTSS, CTSZ, CXCL1, 

CYB5R1, CYB5R3, CYBA, CYHR1, D15ERTD50E, D17WSU104E, DAP, DLK1, DSC2, DUSP6, 

EDEM1, EEF1B2, EEF1D, EEF2, EHD1, EHMT2, EIF1Ax, EIF2AK4, Eif3e, EIF4B, EIF4G1, 

ELF5, ELL2, ELOVL1, ENO1  ///  GM5506, ENTPD1, Epcam, EPHA7, ERH, ERRFI1, Esrp1, 

ETV2, F10, F3, F7, FABP1, Fam117a, Fam162a, Fam3c, Fam49b, FASN, FBP2, FCER1G, 

FCGR2B, FKBP2, FKBP4, FMR1, FNTA, FPR3  ///  FPR2, FUCA1, FV1, FV4 /// AI506816 /// 

LOC622147 /// LOC628577 /// ENV /// LOC664798 /// LOC666404 /// LOC668227 /// LOC668269 

/// LOC669098 /// LOC669176 /// LOC669658 /// LOC669821 /// LOC670510 /// LOC671760 /// 

LOC672016 /// LOC676636, G6PDX, GABPAP, GADD45A, GALNT3, gapdh, GARS, GAS5, 
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GCH1, GGCX, GJA1, GJA3, GJB2  ///  GM10871, GJB3, GLRX, Gm13611, GNB2L1, GNE, 

GNL3, GNS, Golm1, GP49A  ///  LILRB4, GPI1, GPR56, GRHPR, GRINA, GSTT1, H13, H19, H2-

AA, H2-AB1, H2-DMA, H2-DMB2  ///  H2-DMB1, H2-EA, H2-EB1, H2-M1, H2-M9, HAP1, HDC, 

HDLBP, HEXA, HHEX, HIBADH, HIF1A, HIST1H2AO  ///  GM11276  ///  HIST1H2AC  ///  

HIST1H2AN  ///  HIST1H2AF  ///  HIST1H2AH  ///  HIST1H2AD  ///  HIST1H2AG  ///  HIST1H2AI  

///  HIST1H2AK, HIST1H3F, HK1, HK2, HMGB3, HMGN1, Hnf1b, HNRNPA1L2  ///  LOC634350, 

HOXD1, HPN, HRSP12, HSPA1A  ///  HSPA1B, HSPA5, HSPA8  ///  LOC624853, HSPA9, 

Hsph1, IBSP, ID2, IFI30, IGFBP3, IGH /// IGH-1A /// AI324046 /// LOC544903 /// LOC628614 /// 

LOC629871 /// LOC629884 /// LOC634081 /// LOC634100 /// LOC634136 /// LOC634206 /// 

LOC634222 /// LOC634338 /// LOC634572 /// LOC637000 /// LOC640522, IGH-1A, IGH-4, IGH-6, 

IGHG, IGHG  ///  IGH-VJ558  ///  AI324046  ///  LOC544903  ///  IGH-6  ///  IGH-5  ///  IGHG1  ///  

IGH-3  ///  IGH-VS107  ///  LOC380804  ///  LOC630565  ///  IGH-VX24  ///  IGHV14-2  ///  IGH-2  

///  IGG2A, Ighv1-54, IGH-V7183 /// IGK-V1 /// IGKV1-117 /// CR1 /// IGKV1-110, IGK-V1, 

IGKV10-95, IL11, IL13RA2, IL18, IL4ra, INHBB, IQGAP1, ITGA4, ITGA8, ITGAX, ITGB2, ITIH4, 

ITM2C, ITPR2, KCNJ15, KCNK1, KDELR1, KLF5, KLHDC2, KNG1, KRAS, Krt18, Krt7, Krt8, 

KRT83  ///  KRT81  ///  5430421N21RIK, LAMB3, LAMC1, LAMC2, LAP3, LAPTM5, LAS1L, LBP, 

LCN2, LCP1, LDHA, LGALS3, LITAF, Lpcat1, Lpcat3, LRG1, LRP2, LRRFIP1, LSR, LY6D, LY75, 

MAN1A, Manf, MAP3K11, MAPK1, MAPRE1, MARCH5, MARCO, MATN4, MBTD1, MCPT8, 

MDFI, MDFIC, MEF2B  ///  2310045N01RIK, MEG3, MMP12, MMP2, MPEG1, MRC1, MRPS18B, 

MRPS34, MSR1, Mt2, MTIF2, MTX1, MUC1, MX1, MYCN, NAGK, NAPSA, NCL, Ndufaf4, NEK1, 

NEK4, NFIL3, NME2, NMT1, NNT, Nop56, NPC2, NPDC1, NR1D1  ///  THRA, NR2F1, NR2F6, 

NRP2, NUCB2, NUDT4, NUP88, Obfc2a, ORM1, ORM2, OSBPL1A, OSTF1, PABPC1, 

PAFAH1B3, Pan2, PAPOLA, PCBD1, PCYT1A, PDIA6, PDK3, PFDN1, PFDN2, PFKL, PFN1, 

PGK1, PGLS, PGLYRP1, PHB2, PHLDA1, PHLDA2, PIGA, PIGQ, Pip4k2c, PIP5K1A, PISD-PS1  

///  PISD-PS3, PKHD1, PKM2, PLA2G5, PLA2G7, Plbd1, PLD3, Plin2, PLP2, PLXNB2, POLG, 

Polr1c, POLR2E, POLRMT, PON2, PPARG, PPP1R14B, PPP2R5C, PRAMEL4  ///  GM13102  ///  

PRAMEL5, PRB1  ///  GM8882  ///  PRPMP5  ///  GM4736  ///  LOC100044247  ///  
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LOC100044541, PRCC, PRDX4, Prelid1, PRNP, PSAP, PSAT1, PSCA, PSEN1, PSMB5, 

PSMD4, PSMD5, PSME1, Ptgr1, PTGS1, PTPRF, RABGGTB, RAP1GAP, RBP4, RDH11, 

REEP6, RELB, RFK, RNASET2A  ///  RNASET2B, RNF149, Rnf181, RNF4, ROS1, RPL10A, 

RPL14, RPL28, RPL3, RPL37, RPL6  ///  GM6807, RPL8, RPRM, RPS18, RPS2, RPS8, RRBP1, 

S100A1, S100G, SAT1, SCAMP1, Scd1, SCG3, SDC1, SEC23B, SERPINE1, SERPINE2, 

SFRS6, SFTPB, SH3RF1, SHC1, SHMT1, SIRPA, Siva1, Slain1, SLC12A2, SLC15A2, 

SLC16A1, Slc25a39, SLC25A5, SLC2A4, SLC31A1, SLC34A2, SLC38A2, SLC4A4, SLCO6C1, 

SLPI, Snd1, SNRPE, SNX10, SOAT1, SOCS2, SOCS3, SPECC1, SPG21, SPINT1, SPP1, 

SSR4, ST13, ST3GAL4, ST6GAL1, ST7, STARD10, STXBP2, TACSTD2, TAF15, TANK, 

TAOK3, TBC1D24, TCFCP2L1, TCRB-J  ///  LOC665506, TES, TGFBI, Tgif1, TGOLN1  ///  

TGOLN2, THBS1, TM2D2, TMEM30A, TMEM30B, TMEM49  ///  MIR21, TMEM50B, TMEM56, 

TMEM62, TNFAIP1, TNFSF9, TNNT1, TOB1, TOM1L1  ///  COX11, TPI1, TPM4, TRMT112  ///  

PRDX5, TROVE2, TSPAN8, TSR1  ///  SRR, TSTA3, TSTD2  ///  TMOD1, TULP2, TYROBP, 

UBQLN2, Ubxn1, UOX, VAMP2, VAMP8, VASP, VEGFB, VIL1, WBP5, Wls, XBP1, ZDHHC3, 

ZDHHC6, ZFP1, ZFP143, ZFP282, ZFP42, ZNHIT3  ///  MYO19 

KRAS Down Signature 

1190002N15RIK, 2210023G05RIK, 2610042L04Rik, 2900062L11RIK, ABCA1, ABCC1, ABLIM1, 

ACE, ACSL1, ACTA1, ACTA2, ACTC1, ACVR2A, ACVRL1, ADARB1, ADCY8, ADH1A, 

ADIPOQ, ADRB2, ADRB3, AHNAK, AHR, AKAP12, AKAP8, ALAS2, ALDH1A1, ALDH1A7, 

ALDH7A1  ///  PHAX, ALDOB, ANGPT1, ANKRD1, ANKRD10, Ankrd33b, Ankrd40, ANTXR2, 

AQP1, ARFGEF1, ARHGEF3, ARMCX2, ARRB1, ART3, ATOH7, ATP1A2, ATP2A2, Atp5k, 

AW112010, BC026782, BCL6B, BDNF, BMP6, BMYC, BNC1, BNIP2, BPGM, BPHL, BUB1, C3, 

CACNB2, Cadm1, CALCR, CALCRL, Car2, Car3, CAV1, CAV3, CCBP2, CCKAR, CCL21A  ///  

CCL21B  ///  CCL21C, CCRL1  ///  ACAD11, CCRL2, CD3D, CD47, CD93, CD97, CDC25B  ///  

SPEF1, CDH11, CDH5, CDK14, CDKN1C, CDO1, CDR2, CES3, CFD, CFH, CFHR1, CIDEC, 

CKMT2, CLDN5, CLEC3B, CLIC4, CNTN1, COL13A1, COL1A1, COL1A2, COL3A1, COL6A2, 

COX7A1, CP, CPE, CRHR1, CRIP1, CTLA2A, CTLA2B, CXCL12, CXCL14, CXCR4, CXCR7, 
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CYP2A4  ///  CYP2A5, CYP2B10, CYP2B9, CYP2E1, CYP2F2, CYP2S1, CYP4B1, CYR61, 

