Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

ONE- AND TWO-PROTON INCLUSIVE SPECTRA IN 800 MeV PROTON-NUCLEUS COLLISIONS AND THE MEAN FREE PATH OF PROTONS IN NUCLEI

Permalink

https://escholarship.org/uc/item/6sb3b8vm

Author

Tanihata, I.
Publication Date
1980-10-01

IB Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Submitted to Physics Letters B

ONE-AND TWO-PROTON INCLUSIVE SPECTRA IN 800 MEV PROTONNUCLEUS COLLISIONS AND THE MEAN FREE PATH OF PROTONS IN NUCLEI

1. Tanihata, S. Nagamiya, S. Schnetzer, and H. Steiner

October 1980

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

JAN 81981

CIERAEY AND nocumients secmow

IISCLAIMRR

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, of favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

One and Twomproton Inclusive Spectra in 800 MeV Protone Nucleus Collisions and the Mean Free Path of Protons in Nuclei
I. Tanihata, (a) So Nagamiya, So Schnetzer, and Ho Steiner Lawrence Berkeley Laboratoxy and Department of Physics, University of California, Berkeley, CA 94720

One and two-proton inclusive spectra have been measured in collisions of 800 MeV protons with $\mathrm{C}, \mathrm{NaF}, \mathrm{KCl}$, Cu , and Pb targets . The single procon inclusive yield increases monotonically with target mass, while the twoproton yield at $\theta_{\text {Lab }}= \pm 40^{\circ}$ associated with pp quasi-elascic scatcerings shows a maximum at a mass number of about 50. A model calculation reproduces the observed target mass depen dence with a mean free path of 22.5 fin for 800 MeV protons inside the nucleus.

The mean free path, λ, of nucleons inside the nucleus is one of the funm damental quantities in the scudy of pA (protonmucleus) and AA (nucleuso nucleus) collisions. If λ is much smaller than the typical reaction size, R, processes involving mulciple NN (nucleon-nucleon) collisions play a doninant role It is in this case that thermal models [1], hydrodynamical models [2], or other statistical models may have cheir greatest chance of success on the other hand, if $\lambda \gg \mathrm{R}$, processes involving single NN collisions become donm inant, and nodels such as those suggested by Blankenbecler and Schmidt [3]. or by Hatch and koonin [4] cend to be more appropriate Thexefore, by detexmining the value of λ and R experimentally we expect to gain a clearer understanding of the reaction dynamics. Recent measurenents of twomion correlations [5], composite particle produccions [6] and pion inclusive spectra [7] have suggested that the reaction size in AA collisions at ~ 1 GeV/nucleon is 3-4 fim. In this paper we report the measurement of the single proton inclusive $(p+A \rightarrow p+X)$ and the two proton coincidence $(p+A \rightarrow 2 p+X)$ spectra. The proton mean free path inside the mucleus is then estimated from the targetmass (A) dependence of the twomproton coincidence yield which is associated with pp quasi-elastic-scattering (QES).

A proton beam of 800 MeV Exon the Berkeley Bevatron was incident on C, Waf, KCl, Cu, and Pb targets. The magnetic spectroneter described in Refo [3] was used to decect protons at laboratory angles (θ) from 15° to 60° and for momenta between 0.5 and $2.0 \mathrm{GeV} / \mathrm{c}$. When che spectroneter was set at $\theta=40^{\circ}$, twoproton coincidences were measured as well. For this purpose chree councer celescopes, which were the same as those described in Refs. [8] and [9], were used. These telescopes, named the R, U, and D telescopes, were located at scattering angles of $(\theta, \phi)=\left(40^{\circ}, 180^{\circ}\right)$ and $\left(40^{\circ}, 90^{\circ}\right)$, respectively, and che coincidence count between one of these and the spectroneter was measured.

Since the spectroneter was located at ϕ \& 0°, ics coincidence with the Rtelescope indicates that the two protoms are emicted in the same reaction plane. Each telescope consisted of three plastic scintillators with absorbers sandwiched in between. A rriple coincidence between these scintillators corresponds to proton energy of more than 200 MeV .

