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Abstract

This paper introduces a formal method to model the level of de-
mand on control when executing cognitive processes. The cost
of cognitive control is parsed into an intensity cost which en-
capsulates how much additional input information is required
so as to get the specified response, and an interaction cost
which encapsulates the level of interference between individ-
ual processes in a network. We develop a formal relationship
between the probability of successful execution of desired pro-
cesses and the control signals (additive control biases). This
relationship is also used to specify optimal control policies to
achieve a desired probability of activation for processes. We
observe that there are boundary cases when finding such con-
trol policies which leads us to introduce the interaction cost.
We show that the interaction cost is influenced by the relative
strengths of individual processes, as well as the directionality
of the underlying competition between processes.

Keywords: cognitive control; multi-tasking; intensity; iden-
tity

Introduction
A long standing focus in cognitive research has been to-
wards understanding the ability to execute tasks/processes1

that demand cognitive control. In this context, cognitive con-
trol is defined as the set of mechanisms required to pursue
a goal, especially when distraction or strong competing re-
sponses (interferences) must be overcome (Posner & Sny-
der, 1975; Shiffrin & Schneider, 1977; Cohen, Dunbar, &
McClelland, 1990). Earlier work (Posner & Snyder, 1975;
Shiffrin & Schneider, 1977; Cohen et al., 1990; Botvinick &
Cohen, 2014) has argued that the processes demanding con-
trol can be distinguished from automatic processes in terms
of the strength of the associations in the pathways underlying
processing: automatic processes are characterized by path-
ways with associations strong enough to resist interference
from competing processes, whereas controlled processes are
weaker, and therefore rely on input from control mechanisms
to support their execution against interference.

Another longstanding observation is that the allocation of
cognitive control is costly (often discussed in terms of “men-
tal effort” (Posner & Snyder, 1975; Botvinick & Braver,
2015; Shenhav et al., 2017)). This cost has been interpreted in
physical terms (such as metabolic demands (Muraven, Tice,

1A task/process/input-output mapping is defined as a unique
mapping from all possible vectors in the input subspace to corre-
sponding vectors in the output subspace, that is independent of the
mappings for all other combinations of input and output components
in the network.

& Baumeister, 1998)) or in terms of an opportunity cost re-
flecting the allocation of a limited resource (Kurzban, Duck-
worth, Kable, & Myers, 2013). Elsewhere (Feng, Schwem-
mer, Gershman, & Cohen, 2014; Musslick et al., 2016), we
have proposed that limitations in the capacity for control-
dependent processing reflect the purpose of control to di-
minish interference rather than any intrinsic limitation in the
mechanism responsible for control. This view suggests that
the architecture of the processing system as a whole con-
strains the opportunities for control-dependent processing, re-
sulting in opportunity costs associated with allocating control
to any particular task(s).

Here, we build on a closely related proposal, by Koechlin
and Summerfield (2007), to define the cost of control in terms
of internal representational requirements to insure that a given
stimulus (or a set of stimuli) produces the desired response
(or a set of responses), given the intrinsic architecture of the
system. Their work focused on a single task. Here, we ex-
tend this to consider an arbitrary number of tasks and thus
accommodate their possibility for, and costs of, multitasking
(i.e.parallel processing of task pathways). To do so, we follow
the framework proposed by Shenhav, Botvinick, and Cohen
(2013) that distinguishes two components of control signals:
intensity and identity. Specifically, Shenhav et al. (2013) de-
fined the intensity of a control signal as the strength of the sig-
nal needed to insure performance of a particular task, and the
identity as which control signal should be selected to achieve
a desired objective given environmental conditions. Here we
build on that distinction to define two corresponding com-
ponents of the cognitive control costs - a cost associated with
intensity, and a cost associated with interaction. Furthermore,
we define the interaction cost to capture the level of interfer-
ence between the processes in a network.