Cyth3, D16H22S680E, DCN, Dennd4c, DHX15, DNM1, DPEP1, DPT, DUSP1, EDN1, EDNRB, 

EFNB2, EMCN, EMP2, ENAH, ENG, ENPP2, EPAS1, EPB4.1, EPB4.1L2, EPHA5, ETS1, ETS2, 

Fam65b, FANCC, FAS, Fermt2, FEZ2, FGF7, FGF9, FGFR2, FGL2, FHL1, FIGF, FKBP9, FLT1, 

FMO1, FMO3, FMR1, FOXF1A, FOXF2, FXYD1, FYN, G0S2, GADD45B, GBP2, GBP4, Gbp7, 

Gcom1, GFRA2, GGH, GIMAP4, GLUD1, GLUL, GM10334  ///  PRSS3  ///  EG436523  ///  

PRSS1, Gm4788, GMFG, GNB4, GNG11, GNG2, GPAM, GPC3, GPM6B, GPR182, GPX3, 

GREM2, GRK5, GSN, GSTA3, GSTM2, GUCY1B3, Gyg, H2AFX, Hamp, HBA-A1  ///  HBA-A2, 

HBA-A2  ///  HBA-A1, HBB-B1  ///  HBB-B2, HCK, HEPH, HEY1, HIST1H2BC, HNRNPA1L2  ///  

LOC634350, Hopx, HOXA5, HOXA6, HOXB5, HP, HSD11B1, ICAM2, ID3, IFI203, IFI204  ///  

MNDA, IFIH1, IFIT3, IFITM3, IGFBP2, IGFBP5, IGFBP6, IGH-1A, IGSF4, IL11RA1  ///  IL11RA2  

///  GM13305  ///  GM2002, IL1B, IL27RA, IL6ST, INMT, INPP5A, ITPKB, JUN, KALRN, Kank3, 

KCTD12, KDR, KIT, Kitl, KLF2, KLF4, KLF7, KLF9  ///  GM9971, KLRA3, Krt13, Krt4, Krt85, 

LAMA2, LAMB1-1, LATS2, LEPR, Lifr, Limch1, LIN9, LMO2, LOC670044, LOR, LOX, LOXL1, 

LTB, LTBP4, LY6A, LYL1, LYSMD2, Lyve1, MACF1, MAPT, MATN2, MEF2C, MEIS1, MEOX2, 

METAP1, MFAP2, MFAP4  ///  MAPK7, MFAP5, MFHAS1, MGP, MPDZ, MS4A1, MS4A4D, 

MS4A6B, MSLN, MTAP4, Mtap7d1, Mtss1l, MYB, MYH1, MYH11, MYH6  ///  MYH7, MYL3, 

MYL4, MYL7, MYL9, MYO1B, MYO6, NDN, NDRG2, NDST1, NESPAS, NFIB, NFKBIA, NID1, 

NOTCH4, NPNT, NPR3, NR2F2, NT5DC2  ///  STAB1, NTN1, NUMB, OGN, OMD, PAM, 

PAPSS2, PCDHA10  ///  PCDHA4  ///  PCDHA11  ///  PCDHA12  ///  PCDHA2  ///  PCDHA5  ///  

PCDHA6  ///  PCDHA7  ///  PCDHA8  ///  PCDHA9  ///  PCDHAC1  ///  PCDHAC2  ///  PCDHA1  ///  

PCDHA3  ///  PCDHA4-G, PCK1, PDGFRA, PDGFRB, PDLIM1, PECAM1, PEG3, PGM1, 

PGRMC1, Pip4k2c, PKD2, PKIA, PLAC9, PLEKHA1, PLTP  ///  CTSA, PMP22, POLRMT, PON1, 

POSTN  ///  A630052E07RIK, PPAP2A, PPAP2B, PPP1CB, ppp2r3c, PRDX6, PRDX6-RS1, 

PRG1, PRKCDBP, PRKCE, PROM1, PRSS29, PRX, PSIP1, PSMB10, PTCH1, PTGES, PTGIS, 

PTPRB, PTPRD, PTRF, Qk, RAB12, RAB28, RABGGTA, RAG1  ///  B230118H07RIK, RAMP2, 

RARRES2  ///  LRRC61, RASIP1, RBP1, RCN1, RDH11, RECK, REG3G, RGS2, RHOB, RHOJ, 
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ROBO1, RPTN, S100A14, S100A8, S100A9, S1PR1, SASH1, SATB1, Sc5d, SCEL, SCGB1A1, 

SCN7A, SDPR, SEMA3C, SEMA7A, SEPT4, SERPINA3C, SERPING1, SESN1, SH3BP5, SHE, 

SHOX2, SIAH1A, SLC10A2, Slc4a5, SLC7A5, SLCO3A1, SMARCA2, SNCA, SOD3, SORBS1, 

SOX11, SOX17, SOX2, SPA17, SPARC, SPARCL1, SPIB, SPNA2, SPNB2, SPOCK2, SSPN, 

ST5, ST8SIA4, STAB1, STMN2, STMN3, SULT1A1, SULT1D1, SURF2, SUV420H2, TAGLN, 

TBX2, TBX3, TCF21, Tcf3, TCF4, TCRB-J  ///  LOC665506, TEK, TEKT1, TENC1, TFPI, TFRC, 

TGTP1  ///  TGTP2  ///  GM12185, THBD, TIAM1, TIE1, TIMP3, TJP1, TM2D3  ///  TARSL2, 

TMEFF1, TMEM45A, TMEM71, TNFRSF19, TNNC1, TNNI3, TNNT2, TNNT3, TNXB, TOP2A, 

TPH1, Tprgl, TPST2, TSPAN13, TSPAN3, TSPAN6, TSPAN7, Tuba1a, TWSG1, U46068, 

UPK3B, USP18, VAMP3, VAX1, VCL, Vegfa, VPREB3, VWF, WISP2, WNK1, WWTR1, XIST, 

ZBTB16, ZBTB20, ZBTB46, ZCCHC3, Zeb1, ZMYND11 

Adenocarcinoma Signature 

ACADL, ACLY, ACTN1, ADCY7, ADSS, AES, AK1, ANK3, ANXA4, APEX1  ///  TMEM55B, 

APOC1, APRT, AREG, ARF6, ARG1, ARG2  ///  VTI1B, ATOX1, ATP1B1, ATP5C1, ATP5F1, 

ATP6V0A1, ATP6V0C, ATP6V0D1, ATP6V1C1, AXL, Azin1, BMP4, BOP1, BSG, BTG1, BTG3  

///  GM7334, C1QB, CCL8, CCND1, CD14, CD44, CD63, CD68, CD9, CDKN1A, CEACAM1, 

CEBPA, CHD4, CHRNB1, CITED2, CKMT1, CKS2, CLIC1, CLU, COL15A1, COL18A1, CSF2, 

CSRP2, CST3, CSTB, Ctr9, Ctsa, CTSC, CTSD, CTSH, CTSK, CTSS, DAP, Diap1, DLK1, 

DSC2, DUSP6, EEF1B2, EEF1D, EEF2, Ehmt2, Eif3e, EIF4B, EIF4G1, ELL2, ENO1, ENTPD1, 

EPHA7, ERH, F10, F3, F7, FABP1, FASN, FBP2, FCER1G, FCGR2B, FEZ2, FKBP2, FKBP4, 

FMR1, FNTA, GADD45A, GALNT3, GGCX, GJA1, GNAT2, GNS, GSTT1, HDC, HDLBP, HHEX, 

HIF1A, HMGN1, Hnf1b, HNRNPA1L2  ///  LOC634350, HPN, HSPA5, HSPA8  ///  LOC624853, 

IBSP, IFI30, IGFBP3, IL11, IL13RA2, IL18, INHBB, ITGA2, ITGA4, ITGA8, ITGAM, ITGAX, 

ITGB2, ITPR2, KCNJ15, KDELR1, KLF5, Kras, LAMB3, LAMC1, LAMC2, LAPTM5, LCN2, 

LGALS3, LITAF, LRP2, LSR, Manf, MAP2K1, MAPK1, MDFI, MMP12, MRC1, MSR1, MTIF2, 

MUC1, MYH7, NCL, NDN, NEK4, NFIL3, NME2, NMT1, NNT, NPC2, NR2F1, NUCB2, NUP88, 

ORM1, OSTF1, PABPC1, PAFAH1B3, PAPOLA, PCBD1, PCYT1A, PDK3, PFKL, PFN1, PGK1, 
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PHLDA1, PHLDA2, PIGA, PIP5K1B, PKM2, PLA2G5, PLA2G7, PLD3, Plin2, POLR2E, PON2, 