Fig. 1 (a) shows inclusive singlemprocon momentum spectra for the C target. At small angles (15° and 30°) the spectra show strong peaks due to pp or pu (QES, while at large angles they are much smoother. Fig. 1 (b) shows the spectra at 40° in more detail. Shown thexe are the single-proton spectrun (solid circles), the proton spectrun in coincidence with the in-plane (R) telescope (open circles), and the proton spectrum in coincidence with che out-of-plane (U or D) telescope (squares). A sharp peak is observed in the coincidence spectrum with the inmplane celescope. The momentum of chis peak position agrees well with the expected proton momentum due to pp QES in which two protons are emitced at $(\Theta, \phi)=\left(40^{\circ}, 0^{\circ}\right)$ and $\left(40^{\circ}, 180^{\circ}\right)$. On the other hand, a structureless spectrum is observed when the coincidence with the outofmplane telescope is taken. Curve A in the figure shows the result of the plane-wave-impulse approximation for the one-proton spectrum [10]. It deviaces substantially from the data, particularly ar high momentum. Curve B shows the result of a linear cascade calculation by Knoll and Randrup [11], which includes effects due to multiple scatterings within each linear tube. The shape of the spectrun is reproduced much betcer by this calculation. Curves C and D show the linear cascade results [11] for the inmplane and the out of-plane coincidence respectively. Agreenent with the out-of plane coincidence is good, but the inmplane colncidence prediction is a factor of 22.5 larger chan the data. Since this calculation includes only cascades in a straight line geomery, it may underestimate the rescattering effects.

Fig. 2(a) shows the A-dependence of the QES cross sections at 15°, which are obtained by integrating the singlempoton specta near the qes peak. The cross section monotonically increases roughly in proportion to $A^{1 / 3}$, which is characteristic of protons produced in surface reactions. The integrated cross sections agree with a recent result by Chrien et al. [13], although the presenc QES spectrum at 15° is broadex than theirs because of the wide angular acceptance of our spectroneter $\left(\pm 3^{\circ}\right)$. On the other hand, the singlemproton cross section at low momentum as well as the out-of-plane coincidence yield show a stronger A-dependence $\left(A^{2 / 3}\right)$, suggescing contributions Exom multiple scatterings.

Fige 2(b) shows the A-dependence of QES cross sections obtained from the coincidence measurenent. To evaluate the QES cross section for each target, a gaussian fit was made to the (ES peak after subtracting the outofoplane coine cidence spectrum fron the inmplane coincidence spectrum, as shom in Fig. 3 . The widths (σ) of the fitted Gaussians $\left[\exp \left(-\left(p-p_{0}\right)^{2} / \sigma^{2}\right)\right]$ are almost indepenm dent of target and are $\sim 160 \mathrm{MeV} / \mathrm{c}$. The two-proton QES cross section has a max imun at around $A=50$ and then decreases as the target mass increases further. This A-dependence is strikingly diffexent from that of the singlemproton cross sections which increase monotonically with A. As the target mass increases, the probability of $N N$ scattering increases, but at the same time the probabilicy of rescatcerings after the first collision increases as well. The reduction of the QES cross sections due to rescattering is 1 arger when two protons are detected chan for a single proton because events are lost if either one of the nucleons is rescattered.

We parameterize the rescattexing process by the mean free path of protons inside the nucleus. Under the assumption that the taryet nucleus has a
uniforn nucleon density (ρ) within a radius (x) given by $x=\left(1.28 A^{1 / 3}-0.76\right.$ $+0.8 \mathrm{~A}^{-1 / 3}$) fur [12], the single-proton QES cross section is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{1}}=\frac{1}{A}\left(Z \frac{d \sigma_{p p}^{e l}}{d \Omega_{1}}+N \frac{d_{\sigma}^{e l}}{d \Omega_{1}}\right) \int \rho d V \exp \left(-\frac{\ell^{\text {in }}}{\lambda^{\text {in }}}\right) \exp \left(-\frac{\ell_{1}^{\text {out }}}{\lambda_{l}^{o u t}}\right), \tag{1}
\end{equation*}
$$

where A, Z, and N are the mass, the proton, and the neutron numbers of the rarget nucleus, respectively, and $d \sigma_{p p}^{e l} / d \Omega_{1}\left(d \sigma_{p n}^{e l} / d \Omega_{1}\right)$ is the differencial cross section of $p p$ (pn) elastic scattering. The attenuations of incident and out-going protons are parameterized by energy dependent nean-free paths $\lambda^{i n}$ and $\lambda^{\text {out }}$. The path lengths of protons from the nuclear surface to the interaction point are labeled by $\ell^{\text {in }}$ and $\ell^{\text {out }}$. Integration is nade for the whole target volume.