In this paper, we begin by introducing formal constructs
for intensity and interaction costs by using the graph theoretic
representation of a neural network and terms/notions adopted
from probability theory. We describe an intensity cost that
represents the control signals (as biases infused into a neural
network), above and beyond the specified strength of the sig-
nal (stimulus) itself. This is achieved by developing a formal
relationship between the probability of successful execution
of desired processes and the control signals. In turn, this de-
fines an optimization problem, which can then be solved to
find optimal control signals that achieve a specified activa-
tion for desired processes. However, we observe that there
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Figure 1: Illustration of a single-layered, feed-forward network
with 3-input and 3-output layer components, wherein the individual
features are scalar in nature.

are boundary cases in which this optimization problem can
not be solved. These cases reflect situations in which the si-
multaneous execution of the processes is not feasible due to
interference. Hence, interaction cost analysis motivates an
additional investigation towards finding a proper metric that
continuously measures the level of interference between pro-
cesses. To achieve this we introduce the definition of inter-
action cost associated with process mappings in a network
configuration. Specifically, it measures the level of interfer-
ence introduced by competing processes that interfere with
the tasks of interest. In their study, Koechlin and Summer-
field (2007) have already used information theoretic terms to
measure cognitive control. However, in order to apply these
metrics to neural networks while considering parallelism, we
augment some of these measures, and through simulations we
will demonstrate how interaction cost can be used to predict
interference in neural network architectures. Finally, we will
discuss general research directions revealed by the analysis
presented here.

Intensity: the cost of control
Cognitive control is defined as the underlying mechanism
that biases the processing of a task in order to maximize the
reward (Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Botvinick, Cohen, & Carter, 2004; Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Botvinick, 2007). Here, we adapt
the notion of intensity cost from Shenhav et al. (2013) as a
function of the amount of control bias that cognitive con-
trol applies to the system. However, Shenhav et al. (2013)
described this function in qualitative rather than quantitative
terms. In this work we provide an explicit characterization
of the cost of cognitive effort in terms of a set of physically
meaningful parameters, which allow the manipulation of the
response of a cognitive architecture.

Following earlier works (Feng et al., 2014; Musslick et al.,

2016), we consider a single-layered, feed-forward network
with N input and M output layer components to formalize the
notion of intensity cost in a cognitive control context (Fig. 1
shows a simple example of such a network). In this frame-
work, each component represents an input/stimulus or out-
put/response dimension (vector subspace), and the connec-
tion from an input to an output component constitutes the
processing pathway for a given task. This allows us to de-
fine an abstraction of the network as a directed bipartite graph
GB = (V ,E), wherein the set of vertices V can be partitioned
into two disjoint sets Vin and Vout , representing the input and
output layer components respectively. Moreover, a directed
edge (i, j) ∈E ⊆Vin×Vout represents a connection from the
vertex i in the input layer to vertex j in the output layer (i.e.,
a task). In this setting, we represent the processing pathway
by introducing a weight matrix W with elements wi j. As we
will see later, this abstraction plays an important role in for-
malizing the interaction cost of cognitive control.

In this setting, we assume that control signals bias the pro-
cessing of a stimulus towards a specified response at two
different levels, i.e. gi and b j, which we refer to as pre-
interaction and post-interaction control biases, respectively.
This complies with early computational models of cognitive
control in which control signals act as an increase in gain of
non-linear processing units (Cohen et al., 1990; Botvinick et
al., 2001) and allows us to treat such control biases as key
contributing factors towards the intensity cost for cognitive
control. It is worth noting here that for simplicity the only
sources of nonlinearity in this setting are the logistic2 acti-
vation functions which act upon the linearized output vec-
tor ỹ = [Ỹ1,Ỹ2, . . . ,ỸM]. Without loss of generality, in what
follows we consider the individual features to be scalar, and
carry out a formal investigation on how these control biases
g = [g1, . . . ,gN ] and b = [b1, . . . ,bM] influence the response
from this cognitive architecture. In our formulation, the cor-
responding magnitude, i.e. ‖g‖2 + ‖b‖2, can be treated as a
measure of control intensity applied to the system, and there-
fore the cost for cognitive control.

We begin our analysis by assuming the vector of fea-
tures s = [S1,S2, . . . ,SN ] to be an N-dimensional multivariate
Gaussian random variable with mean µS and covariance ΣS.
(The assumption of Gaussianity is motivated by the technical
tractability). With this assumption, the vector [X1,X2, . . . ,XN ]
becomes an N-dimensional multivariate Gaussian random
variable with a shifted mean and same covariance. Further-
more, as all the transformations (before the nonlinear logis-
tic activation function) are linear in nature, [Y1,Y2, . . . ,YN ]
also remains a multivariate Gaussian random variable whose
mean and covariance are given by µY =W (µS +g) and ΣY =
WΣSW T , respectively. Similarly, the vector of linearized out-
puts [Ỹ1,Ỹ2, . . . ,ỸN ] is also a multivariate Gaussian, with a
shifted mean and the same covariance.