PRCC, PRDX4, PRNP, PSEN1, PSMB5, PSMD4, PSMD5, PTGS1, RABGGTB, Rap1gap, RBP4, 

RELB, RNF4, ROS1, RPL10A, RPL3, RPL37, RPL6  ///  GM6807, RPL8, RPS2, S100A1, S100g, 

SCAMP1, SEC23B, SERPINE1, SFTPB, SHC1, SHMT1, Sirpa, SLC12A2, SLC15A2, SLC16A1, 

SLC25A5, SLPI, SPP1, SSR4, ST13, St3gal4, STXBP2, TACSTD2, TANK, TGFBI, Tgif1, 

THBS1, TNFAIP1, TNFSF9, TNNT1, TOB1, Trove2, Tspan8, TSTA3, TYR, VASP, XBP1 

KRAS Signature 

ACLY, ATP1B1, ATP5F1, AXIN1, BOP1, BSG, BTG1, CCND1, CD68, CDKN1A, CEACAM1, 

CITED2, CSF2, CST3, CTSS, DUSP6, EEF1B2, EEF1D, EEF2, Eif3e, FAM3C, FCGR2B, FEZ2, 

FKBP2, GABPB2, GADD45A, GLRX, GNB2L1, GNS, H2-Aa, HIF1A, Hnf1b, HNRNPA1L2  ///  

LOC634350, HPN, ID2, IL18, ITGAM, ITGB2, KDELR1, KRT18, KRT8, LAMC1, LCN2, LGALS3, 

Man1a, Manf, MAPK1, MDFI, MRC1, Mt2, MTIF2, MYCN, MYH7, NMT1, NPC2, NPR2, NUP88, 

PABPC1, PAFAH1B3, Pcbd1, PDK3, Phb2, PHLDA1, PHLDA2, Plin2, PON2, PSEN1, 

RABGGTB, RPL14, RPL3, RPL6  ///  GM6807, RPL8, RPS2, S100A1, SFTPB, SHC1, Sirpa, 

SLC12A2, SLC25A5, SND1, TANK, TGFBI, TGOLN1  ///  TGOLN2, TNNT1, Trove2, TSTA3, 

TYR, Ubxn1, VASP 
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NF-kappaB Targets 

ABCA1, ABCB1B, ABCB4, ABCB9, abcc6, abcg5, abcg8, adam19, ADORA1, ADORA2A, 

ADRA2B, AFP, AGER, AGT, AHCTF1, AICDA, akr1c21, ALOX12, ALOX5, AMACR, AMH, 

ANGPT1, APOBEC2, APOC3, APOD, APOE, App, AQP4, AR, ARFRP1, ART1  ///  CHRNA10, 

ASPH, ASS1  ///  GM5424, ATP1A2, B2M, BACE1, BAX, BCL2  ///  D630008O14RIK, BCL2L1, 

BCL2L11, BCL3, BDKRB1, BDNF, BGN, BCL2A1A  ///  BCL2A1D  ///  BCL2A1B  ///  BCL2A1C, 

BLNK, BMI1, BMP2, BMP4, BNIP3, BRCA2, BTK, C2CD4A, C3, C4A, C4BP, CALCB, CASP4, 

CAV1, CCL1, CCL17, CCL19  ///  LOC100043921  ///  LOC100043918, CCL2, CCL20, CCL22, 

CCL28, CCL3, CCL4, CCL5, CCND1, CCND2, CCND3, CCR5  ///  CCR2, CCR7, CD209a, 

CD274, CD38, CD3G, CD40, CD40LG, CD44, CD48, cd69, CD80, CD83, CD86, CDK6, 

CDKN1A, CDX1, CEBPD, CFB, CFLAR, CHI3L1, CIDEA, CLDN2, COL1A2, CR2, CREB3  ///  

GBA2, CRP, CSF1, CSF2, CSF3, CTSB  ///  FDFT1, CTSL1, CXCL1, CXCL1, CXCL1, CXCL10, 

CXCL11, CXCL2, CXCL3, CXCL5, CXCL9, cxcr2, cxcr2, CXCR5, CYP19A1, CYP27B1, 

CYP2E1, CYP7B1, DCTN4, DEFB2, DIO2, DMP1, DNASE1L2, DPYD, DUSP1, E2F3, EBI3, 

EDN1, EGFR, EGR1, ELF3, ENG, ENO2, EPHA1, EPO, ERBB2, F11R, F3, F8, FABP6, FAS, 

fasl, fcer2a, FCGRT, FGF8, FN1, FOS, FSTL3  ///  PRSSL1, FTH1, G6PC, G6PDX, GAD1, 

GADD45B, GATA3, GBP1  ///  GBP5, GCLC, GCLM, GCNT1, GJB1, GNAI2, GNB2L1, GRIN1, 

GRIN2A, GRM2, GSTP1, GUCY1A2, GZMB, H28, H2-K2, H2-M3, H2-Q2  ///  H2-Q1, H47, 

HAMP, HAS1, hba-x, HBB-Y, HGF, hif1a, HMGN1, HMOX1, HOXA9, HPSE, HSD11B2, H2-Ke6, 

HSP90AA1, ICAM1, ICOS, IDO1, IER2, IER3, IFNB1, IFNG, IGFBP1, IGFBP2, IGHG  ///  IGH-

VJ558  ///  AI324046  ///  LOC544903  ///  IGH-6  ///  IGH-5  ///  IGHG1  ///  IGH-3  ///  IGH-VS107  

///  LOC380804  ///  LOC630565  ///  IGH-VX24  ///  IGHV14-2  ///  IGH-2  ///  IGG2A, GM1419  ///  

GM8760  ///  GM1524  ///  GM1499  ///  IGK-C  ///  GM10880, Iigp1, IL10, IL11, IL12A, IL12B, 

IL13, IL15, IL17A, IL1A, IL1B, IL1RN, IL2, IL23A, IL27, IL2RA, IL6, IL9, INHBA, IRF1, IRF2, IRF4, 

IRF7, JUNB, KCNK5, KCNN2, kdm6b, KISS1  ///  GOLT1A, KITL, KLF10, KRT15, KRT5, KRT6B, 

LAMB2, LBP, LCN2, LEF1, LGALS3, LIPG, LTA, LTB, LTF, LYZ1, MADCAM1, MAP4K1, MBP, 

MDK, MMP13, MMP3, MMP9, MT3, MTHFR, MUC2, MX1, MYB, MYC, MYLK, MYOZ1, ncam1, 
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NFKB1, NFKB2, NFKBIA, NFKBIE, NFKBIZ, ngf, NLRP2, NOD2, NOS1, nos2, NOX1, NPY1R, 

NQO1, NR3C1, NR4A2, NRG1, NUAK2, OLR1, OPN1SW, OPRD1, OPRM1, ORM1, OXTR, 

PAFAH2, PAX8, PDE7A, PDGFB, PDYN, PENK, PGK1, PGLYRP1, PGR, PIGF  ///  RHOQ, 

pIgR, PIK3CA, PIM1, PLA2G4C, PLAU, PLCD1, PLK3, POMC, PPP5C, PRDM1, PRF1, 

PRKACA  ///  SAMD1, PRKCD, PRL, PSMB9, PSME1, PSME2, PTAFR, PTEN, PTGDS, PTGES, 

PTGIS, PTGS2, PTHLH, PTPN1, PTPN13, PTS, PTX3, PYCARD, RAG1  ///  B230118H07RIK, 

RAG2, SYNC  ///  RBBP4, Rdh1, Rdh7, REL, RELB, REV3L, RIPK2, S100A10, S100A4, S100A6, 

SAA1  ///  SAA2, SAA2, SAA3, SAT1, SCNN1A, SDC4, SELE, SELP, SENP2, SERPINA1B  ///  

SERPINA1A, SERPINA1A  ///  SERPINA1C  ///  SERPINA1B  ///  SERPINA1D  ///  SERPINA1E, 

SERPINA1c, SERPINA1d, SERPINA3n, SERPINB1a, SERPINE1, SERPINE2, sfpi1, SH3BGRL, 

SKP2, SLC11A2, SLC16A1, SLC3A2, SLC6A6, SLFN2, SNAI1, SOD1, SOD2, SOX9, sp7, 

SPATA19, SPP1, ST6GAL1, ST8SIA1, STAT5A, SUPV3L1  ///  4930507D05RIK, TACR1, TAP1, 

TAPBP, Tcfec, TCRB, TERT, trf, TFF3, TFPI2, TGM1, TGM2, THBS1, THBS2, TICAM1, TIFA, 

TLR2, TLR9, TNC, TNF, TNFAIP2, TNFAIP3, TNFRSF1B, TNFRSF4, TNFRSF9, TNFSF10, 

TNFSF13B, TNFSF15, TNIP1, TNIP3, TRAF1, TRAF2, TREM1, trp53, TRPC1, TWIST1, 

UBE2M, UCP2, uggt1, UPK1B, UPP1, VCAM1, VEGFC, VIM, VPS53, WNT10B, WT1, XDH, 

XIAP, YY1, ZFP366 
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RESPONSE_TO_OTHER_ORGANISM 