For the two proton QES cross section, an additional attenuation factor for the second proton is included. In addition, $d \sigma^{e l} / \mathrm{d} \Omega_{1}$ becomes a double differential cross section $Z\left(d^{2} \sigma_{p p} / d \Omega_{1} d \Omega_{2}\right)$; chus

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \Omega_{1} d \Omega_{2}}=\frac{Z}{A} \frac{d^{2} \sigma_{p p}^{e l}}{d \Omega_{1} d \Omega_{2}} \int \rho d V \cdot \exp \left(-\frac{e^{\text {in }}}{\lambda^{\text {in }}}\right) \cdot \exp \left(-\frac{\ell_{1}^{\text {out }}}{\lambda_{1}^{\text {out }}}\right) \cdot \exp \left(-\frac{l_{2}^{\text {out }}}{\lambda_{2}^{\text {out }}}\right) \tag{2}
\end{equation*}
$$

In Eqs. (1) and (2) three values of the mean free parhs, $\lambda^{i n}, \lambda_{1}^{\text {out }}$, and $\lambda_{2}^{\text {out }}$ appear. They generally depend on the proton energy, E_{p}, and the $2 /$ in ratio of the target nucleus. We assume that such dependences are paraneterized by

$$
\begin{equation*}
\lambda \infty A /\left(Z \sigma_{p p}\left(E_{p}\right)+N \sigma_{p n}\left(E_{p}\right)\right), \tag{3}
\end{equation*}
$$

where $\sigma_{p p}\left(E_{p}\right)$ and $\sigma_{p n}\left(E_{p}\right)$ are free $p p$ and pn total cross sections, respeco tively. We thus have one parameter left which we take to be

$$
\begin{equation*}
\lambda \equiv \lambda^{\text {in }}(\text { for } 2 \text { min }), \tag{4}
\end{equation*}
$$

which is the mean fxee path of an 800 MeV proton inside the $Z=N$ target.
In fige 2(b) the calculated Amdependences ace shown for several values of λ, where absolute scales axe arbitrarily adjusted. A mean free path of 2.5 fin gives the best fit to the data. In the singlempoton data, an abolute conm parison between Eq. (1) and che data can be made after integration of the cross section over the QES peak. Such an integration can most unambiguously be done at 15° because of the dominance of QES. Comparison between the data and the calculated values (solid curve) is shown in Eige 2 (a). Although the calculated values are systematically smaller than the data the agreetaent is faix.

The observed mean fxee path $\lambda(a t 800 \mathrm{lf} V)=2.5 \mathrm{fm}$ is longer than the value expected fron free nucieon cross sections ($\lambda_{\text {free }}=1.6 \mathrm{fm}$) . The present calculations are based on several assumptions and simplifications. Firsts we neglected the effect of fexmi motion in che calculations. Because we used fox comparison the data integrated over the QeS peak, we believe that this is not an important affect. Secondly, we assumed that any protons which are scatqered before or after the phs of interest are not detected. This assumption could be too strong, since any small angle scattering without significant monentun change would still be detected as a ots scattering. The observed longer mean free path compared to $\lambda_{\text {free }}$ may be due, at least in part, to this assumption. Thirdly, we assuned that the rarget nucleus is a sharp sphere. The actual nucleus has a diffuse surface where the nucleon densicy is snall. We have extended our calculacions to a Folded Yukawa-type density distribution [12] using free NN coss sections. For the two proton data the calculated results show almost constant yields over a wide range of target masses with a slight peak at around $A=50$. The fits, however, are considerably worse chan the best fit obtained fron the shatposphere assumption. This suggests, that
the effective NN cross section may be larger at the nuclear surface than inside, an effect qualitatively consistent with expectations based on Pauli exclusion principle suppresion. Finally, it is worth noting that the neano freempath evaluated fron an optical potential analysis [13], $\lambda=3.6$ fin, is longer than the value obtained here.