2Although we are restricting ourselves to logistic functions with
unit steepness, in a more general setting one can use the steepness
as another design parameter.
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Hence, each individual linearized output Ỹi is itself a Gaus-
sian random variable with

mean: µỸ
i =

N

∑
j=1

w ji(µ j +g j)+bi

and variance: σ
Ỹ
ii =

N

∑
j=1

N

∑
k=1

w jiwkiσk j,

where µ j is the mean of stimulus Sk and σk j is the covariance
between stimuli Sk and S j. As a consequence, the correspond-
ing output (response) will have a logit-normal distribution,
and this leads us to our key result in this section.

As outlined by Shenhav et al. (2013), the response Oi
should overcome a specified threshold in order to execute
the corresponding process (task). Then, by letting αi ∈ (0,1)
represent this activation threshold associated with output Oi,
the corresponding probability of task execution (probability
of the output Oi surpassing the threshold αi) is expressed as

P[Oi≥αi] =
1
2
− 1

2
erf


log
(

αi
1−αi

)
−bi−

N
∑
j=1

w ji(µ j +g j)√
2

N
∑
j=1

N
∑

k=1
w jiwkiσk j


︸ ︷︷ ︸

f (αi,bi,w,µ,g,ΣS)

.

Here we have exploited the monotonicity of the logistic func-
tion to compute its inverse. Then the result follows from the
cumulative distribution function of Ỹi.

We characterized the activation probability of a given net-
work in terms of the pre-interaction and post-interaction con-
trol biases. This is crucial because it provides new directions
to incorporate the cost of control into the design of a cognitive
network architecture. For example, the problem of allocating
a limited amount of cognitive control into different compo-
nents of the network to maximize the associated probability
of activation can be formulated as an optimization problem in
which the goal becomes minimizing f (αi,bi,w,µ,g,ΣS) over

g and b subject to the constraints
N
∑

i=1
g2

i ≤Cg and
M
∑

i=1
b2

i ≤Cb,

where Cg and Cb define the maximum amount of control that
can be applied. Alternatively, in this setting, we can also ap-
proach the problem of minimizing the cost of control, while
still maintaining a desired value of probability of activation.

One can consider the joint distribution of the processes of
interest to incorporate the effects of interaction between tasks.
To be consistent with (Feng et al., 2014; Musslick et al.,
2016), it is reasonable to begin with a focus narrowed to the
situation where the choice of interaction weights and the prior
distribution of the stimuli render the interactions undesirable.
Then the effect of multitasking can measured by introducing
a suitable distance metric (for example, the Kullback-Leibler
divergence (Ortega & Braun, 2013)) between the joint distri-
butions of relevant processes and the product of correspond-
ing marginals, and one can attempt to minimize this distance

at the expense of a limited amount of cognitive control. How-
ever, as one might expect, this optimization problem can have
an empty solution set under certain values of the interaction
weights and activation thresholds, meaning that certain net-
work configurations strictly prohibit successful multitasking
performance (Musslick et al., 2016). Before approaching this
computation in detail, it would be beneficial to investigate
how the interaction structure influences the solution space,
and that leads us to our next section wherein we introduce the
notion of interaction cost.

Interaction: the cost of mapping
In this section, we will introduce a detailed formalism of the
interaction cost associated with process mappings in a net-
work configuration to accommodate the possibility for multi-
tasking. In our earlier work (Musslick et al., 2016), we have
formalized three distinct types of interference (Fig. 2).