KEGG_ENDOCYTOSIS 

BIOCARTA_INTEGRIN_PATHWAY 

KEGG_AXON_GUIDANCE 

REACTOME_NCAM1_INTERACTIONS 

REGULATION_OF_CELLULAR_COMPONENT_ORGANIZATION_AND_BIOGENESIS 

ST_TUMOR_NECROSIS_FACTOR_PATHWAY 

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH 

BIOCARTA_PDGF_PATHWAY 

REACTOME_SEMA4D_IN_SEMAPHORIN_SIGNALING 
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KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 

BIOCARTA_MYOSIN_PATHWAY 

BIOCARTA_MET_PATHWAY 

REACTOME_APOPTOSIS 

BIOCARTA_EGF_PATHWAY 

BIOCARTA_IL2RB_PATHWAY 

KEGG_PRION_DISEASES 

ORGAN_DEVELOPMENT 

INTRACELLULAR_SIGNALING_CASCADE 

BIOCARTA_NO1_PATHWAY 

REGULATION_OF_IMMUNE_SYSTEM_PROCESS 

REGULATION_OF_BIOLOGICAL_QUALITY 

AXONOGENESIS 

RAS_PROTEIN_SIGNAL_TRANSDUCTION 

ANATOMICAL_STRUCTURE_MORPHOGENESIS 

G_PROTEIN_SIGNALING_COUPLED_TO_CAMP_NUCLEOTIDE_SECOND_MESSENGER 

POSITIVE_REGULATION_OF_CATALYTIC_ACTIVITY 

REACTOME_SIGNALING_BY_PDGF 

REACTOME_NEURORANSMITTER_RECEPTOR_BINDING_AND_DOWNSTREAM_TRANSMI

SSION_IN_THE_POSTSYNAPTIC_CELL 

BIOCARTA_AGR_PATHWAY 

REGULATION_OF_T_CELL_ACTIVATION 

RESPONSE_TO_BIOTIC_STIMULUS 

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS 

CELL_SUBSTRATE_ADHESION 
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NEURITE_DEVELOPMENT 

G_PROTEIN_SIGNALING_COUPLED_TO_CYCLIC_NUCLEOTIDE_SECOND_MESSENGER 

REACTOME_CD28_CO_STIMULATION 

KEGG_LONG_TERM_DEPRESSION 

POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 

RESPONSE_TO_CHEMICAL_STIMULUS 

CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIATION 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 

REGULATION_OF_IMMUNE_RESPONSE 

BIOCARTA_BIOPEPTIDES_PATHWAY 

REGULATION_OF_CELL_MIGRATION 

REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE_1 

POSITIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS 

SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION 

CYCLIC_NUCLEOTIDE_MEDIATED_SIGNALING 

MULTI_ORGANISM_PROCESS 

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 

CAMP_MEDIATED_SIGNALING 

LEUKOCYTE_DIFFERENTIATION 

REACTOME_PLATELET_ACTIVATION_TRIGGERS 

REGULATION_OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS 

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

BIOCARTA_BCR_PATHWAY 

SIG_BCR_SIGNALING_PATHWAY 

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 

REACTOME_SMOOTH_MUSCLE_CONTRACTION 
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DI___TRI_VALENT_INORGANIC_CATION_TRANSPORT 

REACTOME_PLATELET_DEGRANULATION 

SYSTEM_DEVELOPMENT 

RESPONSE_TO_STRESS 

VASCULATURE_DEVELOPMENT 

ST_B_CELL_ANTIGEN_RECEPTOR 

BIOCARTA_NKT_PATHWAY 

NEURON_DEVELOPMENT 

REGULATION_OF_CATALYTIC_ACTIVITY 

PROTEIN_AMINO_ACID_PHOSPHORYLATION 

REACTOME_APOPTOTIC_EXECUTION_PHASE 

REGULATION_OF_CELL_PROLIFERATION 

REACTOME_PLC_BETA_MEDIATED_EVENTS 

REACTOME_TOLL_RECEPTOR_CASCADES 

CELL_MATRIX_ADHESION 

REACTOME_INTEGRIN_ALPHAIIBBETA3_SIGNALING 

HUMORAL_IMMUNE_RESPONSE 

KEGG_PATHWAYS_IN_CANCER 

ENZYME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 

ELECTRON_TRANSPORT_GO_0006118 

CATION_TRANSPORT 

BIOCARTA_ERK_PATHWAY 

REACTOME_GLUCAGON_SIGNALING_IN_METABOLIC_REGULATION 

POSITIVE_REGULATION_OF_IMMUNE_RESPONSE 

ORGAN_MORPHOGENESIS 

REGULATION_OF_G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 
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REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE 

POSITIVE_REGULATION_OF_TRANSFERASE_ACTIVITY 

ION_TRANSPORT 

REACTOME_GS_ALPHA_MEDIATED_EVENTS_IN_GLUCAGON_SIGNALLING 

BIOCARTA_CCR5_PATHWAY 

REACTOME_SEMA4D_INDUCED_CELL_MIGRATION_AND_GROWTH_CONE_COLLAPSE 

REACTOME_ACTIVATION_OF_NMDA_RECEPTOR_UPON_GLUTAMATE_BINDING_AND_P

OSTSYNAPTIC_EVENTS 

PROTEIN_KINASE_CASCADE 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43

S_COMPLEX 

POSITIVE_REGULATION_OF_MAP_KINASE_ACTIVITY 

KEGG_PPAR_SIGNALING_PATHWAY 

REGULATION_OF_HEART_CONTRACTION 

REGULATION_OF_MOLECULAR_FUNCTION 

REACTOME_G_ALPHA_S_SIGNALLING_EVENTS 

BIOCARTA_PAR1_PATHWAY 

REGULATION_OF_RESPONSE_TO_STIMULUS 

KEGG_PANCREATIC_CANCER 

REACTOME_G_ALPHA_12_13_SIGNALLING_EVENTS 

REGULATION_OF_ANGIOGENESIS 

G_PROTEIN_SIGNALING_ADENYLATE_CYCLASE_ACTIVATING_PATHWAY 

POSITIVE_REGULATION_OF_CYTOKINE_BIOSYNTHETIC_PROCESS 

BIOCARTA_MAPK_PATHWAY 

REGULATION_OF_LYMPHOCYTE_ACTIVATION 

BIOCARTA_FCER1_PATHWAY 
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NEGATIVE_REGULATION_OF_BIOLOGICAL_PROCESS 

PHOSPHORYLATION 

PEPTIDYL_TYROSINE_MODIFICATION 

REACTOME_PLATELET_AGGREGATION_PLUG_FORMATION 

BIOCARTA_IL1R_PATHWAY 

GENERATION_OF_NEURONS 

CELL_DEVELOPMENT 

TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_SIGNALING_PATHWAY 

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 

REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES 

KEGG_BUTANOATE_METABOLISM 

PROTEIN_SECRETION 

NEGATIVE_REGULATION_OF_CELL_PROLIFERATION 

NEGATIVE_REGULATION_OF_CELLULAR_PROCESS 

REACTOME_PI3K_CASCADE 

KEGG_CARDIAC_MUSCLE_CONTRACTION 

CELLULAR_BIOSYNTHETIC_PROCESS 

REGULATION_OF_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS 

CELL_PROLIFERATION_GO_0008283 

ST_INTEGRIN_SIGNALING_PATHWAY 

REACTOME_TOLL_LIKE_RECEPTOR_3_CASCADE 

REACTOME_OPIOID_SIGNALLING 

REACTOME_RNA_POLYMERASE_I_PROMOTER_OPENING 

REGULATION_OF_DEVELOPMENTAL_PROCESS 

POSITIVE_REGULATION_OF_HYDROLASE_ACTIVITY 

REGULATION_OF_HYDROLASE_ACTIVITY 
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ANGIOGENESIS 

BIOCARTA_IL12_PATHWAY 

BIOCARTA_FMLP_PATHWAY 

REACTOME_BIOLOGICAL_OXIDATIONS 

MAPKKK_CASCADE_GO_0000165 

ANATOMICAL_STRUCTURE_FORMATION 

BIOCARTA_HIVNEF_PATHWAY 

POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 

APOPTOTIC_PROGRAM 

NEUROGENESIS 

NEURON_DIFFERENTIATION 

REACTOME_TRANSLATION_INITIATION_COMPLEX_FORMATION 

APOPTOSIS_GO 

PROGRAMMED_CELL_DEATH 

REACTOME_CLASS_B2_SECRETIN_FAMILY_RECEPTORS 

KEGG_MELANOGENESIS 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 

BIOCARTA_PTDINS_PATHWAY 

GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 

BIOCARTA_GPCR_PATHWAY 

METAL_ION_TRANSPORT 

CALCIUM_ION_TRANSPORT 

KEGG_ACUTE_MYELOID_LEUKEMIA 

TISSUE_DEVELOPMENT 

REACTOME_SIGNALING_BY_EGFR 
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POSITIVE_REGULATION_OF_CELL_PROLIFERATION 