In conclusion, we have observed strong peaks in the inclusive data due to NH QES at small angles, but at layge angles the oES peak appears only when the second particle is detected in the same reaction plane. The study of the A dependence of inclusive and twomproton coincidence yields, especially the latter, shows that such measurement can be used to determine the mean fee path of nucleons inside the nucleus. Within the franework of the simple analysis described above we estimate that the mean free path is about 1.6 times longex than the value expected fron free MN collisions. To understand these results Eurther studies of small angle scattering, as well as the reduction of the NN cross section due to the Pauli effect, are necessary, Finally, the value of λ turned out to be comparable co R where R is the reaction size of AA collisions. This fact implies that both the single and multiple NN collisions are highly intermingled in AA collisions.

The authors would like to thank O_{0} Chambexlain, Mo-Co Lemaire and Go Shapiro for their help throughout this work. We are also grateful to Jo Ronoll, Jo Randrup and W. Myers for fruicful discussions. This work was supported by the Nuclear Science Division of the U.S. Department of Energy, the INS - LBL Collaboration Prograng, and a grant from the Commorative Association Eor the Japan World Exposicion. This work was partially supported by the U.S. Department of Energy under Contract $W-7405-E N G-48$.

REFERENCES
a) On Leave fron INS, University of Tokyo, Tanashi, Tokyo, Japano
[1] G. De Westrall et al., Phys. Rev. Lett. 37 (1976) 1202。
[2] A. Ao Amsden. F. H. Harlow and Jo R. Nex, Phys. Rev. Cl5 (1977) 205.
[3] I. A Schmidt and Re Blakenbeclex. Phys. Rev. D15 (1977) 3321.
[4] R. Le Hatch and S. E Koonin, Phys Lett. 81B (1973) 1.
[5] S. X. Fung et alo, Physo Revo Lett. 41 (1978) 1592.
[6] M. C. Lemaire et al. Phys. Lett 853 (1979) 38.
[7] Meng Ta-Chung, Phys. Rev. Lett. 42 (1979) 1331.
[8] S. Naganiya et ale, Jo Phys. Soco Japans supplement 44 (1979) 378: Phys. Lett. 818 (1979) 147.
[9] Io Tanihata, Mo- Lemaire, So Naganiya, and So Schnetzer, Physo Letr. (in press), LBL-10694 (preprint).
[10] Y. Alexander et al. Phys. Rev. Lett. 44 (1980) 1579.
[11] Jo Knoll and Jo Kandrup, LBLo11418 (to be published).
[12] We D. Myexs and Wo Jo Swiacecki, LBL-9306 and private communication.
[13] K.E. Chrien et al., Phys. Rev. C21 (1980) 1014.

FIGURE CAPT TONS

Fig. 1. Singlempoton inclusive specta (a) and the coincidence spectra at $\theta_{1}=\theta_{2}=40^{\circ}$ (b) for $0.8 \mathrm{GeV} p+C$ reactions. Solid curves in (a) are drawn for guiding the eye. Arrows indicate the proton monenta fron pp or pn QES. Curves in (b) show the results of theoretical calculations. See the text for decails.

Fig. 2 Targetmass dependence of the singlemproton QES cross section (a) and che two-proton QES cross section (b) Curves in the figure show the result of che calculations based on Eqs. (1) and (2) with the mean free path λ of the 0.8 GeV protons as a parameter Best fit is obtained for $\lambda=2.5 \mathrm{fm}$.

Fize 3. Proton spectra at $\theta=40^{\circ}$ obtained by subtracting the out-of-plane coincidence spectra Erom the inmplane coincidence spectra. Dotced curves indicate the gaussian fit to che data. Scale of cross sections is arbicrary except for relative scales for different targers.

Fig. 1

$$
\text { XBL } 7910-3040 \mathrm{~A}
$$

Fig. 2