Convergent interference (Fig. 2a) occurs when two in-
puts/stimuli (e.g. S1 and S2) compete to determine a common
output (e.g. O1). We also consider divergent interference in
our analysis (Fig. 2b). Although this does not pose an im-
pediment to performance, i.e. it is possible to generate two
distinct outputs (e.g. O1 and O2) to the same input (e.g. S1),
it represents a restriction on the number of independent stim-
uli (and therefore the number of tasks) that the system can
process at once, and thus was treated formally as a type of
interference due to this dependency in our analysis of paral-
lel processing capability. Finally, we consider a third, indi-
rect interference that supervenes on the first two (shown in
Fig. 2c and Fig. 2d). In this case, the two tasks with strengths
w11 and w22 in question do not directly interfere with one
another. However, their simultaneous execution would nec-
essarily engage a third task with strength w21 (also possibly
a fourth task with strength w12) that would produce interfer-
ence in output O1 (and O2). While Musslick et al. (2016)
treated these three types of interference identically in terms
of their effect on the overall parallel processing capability of
a network, the proposed interaction cost will also distinguish
between these three types of interference.

In interaction cost analysis, we will assume that a stimulus
is of value 1 when it is active, and 0 otherwise. Moreover, to
increase tractability, we will consider linear activation at the
output level, which also implies that without loss of general-
ity the pre- and post-interaction biases can be assumed to be
zero. A more detailed version of the interaction cost analysis,
involving the strength of stimuli, as well as the nonlinear acti-
vation function, will be discussed in subsequent publications.

To introduce the interaction cost, we take an approach sim-
ilar to the one adopted by Koechlin and Summerfield (2007).
In their work, Koechlin and Summerfield (2007) proposed a
metric for selecting a single action among multiple alterna-
tives. Here, we will refine this metric to introduce the inter-
action cost for neural network architectures. Towards this ob-
jective, we first leverage the assumptions discussed earlier in
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Figure 2: The illustration of convergent, divergent, asymmetric,
and symmetric interference.

the section, and abstract out the network configurations pre-
sented in Fig. 2 from the network shown in Fig. 1. We also
assume that the strength of a task i j from stimulus Si to output
O j is represented by its non-negative weight wi j ≥ 0.

Let us first consider the case shown in Fig. 2a. It is obvious
that the response in the output component O j is completely
determined by the stimulus if either S1 or S2 is activated in
the network (executing a single process). However, activating
both stimuli S1 and S2 simultaneously creates a conflict, since
the output can not respond to two distinct stimuli simultane-
ously (as the activations are linear, the network will always
have a response in the output level). In order to measure the
level of this competition between stimuli, we define a random
variable a1 associated with the output O1 such that a1 ∈ {1,2}
(Fig. 2a). This implies that a1 = 1 or a1 = 2 when the out-
put O1 is driven completely by S1 or S2, respectively. Since a
stronger task will have a higher probability of being selected
to generate the response, we consider the relative strengths of
the task pathways (with associated strengths w11 and w21) in
order to define the probability of the possible outcomes, i.e.
the probability of a1 = 1 and a1 = 2 when both S1 and S2
activated. Hence, we compute the probability as

P[a1 = 1] =
w11

w11 +w21
, and, P[a1 = 2] =

w21

w11 +w21
.

Next, we extend this framework to consider networks
with N stimuli and M outputs, wherein an output O j, j ∈
{1, . . . ,M} responds to a set of stimuli. Let us assume that
there are n ≤ N incoming edges to a particular output O j,
and each edge is originated from a distinct stimulus Si, i =
i1, . . . , in, where ik ∈ {1, . . . ,N}. Then the probability of the
event that output O j is responding to stimulus Si is given by,

P[a j = i] =
wi j1(Si)

n
∑

k=1
wik j1(Sik)

, (1)

where 1(Si) is the indicator function that represents the ac-
tivation of stimulus Si such that 1(Si) = 1 if stimulus Si is
active and 1(Si) = 0, otherwise. Then, by building upon the
ideas proposed by (Koechlin & Summerfield, 2007), we de-
fine the interaction cost as

Ψ(a j = i) =− log(P[a j = i]), (2)

where the logarithm is with respect to base 2.

Equation 1 implies the P[a j = i] = 1 when only the rel-
evant stimulus Si associated with task i j is activated in the
network. Hence the interaction cost is computed as Ψ(a j =
i) = 0 which implies that there is no interaction cost. More-
over, when multiple processes are competing due to the ac-
tivation of multiple stimuli, P[a j = i] → 0 as the compe-
tition increases, and as a consequence the interaction cost
Ψ(a j = i)→ ∞.