REACTOME_ACTIVATION_OF_KAINATE_RECEPTORS_UPON_GLUTAMATE_BINDING 

CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS 

BIOCARTA_VEGF_PATHWAY 

REACTOME_SIGNALLING_BY_NGF 

REGULATION_OF_PROTEIN_METABOLIC_PROCESS 

ACTIN_FILAMENT_BASED_PROCESS 

ACTIN_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS 

KEGG_RETINOL_METABOLISM 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 

REACTOME_GLUCAGON_TYPE_LIGAND_RECEPTORS 

KEGG_LONG_TERM_POTENTIATION 

POSITIVE_REGULATION_OF_TRANSLATION 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

ACTIVATION_OF_MAPK_ACTIVITY 

TRANSLATION 

BIOCARTA_NFAT_PATHWAY 

MEMBRANE_ORGANIZATION_AND_BIOGENESIS 

KEGG_PYRUVATE_METABOLISM 

REGULATION_OF_SIGNAL_TRANSDUCTION 

REGULATION_OF_TRANSFERASE_ACTIVITY 

REACTOME_FURTHER_PLATELET_RELEASATE 

REACTOME_POST_NMDA_RECEPTOR_ACTIVATION_EVENTS 

KEGG_APOPTOSIS 

REGULATION_OF_CELLULAR_PROTEIN_METABOLIC_PROCESS 
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IKK2 KO/WT GSEA 

Primary Tumors, All Terms Enriched in WT Over KO 

MITOTIC_CELL_CYCLE 

CELL_CYCLE_PROCESS 

CELL_CYCLE_GO_0007049 

REACTOME_CELL_CYCLE_MITOTIC 

CELL_CYCLE_PHASE 

REACTOME_MITOTIC_M_M_G1_PHASES 

M_PHASE_OF_MITOTIC_CELL_CYCLE 

M_PHASE 

MITOSIS 

REACTOME_MITOTIC_PROMETAPHASE 

KEGG_CELL_CYCLE 

REACTOME_G1_S_TRANSITION 

REGULATION_OF_CELL_CYCLE 

DNA_REPLICATION 

REACTOME_CELL_CYCLE_CHECKPOINTS 

REACTOME_S_PHASE 

REACTOME_DNA_REPLICATION_PRE_INITIATION 

INTERPHASE_OF_MITOTIC_CELL_CYCLE 

REACTOME_TELOMERE_MAINTENANCE 

RESPONSE_TO_DNA_DAMAGE_STIMULUS 

REACTOME_SYNTHESIS_OF_DNA 

INTERPHASE 

REACTOME_G2_M_CHECKPOINTS 

DNA_METABOLIC_PROCESS 
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REACTOME_HEMOSTASIS 

KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 

CELL_PROLIFERATION_GO_0008283 

DNA_REPAIR 

REACTOME_PLATELET_DEGRANULATION 

REACTOME_FORMATION_OF_PLATELET_PLUG 

KEGG_PYRIMIDINE_METABOLISM 

REACTOME_PLATELET_ACTIVATION 

PROTEIN_LOCALIZATION 

RESPONSE_TO_ENDOGENOUS_STIMULUS 

MACROMOLECULE_LOCALIZATION 

KEGG_OOCYTE_MEIOSIS 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 

 

Cell Lines, All Terms Enriched in WT Over KO 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 

REACTOME_DNA_REPLICATION_PRE_INITIATION 

REACTOME_MITOTIC_M_M_G1_PHASES 

REACTOME_SYNTHESIS_OF_DNA 

REACTOME_G2_M_CHECKPOINTS 

REACTOME_DNA_STRAND_ELONGATION 

KEGG_DNA_REPLICATION 

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 

REACTOME_S_PHASE 

REACTOME_CELL_CYCLE_MITOTIC 

REACTOME_CELL_CYCLE_CHECKPOINTS 

REACTOME_MITOTIC_PROMETAPHASE 
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REACTOME_EXTENSION_OF_TELOMERES 

REACTOME_G1_S_TRANSITION 

REACTOME_LAGGING_STRAND_SYNTHESIS 

REACTOME_TELOMERE_MAINTENANCE 

REACTOME_M_G1_TRANSITION 

DNA_DEPENDENT_DNA_REPLICATION 

DNA_REPLICATION 

DNA_METABOLIC_PROCESS 

REACTOME_METABOLISM_OF_CARBOHYDRATES 

REACTOME_TRANSPORT_OF_MATURE_MRNA_DERIVED_FROM_AN_INTRON_CONTAINI

NG_TRANSCRIPT 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 

REACTOME_DOUBLE_STRAND_BREAK_REPAIR 

REACTOME_METABOLISM_OF_RNA 

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 

REACTOME_TRANSPORT_OF_THE_SLBP_INDEPENDENT_MATURE_MRNA 

M_PHASE 

M_PHASE_OF_MITOTIC_CELL_CYCLE 

REACTOME_SNRNP_ASSEMBLY 

KEGG_HOMOLOGOUS_RECOMBINATION 

KEGG_MISMATCH_REPAIR 

REACTOME_DNA_REPAIR 

REACTOME_GLUCOSE_TRANSPORT 

REACTOME_STEROID_METABOLISM 

MITOSIS 
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DNA_RECOMBINATION 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 

KEGG_PYRIMIDINE_METABOLISM 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 

CELL_CELL_ADHESION 

LOCOMOTORY_BEHAVIOR 

REACTOME_PHASE_II_CONJUGATION 

KEGG_SPLICEOSOME 

RESPONSE_TO_DNA_DAMAGE_STIMULUS 

CHROMOSOME_SEGREGATION 

REACTOME_GLOBAL_GENOMIC_NER 

RESPONSE_TO_ENDOGENOUS_STIMULUS 

CELL_CYCLE_PROCESS 

DNA_REPAIR 

CELL_CYCLE_PHASE 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 

CELL_CYCLE_CHECKPOINT_GO_0000075 

BEHAVIOR 

REACTOME_INNATE_IMMUNITY_SIGNALING 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 

REACTOME_SIGNALING_IN_IMMUNE_SYSTEM 

MITOTIC_CELL_CYCLE 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 

KEGG_CELL_CYCLE 
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REACTOME_GLUCOSE_METABOLISM 

DNA_DAMAGE_RESPONSESIGNAL_TRANSDUCTION 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 

REACTOME_BIOLOGICAL_OXIDATIONS 

RESPONSE_TO_EXTERNAL_STIMULUS 

REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ANAP

HASE 

POSITIVE_REGULATION_OF_CELL_PROLIFERATION 

REACTOME_HIV_LIFE_CYCLE 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 

REACTOME_INFLUENZA_LIFE_CYCLE 

KEGG_RNA_DEGRADATION 

RESPONSE_TO_STRESS 

ANATOMICAL_STRUCTURE_MORPHOGENESIS 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 

APOPTOTIC_PROGRAM 

REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT 

REACTOME_GENE_EXPRESSION 

RNA_SPLICING 

MEIOTIC_CELL_CYCLE 

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS 

REACTOME_GPCR_LIGAND_BINDING   
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Verhaak 