We further extend equation 1, to encapsulate the proba-
bility associated with parallel processing of task pathways
in the network. Thus, we introduce the joint probability
of distinct output components responding to a set of stim-
uli. For instance, let us consider the parallel processing of
tasks with strength w11 and w21 in Fig. 2a, and calculate
P[a1 = 1,a1 = 2]. This is the probability of output compo-
nent O1 responding to both S1 and S2, and by definition we
know that this probability is zero. For the case illustrated in
Fig. 2b, the joint probability P[a1 = 1,a2 = 1] = 1 since ac-
tivation of S1 will activate both processes with strengths w11
and w12, and there is no competition in outputs O1 and O2.
This result is parallel to the observation made by (Musslick
et al., 2016), who stated that divergent interference is not ac-
tually an interference but a dependency on the stimuli.

Now let us consider the case introduced in Fig. 2c which
can be thought of as the composition of the two cases pre-
sented in Fig. 2a-b. We compute the interaction cost of paral-
lel processing the tasks with strengths w11 and w22. This re-
quires simultaneous activation of S1 and S2, which indirectly
engages the task with strength w21, and initiates a competition
in the output O1. Thus, the interaction cost of parallelism be-
tween tasks represented by w11 and w22 is given by

Ψ1(a1 = 1,a2 = 2) =− log(P[a2 = 2] ·P[a1 = 1|a2 = 2])

=− log
(

1 · w11

w11 +w21

)
.

Here P[a2 = 2] = 1 since task with weight w22 is not compet-
ing with any other process in the output O2. The competition,
however, takes place in O1, and the interaction cost associ-
ated with w11 for this case has already been computed when
we discussed the case in Fig. 2a.

In a similar way, we can compute the interaction cost
of parallelism between tasks represented by w11 and w22 in
Fig. 2d, and we have

Ψ2(a1 = 1,a2 = 2) =− log(P[a2 = 2] ·P[a1 = 1|a2 = 2])

=− log
(

w11

w11 +w21
· w22

w22 +w12

)
.

In this case, simultaneous activation of S1 and S2 causes com-
petition in both outputs O1 and O2. Thus, by revealing further
insight about the strength and directionality of interference,
the interaction cost serves as an extension of the interference
definition presented by (Musslick et al., 2016). For instance,
for the same values of w11,w21,w22 ≥ 0 in both configura-
tions in Fig. 2c-d, and given w12 ≥ 0 for the configuration in
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Fig. 2d, it is obvious that

Ψ1(a1 = 1,a2 = 2)≤Ψ2(a1 = 1,a2 = 2).

Neural Network Simulation
In order to investigate the effect of directionality for the third
indirect interference during parallel processing, we imple-
mented a synthetic neural network simulation3 identical to
our earlier work (Musslick et al., 2016). The neural net-
work used for this simulation maps stimulus input encoded
at a stimulus layer via a non-linear associative layer to non-
linear response layer. A separate task input layer encodes
the current task to be performed with respect to that stimulus
and projects to both the associative layer and response layer.
Units in the stimulus layer were grouped into six stimulus di-
mensions with three units per dimension. Similarly, units in
the response layer was grouped into six response dimensions
with three units per dimension. The network was trained on
12 tasks, where each task corresponds to a one-to-one map-
ping between a subset of three input features in a stimulus
layer to a subset of three response units in an output layer.

We then used the methods described in Musslick et al.
(2016) to extract a bipartite task graph from single represen-
tations encoded at the associative layer. The representations
associated with each task can be characterized by calculating,
for each unit in the associative and output layers, the mean of
its activity over all of the stimuli for a given task; this mean
pattern of activity can then be used as a representation of the
task. Correlating these patterns of activity across tasks yields
a task similarity matrix that can be examined separately for
the associative and output layers of the network. This can
then be used to assess the extent to which different tasks rely
on similar or different representation within each layer of the
network. Tasks that have similar representations over the as-
sociative layer can be inferred to rely on the same input di-
mension that is, they share an input component in the bipar-
tite graph representation of the network and tasks that are
similar at the output layer can be inferred to share an output
component. Accordingly, a bipartite graph can be constructed
by measuring the patterns of activity observed in the network
while it performs each individual task.