Classical Down 

4930506M07RIK, ACSL1, ACSL4, AGTPBP1, ANKS1B, ARRB1, ATRNL1, BASP1, BCAS1, 

BEST1, CDC42, CDR1, CUTC, CYTH1, DYNC1I1, EDIL3, ENPP2, ENPP4, EPB4.1, EPB4.1L3, 

EVI2A, FAM49B, FHIT, FOLR2, FUT9, GNAI1, HPRT, MAGEH1, MBP, MMD, MORF4L2, 

MS4A4A, MSRB2, NANOS1, PARP8, PGBD5, PIGP, PLCL1, POPDC3, PPA1, PPFIA2, 

RABGAP1L, REPS2, SAR1A, SCPEP1, SGK3, SH3GL2, SH3GL3, SLC16A7, SLC31A2, 

SYNGR2, TEC, TLR4, TPM3, UCP2 

Classical Up 

2510012J08RIK, 3110056O03RIK, 4931406P16RIK, ABCD2, ACSBG1, ACSL3, ADAM19, 

AKAP8L, AKT2, APBA3, ARAP2, ARAP3, ARHGEF18, B3GALT1, BLM, BTBD2, 

C030046I01RIK, CALM1, CAMK2B, CC2D1A, CD151, CD3EAP, CDH2, CDH4, CDH6, CDK6, 

CHERP, CLIP2, CREB5, DAG1, DENND2A, DMWD, DOCK6, EGFR, ELOVL2, ERCC2, EXTL3, 

EYA2, FBXO17, FGFR3, FZD3, FZR1, GAS1, GLG1, GLI2, GM10991, GM9847, GNA11, GNAS, 

GNG7, GPR56, GRIK1, GRIK5, GTF2F1, HMG20B, HS3ST3B1, HSPBP1, IRF3, IRS2, ITGA7, 

ITGB8, JAG1, JUND, KCNF1, KEAP1, KLHDC8A, KLHL25, KLHL4, LAMA5, LAMB2, LFNG, 

LHFP, LMO2, LRFN3, LRP5, MAB21L1, MAU2, MCC, MEGF8, MEIS1, MEOX2, MLC1, MYO10, 

MYO5C, NCLN, NES, NOS2, NOTCH3, NPAS3, NPEPL1, NR2F6, ORF61, PDGFA, PEPD, 

PLCG1, PLEKHA4, POFUT1, POLRMT, POMT2, PRKD2, PRPF31, PTPRA, QTRT1, RASGRP1, 

RBCK1, RBM42, RFX2, RFXANK, RGS12, RGS6, SARS2, SCAMP4, SEMA6A, SEMA6D, 

SEPT11, SHOX2, SIPA1L1, SLC12A4, SLC4A4, SLC6A11, SLC6A9, SMO, SOX9, SPRY2, 

STK11, TBX2, TGIF2, TLE2, TMED1, TMEM147, TMEM161A, TRIB2, TYK2, UNC45A, UPF1, 

VAV3, VPS16, WSCD1, ZFHX4, ZFP111, ZFP112, ZFP128, ZFP235, ZFP446, ZFP94, ZFP954, 

ZYX 
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Mesenchymal Down 

 ABAT, ANKRD46, ASCL1, BAI3, BCAN, BEX1, CDK5R1, CDKN1B, CKB, CLASP2, CRB1, 

CSPG5, DLL3, DPF1, DPP6, FXYD6, GPM6A, GRIA2, GSTA4, MAPT, MARCKSL1, MPPED2, 

MTAP2, MYST2, NCALD, NLGN3, NRXN1, OLIG2, PAFAH1B3, PHLPP1, PRPSAP2, PURG, 

REEP1, RUFY3, SCG3, SCHIP1, SEZ6L, SOX2, SPAST, SRGAP3, TSPAN3, TTYH1, VEZF1, 

ZFP606, ZFP821 

Mesenchymal Up  

A230050P20Rik, ACPP, ADAM12, AIM1, ALDH3B1, ALOX5, AMPD3, ANXA2, ARPC1B, BATF, 

BC013712, BDKRB2, BNC2, C5AR1, CASP4, CASP4, CAST, CCR5, CD14, CD2AP, CD4, 

CDCP1, CEBPB, CHPF2, CLCF1, CNN2, COL1A1, COL1A2, COL5A1, COL8A2, CSTA, CTSA, 

CTSB, CTSC, CTSZ, CYTH4, CYTIP, DAB2, DCBLD2, DOK3, DSC2, DSE, ELF4, ENG, 

FCGR2B, FCGR3, FES, FHL2, FHOD1, FMNL1, FNDC3B, FPR3, FURIN, FXYD5, GCNT1, 

GLT25D1, GM7665, GNA15, GRN, HEXA, HEXB, HK3, IFI30, IGFBP6, IL15RA, IL1R1, IL4RA, 

IQGAP1, ITGA4, ITGA5, ITGAM, ITGB2, KYNU, LAIR1, LAMB1, LAPTM5, LCP1, LCP2, 

LHFPL2, LILRA6, LILRB3, LOX, LRRFIP1, LTBP2, LY75, LY96, MAFB, MAN1A, MAN2A1, 

MAN2B1, MAPK13, MFSD1, MGAT1, MSR1, MVP, MYH9, MYO1F, MYOF, NCF2, NCF4, 

NOD2, NPC2, NRP1, P4HA2, PLA2G15, PLAU, PLAUR, PLBD1, PLK3, POLD4, PROCR, 

PTGER4, PTPN22, PTPN6, PTPRC, RAB11FIP1, RAB27A, RAC2, RBMS1, RELB, RHOG, 

RRAS, RUNX2, S100A4, SAT1, SEC24D, SERPINA1E, SERPINE1, SFT2D2, SH2B3, SHC1, 

SIGLECE, SIGLECE, SLAMF8, SLC10A3, SLC11A1, SLC16A3, SQRDL, SRPX2, ST14, STAB1, 

STAT6, STXBP2, TCIRG1, TES, TGFBI, TGFBR2, TGOLN2, THBD, THBS1, TIMP1, TLR2, 

TNFAIP3, TNFAIP8, TNFRSF11A, TNFRSF1B, TRADD, TRPM2, TYMP, UAP1, VDR, WIPF1, 

WWTR1 

Neural Down 

ABL1, ACTN4, ADCY9, AFAP1, AFF4, AKAP13, ANKRD11, AP3D1, BICD2, BMS1, BOP1, 

BPTF, BRD4, BRPF1, CASP2, CDV3, CHD4, CHST3, CIZ1, CKAP4, COL4A2, D19BWG1357E, 

DCP1A, DDX42, DIAP1, DNAJC13, DNMT1, DOT1L, DPP3, DROSHA, EEF2, ELAVL1, EP400, 
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EXT1, F630110N24RIK, FAM38A, FAM46A, FERT2, FLNA, GANAB, GATAD2A, GCN1L1, 

GNL1, GNL2, GOLGA2, GOLGA3, GPR161, GPR172B, HCFC1, HELZ, HNRNPA3, HNRNPAB, 

HNRNPM, HNRNPUL2, HSP90B1, ILF3, KDM2A, KDM4B, KDM5A, KHSRP, KIRREL, KPNB1, 

LAMC1, LARP1, LEPREL2, LMAN1, LMNB2, MAML1, MBTPS1, MC1R, MED12, MIER2, MLEC, 

MLXIP, MORC2A, MSL2, MYO9B, MYST3, NCL, NCOR2, NFATC3, NIPBL, NUP188, P4HB, 

PABPC1, PCSK7, PHC2, PLOD3, PLXNA1, PPM1G, PRKDC, PRRC2C, PTBP1, PXN, QTRTD1, 

RAD54L2, RBBP6, RBM10, RBM15B, RRP1B, SAFB, SEC61A1, SERPINH1, SMARCA4, 

SNTB2, SP1, SRF, SRRM2, SSRP1, STK10, TARS, TCF3, THOC2, TMEM43, TOP1, TPM4, 

TPR, TRAM2, TRIO, TRRAP, TSPAN9, TTC28, UBN1, WIZ, XPO6, ZBTB43, ZDHHC18, 

ZFP146, ZFP629 

Neural Up 

1810012P15Rik, ACYP2, ADD3, AGXT2L1, AI747448, AKR7A5, ANXA3, ANXA7, ATP5F1, 

CALM2, CAMK2G, CAR4, CASQ1, CCDC121, CCK, CHN1, COX5B, CPNE6, CRBN, CRYL1, 

CRYM, CRYZL1, DHRS9, FBXO3, FEZF2, FXYD1, GABARAPL2, GABRB2, GM6822, GPR22, 

GRM1, GRM3, GUK1, HPCA, HPCAL4, IMPA1, KCNJ3, KCNK1, LYRM1, MAT2B, MDH1, 

MGST3, MRPL49, MYBPC1, NDP, NDRG2, NDUFS3, NSL1, NTSR2, ORC4, PDE6D, PEX11B, 

PEX19, PPP1R1A, PPP2R5A, RBKS, RERGL, RND1, ROGDI, S1PR1, SEPP1, SEPW1, 

SERPINI1, SIRT5, SLC30A10, SLCO1A4, SNCG, SNTA1, SNX11, TCEAL1, THTPA, TMEM144, 

TSNAX, TTC1, TTPA, UROS, USP33, VIP, VSX1, YPEL5 

Proneural Down 

ACSS3, ANXA1, ANXA4, ANXA5, ARHGAP29, ARNTL, ARSJ, ASL, BC028528, BLVRB, 

CASP1, CASP8, CCDC109B, CD97, CHI3L1, CLIC1, COPZ2, CYBRD1, DLC1, DRAM1, 

EFEMP2, EHD2, EMP3, EPHB4, FZD7, GALNT4, GJA1, GM6907, GSTK1, HFE, ICAM5, ILK, 

LGALS1, LGALS3, LRP10, LRRC16A, LTBP1, MGST2, MRC2, MYO1E, NR2E1, OSBPL3, 

PCSK5, PDPN, PGCP, PIPOX, PLA2G5, PLIN3, PLS3, PMP22, PTPN14, PTRF, PYGL, RAB32, 

RIN1, RREB1, S100A13, SLC2A10, SP100, SSH3, SWAP70, SYPL, TEAD3, TGFB3, TMBIM1, 

TNFRSF1A, TRIM38, TRIP6, VAMP5, YAP1, ZFP217 
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Proneural Up 

2610020H08Rik, 5730559C18RIK, ACTR1A, ALCAM, AMOTL2, ARHGAP33, ARHGEF9, 

ATAD5, ATAT1, ATP1A3, BCL7A, BCOR, C1QL1, CAMSAP2, CAR10, CASK, CBX1, CDC25A, 

CDC7, CELF3, CHD7, CLGN, CNTN1, CRMP1, CSNK1E, CXXC4, DBN1, DCAF7, DCX, DGKI, 

DNM3, DPYSL4, DUSP26, E130309F12Rik, E2F3, EPHB1, ERBB3, FAM110B, FAM125B, 

FBXO21, FERMT1, FGF9, FHOD3, FLRT1, GABRA3, GADD45G, GM11223, GNG4, GPR17, 

GRID2, GSK3B, HDAC2, HMGB3, HN1, HNRNPH3, HOXD3, HRASLS, ICK, IL1RAPL1, KDM1A, 

KIF21B, KLRC1, KLRC3, KLRK1, LPAR4, LPHN3, LRP6, LRRTM4, MARCKS, MAST1, MATR3, 

MCM10, MLLT11, MMP15, MMP16, MTSS1, MYB, MYT1, NCAM1, NKAIN1, NKX2-2, NOL4, 

NR0B1, NRXN2, P2RX7, PAK3, PAK7, PCDH11X, PCDH11X, PDE10A, PELI1, PFN2, PHF16, 

PLCB4, PODXL2, PPM1D, PPM1E, RAB33A, RAD21, RALGPS1, RALGPS2, RAP2A, RBPJ, 

RNFT2, SATB1, SCN3A, SEC61A2, SLC1A1, SLCO5A1, SORCS3, SOX10, SOX11, SOX4, 

SPNB3, STMN4, TAF5, TMCC1, TMEFF1, TMEM35, TMSB15A, TOP2B, TOPBP1, TOX3, 

TTC3, UGT8A, VAX2, WASF1, YPEL1, ZC4H2, ZEB2, ZFP184, ZFP248, ZFP286, ZFP300, 

ZFP711, ZFP804A 
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Phillips 

35 Signature Genes 

DLL3 (PN), SRRM2 (PN), SOX8 (PN), FERMT1 (PN), CSDC2 (PN), GALNT13 (PN), NDRG2 

(PN), NCAM1 (PN), RASL10A (PN), GABBR1, (PN), SCG3 (PN), SNAP91 (PN), ATP6V1G2 

(PN), KLRC3 (PN), PDLIM4 (MES), PLA2G5 (MES), COL4A2 (MES), COL4A1 (MES), PDPN 

(MES), FAM20C (MES), ANGPTL4 (MES), SPOCD1 (MES), SERPINE1 (MES), TAGLN (MES), 

MYL9 (MES), LIF (MES), FOSL2 (MES), CHI3L1 (MES), TIMP1 (MES), E2F7 (PROLIF), DTL 

(PROLIF), IQGAP3 (PROLIF), HMMR (PROLIF), CENPK (PROLIF) 

Proneural Full Signature 

ABHD6, ABLIM1, ABLIM3, ACSM5, ADAM22, ADCY2, AJAP1, AKR1C21, ALDH5A1, ALDOC, 

ANKS1B, AP2B1, APOE, ARHGAP22, ARL3, ARPP21, ASB13, ASCL1, ATP6V1G2, ATRNL1, 

B3GAT1, BCAN, BEND7, BMP2, 1110014N23RIK, C530028O21RIK, 1190002H23RIK, C1QL1, 

CADM2, CALCRL, CALN1, CBX7, CCNK, CDR1, CECR6, CMTM5, CNTN1, CNTN3, , CRTC1, 

CRYAB, CSDC2, CSMD3, CYFIP2, DLGAP1, DLL1, DLL3, DNAJC12, DNM3, DOK6, DPP10, 

DSCAM, DSCAML1, DTX4, DUSP26, EFHA2, EHD3, ELMO1, ENHO, EPB4.1L2, EPHB1, F2, 

FAIM2, FAM110B, FAM13C, FAM155A, FAM19A5, FBXL15, FBXO2, FERMT1, FGF12, FGF13, 

FGF14, FLRT1, FRY, FSD1, FSTL5, FUT9, FXYD6, GAB2, GABBR1, GABBR2, GABRA3, 

GABRB3, GAD1, GALNT13, GFRA1, GLUD1, GLUD2, GNAL, GNAO1, GPR158, GPR27, 

GPRC5B, GRIA1, GRIA2, GRIA4, GRID1, GRIK4, HDAC5, HEY2, HIP1R, HLF, HS3ST4, 

HSPA12A, ID4, IKZF5, IL17D, JPH3, JPH4, KCNB1, KCNN3, KCNQ5, KCTD4, D10BWG1379E, 

KIF1A, KIF21B, KIF5A, KLRC1, KLRC2, KLRC3, KSR2, LGR5, LMF1, E130309F12RIK, LRRC4, 

LUZP2, MAF, MAPK8IP2, MAPT, MCF2, MMP16, MN1, NALCN, NAP1L3, NCAM1, NDRG2, 

NET1, NEU4, NKAIN4, NOG, NRG3, NRSN1, NTN4, NTRK2, NUMA1, OLIG1, OLIG2, OMG, 

OPCML, OVOL1, P2RX7, P2RY13, PARD3, PCSK1N, PCSK6, PDE2A, PDK2, PDK4, PDZD8, 

PHACTR3, PHYHIPL, PID1, PKNOX2, PKP4, PLCB1, PLEKHB1, PLK1S1, PRKCZ, PSD, 

PTGDS, RAB11FIP4, RAB6B, RAC3, RAP2A, RAP2B, RASGEF1C, RASL10A, RASSF4, 



145 
 

 
 

REPS2, RGS9, RIMS2, RIPPLY2, RPL13-PS3, RPL37, RPL5, RPRM, RTN1, RUNDC3A, 

SATB1, SCD1, SCG3, SCN3A, SEC31B, SEPT4, SERINC5, SEZ6L, SGCG, SGSM1, SH3GL2, 

SHD, SLC1A1, SLC1A4, SLIT1, SLITRK2, SLITRK5, SMAD9, SMOC1, SNAP91, SNRPN, 

SORBS1, SORCS3, SOX6, SOX8, SPHKAP, SSTR1, SSTR2, STOX1, SUSD5, TAL1, THRA, 

TIMP4, TMEM100, TMEM59L, TMLHE, TMOD2, TNKS2, TPCN2, TPM1, TRIM31, TTYH1, 

USH1C, WDR86, WNT7B, ZC3H12B, ZCCHC24, ZDHHC22, ZFP488, ZFP804A 

Proliferative Full Signature 

ABCA5, ABHD3, ACN9, ACYP1, ANKRD32, ANKRD5, ARNTL2, ASPM, ATG12, AURKA, 

BARD1, BRCA1, BRIP1, BUB1, 4930547N16RIK, 5730455P16RIK, BC055324, , 

3830406C13RIK, 4932425I24RIK, 1500031L02RIK, 1700029J07RIK, CACYBP, CBWD1, 

CCDC34, CCNA2, CCNB1, CCNE2, CDC25C, CDC6, CDCA7, CDK1, CDK2, CDKN2A, 

CDKN2C, CENPA, CENPE, CENPF, CENPI, CENPK, CENPL, CENPN, CENPW, CEP152, 

CHAF1A, CHAF1B, CHEK1, CKS2, CREBZF, DBF4, DEK, DHFR, DLGAP5, DONSON, DSN1, 

DTL, E2F1, E2F7, E2F8, ECT2, EFCAB2, EIF1AX, EMP2, ERCC6L, EVC2, EXOSC9, EZH2, 

FANCD2, FANCI, FBXO11, FBXO5, GCLM, GINS1, GINS2, GJC1, GMPS, HAUS1, HAUS6, 

HELLS, HJURP, HMGB2, HMMR, HSPB11, IFT74, IL13RA2, ITGA2, ITGB3BP, 

2810417H13RIK, 9530077C05RIK, KIF14, KIF18A, KIF23, KIF4, KNTC1, LMNB1, LRIG3, LSM5, 

MAD2L1, MAGOH, MAGOHB, MCM2, MCM6, MDFIC, MELK, MIRLET7D, MLF1, MLF1IP, 

MND1, MNS1, MTF2, NASP, NCAPG, NCAPH, NDC80, NEK2, NPHP1, NUCB2, NUF2, 

NUSAP1, ORC6, PABPC4L, PAIP1, PAWR, PCNA, PDK1, PEG10, PIN4, PLK4, PPIC, PPIG, 

LRR1, PRIM2, PRPS2, RAD51, RAD51AP1, RBBP8, RBM24, RECQL, RFC4, RPA3, RRM1, 

RRM2, SGOL2, SHFM1, SHOX2, SIP1, SLC25A24, SMC2, SMC4, SPC24, SPIN4, STIL, TCF19, 

TEX9, TIFA, TIMELESS, TMEM106C, TMEM38B, TMEM79, TMPO, TOM1L1, TOP2A, TRIM36, 

TRMT6, TTC12, TTC26, TTK, TYMS, USP1, WDHD1, WDR34, WDR76, WEE1, XRCC4, 

YEATS4, ZC3HAV1L, ZFP367, ZWILCH, ZWINT 
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Mesenchymal Full Signature 