The extracted bipartite graph can be used to extract inter-
ference patterns between pairs of tasks (cf. Fig. 2). We use
this to extract all possible learned task-pairs involving no in-
terference case (Fig. 3a), and two distinct cases of interfer-
ence as shown in Fig. 3b and Fig. 3c from single-task repre-
sentations. Fig. 3 shows the activation patterns of the output
units for the simultaneous execution of two tasks, averaged
across the patterns of all task pairs for a given interference
structure. That is, no interference (Fig. 3a) leads to very ac-
curate response patterns (i.e. the current activation shown in
orange) is very close to the desired activation pattern shown
in grey). For the case in Fig. 3b, the response pattern of task
(S1 : O1) is primarily impaired due to the interference aris-

3Simulation details are omitted due to space constraints.

ing from task (S2 : O1). However, for the case of interfer-
ence illustrated in Fig. 3c, the response patterns for both tasks
(S1 : O1) and (S2 : O2) are impaired as observed by the activa-
tion patterns. These simulation results reflect the influence of
the directionality of interference between tasks as predicted
by the proposed interaction cost.

Figure 3: This figure illustrates the performance of a task-pair for a
given interference pattern. Each tasks maps a subset of three stimu-
lus input units onto three response units (see text). The orange color
in the bar plots indicates unit activation of response units relevant to
the depicted tasks, while gray indicates desired response pattern of
those units.

General Discussion and Conclusion
In this study, we have introduced two new measures to de-
termine costs associated with intensity and interaction for the
demand on control. First, we quantify the intensity cost as
a function of the amount of control bias that is supplemen-
tary to stimulus-specific processing in order to achieve a de-
sired response from the network. Doing so, we formalize
the probability of achieving a desired task given the stim-
ulus, weights and biases infused to the network. Since the
stimuli and weights are considered as network properties, the
intensity cost to achieve desired response is defined as the
amount (value) of control biases required to be injected to the
input and output components of the network. The detailed
analysis of intensity cost revealed an interesting optimization
problem to maximize the probability of surpassing a speci-
fied activation for a given budget of resources (i.e. an upper
bound on the control biases). The existence of a solution of
this optimization problem implicitly reveals whether the de-
sired objective is feasible. However, as it can be foreseen that
under certain circumstances the solution does not exist due to
interference between the involved processes. Such boundary
conditions motivated the second metric introduced in our pa-
per in which we formalize the interaction cost to measure the
level of interactions/interference between processes by means
of their type of connections and weights.

With the introduced characterization of intensity and inter-
action costs, it is possible to formally define whether a pro-
cess is considered a reflex, automatic or controlled. Con-
cretely, a process is considered a reflex if the underlying
weight guarantees a successful execution. In other words, a
reflex can be successfully executed without any intensity or
interaction costs. We assume that the execution of both con-
trolled and automatic processes carries with it an intensity
cost as some amount of control bias is needed to elicit a re-
sponse. However, unlike the former, controlled processes are
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subject to interference and thus yield interaction costs large
than zero.

The metrics proposed here can also be used towards fur-
ther understanding cognitive effort as well as synthetic neu-
ral networks designed to achieve goal-driven tasks. By using
the intensity cost, which reveals the interrelationship between
control bias and probability of achieving a desired objective,
we will investigate the limitations of any given neural net-
work architecture by allocating a budget of control bias. The
intensity cost can also be used to investigate the feasibility of
achieving a desired objective defined by the set of processes
of interest in a network.

In the interaction cost analysis, we have assumed that there
exist a response in the output for any stimulus activation and
this may not be the case for a nonlinear activation in the out-
put components. Hence, one major research direction is the
detailed analysis for the classification of processes with non-
linear activation in output. Another possible direction for fu-
ture work is to further analyze the interaction cost in order to
capture the properties of the overall network (not only a sub-
set of tasks of interest). This will allow one to use the inter-
action cost as an objective function for network training. An-
other possible direction is to explore the interrelationship be-
tween intensity and interaction cost. In our work (Musslick et
al., 2016), we noticed a fundamental trade-off between shared
representations in a network and its parallel processing ca-
pability (separated representations). Intuitively, we envision
this separation will decrease interaction cost while increasing
the likelihood of successful execution for a given budget of
control bias.
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