ACTA2, ACTN1, ALDH16A1, ANGPT2, ANGPTL4, ANPEP, B4GALT1, BACE2, BCL3, 

BHLHE40, A430105I19RIK, C1QTNF1, C1RA, C1RL, , CAR12, CD151, CD248, CD274, CD97, 

CECR2, CHI3L1, COL4A1, COL4A2, DEF6, DLC1, ECE1, EFEMP2, EFNB2, EHD2, EMP1, 

EMP3, EPAS1, ESM1, FAM20C, FAM38A, FBN1, FES, FGFRL1, FLNA, FLT1, FOSL2, FPR2, 

GALNT4, GGN, GPR116, HK3, HOMER3, HRH1, HSD3B7, ICAM1, IFITM2, IFITM3, ITGA1, 

ITGA3, ITGA5, ITGA7, JUNB, KLF16, LIF, LPAR1, LRRC29, LRRC32, LZTS1, MAP2K3, 

METRNL, METTL7B, MMP14, MVP, MYH9, MYL12A, NCLN, NDUFA10, NEURL2, NRP1, 

NRP2, OSBPL3, OSMR, PAPPA, PARP10, PDGFA, PDGFRL, PDLIM4, PDLIM7, PDPN, 

SERPINA1C, PLA2G5, PLAU, PLAUR, PLEKHF1, PMEPA1, PML, POC1B, PRR24, PTRF, 

PVRL2, RAB34, RHOJ, RRAS, RRBP1, RUNX1, RYR3, GM7665, SALL4, SBNO2, SERPINA1E, 

SERPINE1, SERPINH1, SGSH, SHC1, SHROOM3, SLC12A9, SLC16A3, SLC22A18, 

SLC25A37, SLC39A8, SOCS3, SPOCD1, STEAP3, TAGLN, THBD, TIMP1, TNC, TPP1, 

TRABD, TRIM47, TRIM56, TTC38, TWF1, UNC93B1, VWA1, ZYX  
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Cahoy 

OPC 

1190002H23RIK, 3830612M24, PID1, FAM70A, A530047J11RIK, A730017C20RIK, FAM19A2, 

CACNG4, CALCRL, CAR8, CCND1, CDO1, CHRNA4, CHST11, CNTN6, COL11A1, CSPG4, 

CSPG5, CXADR, D3BWG0562E, DDAH1, DPYSL3, E130114P18RIK, E130309F12RIK, EMID1, 

ENC1, ETV5, F2R, FSTL5, GFRA2, GRIA3, HES5, KCND2, KCND3, KLF12, LNX1, LPHN3, 

LRP1, LRRTM3, MAP3K1, MATN4, MKI67, NETO1, NR2E1, NXPH1, OLFM2, OPRL1, PBK, 

PCDH20, PDGFRA, PDZRN4, PRKG2, PRRX1, PTGFRN, PTPRZ1, RLBP1, RNF180, RPRM, 

RRM2, SDC3, SLC35F1, SLC7A3, SLITRK1, SOX11, SPON1, SULF1, TACC2, THSD7B, 

TMEM100, TOP2A, VCAM1, VSTM2A, DCAF12L1, ZBED4, ZFP36L1 

Oligo 

1700047M11RIK, 2810468N07RIK, PRR5L, 4930452G13RIK, 5730559C18RIK, NIPAL4, 

9630013A20RIK, TMEM88B, ERMN, ADAMTS4, ADSSL1, AI314604, ANLN, PRIMA1, BCAS1, 

CHN2, CLDN11, CPM, CPOX, CYP27A1, DDC, DOCK10, E130308A19RIK, LPAR1, S1PR5, 

ELOVL7, ENPP6, ERBB3, EVI2A, FA2H, GAL3ST1, GJC2, GJB1, GJE1, GM98, GPR17, 

GPR62, GSN, HAPLN2, IL1RAP, IL23A, KNDC1, LGI3, MAG, MAL, MBP, MOBP, MOG, 

MYO1D, NKX6-2, PDLIM2, PHLDB1, PLA2G4A, PLEKHH1, PLLP, PLP1, PLXNB3, PPAP2C, 

PPP1R14A, PRKCQ, RFFL, SEMA3D, SGK2, SLC45A3, SOX10, SRPK3, ST18, OPALIN, 

TNNI1, TRF, TRIM59, TSPAN2, UGT8A, UNC5B 

Neuron 

SPHKAP, 6330527O06RIK, 9130024F11RIK, IPCEF1, A930009L07RIK, SNHG11, ASPH, 

C030017B01RIK, CACNA1B, CALB1, CAMK2B, CAMK4, CCK, CDH8, CLSTN2, CRH, CYB561, 

RBFOX3, DLX1, NECAB1, EPHA7, GABRA1, GABRA5, GABRG2, GAP43, GDA, GLRA2, 

GPR88, HS3ST2, HTR2C, ICA1L, ICAM5, KCNC2, KCNF1, L1CAM, LPL, MAL2, MEF2C, 

MYO5B, MYT1L, NAPB, NEFL, NEFM, NELL1, NEUROD6, NOV, NPAS4, NRG3, NTS, ODZ2, 

OLFR1344, PCSK2, PENK, PGM2L1, PLCXD3, PRDM8, RGS4, SATB2, SCG2, SCN2A1, SLA, 
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SLC12A5, SLC17A6, SLC6A7, SNAP25, SSTR2, STMN2, SV2B, SYT1, SYT4, TMEM130, 

TRHDE, TTC9, TTR, VGF, VIP, VSNL1 

Astrocyte 

BTBD17, SLC1A2, A730056I06RIK, ACOT11, ACSBG1, ADHFE1, AGT, AI464131, ALDOC, 

ATP1A2, FAM20A, FAM107A, BMPR1B, PREX2, CBS, CCDC80, CHRDL1, CLDN10, CTH, 

CYBRD1, CYP4F14, CYP4F15, DIO2, S1PR1, EGFR, EMP2, ENTPD2, F3, FGFR3, FMO1, 

FZD2, GJA1, GJB6, GLDC, GLI3, GM266, GRIN2C, HAPLN1, HTRA1, ID4, KCNE1L, LONRF3, 

MERTK, MGST1, NTSR2, PAPSS2, PDK4, PLCD4, PPP1R3C, PPP1R3G, PRODH, RFX4, 

SLC14A1, SLC15A2, SLC1A2, SLC1A3, SLC25A18, SLC4A4, SLC7A10, SLC7A2, SLC9A3R1, 

SOX9, THRSP, TLCD1, TLR3, FAM176A, TMEM47, TNC, TTPA, AQP4, GFAP, MLC1, PLA2G7, 

SLC39A12 

Cultured Astrocyte 

1500015O10RIK, 2810417H13RIK, 6330512M04RIK, 9930013L23RIK, AKAP12, AKR1C14, 

ANXA1, ANXA2, ANXA3, ASNS, AURKB, BACE2, BMP6, C1QL3, CASQ1, CCDC109B, CCNB2, 

CD24A, CDK1, CEP55, CKAP2, CNN2, COL3A1, COL5A2, COL8A1, CP, CRABP1, CRLF1, 

ECM1, ECT2, EMP1, EPHB2, FBLN5, FMOD, GAS2L3, GPR126, GRB10, HSPB1, IFI35, 

IFITM1, IGF2BP2, IGFBP3, KLHDC8A, LGALS1, LOX, MATN2, MELK, MMP2, NDRG1, NPR3, 

NUAK1, OCIAD2, OGN, PMAIP1, PRSS23, PTGS2, S100A11, SAMD9L, SEMA3C, SHROOM3, 

SOSTDC1, SPP1, ST8SIA2, TAGLN, TFPI, TGFBI, TGM2, TNFRSF12A, UBE2  
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